A jelen találmány tárgya beültethető, képlekeny csontpótló készítmény, amely biológiailag felszívódó, csontképzést elősegítő alkotórészekből és zselatin hordozóból áll; továbbá a szóbanforgó készítmény alkalmazása nem összeforrt töréseknél, fogágy pótlásoknál, a craniofaciális (koponya arci részével kapcsolatos) sebészetben, gerinc- és más izületek összenövéssében, gerincfúziós eljárásokban, és beültetett szervek rögzítésénél. A találmány tárgya ezenkívül eljárás csontképződés megindítására elő szövetben, a találmány szerinti csontpótló készítmény felhasználásával.
KÉPLEKENY CSONTPÓTLÓ ANYAG
ELJÁRÁS ENNEK ELŐÁLLÍTÁSÁRA

A jelen találmány tárgya új csontalapú, osztoinduktív (a csontnövekedést elindító) készítmény, amely az ortopéd gyógyászatban csont összeillesztéseknél, beültetett szöveteknek a csonttal való illesztésénél, csonthiányok kitöltésére, vagy bármely olyan alkalmazásban felhasználható, amelyben a csontnövekedést elindító, csontképző készítményre van szükség.

Csupán az Egyesült Államokban évente több, mint 100000 csontáltültetést végeznek. A felújító eljárások többségében a beültetett anyagot a csontrészecskék közötti üregek kitöltésére használják, abból az elgondolásból, hogy a csontrészecskék közötti folyamatosság esetén a csontpótlás helyén gyorsabb és teljesebb a gyógyulás (továbbá nagyobb a mechanikus szilárdság). (Bloebaum). A csontnövelés és a gerinc összeillesztés eseteiben ezek a csontpótló anyagok képezhetik a beültetett anyag teljes szerkezetét, mivel az adott területen nincsenek csontos részek. Egyetlen termék lehetséges kivétellel (amelynek felhasználási irányelvei ezt nem teszik lehetővé) valamennyi, csontáltültetésnél használatos csontpótló anyag elhelyezése sebészeti beavatkozást igényel, a szükséges metiszésekkel.

A csontáltültetéshez használ csontalapú anyagok kétfélé lehetnek, nevezetesen az egyik csoportba tartoznak az osztokonduktív, a másikba pedig az osztoinduktív anyagok. Bár ezeknek a fogalmaknak a pontos meghatározása vitatott kérdés, azt lehet mondani, hogy az osztokonduktív csontpótlók, amikor beültetik a csöntsővetbe, „vezetik” a csont növe-
kedését a hiányos helyeken. (Einhorn). Az oszteoinduktív csontpótló anyagok viszont képesek az adott terület környezetében levő sejtekben „kiváltani” a saját csontnövekedést. Ezek az oszteoinduktív csontpótlók akkor is csontképződést váltanak ki, ha nem csontszövetbe ültetik azokat (például bőr alá vagy ízomszövetbe való beültetés esetén). (Einhorn; Bene-dict; Strates; Urist).

A beültetéshez használt, jelenleg kapható csontpótló anyagok másik csoportját a saját vagy idegen beültetett csontszövet alkotják. Ha nem tülságosan durva a feldolgozásuk, ezek az anyagok általánosságban oszteoinduktívák. (Yazdi). Mivel ezek szövetátültetések, alkalmazásukkal kapcsolatban vannak bizonyos kockázatok. A saját csontszövet átültetésekkal kapcsolatban, a szövet kivétel helyén előforduló megbetegedések aránya nagyobb, mint 20%. (Younger). A fagyasztott, vagy fagyasztva szárított idegen csontszövet immunreakciói válthat ki, és ha kiválasztásakor nem megfelelő az ellenőrzés,
betegségek terjedését okozhatja. (Hordin). Végül, az idegen beültetett csontszövet egy változata az ásványmentesített csontmátrix.

Az ásványmentesített csontmátrixot (demineralized bone matrix, DBM) először Senn írta le, 1889-ben. (Senn). Az 1960-as évek második felében, nagyrészt a véletlennel köszönhetően, ismét felfedezték, és Urist és Strates alaposan vizsgálták. (Strates; Usist). Azóta világszerte a szövetbankok egyik fő terméke lett. Amint a neve is mutatja, az anyag csont, amiből savas kezeléssel kivonatok az ásványi anyagokat. A termék előállításának részletes eljárását a 2. ábrán vázoljuk.

A DBM még nem csontszövetek esetében is képes 4 héten belül kiváltani a csontképződést. (Strates; Urist; Lasa). A DBM aktivitása meghatározásának szokásos eljárása az, hogy szubkután vagy intramuszkulárisan beültetik. (Nathan). A DBM fő aktív hatóanyaga, úgy gondolják, egy vagy több csontszerkezet képző fehérje (bone morphogenetic proteins, BMP), (lásd 4,294,753 számú egyesült államokbeli szabadalmi bejelentés, amire a jelen találmány részeként hivatkozunk). E hatás szempontjából szintén fontosak lehetnek egyéb növekedési tényezők is, többek között, de nem kizárólag a TGF-béta (lásd 5,422,340 számú egyesült államokbeli szabadalmi bejelentés, amire a jelen találmány részeként hivatkozunk), a plateletből származó növekedési tényező (platelet derived growth factor, PDGF), és hasonló anyagok.

A Bioglass® SiO₂, Na₂O, CaO, P₂O₅ tartalmú üvegből készült, beültetéshez használt csontpótló anyag, amely a beültetés után néhány perccel hidroxi-apatitből álló bioaktív felületi réteget tud képezni. (Hench).

A DBM vagy Bioglass® alkalmazásával kapcsolatban két probléma merül fel. Mindkét anyagot nagyméretű részecs-
kék alakjában lehet beszerezni, és ezek nem minden esetben maradnak meg a beültetés helyén. (Scarborough; Frenkel). Azonkívül, durva természetük miatt nem könnyű az összeolvastásuk és kezelésük a műtőben.

Amint az 1. táblázatból kiderül, az utóbbi években a kereskedelemben megjelent néhány csontpótló sebészeti pasztat. Ezek a termékek sokfélek, a só és egy homokszerű por egy-szerű keverékétől az újabban megjelent, GRAFTON® néven ismert zseléig, ami glicerin-alapú, nem térhálósítható készítmény. Mindezen termékeket az ortopédiában használják csonthibák, például üregek, lyukak, repedelek, stb. kijavítására. Az ilyen kezelések végső célja az, hogy a képlékeny csontpótló anyag által kiváltott csontképződés során képződött csontszövet kitöltse az anyag helyét, ugyanakkor megtartva a sebész által a csontpótló anyaggal létrehozott formát.

Kivánatos, hogy egy csontpótló anyag oszteokonduktív (vagyis az adott területen a csontsejteket „vezető”) és oszteoindukktív (vagyis a sztemsejteknek az új csont képződését megindító csontsejtekkel való differenciálódását kiváltó) legyen. A szakmában ismert képlékeny csontpótló anyagok általában oszteokonduktívak, csupán gyenge oszteoindukktív hatásuk van. Ezek az ismert anyagok ennek megfelelően nem alkalmasak nagy üregek kitöltésére, és gyakran kis hiányok esetében sem hatnak megfelelően a csontképződésre. A jelenleg kapható képlékeny csontpótló anyagok, még azok is, amelyeknek van oszteoindukktív hatásuk, kivétel nélkül nehezen kezelhetők, nem maradnak megfelelőképpen a beültetés helyén, vagy mindkét hát- rányuk megvan.

Például, az egyik, a kereskedelemben kapható termék, a GRAFTON® (lásd 5,484,601 számú egyesült államokbeli szabadalmi bejelentés) polihidroxi vegyületben (például glicerin-
ben) vagy észtereiben szuszpendált, ásványmentesített csont-porból álló, nem térhálósítható készítmény, amely tartalmazhat különböző egyéb alkotórészeket is, például zselatint. Valószínűsíthető, hogy ez az anyag gyorsan kimosódik a beültetés helyéről, mivel a hordozó mátrixa a vízben oldható glicerin. Az 5,236,456 és 5,405,390 számú egyesült államokbeli szabadalmi bejelentésekben (O'Leary és Prewett) leírnak egy „csontalapú” gél készítményt, ami úgy készül, hogy ásványmentesített csontmátrixot (DBM) tömény savval (3 mólos sósav) kezelenk, és 40-50°C közötti hőmérsékletre melegítének. A szabadalom röviden leírja a gél keverését DBM és más alkotórészek felhasználásával. A gél készítmény előállítási eljárása azonban olyan, hogy leginkább kollagén szálak képződnek (vagyis a hőmérséklet nem elég magas ahhoz, hogy zselatin képződjék). Ennek eredményeképpen a kollagén szálak nem oldódnak semleges oldatkban. Ahhoz, hogy gélt nyerjünk, a szabadalom leírása szerint a kollagént kis pH-jú savban kell oldani (például sósavban vagy 1%-os ecetsavban, 4,0 alatti pH-n). A kis pH-jú készítmények azonban jellemzően nem túlságosan alkalmazak a biológiai közegbe való beültetésre. Megjegyzendő az is, hogy a szabadalom 5. hasáb 20. sora, és 6. hasáb 15. sora szerint a gél 0-5°C hőmérsékleten szilárdul meg, ami kizárja az in vivo gélképződést.

