

**(12) STANDARD PATENT
(19) AUSTRALIAN PATENT OFFICE**

(11) Application No. AU 2014254086 B2

(54) Title
Pertuzumab variants and evaluation thereof

(51) International Patent Classification(s)
A61P 35/04 (2006.01) **G01N 33/53** (2006.01)
C07K 16/32 (2006.01)

(21) Application No: **2014254086** (22) Date of Filing: **2014.04.15**

(87) WIPO No: **WO14/172371**

(30) Priority Data

(31) Number **61/812,603** (32) Date **2013.04.16** (33) Country **US**

(43) Publication Date: **2014.10.23**
(44) Accepted Journal Date: **2018.07.05**

(71) Applicant(s)
Genentech, Inc.

(72) Inventor(s)
Gennaro, Lynn A.;Kao, Yung-Hsiang;Zhang, Yonghua

(74) Agent / Attorney
Griffith Hack, GPO Box 1285, Melbourne, VIC, 3001, AU

(56) Related Art
US 7560111 B2
JUNNTILA, T.T. et al., Superior In vivo Efficacy of Afucosylated Trastuzumab in the Treatment of HER2-Amplified Breast Cancer. CANCER RESEARCH, 2010, vol. 70, no. 11, pages 4481-4489
HARRIS, R. J., Heterogeneity of recombinant antibodies: linking structure to function. DEVELOPMENTS IN BIOLOGICALS, 2005, vol. 122, pages 117-127

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization

International Bureau

WIPO | PCT

(10) International Publication Number

WO 2014/172371 A3

(43) International Publication Date

23 October 2014 (23.10.2014)

(51) International Patent Classification:

C07K 16/32 (2006.01) A61P 35/04 (2006.01)
G01N 33/53 (2006.01)

(21) International Application Number:

PCT/US2014/034200

(22) International Filing Date:

15 April 2014 (15.04.2014)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

61/812,603 16 April 2013 (16.04.2013) US

(71) Applicant (for all designated States except AL, AT, BE, BG, CH, CN, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IN, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TR): GENENTECH, INC. [US/US]; 1 DNA Way, South San Francisco, California 94080 (US).

(71) Applicant (for AL, AT, BE, BG, CH, CN, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IN, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TR only): F. HOFFMANN-LA ROCHE AG [CH/CH]; Grenzacherstrasse 124, CH-4070 Basel (CH).

(72) Inventors: GENNARO, Lynn A.; c/o Genentech Inc., 1 DNA Way, South San Francisco, California 94080 (US). KAO, Yung-Hsiang; c/o Genentech, Inc., 1 DNA Way, South San Francisco, California 94080 (US). ZHANG, Yonghua; c/o Genentech, Inc., 1 DNA Way, South San Francisco, California 94080 (US).

(74) Agents: LEE, Wendy M. et al.; Genentech, Inc., Mail Stop 49, South San Francisco, California 94080 (US).

(81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, KM, ML, MR, NE, SN, TD, TG).

Published:

- with international search report (Art. 21(3))
- before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments (Rule 48.2(h))
- with sequence listing part of description (Rule 5.2(a))

(88) Date of publication of the international search report:

8 January 2015

WO 2014/172371 A3

(54) Title: PERTUZUMAB VARIANTS AND EVALUATION THEREOF

(57) Abstract: The present application discloses variants of Pertuzumab. In particular, it discloses: an unpaired cysteine variant comprising Cys23/Cys88 unpaired cysteines in one or both variable light domains of Pertuzumab, an afucosylated variant of Pertuzumab, a low-molecular-weight-species (LMWS) of Pertuzumab, and a high-molecular-weight-species (HMWS) or Pertuzumab. The application further discloses the isolated variants, compositions, pharmaceutical compositions, and articles of manufacture comprising the variants, as well as methods of making and characterizing the variants and compositions thereof.

PERTUZUMAB VARIANTS AND EVALUATION THEREOF

This non-provisional application claims the benefit of U.S. Provisional Application Serial No. 61/812,603, filed April 16, 2013, which is incorporated by reference in entirety.

5

Sequence Listing

The instant application contains a Sequence Listing hereby incorporated by reference in its entirety.

10

Field of the Invention

The present invention concerns variants of Pertuzumab. In particular, it concerns: an unpaired cysteine variant comprising Cys23/Cys88 unpaired cysteines in one or both variable light domains of 15 Pertuzumab, an afucosylated variant of Pertuzumab, a low-molecular-weight-species (LMWS) of Pertuzumab, and a high-molecular-weight-species (HMWS) or Pertuzumab. The invention further concerns the isolated variants, compositions, pharmaceutical compositions, and articles of manufacture comprising the variants, as well as methods of making and characterizing the variants and compositions thereof.

20

Background of the Invention

Pertuzumab (PERJETA®) (also called rhuMAb 2C4) is a monoclonal antibody (MAb) which is the first of its class in a line of agents called “HER dimerization inhibitors.” By binding to HER2, it inhibits dimerization of HER2 with other HER receptors and thus inhibits tumor growth. Pertuzumab received United States Food and Drug Administration (US FDA) approval for the treatment of 25 HER2-positive metastatic breast cancer on June 8, 2012.

US Patent No. 7,862,817 (Adams et al.) describe a humanized variant of the 2C4 antibody called humanized 2C4 version 574 or recombinant humanized monoclonal antibody 2C4 (rhuMAb 2C4). The antibody bound Subdomain II in the Human Epidermal Growth Factor Receptor 2 (HER2) extracellular domain (ECD). The rhuMAb 2C4 antibody was produced on a laboratory scale and 30 shown to bind to HER2 and inhibit growth of MDA-175 cells (which express HER2 at a 1+ level)

and MCF7 xenografts implanted into mice. See, also, Adams et al. *Cancer Immunol. Immunother.* 55(6):717-727 (2006)

US Patent No. 6,339,142 (Blank and Basey) describes a HER2 antibody composition comprising a mixture of anti-HER2 antibody and one or more acidic variants thereof, wherein the 5 amount of the acidic variant(s) is less than about 25%. Humanized monoclonal antibody 4D5 variant 8 (humMAb4D5-8 or Trastuzumab) is the exemplified HER2 antibody.

US Patent No. 7,560,111, US Patent No. 7,879,325, and US Patent No. 8,241,630 (Kao et al.) describe a variant of Pertuzumab (rhuMAb 2C4) comprising an amino terminal leader extension (VHS-) on one or both light chains of the antibody, the so-called “VHS-variant.” When, Reference 10 Material (Phase I), Lot S9802A (Phase II), and 400 L scale Process Development Material were tested for free thiol using the Ellman’s analysis at native conditions, free thiol level was below the limit of detection in all materials tested. From 1-2% of the Pertuzumab in the compositions tested were afucosylated (G0-F) as determined by capillary electrophoresis (CE). See Table 5 of US Patent No. 7,560,111 (Kao et al.).

15 WO 2009/099829 (Harris et al.) describe acidic variants of pertuzumab including: deamidated variant, glycated variant, disulfide reduced variant, non-reducible variant, and sialylated variant. The variants were characterized as disclosed as follows:

Table 1: Acidic Variants in WO 2009/099829 (Harris et al.)

Methods for Characterization of Acidic Variants		
Method	Variants Detected	Variant Name
CEX +/- Sialidase Treatment	6% Sialylated	Sialylated Variant
Reduced CE-SDS	1.5% Incompletely Reduced	Non-Reducible Variant
Non-Reduced CE-SDS	6% Reduced Disulfide	Disulfide Reduced Variant
Boronate Chromatography	3.5% Glycated (Higher Order)	Glycated Variant
Peptide Map	Deamidated	Deamidated Variant

CEX = cation exchange. CE-SDS = Capillary Electrophoresis with Sodium Dodecyl Sulfate.

20 The experimental method used to characterize the disulfide reduced variant in WO 2009/099829 (Harris et al.), non-reduced CE-SDS of intact antibody, evaluated reduced inter-chain disulfide bonds, rather than intra-chain disulfide bonds.

Zhang et al. *Anal. Chem.* 84(16):7112-7123 (2012) report a recombinant antibody (mAb A) having unpaired cysteines (Cys22 and Cys96) in the variable heavy (VH domain) thereof. The

unpaired cysteines were found to have no significant impact on binding of the antibody to CD20, and mAb A with unpaired cysteines was fully active in a potency assay (complement-dependent cytotoxicity, CDC, assay).

WO 2009/009523 (Kao et al.) discloses prevention of inter-chain disulfide bond reduction

5 during recombinant production of the ocreclizumab (rhuMAb 2H7) antibody which binds CD20.

Harris, R. *Dev. Biol.* (Basel, Switzerland) 122: 117-127 (2005) disclosed unpaired cysteines (Cys22 and Cys96) in the variable heavy (VH) domain of omalizumab, a humanized anti-IgE antibody. The unpaired cysteine form had significantly lower potency.

It is to be understood that if any prior art publication is referred to herein, such reference does not constitute an admission that the publication forms a part of the common general knowledge in the art in Australia or any other country.

Summary of the Invention

The experimental data herein concerns variant forms of Pertuzumab, including an unpaired cysteine variant, afucosylated variant, low-molecular-weight-species (LMWS), and high-molecular-weight-species (HMWS). Means for identifying, characterizing, and quantifying these variants are valuable in the manufacture and quality control methods for the Pertuzumab drug composition.

Thus, in a first aspect, the invention concerns a composition comprising Pertuzumab and unpaired cysteine variant thereof, wherein the unpaired cysteine variant comprises Cys23 and Cys88 in both variable light domains of Pertuzumab and Cys23/Cys88 unpaired cysteines in one or both variable light domains of Pertuzumab. The unpaired cysteine variant includes a heterodimer variant (comprising Cys23/Cys88 unpaired cysteines in only one variable light domain of Pertuzumab) and/or a homodimer variant (comprising Cys23/Cys88 unpaired cysteines in both variable light domains of Pertuzumab).

The composition optionally further comprises one or more additional variants of Pertuzumab such as afucosylated variant, low-molecular-weight-species (LMWS) variant, high-molecular-weight-species (HMWS) variant, glycated variant, disulfide reduced variant, non-reducible variant, deamidated variant, sialylated variant, VHS-variant, C-terminal lysine variant, methionine-oxidized variant, G1 glycosylation variant, G2 glycosylation variant, and non-glycosylated heavy chain variant.

Also disclosed is a composition comprising Pertuzumab and an afucosylated variant of Pertuzumab, wherein the amount of the afucosylated variant is from 0.9 to 4.1% of the composition.

In one embodiment, the composition comprises Pertuzumab and an afucosylated variant of Pertuzumab, wherein the amount of the afucosylated variant is greater than 2% of the composition. According to this embodiment, the amount of the afucosylated variant is greater than that reported in US Patent No. 7,560,111, US Patent No. 7,879,325, and US Patent No. 8,241,630 (Kao et al.).

5 Also disclosed is a composition comprising a mixture of Pertuzumab, low-molecular-weight species (LMWS) of Pertuzumab, and high-molecular-weight-species (HMWS) of Pertuzumab, wherein the amount of LMWS is \leq 1.6% and the amount of HMWS is \leq 1.7%.

10 Also disclosed is a composition comprising a mixture of Pertuzumab, Peak 1, and Peak 2, wherein the amount of Peak 1 is \leq 0.5% and the amount of Peak 2 is \leq 1.0% as measured by reduced capillary electrophoresis sodium dodecyl sulphate (R-CE-SDS) assay.

15 A second aspect provides a composition comprising Pertuzumab and (a) unpaired cysteine variant thereof, wherein the unpaired cysteine variant comprises Cys23 and Cys88 in both variable light domains of Pertuzumab and Cys23/Cys88 unpaired cysteines in one or both variable light domain thereof and (b) an afucosylated variant of Pertuzumab, wherein the amount of the afucosylated variant is from 2% to 4.1% of the composition.

20 A third aspect provides an isolated variant of Pertuzumab, wherein the isolated variant comprises: (a) an unpaired cysteine variant of Pertuzumab, wherein the variant is a heterodimer variant comprising Cys23 and Cys88 in both variable light domains of Pertuzumab and Cys23/Cys88 unpaired cysteines in only one variable light domain thereof or (b) an unpaired cysteine variant of Pertuzumab, wherein the variant is a homodimer variant comprising Cys23 and Cys88 in both variable light domains of Pertuzumab and Cys23/Cys88 unpaired cysteines in both variable light domains thereof.

25 A fourth aspect of the invention concerns a pharmaceutical composition comprising the composition of the first or second aspect or the isolated variant of Pertuzumab of the third aspect and one or more pharmaceutically acceptable excipients.

A fifth aspect provides a kit comprising a container with the pharmaceutical composition of the fourth aspect therein, and a package insert with prescribing information instructing the user thereof to use the pharmaceutical composition to treat a cancer patient.

30 A sixth aspect provides a method of treating a patient with a HER2-positive cancer or a low HER3 cancer comprising administering the composition of the first or second aspect, the isolated

variant of Pertuzumab of the third aspect or the pharmaceutical composition of the fourth aspect to the patient.

A seventh aspect provides use of the composition of the first or second aspect, the isolated variant of Pertuzumab of the third aspect in the manufacture of a medicament for treating a patient with a HER2-positive cancer or a low HER3 cancer.

An eighth aspect provides a method for evaluating a Pertuzumab composition comprising: (1) measuring an amount of unpaired cysteine variant in the composition, wherein the unpaired cysteine variant comprises Cys23/Cys88 unpaired cysteines in one or both variable light domains of Pertuzumab.

Also disclosed is a method for evaluating the biological activity of a Pertuzumab composition comprising measuring the amount of afucosylated Pertuzumab variant in the composition to determine the antibody-dependent cell-mediated cytotoxicity (ADCC) activity of the composition, and confirming the amount of afucosylated Pertuzumab is in the range from about 0.9 to about 4.1%.

A ninth aspect provides a method for making a composition comprising: (1) producing a composition comprising Pertuzumab and one or more variants thereof, and (2) subjecting the composition so-produced to an analytical assay to evaluate the amount of the variant(s) therein, wherein the variant(s) comprise unpaired cysteine variant comprising Cys23/Cys88 unpaired cysteines in one or both variable light domains of Pertuzumab.

Also disclosed is an isolated variant of Pertuzumab, wherein the isolated variant comprises:

(a) an unpaired cysteine variant of Pertuzumab, wherein the variant is a heterodimer variant comprising Cys23/Cys88 unpaired cysteines in only one variable light domain of Pertuzumab; and/or (b) an unpaired cysteine variant of Pertuzumab, wherein the variant is a homodimer variant comprising Cys23/Cys88 unpaired cysteines in both variable light domains of Pertuzumab; and/or (c) afucosylated variant of Pertuzumab; and/or (d) high-molecular-weight-species (HMWS) of Pertuzumab; and/or (e) low-molecular-weight-species (LMWS) of Pertuzumab; and/or (f) Peak 1 fragment(s) of Pertuzumab, and/or (g) Peak 2 fragment(s) of Pertuzumab.

Also disclosed is a method for evaluating fragmentation of a Pertuzumab composition comprising measuring the amount of Peak 1 and Peak 2 in the composition by reduced capillary electrophoresis sodium dodecyl sulphate (R-CE-SDS) assay and confirming the amount of Peak 1 is $\leq 5\%$ and the amount of Peak 2 is $\leq 1.0\%$.

Brief Description of the Drawings

Figure 1 provides a schematic of the HER2 protein structure, and amino acid sequences for Subdomains I-IV (SEQ ID Nos.1-4, respectively) of the extracellular domain thereof.

Figures 2A and 2B depict alignments of the amino acid sequences of the variable light (VL) (Fig. 2A) and variable heavy (VH) (Fig. 2B) domains of murine monoclonal antibody 2C4 (SEQ ID Nos. 5 and 6, respectively); VL and VH domains of variant 574/Pertuzumab (SEQ ID Nos. 7 and 8, respectively), and human VL and VH consensus frameworks (hum κ 1, light kappa subgroup I; humIII, heavy subgroup III) (SEQ ID Nos. 9 and 10, respectively). Asterisks identify differences between variable domains of Pertuzumab and murine monoclonal antibody 2C4 or between variable domains of Pertuzumab and the human framework. Complementarity Determining Regions (CDRs) are in brackets.

Figures 3A and 3B show the amino acid sequences of Pertuzumab light chain (Fig. 3A; SEQ ID NO. 11) and heavy chain (Fig. 3B; SEQ ID No. 12). CDRs are shown in bold. Calculated molecular mass of the light chain and heavy chain are 23,526.22 Da and 49,216.56 Da (cysteines in reduced form). The carbohydrate moiety is attached to Asn 299 of the heavy chain.

Figures 4A and 4B show the amino acid sequences of Trastuzumab light chain (Fig. 4A; SEQ ID NO. 13) and heavy chain (Fig. 4B; SEQ ID NO. 14), respectively. Boundaries of the variable light and variable heavy domains are indicated by arrows.

Figures 5A and 5B depict a variant Pertuzumab light chain sequence (Fig. 5A; SEQ ID NO. 15) and a variant Pertuzumab heavy chain sequence (Fig. 5B; SEQ ID NO. 16), respectively.

Figure 6 depicts the structure of (main species) Pertuzumab including its 4 inter-chain and 12 intra-chain disulfide bonds, including the Cys23/Cys88 intra-chain disulfide bonds in each of the variable light (VL) domains. Domains depicted are: VL = variable light domain; VH = variable heavy domain; CL = light chain constant domain; CH1 = heavy chain constant domain 1; CH2 =

heavy chain constant domain 2; CH3 = heavy chain constant domain 3.

Figure 7 shows non-reduced (native) tryptic peptide maps of Pertuzumab.

Figure 8 depicts tryptic peptide maps of reduced and non-reduced Pertuzumab (full scale).

5

Figure 9 depicts tryptic peptide maps of reduced and non-reduced Pertuzumab (0-120 minutes).

10 Figure 10 depicts tryptic peptide maps of reduced and non-reduced Pertuzumab (120-204 minutes).

Figure 11 depicts hydrophobic interaction chromatography (HIC) analysis of papain-digested Pertuzumab.

15 Figure 12 depicts HIC analysis of papain-digested Pertuzumab (expanded view).

Figure 13 depicts HIC analysis of intact Pertuzumab. Peaks comprising: enriched free thiol homodimer (free thiols on both light chains), free thiol heterodimer (free thiol on one light chain), and wild-type homodimer (main species antibody) are shown.

20

Figure 14 depicts activity of Pertuzumab (Batch anti2C4907-2) in the antibody-dependent cell-mediated cytotoxicity (ADCC) assay.

25 Figure 15 depicts impact of G0-F level on ADCC activity. Samples tested were phase III Pertuzumab (G0-F = 2.2%) and phase I Pertuzumab (G0-F = 0.8%).

Figure 16 depicts capillary electrophoresis analysis of N-linked oligosaccharides released from Pertuzumab.

30 Figure 17 depicts capillary electrophoresis analysis of N-linked oligosaccharides released from Pertuzumab (expanded view). Note: The G1 oligosaccharide has two isomeric forms (labeled G1 and G1') wherein the terminal galactose residue is attached to either the α 1-6 branch or the α 1-3 branch.

35 Figure 18 depicts Reversed Phase-High Performance Liquid Chromatography (HP-HPLC) for Pertuzumab Fab and Fc (limited Lys-C digestion) separation. Limited Lys-C digested

Pertuzumab and limited Lys-C digested Pertuzumab then treated with N-ethylmaleimide (NEM) are shown.

Figure 19 depicts peptide mapping confirming Pertuzumab free thiol Fab contains free Cys23 and Cys88 at the light chain thereof. L2 peptide from the Fab containing free thiols was labeled by NEM and thus shifted in the peptide map analysis.

Figure 20 depicts schematically: main species or wild-type IgG1 (Fig. 20A), Cys23/Cys88 heterodimer variant (Fig. 20B), and Cys23/Cys88 homodimer variant (Fig. 20C).

10

Figure 21 depicts % G0-F versus ADCC activity for Pertuzumab batches using the assay in Example 4 herein.

