008/106686 A 1|00 0 000 O O 0

O

(19) World Intellectual Property Organization Vd”Ij

) IO O T O OO

International Bureau

(43) International Publication Date
4 September 2008 (04.09.2008)

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(10) International Publication Number

WO 2008/106686 Al

(51)

21

(22)
(25)
(26)

(30)

(71)
(72)

(74)

International Patent Classification:
GOGF 3/06 (2006.01) GOGF 12/02 (2006.01)

International Application Number:
PCT/US2008/055696

International Filing Date: 3 March 2008 (03.03.2008)

Filing Language: English
Publication Language: English
Priority Data:

60/892,517 1 March 2007 (01.03.2007) US
60/909,903 3 April 2007 (03.04.2007) US
Applicants and

Inventors: DUMITRU, Douglas [US/US]; 24872 Nellie
Gail Road, Laguna Hills, CA 92653 (US). ANDERSON,
Samuel, J. [US/US]; 220 Stanford Drive, Wallingford, PA
19086 (US).

Agents: VAN DYKE, Raymond et al.; Winston & Strawn
LLP, Patent Department, 1700 K Street, N.W., Washington,
DC 20006-3817 (US).

(81)

(34)

Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AOQ, AT, AU, AZ,BA, BB, BG, BH, BR, BW, BY, BZ, CA,
CH, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE,
EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID,
1L, IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC,
LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN,
MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PG, PH,
PL, PT, RO, RS, RU, SC, SD, SE, SG, SK, SL, SM, SV,
SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN,
ZA, 7M, 7ZW.

Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,
FR, GB,GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MT, NL,
NO, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG,
CIL, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

with international search report

before the expiration of the time limit for amending the
claims and to be republished in the event of receipt of
amendments

(54) Title: FAST BLOCK DEVICE AND METHODOLOGY

T
e

Format Device

v

et
e
gm

Bount £
{Siee Fig

)

704

¢S

Read From Davice

'

FlE
A

Unmount Devics

FIG. 7

@ (57) Abstract: A device, method and system is directed to fast data storage on a block storage device. New data is written to an

empty write block. A location of the new data is tracked. Meta data associated with the new data is written. A lookup table may be
updated based in part on the meta data. The new data may be read based the lookup table configured to map a logical address to a
physical address.

10

15

20

25

30

WO 2008/106686 PCT/US2008/055696

FAST BLOCK DEVICE AND METHODOLOGY

FIELD OF THE INVENTION
The application relates generally to optimizing access to block storage devices by
replacing slow random writes with highly efficient linear writes, as well as methods for
attaining the linear writes in different types of block storage devices, and block storage
hardware devices derived from applying these methodologies to constructs of computer

hardware.

BACKGROUND OF THE INVENTION

Block devices are computer components, such as disk drives and other mass
storage devices, such as flash-memory and RAM-based disks. Traditionally, for a block
storage device, the application that is using the storage accesses the device using a "block
number”. The device driver then translates this block number into a physical address on the
device. This translation process usually involves linearly mapping the block number into the
corresponding location on the block storage device. This occurs because Block Devices
derive from an older idea: magnetic tape, and ultimately reaching back to voice recording on a
wax cylinder, such as early devices made by Thomas Edison. These analog devices were
strictly linear, and block devices have historically preserved this idea of linearity, but have
also flattened it out into individual tracks or groups of known blocks. Thus, the segmented
linear technique ultimately has the effect of playing drop-the-needle, such as on an analog
phonographic disk or record, but in a digital manner, providing the capability of something
between near and actual random-access, depending upon the specific construction of the block
device.

The use of this pseudo-linearity, whether in devices, such as hard disks with their
tracks, or flash-memory disks with their concept of erase blocks to establish neutral charge,
produces linear reads and writes of frames that are very fast, but in many devices produces
random writes that are habitually slow, as well as slow random reads in some devices.

While linearity has been the ideal, it has never been absolute due to imperfections
in media. For instance, today’s disk drives have algorithms for mapping around bad blocks.
Here, one has a separate redundant area set aside to accept contents of specific blocks known

to be bad.

10

15

20

25

30

WO 2008/106686 PCT/US2008/055696

Similarly, the mapping process is not consistently linear at the application level.
In some applications, a "mapping layer" is introduced. This mapping layer can exist for a
number of reasons. For example, logical volume managers can map logical blocks into
physical blocks to facilitate storage device management allowing dynamic re-allocation of
space. Managers using Redundant Arrays of Inexpensive Disks ("RAID") technology can
map data into redundant patterns allowing continuous operation even in the case of storage
device failures. In all of these mapping layer implementations, the mapping is designed to be
simple, and as much as possible linear. While RAID devices can intermix blocks across
multiple storage devices, the overall mapping is still linear from low to high block number.
This linear mapping is a basic paradigm of storage device management.

Another aspect of conventional device mapping solutions is that they are
generally static in operation. While some mappings allow for dynamic updating, such as
when a disk error is detected and a "bad block" is "grown", most mappings remain the same
for the life of the device. Device re-mapping based on live updates is not a part of any
existing block device implementation.

The genesis of the invention at hand results from an inherent problem and
weakness in most Block devices: that random writes to these devices are very slow, and that
random reads are sometimes very slow as well. For instance, a high-speed disk drive can read
and write about 170 4-kilobyte blocks per second in a truly random fashion, but can linearly
read or write at a speed approaching 10,000 4-kilobyte blocks per second. Similarly, a device
built out of NAND flash memory can linearly read and write at well over 5,000 4-kilobyte
blocks per second, and also randomly read at this high speed, but can randomly write 50 to 70
such blocks in a second.

While random-access slowness is not an issue for anything stored in a large
format, such as a word processing document, or a picture of some sort, it is a problem if one is
randomly accessing many small files or records. This commonly occurs in a database
environment, and also occurs in environments, such as Internet Message Access Protocol
(IMAP) email service where individual small files, such as individual email messages, are
stored in a set of directories.

In the particular case in point, there is a desire to use a NAND flash memory
device for the purposes of random access in a database environment. However, while such
devices were superb in their read performance of random records, being a good thirty times

faster than high speed disk drives, their random write performance was less than half the

.

10

15

20

25

30

WO 2008/106686 PCT/US2008/055696

performance of high speed disks. Also, the limited write life of NAND flash memory, as will
be discussed later, created concerns about product durability.

However, there may be other ways that data might be organized if it were
convenient and useful. Journaling is a method of recording changes to directories and the
sizes and position of files without recording the changed contents of a particular file. In
Journaling, these characteristics changes are recorded in the sequential order in which they
occur. Transaction logging is similar to journaling except that it is implemented at the
application level, and records the actual data contents of the files or records in question as
these are recorded. As with Journaling, in the event of system failure, Transaction Logs can
be played forward from a known good time and data set, such as a completed file backup, in
order to bring the data set right up to the instant before failure actually occurred.

As understood by those skilled in the art, Journaling and especially Transaction
Logging are very space-intensive. Both were originally implemented in a non-block device
specifically using magnetic tape or other low-cost linear media to record the transactions as
they occurred. Over time, both have switched to the use of low-cost block devices, such as
disk drives, as these are now cheaper than magnetic tape, and can be viewed, in their native
linear order of blocks, as the logical equivalent of a very long tape.

