8/018939 A2 I} 10 0 000 O O A A

=

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization Vd”Ij

) IO O T O R0 0

International Bureau

(43) International Publication Date
14 February 2008 (14.02.2008)

(10) International Publication Number

WO 2008/018939 A2

(51) International Patent Classification: Not classified

(21) International Application Number:
PCT/US2007/011578

15 May 2007 (15.05.2007)
English
English

(22) International Filing Date:
(25) Filing Language:
(26) Publication Language:

(30) Priority Data:
11/435,159 16 May 2006 (16.05.2006) US

(71) Applicant (for all designated States except US): ME-
MENTO INC. [US/US]; 35 Forest Ridge Road, Concord,
MA 01742 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): BAMMI, Jwahar,
R. [US/CA]J; 30 April Lane, Westford, MA 01886 (US).
KRISHNA, Bagepalli, C. [US/US]; 35 Forest Ridge
Road, Concord, MA 01742 (US). POSNIAK, Robert
[US/US]; 8 Olympia Circle, Nashua, MA 03062 (US).
WALSH, Joseph [US/US]; 45 Lexington Drive, Acton,
MA 01720 (US).

Agents: WALPERT, Gary, A. et al.; Wilmer Cutler Pick-
ering Hale And Dorr Llp, 399 Park Avenue, New York, NY
10022 (US).

(74)

(81) Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, CA, CH,
CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES,
FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, 1L, IN,
IS, JIP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, LR,
LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX,
MY, MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PL, PT, RO,
RS, RU, SC, SD, SE, SG, SK, SL, SM, SV, SY, TJ, TM,
TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.
(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,
FR, GB, GR, HU, IE, IS, IT, LT, LU, LV, MC, MT, NL, PL,
PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM,
GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

without international search report and to be republished
upon receipt of that report

with information concerning one or more priority claims
considered void

(54) Title: SYSTEMS AND METHODS FOR MONITORING AND DETECTING FRAUDULENT USES OF BUSINESS AP-

PLICATIONS

2100

2110 Aggregate raw log data
2114 Extend data

2130 Archive data

2150 2130
Detect frandulent usage scenario Investigate
2160 /\ 2165 2140
\ \ 4 |
Issue alerts Generate reports Create signature

(57) Abstract: A systems and methods are described detect fraud in existing logs of raw data. There can be several disparate logs,
each including data of disparate data types and generated by different and possibly unrelated software enterprise applications. The
fraud management system aggregates and organizes the raw log data, extends the raw data with reference data, archives the data in a
& manner that facilitates efficient access and processing of the data, allows for investigation of potentially fraudulent usage scenarios,
and uses the results of the investigation to identify patterns of data that correspond to correspond to high risk usage scenarios and/or
process steps. In subsequent processing, archived data can be compared against the identified patterns corresponding to high risk
usage scenarios to detect matches, and the invention thereby automatically detects high risk usage scenarios and issues appropriate

alerts and reports.

WO 2008/018939 PCT/US2007/011578

10

15

20

25

30

SYSTEMS AND METHODS FOR MONITORING AND DETECTING
FRAUDULENT USES OF BUSINESS APPLICATIONS

BACKGROUND

[0001]) The inability to quantify, demonstrate, and monitor information technology
(IT) business value, or assess in a timely, reliable, and efficient manner exposure of an
enterprise’s business processes to risk and loss, coﬁsistently ranks among the top
complaints expressed by corporate officers and business enterprise managers. To
improve the efficiency of business process execution in support of corporate goals and
objectives, business executives partner with IT specialists to develop custom applications,
or customize commercially-available, off-the-shelf, packagc-;:d applications. However, in
spite of these attempts, questions linger over whether these applications deliver the
expected process benefits, whether they work as expected, or whether they create
unexpected process risks.

[0002] Current techniques for measuring and monitoring factors that impact business
value and risk exposure generally fall into three categories: (1) Conducting manual
surveys, audits, and polls about whether the application or process in question is
delivering the expected value and is sufficiently immune to risk; (2) Enhancing and
changing the enterprise software application to be monitored to produce log files that
contain evidence of whether the application or process in question is delivering the
expected value or has been exposed to risk through negligence or abuse;. and (3) Applying
business intelligence or rules-based technologies to existing log files to discover whether
the application or process in question is delivering the expected value or being
compromised by exposure to risk.

[0003] The current techniques to measure and monitor business value and risk
exposure are manual, imprecise, or homegrown ad-hoc measurement techniques that can
be expensive, time consuming, unreliable, and inefficient, involving nontrivial overhead,

and often resulting in significant costs and losses for the business enterprise.

WO 2008/018939 PCT/US2007/011578

10

15

20

25

30

SUMMARY OF THE INVENTION

[0004] In one embodiment, the invention provides a method for managing fraud
related to the use of one or more applications. In particular, the method aggregates and
organizes a log of raw data associated with process steps of the use of the applications,
archives the data in a manner that facilitates efficient access and processing of the data,
investigates potential fraudulent scenarios using the archived data, and uses the results of
the investigations to identify patterns of data that correspond to high risk usage scenarios
and/or process steps. In subsequent processing, archived data can be compared against
the identified patterns corresponding to high risk usage scenarios to detect matches, and
the invention thereby automatically detects high risk usage scenarios and issues
appropriate alerts and reports.

[0005] In one aspect, the invention can, within a single framework, aggregate and
process raw data provided in a wide variety of different types and forms and stored in
separate logs. In another aspect, the methods archive vast quantities of raw data using,
for example, inverted indexing in order to make the processing of vast quantities of
transactional data for fraud management not only practically possible but also efficient.
In another aspect, the invention provides a rapid and automatic method for detecting
potentially fraudulent usage scenarios using evidence collected from past experience, and
issuing appropriate alerts and reports upon detection. In still another aspect, the invention
may not require instrumenting the code of an enterprise application. Moreover, it can
process raw data from one or both of transaction records implicitly derived from an
instrumented enterprise applications and transaction records explicitly generated by non-

instrumented applications.
BRIEF DESCRIPTION OF THE DRAWINGS

[0006] The following figures depict certain illustrative embodiments of the invention.
These depicted embodiments are to be understood as illustrative of the invention and not

as limiting in any way.

WO 2008/018939 PCT/US2007/011578

10

15

20

25

30

[0607]) FIG. 1 depicts applications of the software instrumentation systems and
methods of the invention to a risk mitigation and control monitoring lifecycle in a
business process;

[0008] FIG. 2 depicts schematically various exemplary steps of software usage
monitoring according to an embodiment of the instrumentation systems and methods;
[0009] FIG. 3 depicts schematically an exemplary sequence of steps—according to
an embodiment of the software instrumentation systems and methods—from the creation
of a trace to matéhing a signature profile with a usage scenario;

{0010] FIG. 4 depicts an exemplary report, generated by the software instrumentation
systems and methods, about at least a subset of the steps in FIG. 2;

[0011]) FIG. SA-5B depict flowcharts representing various features of an embodiment
of the software instrumentation methods;

[0012] FIG. 6 depicts various components of an exemplary embodiment of the
software instrumentation system architecture;

[0013] FIG. 7 depicts an exemplary deployment of the software instrumentation
systems and methods;

[0014] FIG. 8 depicts schematically an exemplary usage scenario for bank account
escheat fraud,

[0015] FIG. 9A-9F depict exemplary computer screenshots associated with steps of
an embodiment of the software instrumentation systems and methods directed to
detecting bank account escheat fraud of the type depicted in FIG. 8;

[0016] FIG. 10A-10C depict exemplary reports generated by an embodiment of the
software instrumentation system and method directed to detecting bank account escheat
fraud of the type depicted in FIG, 8;

[0017] FIG. 11 depicts an application of the software instrumentation systems and
methods directed to enhancing realization likelihood and evaluation of business process
goals and objectives;

{0018] FIG. 12A-12C depict exemplary reports produced by an embodiment of the
instrumentation systems and methods that monitor an enterprise software suite

implementing a healthcare network’s patient management system;

WO 2008/018939 PCT/US2007/011578

10

15

20

25

30

[0019] FIG. 13 depicts a schematic diagram of a platform for modeling application
usage scenarios according to an embodiment of the software instrumentation systems and
methods;

[0020] FIG. 14 depicts schematically various layers of a modeling and measurement
platform of the software instrumentation systems and methods;

[0021] FIG. 15 depicts schematically various applications of the platform of FIG. 13;
and

[0022] FIG. 16 depicts schematically an application of the software instrumentation
systems and methods to business value and risk measurement.

[0023] FIG. 17 depicts the steps in a fraud management method that does not require
instrumenting an enterprise application.

[0024] FIG. 18 depicts a system which implements the steps of FIG. 17.

[0025] FIG. 19 illustrates the operation of the matcher 2090 of FIG. 17.

DETAILED DESCRIPTION OF ILLUSTRATIVE EMBODIMENTS

[0026] To provide an overall understanding of the invention, certain illustrative
practices and embodiments will now be described, including a method for instrumenting
one or more software applications and a system for doing the same. The systems and
methods described herein can be adapted, modified, and applied to other contexts; such
other additions, modifications, and uses will not depart from the scope hereof.

[0027] In one aspect, the systems and methods described herein are designed based
on the premise that the value of an enterprise software application is realized, and its
exposure to risk is reduced or eliminated, if it is used according to properly-selected,
intended scenarios. These scenarios are interchangeably referred to herein as use cases,
usage scenarios, or operations.

[0028] The invention will be discussed in two parts. Part 1 discusses embodiments of
the invention in which software applications are instrumented. Part 2 discusses
embodiments of the invention which do not require instrumentation of applications, and
in particular are versatile enough to process transactional data generated from both

instrumented and non-instrumented applications.

WO 2008/018939 PCT/US2007/011578

10

15

20

25

30

35

Part 1: Instrumenting Applications

[0029] According to one practice, the invention is directed to software
instrumentation systems and methods for modeling and monitoring usage scenarios of
enterprise software applications that at least partially support, implement, or automate
business process goals. In a particular embodiment, the systems and methods described
herein employ a software engine that monitors execution of enterprise software

applications for occurrence of one or more defined usage scenarios in the execution of

_those applications, thereby providing users with a precise, dynamic assessment of

expected-versus-actual value from the applications and/or business processes. Business
processes can span multiple enterprise software applications, and multiple processes can
be monitored simultaneously by the systems and methods described herein.

[0030] In contrast to other technologies which are typically expensive and yield
subjective, qualitative estimates of risk, the systems and methods described herein, in one
embodiment, monitor enterprise business processes to provide objective and quantitative
risk and loss event information having specified or desired granularity; this enables the
users to accurately and dynamically assess the enterprise’s exposure to risk and associated

poténtial or real losses. By providing to the users assessments of value and/or risk, the

- systems and methods of the invention enable the users to redefine business processes,

reengineer corresponding enterprise software applications, and adjust usage scenarios to
mitigate and control risk or to improve value derived from the business processes of the
enterprise.

[0031] Internal fraud, and susceptibility to it, is a form of risk exposure that poses
significant, challenging, and dynamically-changing problems for a variety of business
enterprises. Financial losses due to fraud are particularly palpable in the banking
industry. The U.S. Department of Justice, in a 2003 FBI report titled “Financial
Institution Fraud and Failure Report,” identifies a commercial banker who embezzled
about $2,100,000 over a 2.5-year period. She did so at least in part by opening bank
accounts under fictitious names and then transferring funds from her bank’s internal
expense accounts to the fictitious accounts. She raided the internal expense accounts in
small increments—presumably to avoid detection—but averaged about 60-100 debits per

month. According to the report, on the first of every subsequent month, the banker wrote

WO 2008/018939 PCT/US2007/011578

10

15

20

25

30

35

a large check from one or more of the fictitious accounts which she subsequently
deposited into her personal accoﬁnt. The fraud scenario highlighted above involves
unusual banking activity; for example, the banker completed an average of about 60-100
transactions per month.

[0032) In one embodiment, the software instrumentation systems and methods
described herein monitor the bank’s business processes for—and thereby deter, control,
or at least mitigate real or potential losses due to—such a rogue activity. In one aspect,
the systems and methods of the invention identify and detect key indicators of risk as part
of the monitoring of the business processes. To better understand how the software
instrumentation systems and methods disclosed herein can be employed for risk detection,
assessment, mitigation, and control, a high-level description of a business enterprise risk
and control lifecycle will now be presented.

[0033] FIG. 1 depicts a risk and control lifecycle 100 illustrating challenges faced by
finance, risk, audit, line-of-business, IT, and other professionals and users who want to
mitigate risk and monitor controls in the business processes of the enterprise. In
particular, FIG. 1 illustrates three exemplary phases—104, 108, and 110—of the lifecycle
100 where the systems and methods described herein can be employed to advantage.
[0034] The lifecycle 100 begins, in step 102, by identifying one or more areas of risk
in an enterprise, and potential losses resulting from those risk areas. Typically, this task
is performed by corporate executives, IT staff, or other users familiar with the business
objectives and needs of the enterprise and business processes that underlie or guide the
design of enterprise software applications. Once the areas of risk have been identified,
the systems and methods of the invention monitor the enterprise software applications to
detect and assess, in step 104, real or potential losses associated with those risks.
Additionally, the systems and methods of the invention provide for an independent
verification of subjective self-assessments produced by other technologies, thereby
increasing the likelihood of devising and deploying, in step 106, more appropriate risk
mitigation and control procedures and infrastructure for the enterprise.