15

Figure 22 depicts schematically binding of Pertuzumab at the heterodimeric binding site of HER2, thereby preventing heterodimerization with activated EGFR or HER3.

Figure 23 compares activities of Trastuzumab (which binds to Subdomain IV near the juxtamembrane domain of HER2 ECD) and Pertuzumab (which binds to Subdomain II of HER2 ECD).

20

Figures 24A and 24B depict oligosaccharide structures attached to an IgG antibody.

Figure 25 depicts Size Exclusion Chromatography (SEC) analysis of Pertuzumab (full scale).

25

Figure 26 depicts SEC analysis of Pertuzumab (expanded scale). Peaks include main peak (main species antibody), high molecular weight species (HMWS), and low molecular weight species (LMWS).

30

Figure 27 depicts Size Exclusion-High Performance Liquid Chromatography (SE-HPLC) analysis of Pertuzumab samples. Sample A is representative Pertuzumab Drug Product batch. Sample B is Pertuzumab batch subjected to light exposure at 1.2 mlux hours. Sample C is a Pertuzumab batch subjected to light exposure at 3.6 mlux hours. Sample D is a Pertuzumab batch subjected to acid treatment at pH 3.2. Sample E is purified basic variants from Ion Exchange-HPLC (IE-HPLC).

35

Figure 28 depicts concordance plot of analytical ultracentrifugation (AUC) sedimentation velocity and SE-HPLC analysis. The error bars represent two standard deviations from n=3 determination. All other data points denote a single determination. Circles denote samples that have

HMWS levels below the level of detection of the AUC.

Figure 29 depicts Capillary Electrophoresis Sodium Dodecyl Sulfate Analysis (CE-SDS) with Laser-Induced Fluorescence (LIF) detection of non-reduced Pertuzumab.

5

Figure 30 depicts CE-SDS-LIF of non-reduced (NR) Pertuzumab (expanded view).

Figures 31A and 31B depict SE-HPLC Chromatograms for Example 6: full scale (Fig 31A) and expanded scale (Fig. 31B).

10

Figures 32A and 32B depict non-reduced CE-SDS (NR-CE-SDS) electropherograms for Example 6: full scale (Fig. 32A) and expanded scale (Fig. 32B).

15

Figures 33A and 33B depict reduced CE-SDS (R-CE-SDS) electropherograms for Example 6: full scale (Fig. 33A), and expanded scale (Fig. 33B).

Figure 34 provides a comparison of NR-CE-SDS and R-CE-SDS electropherograms for an acid treated sample (expanded scale).

20

Figure 35 depicts correlation of Fab quantitation between NR-CE-SDS and SE-HPLC.

Detailed Description of the Preferred Embodiments

I. Definitions

In the claims which follow and in the description of the invention, except where the context requires otherwise due to express language or necessary implication, the word "comprise" or variations such as "comprises" or "comprising" is used in an inclusive sense, i.e. to specify the presence of the stated features but not to preclude the presence or addition of further features in various embodiments of the invention.

"Paired cysteines" herein refers to two cysteine residues that form a disulfide bond in a protein, such as an antibody. Such disulfide bond can be an inter-chain disulfide bond (e.g. disulfide bond between heavy and light chains of an antibody, or between two heavy chains of an antibody), or intra-chain disulfide bond (e.g. within a light chain of an antibody or within a heavy chain of an antibody). Most IgG1 antibodies comprise four inter-chain disulfide bonds and twelve intra-chain disulfide bonds. See Fig. 6.

An “unpaired cysteine variant” is a variant of a protein (e.g. an antibody such as Pertuzumab) in which one or more paired cysteines are not in the disulfide bonded state. Such unpaired cysteines may not have been paired to form a disulfide bond (e.g. when the protein originally folded into its tertiary structure) or may have formed a disulfide bond but which has later broken (e.g. during manufacture or upon storage). The unpaired cysteines are often referred to as free thiols or free sulfhydryls. In one embodiment, the unpaired cysteines are from an intra-chain disulfide bond. In one embodiment, the unpaired cysteines are in a light chain, e.g. a variable light domain of the antibody.

In one embodiment, the unpaired cysteine variant is a Cys23/Cys88 variant.

A “Cys23/Cys88” unpaired cysteine variant lacks an intra-molecular disulfide bond at cysteine residues 23 and 88 in one or both variable light domains of the antibody. See Fig. 20(b) and (c) herein.

5 A “homodimer variant” lacks Cys23/Cys88 disulfide bonds in both variable light domains of the antibody. See Fig. 20(c) herein.

A “heterodimer variant” lacks only one Cys23/Cys88 disulfide bond in one variable light domain of an antibody. See Fig. 20(b) herein.

10 An “afucosylated variant” is a glycosylation variant of an antibody in which one or both of the oligosaccharide structures attached to residue Asn299 of one or both heavy chains lacks fucose, e.g. lacks $Fuc\alpha(1\rightarrow 6)$, in the core oligosaccharide structure.

15 A “low-molecular-weight-species” or “LMWS” of Pertuzumab comprises a fragment of Pertuzumab that has a molecular weight less than that of main species or intact Pertuzumab (e.g. where the intact Pertuzumab has a molecular weight of about 145,197 Da measuring its peptide chains only). The LMWS can be detected by size exclusion high performance liquid chromatography (SE-HPLC) and/or non-reduced Capillary Electrophoresis with Sodium Dodecyl Sulfate (CE-SDS) for example as in Example 5. In one embodiment, the LMWS comprises or consists of “Peak 6” as obtained by CE-SDS (see, e.g., Example 5).

20 A “high-molecular-weight-species” or “HMWS” comprises a preparation of Pertuzumab having a molecular weight that is greater than the main species or intact Pertuzumab (e.g. where the intact Pertuzumab has a molecular weight of about 145,197 Da measuring its peptide chains only). The HMWS can be detected by size exclusion high performance liquid chromatography (SE-HPLC) and/or non-reduced Capillary Electrophoresis with Sodium Dodecyl Sulfate (CE-SDS) assay for example as in Example 5.

25 “Peak 1” herein refers to Pertuzumab fragment(s) which are of a size smaller than Pertuzumab light chain (LC). Peak 1 fragment(s) can be separated from main species Pertuzumab by CE-SDS assay, preferably by reduced CE-SDS (R-CE-SDS) assay. See, for example, Figure 33B, Table 16, and Table 18 herein. Preferably, the amount of peak 1 in a Pertuzumab composition is $\leq 0.5\%$. Optionally, the R-CE-SDS assay is carried out as described in Example 6 and the corrected peak area (CPA) provides the % peak 1 in a composition.

30 “Peak 2” herein refers to Pertuzumab fragment(s) which are of a size larger than Pertuzumab light chain (LC) and smaller than Pertuzumab non-glycosylated heavy chain (NGHC). Peak 2 can be separated from main species Pertuzumab by CE-SDS, preferably by reduced (R-CE-SDS) assay. Peak 2 excludes peak 3 that can appear during R-CE-SDS assay as explained in Example 6 herein. 35 See, for example, Figure 33B, Table 16, and Table 18 herein. Preferably, the amount of peak 2 in a Pertuzumab composition is $\leq 1.0\%$. Optionally, the R-CE-SDS assay is carried out as described in Example 6 and the corrected peak area (CPA) provides the % peak 2 in a composition.

“Fragmentation” refers to polypeptide chain cleavage, e.g. cleavage of Pertuzumab light chain and/or heavy chain. It does not include the dissociation of non-covalently associated polypeptide chains during NR-CE-SDS analysis, for example.

An “analytical assay” is an assay which qualitatively assesses and/or quantitatively measures 5 the presence or amount of an analyte (e.g. an antibody variant) in a composition. The composition subjected to the assay can be a purified composition, including a pharmaceutical composition.

A “Fab hydrophobic interaction chromatography assay” or “Fab HIC assay” comprises generating fragments (e.g. Fab fragments) of the antibodies in a composition (e.g. using papain 10 enzyme) and subjecting the antibody fragments thus generated to HIC in order to separate unpaired cysteine variants from main species Pertuzumab. An exemplarily such assay is disclosed in Example 1 herein.

A “HER receptor” is a receptor protein tyrosine kinase which belongs to the HER receptor family and includes EGFR, HER2, HER3 and HER4 receptors. The HER receptor will generally comprise an extracellular domain, which may bind an HER ligand and/or dimerize with another HER 15 receptor molecule; a lipophilic transmembrane domain; a conserved intracellular tyrosine kinase domain; and a carboxyl-terminal signaling domain harboring several tyrosine residues which can be phosphorylated.

The expression “HER2” refers to human HER2 protein described, for example, in Semba *et al.*, *PNAS (USA)* 82:6497-6501 (1985) and Yamamoto *et al.* *Nature* 319:230-234 (1986) (Genebank 20 accession number X03363).

Herein, “HER2 extracellular domain” or “HER2 ECD” refers to a domain of HER2 that is outside of a cell, either anchored to a cell membrane, or in circulation, including fragments thereof. The amino acid sequence of HER2 is shown in Fig. 1. In one embodiment, the extracellular domain 25 of HER2 may comprise four domains: “Subdomain I” (amino acid residues from about 1-195; SEQ ID NO:1), “Subdomain II” (amino acid residues from about 196-319; SEQ ID NO:2), “Subdomain III” (amino acid residues from about 320-488; SEQ ID NO:3), and “Subdomain IV” (amino acid residues from about 489-630; SEQ ID NO:4) (residue numbering without signal peptide). See Garrett *et al.* *Mol. Cell.* 11: 495-505 (2003), Cho *et al.* *Nature* 421: 756-760 (2003), Franklin *et al.* *Cancer Cell* 5:317-328 (2004), and Plowman *et al.* *Proc. Natl. Acad. Sci.* 90:1746-1750 (1993), as 30 well as Fig. 1 herein.

A “HER dimer” herein is a noncovalently associated dimer comprising at least two HER receptors. Such complexes may form when a cell expressing two or more HER receptors is exposed to an HER ligand and can be isolated by immunoprecipitation and analyzed by SDS-PAGE as described in Sliwkowski *et al.*, *J. Biol. Chem.*, 269(20):14661-14665 (1994), for example. Other 35 proteins, such as a cytokine receptor subunit (e.g. gp130) may be associated with the dimer. Preferably, the HER dimer comprises HER2.

A "HER heterodimer" herein is a noncovalently associated heterodimer comprising at least two different HER receptors, such as EGFR-HER2, HER2-HER3 or HER2-HER4 heterodimers.

"HER activation" refers to activation, or phosphorylation, of any one or more HER receptors. Generally, HER activation results in signal transduction (e.g. that caused by an 5 intracellular kinase domain of a HER receptor phosphorylating tyrosine residues in the HER receptor or a substrate polypeptide). HER activation may be mediated by HER ligand binding to a HER dimer comprising the HER receptor of interest. HER ligand binding to a HER dimer may activate a kinase domain of one or more of the HER receptors in the dimer and thereby results in phosphorylation of tyrosine residues in one or more of the HER receptors and/or phosphorylation of tyrosine residues in 10 additional substrate polypeptides(s), such as Akt or MAPK intracellular kinases.

"Humanized" forms of non-human (e.g., rodent) antibodies are chimeric antibodies that contain minimal sequence derived from non-human immunoglobulin. For the most part, humanized antibodies are human immunoglobulins (recipient antibody) in which residues from a hypervariable region of the recipient are replaced by residues from a hypervariable region of a non-human species 15 (donor antibody) such as mouse, rat, rabbit or nonhuman primate having the desired specificity, affinity, and capacity. In some instances, framework region (FR) residues of the human immunoglobulin are replaced by corresponding non-human residues. Furthermore, humanized antibodies may comprise residues that are not found in the recipient antibody or in the donor antibody. These modifications are made to further refine antibody performance. In general, the 20 humanized antibody will comprise substantially all of at least one, and typically two, variable domains, in which all or substantially all of the hypervariable loops correspond to those of a non-human immunoglobulin and all or substantially all of the FRs are those of a human immunoglobulin sequence. The humanized antibody optionally also will comprise at least a portion of an immunoglobulin constant region (Fc), typically that of a human immunoglobulin. For further details, 25 see Jones *et al.*, *Nature* 321:522-525 (1986); Riechmann *et al.*, *Nature* 332:323-329 (1988); and Presta, *Curr. Op. Struct. Biol.* 2:593-596 (1992). Humanized HER2 antibodies specifically include Trastuzumab and humanized 2C4 antibodies such as Pertuzumab as described and defined herein.

An "intact antibody" herein is one which comprises two antigen binding regions, and an Fc region. Preferably, the intact antibody has a functional Fc region. In one embodiment, "intact 30 Pertuzumab" has a molecular weight of about 145,197 Da measuring its peptide chains only.

The term "hypervariable region" when used herein refers to the amino acid residues of an antibody which are responsible for antigen-binding. The hypervariable region generally comprises amino acid residues from a "complementarity determining region" or "CDR" (e.g. residues 24-34 (L1), 50-56 (L2) and 89-97 (L3) in the light chain variable domain and 31-35 (H1), 50-65 (H2) and 35 95-102 (H3) in the heavy chain variable domain; Kabat *et al.*, *Sequences of Proteins of Immunological Interest*, 5th Ed. Public Health Service, National Institutes of Health, Bethesda, MD. (1991)) and/or those residues from a "hypervariable loop" (e.g. residues 26-32 (L1), 50-52 (L2) and

91-96 (L3) in the light chain variable domain and 26-32 (H1), 53-55 (H2) and 96-101 (H3) in the heavy chain variable domain; Chothia and Lesk *J. Mol. Biol.* 196:901-917 (1987)). "Framework Region" or "FR" residues are those variable domain residues other than the hypervariable region residues as herein defined.

5 The term "Fc region" herein is used to define a C-terminal region of an immunoglobulin heavy chain, including native sequence Fc regions and variant Fc regions. Although the boundaries of the Fc region of an immunoglobulin heavy chain might vary, the human IgG heavy chain Fc region is usually defined to stretch from an amino acid residue at position Cys226, or from Pro230, to the carboxyl-terminus thereof. The C-terminal lysine (residue 449 according to the EU numbering 10 system) of the Fc region may be removed, for example, during production or purification of the antibody, or by recombinantly engineering the nucleic acid encoding a heavy chain of the antibody. Accordingly, a composition of intact antibodies may comprise antibody populations with all K449 residues removed, antibody populations with no K449 residues removed, and antibody populations having a mixture of antibodies with and without the K449 residue.

15 Unless indicated otherwise, herein the numbering of the residues in an immunoglobulin heavy chain is that of the EU index as in Kabat *et al.*, *Sequences of Proteins of Immunological Interest*, 5th Ed. Public Health Service, National Institutes of Health, Bethesda, MD (1991), expressly incorporated herein by reference. The "EU index as in Kabat" refers to the residue numbering of the human IgG1 EU antibody.

20 A "functional Fc region" possesses an "effector function" of a native sequence Fc region. Exemplary "effector functions" include C1q binding; complement dependent cytotoxicity; Fc receptor binding; antibody-dependent cell-mediated cytotoxicity (ADCC); phagocytosis; down regulation of cell surface receptors (e.g. B cell receptor; BCR), etc. Such effector functions generally require the Fc region to be combined with a binding domain (e.g. an antibody variable domain) and 25 can be assessed using various assays.

25 A "native sequence Fc region" comprises an amino acid sequence identical to the amino acid sequence of an Fc region found in nature. Native sequence human Fc regions include a native sequence human IgG1 Fc region (non-A and A allotypes); native sequence human IgG2 Fc region; native sequence human IgG3 Fc region; and native sequence human IgG4 Fc region as well as naturally occurring variants thereof.

30 A "naked antibody" is an antibody that is not conjugated to a heterologous molecule, such as a cytotoxic moiety or radiolabel.

35 The term "main species antibody" or "wild type antibody" herein refers to the antibody amino acid sequence structure in a composition which is the quantitatively predominant antibody molecule in the composition. Preferably, the main species antibody is a HER2 antibody, such as an antibody that binds to Subdomain II of HER2, antibody that inhibits HER dimerization more effectively than Trastuzumab, and/or binds to a heterodimeric binding site on HER2. In one

embodiment, the main species antibody is one comprising CDR-H1 (SEQ ID NO: 17 or 23), CDR-H2 (SEQ ID NO: 18), and CDR-H3 (SEQ ID NO: 19), CDR-L1 (SEQ ID NO: 20), CDR-L2 (SEQ ID NO: 21 or 24) and CDR-L3 (SEQ ID NO: 22), the VL and VH amino acid sequences in SEQ ID NOs. 7 and 8, respectively (see Figs. 2A-2B), and optionally, the light chain amino acid sequences in SEQ ID NOs. 11 or 15 and heavy chain amino acid sequences in SEQ ID NOs. 12 or 16 (see Figs. 3A-3B and 5A-5B). In one embodiment, the main species antibody is Pertuzumab.

10 An antibody which “inhibits HER dimerization” is an antibody which inhibits, or interferes with, formation of a HER dimer or heterodimer. In one embodiment, such an antibody binds to HER2 at the heterodimeric binding site thereof. The most preferred dimerization inhibiting antibody herein is Pertuzumab.

A “heterodimeric binding site” on HER2, refers to a region in the extracellular domain of HER2 that contacts, or interfaces with, a region in the extracellular domain of EGFR, HER3 or HER4 upon formation of a dimer therewith. The region is found in Subdomain II of HER2 (SEQ ID NO: 2). Franklin *et al.* *Cancer Cell* 5:317-328 (2004).

15 A HER2 antibody that “binds to a heterodimeric binding site” of HER2, binds to residues in Subdomain II (SEQ ID NO: 2) and optionally also binds to residues in other of the domains of the HER2 extracellular domain, such as Subdomains I and III (SEQ ID NOs: 1 and 3), and can sterically hinder, at least to some extent, formation of a HER2-EGFR, HER2-HER3, or HER2-HER4 heterodimer. Franklin *et al.* *Cancer Cell* 5:317-328 (2004) characterize the HER2-Pertuzumab 20 crystal structure, deposited with the RCSB Protein Data Bank (ID Code IS78), illustrating an exemplary antibody that binds to the heterodimeric binding site of HER2.

An antibody that “binds to Subdomain II” of HER2 binds to residues in Subdomain II (SEQ ID NO: 2) and optionally residues in other Subdomain(s) of HER2, such as Subdomains I and III (SEQ ID NOs: 1 and 3, respectively).

25 For the purposes herein, “Pertuzumab” and “rhuMAb 2C4”, which are used interchangeably, refer to an antibody comprising the variable light (VL) and variable heavy (VH) amino acid sequences in SEQ ID NOs: 7 and 8, respectively. Figs. 22 and 23 herein illustrate exemplary biological functions of Pertuzumab. Where Pertuzumab is an intact antibody, it preferably comprises an IgG1 antibody; in one embodiment comprising the light chain amino acid sequence in SEQ ID 30 NO: 11 or 15, and heavy chain amino acid sequence in SEQ ID NO: 12 or 16. The antibody is optionally produced by recombinant Chinese Hamster Ovary (CHO) cells. The terms “Pertuzumab” and “rhuMAb 2C4” herein cover biosimilar or intended copies of the drug with the United States Adopted Name (USAN) or International Nonproprietary Name (INN): Pertuzumab.

35 For the purposes herein, “Trastuzumab” and rhuMAb4D5”, which are used interchangeably, refer to an antibody comprising the variable light (VL) and variable heavy (VH) amino acid sequences from within SEQ ID Nos: 13 and 14, respectively (see Figs. 4A-4B). Where Trastuzumab is an intact antibody, it preferably comprises an IgG1 antibody; in one embodiment comprising the

light chain amino acid sequence of SEQ ID NO: 13 and the heavy chain amino acid sequence of SEQ ID NO: 14. The antibody is optionally produced by Chinese Hamster Ovary (CHO) cells. The terms “Trastuzumab” and “rhuMAb4D5” herein cover biosimilar or intended copies of the drug with the United States Adopted Name (USAN) or International Nonproprietary Name (INN): Trastuzumab.