Journaling, and especially Transaction Logging, are being mentioned here as one
alternative system of viewing data in a manner that is both new and linear, in that the new
copy of the data supersedes the old one if the media is played forward through time, and as an
example of the advantages of writing data in an alternative order rather than an order fixed to
a specific location. However, it needs to be remembered that both Journaling and Transaction
Logging are only operable in a linear fashion from first to last because there exists no
mechanism of independently remembering where the current version of every datum is

located.

SUMMARY OF THE PRESENT INVENTION
The present invention relates to a method, device, and system for fast data storage
on a block storage device. The method includes, writing new data to an empty write block;
tracking a location of the new data; and writing meta data associated with the new data. In
one embodiment, the method further includes mounting the device, including reading each
write block of the device and meta data associated with the each write block. The method

may also include unmounting the device, including writing to each write block of the device

-3-

10

15

20

25

30

WO 2008/106686 PCT/US2008/055696

and writing meta data associated with the each write block. The method may include updating
a lookup table based in part on the meta data; and reading the new data based on the lookup
table configured to map a logical address to a physical address. Moreover, the method may
also include optimizing the device, including writing to a write block having the fewest active
blocks and writing meta data associated with each write block, wherein existing live blocks
are packed to a front of the write block and rewritten to the device.

In one embodiment, a block storage device is directed to optimizing data access
and update patterns. The device may include a mapping layer configured to dynamically
remap data; and a plurality of data blocks, each data block storing map information, wherein
cach cluster of data blocks stores meta information, including an age of the data blocks of the
cluster, a count of the data blocks of the cluster, and an array of logical block numbers for the
data blocks of the cluster. In one embodiment, the device may further include a fast lookup
table configured to enable looking up a logical block, a reverse lookup table configured to
enable looking up a physical location, and/or a table configured to enable looking up a write
block, wherein the table includes a number of valid blocks in each write block, and an age of
data in the write block. Moreover, a system is directed to employing the method and the
device. In one embodiment, the system may comprise a primary computer system in
communication with the block storage device, wherein the primary computer system is
configured to provide the empty write block.

In an alternate embodiment, the method includes writing at least one portion of
meta-information associated with a plurality of write blocks; getting an empty write block for
writing the new data, if a current write position is at an end of the plurality of write blocks;
writing new data in one of the empty write block or one of the plurality of write blocks; and
updating a lookup table based on an address where the new data is written to. The method
may also include defragging the block storage device if a first empty block and a second
empty block is unavailable for writing the new data.

In one embodiment, the device may include a segment of known data in logical
and linear order; a further segment of free space for the acceptance of updates; and a logical
arca for storing update reference changes. The device may further include a CPU configured
to perform actions. The actions may comprise determining if space is unavailable for a
current write block. If so, the actions may further comprise getting an empty write block;
writing meta information and new data associated with a logical address to the empty write

block; and updating a lookup table based on an address of the empty write block. The actions

-4 -

10

15

20

25

30

WO 2008/106686 PCT/US2008/055696

may further include reading the new data based on the lookup table. In one embodiment, the
actions may further include defragging the device if the empty write block is unavailable.
Moreover, a system is directed to employing the method and the device. In one
embodiment, the block storage device may be a storage appliance, a NAND-flash drive, or a
hybrid RAM/Disk drive storage device. In one embodiment, the lookup table may be a

reverse lookup table configured to enable looking up a physical location.

BRIEF DESCRIPTION OF DRAWINGS

A more complete understanding of the system and method of the present invention
may be obtained by reference to the following detailed description when taken in conjunction
with the accompanying Drawings wherein:
FIGURE 1 shows an embodiment of a control block.
FIGURE 2 shows an embodiment of a write segment with a control block.
FIGURE 3 shows an embodiment of a write segment with a split control block.
FIGURE 4 shows an embodiment of a lookup table.
FIGURE 5 shows an embodiment of a reverse lookup table.
FIGURE 6 shows an embodiment of a write block lookup table.
FIGURE 7 shows one embodiment of a logical flow diagram for fast data storage on a block
storage device.
FIGURES 8A-8B show embodiments of logical flow diagrams for mounting a block storage
device.
FIGURE 9 shows one embodiment of a logical flow diagram for writing to a block storage
device.
FIGURE 10 shows another embodiment of a logical flow diagram for writing to a block
storage device.

FIGURE 11 shows one embodiment of a fast block device.

DETAILED DESCRIPTION OF THE PRESENT INVENTION
The following detailed description is presented to enable any person skilled in the
art to make and use the invention. For purposes of explanation, specific nomenclature is set
forth to provide a thorough understanding of the present invention. However, it will be
apparent to one skilled in the art that these specific details are not required to practice the

invention. Descriptions of specific applications are provided only as representative examples.

-5-

10

15

20

25

30

WO 2008/106686 PCT/US2008/055696

Various modifications to the preferred embodiments will be readily apparent to one skilled in
the art, and the general principles defined herein may be applied to other embodiments and
applications without departing from the spirit and scope of the invention. The present
invention is not intended to be limited to the embodiments shown, but is to be accorded the
widest possible scope consistent with the principles and features disclosed herein.

The Fast Block Device and associated methodology according to the present
invention is a device mapping layer that has a completely different purpose than that of
standard block devices. Instead of being a simple linear translation of a logical block number
to a physical device address, the Fast Block Device and associated methodology dynamically
re-map the data to optimize data access and update patterns. This dynamic re-mapping can be
used with a variety of storage devices to achieve massive performance improvements over a
linear mapped device, as well as other benefits for certain specialized types of hardware. For
instance, when the Fast Block Device concept is applied to flash memory, the speed of
random writes made to that device can be increased by almost two orders of magnitude.

While existing devices overwrite existing blocks of data, and thus are forced into
random writing patterns, the Fast Block Device of the present invention writes to open free
space in a linear manner. It writes data in the order it is received because this is an efficient
manner of assuring data integrity by assuring that older data is written before newer data. Any
linear order could be imposed. The innovative Fast Block Device presented herein remembers

the exact location of each newly-written component, in the process "un-remembering” the
older copy, and also has elements that allow for the purging and removal of expired data
superseded by newer copies, as needed, or during quiescent periods so that, unlike a journal or
log, one cannot run out of space, but will rather stay within the allotted Block Device.

Because the Fast Block Device can re-map data on the fly, the actual mapping
information is stored with the data blocks themselves. Each cluster of data is stored with

"meta information,” "meta data,” or "control data" that describes which blocks are actually
stored where. This meta information occupies sectors on the storage device and is optimized
to use a minimal amount of space.

In one embodiment, as shown in FIGURE 1, the meta information includes a
signature 102, an "age" 104 so that "newer" data is recognized as valid over "older" data when

a Fast Block Device is mounted, a count 106 of the number of data blocks that follow, and an

array 108 of the logical block number(s) for the data blocks following.