A 4,440,750 számú egyesült államokbeli szabadalmi bejelentés (Glowacki és Pharris) leír egy standard enzimatikus eljárást a kollagénnak szövetekből történő kinyerésére, pepszin felhasználásával. Állati szövetekből igen nagy tisztaságú kollagént nyernek, aminek a további átalakításával kapják a szabadalom szerinti készítményt. A kollagént más vegyszerek (például aldehidek, kondroitin szulfát, stb.) hozzáadása nélkül
nehezen térhálósodik, ilyen adalékról pedig készítményükben nincs szó. Nem említek a hőmérséklet beállítását, és nem utalnak a térhálósodási tulajdonságokra.

A 4,394,370 és 4,472,840 számú egyesült államokbeli szabadalmi bejelentésben (Jefferies) leírják, hogy a feldolgozott kollagénnek ásványmentesített csonttal vagy szolubilizált csontképző fehérjével képzett komplexei, tetszés szerint glutáraldehyddel térhálósítva, az élő szervezetbe beültetve csontképző tulajdonsággal bírnak. Az ezen szabadalmak sze rinti eljárással előállított kollagén porított, liofilizált, mikrokristályos kollagén, amit a kollagén előállításánál használt sósav eltávolítása céljából dializáltak. Az említett szabadalmak szerinti készítmény előállításában ennek megfelelően nem szerepel a kollagénnek zselatinna való átalakítása. Ennél fogva ez a készítmény nem rendelkezik a jelen találmány szerinti készítmény hőre való térhálósodási tulajdonságaival.

A 4,678,470 számú egyesült államokbeli szabadalmi bejelentésben (Nashef és mások) leírnak egy nem felszívódó, csont beültetéselhez használható anyagot, ami zselatinszerű vagy félleg szilárd hordozóban szuszpendált, glutáraldehyddel vagy hasonló térhálósító anyaggal térhálósított ásványmentesített csontmátrixból áll. Tekintettel arra, hogy az idézett szabadalom szerinti ásványmentesített csontot kémiailag térhálósítják, a csontképzést kiváltó tulajdonsága ezáltal megszűnt, a készítmény lényegében szerkezeti kitöltő vagy hordozó anyag, amelybe az eredeti csont belenőhet.

A WO 89/04646 számú nemzetközi szabadalmi bejelentésben (Jefferies) leírnak egy jó szerkezeti szilárdságú csontpótló anyagot. Az anyag ásványmentesített csontmátrixból áll, aminek a felületét glutáraldehyddel vagy hasonló térhálósító anyaggal való kezeléssel aktiválták, így módon növelve a bioló-
gialag összeférhető hordožókhoz való kötődését. A képződő anyag olyan rideg szerkezetű, hogy a biológiai közegebe való beültetése előtt megmunkálható.

A jelen találmány szerinti képlekeny csontpótló anyag kielégíti a szakmai igényeket, mivel könnyen kezelhető és tárolható, tapad a beültetés helyére, oszteokonduktív és oszteoinduktív hatással egyaránt rendelkezik, hő hatására térhálósítható, és lényegében biológiai felszívódik. A készítmény kedvezően gél alakú, ami ásványi és fehérrje összetevőket tartalmaz, és amelyekről klinikailag kimutatták, hogy gyors csontnövekedést váltanak ki. A készítmény eljuttatható a sebészhez előre töltött, felhasználásra kész fecskendőben.
Kedvező esetben, egy első hőmérsékleten a zselé könnyen formálható bármilyen alakúra, és jól tapad. Ha bekerül a biológiai közege, vagy egy második, alacsonyabb hőmérsékleten a zselé cél szerűen gumiszerű anyaggá szilárdul, ami nem mosódik ki és nem vándorol el a beültetés helyéről. Miután a csont benötte, a beültetett anyag teljesen beépül a biológiai rendszerbe. Az alábbiakban részletesen leírjuk ennek a készítménynek az előállítását és felhasználását.

Zselatinból és további csontképző adalékanyagokból képlekeny csontpótló anyag készíthető, ami felhasználható az ortopédiában, például nem összeforrt csonttörések illesztésénél, fogágy pótlásoknál, a kraniofaciális (a koponya arci részének) sebészetében, beültetett szervek rögzítésénél, gerinc és más ízületek összeillesztésében, többek között gerinc-fúziós eljárásokban, vagy bármely más eljárásban, amelyben szükséggesnek ítélik az új csont képződését. A zselatin kedvezően hőhatásra térhálósodik, és a csontképző alkotórészeket az alábbiak közül választjuk:
(i) ásványmentesített csont, amely kedvező esetben abból a fajból származik, amelyikbe a képlékeny csontpótló anyagot be akarjuk ültetni; vagy

(ii) bioaktív üvekerámia, BIOGLASS®, bioaktív kerámia, kalcium-foszfát kerámia, hidroxi-apatit, hidroxi-apatit kárnát, korralin hidroxi-apatit, kalciniált (égetéssel elmeszesített) csont, trikalciunm-foszfát, hasonló anyag, vagy azok keveréke; vagy

(iii) természetes vagy rekombináns csontszerkezet képző fehérje, TGF-béta, PDGF, vagy ezek keveréke; vagy

(iv) az (i)-(iii) anyagok keveréke.

Ha a készítmény tartalmaz a (ii) alatt felsorolt, vagy hasonló anyagot, annak célja az, hogy a készítménynek növeli a változtatható szilárdsági tartományát, és a csontképzést kiváltó tulajdonságát. Ha a készítmény tartalmaz a (iii) alatt felsorolt anyagot, az csökkenti az ásványmentesített csont szükségletet, ami egyébként a csontnövekedést kiváltó alkotórészek forrása.

Kimitatták, hogy az ásványmentesített csont igen hatékony a csontképződés megindításában. A zselatin térhálósító ható, tapadó és könnyen alakítható hordozót képez, amely magába foglalja a készítmény oszteokonduktív és oszteoin-duktív alkotórészeit. Ezekben kívül a jelen találomány szerinti készítmény tartalmazhat egyéb anyagokat, mint például antibiotikumok, csontképző és más, természetes vagy rekombináns fehérjék, nedvesítő anyagok, glicerin, dextrán, karboximetil-cellulóz (CMC), növekedési tényezők, szteroidok, nem-szteroid gyulladáscsökkentő vegyületek, vagy ezek kombinációja, vagy bármely olyan anyag, ami hozzááruhat a jelen találomány szerinti alapvető készítmény kivánatos tulajdonságaihoz.
A készítmény lehet fagyasztva szárított vagy előformált, és kiszerelhető kényelmes adagoló készülékben, mint például előre megtöltött fecskeendőben. A zselé kedvezően fölékony vagy nagymértékben képlékeny állagú körülbélül 40°C hőmérséklet fölött, de kedvezően kevéssel a szervezet testhőmérséklete fölött, amelybe beültetik, kemény zselévé merevedik (ember esetében például 38°C-on).

Az ábrák rövid leírása

Az 1. ábra a létező, beültetéshez használt csontpótló anyagokat sorolja fel.

A 2. ábrán vázoltuk a csont ásványmentesítési eljárását.

A 3. ábra a különböző hőmérsékleten, foszfáttal pufferolt sóoldatban (PBS) feldolgozott emberi zselatin kinematikus viszkozitásának változása (centistokesban), a koncentráció függvényében (%).

A 4A. ábra patkányba intramuszkulárisan beültetett, hordozó nélküli ásványmentesített csontmátrix (DBM) metszetének mikroszkópos fényképe, négy héttel a beültetés után.

A 4B. ábra patkányba intramuszkulárisan beültetett, 33% DBM-et tartalmazó zselatin (vagyis a jelen találmány szerinti csontpótló anyag) metszetének mikroszkópos fényképe, négy héttel a beültetés után.

A szakember számára nyilvánvaló, hogy a jelen találmány szerinti készítmény jellemzői, előállítási eljárása, és felhasználása bármely gerinces faj esetében lehetséges. Mindazonáltal, mivel az emberi alkalmazás az új anyagnak valószínűleg a fő ortopédiai felhasználása lesz, a következő leírás-
ban az új anyagot az emberi felhasználás példáján szemléltetjük.

A jelen találmány szerinti készítmény alkotórészei zselatin, és további, csontképző alkotórészek. A zselatin kedvezően hő hatására térhálósítható, a csontképző alkotórészek pedig a következők lehetnek:

(i) ásványmentesített csont, ami kedvezően ugyanabból a fajból származik, amelyikbe a csontpótló anyagot beültetjük; vagy

(ii) bioaktív üvegkerámia, BIOGLASS®, bioaktív kerámia, calciumpfoszfát kerámia, hidroxiapatit, hidroxiapatit-karbonát, korralin-hidroxiapatit, kalcínált (égetett) csont, trikalcium-foszfát, hasonló anyag, vagy ilyenek keveréke; vagy

(iii) természetes vagy rekombináns csontképző fehérje, TGF-béta, PDGF, vagy ezek keveréke; vagy

(iv) az (i) - (iii) anyagok keveréke.