5 An Aamino acid sequence variant@ antibody herein is an antibody with an amino acid sequence which differs from a main species antibody. Ordinarily, amino acid sequence variants will possess at least about 70% homology with the main species antibody, and preferably, they will be at least about 80%, and more preferably at least about 90% homologous with the main species antibody. The amino acid sequence variants possess substitutions, deletions, and/or additions at certain 10 positions within or adjacent to the amino acid sequence of the main species antibody. Examples of amino acid sequence variants herein include deamidated antibody variant, antibody with an amino-terminal leader extension (e.g. VHS-) on one or two light chains thereof, antibody with a C-terminal lysine residue on one or two heavy chains thereof, etc, and includes combinations of variations to the amino acid sequences of heavy and/or light chains.

15 An Aacidic variant@ is a variant of the main species antibody which is more acidic than the main species antibody. An acidic variant has gained negative charge or lost positive charge relative to the main species antibody. Such acidic variants can be resolved using a separation methodology, such as ion exchange chromatography, that separates proteins according to charge. Acidic variants of a main species antibody elute earlier than the main peak upon separation by cation exchange 20 chromatography.

A Adisulfide reduced variant@ has one or more inter-chain disulfide-bonded cysteine(s) chemically reduced to the free thiol form. This variant can be monitored by non-reduced Capillary Electrophoresis with Sodium Dodecyl Sulfate (CE-SDS), *e.g.* as described in WO 2009/099829 (Harris et al.).

25 Herein, a Anon-reducible variant@ or “incompletely reduced variant” is a variant of the main species antibody that cannot be chemically reduced to heavy chain and light chain by treatment with a reducing agent such as dithiothreitol. Such variants can be assessed by treating the composition with a reducing agent and evaluating the resulting composition using a methodology that evaluates protein size, such as Capillary Electrophoresis with Sodium Dodecyl Sulfate (CE-SDS), for instance 30 using the techniques described in WO 2009/099829 (Harris et al.).

A Aglycosylation variant@ antibody herein is an antibody with one or more carbohydrate moieties attached thereto which differ from one or more carbohydrate moieties attached to a main species antibody. In one embodiment, the glycosylation variant has oligosaccharide structures attached to one or both heavy chains of an antibody, *e.g.* at residue 299 of the heavy chain. In one 35 embodiment, the main species antibody (*e.g.* Pertuzumab) comprises G0 oligosaccharide as the predominant oligosaccharide attached to its Fc region. Exemplary oligosaccharide structures attached

to IgG1 are depicted in Figs. 24A-24B. Examples of glycosylation variants herein include afucosylated variant, antibody with a G1 or G2 oligosaccharide structure, instead a G0 oligosaccharide structure, attached to an Fc region thereof (“G1 glycosylation variant” or “G2 glycosylation variant”), antibody with no carbohydrate attached to one or two heavy chains of the 5 antibody (“non-glycosylated heavy chain variant”), sialylated variant, etc, as well as combinations of such glycosylation alterations. See, e.g. US Patent 7,560,111 (Kao et al.).

Where the antibody has an Fc region, an oligosaccharide structure may be attached to one or two heavy chains of the antibody, e.g. at residue 299. In one embodiment, G0 is the predominant oligosaccharide structure, with other oligosaccharide structures such as G0-F, G-1, Man5, Man6, G1-10 G1(1-6), G1(1-3) and G2 being found in lesser amounts in the composition.

Unless indicated otherwise, a AG1 oligosaccharide structure@ herein includes G1(1-6) and G1(1-3) structures.

For the purposes herein, Asialylated variant@ is a variant of the main species antibody comprising one or more sialylated carbohydrate moieties attached to one or two heavy chains thereof. 15 A sialylated variant can be identified by evaluating a composition (for example by ion exchange chromatography) with or without sialidase treatment, e.g. as described in WO 2009/099829.

A Glycated variant@ is an antibody to which a sugar, such as glucose, has been covalently attached, e.g. to one or both light chains thereof. This addition can occur by reaction of glucose with a lysine residue on the protein (e.g. in cell culture media). A glycated variant can be identified by 20 mass spectrometry analysis of the reduced antibody evaluating the increase in mass of heavy or light chains. A glycated variant can also be quantified by boronate chromatography as explained in WO 2009/099829 (Harris et al.).

A Deamidated@ antibody is one in which one or more asparagine residues thereof has been derivitized, e.g. to an aspartic acid, a succinimide, or an iso-aspartic acid. An example of a 25 deamidated antibody is a pertuzumab variant, wherein Asn-386 and/or Asn-391 on one or two heavy chains of pertuzumab are deamidated. See WO 2009/099829 (Harris et al.), for example.

An Amino-terminal leader extension variant@ herein refers to a main species antibody with one or more amino acid residues of the amino-terminal leader sequence at the amino-terminus of any one or more heavy or light chains of the main species antibody. An exemplary amino-terminal leader 30 extension comprises or consists of three amino acid residues, VHS-, present on one or both light chains of an antibody variant, designated a “VHS-variant” herein. See, US Patent 7,560,111 (Kao et al.).

A “C-terminal lysine variant” refers to a variant comprising a lysine (K) residue at the C-terminus of the heavy chain thereof. See, US Patent 7,560,111 (Kao et al.).

35 A “methionine-oxidized variant” refers to a variant comprising one or more oxidized methionine residues therein, e.g. oxidized Met-254. See, US Patent 7,560,111 (Kao et al.).

The term "cancer" refers to the physiological condition in mammals that is typically characterized by unregulated cell growth. Examples of cancer herein include breast cancer (e.g. metastatic breast cancer), gastric (or stomach) cancer, ovarian cancer, primary peritoneal cancer, and fallopian tube cancer. Examples of cancer herein include HER2-positive cancer and low HER3 cancer.

5 A cancer or biological sample which "displays HER expression, amplification, or activation" is one which, in a diagnostic test, expresses (including overexpresses) a HER receptor, has amplified HER gene, and/or otherwise demonstrates activation or phosphorylation of a HER receptor.

A "HER2-positive" cancer comprises cancer cells which have higher than normal levels of 10 HER2. Examples of HER2-positive cancer include HER2-positive breast cancer and HER2-positive gastric cancer. Methods for identifying HER2-positive cancer include: assays that measure HER2 protein such as immunohistochemistry assay (IHC), assays that measure HER2-encoding nucleic acid such as *in situ* hybridization (ISH), including fluorescent *in situ* hybridization (FISH; see 15 WO98/45479 published October, 1998) and chromogenic *in situ* hybridization (CISH; see, e.g., U.S. Patent No. 4,933,294 issued June 12, 1990; and U.S. Patent 5,401,638 issued March 28, 1995); and 20 *in vivo* assays. Optionally, HER2-positive cancer has an immunohistochemistry (IHC) score of 2+ or 3+ and/or an *in situ* hybridization (ISH) amplification ratio ≥ 2.0 .

A "low HER3" cancer comprises cancer cells which have lower than normal levels of HER3. Examples of low HER3 cancers include ovarian, primary peritoneal, and fallopian tube carcinoma. See, for example, US Patent No. 7,981,418 (Amler et al.). In one embodiment, low HER3 is 25 determined based on HER3 mRNA expression levels (concentration ratio equal or lower than 2.81, as assessed by qRT-PCR on a COBAS z480® instrument).

The "epitope 2C4" is the region in the extracellular domain of HER2 to which the antibody 2C4 binds. In order to screen for antibodies which bind essentially to the 2C4 epitope, a routine 30 cross-blocking assay such as that described in *Antibodies, A Laboratory Manual*, Cold Spring Harbor Laboratory, Ed Harlow and David Lane (1988), can be performed. Preferably the antibody blocks 2C4's binding to HER2 by about 50% or more. Alternatively, epitope mapping can be performed to assess whether the antibody binds essentially to the 2C4 epitope of HER2. Epitope 2C4 comprises residues from Subdomain II (SEQ ID NO: 2) in the extracellular domain of HER2. 2C4 and Pertuzumab binds to the extracellular domain of HER2 at the junction of Subdomains I, II and III (SEQ ID NOs: 1, 2, and 3, respectively). Franklin et al. *Cancer Cell* 5:317-328 (2004).

35 "Treatment" refers to both therapeutic treatment and prophylactic or preventative measures. Those in need of treatment include those already with cancer as well as those in which cancer is to be prevented. Hence, the patient to be treated herein may have been diagnosed as having cancer or may

be predisposed or susceptible to cancer.

The term “effective amount” refers to an amount of a drug effective to treat cancer in the patient. The effective amount of the drug may reduce the number of cancer cells; reduce the tumor size; inhibit (*i.e.*, slow to some extent and preferably stop) cancer cell infiltration into peripheral organs; inhibit (*i.e.*, slow to some extent and preferably stop) tumor metastasis; inhibit, to some extent, tumor growth; and/or relieve to some extent one or more of the symptoms associated with the cancer. To the extent the drug may prevent growth and/or kill existing cancer cells, it may be cytostatic and/or cytotoxic. The effective amount may extend progression free survival (*e.g.* as measured by Response Evaluation Criteria for Solid Tumors, RECIST, or CA-125 changes), result in an objective response (including a partial response, PR, or complete response, CR), increase overall survival time, and/or improve one or more symptoms of cancer (*e.g.* as assessed by FOSI).

10 A “fixed” or “flat” dose of a therapeutic agent herein refers to a dose that is administered to a human patient without regard for the weight (WT) or body surface area (BSA) of the patient. The fixed or flat dose is therefore not provided as a mg/kg dose or a mg/m² dose, but rather as an absolute 15 amount of the therapeutic agent.

A “container” refers to an object that can be used to hold or contain a pharmaceutical composition or composition. Examples of containers herein include a vial, syringe, intravenous bag, etc.

An “intravenous bag” or “IV bag” is a bag that can hold a solution which can be 20 administered via the vein of a patient. In one embodiment, the solution is a saline solution (*e.g.* about 0.9% or about 0.45% NaCl). Optionally, the IV bag is formed from polyolefin or polyvinyl chloride.

A “vial” is a container suitable for holding a liquid or lyophilized preparation. In one embodiment, the vial is a single-use vial, *e.g.* a 20-cc single-use vial with a stopper.

A “package insert” is a leaflet that, by order of the Food and Drug Administration (FDA) or 25 other regulatory authority, must be placed inside the package of every prescription drug. The leaflet generally includes the trademark for the drug, its generic name, and its mechanism of action; states its indications, contraindications, warnings, precautions, adverse effects, and dosage forms; and includes instructions for the recommended dose, time, and route of administration.

A “pharmaceutical composition” is a composition comprising a pharmaceutically active drug 30 (*e.g.* Pertuzumab and variant forms such as those disclosed herein) and one or more “pharmaceutically active excipients” (*e.g.* buffer, stabilizer, tonicity modifier, preservative, surfactant, etc) that can be safely administered to a human patient. Such compositions may be liquid or lyophilized, for example.

A “recombinant” protein is one which has been produced by a genetically modified host cell, 35 such as a Chinese Hamster Ovary (CHO) host cell.

“Manufacturing scale” refers to production of a protein drug (*e.g.* antibody) at a commercial scale, *e.g.* at 12,000 liter (L) or more, using a commercial process approved by the FDA or other

regulatory authority.

“Purifying” refers to one or more purification steps, such as Protein A chromatography, ion exchange chromatography, etc.

“Isolated” variant refers to the variant which has been separated from the main species or 5 wild-type antibody by one or more purification or analytical procedures. Such isolated variant can be evaluated for its biological activity and/or potency.

II. Antibody Compositions

(i) Main Species Antibody

10 The antibody compositions herein comprise an antibody that binds HER2 (a HER2 antibody), optionally a humanized HER2 antibody. The humanized antibodies herein may, for example, comprise nonhuman hypervariable region residues incorporated into a human variable heavy domain and may further comprise a framework region (FR) substitution at a position selected from the group consisting of 69H, 71H and 73H utilizing the variable domain numbering system set 15 forth in Kabat *et al.*, *Sequences of Proteins of Immunological Interest*, 5th Ed. Public Health Service, National Institutes of Health, Bethesda, MD (1991). In one embodiment, the humanized antibody comprises FR substitutions at two or all of positions 69H, 71H and 73H.

An exemplary humanized antibody of interest herein comprises VH CDR residues:

20 - GFTFTDYTMX (SEQ ID NO: 17), where X is preferably D or S, e.g. GFTFTDYTMID (SEQ ID NO: 23) for CDR-H1;
- DVNPNSGGSIYNQRFKG (SEQ ID NO: 18) for CDR-H2; and/or
- NLGPSFYFDY (SEQ ID NO: 19) for CDR-H3, optionally comprising amino acid modifications of those CDR residues, *e.g.* where the modifications essentially maintain or improve affinity of the antibody. For example, an antibody variant for use in the methods of the present 25 invention may have from about one to about seven or about five amino acid substitutions in the above variable heavy CDR sequences. Such antibody variants may be prepared by affinity maturation, *e.g.*, as described below.

The humanized antibody may comprise VL CDR residues:

30 - KASQDV SIGVA (SEQ ID NO: 20) for CDR-L1;
- SASYX¹X²X³, where X¹ is preferably R or L, X² is preferably Y or E, and X³ is preferably T or S (SEQ ID NO: 21), *e.g.* SASYRYT (SEQ ID NO: 24) for CDR-L2; and/or
- QQYYIYPYT (SEQ ID NO: 22) for CDR-L3,

e.g. in addition to those variable heavy domain CDR residues in the preceding paragraph.

35 Such humanized antibodies optionally comprise amino acid modifications of the above CDR

residues, *e.g.* where the modifications essentially maintain or improve affinity of the antibody. For example, the antibody variant of interest may have from about one to about seven or about five amino acid substitutions in the above variable light CDR sequences. Such antibody variants may be prepared by affinity maturation.

5 The present application also contemplates affinity matured antibodies which bind HER2. The parent antibody may be a human antibody or a humanized antibody, *e.g.*, one comprising the variable light and/or variable heavy sequences of SEQ ID NOS. 7 and 8, respectively (*i.e.* comprising the VL and/or VH of Pertuzumab). An affinity matured variant of Pertuzumab preferably binds to HER2 receptor with an affinity superior to that of murine 2C4 or Pertuzumab (*e.g.* from about two or 10 about four fold, to about 100 fold or about 1000 fold improved affinity, *e.g.* as assessed using a HER2 ECD ELISA). Exemplary variable heavy CDR residues for substitution include H28, H30, H34, H35, H64, H96, H99, or combinations of two or more (*e.g.* two, three, four, five, six, or seven of these residues). Examples of variable light CDR residues for alteration include L28, L50, L53, L56, L91, L92, L93, L94, L96, L97 or combinations of two or more (*e.g.* two to three, four, five or 15 up to about ten of these residues).

Various forms of the humanized antibody or affinity matured antibody are contemplated. For example, the humanized antibody or affinity matured antibody. Alternatively, the humanized antibody or affinity matured antibody may be an intact antibody, such as an intact IgG1 antibody.

20 Preferably, the HER2 antibody (either or both of the main species HER2 antibody and antibody variant thereof) is one which binds to Subdomain II of HER2, inhibits HER dimerization more effectively than Trastuzumab, and/or binds to a heterodimeric binding site of HER2. The preferred embodiment herein of the main species antibody is one comprising the variable light and variable heavy amino acid sequences in SEQ ID Nos. 3 and 4, and most preferably comprising the light chain amino acid sequences in SEQ ID No. 11 or 15 and heavy chain amino acid sequence in 25 SEQ ID No. 12 or 16.

(ii) *Unpaired Cysteine Variants*

Examples 1 and 3 herein describe unpaired cysteine variants of Pertuzumab. Analytical assays for isolating, characterizing, and quantifying such variants include assays which specifically evaluate intra-chain disulfide bonds (as distinct from inter-chain disulfide bonds), for example, 30 Hydrophobic Interaction Chromatography (HIC) analysis of antibody fragments (*e.g.* of Fab fragment) as in Example 1, HIC of an intact antibody as in Example 1, peptide mapping analysis of differentially tagged antibodies as in Example 3, and/or Reversed Phase High Performance Liquid Chromatography (RP-HPLC) as in Example 3 herein and in Zhang et al. *Anal. Chem.* 84(16):7112-7123 (2012).

Generally, the predominant form of Pertuzumab comprises a disulfide bond between Cys23 and Cys88 in both of the VL domains of its two Fab domains. See Figure 6.

One unpaired cysteine variant herein, a heterodimer variant, lacks the Cys23/Cys88 disulfide bond in the variable light (VL) domain of only one of its two Fab regions. See Fig. 20(b). This was 5 determined to be the predominant unpaired cysteine variant.

A further unpaired cysteine variant herein, a homodimer variant, lacks the Cys23/Cys88 disulfide bonds in both of its Fab regions. See Fig. 20(c).

In one embodiment, the amount of the unpaired cysteine variant in the composition (including homodimer and heterodimer variant) is \leq about 25%, for example, as determined by Fab 10 hydrophobic interaction chromatography (HIC).

In one embodiment, the amount of the homodimer variant in the composition is \leq 4.9% as determined by HIC of intact antibody.

In one embodiment, the amount of heterodimer variant in the composition is from about 13% to about 18%, for example, as determined by HIC of intact antibody.

15 The composition optionally further comprises one or more additional variants as described below.

The invention also concerns an isolated unpaired cysteine variant of Pertuzumab, wherein the unpaired cysteine variant comprises Cys23/Cys88 unpaired cysteines in one or both variable light domains of Pertuzumab. Such isolated unpaired cysteine variant may comprise or consist of a 20 heterodimer variant and/or a homodimer variant. Such variants can be isolated using HIC or other purification methods, and may be subjected to a biological assay such as the potency assay (using HER2-positive breast cancer cells) as in Example 1 below.

(iii) Afucosylated Variant

Examples 2 and 4 herein describe afucosylated variants of Pertuzumab and demonstrate how 25 to determine ADCC activity based on the percentage of afucosylated Pertuzumab in a composition.

In one embodiment, the invention concerns a composition comprising Pertuzumab and an afucosylated variant of Pertuzumab, wherein the amount of the afucosylated variant is greater than 2% of the composition. See, for example, anti2C4907-2, and Run 1 in Table 9 below.

In an alternative embodiment, the invention concerns a composition comprising Pertuzumab 30 and an afucosylated variant of Pertuzumab, wherein the amount of the afucosylated variant is from 0.9 to 4.1% of the composition. This amount of afucosylated variant may, for example, be quantified using the validated CE-LIF assay in Example 4.

Optionally, the composition further comprises the unpaired cysteine variants (heterodimer and/or homodimer as described in the previous section) and/or additional variants to be described below.

(iv) LMWS and HMWS

5 The invention further concerns a low-molecular-weight species (LMWS) of Pertuzumab and/or high-molecular-weight-species (HMWS) of Pertuzumab in either isolated form or in compositions comprising the variant(s) and the main species antibody. The LMWS and HMWS can be isolated, characterized, and quantified using various techniques, including, without limitation, size exclusion high performance liquid chromatography (SE-HPLC), and/or Capillary Electrophoresis
10 Sodium Dodecyl Sulfate (CE-SDS).

Using SE-HPLC assay (e.g. as in Example 5), the amount of main species Pertuzumab and HMWS or LMWS in a composition may be:

Main Peak: \geq about 96%, e.g., \geq about 96.7%, \geq about 97.3%, e.g., \geq about 97.4%.

15 HMWS: \leq about 2%, e.g., \leq about 1.7%, e.g., \leq about 1.5%, e.g. \leq about 1.4%, e.g. \leq about 0.8%.

LMWS: \leq about 2%, e.g., \leq about 1.6%, e.g., \leq about 1.2%, e.g. \leq about 0.6%.

Using NR-CE-SDS assay (e.g. as in Example 5), the amount of main species Pertuzumab and HMWS or LMWS in a composition may be:

Main Peak: \geq about 95%, e.g., \geq about 96.0%, e.g., \geq about 97.8%

20 HMWS: \leq about 1%, e.g. \leq about 0.6%.

LMWS: \leq about 4%, e.g. \leq about 3.4%.