10

15

20

25

30

WO 2008/106686 PCT/US2008/055696

As shown in FIGURE 2, as a minimal implementation, the meta data 302 is
followed directly by the data blocks themselves. As shown in FIGURE 3, a better solution is
to split the meta data into the sector(s) 302-303 that both precede and follow the data storage
blocks 304. The meta data may be split in any proportion (e.g., 50/50, 60/40, etc). This way,
failures during device writes can be detected and the ambiguous data discarded.

Each of these meta-data and data-block sections are then stored in larger storage
units called write blocks or simply "blocks". In one embodiment, these larger units are
designed to match or be a multiple of any natural write unit that the storage device hardware
may impose. For example, NAND-based flash drives have an "erase block" size and the Fast
Block Device should be setup to maintain these write blocks as a multiple of the flash erase
block size. Similarly, for many hard drives, it would be set up to correspond to the track size.

Depending on the sector size, block size, and write block size, a write block might
be represented by a single write cluster or might be represented by several. This depends on
whether the meta data will fit into a physical sector representing the entire write block, or just
a portion of it, and the degree of control obtained over the device. For instance, if one can
gain direct access to NAND memory, rather than going through the control routine of a
vendor trying to make NAND appear to have the function of a hard disk drive, one can
nominally write single blocks in a linear fashion, writing each sector in real time, rather than
as a linear group, and thus assuring a machine with greater data integrity at a given point of
failure.

In one embodiment, a Fast Block Device implementing the invention may
maintain three sets of tables (e.g. Figures 4-6), block driver internal tables, in RAM that allow
for fast lookup of stored information. As shown in FIUGRE 4, the first table allows an
application to look up the actual current location of any logical block. As shown in FIGURE
5, an optional reverse lookup table lets the Fast Block Device lookup what is at any particular
physical location and determine if it is still in use or expired. These bidirectional lookups are
constantly updated as the mapping dynamically changes.

The Fast Block Device also maintains a third table, a write block table as shown
in FIGURE 6. This table enumerates the contents of each write block on the device. The
table includes the count 602-603 of active blocks in each write block, plus the "age" 604-605
of the data in the write block. This table allows the device to determine which write block or
blocks may be written to most effectively, in that those most-empty of real data can be most

efficiently written to using a linear write.

10

15

20

25

WO 2008/106686 PCT/US2008/055696

It should be understood to those of skill in the art that the Fast Block Device and
methodology of the present invention has performance and reliability advantages in a number
of application and hardware scenarios because it converts random writes into linear writes
which are often several orders of magnitude faster than random writes.

When used with NAND-based flash drives, the Fast Block Device can
dramatically improve overall application performance for applications that use large numbers

of random reads and writes by improving random write performance, for example:

Random Reads No performance change

Linear Reads No performance change if the blocks were written linearly. Minor

performance degradation if the blocks were written randomly.

Random Writes Very large performance improvement. In many instances, write

performance will increase 100-fold.

Linear Writes Small performance degradation because of meta data management.

One side-effect when used with NAND-flash drives is that the number of erase
block operations to the drive is minimized reducing wear. This is important because NAND-
flash can accept a limited number of erase-block operations before it fails. For low-end
NAND memory, failure may occur after 10,000 write cycles. In high quality memory the
failure point for erase block operations raises to the level of a million or so. For many
applications that do large numbers of small writes, the Fast Block Device can reduce the
number of NAND-flash erase operations, often by a factor of 50 or larger.

For an 8G flash device rated at 1,000,000 write operations, as little as 4 gigabytes
of 4K writes to the same logical block can cause the device to fail. Thus, things such as swap-
space operations can, if applied to flash-memory, wipe out the capacitance of that memory in
just a few hours. When addressed as a Fast Block Device, this same device can at worst
handle over 200 gigabytes of write operations to a single sector because that sector will no
longer be tied to one physical spot, and because writing leading to a required erase-block
operation will occur less frequently.

In a more typical enterprise application, and assuming that the device does "load
leveling" across all erase blocks, one can expect to write about 3 petabytes before an 8
gigabyte device wears out. With most applications, this would take many years of continuous,

and saturated, writes.

10

15

20

WO 2008/106686 PCT/US2008/055696

Even worst case applications like swap partitions that are notorious for killing
flash devices are practical when mapped through the Fast Block Device. Plus, swap runs fifty
times faster when swapping to flash directly.

When used with flash media, the inherent space consolidations methods of Fast
Block Device can return no-longer-used frames to a null, all-zeros condition, thus reducing the
chance of unlinked data becoming inadvertently exposed because it is not scrubbed, a security
advantage.

When the Fast Block Device is used with traditional rotating media, i.e., hard disk
drivers and hard disk arrays, a performance shift is experienced that can be very advantageous
to applications, such as database environments, that employ large numbers of random reads

and writes. In general, with rotating disks, the Fast Block Device can be expected to:

Random Reads No performance change

Linear Reads No performance change if the blocks were written line linearly.

Significant performance degradation if the blocks were written

randomly.
Random Writes Large performance improvement, typically of 40 to 50 fold.
Linear Writes Small performance degradation because of meta data management.

The Fast Block Device and methodology of the present invention can also be used
with a RAM-based storage table, plus a disk-based backing device, forming a hard disk hybrid
solution. The RAM storage is used for reads and the disk drive is used to real-time store
updates at linear speeds which are fifty-fold faster than random write speeds. This gives the

performance of a RAM disk with the non-volatility of a standard hard disk drive, for example:

Random Reads Run at RAM speed
Linear Reads Run at RAM speed
Random Writes Run at disk linear write speed
Linear Writes Run at disk linear write speed

As is shown, this solution produces the fastest Fast Block Device possible, but at
the cost of RAM. The advantages of a Fast Block Device in conjunction with RAM is greater

media concurrency and selectively higher transfer speeds. Standard RAM technologies

-9.-

10

15

20

25

30

WO 2008/106686 PCT/US2008/055696

presume that the disk drive is not updated until the system is shut down. This creates a risk in
the event of battery failure, and may, in some designs, also result in a situation where the
RAM drive cannot be used until all of the disk has been read into memory. Conversely the
Fast Block approach assures that the system is fully physically saved to within 2 seconds of
even an irregular catastrophic shutdown, while making the drive available within a few
seconds of a system boot. In addition, because Fast Block can be implemented within the
system itself rather than as a separate device, read times can actually be faster for core
memory resident "disk."

FIGURE 11 shows one embodiment of a Fast Block Device. As shown, device
1100 comprises memory 1102, operating system 1104, data storage 1106, and CPU 1108.
However, other embodiments may comprise more or fewer components without departing
from the scope of the invention. For example, in some embodiments, device 1100 may not
include a CPU 1108 and/or an operating system 1104. Operations of device 1100 may be
performed by dedicated hardware, such as an Application Specific Integrated Circuit (ASIC)
(not shown), or the like. In some embodiments, device 1100 may be a NAND-flash drive, an
8G flash device, a ram based storage table, a disk-based backing device, a storage appliance,
or the like. In one embodiment, data storage 1106 may be RAM, a disk drive, RAM/Disk
drive hybrid, an external storage device, a flash drive, EEPROM, or any other data access
component. In one embodiment, data storage 1106 may store at least some write blocks for
use with the present invention. The write blocks may be configured as shown in FIGURES 1-
3. Memory 1102 may store the regular table of FIGURE 4, the optional reverse lookup table
of FIGURE 35, and/or the Write Block table of FIGURE 6. Device 1100 may perform the
operations described in FIGURES 7-10.