A készítmény egy első hőmérsékleten (például 38°C fölött) folyékony, és egy második hőmérsékleten, ami megfelel azon faj testhőmérsékletének, amibe az anyagot beültetjük (embernél például 38°C), hőhatásra térhálósodik.

A „hőhatásra térhálósodik” vagy „hőhatásra térhálósítható” kifejezések a jelen leírásban azt jelzik, hogy egy készítmény tartalmaz olyan molekulákat, amelyek egy adott hőmérsékleten vagy azalatt, adott koncentrációban oly módon kapcsolódnak össze, hogy az a szóbanforgó molekulákat tartalmazó oldat gélesedését okozza.

A „lényegében biológiailag felszívódó” kifejezést egy anyag azon tulajdonságának jellemzésére használjuk, amellyel részt vesz az új csont képződésében, és abba beépül. Ennek
megfelelően, például, a valamely vegyszerrel, mint például glutáraldehiddel kémiailag térhálósított ásványmentesített csontmátrixot nem tekintjük „lényegében biológiailag felszívódónak”. Ezzel szemben, maga az ásványmentesített csontmátrix, a bioaktív üveg vagy hasonló kerámia, a zselatin, és a csont szerkezetképző tényezői valamennyien lényegében biológiailag felszívódónak tekinthetők, mivel inkább résztvesznek az új csont képződésében, nem csupán szerkezeti merevséget vagy szilárdságot biztosítanak.

A zselatin hordozóként működik, és igen kis hőmérsékleti tartományban képes hőhatásra térhálósodni. Ezt a termikus térhálósodási reakciót nagymértékben befolyásolja a molekula láncok fizikai érintkezése és a közöttük lévő hidrogén-kötések, így ez a koncentrációtól és a hőmérséklettől függ (Sperling). Ezenkivül, mivel a zselatint kiterjedten használják a gyógyászatban, az élő szervezetben mutatott viselkedését alaposan tanulmányozták. (McDonald). Ennek a biopoli-mernek a legismertebb alkalmazása a zselé-hab szivacs. Egyes vizsgálatok szerint a zselatin beültetéskor csupán enyhén antigén tulajdonságú, bizonyos tulajdonságai össze-vethetők a kollagénéivel. (McDonald). A kollagén azonban nem rendelkezik hőhatásra térhálósodó tulajdonsággal, ami olyan fontos a jelen találmány szerinti készítmény esetében.

A bioaktív üveg, mint például a BIOGLASS®, a bioaktív kerámia, a kalcium-foszfát kerámia, a hidroxi-apatit, a hidroxi-apatit-karbonát, a kalcinált csont, a trikalcium-foszfát, vagy hasonló anyagok, felhasználásuk esetén azért kerülnek a készítménybe, hogy fokozzák a készítmény szilárdsági és csontképzési (oszteoinduktív és oszteokonduktív) jellemzőinek változtatható tartományát.

Egy zselatin oldat szilárdulási ideje és szilárdulási hőmérséklete függ a zselatin oldatbeli koncentrációjától, a zselatin molekulák molekulasúlyától, vagy belső viszkozitásától, valamint az oldat pH-jától. A szilárdulási idő az izoelektromos ponton a legrövidebb, vagyis azon a pH-n, amelyen a zselatin molekulák elektromosan semlegesek.

A kollagén részleges hidrolízise többféle eljárással végrehajtható. Az A. típusú a legegyszerűbb és a leggyorsabb eljárás, amelyben a kollagén részleges hidrolízisét hig savval (például 1 mólosnál higabb sósavval) végezzük. Az A. típusú eljárást rendszerint sertésbőr és ásványmentesített szarvasmarha csont esetében alkalmazzák. A B. típusú eljárásban a kollagén részleges hidrolízisét lúgos oldallal végzik. A B. típusú eljárást általában szarvasmarha nyersbőr és ásványmentesített szarvasmarha csont esetében használják. Végül, a kollagén részleges hidrolizálására enzimek, mint például pepszin, is használhatók. A pepszin az aromás aminosavak közötti
peptid-kötéseket hasítja inkább. A pepszin észteráz (észterbontó) hatású is, de aminosavak amidjait nem hidrolizálja.

Ezen eljárás egyik példaaként a zselatint annak a fajnak a csontjaiból állítjuk elő, amelybe a készítményt be akarjuk ültetni, mégpedig oly módon, hogy a csontokat összetörjük és zsírtalanítjuk, majd körülbelül 24 órán át áztatjuk körülbelül 300 mg/l pepszint tartalmazó 0,5 mólos ecetsav oldatban, 33°C hőmérsékleten. A keletkező oldat pH-ját a pepszin denaturálása céljából nátrium-hidroxiddal 9,0-re állítjuk be, majd sósavval ismét 7,0-re változtatjuk. Az oldat hőmérsékletét körülbelül 15 - 30 percig 60°C-ra emeljük, majd ismét 4°C-ra hűtjük, ezáltal a maradék kollagént is denaturáljuk, és teljessé tesszük a zselatinna való átalakítást. A keletkező oldatot a szemcsés anyag eltávolítása céljából szűrjük, majd desztillált vízzel szemben dializáljuk, 50K-100K molekulasúly töréspontú dialízis membránnal (50K-100K molecular weight cut-off, MWCO). Liofilizálás után a zselatint ismét foszfáttal pufferolt sóoldatban (PBS) vagy vízben oldjuk, hogy a zselatin effektív (hatásos) koncentrációja körülbelül 30-45 súly%-os legyen.

A készítmény zselatin tartalma célszerűen körülbelül 20-45 súly% között van. A zselatin származhat ugyanabbnál a fajból, mint amibe a készítményt be akarjuk ültetni, de származhat másik fajból is. Például, emberi, sertés, szarvasmarha, ló, vagy kutya zselatin nyerhető olyan kollagén forrásokból mint a csont, bőr, inak vagy porcok, majd ezek keverhetők DBM-mel vagy más, csontképzést elősegítő anyaggal. Amint fentebb megjegyeztük, a kollagént meszes vagy savas kezeléssel, vagy enzimreakcióval, például pepszinnel vagy hasonló enzimes kezeléssel, majd hővel vagy más módon történő denaturálással zselatinna alakíthatjuk. A zselatint a szövetből annak örlésével
nyerjük ki, amit olyan, hosszantartó kezelés követ, ami képes megtörni a hosszú kollagén lánkok közötti keresztkötéseket. Az egyik megvalósításban a szövetet öröljük, majd körülbelül 24-72 órán át körülbelül 2-40°C közötti hőmérsékleten hig savban, mint például 0,1 normál ecetsavban áztatjuk. Kedvezően hozzáadunk megfelelően nagy koncentrációjú enzimet, például pepszint is. A kezelés kezdetén körülbelül 10-20000 i.u./l (nemzetközi egység/l), 100-2000 i.u./l, vagy hasonló koncentrációjú pepszint adagolunk a hig savhoz, és a kezelés időtartamát az alkalmazott enzimkoncentrációknak megfelelően állítjuk be. A szilárd anyagokat például centrifugálással távolítjuk el a készítményből, és az oldatban maradó, felülűsző anyagot tartjuk meg, aminek a molekulatömege 50000 dalton, vagy magasabb. Ezt a szakmában ismert bármely eljárással elérhetjük, többek között oly módon, hogy a felülűsző folyadékot 50000 dalton molekulasúlyhatárral jellemzett féligáteresztő membránnal szemben dializáljuk, a dializáló oldat többszöri cseréjével, hasonló molekulatömeg határú (MWCO) membránon való ultrafiltrással, vagy 50000 dalton molekulatömeg határú közegben való géalthatolási kromatográfiaival. A szakember számára nyilvánvaló, hogy minél nagyobb a zselatin MWCO értéke, annál kisebb a hozam. Ennek megfelelően, ha kisebb MWCO értékű zselatinokat használunk, nyilvánvaló, hogy azok nem kívántos, kis molekulatömegű részeket is tartalmazhatnak.

Az előző kirázási eljárásban kapott zselatin oldatot kedvezően denaturáljuk, például 50°C fölötti hőkezeléssel. Ezután a denaturált fehérjét fagyasztva tároljuk, vagy az fagyasztva száritható vagy kicsapható, például, egy illékonyszerves oldószerben, majd ismét oldatba vihető, mint például izotoniás (a szervezetével megegyező ozmózisnyomású) söl-
datban, körülbelül 30-45 súly% zselatin közötti koncentrációban.