For example, the amount of Main Peak or main species Pertuzumab (excluding LMWS and HMWS) as determined by CE-SDS may be about 95% to about 99%, e.g., from about 96.0% to about 97.8%, e.g. from about 95.3% to about 97.3% Main Peak.

25 Optionally, the LMWS comprises or consists of “Peak 6” as obtained by NR-CE-SDS (see, e.g. Example 5). Such Peak 6 may be determined to be about 0.9% to about 2.3%, e.g. about 2% to about 2.3% of the composition.

(v) Peak 1 and Peak 2 Fragments of Pertuzumab

The invention further concerns a Peak 1 fragment(s) and/or Peak 2 fragment(s) of Pertuzumab in either separated or isolated form or in compositions comprising the fragment(s) and the main species antibody. Peak 1 and Peak 2 can be isolated, characterized, and quantified using various techniques, including, without limitation, size exclusion high performance liquid chromatography (SE-HPLC), and/or Capillary Electrophoresis Sodium Dodecyl Sulfate (CE-SDS), including R-CE-SDS and NR-CE-SDS. In one embodiment, Peak 1 and Peak 2 are separated and/or analyzed by R-CE-SDS, e.g. as described in Examples 5 and 6 and the corrected peak area (CPA) provides the % Peak 1 or Peak 2 in the composition.

Using R-CE-SDS assay (e.g. as in Examples 5 and 6), the amount of Peak 1 in a composition is ≤ 5% (e.g. from 0.13% to 0.41% CPA) and the amount of Peak 2 in a composition is ≤ 1.0% (e.g. from 0.47% to 0.74% CPA).

(vi) Additional Variants

The compositions herein optionally comprise additional variants of Pertuzumab such as those described in US Patent 7,560,111 (Kao et al.) and/or in WO 2009/099829 (Harris et al.).

Examples of such additional variants include, without limitation, any one or more of: glycated variant, disulfide reduced variant, non-reducible variant, deamidated variant, sialylated variant, VHS-variant, C-terminal lysine variant, methionine-oxidized variant, afucosylated variant, G1 glycosylation variant, G2 glycosylation variant, and non-glycosylated heavy chain variant.

For example, the composition may comprise acidic variants (see WO 2009/099829, Harris et al.), wherein the acidic variants in the composition may include one, two, three, four, or five of glycated variant, deamidated variant, disulfide reduced variant, sialylated variant, and non-reducible variant. Preferably, the total amount of all acidic variants in the composition is less than about 25%. In one embodiment, the glycated variant, deamidated variant, disulfide reduced variant, sialylated variant, and non-reducible variant constitute at least about 75-80% of the acidic variants in the composition.

Acidic variants may be evaluated by a variety of methods, but preferably such methods include one, two, three, four, or five of: ion exchange chromatography (IEC) wherein the composition is treated with sialidase before, after, and/or during the IEC (e.g. to evaluate sialylated variant), reduced CE-SDS (e.g. to evaluate disulfide reduced variant), non-reduced CE-SDS (e.g. to evaluate non-reducible variant), boronate chromatography (e.g. to evaluate glycated variant), and peptide mapping (e.g. to evaluate deamidated variant).

The composition optionally includes an amino-terminal leader extension variant. Preferably, the amino-terminal leader extension is on a light chain of the antibody variant (e.g. on one or two light chains of the antibody variant). The antibody variant herein may comprise an amino-terminal leader extension on any one or more of the heavy or light chains thereof. Preferably, the amino-terminal leader extension is on one or two light chains of the antibody. The amino-terminal leader extension preferably comprises or consists of VHS- (i.e. VHS-variant). Presence of the amino-terminal leader extension in the composition can be detected by various analytical techniques including, but not limited to, N-terminal sequence analysis, assay for charge heterogeneity (for instance, cation exchange chromatography or capillary zone electrophoresis), mass spectrometry, etc.

5 The amount of the antibody variant in the composition generally ranges from an amount that constitutes the lower detection limit of any assay (preferably cation exchange analysis) used to detect the variant to an amount less than the amount of the main species antibody. Generally, about 20% or less (e.g. from about 1% to about 15%, for instance from 5% to about 15%, and preferably from about 8% to about 12 %) of the antibody molecules in the composition comprise an amino-terminal

10 leader extension. Such percentage amounts are preferably determined using cation exchange analysis.

15

Further amino acid sequence alterations of the main species antibody and/or variant are contemplated, including but not limited to an antibody comprising a C-terminal lysine residue on one or both heavy chains thereof (such an antibody variant may be present in an amount from about 1% to about 20%), antibody with one or more oxidized methionine residues (for example, Pertuzumab comprising oxidized Met-254) etc.

20 Moreover, aside from the afucosylated variant and sialylated variant discussed above, the main species antibody or variant may comprise additional glycosylation variations, non-limiting examples of which include antibody comprising a G1 or G2 oligosaccharide structure attached to the 25 Fc region thereof, antibody comprising one or two non-glycosylated heavy chains, etc.

III. Manufacturing and Analytical Methods

According to one embodiment of the invention, a method for evaluating a Pertuzumab composition is provided which comprises one, two, three, or four of: (1) measuring the amount of unpaired cysteine variant in the composition, wherein the unpaired cysteine variant comprises 30 Cys23/Cys88 unpaired cysteines in one or both variable light domains of Pertuzumab, and/or (2) measuring the amount of afucosylated Pertuzumab in the composition, and/or (3) measuring the amount of low-molecular-weight-species (LMWS) of Pertuzumab in the composition, and/or (4) measuring the amount of high-molecular-weight-species (HMWS) of Pertuzumab in the composition. Optionally, all four analytical assays are performed on a composition comprising Pertuzumab and 35 variants thereof.

The invention also concerns a method for making a composition comprising: (1) producing a composition comprising Pertuzumab and one or more variants thereof, and (2) subjecting the composition so-produced to one or more analytical assay(s) to evaluate the amount of the variant(s) therein. The analytical assay(s) can evaluate and quantify the amount of any one or more of: (i) 5 unpaired cysteine variant comprising Cys23/Cys88 unpaired cysteines in one or both variable light domains of Pertuzumab and/or (ii) a heterodimer variant comprising Cys23/Cys88 unpaired cysteines in only one variable light domain of Pertuzumab and/or (iii) a homodimer variant comprising Cys23/Cys88 unpaired cysteines in both variable light domains of Pertuzumab and/or (iv) 10 afucosylated variant of Pertuzumab and/or (v) high-molecular-weight-species (HMWS) of Pertuzumab and/or (vi) low-molecular-weight-species (LMWS) of Pertuzumab, and/or (vii) Peak 1 fragment(s) of Pertuzumab and/or (viii) Peak 2 fragment(s) of Pertuzumab. Thus, one, two, three, four, five, six, seven or eight of these variants can be analyzed.

15 Optionally, the analytical assay evaluates, quantifies, or isolates unpaired cysteine variant, including heterodimer and/or homodimer variants. For example, the analytical assay may comprises Hydrophobic Interaction Chromatography (HIC) of an antibody fragment (e.g. Fab fragment) or of an intact antibody (see, e.g. Example 1), peptide mapping analysis (see, e.g. Example 3), or Reversed Phase High Performance Liquid Chromatography (HPLC) (see, e.g., Example 3).

20 In one embodiment, the amount of the unpaired cysteine variant (heterodimer and/or homodimer variant) in the composition is \leq about 25% as determined by Fab hydrophobic interaction chromatography (HIC).

In one embodiment, the amount of the homodimer variant in the composition is \leq 4.9% as determined by hydrophobic interaction chromatography (HIC) of intact antibody.

25 In one embodiment, the amount of the heterodimer variant in the composition is from about 13% to about 18% as determined by hydrophobic interaction chromatography (HIC) of intact antibody.

Optional, the analytical assay evaluates, quantifies, or isolates afucosyld variant. The amount of afucosylation can be used to determine or quantify biological activity, e.g. ADCC, of the composition.

30 In addition, the method comprises evaluating the biological activity of a Pertuzumab composition comprising measuring the amount of afucosylated Pertuzumab variant in the composition to determine the antibody-dependent cell-mediated cytotoxicity (ADCC) activity of the composition, and confirming the amount of afucosylated Pertuzumab is in the range from about 0.9%

to about 4.1%. For instance, the method comprises measuring the amount of afucosylated Pertuzumab using capillary electrophoresis-laser-induced fluorescence (CE-LIF).

5 Optionally, the analytical assay for evaluating afucosylation is capillary electrophoresis (CE), including capillary electrophoresis-laser-induced fluorescence (CE-LIF), see, Examples 2 and 4 below. The amount of afucosylated variant is optionally from about 0.9 to about 4.1% of the composition (e.g. as measured by CE-LIF in Example 4). In one embodiment, the amount of afucosylated variant is greater than 2% of the composition (e.g. as measured by CE-LIF in Example 4).

10 Optionally, the analytical assay evaluates, quantifies, or isolates low-molecular-weight species (LMWS) and/or high-molecular-weight-species (HMWS) of Pertuzumab. Exemplary assays include SE-HPLC and/or CE-SDS (see, for example, Example 5 below).

In one embodiment, the analytical assay comprises SE-HPLC (e.g. as in Example 5), and the amount of main species Pertuzumab, HMWS or LMWS in a composition thus analyzed is determined to be:

15 Main Peak: \geq about 96%, e.g., \geq about 96.7%, \geq about 97.3%, e.g., \geq about 97.4%.
HMWS: \leq about 2%, e.g., \leq about 1.7%, e.g., \leq about 1.5%, e.g. \leq about 1.4%, e.g. \leq about 0.8%.
LMWS: \leq about 2%, e.g., \leq about 1.6%, e.g., \leq about 1.2%, e.g. \leq about 0.6%.

20 In one embodiment, the analytical assay comprises CE-SDS (e.g. as in Example 5), and the amount of main species Pertuzumab and HMWS or LMWS Pertuzumab in a composition thus analyzed is determined to be:

Main Peak: \geq about 95%, e.g., \geq about 96.0%, e.g., \geq about 97.8%

HMWS: \leq about 1%, e.g. \leq about 0.6%.

LMWS: \leq about 4%, e.g. \leq about 3.4%.

25 In one embodiment, a composition is evaluated by NR-CE-SDS, and the amount of Main Peak or main species Pertuzumab (excluding LMWS and HMWS) is found to be from about 95% to about 99%, e.g., from about 96.0% to about 97.8%, e.g. from about 95.3% to about 97.3% of the composition thus analyzed.

30 In one embodiment, the amount of “Peak 6” in a composition is evaluated by CE-SDS (see, e.g. Example 5), and the amount of Peak 6 LMWS is determined to be about 0.9% to about 2.3%, e.g. about 2% to about 2.3% of a composition thus analyzed.

In one embodiment, the amount of Peak 1 and/or Peak 2 in a composition is evaluated by R-CE-SDS (see, e.g. Examples 5 and 6), and the amount of Peak 1 is determined to be $\leq 5\%$ (e.g. from 0.13% to 0.41% CPA) and the amount of Peak 2 is determined to be $\leq 1.0\%$ (e.g. from 0.47% to 0.74% CPA).

5 The methods optionally further comprise combining the purified composition with one or more pharmaceutically acceptable excipients to make a pharmaceutical composition. In addition, the pharmaceutical composition can be put into a container which is packaged together with a package insert (e.g. with prescribing information instructing the user thereof to use the pharmaceutical composition to treat cancer) so as to make an article of manufacture.

10 **IV. Pharmaceutical Compositions**

Pharmaceutical compositions comprising Pertuzumab and variants thereof are prepared for storage by mixing the composition having the desired degree of purity with optional pharmaceutically acceptable excipients (*Remington's Pharmaceutical Sciences* 16th edition, Osol, A. Ed. (1980)), generally in the form of lyophilized formulations or aqueous solutions. Antibody 15 crystals are also contemplated (see US Pat Appln 2002/0136719). Pharmaceutically acceptable excipients are nontoxic to recipients at the dosages and concentrations employed, and include buffers such as histidine acetate; antioxidants including ascorbic acid and methionine; low molecular weight (less than about 10 residues) polypeptides; proteins, such as serum albumin, gelatin, or immunoglobulins; hydrophilic polymers such as polyvinylpyrrolidone; amino acids such as glycine, 20 glutamine, asparagine, histidine, arginine, or lysine; monosaccharides, disaccharides, and other carbohydrates including glucose, mannose, or dextrans; chelating agents such as EDTA; sugars such as sucrose, mannitol, trehalose or sorbitol; salt-forming counter-ions such as sodium; metal complexes (e.g. Zn-protein complexes); and/or non-ionic surfactants such as polysorbates (e.g. polysorbate 20 or 80), PLURONICSTM or polyethylene glycol (PEG).

25 Lyophilized antibody formulations are described in U.S. Pat. No. 6,267,958, US Patent No. 6,685,940 and US Patent No. 6,821,515, expressly incorporated herein by reference. An exemplary Trastuzumab pharmaceutical composition is a sterile, white to pale yellow preservative-free lyophilized powder for intravenous (IV) administration, comprising 440 mg Trastuzumab, 400 mg α,α -trehalose dehydrate, 9.9 mg L-histidine-HCl, 6.4 mg L-histidine, and 1.8 mg polysorbate 20. 30 Reconstitution of 20 mL of bacteriostatic water for injection (BWFI), containing 1.1% benzyl alcohol as a preservative, yields a multi-dose solution containing 21 mg/mL Trastuzumab, at pH of approximately 6.0.

An exemplary Pertuzumab pharmaceutical composition for therapeutic use comprises 30mg/mL Pertuzumab in 20mM histidine acetate, 120mM sucrose, 0.02% polysorbate 20, at pH 6.0. 35 An alternate Pertuzumab formulation comprises 25 mg/mL Pertuzumab, 10 mM histidine-HCl buffer,

240 mM sucrose, 0.02% polysorbate 20, pH 6.0.

The pharmaceutical compositions to be used for *in vivo* administration must be sterile. This is readily accomplished by filtration through sterile filtration membranes.

V. Therapeutic Applications and Uses

5 The compositions herein can be used to treat cancer, such as HER2-positive breast cancer, e.g. metastatic or locally recurrent, unresectable breast cancer, or *de novo* Stage IV disease, is defined as immunohistochemistry (IHC) 3+ and/or fluorescence *in situ* hybridization (FISH) amplification ratio ≥ 2.0 . Optionally, the patients in the population have not received previous treatment or have relapsed after adjuvant therapy, have a left ventricular ejection fraction (LVEF) of $\geq 50\%$ at baseline, 10 and/or have an Eastern Cooperative Oncology Group performance status (ECOG PS) of 0 or 1.

In an alternative embodiment, the composition can be used to treat early-stage HER2-positive breast cancer, e.g., in combination with Trastuzumab, and chemotherapy, wherein the chemotherapy comprises anthracycline-based chemotherapy, or carboplatin-based chemotherapy. In one embodiment, the chemotherapy comprises anthracycline-based chemotherapy, e.g. comprising 5-FU, 15 epirubicin, and cyclophosphamide (FEC). In an alternative embodiment, the chemotherapy comprises carboplatin-based chemotherapy, e.g. comprising taxane (e.g. Docetaxel), Carboplatin in addition to HERCEPTIN®/Trastuzumab (e.g. TCH regimen). In one embodiment, the composition is administered concurrently with the anthracycline-based chemotherapy or with the carboplatin-based chemotherapy, e.g. wherein the Pertuzumab, Trastuzumab and chemotherapy are administered 20 in 3-week cycles with Pertuzumab, Trastuzumab and the chemotherapy being administered on day-1 of each cycle. The early-stage HER2-positive breast cancer therapy contemplated herein includes neoadjuvant and adjuvant therapy.

In yet another embodiment, the composition can be used to treat HER2-positive gastric cancer, optionally in combination with Trastuzumab and a chemotherapy, such as a platin (e.g. 25 cisplatin) and/or a fluoropurimidine (e.g. capecitabine and/or 5-fluorouracil (5-FU)).

In an alternative embodiment, the composition may be used to treat HER2-positive breast cancer optionally in combination with Trastuzumab and vinorelbine. The breast cancer according to this embodiment is optionally metastatic or locally advanced. Optionally, the patient has not previously received systemic non-hormonal anticancer therapy in the metastatic setting.

30 In another aspect, the composition is used to treat HER2-positive breast cancer in a patient comprising administering the composition, Trastuzumab, and aromatase inhibitor (e.g. anastrazole or letrozole) to the patient. According to this embodiment, the breast cancer is advanced breast cancer, including hormone receptor-positive breast cancer such as estrogen receptor (ER)-positive and/or 35 progesterone receptor (PgR)-positive breast cancer. Optionally, the patient has not previously received systemic nonhormonal anticancer therapy in the metastatic setting. This treatment method

optionally further comprises administering induction chemotherapy (e.g. comprising taxane) to the patient.

In an additional aspect, the composition is used to treat low HER3 cancer, such as ovarian cancer, primary peritoneal, or fallopian tube cancer. See, for example, US Patent 7,981,418 (Amher et al.) and U.S. Patent Publication US-2006-0013819-A1 (Kelsey, S.).

The antibodies and chemotherapeutic treatments are administered to a human patient in accord with known methods. Specific administration schedules and formulations are described in the examples herein.

According to one particular embodiment of the invention, approximately 840mg (loading dose) of Pertuzumab is administered, followed by one or more doses of approximately 420mg (maintenance dose(s)) of Pertuzumab. The maintenance doses are preferably administered about every 3 weeks, for a total of at least two doses, until clinical progressive disease, or unmanageable toxicity, e.g from 6 to 20 doses. Longer treatment periods, including more treatment cycles, are also contemplated.

According to another particular embodiment where the cancer is gastric cancer, Pertuzumab is administered at a dose of 840 mg for all treatment cycles.

VI. Articles of Manufacture

One embodiment of an article of manufacture herein comprises a container, such as a vial, syringe, or intravenous (IV) bag containing the composition or pharmaceutical composition herein. Optionally, the article of manufacture further comprises a package insert with prescribing information describing how to use the composition according to the previous section herein.

VII. Deposit of Biological Materials

The following hybridoma cell lines have been deposited with the American Type Culture Collection, 10801 University Boulevard, Manassas, VA 20110-2209, USA (ATCC):

	Antibody Designation	ATCC No.	Deposit Date
25	4D5	ATCC CRL 10463	May 24, 1990
	2C4	ATCC HB-12697	April 8, 1999

Further details of the invention are illustrated by the following non-limiting Examples. The disclosures of all citations in the specification are expressly incorporated herein by reference.

EXAMPLE 1**Cys23/Cys88 Unpaired Cysteine Variant of Pertuzumab and Characterization Thereof**

Pertuzumab is a humanized monoclonal antibody (MAb) based on a human IgG1(κ) framework. The recombinant antibody is produced by Chinese Hamster Ovary (CHO) cells and comprises two heavy chains (449 amino acid residues each) and two light chains (214 amino acid residues each) with inter-chain and intra-chain disulfide bonds. The light-chain and heavy-chain sequences of pertuzumab are shown in Figs. 3A and 3B, respectively. The calculated molecular mass of intact pertuzumab is 145,197 Da (peptide chains only, without heavy-chain C-terminal lysine residue).

The CH2 domain of each heavy chain also has a single conserved glycosylation site at Asn299.

Pertuzumab differs from Trastuzumab (HERCEPTIN®) in the complementarity determining regions (CDRs) of the light chain (12 amino acid differences) and the heavy chain (29 amino acid differences), and the fact that it binds to a different epitope on the human epidermal growth factor receptor 2 (p185^{HER2}). Binding of pertuzumab to the HER2 receptor on human epithelial cells prevents HER2 from forming complexes with other members of the HER receptor family (including EGFR, HER3, HER4) and forming HER2 homodimers. By blocking complex formation, pertuzumab inhibits ligand-initiated intracellular signaling through two major signal pathways, mitogen-activated protein (MAP) kinase and phosphoinositide 3-kinase (PI3K), resulting in inhibition of cell proliferation and survival, respectively.