As discussed hereinabove, the Fast Block Device 1100 and methodology of the
present invention can be implemented at many different layers. For example, it is possible to
implement the Fast Block Device in the application itself, as a "device mapper" 1105 in the
host operating system 1104, as a part of the device itself, and/or as a part of a storage
"appliance"” that is external to the primary computer system (not shown).

In referencing a "storage appliance,” presumption should not be limited to the
classic idea of a drive "appliance," which would typically comprise a server box holding a
large number of drive devices of the same class. Rather, one should think in terms of both
micro-devices and of composite devices. For instance, if one were to combine two flash

drives together with a traditional 2.5 inch hard disk drive as a parity drive, one could build a

-10 -

10

15

20

25

30

WO 2008/106686 PCT/US2008/055696

composite device that would function as a raid-4 assembly that had the same overall
performance characteristics as a raid-4 assembly made purely out of flash memory materials.
Similarly, one could build the entire highly reliable assembly in a traditional 3.5" form factor.

Similarly, the technology of the instant invention can be applied at an application
level and can cover a portion of the disk (e.g., data storage 1106). As an example at an
application level, this technology might be applied to the problem of swap space stored on
disk. Currently, updating this space can be slow because of the problem of random writes.
Responsiveness of this application can be improved by an estimated factor of twenty if this
technology is used to replace massive numbers of random writes with linear writes.

The benefits of the Fast Block Device and methodology of the present invention
are many. For example, when used with NAND-flash storage devices, write performance is
greatly improved with little or no read penalty, and drive durability is greatly improved also.
Further, use with standard hard disks allows applications that generate small random writes to
run at drive linear write speeds with no special hardware required. Finally, when used as a
RAM / Hard Disk hybrid, RAM performance for all reads increases, linear disk performance
for all writes increases, and a persistent ramdisk is created without requiring any special
hardware.

The following is a general description of device implementation and operations
pursuant to the teachings of the present invention. Of course, as understood by one skilled in
the art, the actual implementation of the device may vary depending upon the hardware the
device is mated with and the intimacy that can be achieved with the underlying hardware.

By way of definitions, the following describes some currently performed
definitions of various terms used in conjunction with the description of the present invention.

Sector: One storage unit on the device, e.g., a physical sector (512 bytes) or some
multiple depending on the formatting parameters that were chosen. Many current systems
favor either two kilobyte or four kilobyte sectors.

Control Area or Control Block: As shown in FIGURE 1, typically one storage
unit (Sector) of data comprises a signature 102, and aging counter 104, a count of data arca
blocks 106, and a list 108 of logical sectors that are stored on the device "here".

The control area might be a single storage unit (Sector) in front of the logical data
(See FIGURE 2), or it may be split into two halves (or other proportions), one in front of the
data and one behind (See FIGURE 3). If it is split, then there are two signatures and two

aging fields. The advantage of splitting is that this is a mechanism of assuring that the write

-11 -

10

15

20

25

30

WO 2008/106686 PCT/US2008/055696

of the control area and associated data area is complete. If not complete, corruption of the
second half will be apparent. Writing of a split control block does not require extra storage
space. Rather, cach data area element can begin at a known byte offset from the associated
basepoint.

A Control Area can also extend over multiple Sectors if enough data is written in
a single operation and this additional space is needed to store the array of logical Sector
numbers.

Data Area: This is the area where actual data is stored (e.g., 204 and 304). It is
the same overall size as the sum of all the data sectors being written. The data area
immediately follows its control area. In the event of a split control block, it is immediately
followed by the second half of the control area.

Write Blocks: A write block is data of a size of an area that is written at one time.
In NAND-based flash devices, it should be the size of, or a multiple of, the inherent erase bloc
size of the device. NAND-based flash devices that are a part of an array would require Write
Blocks sizes that would cause the array to write each devices erase block on a boundary.
Thus, in a four drive RAID-5 array, the write block is properly three times the erase block
size.

With other devices, the Write Block should be large enough to achieve linear
write performance and thus will approximate a track length, or a multiple of tracks if a RAID
device is used.

Write Segment: A write segment comprises of a Control Area followed by a
variable-length Data Area (See FIGURES 2 and 3). Under normal circumstances with heavy
write usage, a write segment will equal the length of a write block. However, in order to
assure that physical writing of data is timely, the system will typically have a timer that
assures that what ever has accumulated in the last several seconds will be written even if
enough contents have not accumulated to fill a Write Block.

In such a circumstance, several Write Segments may be written to the same write
block successively. As long as all segments are written to the same Write Block sequentially
they will all have the same age. Similarly, as is consistent with the concept of transaction
logging, in a highly volatile logical block, several copies of the same block may occur in
succeeding segments. However, the tables, as discussed later, will keep track of which

physical block represents the most current copy of a particular data block.

-12-

10

15

20

25

30

WO 2008/106686 PCT/US2008/055696

Active Write Block: An area of memory, the size of a Write Block, where writes
are buffered.

Unlike data in a Transaction Log, data stored in the Fast Block Device can be
found, comparatively rapidly in an absolute sense merely by examining all of the control
blocks on the device. However, such a scanning method, even while immeasurably faster than
beginning to ending read of media, is not suitable for real time retrieval of data. To achieve
real time translation, what is required is a series of tables to translate logical references into
real physical locations as well as to determine whether real physical locations contain
currently active data, null contents, or older, and now inactive data that can be purged.

As shown in FIGURE 4, the regular lookup table identifies exactly where a
logical block currently physically resides on the physical block device. For example, cell 401
stores the physical location of logical block # 1, cell 402 stores physical location of logical
block # 2, and so forth. Typically, this table will reside in the main memory 1102 of the CPU
1108 which is managing the individual device, or a group of such devices. Memory may have
a sufficient number of bits to remember every possible physical location on the physical
device, or devices, being managed. In one embodiment, if a sector address in the table is not
populated and referencing an explicit physical frame, it returns all zeros.

As shown in FIGURE 5, the reverse lookup table identifies the logical block to
which every physical block (i.e., sector) of the physical device, or devices, references to. For
example, cell 501 stores the logical block of the physical block # 1, cell 502 stores the logical
block of physical block # 2, and so forth. If a specific physical frame does not equate to a
currently active logical frame, the system will be informed by having all zeros returned to its
query.

As shown in FIGURE 6, the Write Block Lookup Table has one entry per write
block. For example, FIGURE 6 shows entries for write blocks 0 to N. This is a
comparatively small table. For instance, a 32gb flash drive with 500 kilobyte erase blocks
would have 64,000 of these, compared with millions of sectors. The write block lookup
retains a total count of active blocks, as well as the age of the write block.

Each entry has an active number of blocks field (602-603) which is the sum of all
sectors of data in the write block, less any of those sectors that have been made redundant by a
later update of the same logical sector (which would be written somewhere else, given that

Fast Block Device may not overwrite).