[0035] In step 108 of the lifecycle 100, the software instrumentation systems and
described herein monitor the risk mitigation and control procedures and infrastructure

devised in step 106 to assess their effectiveness. Typically, risk control procedures and

WO 2008/018939 PCT/US2007/011578

10

15

20

25

30

35

infrastructures are tested frequently: an expensive and time-consuming overhead activity.
The systems and methods described herein, however, reduce or eliminate such overheads
by, in one embodiment, dynamically, even continuously, monitoring the risk mitigation
and controls for rogue processes that may circumvent the controls and create new or
elevated risks.

[0036] Proceeding through the risk and control lifecycle 100, step 110 includes
institutionalizing or otherwise adopting loss prevention or reduction measures. The
software instrumentation systems and methods described herein help prevent, or
substantially reduce, risk-based losses by detecting risk indicators associated with risk
hypotheses propounded by enterprise business process developers or software application
designers.

[0037] Many risks cannot be fully controlled, or their corresponding losses prevented,
by prior art technologies, especially as enterprises adapt their business processes in
response to dynamically-changing business conditions, climates, and landscapes.
However, in a typical embodiment, the software instrumentation systems and methods
described herein can be rapidly deployed—uwith little or no change to the enterprise
applications—to test risk hypotheses and monitor associated quantitative indicators of
risk, thereby preventing, or preemptively reducing, loss before it occurs.

[0038] Given the magnitude of fraud in the banking industry, and to further illustrate
various risk mitigation, control monitoring, and loss prevention aspects and features of
the software instrumentation systems and methods described herein, examples will now
be provided for detecting and preventing fraud at a retail bank. It will become apparent
how the systems and methods of the invention can monitor the business processes of a
financial institution—such as the bank that fell victim to the rogue activities of the
banker, in the case of fraud reported by the FBI and referred to above—to avoid,
substantially diminish the likelihood of, eliminate, or otherwise mitigate losses related to
fraud risk.

[0039] In an exemplary application, a global retail bank faced losses from fraud
committed by tellers in some branch offices. Bank security officials developed fraud
hypotheses that included the following: (a) more than normal customer access by

recently-hired tellers is strongly correlated with identity theft; and (b) activation of a

WO 2008/018939 PCT/US2007/011578

10

15

20

25

30

35

dormant account followed by a payment from that account is an indicator of fraud. The
bank’s security officials determined that monitoring these teller activities allows them to
collect specific risk event data and quantify real and potential losses, thereby preventing
or preemptively reducing fraud before it occurs.

[0040] The software instrumentation systems and methods described herein can be
quickly deployed to monitor the teller activities specified in the fraud hypotheses above.
Monitoring is quick, easy, and specific. And the systems and methods of the invention
allow for collection of branch-specific risk event data and teller activity.

[0041] Exemplary stéps that an embodiment of the software instrumentation systems
and methods of the invention perform as part of monitoring enterprise software
applications will now be described. Although the description is in the context of potential
fraud at a retail bank, other applications do not depart from the scope hereof.

[0042] FIG. 2 depicts three exemplary steps 200 involved in a customer service
process performed by a teller. In step 202, the teller logs in and validates a customer.
Then, in step 204, the teller views the customer’s bank statement. In optional step 206,
the teller prints a copy of the customer’s bank statement or other bank record.

[0043] Each of the process steps 202, 204, and 206 is associated with a corresponding ,
set of software events (e.g., application code instructions) in a teller-customer Account
Management System 210, which includes a suite of one or more enterprise software
applications. According to one practice, as each step of the customer service process is
demonstrated (executed)—typically in a development environment—the software
instrumentation systems and methods described herein trace the software events
associated with the step. As shown in FIG. 2, events 211-219 are traced when the three
steps 202, 204, and 206 of a customer service process are performed by the teller. In one
embodiment, the systems and methods of the invention use the traced events (e.g., the
traced application code instructions) to build a signature profile for one or more of the
process steps.

[0044] For example, in the embodiment depicted by FIG. 2, the Validate Customer
process 202 is represented by the signature profile defined by the application code
instructions (events) 211, 212, and 216. This is also indicated by a Validate Customer
trajectory 220. Also shown in the embodiment depicted by FIG. 2 is that the systems and

WO 2008/018939 PCT/US2007/011578

10

15

20

25

30

35

methods described herein associate the View Statement step 204 with the signature
profile specified by the events 211-214. This is also indicated by a View Statement
trajectory 230. When the Print Statement step 206 is demonstrated, the systems and
methods of the invention determine that the corresponding signature profile is specified
by events 211-215, which collectively define the Print Statement trajectory 240.

[0045] According to FIG. 2, events 217-219 are not incorporated into the signature
profile of any of the steps 202, 204, or 206. That is, the events 217-219 are discarded by
the systems and methods described herein during the process of signature profile
construction.

[0046] FIG. 2 also shows—using application code inst}uction detail—an embodiment
of a View Statement signature profile 250. In this embodiment, the steps
Authenticate(teller) 251, RetrieveStmnt(customer) 252, FormatStmnt(record) 253, and
DisplayStmnt(statement) 254 make up the signature profile 250 representative of the
View Statement process 204 (and trajectory 230). Typically, the sequence of the events
251-254 in the signature profile is important or unique, thus rendering two signatures
distinct if they have the same traced events but in different sequential orders.

[0047] According to one embodiment, once a signature profile has been created, the
systems and methods described herein insert, in one or more enterprise applications, tags
(using software code injection, for example) corresponding to events associated with the
signature profile. The systems and methods then monitor an additional usage scenario
(operation) of the business processes (as represented by the one or more enterprise
applications) and listen for one or more of the inserted tags. For example, when one of
the process steps—for example, the View Statement process 204—is performed, the
software instrumentation systems and methods described herein listen for software
application instructions in the active signature profiles (i.e., in this case, the profiles for
Validate Customer, View Statement, and Print Statement) and detect inserted tags
corresponding to the process 204.

[0048] Optionally, the sequence of detected tags is matched against the active
signature profiles and a determination is made that the additional operation is a View
Statement operation. In one embodiment, the systems and methods described herein

collect data at certain instructions (e.g., teller identity, customer balance, etc.). According

WO 2008/018939 PCT/US2007/011578

10

15

20

25

30

to one practice, the collected data is reported to the user. In one embodiment, if a match
is declared between the additional operation and one of the active signature profiles,

information is reported to the user about the additional operation (e.g., identity of the

customer whose account was viewed in the second operation).

[0049] The additional operation may include multiple executions of one or more of
the process steps 202, 204, and 206, and these multiple executions may be distributed in
time, occurring, for example, sequentially in time. If the teller performs a View
Statement step multiple times (for one or more customers), then, in one embodiment, the
systems and methods described herein detect tags associated with each execution of the
View Statement operation and collect data associated with each execution of the View
Statement process, including, the number of execution times, identities of the customers
whose accounts were viewed, etc. This mode of monitoring is one way of detecting
rogue behavior by tellers or others in a financial institution. Using the systems and
methods described herein, the about 60-100 monthly fraudulent debit transactions that the
commercial banker of the FBI report was performing can be discovered.

[0050] FIG. 3 is a schematic diagram depicting an exemplary sequence of steps 300
from the creation of a trace, corresponding to a demonstrated usage scenario/operation, to
matching a monitored usage scenario/operation with a profiled signature. In particular,
the embodiment shown in FIG. 3 begins with a set of usage scenarios 301a-301c that are
demonstrated by the systems and methods described herein, typically in a development
phase. The software instrumentation suite creates traces 302a-302c, respectively
corresponding to the usage scenarios 301a-301c. As mentioned previously, these traces
include software application events that occur as part of the usage scenarios. A signature
profiler/editor 310 creates signature profiles 311a-311c, respectively associated with
traces 302a-302¢. Each signature profile includeé a subset of events belonging to a
corresponding one of the traces 302a-302c.

[0051] Then, an optional scheduler 320 determines appropriate time frames for
deploying the signature profiles 311a-311c to a detector 330 which monitors one or more
enterprise software applications 340 tagged based on the signature profiles 311a-311c.

The scheduler is controlled, in one embodiment, by a user who specifies the scheduled

10

WO 2008/018939 PCT/US2007/011578

10

15

20

25

30

35

times or time windows. In some embodiments, the monitoring is to be continuously
performed in time, in which case the scheduler 320 would not be employed.

[0052] In the embodiment shown in FIG. 3, the tags include the set of software
runtime events 341a, corresponding to the signature profile 311a; the set 341b
corresponding to the signature profile 311b; and the set 341c corresponding to the
signature profile 311c. The matcher 350 then compares the tags detected by the detector
330 (when the monitored application 340 executes according to a yet-unidentified usage
scenario) with a library of active signature profiles 350a (corresponding to the signature
profile 311a), 350b (corresponding to the signature profile 311b), and 350c
(corresponding to the signature profile 311c), and declares a match if a match with one of
the active signature profiles 350a-350c is determined.

[0053] FIG. 4 depicts an exemplary report 400 generated by the systems and methods
of the invention deployed to monitor teller activities corresponding to the risk hypotheses
described in relation to FIG. 2. The figure shows account access (e.g., View Statement)
by four tellers. Mary Smith is a model teller who is trusted by the bank and whose
customer account management behavior is monitored for the duration of time represented
by the plot 400 of FIG. 4. Her account access behavior is depicted by the curved line
401, considered to be a benchmark. Anna Jones, Jim White, and John French are three
tellers whose customer account access activities are monitored at the dates shown in the
figure, and are distilled in the histogram plots 402 (Anna), 404 (Jim), and 406a-406d
(John), respectively.

[0054] As pointed out by the bracketed region 410 of the report 400, John’s customer
access behavior shown in 406b-406d are unusually high compared with the behaviors of
Anna, Jim, and Mary. This may suggest fraudulent behavior by John. This is an
exemplary illustration of how the report 400 generated by the systems and methods
described herein assists business executives, IT staff, or other users to detect rogue or
suspect behavior.

[0055] FIG. 5A depicts, in the form of a flowchart, steps 500 of an embodiment of
the software instrumentation methods described herein; the steps depicted by FIG. SA are
generally considered part of the development environment described below in relation to

FIG. 13. According to one practice, the development environment steps 500 begin by

11

WO 2008/018939 PCT/US2007/011578

10

15

20

25

30

35

defining or describing one or more usage scenarios (operations) in step 501. Typically, a
usage scenario is defined or described by one or more business users (e.g., members of a
corporate executive team) who devise business process goals that are important to the
enterprise and which are to be examined. In step 502, the systems and methods described
herein demonstrate the usage scenario (operation) by running (executing) the enterprise
application(s) according to the defined usage scenario.

[0056] In step 504, the systems and methods described herein listen to the
demonstrated usage scenario and compile a trace of various events that occur during the
demonstration of the usage scenario. These traced events typically include one or more
software runtime events, such as, without limitation, a method call, a method return, a
line number of executing software, an object creation, a memory allocation or
reallocation, a COM interface call, a COM interface return, a Java Bean event, a J2EE
Bean event, a library load, a library unload, a file system event, a TCP/IP stack level
transmit event, a TCP/IP stack level receipt event, an SQL event, a transactional bus
event, an MQ series event, an MSMQ series event, a web service event, and a notification
framework event.

[0057] In step 506, the systems and methods described herein filter the traced events
to determine a signature profile. The signature profile is a subset of the traced events that
are correlated with the demonstrated usage scenario. Typically, though not necessarily,
the traced events are incorporated in the signature profile according to a specific
sequence/order; that is, if the traced events A, B, C are incorporated in the signature
profile, they acquire a particular order in the signature profile, such that signature A, B, C
would be distinct from signature A, C, B, etc.

[0058] Although typically the signature profile includes a strict subset (i.e., a fraction)
of the traced events, in some embodiments all the traced events are included in the
signature profile to properly indicate or represent the demonstrated usage scenario.

[0059] Once the signature profile has been determined in step 506, the systems and
methods described herein, in step 508, tag the enterprise software application(s)
according to the signature profile. These tags correspond to the traced events belonging
to the signature profile, that is, the events deemed correlated with, or representative or

indicative of, the demonstrated usage scenario.

12

WO 2008/018939 PCT/US2007/011578

10

15

20

25

30

[0060] A purpose of inserting the software tags is to enable subsequent monitoring of
a second operation (i.e., a second usage scenario) of the enterprise application.
According to one practice, inserting the tags includes injecting code blocks into the
enterprise software application, wherein the injected code blocks correspond to one or
more software application instructions executed as part-of the demonstrated usage
scenario (demonstrated, first operation) of the enterprise software application(s). Ina
typical embodiment, injecting the code blocks includes coupling to a software interface of
the enterprise application. The software interface may include a runtime environment
interface of one or more software languages underlying the construction of the enterprise
application.

[0061] The systems and methods described herein employ, in various embodiments,
published, secure, open application instrumentation interfaces at the application’s
language runtime layer. At least in part because of this approach, the software
instrumentation systems and methods described herein do not have to depend on
application-specific interfaces (e.g., a published API for the teller system), and can be
used to instrument a broad range of enterprise applications rather than integrate with
specific applications.

[0062] In some contexts, users do not wish for the software instrumentation systems
and methods described herein to directly address events in mainframe code. Their wish
stems at least in part from concerns about instrumenting the systems of record.
Accordingly, in various embodiments, the systems and methods of the invention use
interfaces and wrappers around mainframe applications to assess and monitor mainframe-
based processes. In this way, conflict is avoided with security, integrity, and performance
issues while still providing quality, speed, depth, and granularity of information about
process execution.