This example concerns the identification and characterization of an unpaired cysteine variant of Pertuzumab: the Cys23/Cys88 unpaired cysteine variant comprising unpaired cysteines in one or both light chains of the antibody.

Free sulfhydryls were measured using Ellman's reagent, and showed a reactive free sulfhydryl content of 0.1–0.3 moles per mole protein. Hydrophobic interaction chromatography (HIC) analysis and peptide map analysis revealed unpaired cysteine residues at Cys23 and Cys88 on one or both light chains. Using papain HIC, levels of the Fab variant containing free sulfhydryls at these sites were found to be 12.7%–13.5% in Pertuzumab materials produced using the commercial manufacturing process. HIC analysis of the intact antibody indicated that the two major forms are 78%–85% wild-type Pertuzumab and 13.4%–18.4% Pertuzumab heterodimer (unpaired cysteine pair on one arm).

MATERIALS AND METHODS

Compositions Tested: This example describes the characterization of the current Pertuzumab Reference Standard Batch anti2C4907-2 and Run 1, representing Phase III clinical material, and five Phase III/commercial batches (Runs 3-7), all produced at 12,000 liter (L) scale using the commercial process. Comparison is also made to the previous Reference Standard Batch anti2C4-900-1, which is representative of the Phase I/II clinical material.

The compositions tested were drug substance batches formulated in the commercial formulation at 30 mg/mL in 20 mM L-histidine acetate, 120 mM sucrose, and 0.02% (w/v) polysorbate 20 at pH 6.0. Batch anti2C4-900-1 was formulated earlier in clinical development at 10 25 mg/mL in 10 mM L-histidine chloride, 240 mM sucrose, and 0.02% (w/v) polysorbate 20 at pH 6.0.

Disulfide Bond Analysis by Non-Reduced Peptide Map Analysis and Mass Spectrometry: To denature pertuzumab under non-reducing conditions and alkylate any buried free sulphydryl groups, approximately 0.5 mg of pertuzumab in formulation buffer was mixed with denaturing buffer 15 (consisting of 8 M GdHCl, 10 mM N-ethylmaleimide (NEM), 0.1 M sodium acetate, pH 5.0) and then incubated at 37°C for 3 hours. The solution was buffer exchanged into 600 µL of 0.1 M Tris, 1 mM CaCl₂, pH 7.0 using NAP-5 columns. Acetonitrile (ACN) was added to each sample to achieve a concentration of 10%. The trypsin digestion was carried out at an enzyme to substrate ratio of 1:10 (w/w) at 37°C for 16 hours. The resulting peptides were separated by RP-HPLC using the 20 methods described below for sulfitolysis tryptic maps.

Sulfitolysis Tryptic Peptide Map: To generate the pertuzumab peptide maps, the protein was digested with trypsin after reduction and sulfitolysis of the cysteine residues. Aliquots (1 mg) of pertuzumab were added to 360 mM Tris-HCl pH 8.6, 6 M guanidine hydrochloride (GdHCl), 2 mM ethylenediaminetetraacetic acid (EDTA), 13 mM sodium sulfite, and 38 mM sodium 25 tetrathionate for reduction and sulfitolysis of the cysteine residues. Samples were incubated at 37°C for 20 minutes. Sulfitolysed samples were loaded onto PD-10 columns and eluted with 10 mM Tris, 0.1 mM CaCl₂, pH 8.3. Following buffer exchange, 20 µL of a 10% octyl-B-glucoside solution and 20 µL of 1 mg/mL trypsin were added. Samples were incubated at 37°C for 5 hours. The digestion reaction was quenched with 25 µL of 10% trifluoroacetic acid (TFA). The resulting peptides were 30 separated by RP-HPLC using a Zorbax 300SB-C8 column (4.6 mm × 150 mm). The peptides were separated after a 5 minute hold at initial conditions with a linear gradient from 0% to 17% solvent B in 57 minutes, to 32% solvent B at 149 minutes, to 45% solvent B at 162 minutes, and to 95% solvent B at 173 minutes. At 179 minutes, the column was reconditioned at 100% solvent A for

25 minutes, for a total run time of 204 minutes. Solvent A consisted of 0.1% TFA in water and solvent B consisted of 0.08% TFA in acetonitrile. The column was maintained at 37°C and eluted at a flow rate of 0.5 mL/min. The elution profile was monitored at 214 nm and 280 nm. Masses of the tryptic peptides were determined by liquid chromatography-mass spectrometric (LC-MS) analysis of 5 the separated digest mixture using an LTQ ORBITRAP™ mass spectrometer.

Free Sylfydryl Content by Ellman's Analysis: The Pertuzumab samples were buffer exchanged into reaction buffer (100 mM potassium phosphate, 1 mM EDTA, 8 M urea, pH 8) and adjusted to a concentration that resulted in free thiol concentrations within the standard curve range. A solution of dithionitrobenzene (DTNB) (10 mM) and a cysteine standard curve (eight points 10 between 0 and 100 µM) were prepared in reaction buffer. On a 96-well plate, 165 µL of sample or standard were added to triplicate wells. The reaction was initiated by the addition of 10 µL of DTNB and then incubated for 30 minutes. After incubation, absorbance was measured at 412 nm using a SPECTRAMAX M²® plate reader. The concentration of free thiol was calculated using the linear equation obtained from the standard curve. The concentration of the protein was determined using 15 the absorbance at 280 nm obtained from a spectrophotometer. The free thiol is reported as moles of free thiol per mole of Pertuzumab.

Papain HIC: For papain-digested Pertuzumab samples, the samples were digested with papain after removing the C-terminal lysine with carboxypeptidase B (CpB). The Fab and Fc domains were separated by HIC using a PolyPropyl Aspartamide column (4.6 mm × 100 mm, 20 1500 Å, 3 µm). Solvent A consisted of 1.6 M ammonium sulfate, 20 mM potassium phosphate, pH 6.05 and solvent B consisted of 20 mM potassium phosphate pH 6.05. The analytes were separated with a gradient from 0% to 18% solvent B from 3 to 6 minutes, to 24% solvent B at 21 minutes. The column was maintained at 25°C with a flow rate of 0.8 mL/min. The elution profile was monitored at 280 nm.

25 **HIC of Intact Antibody:** Intact Pertuzumab samples were separated by HIC using a PolyPropyl Aspartamide column (9.4 mm × 100 mm, 1500 Å, 3 µm). Solvent A consisted of 1.0 M ammonium sulfate, 20 mM potassium phosphate, pH 6.05 and solvent B consisted of 20 mM 30 potassium phosphate, pH 6.05. The analytes were separated isocratically with 12% solvent B for 25 minutes. The column was maintained at 30°C with a flow rate of 2 mL/min. The elution profile was monitored at 280 nm.

SDS-PAGE with Peptide Mass Fingerprinting: Both reduced and non-reduced Pertuzumab samples were analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Samples (5 µg) were denatured by heating in the presence of SDS-PAGE sample buffer for 5–

10 minutes at $60 \pm 2^\circ\text{C}$ with iodoacetamide for non-reduced samples. Samples were reduced for 15–20 minutes at $60^\circ\text{C} \pm 2^\circ\text{C}$ in the presence of 80 mM dithiothreitol (DTT). The denatured samples were separated in 4%–20% polyacrylamide gradient gels and stained with SYPROTM Ruby dye to obtain the protein banding pattern. Along with the pertuzumab samples, molecular weight standards 5 and SYPROTM Ruby–stain sensitivity standards (2 ng/lane and 8 ng/lane bovine serum albumin (BSA)) were included on the gels.

Peptide mass fingerprinting is an analytical technique for protein identification. The gels were loaded with 10 μg of commercial Reference Standard Batch anti2C4907-2 and Run 5. All bands separated by SDS-PAGE were cleaved into peptides by trypsin. The absolute masses of 10 the peptides are accurately measured with BRUKERTM matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI–TOF MS). The peptide mass lists were used to identify proteins by searching protein sequences. All observed bands in both the non-reduced and reduced Pertuzumab were identified by peptide mass fingerprinting.

Potency by Bioassay: The Pertuzumab potency method assesses the potency of Pertuzumab 15 by measuring its ability to inhibit proliferation of a human HER2-expressing breast cancer cell line. In a typical assay, 96-well microtiter plate(s) were seeded with the breast cancer cells and incubated in a humidified incubator. After incubation, the media was removed and varying concentrations of Pertuzumab Reference Standard, assay control, and sample(s) were added to the plate(s). The plate(s) were then incubated, and the relative number of viable cells was quantitated indirectly using 20 a redox dye, ALAMARBLUE®. The fluorescence was measured using excitation at 530 nm and emission at 590 nm. ALAMARBLUE® is blue and nonfluorescent in its oxidized state, but is reduced by the cell's intracellular environment to a pink form that is highly fluorescent (Page et al. *Int. J. Oncol.* 3: 473–476 (1993)). The changes in color and fluorescence are proportional to the number of viable cells. The results, expressed in relative fluorescence units (RFU), were plotted 25 against the Pertuzumab concentrations and a parallel line program was used to estimate the anti-proliferative activity of Pertuzumab samples relative to the Reference Standard.

RESULTS

Assignment of Disulfide Bonds: There are 32 cysteines in Pertuzumab, forming 16 disulfide bonds, of which four are inter-chain and 12 are intra-chain linkages. However, because of the 30 multimeric nature of the molecule, there are only nine distinct disulfide bonds. The native protein was digested with trypsin to achieve release of all disulfide-linked peptides. The chromatographic profiles for the Pertuzumab batches are shown in Fig. 7. Reversed-phase LC-MS analysis of the digest of commercial Reference Standard Batch anti2C4907-2 yielded all of the expected disulfide-linked peptide-pairs (Table 2).

Table 2: Disulfide-Linked Peptide-Pairs Identified by LC-MS

Expected ^a	Disulfide Linkage	Found	Expected Mass (Da) ^b	Observed Mass (Da) ^b
T2H=T10H	Cys22=Cys96	T2H=T10H	3429.48	3429.48
T13H=T14H	Cys146=Cys202	T13H=T14H	7917.92	7917.92
T19H=T19H	Cys228=Cys228 Cys231=Cys231 ^c	T19H=T19H	5455.78	5455.79
T21H=T27H	Cys263=Cys323	T21H=T27H	2329.10	2329.10
T35H=T40H	Cys369=Cys427	T35H=T40H	3845.82	3845.82
T18H=T20L	Cys222=Cys214	T18H=T20L	757.24	757.24
T18H=T20L	Cys222=Cys214	T18H=T19L-T20L ^d	1261.49	1261.49
T2L=T7L	Cys23=Cys88	T2L=T7L	5393.48	5393.48
T11L=T18L	Cys134=Cys194	T11L=T18L	3556.75	3556.75

Note: An equal sign (=) represents a disulfide bond.

H = heavy chain; L = light chain; LC-MS = high-performance liquid chromatography mass spectrometry; T = tryptic peptide.

5 ^a Refer to Figs. 9 and 10.

^b Monoisotopic masses (MH⁺).

^c Disulfides are inferred. The T19H dimer assignment did not include verification of Cys228=Cys228 and Cys231=Cys231 disulfides.

10 ^d The presence of this disulfide-linked pair has been confirmed through the use of an alternate enzyme, Lys-C, that does not cleave T19L and T20L.

Identified peptides were further confirmed by the identification of expected peptides from the peptide-pairs upon reduction of the disulfides (Fig. 8 with expanded views in Figs. 9 and 10). A dimer of heavy-chain peptide T19H (T19H=T19H) was identified as containing two disulfide bonds; identification of the Cys228=Cys228 and Cys231=Cys231 pairs is inferred. One disulfide pair,

15 T18H=T20L, was detected by LC-MS but eluted close to the void volume and was not identifiable as a distinct peak on ultraviolet (UV) chromatograms. The presence of this disulfide pair was further confirmed by LC-MS analysis of a Lys-C digest, wherein the peptide T18H=T19L-T20L was observed. No unexpected linkages were found. One disulfide bond is partially unpaired, as discussed below.

20 **Free Sulphydryl Analysis:** All cysteine residues in properly folded pertuzumab should be involved in disulfide bonds. Ellman's assay (Ellman, G. *Arch. Biochem. Biophys.* 82: 70-77 (1959)), a method for measuring the free sulphydryl content of peptides and proteins, was used to determine if reactive unmodified (free) thiols are present in pertuzumab. All materials were evaluated for free thiol (unpaired cysteine residue) content and results are summarized in Table 3.

Table 3: Free Thiol Content by Ellman's Assay

Batch Name	Moles of Free Thiols per Mole of Pertuzumab
anti2C4-900-1	0.06
anti2C4907-2	0.15
Run 1	0.28
Run 3	0.16
Run 4	0.17
Run 5	0.16
Run 6	0.16
Run 7	0.14

Note: Free thiol levels were determined by Ellman's assay in the presence of 8 M urea.

5 Approximately 0.1–0.3 moles of free thiols per mole of pertuzumab were observed in all batches analyzed. In the absence of 8 M urea, free thiol levels were below the quantitation limit (QL; approximately 0.1 mole free thiol per mole protein) in all materials tested, indicating that the free thiols (i.e., unpaired cysteines) present in pertuzumab molecules were buried and inaccessible to Ellman's reagent under non-denaturing condition.

10 Analysis of pertuzumab materials by HIC after CpB and papain digestion revealed an additional peak between the Fc and Fab peaks which was identified as a Fab variant containing unpaired cysteine residues at Cys23 and Cys88 (Figs. 11 and 12, labeled as free-thiol Fab). This identification was confirmed by LC-MS tryptic peptide mapping, wherein the sample was subjected to denaturation in the presence of NEM prior to reduction and tryptic digestion. The extent of the free thiol Fab variant using the papain HIC method was measured across pertuzumab batches and 15 found to be consistent using the current process (Table 4).

Table 4: Relative Amount of Cys23/Cys88 Unpaired Cysteine Fab Variant as Determined by Papain HIC or Calculated Intact Antibody Variant

Batch Name	Percent Unpaired Cysteine Fab Variant	Percent Intact Antibody Variant*
anti2C4-900-1	9.4	17.9
anti2C4907-2	12.7	23.8
Run 1	13.2	24.6
Run 3	13.3	24.9
Run 4	13.5	25.2
Run 5	13.3	24.9
Run 6	12.9	24.2
Run 7	13.2	24.6

Note: The percent unpaired cysteine Fab peak was obtained by dividing the unpaired cysteine Fab peak area by the peak areas of unpaired cysteine Fab + Fab.

5

* Calculated as described below.

10 By the papain HIC assay, the values for material produced using the commercial process ranged from 12.7% to 13.5%, while the value for Reference Standard Batch 2C4-900-1 (Phase I/II) was slightly lower at 9.4%.

Converting % Fab Variant from Papain HIC to Estimated % Intact Antibody Variant: The relative amount of Fab fragments containing unpaired cysteines can be used to calculate the relative distribution of heterodimer or homodimer forms of unpaired cysteine variants. If papain HIC assay shows that 10% (or x%) of Fab fragments from pertuzumab contain unpaired cysteines at Cys23/Cys88, 15 then there should be 10 Fab fragments containing unpaired cysteines released from every 50 pertuzumab molecules because the digestion of 50 antibodies by papain should yield 100 Fab fragments. Assuming that these 10 Fab fragments are from 10 different pertuzumab molecules, the relative amount of pertuzumab containing one Fab with Cys23/Cys88 unpaired cysteines is approximately 20%, i.e. 10 out of 50 pertuzumab molecules, (or 2x%). More precisely, if the 20 probability of a pertuzumab with two Fabs containing Cys23/Cys88 unpaired cysteines is taken into account, then the relative amount of pertuzumab heterodimer unpaired cysteine variants should be $2 \times 10\% \times 90\% = 18\%$ (or $2 \times x\% \times [100-x]\%$). In addition, the relative amount of pertuzumab homodimer unpaired cysteine variants should be $10\% \times 10\% = 1\%$ (or $x\% \times x\%$). In this case, the relative amount of pertuzumab containing 2 Fabs with no unpaired cysteines on either Fab should be 25 at $90\% \times 90\% = 81\%$ (or $[100-x]\% \times [100-x]\%$).

In addition wild-type homodimer (without unpaired cysteines) and heterodimer (with unpaired cysteines on one Fab) can be quantified directly by HIC. HIC of intact antibody separates pertuzumab into two major peaks (Fig. 13), which were identified as wild-type homodimer (without free thiols) and heterodimer (with free thiol pair on one Fab) by LC-MS tryptic peptide mapping.

5 The minor front shoulder peak was also collected and characterized by papain HIC as predominantly homodimer (free thiol pair on both Fabs, approximately 40%) and pertuzumab with Fc oxidation. Using the HIC of intact antibody, pertuzumab was estimated to contain approximately 17%–18% heterodimer for materials produced using the current process, and 13% using the Phase I/II process (Table 5). Without being bound by any one theory, it is possible that the increased amount of the
10 unpaired cysteine variant produced by the commercial process (relative to the phase I/II process) may result from protein (i.e. VL domain) folding rate occurring faster than thiol oxidation (disulfide formation) rate, thus trapping free cysteines in the variant.

**Table 5: Relative Amount of Intact Unpaired Cysteine Variants
as Determined by HIC of Intact Pertuzumab**

Batch Name	Peak		
	Wild-Type Homodimer (%)	Unpaired cysteine Heterodimer (%)	Partially Enriched Unpaired cysteine Homodimer (%)
anti2C4-900-1	84.7	13.4	1.9
anti2C4907-2	78.9	18.2	2.9
Run 1	78.4	18.4	3.2
Run 3	79.1	17.6	3.2
Run 4	79.3	17.3	3.4
Run 5	79.1	17.4	3.5
Run 6	79.7	17.2	3.1
Run 7	79.3	17.3	3.4

15 Note: The percent relative peak was obtained by dividing the individual peak area by the total peak area of all three peaks.

Since an unpaired cysteine pair at Cys23/Cys88 on the light chain of pertuzumab was observed by HIC, purified fractions of each of the unpaired cysteine variants were tested in the anti-proliferation assay. The unpaired cysteine containing Fab was purified and estimated to have
20 reduced potency (estimated potency ~50% relative to the native Fab) (Table 6).

Table 6: Anti-Proliferation of Unpaired Cysteine Fab Variant

Pertuzumab Samples and Conditions	Mean % Activity (n=2)	% Difference
Native Fab	100	N/A
Unpaired Cysteine-Fab	50 ^a	67

Note: Percent activity reported relative to Native Fab.

^a Estimated potency value. Dose response curves are not parallel, and the lower plateau does not converge.

In addition, three intact forms (wild-type homodimer, free-thiol containing heterodimer, and unpaired cysteine containing homodimer) were isolated by HIC and tested with the anti-proliferation potency assay. See Table 7.

5

Table 7: Anti-Proliferation Activities of Full Length Pertuzumab**Unpaired Cysteine Variants Fractions**

Pertuzumab Samples and Conditions	Anti-proliferation	
	Mean % Activity (n = 3)	CV (%)
Starting Material	110	11
Heterodimer	112	7
Wild-Type Homodimer	104	15
Unpaired cysteine-Containing Homodimer ^a	90	15

Note: Percent activity reported relative to pertuzumab Reference Standard (Batch anti2C4907-2).

^a The fraction contains approximately 40% unpaired cysteine-containing homodimer and 60% heterodimer or wild-type homodimer mixture.

10

These data demonstrate that an unpaired cysteine variant of pertuzumab is present in the composition manufactured at commercial scale. The HIC methods (evaluating Fab fragment or intact antibody) in this Example or peptide mapping in Example 3 below are assays that can be used to evaluate the presence and quantity of the unpaired cysteine variant in a pertuzumab composition.

EXAMPLE 2

15

Afucosylated Pertuzumab Composition and Characterization Thereof

Antibody-Dependent Cell-Mediated Cytotoxicity (ADCC) is an aspect of cell-mediated immunity by which an effector cell actively lyses a target cell that has bound antigen-specific antibodies. Pertuzumab exhibited ADCC activity when tested with HER2 3+ cells but very little activity was observed with HER2 1+ cells (Fig. 14).