-13 -

10

15

20

25

30

WO 2008/106686 PCT/US2008/055696

Each entry has an age which is an incremental value, beginning at zero, and
incremented every time a new block is accessed for purposes of writing new contents.

In the following section of the specification of the present invention, the general
functions of the Fast Block Device will be described, with particular notice taken of special
conditions that may occur in selected hardware scenarios. One embodiment of a process for
performing the operations of the present invention is shown in FIGURE 7.

It should be understood that in order to use a device, it must be initially formatted.
Briefly, this involves writing an empty control sector at the front of each "write block". After
the device is formatted, all logical blocks are unallocated, so the device basically reads zeros
initially.

Because the sector mapping of a Fast Block Device is dynamic, the device must
be "mounted" before it is used. FIGURE 8A shows an embodiment for mounting the device.

At block 802, the mount process starts out by building the three internal lookup
tables and zeroing them out. It then reads the Control Area for cach Write Block. When this
area is read, it first reads the control areca of the first Write Segment of the Write Block. It
then builds the write block table entry (fig. 6), referencing the age portion of the table. It then
parses the list of sectors in the Control Area. Each referenced Sector is translated through the
regular lookup table (fig. 4). At block 820, an address for the current write block is looked up
in the lookup table(s) (see Fig. 5).

At decision block 822, it is determined if the sector reports inactive contents (a
zero condition in the lookup table). If so, processing continues to block 831 where the lookup
table (fig. 4) is updated with the new contents. The reverse lookup references the physical
frame. Finally, the write block table (fig. 6) is incremented to indicate an additional
consumed frame.

Conversely, if at decision block 822, it is determined that the sector reports active
contents (a non-zero condition) in the lookup file (fig. 4), the physical reference is then
translated into a write block reference (as each write block has a known number of Sectors).
The write block is then looked up in the relevant table (fig. 6).

At decision block 824, it is determined if the age of that write block is earlier than
the current write block, or if the write block referenced is the same write block as the current
write block. If not, processing continues to block 830. Otherwise, at block 826, the write
block which now has an unusable sector has its active count of sectors decremented (fig. 6).

Subsequently, at block 827, the new physical referent is referenced in the lookup table (fig.4).

-14 -

10

15

20

25

30

WO 2008/106686 PCT/US2008/055696

Similarly, the Backward lookup table (fig. 5) is now updated both by setting the old sector
reference to all zeros, and by referencing the logical frame in the proper point. Finally, at
block 830, the new table referent in the Write Block Lookup (fig. 6) has its counter
incremented.

Processing loops back to block 820, until all the elements in the list part of sectors
of the control area have been thus computed. The system then checks recursively to see if
there is a next Write Segment in the Write Block, and if found, repeats the posting process.

On flash drives, the current time to mount a drive may be several gigabytes per
second. Thus, in some embodiments of the invention, a 32gb drive can be mounted in about
fifteen seconds.

FIGURE 8B shows an alternate embodiment of and elaborates on the steps of
FIGURE 8A described above. Like step/block numbers represent similar processing. As
shown, FIGURE 8B shows a routine for reading a device header record. Processing begins at
step 802, where tables (Figures 4-6) are initialized to empty.

At step 804, processing begins to loop through each write block. For each Write
Block, at step 806, processing begins to loop within a Write Block until the end of the Write
Block is reached.

For each iteration of loop 806, processing begins at step 808. At step 808, Meta
Information/Header is read at the beginning of an address array.

At step 810, it is determined if the header is invalid. If so, processing skips to the
next Write Block (go to step 836).

At step 812, a size and location of the rest of Address Array and Meta Footer (2nd
half or portion of meta information) is calculated.

At step 814, the rest of Address Array and the Meta Information Footer (if one
exits) is read.

At step 816, if the Meta Information Footer does not match the Meta Information
Header, processing skips to the next Write Block (go to 836).

At step 818, processing loops through each address in the Meta Array (addresses
associated with the Meta information). For each iteration of loop 818, processing begins at
step 820 where an Address in a LBA table (lookup table(s); See Figure 5) is looked up.

At step 822, it is determined if the address exists. If so, processing continues to

step 824. Otherwise processing continues to step 828.

-15 -

10

15

20

25

30

WO 2008/106686 PCT/US2008/055696

At step 824, it is determined if an existing address is newer. If so, processing
skips to the next Address (go to 832). Otherwise, at step 826, the existing address is removed.

At step 827, a fill counter(s) associated with the Meta Information for the existing
write block is decremented.

At step 830 the LBA (lookup table(s) of Figures 4-5) is updated with the new
address and the fill counter(s) for this block (associated with address in Meta Array) is
incremented.

At step 832, loop 820 is repeated for all address in the address array.

At step 834, loop 818 is repeated until the end of the write block is reached.

At step 836, loop 804 is repeated for all write blocks.

Processing then returns to other computing.

Referring back to FIGURE 7, at block 704, data is written to the device. The
write process may be complex because it comprises reconstruction of and appendation to a
current write block. In order to make this process extremely clear, it will be described in its
logical steps below in conjunction with FIGURES 9-10.

At block 706, the device is read. Read operations are very simple. Data is either
present and in a known location because of the initial mount and subsequent properly
documented writes, or a particular sector has not been written to.

When the read request comes in from the application, a lookup is made for the
logical sector in the lookup tables (fig. 4). If the sector is present, a read is issued to the
device using the lookup location. If the sector is not present, a data block of zeros is returned.

Read operations can lookup sectors that are in the Active Write Block. In this
case, the data in the Active Write Block is used instead of actually reading from the device.
The reasons for doing so are both efficiency and data integrity. Until update is confirmed, it is
uncertain whether the data is actually present.

At block 708, the device is unmounted. In one embodiment, unomounting may
comprise writing to each write block and writing meta data associated with each write block.
Because the data and meta information is written simultaneously, and can be written in update
sequence order, an unmount operation may not required. Because the Fast Block Device does
delay writes for a short time (typically less than 2 seconds), a "flush” command to force writes
out prior to a power down might be appropriate for some applications and platforms.

The write process is complex because it requires reconstruction of and

appendation to a current write block. In order to make this process extremely clear, it will be

- 16 -

10

15

20

25

30

WO 2008/106686 PCT/US2008/055696

described in its logical steps. Once the general steps have been described, the refinements will
be described.

FIGURE 9 begins at block 902, where an empty block is selected and prepared for
writing of new data. In one embodiment, it may be determined which block in the system is
most empty. This is done by consulting the Write Block Table (fig. 6). By comparing all of
the cells in this table, it is possible to determine which Write Block has the most free space.
An enhancement of this to create a series of indices of the different fill levels can optimize this
process.

Once seclection has been made, at block 904, the location of the new data in the
selected empty block is tracked. A segment of memory is cleared to accept both its old
contents and any new contents. This segment has been referred to above as the Active Write
Block, and comprises both a series of data blocks that may be written, as well as an actively
constructed Control Area sector, as described in fig. 1.

Once a particular Write Block has been selected and cleared, its active sectors —
those containing still-current data — are read into memory in consolidated order. The
determination and reading is done via an extension of the comparison process described in the
Mount operation. However, those sectors containing Control Area information or actual still-
current data still have to be read. The read process is inherently linear and extremely fast.
However, the non-reading of some sectors reduces data congestion in the pipe.