[0063] FIG. 5B shows steps 550 of an embodiment of the production environment of
the software instrumentation systems and methods described herein. In particular, in step
552, the enterprise application executes according to an additional (e.g., a second) usage
scenario (operation). The additional usage scenario may or may not be the same as the

first, demonstrated usage scenario.

13

WO 2008/018939 PCT/US2007/011578

10

B)

20

25

30

35

[0064] In one embodiment, the systems and methods of the invention detect, in step
554, one or more of the tags previously inserted in the enterprise application as part of
step 508 of the development phase depicted by FIG. 5A. Optionally, the detection step
554 is influenced by a scheduling step 558, wherein one or more times or time windows
(time frames) for monitoring the additional usage scenario are specified; in one
embodiment, the monitoring is continuoué, whereas in an alternative embodiment it is
intermittent. The signature profile produced in step 506 of FIG. 5A is considered an
active signature profile 556 in FIG. 5B if its constituent tags are being listened for in the
detection step 554. In the embodiment wherein a scheduler determines, in step 558, the
time frames for monitoring the additional usage scenario, a signature profile is considered
active 556 if it is used by the systems and methods described herein as a reference
signature profile during the scheduled detection time frames.

[0065] The production steps 550 include, in one embodiment, a step 560 for
collecting information about the additional usage scenario. The collected information
may be compiled according to a sequence in which the tags are detected in step 554 and
may include information about the additional scenario at locations associated with the
detected tags. Optionally, the information collected in step 560 is stored, in step 562, in a
database or other computer-readable storage medium for subsequent referral. In one
embodiment, the systems and methods described herein generate, in step 564, a report
based on the collected information. The report can then be used by one or more users to
evaluate risk, measure effectiveness of the enterprise software applications, revise the
business processes underlying the enterprise applications, revise risk or value hypotheses,
etc.

[0066) FIG. 5B also depicts an optional matching step 566 wherein the tags detected
in step 554 are compared against the active signature profile 556 to determine whether a
match exists. If, in step 568, a match is determined to exist, then the additional usage
scenario of step 552 is said to be the same as the first, demonstrated usage scenario of
step 502 in FIG. 5A. Following a match, a report is optionally generated in step 564. Ifa
match is not discerned between the detected tags of step 554 and the active signature
profile 556, then, optionally, yet another additional operation of the enterprise application

is monitored, as depicted by link 552.

14

10

15

20

25

30

35

WO 2008/018939 PCT/US2007/011578

[0067] Although FIGS. 5A-5B have been described in terms of one enterprise
application and one demonstrated usage scenario, it is understood that other embodiments
of the systems and methods described herein exist that include two or more enterprise
software applications executed according to one or more demonstrated usage scenarios.
In such embodiments, one or more signature profiles are produced, corresponding to the
one or more demonstrated usage scenarios; the signature profiles form a library of
signature profiles, which then is considered an active library of signature profiles in 556
of FIG. 5B. It is against the active library of signature profiles that the detected tags from
step 554 are compared to determine which, if any, of the demonstrated usage scenarios
matches the detected tags.

[0068] FIG. 6 depicts an exemplary architecture 600 of the software instrumentation
systems and methods described herein. In particular, the embodiment shown in FIG. 6
includes an OAL application server 610 that acts as an information exchange hub for the
various components of the software instrumentation system architecture 600. A tracer
620 traces software application events according to a demonstrated usage scenario
(operation) of one or more enterprise software applications 601. According to one
embodiment, the tracer 620 obtains a list of application instructions for processes of the
enterprise applications 601 to be monitored. In a typical embodiment, the tracer 620 is
deployed on the same development server as the enterprise applications 601. The tracer
may interface with a custom or commercially-available packaged software application.
{0069] A signature profiler/editor 630 determines a signature profile representative of
the usage scenario from the trace produced by the tracer 620. A scheduler 650 sets at
least one time or time window (time frame) for a detector 660 to monitor an additional
usage scenario/operation of the enterprise software application 601. The times or time
windows set by the scheduler 650 may be determined by a user operating the system 600
using a project workspace (that can include a GUI) 640. In a typical embodiment, the
detector 660 monitors instructions in the additional operation of the software applications
601 corresponding to an active signature profile (i.e., a signature profile against which the
additional usage scenario is to be compared, during the time frame specified by the
scheduler 650). Like the tracer, the detector 660 may interface with a custom or

commercially-available packaged enterprise application 601.

15

WO 2008/018939 PCT/US2007/011578

10

15

20

25

30

35

[0070] A matcher 680 compares the tags detected by the detector 660 with a library of
one or more active signature profiles. If a match is detected, the matcher 680 optionally
generates a report 690 containing information about the additional usage scenario. In one
embodiment, the report contains information about the enterprise applications 601 at one
or more locations associated with the detected tags. In a typical embodiment, a sequence
in which the tags are detected is significant, and is used in the matching process; that is, if
two detected sequences contain the same events but in different orders, the two sequences
are considered different. |

[0071] A database 670, which is in communication with the OAL 610 to exchange
information, serves as a repository of project information, including trace, signature,
scheduling, match, and reporting data, among others things. In one embodiment, the
project workspace 640 (that may include a GUI or another user interface), serves as a
command and control center for the user, or team of users, to manage various aspects of
the system architecture 600 and the functioning thereof. In one embodiment, the project
workspace is used as a primary user interface used by a project team to define projects,
describe/define business processes represented by enterprise software applications,
demonstrate usage scenarios, and manage signatures, reports, and alerts, among other
things. ‘

10072] FIG. 7 depicts yet another embodiment of a deployment configuration 700 of
the software instrumentation systems and methods described herein. In particular, the
software instrumentation suite 702 is deployed—typically as a transparent layer—around
one or more enterprise software applications 701. The deployment of the software
instrumentation suite 702 generally involves little, if any, downtime for the enterprise
applications 701. Overhead (if any exists) associated with the deployment and
implementation of the software instrumentation suite 702 is typically not detectable by
application users 710a-710d who communicate with the enterprise applications 701 via
TCP/IP or other communication protocols, which may include wireless protocols.

[0073] Also shown in FIG. 7 are components 703-706 associated with the software
instrumentation systems and methods 702. Typically, these components form a
geographically (physically) distributed network and communicate with each other, and

with the suite 702, via TCP/IP or other communication network protocols, possibly

16

WO 2008/018939 PCT/US2007/011578

10

15

20

25

30

35

including one or more wireless protocols. The distributed components, according to one
embodiment, include, for example, an object access layer (OAL) 704, described above in
relation to FIG. 6. According to one practice, the OAL 704 serves as an application
server that communicates with, and controls, other components of the instrumentation
suite 702, such as, without limitation, a graphical user interface (GUI) 703 for controlling
the software instrumentation suite 702 and a data access layer 705, which, according to
one embodiment, serves as a conduit for the suite 702 to access a database 706.
According to one practice, the database 706 serves as a repository of information such as,
without limitation, traced event data, signature profile data, data associated with one or
more matches between monitored usage scenarios (operations) of the software
applications 701 and profiled scenarios (.., scenarios associated with the signature
profiles in the repository 706), monitoring schedules, etc.

[0074] To further illustrate various features and embodiments of the software
instrumentation systems and methods described herein, another example will now be
described, related to another area of risk to a financial institution. One form of fraud in
the banking industry is escheat fraud, wherein bank employees identify dormant accounts,
process unauthorized address changes, and make fraudulent fund transfers. In various
embodiments, the systems and methods described herein enable banking authorities to
identify unauthorized account activities, the fraudsters involved, the monetary amounts of
the fraudulent transactions, and the accounts affected, among other things.

[0075] FIG. 8 depicts an exemplary process 800 followed by escheat fraudsters,
exemplary software application processes 810 associated with the various steps of the
process 800, and exemplary software application modules/systems 820 associated with
the various steps of the process 800. In the particular embodiment depicted by FIG. 8,
the bank employee, in step 802, accesses a dormant account. Then in step 804, the
employee effects an address change. Subsequently, in step 806, the employee makes an
unauthorized payment to an accomplice account from the dormant account.

[0076] In the embodiment depicted in FIG. 8, the step 802 includes processes 312
that include routine access to account systems and identifying target dormant accounts.
An enterprise software application associated with the activities of step 802 is the bank’s

checking and savings account management system.

17

WO 2008/018939 PCT/US2007/011578

10

15

20

25

30

[0077] The Change Address step 804 involves the software process 814 of accessing
the dormant account to alter one or more features of the account, for example, an address
associated with the account. An enterprise software application associated with the
activities of step 804 is the bank’s account management system 822.

[0078] According to the embodiment depicted by FIG. 8, the Make Payment step 806
includes the software process 814 of accessing to the dormant account to make a
seemingly routine payment from the dormant account to another account serving as the
accomplice account. An enterprise software application associated with the activities of
step 806 is the bank’s account management system 822.

[0079] FIG. 9A-9F depict, in the form of a graphical user interface (GUI), computer
screenshots that illustrate features and steps of the software instrumentation systems and
methods of the invention employed to detect the escheat fraud described in FIG. 8.
[0080) Exemplary screenshot 900 of FIG. 9A depicts a GUI for defining the escheat
detection project. Here, the bank whose teller’s activities are to be monitored is specified.
[0081] Exemplary screenshot 915 of FIG. 9B depicts a GUI for defining the
processes that are deemed (according to the established fraud hypotheses) to be indicative
of escheat fraud. In the depicted embodiment, these processes 916-919 include Teller
Login, customer account Balance Inquiry, customer Address Update (also referred to as
Address Change), and Make Payment from customer account.

[0082] Exemplary screenshot 930 of FIG. 9C depicts a GUI for setting up a signature
profile for the process step 917 of FIG. 9B: account Balance Inquiry. In this
embodiment, the event designated to represent the process step 917 is the application
instruction BankTransactions.AccountTransaction.Balance() 932. The screenshot 930
also depicts event parameters 935 associated with the application instruction 932 of the
signature profile 931. The parameters 935 contain information that is collected in various
embodiments of the systems and methods described herein, e.g., Teller ID, Customer ID,
Account No., Balance amount, Last Transaction.

[0083] FIG. 9D depicts an exemplary Account Lookup screenshot 945 provided by
the GUI of the systems and methods described herein. In particular, the screenshot 945
shows a Customer Master List 946 of the bank.

18

WO 2008/018939 PCT/US2007/011578

10

15

20

25

30

35

[0084] Turning to FIG. 9E, an exemplary screenshot 960 is shown for Address
Change. The teller uses this GUI screen to change the address 962 and/or telephone
information 963 associate;l with a particular customer 961 who has one or more dormant
bank accounts 965. Using the button 964, the fraudster teller then saves that change in
the records associated with the dormant account(s) of the customer.

[0085] Turning now to FIG. 9F, an exemplary screenshot 975 is shown for making a
payment 981, typically in a small amount 976, from the dormant account 977 to an
accomplice 980. The accomplice 980 is typically either the teller or an associate of the
teller.

[0086] FIG. 10A-10C depict exemplary reports generated by the software
instrumentation systems and methods described herein for detecting the escheat fraud
described in relation to FIG. 8 and FIGS. 9A-9F. Information collected by the systems
and methods of the invention in monitoring business processes are distilled or collated
into the various charts shown in FIGS. 10A-10C.

[0087] In particular, FIG. 10A depicts a histogram chart 1000 showing the number,
by week, of incidents indicative of escheat fraud. FIG. 10B depicts a histogram chart
1020 indicating, by perpetrator, activities indicative of escheat fraud. FIG. 10C depicts,
in tabular form 1040, an exemplary report containing customers 1041 affected by activity
indicative of escheat fraud, corresponding amounts transferred 1042 from their accounts,
last account access dates 1043, and identities of tellers 1044 who manipulated the
customers’ accounts. Other embodiments exist in which other account, access, and
activity information is disclosed in the report.

[0088] The systems and methods described herein produce reports according to the
granularity of detail specified by the users. Business executives and other users can use
the exemplary reports of FIGS. 10A-10C to assess and quantify risk, implement
appropriate controls, monitor effectiveness of controls, monitor key risk indicators, and
even revise risk hypotheses which would then cause a reconfi guration of the systems and
methods described herein to implement revised monitoring and control procedures and
infrastructure in compliance to the revised risk hypotheses. Such revisions and
reconfigurations are straightforward because of the ease with which the software

instrumentation systems and methods described herein can be reconfigured and deployed.

19

WO 2008/018939 PCT/US2007/011578

10

15

20

25

30

35

- [0089] The embodiments described so far have focused on risk management utility of

the software instrumentation systems and methods of the invention. FIG. 11 and FIGS.
12A-12B illustrate another advantageous aspect of the systems and methods of the
invention, namely, assessment of value from enterprise applications.