Az ásványmentesített csont kedvezően por alakú, az kedvezően körülbelül 80 és 850 μm közötti átmérőjű részecskékből áll. Az ásványmentesített csontpor előállítására szolgáló eljárások a szakmában ismertek (lásd például az 5,405,390 számú egyesült államokbeli szabádalmi leírást, amire ezért a jelen találmány részeként hivatkozunk), így azokat itt részlete sen nem ismertetjük. A szokásos eljárásokkal kivont ásványmentesített csontport a fentiek szerint elkészített zselatin oldattal keverjük, az így kapott készítmény körülbelül 0-40 súly% közötti ásványmentesített csont port tartalmaz. Ha a készítmény tartalmaz csontszerkezet képző fehérjéket (bone morphogenetic proteins, BMP), azok csökkentik a készítményhez szükséges DBM százalékos mennyiségét. A BMP kedvezően körülbelül 0,0001 és 0,1 mg/ml közötti, 0,001 mg/ml és 0,01 mg/ml közötti, vagy hasonló koncentrációjú, a jelenlevő DBM mennyiségétől függően (0-40 súly%).

A jelen találmány bizonyos megvalósításaiban, és kü lönleges ortopédiai alkalmazásokban, ahol a csontpótló paszta által létesített kötés erőssége lényeges, kedvező, ha a készítmény tartalmaz bioaktiv üveget is. Hozzáadása esetén a bioaktiv üveg csökkenti a készítmény tapadási képességét, de növeli annak merevségét megdermedéskor. Ennek megfelelően, a gél/ásványmentesített csont készítményhez bioaktiv üveget, mint például körülbelül 0,5-710 μm közötti átmérőjű BIOGLASS®-t adunk. Ezenkívül, a készítmény 0-40 súly% közötti mennyiségű bioaktiv üveget, és 20-45 súly% zselatint tartalmazhat.
A fentiek szerint előállított készítmény könnyen kinyomható fecskendőből, különösen, ha a hőmérsékletet 40°C fölé növeljük, például vízfürdőbe való merítéssel, rövid ideig tartó mikrohullámos kezeléssel, fecskendő melegítővel, vagy a tartály melegítésére szolgáló bármely rendelkezésre álló eljárással. A kinyomott zselé rugalmas, tapadó és könnyen bármilyen kivánt alakúra formálható. Ráadásul a készítmény a megdermedése után megtartja szilárdságát, és sőoldatban gyengén oldódik.

Ennek megfelelően, miután általánosságban leírtuk a jelen találmány szerinti készítményt, és figyelembe vettük az alábbiakban megadott szemléltető példákat, a következő irányelveket adjuk a jelen találmány szerinti készítmény előállítására és felhasználására:

A DBM-ből a zselatint körülbelül 30 és 37°C közötti hőmérsékleten kell előállítani. Bár a hozam 37°C hőmérsékleten magasabb (60%), a mért kinematikus viszkozitás alapján a minőség kissé gyengébb, mint a 30°C hőmérsékleten előállított terméké. A zselatint kedvezően a kollagénnek enzim, mint például pepszín, vagy hasonló enzim segítségével végzett részleges hidrolizisével állítjuk elő. A pepszín 300 U/l - 500 U/l közötti koncentrációja megfelelő, de a szakember számára nyilvánvaló, hogy a jelen szabadalmi leírás alapján az enzim koncentráció széles tartományban változtatható. A szakember számára nyilvánvaló, hogy a pepszines eljárás helyett alkalmazható bőr és inak savas vagy lúgos feldolgozása is.

A végtermékben a zselatin viszkozitása 44°C hőmérsékleten kedvezően körülbelül 3600 centipoise (ha a viszkozitás/nyírási sebesség görbe egyenes szakaszán mérjük - 0,87/s), vagy kinematikus viszkozitása 44°C hőmérsékleten
körülbelül 0,7 centistokces. A hordozó részben (csontképző adalékok nélkül) a zselatin koncentrációja kedvezően körülbelül 30-45 súly% (körülbelül 40-50 vegyes%), ami azt biztosítja, hogy 38°C hőmérsékleten az idő jelentős részében gélesedés megy végbe. A szakember számára természetesen nyilvánvaló, hogy a szervezettől függően, amelybe a készítményt be akarjuk ültetni, különböző hőmérsékletre lehet szükség. Ezekhez az igényekhez a zselatin koncentrációjának változtatásával igazodhatunk, növelve a koncentrációt, ha magasabb gél hőmérsékletre, és csökkentve a koncentrációt, ha alacsonyabb gél hőmérsékletre van szükség.

A készítmény DBM tartalmát a jelen leírásban úgy határozzuk meg, mint az ahhoz szükséges koncentráció, hogy a csontképződés hasonló legyen a tiszta DBM esetén tapasztalt-hoz. Azt tapasztaltuk, hogy körülbelül 5-40 súly% DBM közötti koncentráció a készítményben hatásos. Körülbelül 5%-nál kisebb DBM koncentráció nagyon kevésbé számít a csontképződés szempontjából, hacsak a készítmény nem tartalmaz BMP adalékokat ((iii) típusú összetevők), amely esetben a DBM koncentráció lényegesen csökkenthető, vagy akár a DBM teljesen elhagyható. Ezen felismerés alapján a szakember számára természetesen nyilvánvaló, hogy a készítmény DBM összetet-tele mindkét irányban változtatható, a csontszerkezet képző fehérje, illetve más csontképző vagy oszteoinduktív tényezők koncentrációjának és összetételének megváltoztatásával.

Ezenkívül az is nyilvánvaló, hogy a DBM súlyszázalékát attól függően is növelni vagy csökkenteni kell, hogy milyen fajba akarjuk a készítményt beültetni.

In vivo kísérletek során azt tapasztaltuk, hogy a 15 és 33 % közötti DBM-et tartalmazó készítmények megkeményedett

Szövettaniál megfigyeltük, hogy az állati szervezetbe való beültetés után a zselatin rész körülbelül 2 héten belül teljesen felszívódik. Továbbá, két héten belül porc és mésztartalmú csont képződik, és körülbelül a negyedik héten megfigyelhető a kialakult csont. Az ezekben a vizsgálatokban résztvevő állatoknál nem tapasztaltunk általános egészségügyi problémákat vagy bármely jelét a irritációnak, hematómának (vérömlenyek), fájdalomérzetnek, láznak, vagy súlycsökkenésnek a kísérletek során. A jelen találmány szerinti készítmény, akármilyen összetételben tartalmaz zselatin és az (i-iv) csontképző összetevőket, hordozóként használható akár a kemény csontburkot, akár a szivacsos állományt, akár mindkettőt tartalmazó csont darabok pótlására. Ezek a készítmények hasznosak a csont nagyobb, üreges hiányainak pótlására. Ráadásul, ha ezeket a csont szeleteket nem ásványmentesítjük, azok olyan további biológiai tulajdonságokkal rendelkeznek, ami sem a zselatinra egyedül, sem az (i-iv) csontképző összetevőkkel képezett keverékeire nem jellemző. Ha ilyen csont szeleteket alkalmazunk, azok kedvező mérete körülbelül 80 μm és körülbelül 10 mm között van.

A jelen találmány egy további megvalósításában a zselatinból és (i-iv) csontképző összetevőkből álló készítményt injektálással, csökkentett nyomáson, forgatással, ütéssel, kihúzással, vagy más módon szilárd formába öntjük. Ezeknek a
formáknak az alakja tetszés szerint lehet csigolya, izületi vápa, csőszerű, ellipszoid alakú, üregek kitöltésére, és kü-lönböző csontok csontvelőt tartalmazó üregének kitöltésére használható csontüregi dugók, annak megakadályozására, hogy a csont tömítő anyag behatoljon az egészséges csontszövetbe. Ezeket a formákat például úgy állítjuk elő, hogy a készítmény hőmérsékletét az elfolyósodási hőmérséklete (például körülbelül 45°C) fölé emeljük, és megfelelő alakú öntő-formában hagyjuk a készítményt gélesedni. Az ilyen, formázott készítmények esetében a zselatin tartalom kedvezően a lehető legmagasabb, hogy a forma szilárd maradjon, amikor beültetik a gerinces befogadó állat szervezetébe.

A szakemberek számára nyilvánvaló a jelen találomány szerinti csontpótoló paszta sokféle ortopédiai alkalmazási lehetősége. Inkább szemléletetésképpen, semmint korlátozásoként, a készítménynek a gerincoszlop izületi összeillesztése céljára egy különösen kedvező alkalmazási módja a porckorong elfajulás korai szakaszában, vagy sérülés után történik. A sérülés vagy az elfajulás diagnosztizálása után az elváltozás helyén, a gerincoszlop porcában egy vagy több kis nyílást képezünk. Ezután a csontpótoló pasztát az összeillesztés beindítása céljából befecskendezzük a gerincközi térbe. Hasonló eljárás alkalmazható más izületek, vagy csont sérülés esetén is.