Such Data as is read will be moved, sector by sector into the Active Write Block.
Similarly, the meta-data or control block is built by appending the logical frame numbers to
the list and incrementing the quantity of active Sectors referenced. As New Sectors are
received for writing, these are appended to the Active Write Block by writing the new data to
the Active Write Block while updating the Control Area Sector (meta-data).

At block 910, the meta-data (control block) associated with the new data is
written. In one embodiment, once the Write Block is full, the write block (comprising the
meta-data/control block) is immediately written as a linear write. The Write Segment, in this
case, 1s equal to the size of the Write Block. In one embodiment, the process may then
proceed to selection of a new Write Block.

For writes as a result of turnout, an adjustable timer allows premature write of a
portion of a write block even if the write block is not full. Typically, this will be set to occur

if there has been actual data to be written within the last two seconds, but not enough new data

-17 -

10

15

20

25

30

WO 2008/106686 PCT/US2008/055696

has been encountered to justify generation of a full Write Block. In this case, what is written
is a Write Segment shorter in length than the actual Write Block.

At decision block 912, it is determined if, at the end of this segment writing, still-
free space is useless (such that, for instance, only one sector is free). If so, the process will
proceed to selection of a new Write Block at block 902. Otherwise, at block 914, a new
segment will be appended to the Active Write Block. This segment, comprising a Control
Area Sector and a series of newly-to-be-written data blocks will continue until it, in turn,
reaches a condition where either the Active Write Block is full or where another inactivity
timeout occurs.

Actual Writing of the block, or writing of the first Write Segment to a Write
Block, is done to an empty block. Thus, if the system crashes for any reason, the newest data
may be lost. All earlier data is preserved. When a Write Block is closed out and before a new
Write Block is determined. The extant write block which was the source of merger is, if not
already empty, purged and written with a zeroed control block.

It has been noted that quiescent consolidation process will dramatically increase
average writing speed but, in some embodiments, the disadvantage is that older, expired, data
blocks will remain extant and that similarly there will be excess Control Area Sectors as a
result of timeouts and the segmentation process.

Similarly, an efficient mechanism of writing data is to write it to a totally empty
Write Block. A situation where, for instance, all blocks are seventy percent full will be less
write efficient than a situation where seventy percent of the blocks are totally full and thirty
percent are totally empty.

The accumulation of garbage, and the advantages of imbalance suggest the need
for an ongoing process to build these optimums by an ongoing process of taking several
partially-full Write Blocks and consolidating these into full blocks or empty blocks. All this
can be obtained as part of the write process described above. Similarly, the same can be done
without hindrance to newly to-be-written data as the quiescent process can be interrupted to
accept new write Sectors as part of an Active Write Block in favor of consolidation of an
existing set of blocks.

As described hereinabove, where leveling involves watching for "active" areas
and "static" areas and moving the data around on the storage device to spread flash erase

operations around.

- 18 -

10

15

20

25

30

WO 2008/106686 PCT/US2008/055696

At block 916, sectors may be re-ordered for linear access. Restoring linear
sectoring ordering may not be necessary when dealing with randomly accessible storage
devices like RAM and Flash RAM. In the case of using the Fast Block Device with a rotating
disk drive, this involves scanning each Write Block and deciding if the order is fragmented
"enough" to justify re-ordering. If re-ordering is deemed desirable, then linear Sectors are
read from the device and then re-written. Reordering sectors for linear access patterns may be
combined with coalescing Write Blocks in that re-ordering into partially filled Write Blocks
will be ineffective.

In an alternate embodiment, when Fast Block Device can be used intimately at the
chip or component level, the nature of implementation can change profoundly to improve
performance, efficiency, and reliability. For instance, if the technology is implemented with
NAND Flash Memory chips directly, such that the Flash can be treated as memory rather than
disk, one can get rid of the reverse lookup table entirely. Similarly, one can change the
structure of the Control Area, appending to the list of logical IDs in real time while also
updating the data areas in real time. Thus, the entire system can receive random writes and
linear writes and dispose of both at near the linear write speed of the device. Similarly, the
nature of this design, and the use of intelligent processors, allows building of a composite
assembly that has greater reliability and speed, and lower cost. For instance, when flash is
managed in this manner at the system level, it is possible to think of four "drives" instead of
one, cach of which is a removable card. Thus, one can think of a RAID-5 assembly in a very
small format reading and writing at collective speeds far faster than the inherent NAND Flash
itself, together with faster 1/O pipes such as the fastest SCSI interface to the parent device.
Conversely, one can do this while leveraging other cost advantages such as somewhat lower
quality or larger erase blocks. For instance, the inherent nature of Fast Block Device allows
use of 1, 2, or 4 megabyte erase blocks in the same manner as the current 500 kilobyte blocks.

FIGURE 10 shows another embodiment of a logical flow diagram for writing to a
block storage device. FIGURE 10 describes an alternate embodiment and an elaboration of
FIGURE 9 described above.

FIGURE 10 begins at subroutine Write at step 1002. At step 1002, it is
determined if no space exists in the current Write block. If so, processing continues to the

subroutine WritePush at step 1010. WritePush returns after appropriate processing.

-19 -

10

15

20

25

30

WO 2008/106686 PCT/US2008/055696

Processing then continues to step 1004, where at least a portion of the block is
tested to determine if it is cleared. For example, the block is tested if it comprises the
hexadecimal number 0000/FFFF.

At step 1006 the block address is added to the write array.

At step 1008, it is determined if the block is not cleared (e.g., if at least a portion
of the block does not comprise 0000/FFFF). If so, the block data is copied to the write buffer.
Processing then continues to other computing.

Subroutine Write Push begins at step 1010, where a write buffer is built that
comprises at least a Write Header (a portion of meta information), Write Data Blocks, and/or a
Write Footer (another portion of meta information).

At step 1018, data is written to the device (Fast Block Device).

At step 1020, a current write position is updated.

At step 1022, it is determined if the Write Position is at an end of the write block.
If so, then processing continues to subroutine GetWriteBlock. GetWriteBlock returns after
appropriate processing, and processing continues with other computing.

Subroutine GetWriteBlock begins at 1024, where a 100% or substantially empty
block is found.

At step 1026, A second 100% or substantially empty block is found.

At 1028, it is determined if the second block is unavailable. If so, then processing
continues to subroutine Defrag. Defrag returns after appropriate processing.

At step 1030 a write pointer is setup to a head of an empty block. Processing then
continues to other computing.

Subroutine Defrag begins at step 1032 where a block with a least number of active
data blocks is found.

At step 1034, meta information is read from disk or other data storage 1106.

At step 1036, meta information is scrubbed and stale and duplicate entries are
removed.

At step 1038, processing loops through the remaining data blocks. For each
remaining data block, step 1040 is performed. At step 1040, data blocks is written with a
standard write routine. At step 1042, it is determined if the loop should continued. The loop
is continued until an end of a data block list is reached.

At step 1044, the block with the least number of active data blocks is marked as

empty. Processing then returns to other computing.