[0090] FIG. 11 depicts an application 1100 of the software instrumentation systems
and methods described herein, directed to enhancing a likelihood of realizing an
enterprise’s business goals and objectives 1102, and 1o measuring 1108 the enterprise’s
performance 1109 to determine how closely the enterprise meets those goals and
objectives 1102. In various embodiments, the goals and objectives 1102 include metrics
denoting tolerance for, exposure to, or protection and robustness against, risk or loss.
[0091) Prompted by a need to adapt to, or even lead, a dynamically-changing business
climate, a management team of the business enterprise from time to time adjusts its
strategic goals and objectives 1102. To meet the goals and objectives 1102 in the
changing business environment, corporate executives design, reengineer, or otherwise
drive, as shown by block 1103, business processes 1104 which are deemed conducive to
meeting the enterprise’s goals and objectives 1102,

[0092] As described above, business processes 1104 are supported, modeled, or
otherwise represented at least in part by one or more enterprise software applications
1106, which execute to implement one or more aspects of the processes 1104, The
enterprise executives typically depend on an efficient execution of the software
applications 1106, limited exposure of the software applications to risk or loss, and
robustness of the business processes 1104 against risk or loss, in achieving their business
goals 1102. To increase process efficiency, enterprise management executives typically
employ a chief information officer (CIO) and an information technology (IT) team to
develop enterprise software applications 1106 to implement the business processes 1104,
In various embodiments, the software applications 1106 include custom applications (e.g.,
an Insurance Claims Processing System) or customizations of commercially-available
packaged applications (e.g., Siebel Customer Relationship Management (CRM)) that
automate the business processes 1104 and support process execution.

[0093] The business enterprise also expects value 1107 from the business processes

1104 implemented at least partially by the enterprise software applications 1106.

20

WO 2008/018939 PCT/US2007/011578

10

15

20

25

30

35

Accordingly, the enterprise assesses value 1107 from the software applications 1106 and
their underlying business processes 1104—aided in part by measuring 1108 the corporate
performance 1109— and revising the goals and objectives 1102 as appropriate.

[0094] An example of value assessment and process effectiveness monitoring is
illustrated by the sample reports generated by the systems and methods described herein,
which were installed for a healthcare network. The healthcare network includes several
stand-alone hospitals working in concert.

[0095] FIGS. 12A-12C respectively depict exemplary reports 1200, 1220, and 1240
generated by the systems and methods described herein to enable management of the
healthcare network to assess, quantitatively and concretely, how well implemented
business processes meet the network’s expectations and goals. According to one practice,
the business goals and objectives for this healthcare organization broadly include
increasing staff productivity and reducing costs without adversely affecting quality of
patient care. To meet these goals, the healthcare organization implements a Patient Visit
Process—a sequence of steps that includes checking in a patient, rendering medical
services to the patient, and checking out the patient—across the healthcare network, a
process that is at least partially supported, implemented, or automated by a Patient Care
System which includes—a suite of one or more enterprise software applications.

[0096] According to one embodiment, the Patient Visit Process includes the
following steps: check in a patient; view the patient’s medical chart; medically examine
the patient; update the patient’s chart; optionally, prescribe a drug treatment regimen to
the patient; and check the patient out. In addition to improving overall staff productivity,
following the steps of the Patient Visit Process—which employ the Patient Care System
and the Electronic Patient Record that it generates—is expected to improve overall
quality of patient care. An additional, or alternative, expectation is that on average,
across the entire patient population, this process will be completed in about 25 minutes
for each patient.

[0097] In one aspect, the expected value from the Patient Visit Process, and the
Patient Care System that implements the Patient Visit Process, includes a drop in total
Patient Cycle Time. According to one exemplary embodiment, the drop is from an

average of about 55 minutes to about 25 minutes—a significant productivity increase.

21

WO 2008/018939 PCT/US2007/011578

10

15

20

25

30

35

Additionally, or alternatively, the Patient Care System is expected to enable a significant
portion of all patients (e.g., about 30%, according to one embodiment) to self-register: a
reduction in patient registration staff of close to one-third. In yet another aspect, an
Electronic Patient Record produced by the Patient Care System is expecied to reduce, or
in some instances eliminate, incidences of adverse interactions of prescription drugs—a
significant improvement in the quality of patient care.

{0098] Tuming to FIG. 12A, a set of results 1200 based on monitoring, in real time,
the expected performance 1202 and actual performance 1204 of the Patient Visit Process
is depicted. Expected results are shown by solid rhombuses depicting the various steps in
the Patient Visit Process: 1202a (patient check-in), 1202b (view the patient’s chart),
1202¢ (examine the patient and update the chart), 1202d (prescribe medication), and
1202¢ (patient check-out). Actual data is shown by solid circular dots 1204a-1204e,
respectively corresponding to the steps associated with the expected results 1202a-1202e.
[0099] As FIG. 12A shows, the actual process 1204a-1204e averages a cycle time of
about 27 minutes, reasonably close to the expected 25 minutes. Therefore, taking a
primary view of the total Patient Visit Cycle Time, the data 1200 appears to indicate that
the Patient Visit Process has been successfully implemented by the adopted Patient Care
System. However, as indicated by the data on the vertical axes, the number of patients
for whom the Patient Visit Cycle was completed in time—about 50—is a small fraction
(about 20%) of the expected about 250 patients for whom the Patient Visit Cycle Time is
expected to be about 25 minutes. It is evident that the healthcare organization does not
see the expected staff productivity increases or the patient care benefits with this adoption
rate.

[0100] FIG. 12B shows the actual process 1220 that the healthcare network’s staff
follows for the remaining 80% of the patient population. For a number of the patients, the
electronic patient record is not viewed 1222 prior to treatment. For a vast majority of the
patients, the patient record is not updated 1224. Such process breakdowns adversely
impact the quality of patient care. '

[0101] In addition to monitoring the entire Patient Visit Process, the healthcare
network also expects that the new Patient Self-Registration features of the Patient Care

System are used and adopted as expected, so as to realize desired cost-reduction goals.

22

WO 2008/018939 PCT/US2007/011578

10

15

20

25

30

35

[0102] Turning to FIG. 12C, expected patient self-registrations are depicted by solid
rhombuses 1242; registrations by the healthcare network staff are depicted by columns
1244; and patient self-registration data is depicted by columns 1246. The data indicates
that the healthcare network falls well behind its expectations for patient self-registrations,
with little or no respite for hospital registration staff. ‘

[0103] Employing the systems and methods of the invention for instrumenting
software applications enables the healthcare network to, among other things, evaluate a
business process and a software application used to implement the business process.
Additionally, the systems and methods described herein enable the healthcare network to
use the collected data to manage and adjust its strategic goals——in~ this case including a
combination of redesigning the Patient Visit Process; redesigning the Patient Care system
(software application); retraining the staff; and providing the staff and the patients with
incentives to encourage adoption of the redesigned Patient Care System.

[0104] FIG. 13 shows a high-level schematic diagram of a development and
production environment lifecycle 1300 according an embodiment of the software
instrumentation systems and methods described herein. In step 1301, following
installation of the software platform of the invention, the software platform employs a
module that provides metadata or information about a usage scenario—which, as
described above, includes a sequence of steps by which an application is used (executed).
[0105] When the enterprise software application executes according to a specified
usage scenario (i.e., when a usage scenario of the enterprise software application is
demonstrated), it produces various software application events. The monitoring engine
listens for the application events and maintains a trace of the produced events. Examples
of application events have been referred to above. For a particular usage scenario, the
nature of software applications is that they execute the same sequence of application
events every time that usage scenario is repeated; accordingly, if those events are properly
tagged, the software applications can employ the tags to emit information representative
of the execution of the tagged software events. This is an important observation, at least
in part because a particular usage scenario is deemed to have been executed when a
particular sequence of application events is recognized by the systems and methods

described herein.

23

WO 2008/018939 PCT/US2007/011578

10

15

20

25

30

[0106] However, a usage scenario can produce a large number—perhaps even
hundreds of thousands—of application events, which can make the event sequence
running in the enterprise software application difficult and expensive to subsequently
recognize or parse through. Accordingly, in one embodiment, a raw event sequence (or
trace), produced in step 1301 from the demonstration of the usage scenario, is parsed to
identify an important subset of application event sequences whose detection is strongly
correlated with the demonstrated usage scenario. The events of the parsed trace identified
as being correlated with the usage scenario form what has been referred to herein as a
signature, a signature profile, or—depending on context—an active signature profile. As
shown in previous figures, for example, FIGS. 9A-9F, the software platform of the
systems and methods described herein contains a project workspace module, typically
having a graphical user interface (GUI), which makes it possible for a user to visually
convert a trace into a signature.

(0107] In the process of creating a signature profile, the user may create some
ambiguity. In other words, a signature profile created from a trace may match more thap
one usage scenario in the enterprise software application. This ambiguity can be
exploited to effect, if the user chooses to demonstrate an exemplary usage scenario,
develop a signature from the resulting trace, and then use the signature to recognize not
Just the exemplary, but many, if not all, similar usage scenarios. In many embodiments,
however, the signature profile uniquely represents the demonstrated usage scenario.
[0108] The collected application traces can be ambigunous if more than one usage
scenario is demonstrated at a time. Typically, therefore, the systems and methods
described herein produce signatures in a controlled, development environment, as
mentioned above,

[0109] The signatures created from usage scenarios in the development environment
can be employed in a production environment. At least in part because of the synergy
between the existing application environments and the software instrumentation systems
and methods described herein, typically no substantial changes to the application
development and deployment environment in which the disclosed software platform

works are required.

24

WO 2008/018939 PCT/US2007/011578

10

15

20

25

30

[0110] As shown in FIG. 13 (upper dotted half circle), one of the modules in the
software instrumentation platform of the invention enables a set of si gnatures
(representing usage scenarios, which in turn represent components of application business
value or risk) to be conveyed, for example, over a network from the development
environment to another software module of the platform in the production environment.
Optionally, a scheduler determines one or'more times or time windows (generally
referred to herein as time frames) for monitoring the enterprise applications to detect
usage scenarios matching the signature profile.

[0111] Referring to the embodiment of FIG. 13, in step 1303, the software module, in
the production environment, receives signatures from the module in the development
environment and then uses that information to dynamically insert software code into the
application to be monitored. Unlike other similar techniques, the code is inserted only
where needed, and as specified by the signature. The code can also be removed after use
and new code can be inserted when a new or different use scenario is performed. It
should be noted that detailed knowledge of the application source code is not required, so
that insertion of, and changes to, the signatures can be efficiently and quickly executed
without substantially affecting the execution of the enterprise software application.,

[0112] Guided instrumentation, in step 1303 of FIG. 13, refers to a technique of using
signatures to determine places in the application where special detection codes are to be
dynamically inserted to aid subsequent detection of events that make up a signature. In
an exemplary embodiment, the occurrence of an application event, a procedure call for a
procedure P for example, is detected and reported. One technique to accomplish this is to
get a call back for every procedure called, match against P, and then report the detection
of procedure P. However, monitoring every step of the executing application slows down
the performance of the application. By using the events specified in the usage scenario
signature as instrumentation guides, the signature specifies the sequence of events to be
detected (representing, for example, the procedure call P), and this information is used to
dynamically tag special detection code to procedure P (and typically nowhere else in the
application). This is an efficient detection method, since then only the procedure P plays

a role in its own detection.

25

WO 2008/018939 PCT/US2007/011578

10

15

20

25

30

35

[0113] As seen in step 1304 of FIG. 13, with the instrumentation in place, any time
an expected usage scenario is triggered by a user, the modules of the system of the
invention efficiently detect individual events, and then match signatures that represent
sequences of events. When a detected sequence of events is matched to a defined
signature profile, a module can store event data associated with the match, including
parameters associated with events of the matched usage scenario. The matches can be
stored in a database record that can subsequently be used for evaluating and/or reporting
the performance of the executing software application(s) or a measure or risk or potential
loss.

[0114] The remaining figures illustrate various embodiments illustrative of how the
systems and methods described herein can be configured to interact or integrate with
various features of enterprise software applications.

[0115] FIG. 14 is a schematic diagram of a high-level architecture 1400 of the
software instrumentation systems and methods described herein. As shown in the figure,
the systems and methods of the invention are shown as functional layers wrapped around
one or more enterprise applications 1401. Each functional layer represents one or more
instrumentation method steps or system elements. The top portion 1410 of FI1G. 14
shows a modeling (development) environment, and the bottom portion 1420 a
measurement (production) environment.

[0116] In particular, according to a typical embodiment, the modeling environment
1410 includes a functional layer 1412 wherein benefits, risks, and usage scenarios (i.e.,
operations) of the enterprise applications 1401 are described or defined—with due
consideration of the goals and objectives of the enterprise. In functional layer 1414, the
systems and methods described herein demonstrate the usage scenarios defined in the
development layer 1412; trace events associated with the demonstrated scenarios; and
from the traced events produce signature profiles associated with demonstrated scenarios.
Layer 1416 depicts tagging of (instrumenting) the enterprise applications 1410 according
to the signatures produced in the layer 1414. |
[0117] The measurement (production) environment 1420 illustrates an
instrumentation layer 1422 wherein the enterprise applications 1410 execute according to

a usage scenario (operation) which is to be subsequently identified with (i.e., matched to)

26

WO 2008/018939 PCT/US2007/011578

10

15

20

25

30

35

a subset of a library of usage scenarios defined or described in the modeling environment
1410. In the layer 1422, a subset of the tags that were inserted in the modeling
(development) environment’s instrumentation layer 1416 are detected in the yet
unidentified scenario (operation). At the functional layer 1424, the detected tags are
matched to known usage scenarios defined in the modeling environment. In a typical
embodiment, the systems and methods described herein also include a functional layer
1422 that produces a report indicative of how closely the goals and objectives of the
enterprise have been met by the enterprise applications 1410 or what level of risk
exposure the enterprise faces. The reports can also flag enterprise executives and
authorized users of any suspicious process activity, for example, by showing bank
officials that a particular teller has accessed customer accounts in an unusual manner.
[0118] FIG. 15 depicts another high-level schematic representation of various
applications 1500 of the software instrumentation systems and methods described herein.
The software instrumentation systems and methods 1502 are shown in the figure as being
deployed around one or more enterprise applications 1501. In various embodiments, the
software instrumentation systems and methods 1502 are deployed to interact with one or
more platforms for measuring security 1511, compliance 1512, and defects 1513 of the
enterprise applications 1501; for vendor evaluation 1514 and return on investment (ROI)
15135; for business process reporting 1516 and resource utilization and adoption 1517; and
for assessment of risk, exposure to risk, and anomalies 1518 and the like. These
platforms are mere examples and that other application monitoring processes can be
efficiently and rapidly performed with the systems and methods described herein.