Miután a találományt általánosságban leírtuk, a következőkben példákkal mutatjuk meg annak különleges tulajdonságait és alkalmazásait. Nyilvánvaló azonban, hogy az alább bemutatott példák sajátosságai semmilyen módon nem korlátozók a találomány oltalmi körét, és hogy a jelen találomány oltalmi körét a hozzá csatolt szabadalmi igénypontok határozzák meg.
1. példa
Zselatin előállítása, kinematikus viszkozitása, és kritikus gélesedési koncentrációja 38°C-on

Ebben a kísérletben a kollagén ásványmentesített emberi csontkéregből származó, 250-850 μm közötti részecs-keméretű porból készült. Az ásványmentesített csontmátrix port (DBM), 0,5 mólos ecetsav oldatot és pepszint centrifuga-csőbe helyezünk. A centrifugacsövet 24 órán át a kívánt hőmérsékleteken rázzuk: 4°C, 30°C, 33°C vagy 37°C-on. A pH-t 1 N nátriumhidroxiiddal, és 1 N sósavval először 9,0, majd 7,0 értékre állítjuk, dezaktiválva a pepszint. Az oldatot 15 percre 60°C hőmérsékletű vízfűrdőbe helyezzük, majd a reakciót jeges vízzel befagyasztjuk. Az oldatot centrifugáljuk, és a felülúszót 1000 Dalton molekulatömeg határú dializis membránal ellátott csőbe helyezzük. A felülúszót 1000:1 higítási tényező eléréséig dializáljuk, fagyasztjuk, és a teljes száradásig liofilizáljuk. Ezt a kísérletet minden hőmérsékleten öt párhuzamos mintán végezzük el.

A zselatin kinematikus viszkozitását különböző koncentrációjú (0,0625 vegyes%, 0,125 vegyes%, 0,25 vegyes% és 0,5 vegyes%), foszfáttal pufferolt sóoldatokban (pH 7,4 érték-nél, 25°C hőmérsékleten) mérjük Ubbelhode viszkoziméterben, 44°C hőmérsékleten. A 4°C-on, 30°C-on, 33°C-on és 37°C-on feldolgozott emberi zselatin kinematikus viszkozitását két mintán mértük, kivéve a 33°C-os mintát, amit csak egyszer mérünk. Az emberi zselatin oldat centistokesban mért kinematikus viszkozitását a koncentráció függvényében a 3. ábrán tüntettük fel. A nulla koncentrációhoz tartozó kinematikus viszkozitást nullára extrapolált lineáris regresszióval határoztuk meg. Az optimális feldolgozási hőmérsékletet úgy határoztuk meg, mint
az a hőmérséklet, amelyen nulla koncentrációról a legnagyobb
az oldat viskozitása, a legnagyobb a lineáris regressziós
eyenes meredeksége, a legnagyobb a hozam, és végül, a ka-
pott zselatin kissé az emberi testhőmérséklet fölött szilárd
csontpótló anyagot képez.

A feldolgozási hőmérséklet növelésével a zselatin
ugyancsak pepszin/DBM arányra (0,02 vegyes% pepszin/1 g
DBM) normalizált hozama növekszik. A nulla koncentrációhoz
tartozó kinematikus viskozitás, vagy y-tengelymetszet fordított
irányú változást mutat. A feldolgozási hőmérséklet növelésével
az extrapolált kinematikus viskozitás csökkent, lásd 1. táblá-
zat.

A 30°C hőmérsékleten feldolgozott emberi zselatin
kinematikus viskozitás-görbénnek a legnagyobb a meredek-
sége, 0,40 (centistokes/%), a következő a 4°C-on feldolgozott
emberi zselatiné, 0,26 (centistokes/%), ezt követi a 33°C-os
eemberi zselatin, 0,21 (centistokes/%), végül a 37°C hőmérs-
sékleten feldolgozott emberi zselatin értéke 0,17 (centi-
stokes/%), lásd 1. táblázat.

Ha a kinematikus viskozitást összefüggésbe akarjuk
hozni a zselatin molekulatömegével, a kinematikus viskozitást
át kell számítani belső viskozitásra. A belső viskozitás azon-
ban a zselatin polielektrolit jellege miatt határozatlan. Ennek
eredményeképpen nem állapítható meg közvetlen összefüggés
az emberi zselatin viskozitása és molekulatömege között.

1. táblázat. Az emberi zselatin, és fosztáttal puferolt sóoldat
fizikai tulajdonságai. Az emberi zselatin 4°C, 30°C, 33°C és
37°C hőmérsékleten dolgoztuk fel, 1 g DBM-ből 0,03 vegyes%
pepszinnel, 0,5 N ecetsavban:
Meghatároztuk a különböző csontpótló paszta készítmények megszilárduási hőmérsékletét (2. táblázat). A csontpótló paszta készítményekben DBM-ből pepszinnel 33°C, 35°C és 37°C hőmérsékleten készített emberi zselatin használtunk. A zselatin koncentráció a teljes összetétel 19 súly%-a és 25 súly%-a között változott (ami 40 vegyes% - 60 vegyes% zselatin tartalomnak felel meg a hordozó mátrixban), pH 7,4-es, foszfáttal pufferolt sóoldatban (PBS). A DBM mennyisége valamennyi vizsgált csontpótló pasztában a teljes készítmény 33 súly%-a. Különböző környezeti hőmérsékleteken vizsgáltuk, hogy a csontpótló paszta szilárd-e vagy folyékony, 45°C-on, 43°C-on, 41°C-on, 40°C-on, 38°C-on és 35,5°C-on. A megszálládulási hőmérsékletet egyaránt meghatároztuk a környezeti hőmérséklet csökkentésével, és a környezeti hőmérséklet emelésével.

2. táblázat. Megszilárdult (fecskeendővel nem adagolható) csontpaszta készítményeknek megfelelő környezeti hőmérsékletek
<table>
<thead>
<tr>
<th>emberi zselatin mennyisége a készítmény %-ában</th>
<th>37°C feldolgozási hőmérséklet</th>
<th>35°C feldolgozási hőmérséklet</th>
<th>33°C feldolgozási hőmérséklet</th>
</tr>
</thead>
<tbody>
<tr>
<td>25 súly%</td>
<td><35,5°C</td>
<td><35,5°C</td>
<td>40°C</td>
</tr>
<tr>
<td>24 súly%</td>
<td><35,5°C</td>
<td><35,5°C</td>
<td><35,5°C</td>
</tr>
<tr>
<td>22 súly%</td>
<td><35,5°C</td>
<td><35,5°C</td>
<td><35,5°C</td>
</tr>
<tr>
<td>21 súly%</td>
<td><35,5°C</td>
<td><35,5°C</td>
<td><35,5°C</td>
</tr>
<tr>
<td>19 súly%</td>
<td><35,5°C</td>
<td><35,5°C</td>
<td><35,5°C</td>
</tr>
</tbody>
</table>

Ennek megfelelően, a zselatin kritikus koncentrációja a csontpótló pasztaiban, ami kissé az emberi testhőmérséklet fölött, 38-39°C-on szilárd, az emberi zselatin esetében a teljes készítmény 25 súly%-a, a feldolgozás hőmérséklete 33°C, és a készítmény 33 súly% DBM-et tartalmaz, a többi része PBS. A 33°C hőmérsékleten feldolgozott emberi zselatin nulla koncentrációra extrapolált kinematikus viszkozitása 0,71 centi-stokes. Azt tapasztaltuk, hogy a kisebb kinematikus viszkozitású emberi zselatin oldatok kritikus koncentrációja nagyobb, mint körülbelül 25 súly%. Ennek megfelelően, a körülbelül 0,71 centistokesnál nagyobb viszkozitású zselatinok várhatóan körülbelül 25 súly%-mál kisebb koncentrációknál térhálósódnak hő hatására.

2. példa: *In vivo* csontpótló paszta készítmény és aktivitása

Ez a vizsgálat megmutatja, hogy a jelen találmány szerinti csontpótló paszta osztoinduktív hatású. Ráadásul, a vizsgálat szemlélteti a készítmény DBM összetevőjének azon részecskeméréletét, ami megfelelő az új csont növekedése szempontjából, abban az állatban, amelybe beültették.
Az intramuszkuláris patkány modell a szabványos modell ásványmentesített csont és más oszteoinduktív tényezők oszteoinduktivitásának vizsgálatára. Strates és mások sok év használják ezt a modellt (Strates).

Amint az a fenti, 1. példából kiderült, meghatároztuk, hogy ahhoz, hogy a gélesedés 38°C hőmérsékleten bekövetkezzék, 40-60 vegyes% zselatin koncentrációra van szükség (ha nincsenek további csontképző adalékok, az oldat 30-45 súly%-a). Ilyen koncentrációról a hordozó mátrixként szereplő zselatin 38°C hőmérsékleten körülbelül 8 percen belül térhálósodik. Ebben a vizsgálatban arra a kérdésre kerestük a választ, hogy mennyi DBM-nek kell lennie ebben a megszilárdult 40-60%-os zselatin hordozó mátrixban, hogy az a pozitív összehasonlító mintákhoz mérhető csontképződést váltson ki. A patkány intramuszkuláris modellben 4 különböző DBM/zselatin összetételű készítményt hasonlítottunk össze, pozitív és negatív kontroll mintákkal.