The levels of afucosylation in the pertuzumab Phase I and Phase III Reference Standards were measured using capillary electrophoresis. The higher level of afucosylated material (G0-F = 2.2%) in the pertuzumab Phase III Reference Standard correlates with the higher ADCC activity observed compared to Phase I Reference Standard (Fig. 15), which had lower G0-F (0.8%).

5 An enzymatically deglycosylated pertuzumab was also prepared and tested and showed no binding to Fc γ RIIIa and no ADCC activity (Table 8).

Table 8: Biological Activities of Deglycosylated Pertuzumab

Pertuzumab Samples and Conditions	Mean % Activity (n = 3)				
	Anti-Proliferation	HER2 Binding	Fc γ RIIIa Binding	ADCC	FcRn Binding
Control	90	105	106	101	85
Deglycosylated	87	94	No Activity	No Activity	72

Note: Percent activity reported relative to pertuzumab Reference Standard (Batch anti2C4907-2). ADCC = antibody-dependent cell-mediated cytotoxicity.

10 These data show that measuring G0-F (afucosylated) pertuzumab is an effective means for quantifying pertuzumab's ADCC activity. Experiments to quantify afucosylation are as follows.

Oligosaccharide Analysis by Capillary Electrophoresis (CE): Pertuzumab samples (250–500 μ g) were purified using Protein A solid phase extraction affinity tips (PHYTIPSTM) and an automated liquid handling system. Pertuzumab samples were eluted from the protein A resin using 12 mM hydrochloric acid, pH 2.0 and neutralized using 10 μ L of 50 mM sodium succinate. The 15 resulting sample was incubated with 2.5 U/mL of PNGase F for 15 hours at 37°C. The protein was precipitated by heating the solution at 95°C for 5 minutes and was removed by centrifugation. The supernatant solutions containing released oligosaccharides were vacuum dried. The released glycans were derivatized with 8-aminopyrene-1,2,6-trisulfonic acid (APTS) in a 15% acetic acid solution containing sodium cyanoborohydride at 55°C for two hours. Analyses of derivatized glycans were 20 performed with a capillary electrophoresis (CE) system equipped with a fluorescence detection module using an argon-ion laser (488 nm excitation, 520 nm emission) and an N-CHO coated capillary (50 μ m \times 50 cm). The running buffer was 40 mM ϵ -amino-n-caproic acid/acetic acid, pH 4.5, 0.2% hydroxypropyl methylcellulose (HPMC). Samples were injected into the capillary by pressure at 0.5 psi. The separation was performed at 20 kV, and the capillary temperature was 25 maintained at 20°C.

Pertuzumab contains an N-linked oligosaccharide site in the C_H2 domain of the Fc portion of the molecule at Asn299. The relative distribution of the neutral oligosaccharides found at this site for each batch was determined using CE after treatment with PNGase F and labeling with APTS.

The electropherograms from CE analysis of the released, derivatized oligosaccharides are shown in Fig. 16 with expanded-view profiles in Fig. 17. Relative amounts of oligosaccharides in pertuzumab for the materials analyzed are summarized in Table 9.

Table 9: Distribution of Oligosaccharide Structures in Pertuzumab (Percent Peak Area)

Batch Name	G0-F	G0-GlcNAc	Man5	G0	G1 ^a	G2
anti2C4-900-1	0.8	2.7	1.2	72.1	20.4	2.0
anti2C4907-2	2.2	0.8	0.3	63.6	27.6	3.0
Run 1	2.5	1.6	0.2	62.4	29.1	3.4
Run 3	1.7	1.2	0.3	70.3	23.4	2.2
Run 4	1.8	1.8	0.3	75.4	18.3	1.4
Run 5	1.4	1.0	0.4	71.8	22.4	2.1
Run 6	1.1	1.0	0.2	73.3	21.3	1.9
Run 7	1.2	0.8	0.2	69.7	24.5	2.5

5 Note: The total % may not add exactly to 100% due to rounding. In addition, minor species (< 0.5%) may have been included in the total percent peak area but not reported in this table.

^a Sum of the two G1 isomers (refer to Fig. 17).

The oligosaccharide with G0 structure is the predominant species in all materials (62%–75%). The G0 glycoform was slightly more abundant in Runs 3–7 and the previous Reference 10 Standard Batch 2C4-900-1 (70%–75%) compared to the current Reference Standard Batch anti2C4907-2 and Run 1 (62%–64%). The G1 glycoform was observed as two peaks corresponding to the two isomers with the terminal galactose on either branch of the biantennary structure. The areas of these two peaks were combined in order to determine the relative amount of G1 glycoform. The G1 and G2 glycoforms account for approximately 18%–29% and 1%–3%, 15 respectively of the released oligosaccharides for all the materials. Peaks arising from other oligosaccharide structures were also observed in the electropherograms (all present at 3% or less). These structures include G0-F (G0 lacking core fucose), G0-GlcNAc (G0 lacking one GlcNAc), Man5, and other minor glycoforms (Ma and Nashabeh *Anal Chem* 71:5185–92 (1999)). Oligosaccharide structures on pertuzumab were consistent with those found CHO–derived MAbs 20 (Ma and Nashabeh, *supra*) and naturally occurring human immunoglobulins (Flynn et al. *Mol Immunol* 47:2074–82 (2010)).

EXAMPLE 3

Peptide Mapping and RP-HPLC for Evaluating Unpaired Cysteine Variant

Materials: Materials and devices used in the experiments include: 3-[N-
25 Morpholino]propanesulfonic Acid (MOPS; Sigma-Aldrich), N-ethylmaleimide (d0-NEM; Thermo

Scientific, Rockford, IL), N-ethylmaleimide (d5-NEM; Cambridge Isotope Laboratories, Andover, MA), L-Cysteine (Sigma-Aldrich), Trypsin (Promega, Madison, WI), Trifluoroacetic acid (TFA; Fisher, Fair Lawn, NJ), Acetonitrile (ACN, Burdick & Jackson, Muskegon, MI). All chemicals and reagents were used as received with no further purification.

5 ***Differential N-Ethylmaleimide (NEM) Labeling of Antibodies:*** Differential NEM tagging method allowed free thiols already present in the antibodies to be tagged with d0-NEM and remaining disulfide bridges to be reduced and tagged with d5-NEM. For initial d0-NEM tagging, 100 μ L antibody (3 mg/mL) was gently mixed with 400 μ L Denaturing Buffer (7.5 M GdnHCl, pH 5) containing 6.25 mM d0-NEM and incubated at 37°C for 2 h. 20 μ L Cysteine (125 mM) was added to 10 the sample and incubated at 37°C for 15 minutes to inactivate remaining d0-NEM. To reduce remaining disulfide bridges in the antibody, 10 μ L TCEP (0.5 M) was added to the sample and incubated at 37°C for 30 minutes. 70 μ L d5-NEM (171 mM) was then added to the sample and incubated at 37°C for 2 h to tag the free thiols created by the reduced disulfide bridges. 0.5 mL of the differential NEM tagged sample was buffer exchanged using NAP-5 columns and eluted with 0.6 mL 15 MOPS buffer (20 mM MOPS, 0.5 mM TCEP, pH 7).

20 ***Peptide map analysis of Antibodies:*** Differential NEM tagged samples were digested with trypsin at a 1:50 (w/w) trypsin:antibody ratio at 37°C for 2 h. Digestions were quenched with 10 % TFA. The trypsin digested differential NEM tagged samples were separated using an Agilent 1200 HPLC system (Agilent, Palo Alto, CA). A Jupiter C18 column (250 x 2 mm, 5 μ m) (Phenomenex, 25 Torrance, CA) with 300 Å pore size was employed for chromatographic separation of samples. The injection volume was 95 μ L, and the column temperature was 55°C. The mobile phase A was 0.1% TFA in water and mobile phase B was 0.08% TFA in 90% ACN (v/v). Initial conditions were set at 100% mobile phase A and kept for the first 3 minutes after sample injection. Mobile phase B was increased to 10% over the next 20 minutes and then further increased to 40% until 160 minutes and 100% until 162 minutes all over linear gradients. Mobile phase B was held at 100% until 170 minutes. The column was the re-equilibrated at 100% mobile phase A until 195 minutes. The flow rate was kept at 0.28 mL/min.

30 The effluent from the HPLC was directly connected to the electrospray ionization source of LTQ ORBITRAP™ mass spectrometer operating in a positive ion mode. The spray voltage was 4.5kV, and the capillary temperature was 300°C. The mass spectrometer was operated in the data dependent fashion to switch automatically between MS and MS/MS modes. Survey full scan MS spectra were acquired from m/z 300 to m/z 2000 in the FT-Orbitrap with a resolution set for R =60,000 at m/z 400. The five most intense ions were fragmented in the linear ion trap using collision induced dissociation (CID) at normalized collisional energy of 35% with an activation time of 30 ms 35 and isolation width of 2.5 m/z units. The dynamic exclusion (DE) function was enabled to reduce data redundancy and allow low-intensity ions to be selected for data dependent MS/MS scans. The

dynamic exclusion parameters were as follows: a repeat duration of 30 seconds, an exclusion list size of 500, an exclusion duration of 90 seconds, a low exclusion mass width 0.76, a high exclusion mass width of 1.56, and a repeat count of 2. The data analyses were performed using XCALIBUR™ software.

5 The current Pertuzumab Reference Standard Batch anti2C4907-2 was analyzed using the method described above. It was found that 10.9% of the T2L peptides (produced by trpsin digestion and containing Cys23) and 8.3% of the T7L peptides (produced by trpsin digestion and containing Cys88) were tagged with d0-NEM. Because only unpaired cysteines were tagged with d0-NEM in this experiment, these results suggest that approximately 10% of the Cys23 and Cys88 in
10 anti2C4907-2 are not linked by a disulfide bond (i.e. 10% unpaired cysteins variants). Using a calculation method similar to that described above to convert the percent unpaired cysteine Fab variant into percent unpaired cysteine intact variant, it was estimated that 18% of the pertuzumab molecules in anti2C4907-2 are heterodimer unpaired cysteine variants, 1% of the pertuzumab molecules are homodimer unpaired cysteine variants, and 81% are the wild-type homodimer form
15 (without unpaired cysteines). These results are in a general agreement with the results from HIC analysis of either the Fab fragments or the intact pertuzumab.

20 **Limited Endoproteinase Lys-C Digestion to Generate the Fab:** The Fab fragment of MAb A was generated through limited Lys-C digestion procedure. Briefly, MAb A (1 mg/ml) was mixed with Lys-C enzyme at 1:400 ratio in 100 mM Tris, pH 7.6, and then the mixture was incubated at 37 °C for 30 minutes. The reaction mixture was tagged with NEMin pH 5.5, 350 mM sodium acetate and 8M Guanidine HCl. The digests were analyzed with an RP-HPLC method described below.

25 **RP-HPLC Conditions:** RP-HPLC analysis was performed on an AGILENT 1200™ HPLC system (Palo Alto, CA, USA) equipped with a binary gradient pump, autosampler, temperature-controlled column compartment, and a diode array detector. The system included a Pursuit 3 diphenyl reversed phase column (150 x 4.6 mm, 3 µm, Varian, Lake Forest, CA, USA) that was run at 75 °C and 1ml/min. The separation was monitored using absorbance at 280 nm. The mobile phase consisted of 0.1 % TFA in water (mobile phase A) and 0.09% TFA in ACN (mobile phase B). The 38-minute method began with a three minute gradient from 32% to 36 % mobile phase B, followed by an 18 minute linear gradient to 42% mobile phase B. The column was washed at 95 % mobile
30 phase B for 5 minute and equilibrated at 32 % mobile phase B for 10 minutes.

35 RP-HPLC analysis of free thiol Fab generated by limited Lys-C digestion (Fig. 18) indicated the free thiol Fab is around 13%, consistent with the HIC in Example 1. The NEM tagged free thiol Fab becomes more hydrophobic, thus eluted later compared with free thiol Fab (Fig. 18) and further confirmed the presence of free thiol. See also Fig. 19 in which peptide mapping confirms free thiol Fab.

EXAMPLE 4**Afucosylation Quantification by CE-LIF**

This example describes a fully validated capillary electrophoresis-laser-induced fluorescence (CE-LIF) assay for quantifying afucosylated Pertuzumab variant. Modifications to the methods disclosed in Example 2 above include: no robotic sample preparation, no Protein A purification step ensuring consistent protein concentrations among samples, and changes to the electrophoretic parameters (buffer excipient concentration).

10 In the assay, Pertuzumab samples are diluted to 10 mg/mL using formulation buffer, and buffer exchanged into Peptide-N-Glycanase F (PNGase F) digest buffer. The asparagine-linked oligosaccharides are then released enzymatically with PNGase F. The released glycans are subsequently derivatized with 8-aminopyrene-1,3,6-trisulfonic acid (APTS), a negatively charged fluorophore. APTS provides all glycans with three negative charges, which allow their rapid 15 electrophoretic analysis. The mixture containing the excess derivatizing agent and the APTS-glycan conjugates is analyzed by CE using a coated capillary that reduces the electroosmotic flow. The separation is monitored with a laser-induced fluorescence system using an argon-ion laser with an excitation wavelength of 488 nm and an emission band pass filter of 520 nm.

20 Using the assay, a correlation plot is shown in Fig. 21. Using the correlation plot (%ADCC = $30.133 + 12.439x$, where $x = \%G0-F$) and an ADCC range of 40 – 135%, the final specification for Pertuzumab corresponds to 0.9– 4.1% G0-F.

25 Thus, using this validated CE-LIF assay, it is possible to evaluate Pertuzumab compositions to confirm the biological activity in terms of ADCC is within the desired range (40-135% ADCC activity = 0.9-4.1% G0-F).

EXAMPLE 5**Pertuzumab High-Molecular-Weight-Species (HMWS),****Low-Molecular-Weight-Species (LMWS) and Characterization Thereof**

30 Pertuzumab was analyzed by SE-HPLC and CE-SDS to determine the amount of high-molecular-weight species (HMWS), generally dimer, and low-molecular-weight species (LMWS). There was no difference in HMWS upon dilution, suggesting that the aggregates are non-dissociable. There was good agreement between analytical ultracentrifugation (AUC) and 35 SE-HPLC results in terms of HMWS quantitation, showing no evidence of size-exclusion chromatography missing or underestimating major HMWS.

MATERIALS AND METHODS

Pertuzumab Compositions Tested: This example describes the characterization of the current Pertuzumab Reference Standard Batch anti2C4907-2 and Run 1, representing Phase III clinical material, and five Phase III/commercial batches (Runs 3-7), all produced at 12,000 liter (L) scale using the commercial process.

Isolated HMWS: To prepare representative HMWS used for biological characterization, a pertuzumab batch from Run 3 was injected onto a preparative HPLC system using a preparative SE-HPLC column (TSK G3000SW, 21.5 mm × 600 mm) and the same isocratic mobile phase as described above at 4.5 mL/min. High-molecular-weight species were fraction collected and subsequently buffer exchanged into formulation buffer. HMWS were shown to be 70% pure by subsequent SE-HPLC analysis, with the remainder predominantly main peak. The main peak was also collected and shown to be 100% pure.

Isolated LMWS: To prepare isolated LMWS, a batch Number from Run 3 was digested with papain and subjected to fraction collection using preparative HPLC, as above. The predominant forms were verified to be Fc and Fab by intact ESI-MS analysis. LMWS were shown to be 99% pure by subsequent analytical SE-HPLC. Isolated Fab variants were also prepared using papain treatment and collected by preparative IE-HPLC. The Fab variant was shown to be 100% pure by subsequent analytical SE-HPLC.

SE-HPLC: Aliquots of pertuzumab were diluted to 10 mg/mL with mobile phase (0.2 M potassium phosphate, pH 6.2, 0.25 M potassium chloride). Samples were separated on a TSK G3000SW_{XL} column (7.8 mm × 300 mm) that was eluted isocratically. The flow rate was at 0.5 mL/min, and column temperature was at ambient temperature. The elution profile was monitored at 280 nm. For detection by multi-angle light scattering (MALS), pertuzumab samples were separated using two columns in sequence connected inline to a WYATT DAWN HELEOTM MALS detector (using 658 nm laser, 17 detectors) and a WYATT OPTILABTM rex refractive index detector.

CE-SDS: Each Pertuzumab batch was derivatized with 5 carboxytetramethylrhodamine succinimidyl ester, a fluorescent dye. After removing the free dye using NAP-5 columns, non-reduced samples were prepared by adding 40 mM iodoacetamide and heating at 70°C for 5 minutes. For the analysis of reduced samples, the derivatized pertuzumab was mixed with sodium dodecyl sulfate (SDS) and 1 M DTT to a final concentration of 1% SDS (v/v). Samples were then heated at 70°C for 20 minutes. The prepared samples were analyzed on a CE system using a 50 m inner diameter × 31.2 cm fused silica capillary maintained at 20°C throughout the analysis. Samples were introduced into the capillary by electrokinetic injection at 10 kV for 40 seconds. The separation was conducted at a constant voltage of 15 kV in the reversed polarity (negative to positive)

mode using CE-SDS running buffer as the sieving medium. An argon ion laser operating at 488 nm was used for fluorescence excitation with the resulting emission signal monitored at 560 nm.

RESULTS AND DISCUSSION

5 SE-HPLC provides quantitative information about the molecular size distribution of a native protein. The SE-HPLC profiles for the pertuzumab batches are shown in Fig. 25, and an expanded view of the profiles is shown in Fig. 26. The relative peak area distribution of size-exclusion peaks is listed in Table 10.

10 **Table 10: Relative Size Distribution of Pertuzumab by Size-Exclusion Chromatography**

Batch Name	Peak		
	HMWS (%)	Main Peak (%)	LMWS (%)
anti2C4-900-1	0.1	99.8	0.1
anti2C4907-2 ^a	0.2	99.8	0.0
Run 1	0.2	99.8	0.0
Run 3	0.2	99.8	0.0
Run 4	0.1	99.8	0.0
Run 5	0.2	99.8	0.0
Run 6	0.2	99.8	0.0
Run 7	0.2	99.8	0.0

Note: The total percent may not add exactly to 100% due to rounding.

HMWS = high-molecular-weight species; LMWS = low-molecular-weight species.

^a Values obtained from Reference Standard anti2C4907-2.

15 The proportion of pertuzumab eluting in the main peak was more than 99% for all materials. The amount of high-molecular-weight species (HMWS) ranged from 0.1% to 0.2%, and the low-molecular-weight species (LMWS) was \leq 0.1%. All batches displayed similar chromatographic profiles. A purified HMWS fraction, including dimer and higher aggregates, was shown to have 46% potency relative to Reference Standard Batch anti2C4907-2.

20 SE-HPLC was performed on both neat and diluted samples held at 30°C to examine pertuzumab HMWS for both fast and slow-dissociating aggregates that could result from dilution and/or prolonged exposure to elevated room temperature. No decrease was seen in the HMWS content of diluted and/or heated Reference Standard Batch anti2C4907-2 as compared to the control.

25 SE-HPLC separation combined with MALS performed on Reference Standard Batch anti2C4907-2 confirmed the SE-HPLC main peak to be monomer, with a molecular weight of approximately 150 kDa.

AUC in sedimentation velocity mode was used to characterize the HMWS present in pertuzumab samples. Sedimentation velocity is a technique independent from size exclusion chromatography that measures the levels of HMWS in a sample in the absence of a solid column matrix. AUC was performed on pertuzumab samples with increasing levels of HMWS to determine if SE-HPLC is able to detect all major pertuzumab HMWS consistently by comparing the levels and species of aggregates determined by sedimentation velocity to those determined by SE-HPLC. Five samples ranging from 0.2% to 7.2% total HMWS (determined by SE-HPLC) were characterized by sedimentation velocity and labeled A–E in Table 11 and Fig. 27.

These samples consisted of a representative pertuzumab Drug Product batch (labeled A) and four samples with enriched HMWS. The samples with enriched HMWS were chosen to be representative of a wide range of degradation mechanisms (exposure to light, exposure to acidic pH, and purified IE-HPLC basic variants).