[0119} FIG. 16 depicts another high-level diagram of an exemplary application of the
software instrumentation systems and methods of the invention and their integration in a
business value measurement environment. In particular, FIG. 16 shows, according to one
practice, an enterprise application lifecycle 1600 which includes a development portion
1605 (left portion of the figure) and a deployment portion 1606 (right portion of the
figure). One or more enterprise software applications 1601 are at the core of the lifecycle
1600, wrapped in various business value measurement functional tool layers.

[0120] In one exemplary embodiment, the development portion 1605 of the lifecycle

1600 includes a layer 1611 denoting software development lifecycle tools such as,

27

WO 2008/018939 PCT/US2007/011578

10

15

20

25

30

35

without limitation, IBM Rational software (IBM Corp., White Plains, NY), CaliberRM
(Borland Software Corp., Scotts Valley, CA), Compuware Application Development
Software (Compuware Corp., Detroit, MI), Mercury Application Development
Environment (Mercury Computer Systems, Inc. (Chelmsford, MA), and others. In this
embodiment, the lifecycle 1600 includes a layer 1612 denoting professional services
automation tools such as, without limitation, Kintana (Mercury Computer Systems, Inc.),
Changepoint (Compuware Corp.), PlanView Portfolio Management Software (PlanView
United States, Austin, TX), Microsoft Business Solutions (Microsoft Corp., Redmond,
WA), and others. ‘

[0121] The deployment portion 1606 of the lifecycle 1600, according to this
embodiment, includes a layer 1613 of business intelligence tools such as, without
limitation, SAS Business Intelligence Client Tools (SAS Institute GmbH, Heidelberg,
Germany), MicroStrategy Business h'ltelligence Software Solutions (MicroStrategy, Inc.,
McLean, VA), Cognos (Cognos Business Intelligence and Performance Management
Software Solutions (Cognos, Ottawa, ON, Canada), Informatica (Informatica Corp.,
Redwood City, CA), and others.

[0122] Another layer of the deployment portion 1606 of this embodiment of the
lifecycle 1600 is the systems management tools layer 1614, which includes, for example
and without limitation, BMC (BMC Software, Houston, TX), IBM-Tivoli (IBM Corp.,
White Plains, NY), HP-OpenView (HP, Palo Alto, CA), CA (Computer Associates,
Islandia, NY), and others. Another layer of the deployment portion 1606 of this
embodiment of the lifecycle 1600 is the business value measurement (and risk
assessment) layer 1615 where the software instrumentation systems and methods
described herein are deployed. Yet another layer of this embodiment includes an
embedded analytics tolls layer 1616.

Part 2: Using raw log data for fraud management

[0123] The invention as discussed in Part 1 manages fraud by monitoring, recording,
and analyzing software events associated with uses of an enterprise application in part by
instrumenting the code of the enterprise application. We now discuss another aspect of
the invention that identifies fraudulent uses of an enterprise application and need not

require instrumenting code. In particular, the method aggregates and organizes logs of

28

WO 2008/018939 PCT/US2007/011578

10

15

20

25

30

35

raw data associated with process steps in the use of the applications, archives the datain a
manner that facilitates efficient access to and processing of the data, investigates potential
fraudulent scenarios using the archived data, and uses the results of the investigations to
identify patterns of data that correspond to high risk usage scenarios and/or process steps.
Additionally, archived data is compared against the identified patterns to detect matches,
and the invention thereby automatically detects future occurrences of similar high risk
usage scenarios and issues appropriate alerts and reports. In this aspect of the invention,
raw data is provided as one or more existing logs of data to be processed by the methods
described herein. Each element of raw log data typically corresponds to a transaction
record that logs an action performed with a particular enterprise application.

[0124] " To this end, FIGS. 17 and 18 depict a fraud management system 2000 and
steps 2100 for using the system. The system 2000 includes users or user groups 2010,
applications 2020, raw data 2030, aggregated data 2040, reference data 2044, archives
2050, a fraud analyst 2060, a set of evidence related to a case of fraud 2070, a signature
indicative of a case of fraud 2080, and a matcher to detect cases of fraud 2090.

[0125] More specitically, FIG. 17 depicts ﬁlultiple applications 2020a-c. As
discussed in Part 1, the applications can include custom applications or commercially
available packaged applications. In general, the applications serve to automate business
processes and support process execution for industries such as, for example, banking,
lending, and insurance. While the operations of the various applications 2020 may be
interdependent (i.e., they may belong to a common application suite), in FIG. 17 they
operate substantially independently from each other.

[0126] Each application is used by a respective user or group of users 2010a-c, and
upon use of the application, raw data 2030 associated with the uses of the applications is
generated. The raw data is stored in logs 2030a, 2030b, and 2030c. Typically, as in FIG.
17, each application generates its own respective log. The raw data 2030 can be
generated and logged in a number of ways, and in one aspect, the applications 2020a,
2020b, and 2020c each generate data in different manners and log data in different ‘
formats. For example, one application may generate an Information Management System
(IMS) transaction log on a mainframe, another may generate an application specific log

on a windows server, and another may generate a log on a UNIX-based system. In

29

WO 2008/018939 PCT/US2007/011578

10

15

20

25

30

35

certain embodiments, some of the applications 2020a-c are instrumented and may log
software runtime events as described in Part 1.

[0127]) The logged raw data 2030 includes data associated with process steps of the '
application. A process step generally refers to a single action taken by a user in the
context of a use of an application. For example, “Employee A opens Client B’s account
record” and “Employee A credits Client B’s account with a fee rebate” are each process
steps. Each process step generally includes one or more low level log events. By way of
example, the process step “Employee A opens Client B’s account record” may include
lower level log events such a login event, an account selection event, and an account
viewing event. For each process step, the logged raw data can include an identifier of a
person that performed the process step, a timestamp indicating when the process step was
performed, a duration of time during which the process step was performed, an identifier
of a client account associated with the process step, and / or a categorization of the
process step (i.e., a name of the type of process step performed). Of course, the relevant
data that is stored will vary depending on the nature of the particular process step at hand
and the particular application being used, and this in part leads to variability of the data
within the logs.

[0128] However, the logs can also include data of a finer grain of resolution. In the
case of an instrumented application, the logged data includes software runtime events (as
discussed in Part 1). As mentioned above, each process step typically includes several
software runtime events.

[0129] In one aspect, because each application 2020a-c generates logs of data 2030a-c
in different forms and each log 2030a-c includes different data due to variability in the
process steps that are logged, it is difficult and inefficient to conform and store all of the
data in a single database using a fixed schema. The difficulties are compounded since the
data may be semistructured, depending on the application generating the log.
Additionally, the logs may contain vast quantities of data, such as data corresponding to
six months or moré of application use. The logs may contain quantities of data on the
order of 1 terabyte, 10 terabytes, or more. We now discuss methods to aggregate and
archive the data to facilitate efficient fraud management that could not be achieved by

simply conforming and storing all of the information in a single database.

30

WO 2008/018939 PCT/US2007/011578

10

15

20

25

30

[0130] More specifically, with respect to FIG. 17 and 18, step 2110 includes
aggregating the data to form a set of aggregated data 2040. This step serves the purpose
of sequentially organizing the raw data into chronological order. As will be discussed
below, many of the fraud detection and analysis methods of this invention relate to
identifying temporal and/or sequential relationships between process steps. Thus, the
sequential aggregation 2110 facilitates this subsequent analysis.

[0131] An additional purpose of this step is, in part, to collect the disparate raw data
2030 of the various applications 2020 so that the data can be brought together and
organized in the archiving step 2120. In particular, certain business processes require
performing process steps across more than one of the applications 2020a-c. Since each
application 2020a-c typically maintains an independent and unique log, the data should be
aggregated from the logs in order to detect fraudulent uses across multiple applications.
[0132] After aggregating 2110 the raw data 2030, the data is extended 2114 with
reference data.

[0133] As indicated above, raw log data 2030 typically includes transaction records
associated with actions performed by an enterprise application. The transaction record
includes a time stamp together with data that characterizes the action performed by the
enterprise application. Although such records generally. provide a complete record of the
transaction from the point of view of the individual enterprise application, they usually
lack refereilce data that is needed for detecting potentially fraudulent usage patterns.
Transaction logs also lack reference data that is needed to generate reports on the results
of potentially fraudulent usage pattern searches. The system illustrated in FIGS. 17 and
18 therefore enhances, or extends, the raw transaction records with reference data, as we
describe below.

[0134] Reference data 2044 is static or semi-static information that is associated with
fields of the transaction records. For example, a transaction record may include a
numerical field designating the identification number of the enterprise employee who
performed the transaction. An example of reference data is the employee record for that
employee, which would typically include the employee’s 1D, social security number,

name, job code, date of hire, home address, as well as up to about 50 additional fields.

31

WO 2008/018939 PCT/US2007/011578

10

15

20

25

30

335

Employee records are kept in reference data source 2044e, which is typically maintained
by the human resources department of the enterprise.

[0135] As a second example, a transaction record may include a numerical field with
the account number of the account to which the transaction was performed. The system
may be interested in reference data associated with that account number. Such data is
stored in account records 2044f, which include fields such as account number, customer
name, account type, and customer home address.

[0136] In order to make reference data available for suspicious pattern detection
(described below), aggregated data 2040 is “pre-joined” with reference data 2044 to
create extended, or enhanced, aggregated data that is stored in archives 2050. Using the
example described above, the system pre-joins, or extends, a transaction log having a
single employee ID field with corresponding reference data 2044e fields for employee
name, job code, date of hire and home address. Thus a single employee ID field is
extended to a total of five fields. Similarly, if the transaction record includes an account
number, the system extends the record‘ with corresponding reference data 2044f fields for
customer name, account type, and customer home address, extending the account
information from a single field to four.

[0137] As shown in FIG. 18, extending data step 2114 is performed after dafa
aggregating step 2110 and before data archiving step 2120. However, raw log files can
be extended before they are aggregated in step 2110. For example, a log file produced by
a single enterprise application can be extended with reference data and then aggregated
with other extended log files. In either case, a raw data field that is to be extended with
reference data will be archived in extended form, regardless of the order in which the data
was extended.

[0138] In general, a field is extended regardless of the application 2020 that generated
a particular record containing the field. For example, using retail banking as an example,
the employee ID field is extended with the same reference data when it appears in raw
data generated by any of bank applications 2020a, 2020b, or 2020c. However, this
uniform treatment is not required, and in some circumstances it may be advantageous to
extend certain fields for specific applications only and not for others. For example, one

enterprise application may produce a log which contains the number of the account on

32

WO 2008/018939 PCT/US2007/011578

10

15

20

25

30

which each transaction is performed. If the fraud scenarios for this application do not
refer to information about the employee’s own accounts, there is no need to extend the
record with information about the employee’s own accounts. However, the frand
scenarios may refer to account owner information when transactions are performed using
a second application, and so for the second application it is useful to extend transaction
logs to include employee account information, and be able to determine if a particular
account is owned by the employee who performed the transaction.

[0139] The data extension process uses reference data that is up-to-date as of the time
of the transaction logging. This ensures that transactions are extended with reference data
that is not obsolete. For example, when an employee changes his job, his employee
record is correspondingly updated. The next time a transaction record associated with
that employee is extended, it is joined with the current version of employee records
2044e, ensuring that the archived extended data 2050 contains within it an accurate
snapshot of the employee’s situation at the time that the transaction was performed. If, on
the other hand, the employee information is joined with the transaction data at a later
time, for example at a time when a fraud investigation is launched, the employee record
will reflect the employee’s job at that later time, not his job at the time the transactions of
interest occurred. Such non-contemporaneous data extension can mask behavior patterns
that characterize fraud.

[0140] Raw data 2030 typically includes transaction log files containing records, each
of which is rendered unique by a time stamp corresponding to the time at which the
transaction took place. Whenever a new transaction occurs, a new record is created and
stored. Reference data 2044, on the other hand, either remains unchanged, or changes
only at specific times. For example, reference data describing what transaction each
transaction code corresponds to changes very rarely. On the other hand, the job code
corresponding to an employee ID changes every time the employee changes his job.
Unlike transaction data, new reference data is not added to the earlier data but instead
replaces it. If historical reference data is needed, it has to be retrieved from an archive.

In addition, reference data may not include a time stamp as it is not associated with a

particular time.

33

10

15

20

25

30

35

WO 2008/018939 PCT/US2007/011578

{0141] Reference data 2044 is stored in databases, or other data structures that are
independent of enterprise applications 2020 that generate raw data 2030. For example,
employee records 2044¢ are maintained in a database that is set up and maintained by the
human resources depariment of an enterprise. Account records 2044f are set up and
maintained by the retail customer division of the enterprise. Each enterprise has a set of
such internal reference data sources, each of which may be maintained by a different
department within the enterprise. In some cases, reference data 2044 must be cleaned
before it can be used, or additional reference data used in order to make links between the
transaction data and the reference data.