A. Beültetett készítmény

Frissen leölt Sprague-Dawley patkányok (24 órán belül, 4°C hőmérsékleten tárolt) combcsontját, sipcsontját és szákapocs-csontját kipreparáltuk. A csontokból kivágtuk a csöves részt, és annak középső részéből szikvével és steril vízes mosással eltávolítottuk a csontvelőt. Ezután a középső, csöves rész darabjait 0,6 mólos sósavban 24 órán át 4°C hőmérsékleten ásványmentesítjük, miközben a csont és a sav tömegarányát 1/10, vagy ennél kisebb értéken tartjuk. A csont darabokat liofilizáljuk, majd szárazjéggel keverjük, és laboratóriumi csontmalomban örlőjük. A DBM port szitáljuk, és a 125-450 μm részecskeméretű részt tartjuk meg.
50 vegyes% zselatint tartalmazó hordozó mátrixot készítünk oly módon, hogy foszfáttal pufferolt sóoldatot (PBS) 60°C hőmérsékletre melegítünk, majd élénk keverés közben porított sertés zselatint (Sigma, 300 bloom) adunk hozzá. A hordozó mátrixot 15 percig állni hagyjuk (hogy az oldatban kiegyenlítődjék a zselatin koncentrációja), majd hagyjuk lehűlni 50°C-ra. Ekkor a zselatin oldathoz a következő mennyiségű DBM adagokat adjuk hozzá: a teljes készítmény mennyiségének 0 (negatív összehasonlító minta), 15, 19, 24, és 33 súly%-a. A készítményt kézi keveréssel alaposan összekeverjük.

A beültetendő mintákat oly módon készítjük, hogy a keverék ből kis adagokat helyezünk egy petri-csészére. Ezeket az adagokat kis (körülbelül 4 mm-es) darabokra vágjuk, a tömegüket mérjük, és steril petri-csészékre helyezzük. Positív összehasonlító mintákat készítünk centrifugában kevert DBM és PBS gölyócskákból. Azért, hogy ezek a gölyőcskák a sebészeti eljárás során egyben maradjanak, fagyasztjuk azokat, és úgy használjuk fel.

B. Sebészeti eljárás patkányokon

Fiatal 200-410 g súlyú Sprague-Dawley patkányokat intramuszkulárisan (combba adagolt) 86 mg/kg ketaminnal és 13 mg/kg xylazinnal altatunk. A hasi középvonallal párhuzamosan metszést végzünk a szegycsont végétől a lágyékkig. Ahasfalon való áthatolást az állat két oldalán végzett kerek vágással hajtjuk végre. Az izomban három rövid metszést ejtünk mindkét oldalon, behelyezzük a beültetendő mintákat, majd egy-két, Prolene 3-0 orvosi fonallal végzett öltéssel megjelöljük a helyet, és rögzítjük a beültetett darabokat. Mindkét oldalon elhelyezünk egy pozitív vagy egy negatív összehasonlító mintát,
valamint két vizsgáló mintát. A beültetések helyét véletlen-szerűen határozzuk meg, és minden állat egyik oldalába negatív, az átellenes oldalra pedig pozitív összehasonlító mintát ültetünk be.

Az állatokat visszahelyezzük a ketrecbe, és ellátjuk táppal és vizel tetőzés szerint. A vizsgált állatcsoport minden tagját 4 hétig tartjuk ketrecben, egy állatot kivéve (R1), amelyet szövettani vizsgálat céljából két hét múlva feláldozunk.

4 hét múlva az állatokat tűlädagolt nembutálal feláladozzuk. Éles metszéssel, a lehető legtöbb szövetet eltávolítva kivesszük az egyenes hasizmot.

C. A kipreparált, beültetett szövetminták elemzése

Bevágásokkal mindegyik izom darabon megjelöljük az állat felső oldalát, és a darabokat megjelölt petri-csészekbe helyezzük. Az izmokról mammográfiai berendezéssel, mammográfiai filmmel (DuPont) röntgen felvételeket készítünk. A röntgen felvételeket Apple LCII számítógéphez kapcsolt digitális kamerával, NIH Image 4.0 programmal elemezzük. A képek megvilágítás határát úgy állítjuk be, hogy a beültetett minták árnyéka kiemelkedjen, majd képelem számlálással meghatározzuk az árnyék területét.

Mindegyik fajta átültetett szövetből kettőt kiveszünk az izomból, és 10%-os, pufferolt formalinban tartósítjuk. Szövettani mintákat veszünk, és az egymást követő metszeteket H&E és Masson-féle háromszínű festékkel színezzük. Ezeket a szövettani mintákat képzett patológus vizsgálta.

A többi átültetett szövetmintát kivágjuk az izomszövetből, és tokos kemencében 700-750°C hőmérsékleten, 4,5 óra alatt elhamvasztjuk. Meghatározzuk a hamu tömegét, és azt az
eredeti, beültetett anyag tömegére normalizáljuk. A hamut 1,0 normál sósavban oldjuk, és kalcium tartalmát atomabszorpciós spektroszkópiai eljárással analizáljuk.

Valamennyi analízist kódolt mintákkal vakon végezzük, a dekódolásra csak valamennyi adat teljes feldolgozása után kerül sor.

D. Szövettani vizsgálat

A 15%-os és 19%-os DBM készítmények kéthetes szövettani mintái szerint már ilyen korai időpontban kezdődő csontképződés figyelhető meg. A csontképződés iránya nem könnyen azonosítható, de az endochondriálisnak (porc irányú nak) látszik. A négy hetes szövettani minták alapján a beültetés helyén kialakult csont képződött. A képződött csont minősége a hamu és a százalékos kalcium-tartalom elemzés alapján összefügg a természetes csontéval. Valamennyi, DBM-et tartalmazó beültetett minta csontképződést eredményezett. Azok a minták eredményezték a legjobb minőségű csontot, amelyek DBM tartalma nágyobb, mint körülbelül 20%. A 4A és 4B ábrák közönséges patkány in vivo intramuszkuláris modellben beültetett minták négy hét után készült metszetéi mikroszkópos fényképe. Azt találtuk, hogy a jelen találomány szerinti, zselatin hordozóban 33 szûly% DBM-et tartalmazó minták (4B ábra) ugyanannyi új csont képződését eredményezték, mint a tiszta, 100%-os DBM (4A ábra). Ezek az ábrákon a következő képletek világosan felismerhetők: a 10 jelû kialakult csont, amit a Masson-féle szinezékből felvett vörös szín igazol; a 20 jelû újonnan képződött porc, amit a Masson-féle szinezékből felvett kék szín, és a sejtek jelenléte igazol; a 30 jelû képlet maradék DBM, mivel a Masson-féle szinezékből kék festéket vesz fel, és
nincsenek benne azok a sejtek, amikből az ízom metszet valamennyi porcos és csontszerű képlete képződött; végül a 40 jelű képlet kezdetleges csont, amit a világoskék elszíneződés, és a sejtek jelenléte igazol. A megfigyelt sejtek az újonnan képződött porcót lebontó oszteoklasztok (csontlebontó sejtek), és az új csontot felépítő oszteoblasztok (csontképző sejtek). Ráadásul, a Masson-féle szinezékkal kezelt metszetben, amelyről a fekete-fehér lenyomatok készültek, nyilvánvaló a kialakult csontban az erek behatolása.

E. Az összetétel analízise

A 2σ statisztikai teszt alapján hamutartalomban nincs jelentős különbség a negatív, a pozitív összehasonlító minta, vagy a 15 súly%, illetve 19 súly% DBM-et tartalmazó minta között. Ez nem jelenti szükségképpen azt, hogy ezek a készítmények nem hatásosak (a röntgen felvételek vizsgálata cáfolja ezt a következtetést). Inkább azt jelzi, hogy a hamu módszer érzékenysége nem teszi lehetővé a különbség kimutatását. A 24 és 33%-os készítmények adatainak vizsgálata azt jelzi, hogy azok lényegesen jobbak, mint a 19 és 15%-os minták és a negatív összehasonlító minták, és nem különböznek lényegesen a (pozitív) összehasonlító mintától, lásd 3. táblázat:

<table>
<thead>
<tr>
<th>összetétel</th>
<th>hamu hozam %/g beültetett anyag</th>
<th>standard eltérés</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 {összehasonlító}</td>
<td>10,1</td>
<td>9 (n=6)</td>
</tr>
<tr>
<td>15</td>
<td>5,5</td>
<td>12,7 (n=6)</td>
</tr>
<tr>
<td>19</td>
<td>11,9</td>
<td>12,2 (n=6)</td>
</tr>
</tbody>
</table>
F. Atomabszorpciós spektroszkópia:

A minták kalciumtartalmát a DBM/zselatin készítmények elhamvasztott mintáinak atomabszorpciós spektroszkópiai analízisével határoztuk meg. A 15 és 19%-os készítmények nem különbözik statisztikailag jelentősen a negatív összehasonlító mintáktól. Nagyobb érzékenységű meghatározás esetén azonban várható, hogy a zselatin hordozóban lévő DBM pozitív hatása már akár 7% koncentrációval mérhető legyen. A 24%-os, vagy annál több DBM-et tartalmazó készítmények átlagos kalciumtartalma arányosnak bizonyult a DBM mennyiségével.