SE-HPLC shows one major HMWS peak for samples A, B, C and E and two HMWS peaks for sample D (Fig. 27). For samples A, B, C and E, AUC showed only one HMWS peak with a sedimentation coefficient at about 9.1S. In sample D, AUC showed two HMWS peaks with sedimentation coefficients of about 9.1S and 10.8S. The HMWS detected by AUC are consistent with the SE-HPLC results; both methods show one main degradation product, with minor levels of a larger HMWS in sample D.

A comparison of the quantitative results of these samples from the two methods is presented in Table 11.

Table 11: Comparison of AUC and SE-HPLC Results

Sample	% HMWS (total)	
	AUC	SE-HPLC
A	1.2 [31.4% RSD] ^a	0.2
B	1.9	1.3
C	4.8	5.5
D	6.4	6.6
E	7.6 [7.9% RSD]	7.2

Note 1: Sample A consists of a representative pertuzumab Drug Product batch, Sample B consists of a pertuzumab batch subjected to light exposure at 1.2 mlux hours, Sample C consists of a pertuzumab batch subjected to light exposure at 3.6 mlux hours, Sample D consists of a pertuzumab batch subjected to acid treatment at pH 3.2, and Sample E consists of purified basic variants from IE-HPLC.

Note 2: Refer to Fig. 27 for corresponding SE-HPLC chromatograms.

AUC = analytical ultracentrifugation; HMWS = high-molecular-weight species; RSD = relative standard deviation; SE-HPLC = size-exclusion high-performance liquid chromatography.

^a Samples A and B have HMWS levels that are below the limit of quantitation of the AUC technique.

For samples C, D, and E there is good agreement in the percent HMWS measured by both techniques. The low level of HMWS present in samples A and B prevents an accurate quantitation of the species by AUC, which has an estimated Limit of Quantitation of 3.7% (Gabrielson and Arthur, *Methods* 54:83-91 (2011)). This is reflected by an apparent discrepancy in percent HMWS between 5 SE-HPLC and AUC (Table 11). A correlation across a range of HMWS levels was evaluated. The correlation coefficient (Lin, L, *Biometrics* 45:255-68 (1989)) was calculated to be 0.97 (n=5) indicating good agreement between AUC and SE-HPLC for the quantitation of HMWS (Fig. 28).

These results confirm that SE-HPLC is robust in measuring HMWS for pertuzumab. SE-HPLC is able to detect and accurately quantitate all HMWS species observed by AUC.

10 Size-based heterogeneity, analyzed by SE-HPLC, SDS-PAGE, and CE-SDS, was consistent among the batches. The SE-HPLC assay showed similar levels of HMWS (0.1%-0.2%) and LMWS (0.0%-0.1%) for all batches tested. The banding patterns developed by SDS-PAGE analysis for reduced and non-reduced samples were consistent, as were the electrophoretic profiles generated by CE-SDS.

15 In one embodiment, the amounts of the main species Pertuzumab and HMWS variant and LMWS variant as evaluated by SE-HPLC is as follows:

≥ 96% Main Peak e.g., ≥ 96.7% Main Peak, e.g., ≥ 97.3% Main Peak e.g., ≥ 97.4% Main Peak
≤ 2% HMWS, e.g., ≤ 1.7% HMWS, e.g., ≤ 1.5% HMWS, e.g., ≤ 1.4% HMWS, e.g. ≤ 0.8%
HMWS.

20 ≤ 2% LMWS, e.g., ≤ 1.6% LMWS, e.g., ≤ 1.2% LMWS, e.g. ≤ 0.6% LMWS.

Both the pertuzumab HMWS and LMWS fractions purified by SE-HPLC exhibited a decreased anti-proliferation activity compared to the main peak and control, which was fully potent. All size variants showed comparable HER2 binding activity and FcRn binding activity compared to the control, except for the LMWS, which showed lower FcRn binding. Since the LMWS sample 25 contains 2/3 Fab fragments and 1/3 Fc fragments, the lower anti proliferation and FcRn binding activity are as expected. The HMWS showed higher Fc RIIIa (CD16) V158 binding activity, but lower ADCC activity. The LMWS showed lower Fc RIIIa (CD16) V158 binding activity, and no ADCC activity was observed for this variant (Table 12).

30

Table 12: Biological Activities of Pertuzumab Main Peak, HMWS, and LMWS

Pertuzumab Samples and Conditions	Mean % Activity (n = 3)				
	Anti-Proliferation	HER2 Binding	Fc γ RIIIa Binding	ADCC	FcRn Binding
Control	103	108	91 ^b	80 ^b	80
Main Peak	104	96	96	79	87
HMWS	46	82	522	38	73
LMWS	12 ^a	73 ^a	23 ^a	No Activity	7 ^a

Note: Percent activity reported relative to pertuzumab Reference Standard (Batch anti2C4907-2).

ADCC = antibody-dependent cell-mediated cytotoxicity; HMWS = high-molecular-weight species; LMWS = low-molecular-weight species.

^a The LMWS sample consist of 2/3 Fab and 1/3 Fc fragments. The value shown reflects nM/nM adjustment based on molecular weight (Fab = 47644 Da, Fc = 52800 Da, and the full length antibody = 148088 Da).

^b The pertuzumab Reference Standard (Batch anti2C4907-2) has a G0-F level of 2.2%, while the control sample had a G0-F of 1.7%. Results have not been corrected for difference in afucosylated material level.

Capillary Electrophoresis Sodium Dodecyl Sulfate (CE-SDS): CE-SDS with laser-induced fluorescence (LIF) detection analysis is a high-sensitivity assay that provides a means of quantitatively assessing the molecular size distribution of proteins under denaturing conditions. In the CE-SDS analysis of non-reduced samples (Fig. 29), pertuzumab migrated as a prominent peak consisting of 96%–98% of the total peak area with minor peaks representing LMWS and HMWS. The amount of HMWS determined by this technique was 0.6% for all materials tested. The remaining species migrated as LMWS as shown in Fig. 30 (expanded view). The sample heating-induced fragmentation is minimized with alkylation (Salas-Solano et al. *Anal Chem* 78:6583–6594 (2006)). The relative distribution of the species separated by CE-SDS is listed in Table 13.

Table 13: Relative Distribution of Non-Reduced Pertuzumab by CE-SDS (Percent Peak Area)

Batch Name	Peak							
	1	2	3	4	5	6	Main	HMWS
anti2C4-900-1	0.1	0.2	0.1	0.2	0.2	0.9	97.8	0.6
anti2C4907-2	0.1	0.3	0.1	0.3	0.2	1.9	96.5	0.6
Run 1	0.1	0.3	0.1	0.4	0.2	1.7	96.7	0.6
Run 3	0.1	0.4	0.1	0.3	0.2	2.3	96.0	0.6
Run 4	0.1	0.4	0.1	0.3	0.2	2.3	96.1	0.6
Run 5	0.1	0.3	0.1	0.2	0.2	2.0	96.4	0.6
Run 6	0.1	0.4	0.1	0.3	0.2	2.2	96.2	0.6
Run 7	0.1	0.4	0.0	0.2	0.2	2.1	96.3	0.6

Note: The total % may not add exactly to 100% due to rounding.

CE-SDS = capillary electrophoresis sodium dodecyl sulfate;

HMWS = high-molecular-weight species.

A minor difference was observed wherein Peak 6 increased from 0.9% in the Reference Standard Batch anti2C4-900-1 (Phase I/II process) to 1.7%–2.3% for Reference Standard Batch anti2C4907-2, Run 1, and Runs 3–7.

In one embodiment, the Pertuzumab main peak (excluding LMWS and HMWS) as separated or isolated by NR-CE-SDS is from about 95% to about 99%, e.g., from about 96.0% to about 97.8%. Optionally, the amount of HMWS is \leq 1%, e.g. \leq 0.6% and the amount of LMWS is \leq 4%, e.g. \leq 3.4% as separated or isolated by CE-SDS.

EXAMPLE 6

Detection and Quantification of Pertuzumab Fragmentation

The purpose of this example was to evaluate size exclusion chromatography (SE-HPLC), reduced capillary electrophoresis sodium dodecyl sulfate (R-CE-SDS), and non-reduced CE-SDS (NR-CE-SDS) methods for the detection of pertuzumab fragments.

MATERIALS AND METHODS

Samples evaluated in this study are summarized below. These include pertuzumab samples that have been subjected to various stressed conditions which might result in increased fragmentation.

- Reference Standard (2C4907-2)
- Thermally stressed (42 days, 40°C)
- Acid treated (pH 3.2, 1 day, 40°C)
- Accelerated stability (30 days at 40°C then stored at approximately 5°C)
- Real time Drug Product (DP) stability (T=0 and T=548 days and stored at approximately 5°C) and corresponding Drug Substance (DS)

SE-HPLC was carried out as described in Example 5 above, with the following reportable values: LMWS, Main Peak, HMWS, and all other significant peaks above limit of quantification (LOQ).

Reduced CE-SDS (R-CE-SDS) was carried out according to Example 5 above, with reportable values: Peak 1, LC, Peak 2, Peak 3, NGHC, HC, Peak 5, Inc. Red., and other significant peaks above LOQ.

Non-reduced CE-SDS (NR-CE-CDS) was carried out as in Example 5 above, with sample preparation excluding the antibody reduction step to allow non-reduced analysis by eliminated dithiothreitol (DTT) from the SDS complexation step.

Qualitative results obtained by SE-HPLC, NR-CE-SDS, and R-CE-SDS are presented in Figs. 31A-B, Figs. 32A-B, and Figs. 33A-B, respectively, as well as Tables 14, 15, and 16, respectively.

Peak identifications are based on Hunt & Nashabeh *Analytical Chemistry* 71: 2390-2397 (1999), and Ma & Nashabeh *Chromatographia Supplement* 53: S75-S89 (2001). For NR-CE-SDS analysis, a small peak after Peak 2 is typically included as part of Peak 2 during data reporting. For this study, this small peak is reported separately as Peak 2a to differentiate the fragment from light chain (LC).

Table 14: SE-HPLC Quantitative Data (% Peak Area)

	HMWS (%)	Main Peak (%)	LMWS (%)
2C4907-2	0.18	99.77	0.04
Thermal	0.40	98.96	0.64
Acid Treated	7.09	92.65	0.26
Accelerated Stability	0.26	99.23	0.51
DP Stability	0.19	99.68	0.13

Table 15: NR-CE-SDS Quantitative Data (% CPA)

	Peak 1	Peak 2 (LC)	Peak 2a	Peak 3 (Fab)	Peak 4 (HL)	Peak 5 (HH/des Fab)	Peak 6 (HHL)	Main Peak	HMWS
2C4907-2	0.12	0.29	0.05	0.07	0.35	0.18	1.90	96.32	0.73
Thermal	0.42	0.70	0.09	0.61	0.52	1.36	3.62	91.99	0.71
Acid Treated	0.15	0.37	0.17	0.35	0.45	0.66	3.19	93.42	1.25
Accel. Stability	0.35	0.59	0.09	0.48	0.44	1.07	3.25	92.90	0.84
DP Stability	0.22	0.37	0.06	0.20	0.33	0.43	2.53	95.27	0.60

10 LC = Light Chain, HC = Heavy Chain, L = Light, H= Heavy

Table 16: R-CE-SDS Quantitative Data (% CPA)

	Peak 1	LC	Peak 2	Peak 3	NGHC	HC	Peak 5	Inc. Red.
2C4907-2	0.31	25.30	0.92	2.44	2.81	66.82	0.48	0.91
Thermal	0.54	26.16	1.12	3.13	2.81	64.54	0.27	1.43
Acid Treated	0.38	25.04	5.58 ^c	2.77	2.41	62.91	0.19	0.71
Accel. Stability	0.51	25.01	0.98	2.99	3.16	66.10	0.25	1.03
DP Stability	0.19	26.34	0.69	3.21	2.83	65.93	0.24	0.57

15 NGHC = Non-Glycosylated Heavy Chain, HC = Heavy Chain, Inc. Red. = Incompletely Reduced

Data Evaluation: The percent peak area (or percent corrected peak area, %CPA, for CE-SDS) of relevant fragments was compared to determine if either of the CE-SDS methods provide non-redundant information as compared to SE-HPLC. Relevant fragments include peaks with

unknown structure, or those that are known to contain products derived from cleavage of polypeptide chain(s). These fragments are distinct from the dissociable non-disulfide bonded heavy and/or light chain fragments that are present in antibody products and are commonly observed by CE-SDS.

Fragment peaks must be resolved from other peaks to enable sensitive detection and accurate 5 quantitation.

Ability to Detect Small Fragments: Small fragments can be observed in both R-CE-SDS and NR-CE-SDS analysis, and are named as Peak 1 in both assays. These peaks retain the same general shape and migration time, and increase similarly under stressed conditions in both assays. Therefore, Peak 1 is presumed to contain the same species in both assays. Both CE-SDS assays are 10 capable of detecting small fragments, as noted in Table 17.

Ability to Detect Fragments Generated by Acid Hydrolysis (Acid Clips): Prolonged exposure to acidic conditions can generate fragments, particularly at the Asp-Pro sequence (pertuzumab heavy chain residues 272-273), as supported by mass spectrometric analysis of the acid-treated sample showing masses at 29039 Da (HC 1-272) and 21513 Da (HC 273-448 with G0 15 glycan). The theoretical masses for these forms are 29031 Da and 21510 Da, respectively. Based on the expected migration time of these forms, a corresponding peak can be seen clearly in the reduced CE-SDS analysis of the acid-treated sample (Peak 2, Fig. 34), but is detected at a much lower level (lower signal) in the non-reduced assay. It can be postulated that in the NR-CE-SDS assay the Peak 2 fragment is presumably disulfide linked, and therefore not detected. Since the level of Peak 2 20 detected by R-CE-SDS (5.58%) in the acid-treated sample exceeds the total LMWS as detected by SE-HPLC (0.26%) for this sample, it can be concluded that SE-HPLC is also insufficient for detection of these forms. Therefore, the reduced CE-SDS assay is the only assay presented herein capable of detecting fragmentation generated as a result of acid hydrolysis, as noted in Table 17.

Ability to Detect Fab/DesFab Fragments: There is a good linear correlation ($r^2 = 0.97$) 25 between the LMWS as detected by SE-HPLC, and Peak 3 from the non-reduced CE-SDS assay (Fig. 35). The LMWS was identified to contain the Fab fragment through co-elution studies with enzymatically generated Fab. Similarly, Peak 3 and Peak 5 in the NR-CE-SDS assay were identified through co-migration studies with enzymatically generated Fab and DesFab, respectively (Ma & Nashabeh, *supra*). The desFab peak arises from the heavy chain cleavage that produced the Fab 30 form, so it is presumed to be in an equivalent molar quantity (corresponds to a 2:1 mass ratio) relative to the Fab fragment, and thus, information on this form can also be indirectly obtained by SE-HPLC as noted in Table 17.

Table 17: Detection Capability for Fragments by SE-HPLC, NR-CE-SDS, and R-CE-SDS

Fragment	SE-HPLC	NR-CE-SDS	R-CE-SDS
Small Fragments	Unknown	Yes	Yes

CE-SDS Peak 1			
Acidic Clips (R-CE-SDS Peak 2)	No	No	Yes
Fab / DesFab	Yes / (indirectly)	Yes	No

Reduced CE-SDS Peak 3: R-CE-SDS Peak 3 is unique for pertuzumab and has not been observed in the CE-SDS analysis of other antibodies. Extended characterization results support the conclusion that Peak 3 is not a product variant or impurity, but rather a method-induced artifact specific to pertuzumab consisting of a dissociable form of LC-LC dimer. Multiple techniques were employed to characterize Peak 3.

5 Peak 3 is observed by R-CE-SDS with UV and LIF detection, suggesting it is not a dye-labeling or sample preparation artifact.

Upon analysis by R-CE-SDS, purified pertuzumab light chain fractions produce Peak 3
10 having an apparent MW approximately 2-times the theoretical size of LC.

Peak 3 is not observed when the electrophoretic conditions include a higher capillary temperature, and no other co-migrating fragments are observed under these conditions.

Studies involving single amino acid mutations have identified three amino acid residues in
15 LC CDR1 and CDR2 correlated with LC-LC dimer formation. When any of these three residues is replaced by another amino acid, Peak 3 completely dissociates and is no longer observed by reduced CE-SDS.

SDS-PAGE analysis coupled with MALDI-TOF Protein Mass Fingerprinting (PMF) confirmed no host cell proteins were present in pertuzumab, nor was an analogous band detected at levels observed by CE-SDS.

20 Taken collectively, these results support the identification of Peak 3 as a method-induced, LC-LC dimer specific to pertuzumab.

DISCUSSION

Evaluation of data obtained from this study indicates that:

(1) NR-CE-SDS does provide non-redundant information as compared to SE-HPLC for the
25 detection of fragments

(2) The non-redundant fragmentation information obtained by the NR-CE-SDS method (as compared to SE-HPLC) can also be obtained using the R-CE-SDS method

As shown in Table 16, the reduced assay detected cleavage products resulting from low pH

exposure, which may occur during Drug Substance manufacture. Table 18 contains the values obtained for reduced CE-SDS Peak 1 and Peak 2 for pertuzumab reference standard, phase III material (n=3), and batches produced using the commercial manufacturing process (n=39). The 95/99 tolerance intervals (TIs) have been calculated for Peak 1 and Peak 2 using a k value of 3.2, and 5 are presented in Table 18. The 95/99 tolerance interval for Peak 1 is 0.0 to 0.4 %CPA. The 95/99 tolerance interval for Peak 2 is 0.3 to 0.9 %CPA.

Table 18: R-CE-SDS Quantitative Data (% CPA) on 43 Batches Tested

n	Batch	Peak 1 (% CPA)	Peak 2 (% CPA)
1	anti2C4907-2	0.31	0.92
2	SSF0001	0.25	0.63
3	SSF0002	0.20	0.62
4	SSF0003	0.27	0.60
5	VV0002	0.27	0.47
6	VV0003	0.28	0.49
7	VV0004	0.25	0.51
8	VV0005	0.41	0.55
9	VV0006	0.27	0.50
10	VV0007	0.29	0.50
11	VV0008	0.30	0.53
12	VV0009	0.26	0.54
13	VV0013	0.19	0.54
14	VV0018	0.17	0.56
15	VV0020	0.17	0.58
16	VV0021	0.18	0.62
17	VV0023	0.14	0.62
18	VV0024	0.13	0.64
19	VV0025	0.18	0.69
20	VV0026	0.13	0.58
21	VV0028	0.17	0.60
22	VV0029	0.18	0.61
23	VV0031	0.18	0.65
24	VV0032	0.16	0.69
25	VV0033	0.18	0.69
26	VV0034	0.18	0.67
27	VV0035	0.17	0.59
28	VV0036	0.17	0.67
29	VV0037	0.19	0.74
30	VV0038	0.19	0.71
31	VV0039	0.19	0.73
32	VV0040	0.19	0.70
33	VV0041	0.18	0.72

34	VV0042	0.19	0.73
35	VV0043	0.19	0.61
36	VV0044	0.20	0.67
37	VV0046	0.20	0.62
38	VV0047	0.22	0.66
39	VV0048	0.22	0.63
40	VV0049	0.20	0.69
41	VV0050	0.18	0.49
42	VV0051	0.16	0.63
43	VV0052	0.18	0.60
Mean		0.21	0.62
Standard Deviation		0.06	0.09
Minimum		0.13	0.47
Maximum		0.41	0.92
N		43	43
K		3.2	3.2
Lower TI		0.02	0.33
Upper TI		0.40	0.91

A final acceptance criteria of Peak 1 \leq 0.5% and Peak 2 \leq 1.0% on Drug Substance release is selected herein.

As the pertuzumab Drug Substance is stored frozen, there would be no expected changes on DS stability. In addition, based on R-CE-SDS data obtained for Drug Product at both T=0 and T548d (Table 19), no significant change is observed for any of the named species.