[0142] Reference data may also come from parties outside the enterprise. For
example, when extending a transaction record with an address of an employee or of a
customer, the entry in the reference data may be present in one of a number of equivalent
forms, such as “Suite 150, 100 Main Street” or “100 Main Street, No. 150.” In order to
allow easier identification of addresses that correspond to each other, the address field is
also extended with a unique address identification number from a third party postal
address database. '

[0143] The enterprise provides reference data 2044 from its various divisions at
regular intervals in the form of a flat data file. AJtemativeiy, the enterprise’s reference
data is obtained by directly accessing one or more relational databases that house the
reference data without creating a flat reference data file.

[0144) Although transaction data and reference data are quite different in nature,
some kinds of transaction data are generated from reference data. For example, in a retail
banking application, customer account balances as they stand at the end of the day are
given a time stamp corresponding to midnight, and added to the transaction records. This
“interpolation” relies on knowing that an account balance will not change between logged
transactions.

[0145] In a reverse process, some kinds of reference data are derived from transaction
data. In one method, a particular transaction or set of transactions are converted into
reference data by removing the transaction time stamps from the records. For example,
in a retail banking application, the bank balance of an account appearing in the log for the

last transaction of the day is converted into an end-of-day balance, and added as reference

34

WO 2008/018939 PCT/US2007/011578

10

15

20

25

30

35

data to all transaction records for that account for the following day. This enables easy
searching for aggregate withdrawals that exceed a threshold percentage of the prior day’s
closing balance. In a second example, the system extracts reference data from a
transaction log that includes account maintenance actions, such as account open, account
close, add signer, or change address. Such transactions are treated as semi-static account
status reference information, and can be used to enhance a teller transaction log. For
example, a flag can be included if the account address has been changed within the thirty
days preceding the transaction. This enables easy searching for a fraud scenario featuring

large withdrawals from an account for which the mailing address was changed in the past

.thirty days.

j0146] In another method, reference data are obtained by computing statistics from
transaction data. Using retail banking again as an example, one such statistic is the
average number of transactions performed by a selected groﬁp of tellers during the past
week. Computed daily, this statistic is added during extension step 2114 to raw logs of
bank teller transactions. The inclusion of this reference data makes it easy to search for
tellers exceeding the current average number of transactions by a selected threshold
percentage. Computed reference data can also be derived from sources other than
transaction logs, such as a data feed with statistics from a particular market or industry
segment. For example, in a brokerage application, the system uses a data feed provided
by a stock exchange to compute the volume of trades for a particular option contract over
a specified time intefval. By using the computed average trading volume for the contract
as reference data, it is easy to search for fraud scenarios in which a single trade exceeds
two standard deviations above the average. '

[0147] Prior to joining reference data 2044 with the raw logs, the system identifies the
unique keys that are present in both transaction data 2040 and in reference data 2044. For
example, for employee records 2044e the system generally uses the employee ID as the
key, and for account information 2044f the system uses the account number. Prior to

extending raw data 2040 with employee information, the system converts employee

- records 2044e into a reverse index by employee ID. Then for every occurrence of a

record of raw data 2040 that has an employee ID field, the system extends the record with

the desired fields from the entry corresponding to that employee ID in employee record

35

WO 2008/018939 PCT/US2007/011578

10

15

20

25

30

35

2044 reverse index. Similarly, the system creates a reverse index of account information
records 2044f by account number prior to joining the account information with raw data
2040. Once it has served its purpose an enabled joining of raw data with reference data,
the selected keys or unique identifier fields may not themselves be retained in archives
2050.

[0148] Extending data step 2114 increases the size of the raw data 2040. The amount
of extension performed depends on what additional fields are required for the suspcious
pattern detection and for the reporting of leads that might represent fraud. In some cases,
the required extension increases the size of a record of raw data 2040 by just one or two
fields. In other cases, the extension can result in an extended record having more than
twice the number of fields of the original raw data record. For example, in the retail
banking scenario described above, raw transaction log 2040 initially includes no home
address fields. However, after extending aggregated raw data 2040 with employee
records 2044e and account records 2044f, the extended record includes two home
address — that of the employee and that of the account holder. A search of this extended
data record can reveal whether the two addresses are the same, which might be one of the
elements of a suspicious pattern.

[0149] As indicated above, the system extends raw data 2040 with reference data that
supplies fields that are of interest for detecting potentially fraudulent usage patterns. For
example, the system can be interested in searching for patterns relating to the employee’s
job, employment history, home address, transaction volume, home address of the holders
of the accounts transacted with, and so on, none of which are present in the raw
transaction log. Since extension step 2114 fully joins such reference fields to the
transaction data, they can be searched as quickly and easily as the original transaction
data fields without the need to retrieve information from reference data sources 2044.
This ability to search rapidly and uniformly through both the original raw data fields and
the joined reference data field motivates the joining of reference data, and justifies the
associated expansion or “bloat” in the size of the transaction data.

[0150] Reference data fields are also selected to provide data for reporting the results
of searches for fraudulent patterns of behavior. For example, a set of leads that includes

the names of suspected employees is more informative than the list of the ID numbers of

36

WO 2008/018939 PCT/US2007/011578

10

15

20

25

30

35

the suspected employee. Similarly, a report showing the name of the suspected
transactions, for example “withdrawal of funds™ is more informative than a list showing
transaction codes. Thus raw data is extended with certain kinds of reference data used for
reporting purposes, even if those kinds of data are not used to search for potentially
fraudulent usage patterns.

[0151] Reference data that is not selected for display in a report may still be searched
by an analyst who is interested in pursuing a particular lead or set of leads. For example,
if a particular employee is identified in several potentially fraudulent usage patterns, an
analyst may wish to access all the employee data associated with that employee in
employee records 2044e, not just the data selected for the report. The employee record
reverse index described above facilitates such forensic research because the analyst can
key directly into the employee records using the unique identifier in the archived
extended transaction data 2050, without the need to retrieve information from reference
data source 2044e.

[0152] After the raw log data is extended in step 2114, it is archived 2120 into one or
more archives 2050. In some embodiments, such as in FIG. 17, there is more than one
archive. The multiple archives can each index different types of data. For example, one
archive can serve to maintain an index of the previous day’s events, while another archive
can serve to index live events as the data is logged and aggregated. In FIG. 17, archive
2050a archives data generated from applications 2020a and 2020b, while archive 2050b
archives data generated from application 2020c.

[0153] In the archiving step 2120, the data associated with each process step or
software event is treated as a logical document. The documents are partitioned into
indexes. An index is a collection of documents included in a logical folder. Each folder
contains documents associated with process steps or software events taking place within a
prescribed interval of time. For example, the folders can be created daily, with each
folder including data associated with that day’s uses. The appropriate time period used
for each folder typically depends on the volume of data being logged by the applications
as well as archiving requirements of the enterprise. For example, an enterprise may
require that five weeks of transactions be available for fraud analysis, and each week

archive a week’s worth of data that is six weeks old. In such an enterprise, the indexes

37

WO 2008/018939 PCT/US2007/011578

10

15

20

25

30

35

are partitioned by week. Some exemplary time periods for each folder include one hour,
one day, and one week.

10154] The system then indexes the aggregated, extended data in order to provide a
data structure that can be searched rapidly. The preferred indexing method is reverse, or
inverted indexing, in which the system indexes the aggregated extended data into an
inverted index using a chosen subset of the fields of the extended transaction log. The
fields chosen for inverse indexing are fields that are of interest for fraud scenario
searches, and generally include fields whose entries are unique identifiers. For example,
in retail banking, such fields include employee ID, account ID, and account owner ID.
On the other hand, the dollar amount of a transaction would typically not be suitable .for
indexing because it is not unique and is not a field that will be searched. Associated with
each of the indexed entries in the inverted index is a set of extended transaction records
containing the entry.

[0155] With respect to archive 2050a, various fields associated with the process step
data, such as type of action or process step, person responsible, timestamp, client account
involved, are included in an inverted index. For each of these fields, the index includes
an entry which specifies the contents of the field, and location information specifying
where data associated with that field’s contents can be found within the data. For
example, an entry specifying “Employee A” will include location information identifying
data related to process steps that were performed by Employee A. In one embodiment,
the location information for a process step is an offset specifying how far into the data
that process step’s data is located. The location information can include one or more
logical pointers to the corresponding process step’s data. Location information can be
added to the index in real time as new data is logged and aggregated, or at predefined
times. Similarly, new index entries corresponding to process step or event fields can be
defined and indexed in real-tiime or at predefined times.

[0156] After the data is archived 2120, the data is fed to matcher 2090 to detect
fraudulent uses 2150, and also sent to an analyst 2060 to conduct an investigation 2130.
[0157] Discussing the investigation 2130 first, the aggregation, partitioning, and
indexing methods discussed above provide the analyst 2060 with easily searchable

archives of data that facilitate fraud investigation. The analyst attempts to investigate and

38

WO 2008/018939 PCT/US2007/011578

10

15

20

25

30

35

identify fraudulent usage scenarios. As mentioned in Part 1, a usage scenario generally
refers to one or more related process steps along with temporal or sequential relationships
between the process steps. For example, “Employee A opens Client B’s account record”
and “Employee A prints Client B’s account record’” are each process steps, and
“Employee A opens Client B’s account record and then prints Client B’s account record”
Is a usage scenario. Similarly, “Employee A opens Client B’s account record and prints
Client B’s account record after 30 seconds” is a usage scenario. Usage scenarios can
include various numbers of process steps and/or temporal and sequential relationships
among the process steps. . -

[0158] As mentioned, the analyst 2060 attempts to investigate fraudulent usage
scenarios using the archives 2050. To this end, the analyst 2060 queries the archive for
data associated with suspected fraudulent usage scenarios, and uses data returned by the
archive 2050 as evidence in an investigation. For example, if the analyst 2060 suspects
Employee A of fraud, the analyst 2060 can query the archive for “Employee A.” The
archive will use its inverted indexing to identify data associated with process steps and
software events involving Employee A, and return this data to the analyst 2060. The
matcher 2090, discussed in more detail below, can search across multiple indexes in
parallel in order to return the appropriate data. The analyst uses this data as evidence
2070, which is used as the basis for an investigation. Ultimately, the analyst 2060
determines whether or not a fraudulent usage scenario occurred.

{01591 If the analyst 2060 determines that no fraudulent usage scenario occurred, then
typically the analyst 2060 takes no action. However, if the analyst determines that a
fraudulent usage scenario occurred, then the method proceeds to create 2140 a signature
2080 indicative of the fraudulent usage scenario. The signature is used by the matcher
2090 to detect additional fraudulent uses similar to the one investigated by the analyst
2060. In Part 1, in the context of instrumented software, a signature for a usage scenario
generally referred to a pattern of one or more software runtime events indicative of that
usage scenario. The signature included a subset, or in some cases all, of the software
runtime events that were triggered during the usage scenario. In the context of the current
discussion, this is still the case when processing data from an instrumenteq application.

However, a signature for a usage scenario of non-instrumented applications is generally a

39

WO 2008/018939 PCT/US2007/011578

10

15

20

25

30

35

pattern including one or more process steps and associated sequential or temporal
constraints among the process steps indicative of the usage scenario. Examples of these
kinds of signatures will be discussed below.

[0160] Based on the evidence 2070, the analyst 2060 determines a signature 2080
indicative of the fraudulent usage scenario. For example, the analyst may suspect
Employee A of fraud, query the archive accordingly, and after investigation discover a
fraudulent usage scenario in which the employee performed five consecutive “account
lookups™ and “account prints” for five respective clients, each within 30 seconds of each
other, all during his lunch break. In this case, the analyst 2060 may create a new
signature 2080 corresponding to “Employee A performs five consecutive account lookups
and prints within 30 seconds or less during lunchtime.” Altemately, the analyst 2060 can
define several new signatures 2080 including “Account lookup during lunchtime,” “Five
consecutive account lookups and prints,” and “Employee A performs any process step.”’
Although déscribed in words herein, the signatures are codified in program logic in the
matcher 2090. If analyzing software event data from an instrumented application, the
signatures will take on the same form as described in Part 1 of this application. The new
signatures 2080 are provided to the matcher 2090, which we now discuss.

(0161} The matcher 2090 performs the step 2150 of automatically detecting
fraudulent usage scenarios. To this end, the matcher 2090 maintains a set of active
signatures, including new signatures 2080 identified in step 2140, and is fed data from the
archives 2050. The data can be streamed to the matcher 2090 from multiple sources. In
FIG. 17, the data is streamed from both archive 2050a and 2050b. The matcher 2090
compares the data from the archive against the active signatures to identify fraudulent
usage scenarios similar to the usage scenarios characterized by the respective active
signatures. The matcher can run in real-time, examining log data as it is aggregated and
archived, or only at prescribed time periods such as at the end of each business day. The
matcher functions automatically in that it includes program code to provide its
functionality with limited human oversight.