4. táblázat: Patkányokba négy hétig in vivo beültetett hat különböző DBM/zselatin készítmény elhamvasztott mintáinak összehasonlító atomabszorpciós spektroszkópiai eredményei

<table>
<thead>
<tr>
<th>összetétel (% DBM)</th>
<th>átlagos Ca-tartalom/g</th>
<th>standard eltérés (σ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 {- összehasonlító}</td>
<td>1,2</td>
<td>1,2 (n=6)</td>
</tr>
<tr>
<td>15</td>
<td>3,9</td>
<td>2,4 (n=6)</td>
</tr>
<tr>
<td>19</td>
<td>7,3</td>
<td>7,5 (n=6)</td>
</tr>
<tr>
<td>24</td>
<td>23,1</td>
<td>8,7 (n=5)</td>
</tr>
<tr>
<td>33</td>
<td>28,0</td>
<td>4,4 (n=4)</td>
</tr>
<tr>
<td>100 {+ összehasonlító}</td>
<td>81,3</td>
<td>30,0 (n=6)</td>
</tr>
</tbody>
</table>

G. Digitális röntgen analízis:
Durva vizsgálattal, a röntgen felvételek összehasonlítása alapján a 24%-os és a 33%-os készítmények nem külön böznék jelentősen a pozitív összehasonlító mintáktól. A 15 és 19%-os készítmények hatására láthatóan nem képződött statistikailag jelentős mennyiségű csont. Nagyobb érzékenységű meghatározás esetén azonban várható, hogy a zselatin hordozóban lévő DBM pozitív hatása már akár 7% koncentrációról mérhető legyen. A negatív összehasonlító minták helyén a röntgen felvételeken nem látható csontképződés. Ennek megfelelően, arra következtetünk, hogy a zselatinban körülbelül 24 és 33 súly% közötti koncentrációjú DBM hatásos a csontképződés szempontjából. Ugyanezen adatok alapján megállapítható, hogy körülbelül 20% alatti DBM koncentráció a pozitív összehasonlító mintákhoz képest kevésbé hatásos jelentős mennyiségű csont képződése szempontjából. Meg-jegyzendő, hogy a Grafton™ glicerin hordozóban csupán 8% DBM-et tartalmaz.

5. táblázat:

<table>
<thead>
<tr>
<th>összetétel (% DBM)</th>
<th>normalizált terület (a + összehasonlító %-a)</th>
<th>standard eltérés (σ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 {összehasonlító}</td>
<td>0</td>
<td>0 (n=10)</td>
</tr>
<tr>
<td>15</td>
<td>2,8</td>
<td>1,9 (n=7)</td>
</tr>
<tr>
<td>19</td>
<td>4,1</td>
<td>4,2 (n=7)</td>
</tr>
<tr>
<td>24</td>
<td>33,0</td>
<td>15,2 (n=10)</td>
</tr>
<tr>
<td>33</td>
<td>36,7</td>
<td>14,9 (n=10)</td>
</tr>
<tr>
<td>100 {+ összehasonlító}</td>
<td>100</td>
<td>43,1 (n=10)</td>
</tr>
</tbody>
</table>

3. példa
Eljárás a jelen találmány szerinti képlékeny csontpótló anyag előállítására

Ebben a példában leírunk egy eljárást képlékeny csontpótló anyag előállítására zselatinból és ásványmentesített csontból. A következő összetevőket mérjük ki, a készítmény teljes tömegének szükség szerinti százalékos mennyiségében (a megadott százalékok a készítmény teljes tömegére vonatkoznak):

<table>
<thead>
<tr>
<th>Agyag</th>
<th>Mennyiség</th>
</tr>
</thead>
<tbody>
<tr>
<td>Száraz ásványmentesített csont</td>
<td>0-40 súly%</td>
</tr>
<tr>
<td>Liofilizált, hővel térhálósított zselatin</td>
<td>25-45 súly%</td>
</tr>
<tr>
<td>BIOGLASS®</td>
<td></td>
</tr>
<tr>
<td>Csont szerkezetképző fehérje</td>
<td>0,001 mg/ml</td>
</tr>
</tbody>
</table>

Ezeket az összetevőket szárazon alaposan összekeverjük, és víz, foszfáttal pufferolt sóoldat, vagy bármely más, fiziológiásan elfogadható folyékony hordozó hozzáadásával kiegészítjük a készítmény teljes tömegére. Ezután a készítményt ebben az alakban csomagolhatjuk, vagy liofilizálva, vízzel való későbbi visszaalkítás céljára. A készítmény képlékenységét úgy érjük el, hogy azt olyan hőmérsékletre melegítjük, amely elegendő a zselatin elfolyósodásához, majd a készítményt hagyjuk lehülni a gélesedés hőmérsékletére.

Hivatkozások

Bloebaum, R. D. Human Bone Ingrowth and Materials; Bloebaum, R. D., Szerk.; Society for Biomaterials: Denver, CO, 1996.

Scarborough, N. *Bone Repair Using Allografts*; Scarborough, N., Szerk.; Society for Biomaterials, 1996.

5,481,601 számú egyesült államokbeli szabadalmi bejelentés
5,236,456 számú egyesült államokbeli szabadalmi bejelentés
5,405,390 számú egyesült államokbeli szabadalmi bejelentés
4,440,750 számú egyesült államokbeli szabadalmi bejelentés
4,394,370 számú egyesült államokbeli szabadalmi bejelentés
4,472,840 számú egyesült államokbeli szabadalmi bejelentés
4,678,470 számú egyesült államokbeli szabadalmi bejelentés

WO 89/04646 számú nemzetközi szabadalmi bejelentés
Szabadalmi igénypontok

1. Arra rászoruló szervezetbe beültethető, képlekeny csontpótló anyag, ami zselatin hordozóban lényegében biológiailag felszívódó csontképző összetevőkből áll.

2. Az 1. igénypont szerinti csontpótló anyag felhasználása nem összeforrít törések, fogágy pótlások, craniofaciális (a koponya arci részével kapcsolatos) sebészeti beavatkozások, gerinc- és más izületek összefüggések, gerincoszlop összefüggések eljárások, és beültetett szövetek rögzítése céljára.

3. Az 1. igénypont szerinti készítmény, amelyben a zselatin hő hatására térhálósítható, a beültetésre váró szervezet testhőmérsékletén, vagy kevéssel afölött.

5. A 3. igénypont szerinti készítmény, amelyben a szóbanforgó zselatin koncentrációja a készítmény tömegének százalékában kifejezve körülbelül 20-45 súly%.

6. Az 5. igénypont szerinti készítmény, amelyben a csontképző összetevőt az alábbi csoportból választjuk:
 (i) ásványmentesített csont mátrix (DBM);
 (ii) bioaktív üvegkerámia, BIOGLASS®, bioaktív kerámia, kalcium-foszfát kerámia, hidroxi-apatit, hidroxi-apatit karbonát, korralin hidroxi-apatit, kalcinált
(elmeszesített) csont, trikalciumpyroszfát, hasonló anyag, vagy ezek keveréke; vagy
(iii) természetes vagy rekombináns csontképző fehérje, TGF-béta, PDGF, vagy azok keveréke; vagy
(iv) az (i)-(iii) anyagok keveréke.

7. A 6. igénypont szerinti készítmény, amelyben a zselatin, az ásványmentesített csont, vagy mindkettő abból a fajból származik, amelybe a csontpótló anyagot be akarjuk ültetni.

8. A 7. igénypont szerinti készítmény, amelyben a DBM a készítmény teljes tömegének körülbelül 0-40 súly%-át képezi.

10. A 6. igénypont szerinti készítmény, amelyben a bioaktív üveg BIOGLASS®.

11. A 6. igénxpont szerinti készítmény, amelyben a (ii) öszetevő a készítmény teljes tömegének körülbelül 0-40 súly%-át képezi.

12. A 6. igénypont szerinti készítmény, amely antibiotikumot, csont szerkezetképző fehérjét vagy más, természetes vagy rekombináns fehérjét, nedvesítőszereket, glicerint, karboximetil-cellulózt (CMC), növekedési tényezőket, szteroi-
dokat, nem-szteroid gyulladáscsökkentő vegyületeket, vagy ezek kombinációját tartalmazza.

13. A 6. igénypont szerinti készítmény, amely körülbelül 0,0001 és 0,1 mg/ml közötti mennyiségű csont szerkezet-képző fehérjét tartalmaz.

15. Az 1. igénypont szerinti készítmény, amelyben a zselatin emberből, szarvasmarhából, juhból, lóból, kutyából származik, vagy ilyenek keveréke.

16. Az 1. igénypont szerinti készítmény, amelyben a zselatint emberi kollagénből enzimatikusan, savas vagy lúgos kivonással állítják elő.