-20 -

10

15

WO 2008/106686 PCT/US2008/055696

The methods described above exist principally to optimize performance that is
strongly oriented towards random I/O such as a server computer would generate. The above-
described methods may be embodied as an integrated CPU 1108 on a device to manage
multiple devices in servers. However, the methods described above can also be used
beneficially in a smaller memory disk.

When the above-described method is loaded as a driver onto a laptop, PDA, or
other similar device, then a small flash drive can be optimized using the present method to
write faster and fail less frequently. This would have an impact on many applications,
including saving mail, such as Outlook®, and caching web pages.

Unless otherwise provided, use of the articles "a" or "an" herein to modify a noun
can be understood to include one or more than one of the modified noun.

While the systems and methods described herein have been shown and described
with reference to the illustrated embodiments, those of ordinary skill in the art will recognize
or be able to ascertain many equivalents to the embodiments described herein by using no
more than routine experimentation. Such equivalents are encompassed by the scope of the
present disclosure and the appended claims.

Accordingly, the systems and methods described herein are not to be limited to
the embodiments described herein, can include practices other than those described, and are to

be interpreted as broadly as allowed under prevailing law.

221 -

10

15

20

25

30

WO 2008/106686 PCT/US2008/055696

CLAIMS

What is claimed is:

1. A method of fast data storage on a block storage device, the method comprising
the steps of:

writing new data to an empty write block;

tracking a location of the new data; and

writing meta data associated with the new data.

2. The method of claim 1, further comprising the step of:
mounting the device, including reading each write block of the device and meta data

associated with the each write block.

3. The method of claim 1, further comprising the step of:
unmounting the device, including writing to each write block of the device and writing

meta data associated with the each write block.

4. The method of claim 1, further comprising;:
updating a lookup table based in part on the meta data; and
reading the new data based on the lookup table configured to map a logical address to

a physical address.

5. The method of claim 1, further comprising the step of:
optimizing the device, including writing to a write block having a fewest active blocks
and writing meta data associated with each write block, wherein existing live blocks are

packed to a front of the write block and rewritten to the device.

6. A block storage device for optimizing data access comprising:

a mapping layer configured to dynamically remap data; and

a plurality of data blocks, each data block storing map information,

wherein each cluster of data blocks stores meta information, including an age of the
data blocks of the cluster, a count of the data blocks of the cluster, and an array of logical

block numbers for the data blocks of the cluster.

-0

10

15

20

25

30

WO 2008/106686 PCT/US2008/055696

7. The device of claim 6, further comprising:

a fast lookup table configured to enable looking up a logical block.

8. The device of claim 6, further comprising:

a reverse lookup table configured to enable looking up a physical location.

9. The device of claim 6, further comprising:
a table configured to enable looking up a write block, wherein the table includes a

number of valid blocks in each write block, and an age of data in the write block.

10. A system for fast data storage on a block storage device, comprising:
the block storage device configured to perform actions comprising:

writing new data to an empty write block;

tracking the location of the new data; and

writing meta data associated with the new data.

11. The system of claim 10, further comprising:
a primary computer system in communication with the block storage device,

wherein the primary computer system is configured to provide the empty write block.

12. The system of claim 10, wherein the block storage device comprises a plurality

of data blocks, each data block storing map information.

13. A method of fast data storage on a block storage device, the method comprising
the steps of:

writing at least one portion of meta-information associated with a plurality of write
blocks;

getting an empty write block for writing the new data, if a current write position is at
an end of the plurality of write blocks;

writing new data in one of the empty write block or one of the plurality of write
blocks; and

updating a lookup table based on an address where the new data is written to.

-23 -

10

15

20

25

30

WO 2008/106686 PCT/US2008/055696

14. The method of claim 13, further comprising:
defragging the block storage device if a first empty block and a second empty block is

unavailable for writing the new data.

15. A block storage device for optimizing data access and update patterns
comprising:

a segment of known data in logical and linear order;

a further segment of free space for the acceptance of updates; and

a logical area for storing update reference changes.

16. The device of claim 15, further comprising:
a CPU configured to perform actions comprising:
if space is unavailable for a current write block:
getting an empty write block;
writing meta information and new data associated with a logical address
to the empty write block;
updating a lookup table based on an address of the empty write block;

and
reading the new data based on the lookup table.
17. The device of claim 15, where the actions further comprises:
defragging the device if the empty write block is unavailable.
18. A system for optimizing data access, comprising:
a block storage device configured to perform actions comprising:
writing meta information and new data associated with a logical address to an
empty write block;

updating a lookup table based on an address of the empty write block and the
logical address; and
reading the new data from a data storage based on the lookup table.

the data storage configured to provide the empty write block.

-4 -

WO 2008/106686 PCT/US2008/055696

19. The system of claim 18, wherein the block storage device is a storage

appliance, a NAND-flash drive, or a hybrid RAM/Disk drive storage device.

20. The system of claim 18, wherein the lookup table is a reverse lookup table

5 configured to enable looking up a physical location.

_25.-

WO 2008/106686 PCT/US2008/055696

[42]

102 104 18 19

CES

vA

o Ao SOCHGT
Sigpature jage T
Count

202 204

S

| Control

Group of ndata

,,,,,,

302 304 303

S

Cantral Group of o data

i
EEN

SECIOTS

FIG. 3

WO 2008/106686

431

S

402

S

403

S

PCT/US2008/055696

404

S

Logical Block

#1

Logical Block
o

i 2

Logical Block
oy 2

3

Logical Block

4

J\ ;

502

<

FiG. 4

- N - - b Ay} o b Ay} ¥
. Tivoriead iAol 32 L TR L oy al [Tl Y al (T84
Physscai Tlock #4 ¥ h}, sical Block #2 Phy&ig, ¥ Block #3 Phys L(:/ Block i 3 Shﬂ;(:q Block
T4 33

Entry

«,

Active Block

Congnt

Write Block
Age

farels

Write

"

Block §

Active Block
Count

Write Block

Age

S

WO 2008/106686

Format Davice

v

702

N oans » .l
Mount Davice

{See Figure &)

¥

Write to Deavice
{See Figures $-10)

¥

Raad From Davice

:

Unmount Devics

CONTINUE

FIG. 7

PCT/US2008/055696

WO 2008/106686

START

Build Lookup Table and Wiits
Block Tabis
{See Figures 4-8)

:

ress of Current Write
table (See Figuoe ‘!

Lookup Adds
Block m LBA

A Sactoim
a Control Blook For © _..{-r*e.

i,
Ii
A

PCT/US2008/055696

St e Eia E< Raports Inachyg
S Content?