[0162] In one aspect, the matcher 2090 contains program code to identify a state of
the s.ystem with respect a signature in order to identify partial matches to the signature,

and ultimately identify a match should the data warrant it. By way of example, consider

40

WO 2008/018939 PCT/US2007/011578

10

15

20

25

30

35

the following signature indicative of a fraudulent usage scenario: Employee A performs
three consecutive “account look-ups™ follow by “prints,” with each process step occurring
within 30 seconds of the next process step. As the aggregated and archived data is fed
into the matcher 2090, the matcher keeps track of the state of a system corresponding to
the signature. The system 2200 and its possible states are depicted in FIG. 19, Prior to
the arrival of data, the system begins in state 2210 with an indication of no fraud. When
data arrives indicating the process step “Employee A performs account lookup,” the
system moves into state 2220. If subsequent data indicates that Eﬁlployee A did not
perform a “print” process step within 30 seconds of the lookup process stép 2220, the
system returns to state 2210. Otherwise, the system proceeds to state 2230, indicating a
partial match containing one lookup and print. The system proceeds similarly, either
going back to state 2210 or proceeding on through states 2240, 2250, and 2260. If a print
occurs within 30 seconds of system 2200 entering state 2260, the system proceeds to state
2270, indicating a potentially fraudulent usage scenario. The matcher than issues alerts
and reports (step 2165) as will be discussed below.

[0163] In one aspect, a method according to system 2200 of FIG. 19 is implemented
by a logical queue. Using the example of FIG. 19, as the system proceeds through the
states, the corresponding process steps (i.e., first lookup, first print, second lookup, etc.)
are added to the queue. When the system 2200 returns to state 2210, the matcher 2090
clears the queue. In one aspect, the matcher 2090 maintains several queues
corresponding to the several active signatures. This allows for parallel and high speed
matching.

[0164] We now discuss exemplary signatures that can be used with the system, and in
particular by the matcher 2090. As mentioned above, the signatures are generally
patterns related to sets of process steps. The patterns sometimes include constraints
related to the process steps. A pattern in this context generally refers to one or more
process steps and temporal or sequential relationships and/or constraints among the
process steps. A constraint in this context generally refers to a condition involving
process steps and temporal / sequential relationships between them that can be evaluated
to be either true or false. The signatures may involve just one process step. In this case,

the signature may include the person responsible for the process step. For example, if

41

WO 2008/018939 PCT/US2007/011578

10

15

20

25

30

35

Employee Y is highly suspect of committing fraud, a signature can be “Any process step
performed by Employee Y.” The signature may include a number of consecutive times
an employee performed a particular type of process step, for example, “Employee A
performs 5 consecutive account lookups.” The signature may include temporal
information related to the process step, such as when the process step occurred. For
example, a signature may be “Process step performed by Employee A during Employee
A’s lunch break.” The temporal information may be an atypical duration of time, such as
“Employee A opened Client B’s account without closing it within 2 hours.” The
temporal information may include a number of times that a particular type of process step
is performed during a prescribed period of time, for example “Employee A performs 5

account lookups in less than 10 minutes.”

. [0165] The signatures may involve more than one process step, and include sequential

or temporal relationships between the process steps. The sequential / temporal
relationships may include the time separating and/or the order of two or more process
steps, for example “Employee A performs an account lookup followed by a print within
30 seconds.” They may include a number of times a sequence of process steps occurs
during a predefined duration of time, for example “Account lookup followed by print, 5
times, within 10 minutes.” They may include a number of consecutive times a sequence
of process steps takes place, for example “Account lookup followed by print 100
consecutive times.”

[0166] The signatures comprising constraints can include Boolean operations. For
example, in one instance it was noted in a bank application that miscellaneous “debits”
with neither a corresponding “credit” nor a corresponding “debit reversal” indicated
potentially fraudulent behavior. A signature for this is “Debit AND NOT (credit within
10 minutes OR debit reversal within 30 minutes).”

[0167] If the matcher 2090 determines that a portion of the aggregated and archived
data fed into the matcher 2090 matches a signature, it can issue an alert, such as an email
to an appropriate authority. It can also issue a report similar to the reports discussed in
the context of Part 1 of this application.

|0168] The components of system 2000 are generally located at the same site as the

enterprise application. In addition to the components shown in FIG., 17, the system can

42

WO 2008/018939 PCT/US2007/011578

10

15

20

25

30

35

include additional functional blocks. In one embodiment, a report server and generator is
responsible for generating and displaying reports once the matcher 2090 has identified a
potentially fraudulent usage scenario. The reports as simﬂar to the reports described with
respect to Part 1 of this application. Similarly, an alert server and generator is responsible
for generating and issuing alerts to appropriate authorities once the matcher 2090 has
identified a potentially fraudulent scenario. The system can also include a database which

serves as a repository for one or more of data, reports, and alerts associated with

_identified fraudulent usage scenarios. Each of these functional blocks will generally be in

communication with the system 2000 depicted in FIG. 17, and typically they are in
commuinication with the matcher 2090,

[0169] Particular aspects and implementation details of the invention discussed above
may vary depending on the intended application and use of the invention. The examples
given above are for illustrative purposes only, and other embodiments consistent with the
invention and not explicitly discussed exist. Furthermore, the embodiments of the
invention related to FIGS. 17-19 may be used in conjunction with other aspects of the
invention discussed herein.

[0170] Exemplary platforms that the systems and methods described herein support
include, but are not limited to, the following: Windows XP for the project workspace and
the OAL; Oracle or SQL Server for the Repository (Database) management; applications
written in Java, C++, using environments such as J2EE, COM, NET, and on platforms
such as Windows XP/2000, AIX, HP-UX, Linux, and Solaris for the tracer, signature
profiler, detector, scheduler, and matcher.

[0171] The contents of all references—including, but not limited to, patents and

patent applications—cited throughout this specification, are hereby incorporated by

- reference in entirety.

[0172] Many equivalents to the specific embodiments of the invention and the
specific methods and practices associated with the systems and methods described herein
exist. Accordingly, the invention is not to be limited to the embodiments, methods, and
practices described herein, but is te be understood from the following claims, which are to
be interpreted as broadly as allowed under the law.

[0173] What is claimed is:

43

WO 2008/018939 PCT/US2007/011578

1. A method for identifying a fraudulent use of an application using an existing log
of data generated from uses of the application, the log of data including a plurality of
fields, the method comprising:

providing the existing log of data;

aggregating the data;

providing reference data corresponding to at least one of the ficlds of the data;

extending at least one of the fields of the data with the corresponding reference

data;

including entries for the extended data in an index;

identifying a pattern within the data representative of the fraudulent use; and

comparing at least a portion of the index to the pattern to identify the fraudulent

use.
2. The method of claim 1, wherein the index is an inverted index.
3. The method of claim 1, wherein the field of data is extended with reference data

within about twenty-four hours of the time of generation of the log of data.

4, The method of claim 1, wherein the field of data is extended with reference data

within one business day of the time of generation of the log of data.

5. The method of claim 1, wherein the reference data is obtained from at least one of

a database and a data feed.

6. The method of claim 1, wherein the reference data is computed from the log of
data.
7. The method of claim 1, wherein identifying the pattern involves using a search

engine to search the index for the pattern.

44

WO 2008/018939 PCT/US2007/011578

8. The method of claim 1, wherein the reference data comprises a plurality of fields,

and the pattern involves at least one reference data field.

9. The method of claim 1, wherein
aggregating the data includes ordering portions of the data based on timestamp

information associated with the portions of the data.

10. The method of claim 1, wherein including entries for the data in the inverted index
includes '

identifying a location of a data field within the data, and

including the data field and information specifying the location in the inverted

index.

11. The method of claim 10, wherein
identifying a location of a data field includes identifying a location of a name

field, a time field, a place field, an action type field, and an account identification field.

12. The method of claim 1, wherein providing the existing log of data includes
providing data associated with respeétive process steps performed by respective

users during the uses of the application.

13. The method of claim 1, wherein providing the existing log of data includes
providing data generated from uses of a plurality of applications, wherein data
~ associated with one of the applications is provided in a substantially different data format

than data associated with another one of the applications.

14. The method of claim 1 wherein the application comprises a plurality of
applications, further comprising

providing a plurality of logs of data, and

the data generated from uses of applications are provided in respective logs stored

in substantially different respective locations.

45

WO 2008/018939 PCT/US2007/011578

15. The method of claim 1, further comprising
including entries for the data in a plurality of indexes, wherein each index is

associated with user actions taking place during a prescribed interval of time.

16. The method of claim 1, wherein identifying a pattern within the data
representative of the fraudulent use includes
an analyst conducting an investigation, comprising
providing the inverted index with a query related to a suspected fraudulent
usage scenario of the application, and
the inverted index providing location information of data satisfying the

query.

17. The method of claim 16, comprising
providing the inverted index with a query related to at least one of a suspected

person, suspected time period, and suspected action type.

18. The method of claim 1, comprising
including programmable logic associated with the pattern into a matcher, and
the matcher automatically comparing at least a portion of the indexed data to the

pattern.

19, The method of claim 1, wherein
comparing at least a portion of the indexed data to the pattern includes searching

for a matching pattern within the data.

20. The method of claim 1, wherein
the pattern is a constraint, and
comparing at least a portion of the indexed data to the pattern includes searching

for data that satisfies the constraint,

21. The method of claim 1, wherein

the pattern is a constraint including Boolean operations, and

46

WO 2008/018939 PCT/US2007/011578

comparing at least a portion of the indexed data to the pattern includes evaluating

the Boolean expressions with respect to the indexed data.

22, The method of claim 1, further comprising

providing an alert including information about the fraudulent use.

23. The method of claim 1, further comprising

generating a report including information about the fraudulent use.

24, A method for identifying a fraudulent use of an application using an existing log
of data generated from uses of the application, the method comprising:

providing the existing log of data;

aggregating the data;

providing reference data corresponding to the log of data;

extending the log of data with the corresponding reference data;

including entries for the extended data in an electronically searchable inverted
index;

identifying a pattern within the extended log of data representative of the
frandulent use; and

comparing at least a portion of the inverted index to the pattern to identify the

fraudulent use.

25. A method for identifying a fraudulent use of an application using an existing log
of data generated from uses of the application, the log of data .including a plurality of
fields, the method comprising:

providing the existing log of data;

providing reference data, the reference data including a plurality of fields, at least
one reference data fields corresponding to one of the fields of the log of data;

extending at least one of the fields of the log of data with the corresponding
reference data;

including entries for the data in an electronically searchable inverted index;

47

WO 2008/018939 PCT/US2007/011578

identifying a pattern within the extended log of data representative of the
. fraudulent use, wherein the pattern involves a reference data field; and

comparing at least a portion of the inverted index to the pattern to identify the

fraudulent use,

48

WO 2008/018939 PCT/US2007/011578

What are the greatest
w areas of risk?

How can we quantify
real and potential loss |kl

100 fiom risk events?

How are we sure that
controls are working?

How can we prevent H
loss before it occurs?

FIG. 1

1/29

WO 2008/018939

F?ji-gma “’nl
2307 ' ii };:’g: ite
‘-g‘ﬁ}
210 g
250

PCT/US2007/011578

2/29

PCT/US2007/011578

WO 2008/018939

008 ()

ql¥E

T R

e

!

13

o0s5¢e

qose

B0SE

Oid

W
i
i

T M 7. %0¢

3408

NUITWAO D Ut

SL-Fom X On

=\ e

i
|

3/29

WO 2008/018939 PCT/US2007/011578

4Q6¢ ’ 400
410

Customer Account Acckss Report
Granch Oifice: LaMont Steest

401

Yevsenseserorevve

-
*
-
.

ic : 3 el When compared withMary
406s N i TOMNEY Lomee-T e Crithand otherfelersal
' o i ' H the Lalont Stroet branch,

§ John Frerch has accessad
custenisy ascountsin

N !.,4,,, _ 8 onusualiv Righ numisers,
AR suaesting Identity Thedt,
..... -402 —* -~ . e 402
404

402

FIG, 4

4/29

WO 2008/018939

501 \r Define a Usage |

502 1

Scenatio
(Cperation)

Run Enterprise
Software
Application(s)
According to the
Usage Scenarios

604 Trace Events of the
Usage Scensario
(Operation)
508
Determine
Signature Profile

608 \

|

Tag Enterprise
Software
Application(s)
According to the
Signiature Profile

FIG. 5A

5/29

PCT/US2007/011578

PCT/US2007/011578

WO 2008/018939

poday
sjeisUsn

Vs

L

28y |/

\ﬁw%c@m BA

alield
edmeuBis aagy
a1y} s sBe |
pagosiag Su yaen
ol / oleuang
paywsjoy ¢ [eucHipRY 8ty
|y} UG Jogy 0iu] 1091103

/.wa

< e 85 ‘Oid
alepag /I
045 088
885 \
ON
655
\» OREUBDS

sbey,
payesy oyp jo
jssgng e 10aeg

s

/F 0og

8{Loid abesy) [euolppY
Y sy jo Buyspuon /f.
N\ 855

anpsyng

(Suppmizdp) cpeusog
&besy puoippy Ue 0)
Buipipony {sjupieoyddy
SIBMYGS SSHION uny

B gy

/. %5

6/29

PCT/US2007/011578

WO 2008/018939

9 Ol
\lamm \lomm o@ot//
(o - iR
¥OL93434 xm.sﬁzuw | o o
MIHOLWR [S
.. A6 089 \Lso 35VEVAYA
NI IH0Nd Y
| sunivNels bl
059 y 049
{shfolLYariday
s| H30VHL VL4058
T ASMANILN
74 ¥ H .
WOLVHINGD W3

X

LHO43Y

069

A

7/29

WO 2008/018939 PCT/US2007/011578

700

710a | 701 T

Appiication
user

MONTTORED
ENTERPRISE

710p APPLICATION 7104
T
Apniteation
v Application
User
Deployed Software: | J 702
Insfrumentation Sulte :
s W e s
' GRAPRICAL
DATA ACCESS OBIECT ACCESS LAYER
LAYER — G ——— RI= %g:rj%c{mcg
FIG.7

8/29

PCT/US2007/011578

WO 2008/018939

_ Juomefeuet:
0z8 A

: weyshs |
<L EEs

(~ s
|
: ymied H/»iw

. JULINOI SoyvwW o soBueyd MEus
wg < o SRS et »

- pure $5909% Sytofdxg » -

r 4

sassanoid ;
JUNpIJE
801|dwicaoe 0}
" puswiAed soMei

%m.\

ang

ot m e tem—— b . —

i
i
4

M / .