18. A 17. igénypont szerinti készítmény, amelyet oly módon állítunk elő, hogy a kollagén forrást körülbelül 33°C hőmérsékleten pepszinnel kezeljük, és az így kezelt kolla-génből szabadulozott körülmények között, hőkezeléssel végzett denatúrálással zselatint állítunk elő, majd az ily módon előállított zselatint csontképző anyaggal keverjük, hogy a zselatin koncentrációja végül körülbelül 20-45 súly% között legyen.
19. A 18. igénypont szerinti készítmény, amelyben a
denaturálást legalább 50°C hőmérsékletre való melegítéssel
hajtjuk végre.

20. A 19. igénypont szerinti készítmény, amelyben a
zselatin molekulaömege nagyobb, mint körülbelül 50000
dalton.

21. Az 1. igénypont szerinti készítmény, amelyben a
csontképző anyag körülbelül 80-850 μm átmérőjű részecskéből
álló por alakú ásványmentesített csontmátrix.

22. A 21. igénypont szerinti készítmény, amely körül-
belül 0-40 süly% közötti mennyiségű ásványmentesített csont
mátrix port tartalmaz, azzal a kikötéssel, hogy ha a készít-
ményben nincs ásványmentesített csont mátrix, akkor a készít-
mény legalább 0,0001 mg/ml koncentrációjú csont növekedési
tényezőt tartalmazza.

23. A 22. igénypont szerinti készítmény, amelyben a
szóbanforgó csont növekedési tényező természetes vagy
rekombináns szerkezetképző fehérje, TGF-β, vagy azok keve-
réke.

24. A 6. igénypont szerinti készítmény, amelyben a
bioaktív üveg körülbelül 0,5-710 μm közötti részecske átmérőjű
BIOGLASS®.

25. Az 1. igénypont szerinti készítményből előállított
csontkérget, szivacsos csontállományt, vagy mindkét részt
pótló csont szeletek.
26. A 25. igény pont szerinti készítmény, amelyben a szóbanforgó csont szeletek méret tartománya 80 μm és 10 mm közötti.

27. Az 1. igény pont szerinti készítmény, amit injekciálással, csökkentett nyomáson, forgatással, ütéssel kihúzással vagy más formázási eljárással szilárd formába öntenek.

28. A 27. igény pont szerinti készítmény, amelyben a szóbanforgó forma porckerong, izületi vápa félömbje, ellipszoid, hosszúkás, és „U” alakú, üreg kitöltése, a csontvelő állományba helyezett lezáras kialakítása, és átültetett szövet rögzítése céljából.

29. Eljárás in vivo csontképződés kiváltására az erre rászoruló fogadó szervezetben, amely eljárás szerint zselatin hordozóban lényegében biológiai felhasználó csontképző összetevőket tartalmazó, beültetett, képlékeny csontpótló készítmény hatásos mennyiségét ültetik be.

30. A 29. igény pont szerint eljárás, amelyet nem egyenletes töréseket helyreállítására, fogágy pótlás megvalósítására, craniofacialis (a koponya arci részével kapcsolatos) sebészeti beavatkozáshoz, beültetett szervek rögzítésére, gerinc- és egyéb izületek összeillesztésére, gerincoszlop összeillesztési eljárásokhoz, vagy beültetett szövetek összeillesztésére alkalmaznak.

31. A 30. igény pont szerinti eljárás, amely szerint a gerinc közötti térben kicsiny üregek sorozatát képezik ki, és a
szóbanforgó készítményt összenövés megindítása céljából a szóbanforgó üregekbe fecskendezik.

32. A 30. igénypont szerinti eljárás, amelyben a szóbanforgó készítményt fecskendőből nyomják ki egy első hőmérsékleten, amelyen az folyékony és nagymértékben formázható marad, és amint a szóbanforgó készítmény egy másik hőmérsékleten, ami a beültetésre váró szervezet testhőmérséklete, vagy kevéssel afölött van, gélesedik, rugalmas, tappa-dó, könnyen alakítható formát képez.

33. Eljárás beültethető szövetpótoló anyag előállítására, amely eljárás szerint hő hatására térhálósodó zselatin hordozóban lényegében biológiailag felszívódó csontképző összetevőt szuszpendálunk.

34. A 33. igénypont szerinti eljárás, amelyben a szóbanforgó csontképző összetevő a következők valamelyike:
(i) ásványmentesített csont;
(ii) bioaktív üvegkerámia, BIOGLASS®, bioaktív kerámia, kalciumpfoszfát kerámia, hidroxi-apatit, hidroxi-apatit karbonát, korralin hidroxi-apatit, kalcinált (égetéssel meszesített) csont, trikalciumpfoszfát, hasonló anyag, vagy azok keveréke;
(iii) természetes vagy rekombináns csontszerkezet képző fehérje, TGF-béta, PDGF, vagy azok keveréke; vagy
(iv) az (i)-(iii) anyagok keverékei.

35. A 34. igénypont szerinti eljárás, amelyben a szóbanforgó készítményből injektálással, csökkentett nyomá-
son, forgatással, ütéssel, kihúzással, vagy más módon a szilárd beültetendő szövetdarab kivánt alakjának megfelelő formába öntjük, és a készítményt azon a hőmérsékleten, amelyen a zselatin térhálósodik, hagyjuk megszilárdulni.

36. A 35. igénypont szerinti eljárás, amelyben a szöabanforgó forma porckorong, izületi vápa félömbje, ellipszoid, hosszukás, és „U” alakú; üreg kitöltése, a csontvelő állományba helyezett lezárás kialakítása, és átültetett szövet rögzítése céljából.

37. A 36. igénypont szerinti eljárás, amely szerint a készítmény hőmérsékletét annak elfolyósodási hőmérséklete főlé növeljük, majd megfelelő alakú mintában hagyjuk azt gélesedéssel megszilárdulni.

ife. Szentpéteri Ádám
szobistáni ügyvivő
az S. & A. Nemzeti
építőipariakadémia
Telefon: 34-24-900, fax: 34-24-13

2 lap ábra
<table>
<thead>
<tr>
<th>Problematica (lásd: Fórum)</th>
<th>Bangkok</th>
<th>Gyártási szaktanulmány, főzérek, VTF, más szöveget</th>
<th>Induktív</th>
<th>DM, DBM</th>
<th>Gépjáró</th>
<th>Induktív</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rendszerértéki háttértan</td>
<td>Osteocht</td>
<td>Felesleges, teljesítés előlevele</td>
<td>Teljes</td>
<td>Induktív</td>
<td>Gépjáró</td>
<td>Induktív</td>
</tr>
<tr>
<td>Vizsgasztalók (főzérek)</td>
<td>Veremfőzérek</td>
<td>Veremzavarok, más szöveget</td>
<td>Teljes</td>
<td>Induktív</td>
<td>Gépjáró</td>
<td>Induktív</td>
</tr>
<tr>
<td>Problematica (főzérek)</td>
<td>Veremfőzérek</td>
<td>Veremzavarok, más szöveget</td>
<td>Teljes</td>
<td>Induktív</td>
<td>Gépjáró</td>
<td>Induktív</td>
</tr>
<tr>
<td>Műszakos szolgáltatók</td>
<td>Kizárás, nyombarát, Műszakos szolgáltatók</td>
<td>Kizárás, nyombarát, Műszakos szolgáltatók</td>
<td>Teljes</td>
<td>Induktív</td>
<td>Gépjáró</td>
<td>Induktív</td>
</tr>
<tr>
<td>A gyártási tevékenység szakmai szaktanulmányai</td>
<td>Népszerű</td>
<td>Népszerű</td>
<td>Teljes</td>
<td>Induktív</td>
<td>Gépjáró</td>
<td>Induktív</td>
</tr>
</tbody>
</table>

1. ábra:
<table>
<thead>
<tr>
<th>Jelentés</th>
<th>Iloglítási</th>
<th>Előírások</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. rész</td>
<td>legjobban</td>
<td>elérhető és szabályos meredekvétel</td>
</tr>
<tr>
<td>2. rész</td>
<td>90-400 m, 6-8 m</td>
<td>400 m, 40 m, 6-8 m</td>
</tr>
<tr>
<td>3. rész</td>
<td>400 m, 40 m</td>
<td>400 m, 40 m</td>
</tr>
<tr>
<td>4. rész</td>
<td>400 m, 40 m</td>
<td>400 m, 40 m</td>
</tr>
<tr>
<td>5. rész</td>
<td>400 m, 40 m</td>
<td>400 m, 40 m</td>
</tr>
<tr>
<td>6. rész</td>
<td>400 m, 40 m</td>
<td>400 m, 40 m</td>
</tr>
<tr>
<td>7. rész</td>
<td>400 m, 40 m</td>
<td>400 m, 40 m</td>
</tr>
</tbody>
</table>

Jelentési Feladatok

- 1. rész: Legjobban elérhető és szabályos meredekvétel
- 2. rész: 90-400 m, 6-8 m
- 3. rész: 400 m, 40 m, 6-8 m
- 4. rész: 400 m, 40 m
- 5. rész: 400 m, 40 m
- 6. rész: 400 m, 40 m
- 7. rész: 400 m, 40 m