824

#ge of Retrigvad Write -.sim !
Cariar Than Age of Currant Wits Bio
OR Retr ”“?i Write Block Is Same a
rrant Write Blogk?

ok
3

8720 Decrement Count OF
\/\ Retrisved Write Block

¥

LJ;Jd ate Lookup Tables To
Signify Invalid Data And
Looation of New Data

¥

Updats Write Biock Table Far
Sactor

33;}\/\

Update Lookup Table{s) And
Write Biock Table For
inactive Saclor

831

NTINUE

i
7

FIG. 8A

WO 2008/106686

g.h
o)

PCT/US2008/055696

Head Devics Header Record:

B2 Tnttzalize Tables to Bmpty
HE Loop Through Bach Write Block

506 Loop Within a Write Block until the end of the Wate Bloce

k

A Head Meta Header at beginning of address armay
816 If { Header Invahid) skip to next Write Block {go 836}

FRC S g
812 Calenlate size and location of rest of Address Array and Meta Footer (2™ hatf
814 Read rest of Address Array and Meta Fooler
816 I { Meta Footer does not match Meta Header) skip 1o next write block {go 836}
818 Fowp through cach address in Meta Array

Lockop Address in LBA table {Sce Figure §)

N

822 IF{ Address Exists) then

824 I { Exasting Address 18 newer) then skip to next Address (go 832y
826 Remove existing address

827 Decrement i counters for existing write block,

828 End I

830 (K3 1) Update LRA with new address and increment §ill counters for this block,
R32 Repeat loop 820 for all address 1o address aray

R34 Repeat foop 818 anttl end of write block reached.

536 Repeat loop 84 for all write blocks,

FIG. 8B

WO 2008/106686 PCT/US2008/055696

7o)

r:;
g/ b
{

i

el

Select Emply Write Block And Prapare
Selected Write Block For Writing of Naw
Data

¥

Track Location of New Datza In Selected
Empdy Write Block

¥

\\//\ Wits Meta Data (Control Block) Associated
With The New Data

04

Reck

)

e
rarth,
]

FBo-Gpacs of Selacted Wrils Bloo

\//\ Append New Segmant To Active Write Blook

AR Ra-Order Seciors for Linear Access

CONTINUE

'

WO 2008/106686

PCT/US2008/055696

YWrilg
6T I { 8o space 10 onment Write block) gosub WritePush

1064 Test if block cleared

066 Add block address 1o write armay

<

i
o}
fe
[o29)

i block not eleared } copy block data to write buffer

Write Puch

1810 Buld wate buffer that comprnises at {east:
* Write Header {e.g., porbon of meta-information)

* Write Data Blocks

* Write Footer {e.g., another porbon of meta-information)

1018 Write data to device

CoatWeite Blegk
1024 Find 190% cropty block

326 Find 2od 100% eopty block

28 i ne Z2nd block available) gosnb

330 Sewp write pointer to head of eopty block

ast wmber of active data blocks
1334 Read Meta iformuation from Disk
1036 Scrub Mets imfornation removing stale and dupbeate enines

a blocks

138 Loop throogh remannng dat
1040 Write data blooks with standard write routine

1042 comtinue until end of data block st

FiG. 10

WO 2008/106686 PCT/US2008/055696

1166

L.}

DEVICE

RMemuory
- e S 1104
Operating System f'“\j 1108

Oevice magper ”“\vj

CRU

1406

Data Storage f‘\j

FIG. 11

INTERNATIONAL SEARCH REPORT

international application No

PCT/US2008/055696

CLASSIFICATION OF SUBJECT MATTER

TNV B06F3/06 G06F12/02

According to Intemational Patent Classification (PC) or to both nalional classification and IPC

8. FIELDS SEARCHED

GO6F -

Minimum documentalion searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation 1o the exient thal such documents are included in Ihe fields searched

EPO-Internal, WPI Data

Elecironic dala base consulted during the intermnational search (name of dala base and, where practical, search lerms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* | Cialion of document, with indication, where appropriate, of the relevant passages

Y figures 2-5,7,9

Y figures 8,10A,13-16
paragraph [0063]
paragraph [0078]
paragraph [0085]
paragraph [0111]
paragraph [0116]
paragraph [0127]

"paragraph [0143]

X US 2007/005928 Al (TRIKA SANJEEV N [US] ET
AL) 4 January 2007 (2007-01-04)

paragraph [0015] - paragraph [0017]
paragraph [0024] - paragraph [0039]

X US 2003/163594 Al (AASHEIM JERED DONALD
(US] ET AL) 28 August 2003 (2003-08-28)

paragraph [0079]
paragraph [0107]

paragraph [0119]
paragraph [0130]
paragraph [0160]

2

1,2,4,5,
10-20
8

1-7,9-19
8

-/-=

Further documents are listed in the continuation of Box C.

See patent famity annex.

* Special categornies of cited documents :

A ‘document defining the general state of the an which is nol
considered 0 be of particular relevance

E earlier document but published on or after the internalional
filing date . . .

L document which may throw doubts on priofity claim(s) or
which is cited to establish the publicalion dale ol another
cilation or other special reason (as specified)

‘Q* document referring to an oral disclosure, use, exhibition or
other means

P document published prior to the international filing date but
later than the priority date claimed

T later documeni published after the international hing date
or priority date and not in conflict with the application but
cited 10 undersiand the principle or theory undertying the
invention

X document of paricular relevance; the claimed invention
..~ cannol be considered novel or cannol be considered 10
involve an inventive step when the document is taken alone

Y document of particular relevance; the clamed invention
cannot be considered to involve an invenlive step when the
document is combined with one or more olher such docu-
rnetf‘\ts, such combinalion being obvious 10 a person skilled
in the an,

‘&* document member of the same paten family

Date of the actual completion of the international search

18 June 2008

Dale of mailing of the internationat search repon

26/06/2008

Name and mailing agdress of the ISA/
European Patent Otfice, P.B. 5818 Palenllaan 2
NL - 2280 HV Rijswijk
Tel (+31-70) 340-2040. Tx. 31 651 epo nl,
Fax (+31-70) 340-3016

Authorized officer

Alliot, Sylvain

Form PCT/ISA/210 (second sheel) (April 2005)

Relevam to claim No.

INTERNATIONAL SEARCH REPORT

international application No

PCT/US2008/055696

C(Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Category*

Citation of document. with indication, where appropriate. of the relevant passages

X

US 6 675 281 B1 (OH YAW T [US] ET AL)
6 January 2004 (2004-01-06)

column 4, line 55 - column 8, line 60

Form PCT/SA/210 (continualion ol second sheel) (Apiil 2005)

Relevant to claim No. .

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No

PCT/US2008/055696
Patent document Publication Patent family Publication
cited in search report date member(s) date
US 2007005928 Al 04-01-2007 DE 112006001636 T5 08-05-2008
GB 2442162 A 26-03-2008
Wo 2007005859 Al 11-01-2007
US 2003163594 Al 28-08-2003 CN 1441338 A 10-09-2003
EP 1351126 A2 08-10-2003
JP 2003271444 A 26-09-2003
US 2003163632 Al 28-08-2003
US 2003163635 Al 28-08-2003
US 2004078666 Al 22-04-2004
US 6675281 Bl 06-01-2004 NONE

Fom PCT/ASA/210 (patent family annex) (April 2005)

	Page 1 - front-page
	Page 2 - description
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - claims
	Page 24 - claims
	Page 25 - claims
	Page 26 - claims
	Page 27 - drawings
	Page 28 - drawings
	Page 29 - drawings
	Page 30 - drawings
	Page 31 - drawings
	Page 32 - drawings
	Page 33 - drawings
	Page 34 - drawings
	Page 35 - wo-search-report
	Page 36 - wo-search-report
	Page 37 - wo-search-report