‘....:-u

8 "Old

Y

womsStuen

WY s \ JURO0DY ¢ |
R

o
swajsAg|

|
p10081 3Un00R |

03 $53008 NYOJARY ¢

Lo AL e e ayt S SR e e ey

afueyo
SSOIPPE SULCUS]
i {

et

"susweSeueiu

.\ PmME00E SBUIAES
zege-) | DuESURROGD.

}
swaisAg
_ {s)e8ae) SOUNESP] »
I\ SIe}sAS Junexoe
28— | 0y'55a008 JURNOY »

‘wm,.mmoacum

Wnoose
4o | JUBLLNOD SEIRARDE
sadoldws jued

e

———

3

SLNNQODY LNFMHQQ WOMS JA3HL LVIHISE

9/29

PCT/US2007/011578

WO 2008/018939

.“ &cmm _m

006

V8 9ld

wslony

wv éﬂmo ’

T =oes

SIEJYIRBH PIOSUDT g
sajwg pus Depea ﬁﬁ
ot seodiory § ..U.@

Buspseg wewisas| £1-3
SOSABYUIROAN fuoslo -y
SR (LU PIOSUDT ﬁ,g
SSOIAIG PR {pey plosuey i

- sueeleen £H

Buppag ety £

segimeg souaby -1

Guneg 5188

SIS JRiadn peousg 38

spaoigd £31E

oAl £ €

gy Joddng ogensuupy 3 9.

J0pEEIARY 33d]I08 g.&cmﬁmé &

dnjeg josfod
NOMOZ130 aNvHL 1V3HRSTH

10/29

PCT/US2007/011578

WO 2008/018939

a6 ‘Oid
. suedey
ey
: =
=g J
816 — | sossa
l./... . 80«&
[~ yrionoy suwopng oy psatdey £, -
-3 RPANSSOIRY B0 So- @
8l6 AN dmbis soueppg pmosoy sowoirg S-3
L6 uboRiE) Zo-@
1R : Ry E
. preid RSiosy jawooy wRuNeq {33-53
Supy ooy 3-8).
IR0 D‘M
wegarpay 3@ §

S siopin s 33 e

{asadsjog wojuaiey) g jeuojie Piodo) § -

T S T T T P T T)

. dnjeg ss300.y
NOLLOZL3A anvdd Ly3HOS3

/mvm

11/29

PCT/US2007/011578

J6 'Sl .
[£o}
W
(5]
g, iy MIBE v by [
i {dry) 31800 wurg oy [J
itp, {fr) BHOWRGT Byweniy [
ogep, sy OHOTIHOT Ploumng w1
g WA W 0 owmy msRL | ow(]
o tyuray | BYIRY § ity | PRy, RAid [
:ngmmﬁ%ﬁgmaugghﬁa A L
ﬂ it

-Egm Worg

5 wmds £19 |
. 1} laeg proazysnuonng Eq m
workaL g
oG L.m
GlaTRPL umAw

; Tl
z Eﬁaﬁmﬁg«&ﬁq Hac]
Buynty wrpaoig £ DLw

Wy £ m_

. dakjel Es&% @ F myeryed 219
\\1 :

WO 2008/018939

1e6

dajg ssea0id Yorg Joy djsg ajord ainfeubls /(0E6
NOLLOIIIC aNvad LyaHOSS

12/29

PCT/US2007/011578

WO 2008/018939

ov6 /

THLEQ Vi Uy jeang unoms vy [WS GIERISISE

TEOD SN Ipaesiad Arepaney o2 L Was GLIZE6H¥S

20ET Wi Tpa0ainD py SR INGIE S0 . s Yaeddyrtes)
. FIRPDY | . A CIYT 7] >

Iy doysen 4 SLosnY

NUTT JSUD)

W RN UHDIERG KA
HOVEIOUSIRN PI0R3 (5]

. ooy junoody
NOLLDZLEA GMved Ly3HOS3

«/{ gp6

13/29

PCT/US2007/011578

WO 2008/018939

36 ©I3

seentt . REEn) Suppaty’
co6 T R Stunrs
swvna e LMY od4s Wned1y
Apunung punossy
96

. : nﬁsu [} 4 Eﬂu&m

o] yy
Nﬁ«ném UOYY oM
g& souayg sdioy vcaoniﬁt&.mn* seppy

uwup.n& THUTHIEY -._q_ [FEr JEETE TR
~UOTjELiIoNuY Joiaisns

- [Pupg Jrovjees _ P

. 9Bueyd ssappy
NQILO3130 anvyd LYEHOSS

296

14/29

PCT/US2007/011578

WO 2008/018939

46 Ol

i

.ml.L_

- " i
e G585 sag o

E.Bu.unnt.x_

186

#hox |1 21O S

Mol E

fwia] sipn fug eoieapiia (el

. .
(2] nEEauEuﬂh_ wiaady el ¢ ou:u...:m.uuuz..fn \ l t@
WY F2IGOIT SO0SXYS] wopaasuniy 1y swertoteit] quiaoasy 4

L\. ale
sy
o)
uyy
. 086

N

S0£83802E] gt anuesns wnooot BWERIN) cowen

sk oxBN
NOILO3130 oNvy4 LY3HOS3

- sBuAes

mne?E.as..: sy

15/29

PCT/US2007/011578

WO 2008/018939

V01 "Dl

.
.
I3
.
.
.
]
.

sje

(3o Aq SjuapIoU])
yodoy psjeisuap) sjduweg

NOILDHLEd dNVdd LVHHOSH

piow] ss2505] PriEs] £

000t

16/29

PCT/US2007/011578

WO 2008/018939

g01 ‘DI

g

0201

(zoyenediag £q spusprony)
yodsy patelation) sjdureg
NOLLOF13d Anvyd LVEHOSH

17/29

PCT/US2007/011578

WO 2008/018939

201 Oid
— -
2 2 2 2
= P o e
[To0eEUeN YoBLING.00°T ST | 0063, LGIE] 565
| TI3L SWEL{WV-Cra S0/9T/T__J 005§ ~URAUSULOLIO00s -
51 SUB[|WY 08 €0/GTTT | 0OER oSS Pa3|zze .
TaaL SHEC|WY 0038 S/GHT 1 02§ [EIREY
~TSEeUE BT | WS SET SO/ | 0058 3504 SPELLEL0BTL
) § T e RG]~ —Giueg] Joqiung JUNCOSY

(pneid Aq pepally siunoaoy)
Hodey pejeisuas ejdwes

NOILLOZL30 anvdd 1vaH3s3

/I otal

18/29

PCT/US2007/011578

WO 2008/018939

11Ol
s e 2
uo spuadop syeo8 syexodios s jo ymsxnd Em.%uuwm HSLL 3T 218. s[eo3 Snmsamwom
ScopezuEgIe oy :seoneandde asuadaayms WOy snfea + ayerodiod muwmsmﬂ.oﬁ pus .mﬂwwwwﬁ“ouuowﬂw%ouhwu
us ‘sasspaord. AN . POAIERL] °S[BOS S0UBILIOLISU 3 : TAS]
p Ss930.1d.ss301SNq WO onfea Joadxs sosuydaajuy z 0} JEONLI S aneA vouomdu.nv JO UOnuZIEAX [BN]D8 Y Y, ¢
\1.5: .
|\L supieonddy | v_m._m v (SoueRpL]
" S1adaape ¢ : . siyjenen) -
oLy /- | esgeg asydionry ranen || SR i ﬂ_w A
T 8011
. 885390/
|\L ssamishy
POLL -/ |, S S0UBUHONEd
. api0di0)
/l 60t
‘suogeanddy astadisyuy sx0m 10 awo Aq pegroddns
ST TORUI9X? 5355200.4d SSOUSTY "WOPMDIIXD puB USis0p :
$59001d ssouIsng 2ALID sje0g. ajwodioo Rircatdily 1/
I 00LL

19/29

PCT/US2007/011578

WO 2008/018939

AZARE

AR

R AT
SEATL ;
HiE ;

avaetd

DNIYOLINOW SSI00Yd LISIA LNHILYd

LIt

20/29

WO 2008/018939 PCT/US2007/011578

1220

AT To
Seddan
.

1226

FIG. 12B

1226

21/29

PCT/US2007/011578

WO 2008/018939

1274

Wil

i By N

P
i
&

e
i

Tl "DId

22/29

PCT/US2007/011578

WO 2008/018939

v e s a s ew -

8 W e et =

Sael

SR IO/PUE SR,

00E} —~ gl old

P
»
e

ilifbtl.ﬁﬁ!to
c o mr > Yo

[4

*SRLBAR0G e MonEuassngs

SHOdRI A e e %
1 2 -
L]

w g |
ssousngaieanty | | sbesyjergoesube || pepind, s
wepBupnadpue™ ;) seyoimn Bujgaue™ | | sameuBig pafoideg

/s oSt

eeerd[Tres

-
*
'y
*
A

| snonupuoo pue engeiar; | B
‘(BRI S LEY w SR O] SjUeAn
JuBlaIRSEaw P2 Raepop i - wapeaydde emdeD

——— — A . o W TS lu Smocwm

23/29

PCT/US2007/011578

WO 2008/018939

oz <

»

¥l Oid

1] 343 A

21 ‘otssuaegiote

M .m. 8 .|..|...l|..l

* "SIRSIS YR
; N m i Pl -
_UOWRINSERYY : @ e
 Buiiepon :

: torl

: L))
\ \ ‘\‘

T oow

aIroajiyose (2As] LDIY ;23S LopEjuD

/.. vl | ,@zm%ga SoUERS

yevt

(4448

m. . ..%éﬁm&.ﬁmﬁ

P e s 7;
RSHTAGETASRE

&gﬂgmﬁﬁm

o me [T S
nll A o 11 2 it S B e 1 e e

! 8558&&:._&
| =S ﬂgaebﬁn*

10 0 b et it et et et e &

24/29

PCT/US2007/011578

WO 2008/018939

. S} 'Dld
zist . 161

I TN
£ s
N A

TR

.

TTas SR By
FEE LS mwau..
ot

Afiojouyasy
m - UDHEIUSWINGSY] IRMI0S

' . -~ -
17 P R AL B s X SRR T ot

(pebiiord 0 WamsnD)
{sjuoneaddy asud iUl

e
T PRI N L g R

e ’

25/29

PCT/US2007/011578

WO 2008/018939

9l Ol

YO ‘Meipued) -
-dH “lloN -G “DiNg

109}

> -y

Anolsy ‘atemndiuioy
> ‘puepog ‘feuoney

Liol

D

EOljeLLIojY] ‘souboD
‘ABajeliSolo ‘SvS

JoSOWN ‘Mol |
‘Yujocebuey) ‘euguny

319493411

26/29

PCT/US2007/011578

WO 2008/018939

8ousping 7] aineubls
0402 0802
_r Jeyoiein
0602
Ishjeuy m _
0902
E <~ 0802
<
AI
A Av
S ULIA / ‘_v _
]] L]
] A/] «/] <0802
D 20e02 D 90602 D B0E0Z
T T i
3020¢ qoeoe BOZ0C & Geoe
T T T N
< oloz
L} enbi 20102 q0102 20102 0002

27129

PCT/US2007/011578

WO 2008/018939

81 s131y

21n1eud1s 81e81) suodal 91eIaUAD) SUoTe anss|
] Y
ov1z \sore /\. \oorz
ojeSnsean] OLTRU29S o3esn Jus[npney 19312

0c1Z

4/\

BIED SAIYIIY Ocie
~
BlEp puaxXg , vz
h
zjep S0 mer ajederdly 0tte

001¢

28/29

PCT/US2007/011578

WO 2008/018939

6} ainbi4 .
. Spuoss gg tim dnyoo

" 3

SPUODSS 0F UILIIM UL,

Spuedes g WM Juud, oN

spuodas Qg UM, dnjoo), ON

29/29

	Page 1 - front-page
	Page 2 - description
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - description
	Page 34 - description
	Page 35 - description
	Page 36 - description
	Page 37 - description
	Page 38 - description
	Page 39 - description
	Page 40 - description
	Page 41 - description
	Page 42 - description
	Page 43 - description
	Page 44 - description
	Page 45 - claims
	Page 46 - claims
	Page 47 - claims
	Page 48 - claims
	Page 49 - claims
	Page 50 - drawings
	Page 51 - drawings
	Page 52 - drawings
	Page 53 - drawings
	Page 54 - drawings
	Page 55 - drawings
	Page 56 - drawings
	Page 57 - drawings
	Page 58 - drawings
	Page 59 - drawings
	Page 60 - drawings
	Page 61 - drawings
	Page 62 - drawings
	Page 63 - drawings
	Page 64 - drawings
	Page 65 - drawings
	Page 66 - drawings
	Page 67 - drawings
	Page 68 - drawings
	Page 69 - drawings
	Page 70 - drawings
	Page 71 - drawings
	Page 72 - drawings
	Page 73 - drawings
	Page 74 - drawings
	Page 75 - drawings
	Page 76 - drawings
	Page 77 - drawings
	Page 78 - drawings