Table 19: R-CE-SDS Quantitative Data (% CPA) for a DP Stability Sample

	Peak 1	LC	Peak 2	Peak 3	NGHC	HC	Peak 5	Inc. Red.
DS Release	0.25	26.72	0.51	2.27	2.76	66.66	0.27	0.56
DP Stability T=0	0.13	26.45	0.54	2.78	2.78	66.53	0.30	0.49
DP Stability T=548d	0.19	26.34	0.69	3.21	2.83	65.93	0.24	0.57

NGHC = Non-Glycosylated Heavy Chain, HC = Heavy Chain, Inc. Red. = Incompletely Reduced

WHAT IS CLAIMED IS:

1. A composition comprising Pertuzumab and unpaired cysteine variant thereof, wherein the unpaired cysteine variant comprises Cys23 and Cys88 in both variable light domains of Pertuzumab and Cys23/Cys88 unpaired cysteines in one or both variable light domains of Pertuzumab.
2. The composition of claim 1, wherein the unpaired cysteine variant is a heterodimer variant comprising Cys23/Cys88 unpaired cysteines in only one variable light domain of Pertuzumab.
3. The composition of claim 1, wherein the unpaired cysteine variant is a homodimer variant comprising Cys23/Cys88 unpaired cysteines in both variable light domains of Pertuzumab.
4. The composition of any one of the preceding claims, wherein the Pertuzumab and the unpaired cysteine variant each comprise the variable light and variable heavy amino acid sequences in SEQ ID NOs. 7 and 8, respectively.
5. The composition of any one of the preceding claims, wherein the Pertuzumab and the unpaired cysteine variant each comprise the light chain amino acid sequence in SEQ ID No. 11 or 15 and the heavy chain amino acid sequence in SEQ ID No. 12 or 16.
6. The composition of any one of the preceding claims, further comprising one or more additional variants of Pertuzumab, wherein the additional variants are selected from the group consisting of: afucosylated variant, low-molecular-weight-species (LMWS), high-molecular-weight-species (HMWS), glycated variant, disulfide reduced variant, non-reducible variant, deamidated variant, sialylated variant, VHS-variant, C-terminal lysine variant, methionine-oxidized variant, G1 glycosylation variant, G2 glycosylation variant, and non-glycosylated heavy chain variant.
7. The composition of any one of the preceding claims, wherein the amount of the unpaired cysteine variant in the composition is \leq about 25% as determined by Fab hydrophobic interaction chromatography (HIC).
8. The composition of claim 3, wherein the amount of the homodimer variant in the composition is \leq 4.9% as determined by hydrophobic interaction chromatography (HIC) of intact antibody.
9. The composition of claim 2, wherein the amount of the heterodimer variant in the composition is from about 13% to about 18% as determined by hydrophobic interaction chromatography (HIC) of intact antibody.

10. The composition of any one of claims 1 to 9, which has been subjected to an analytical assay to confirm that the amount of the unpaired cysteine variant in the composition is \leq about 25% as determined by Fab hydrophobic interaction chromatography (HIC).
11. The composition of claim 10 further comprising an afucosylated variant of Pertuzumab, wherein the amount of the afucosylated variant is from 2% to 4.1% of the composition.
12. A composition comprising Pertuzumab and (a) unpaired cysteine variant thereof, wherein the unpaired cysteine variant comprises Cys23 and Cys88 in both variable light domains of Pertuzumab and Cys23/Cys88 unpaired cysteines in one or both variable light domain thereof and (b) an afucosylated variant of Pertuzumab, wherein the amount of the afucosylated variant is from 2% to 4.1% of the composition.
13. An isolated variant of Pertuzumab, wherein the isolated variant comprises: (a) an unpaired cysteine variant of Pertuzumab, wherein the variant is a heterodimer variant comprising Cys23 and Cys88 in both variable light domains of Pertuzumab and Cys23/Cys88 unpaired cysteines in only one variable light domain thereof or (b) an unpaired cysteine variant of Pertuzumab, wherein the variant is a homodimer variant comprising Cys23 and Cys88 in both variable light domains of Pertuzumab and Cys23/Cys88 unpaired cysteines in both variable light domains thereof.
14. A pharmaceutical composition comprising the composition of any one of claims 1 to 12 or the isolated variant of Pertuzumab of claim 13 and one or more pharmaceutically acceptable excipients.
15. A kit comprising a container with the pharmaceutical composition of claim 14 therein, and a package insert with prescribing information instructing the user thereof to use the pharmaceutical composition to treat a cancer patient.
16. A method of treating a patient with a HER2-positive cancer or a low HER3 cancer comprising administering the composition of any one of claims 1 to 12, the isolated variant of Pertuzumab of claim 13 or the pharmaceutical composition of claim 14 to the patient.
17. Use of the composition of any one of claims 1 to 12 or the isolated variant of Pertuzumab of claim 13 in the manufacture of a medicament for treating a patient with a HER2-positive cancer or a low HER3 cancer.
18. The method of claim 16 or use of claim 17, wherein the cancer is breast cancer, gastric cancer, or ovarian cancer.

19. A method for evaluating a Pertuzumab composition comprising: (1) measuring an amount of unpaired cysteine variant in the composition, wherein the unpaired cysteine variant comprises Cys23/Cys88 unpaired cysteines in one or both variable light domains of Pertuzumab.
20. The method of claim 19, further comprising: (2) measuring the amount of afucosylated Pertuzumab in the composition; or (3) measuring the amount of low-molecular-weight-species (LMWS) or high-molecular-weight-species (HMWS) of Pertuzumab in the composition.
21. A method for making a composition comprising: (1) producing a composition comprising Pertuzumab and one or more variants thereof, and (2) subjecting the composition so-produced to an analytical assay to evaluate the amount of the variant(s) therein, wherein the variant(s) comprise unpaired cysteine variant comprising Cys23/Cys88 unpaired cysteines in one or both variable light domains of Pertuzumab.
22. The method of claim 21, wherein (1) comprises expressing Pertuzumab and the variant(s) from a recombinant Chinese Hamster Ovary (CHO) at manufacturing scale and purifying the composition.

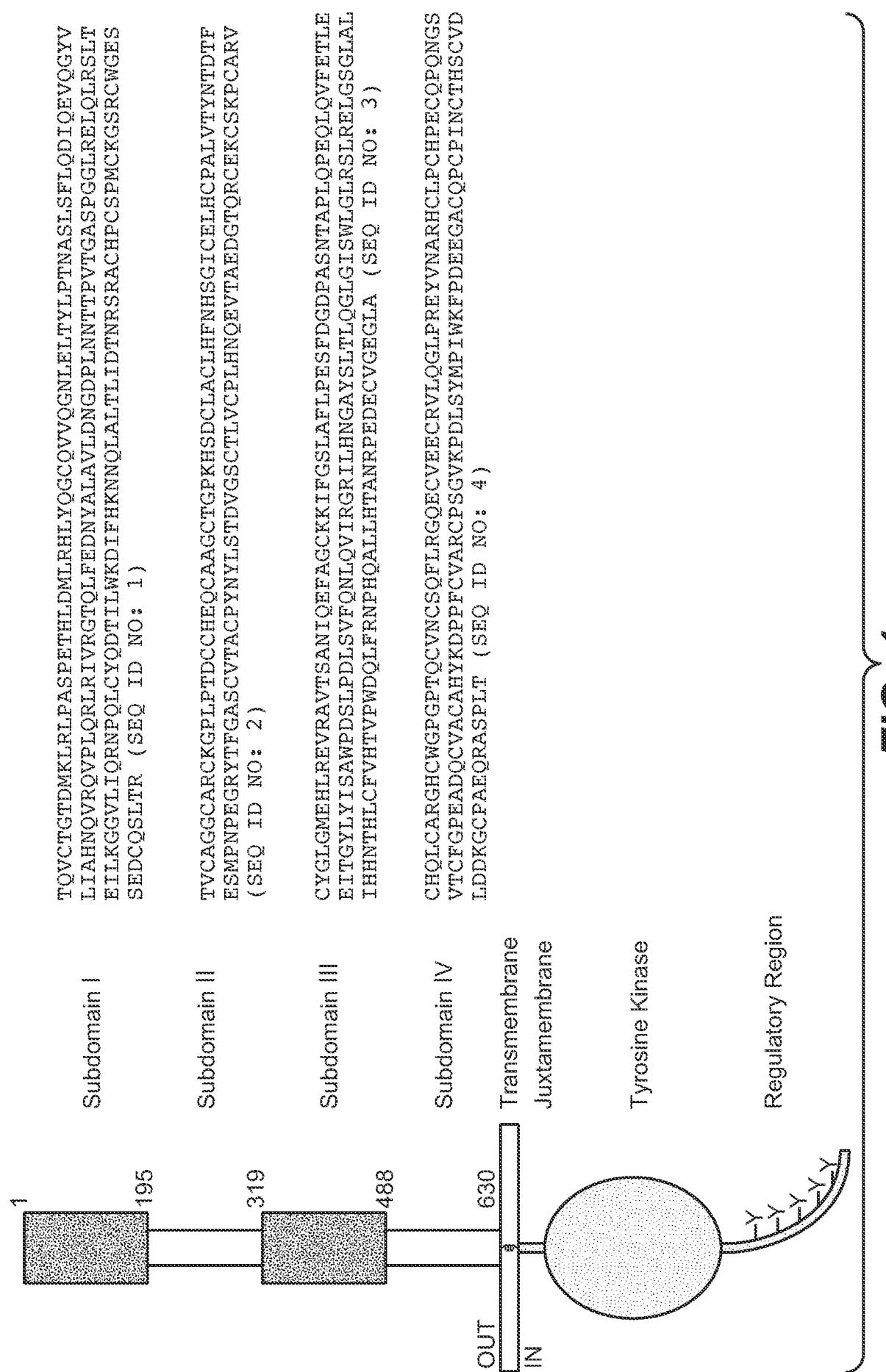


FIG. 1

2 / 42

Variable Light

	10	20	30	40
2C4	DTVMTQSHKIMSTSVGDRVSI	TC [KASQDV SIGVA]	WYQQRP	*
	** * * * *	*		

574	DIQMTQSPSSLSASVGDRV	TITC [KASQDV SIGVA]	WYQQKP	*
		*	** * * *	

hum κI	DIQMTQSPSSLSASVGDRV	TITC [RASQSI SNYLA]	WYQQKP	
--------	---------------------	---------------------	--------	--

	50	60	0	80
2C4	GQSPKLLIY [SASYRYT]	GVPDRFTGSGSGTDFTFTI	SSVQA	
	**	*	*	** *

574	GKAPKLLIY [SASYRYT]	GVPSRFSGSGSGTDFTLT	ISLQP	
	*	*****		

hum κI	GKAPKLLIY [AASSLES]	GVPSRFSGSGSGTDFTLT	ISLQP	
--------	---------------------	--------------------	-------	--

	90	100		
2C4	EDLAVYYC [QQYYIYPYT]	FGGG	TKLEIK (SEQ ID NO:5)	
	** *	*	*	

574	EDFATYYC [QQYYIYPYT]	FGQG	TKVEIK (SEQ ID NO:7)	
	*** *			

hum κI	EDFATYYC [QQYNSLPWT]	FGQG	TKVEIK (SEQ ID NO:9)	
--------	----------------------	------	----------------------	--

FIG. 2A**Variable Heavy**

	10	20	30	40
2C4	EVQLQQSGPELVKPGT	SVKISCKAS [GFTFTDYTMD]	WVKQS	
	** * * *	***** *		**

574	EVQLVESGGGLVQPGGSLRL	SCAAS [GFTFTDYTMD]	WVRQA	
			*** *	

hum III	EVQLVESGGGLVQPGGSLRL	SCAAS [GFTFSSYAMS]	WVRQA	
---------	----------------------	--------------------	-------	--

	50	a	60	70	80
2C4	HGKSLEWIG [DVNPNSGGSI	YNQRFKG]	KASLT	VDRSSRIVYM	
	** * **		*** *	***** *	

574	PGKGLEWVA [DVNPNSGGSI	YNQRFKG]	RFTLS	VDRSKNTLYL	
	*****	***	*****	*** *	

hum III	PGKGLEWVA [VISGDGGSTYYADSVKG]		RFTISRDNSKNTLYL		
---------	-------------------------------	--	-----------------	--	--

	abc	90	100ab	110
2C4	ELRSLTFEDTAVYYCAR	[NLGPSFYFDY]	WGQGTT	LT
	*** **			**

574	QMNSLRAEDTAVYYCAR	[NLGPSFYFDY]	WGQGTL	TVSS (SEQ ID NO:8)

hum III	QMNSLRAEDTAVYYCAR	[GRVGYSLYDY]	WGQGTL	TVSS (SEQ ID NO:10)
---------	-------------------	--------------	--------	---------------------

FIG. 2B

3 / 42

Amino Acid Sequence for Pertuzumab Light Chain

1	10	20	30	40	50	60
DIQMTQSPSSLSASVGDRVITITCKASQDVSI	GVAVYQQKPGKAPKLLIYSAS	YRTGVPS				
70	80	90	100	110	120	
RFSGSGSGTDFTLTISSLQPEDFATYYCQQYV	IYPTFGQG	TKV	EIKRTVAAPSVFIFPP			
130	140	150	160	170	180	
SDEQLKSGTASVVCLNNFYPREAKVQWKVDNAL	QSGNSQESVTEQDSKD	STYSLSS	LT			
190	200	210				
LSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC	(SEQ ID NO: 11)					

FIG. 3A**Amino Acid Sequence for Pertuzumab Heavy Chain**

1	10	20	30	40	50	60
EVOLVESGGGLVQPGGSLRLSCAASGFTFTD	YTMDWVRQAPGK	GLEWVADVNPNSGGSIY				
70	80	90	100	110	120	
NQRFKGRFTLSVDRSKNTLYLQMNSLRAED	TAVYYCARNL	GPSFYFDYWGQ	GT	LVTVSSA		
130	140	150	160	170	180	
STKGPSVFP LAPSSKSTSGGTAALGCLV	KDYFPEPV	TSWN	GALTSGVHTFP	AVLQSSG		
190	200	210	220	230	240	
LYSLLSVVTVPSSSLGTQTYICNVNHKPSNT	KVDKKVEPK	SCDK	THTC	PPCP	PAPELLGGP	
250	260	270	280	290	300	*
SVFLFPPKPKDTLMISRTPEVTCVVVDV	SHEDPEV	KFNWYVDG	VEVHN	AKTKP	REEQYNS	
310	320	330	340	350	360	
TYRVVSVLTVLHQDWLNGKEYKCKVSNKAL	PAPIEKTIS	KAKGQPREP	QVYTLPPS	REEM		
370	380	390	400	410	420	
TKNQVSLTCLVKGFYPSDI	AVEWESNG	OPENNYK	TTPPVLDSDG	SFFLYSKLTVD	DKSRWQ	
430	440	448				
QGNVFSCSVMHEALHNHYTQKSLSLSPG	(SEQ ID NO: 12)					

FIG. 3B

4 / 42

Trastuzmab Light Chain

1	D I Q M T Q S P S S L S A S V	15	30	45
46	U L R I Y S A S P L Y S C V P	60	75	90
91	H Y T T P P T F G Q G T K V	105	120	135
136	L N N F Y P R E A K V Q W K	150	165	180
181	L S K A D Y E K H K V Y A C	195	210	214
	E V T H Q G L S S P V T K S			(SEQ ID NO: 13)

↓

↓

↓

↓

FIG. 4A

Trastuzumab Heavy Chain

1 E V O L V E S G G C L V O p G C S L R L S C A A S G F N T K D T Y I H W V R Q A P G K G I 45
 46 E W V A R I Y P T N G Y T R Y A D S V K G R P T I S A D T S K N T A Y L Q M N S L R A E D 90
 47 T A V Y Y C S R W G C D G P Y A M D Y W G Q C T I L V T V S S A S T K G P S V F P L A P S S 135
 48 K S T S C G C T A A L G C L V K D Y P P E P V T V S W N S G A L T S C V H T P P A V L Q S S 180
 49 105
 50 150
 51 195
 52 240
 53 285
 54 330
 55 375
 56 420
 57 466
 58 475
 59 485
 60 495
 61 505
 62 515
 63 525
 64 535
 65 545
 66 555
 67 565
 68 575
 69 585
 70 595
 71 605
 72 615
 73 625
 74 635
 75 645
 76 655
 77 665
 78 675
 79 685
 80 695
 81 705
 82 715
 83 725
 84 735
 85 745
 86 755
 87 765
 88 775
 89 785
 90 795
 91 805
 92 815
 93 825
 94 835
 95 845
 96 855
 97 865
 98 875
 99 885
 100 895
 101 905
 102 915
 103 925
 104 935
 105 945
 106 955
 107 965
 108 975
 109 985
 110 995
 111 1005
 112 1015
 113 1025
 114 1035
 115 1045
 116 1055
 117 1065
 118 1075
 119 1085
 120 1095
 121 1105
 122 1115
 123 1125
 124 1135
 125 1145
 126 1155
 127 1165
 128 1175
 129 1185
 130 1195
 131 1205
 132 1215
 133 1225
 134 1235
 135 1245
 136 1255
 137 1265
 138 1275
 139 1285
 140 1295
 141 1305
 142 1315
 143 1325
 144 1335
 145 1345
 146 1355
 147 1365
 148 1375
 149 1385
 150 1395
 151 1405
 152 1415
 153 1425
 154 1435
 155 1445
 156 1455
 157 1465
 158 1475
 159 1485
 160 1495
 161 1505
 162 1515
 163 1525
 164 1535
 165 1545
 166 1555
 167 1565
 168 1575
 169 1585
 170 1595
 171 1605
 172 1615
 173 1625
 174 1635
 175 1645
 176 1655
 177 1665
 178 1675
 179 1685
 180 1695
 181 1705
 182 1715
 183 1725
 184 1735
 185 1745
 186 1755
 187 1765
 188 1775
 189 1785
 190 1795
 191 1805
 192 1815
 193 1825
 194 1835
 195 1845
 196 1855
 197 1865
 198 1875
 199 1885
 200 1895
 201 1905
 202 1915
 203 1925
 204 1935
 205 1945
 206 1955
 207 1965
 208 1975
 209 1985
 210 1995
 211 2005
 212 2015
 213 2025
 214 2035
 215 2045
 216 2055
 217 2065
 218 2075
 219 2085
 220 2095
 221 2105
 222 2115
 223 2125
 224 2135
 225 2145
 226 2155
 227 2165
 228 2175
 229 2185
 230 2195
 231 2205
 232 2215
 233 2225
 234 2235
 235 2245
 236 2255
 237 2265
 238 2275
 239 2285
 240 2295
 241 2305
 242 2315
 243 2325
 244 2335
 245 2345
 246 2355
 247 2365
 248 2375
 249 2385
 250 2395
 251 2405
 252 2415
 253 2425
 254 2435
 255 2445
 256 2455
 257 2465
 258 2475
 259 2485
 260 2495
 261 2505
 262 2515
 263 2525
 264 2535
 265 2545
 266 2555
 267 2565
 268 2575
 269 2585
 270 2595
 271 2605
 272 2615
 273 2625
 274 2635
 275 2645
 276 2655
 277 2665
 278 2675
 279 2685
 280 2695
 281 2705
 282 2715
 283 2725
 284 2735
 285 2745
 286 2755
 287 2765
 288 2775
 289 2785
 290 2795
 291 2805
 292 2815
 293 2825
 294 2835
 295 2845
 296 2855
 297 2865
 298 2875
 299 2885
 300 2895
 301 2905
 302 2915
 303 2925
 304 2935
 305 2945
 306 2955
 307 2965
 308 2975
 309 2985
 310 2995
 311 3005
 312 3015
 313 3025
 314 3035
 315 3045
 316 3055
 317 3065
 318 3075
 319 3085
 320 3095
 321 3105
 322 3115
 323 3125
 324 3135
 325 3145
 326 3155
 327 3165
 328 3175
 329 3185
 330 3195
 331 3205
 332 3215
 333 3225
 334 3235
 335 3245
 336 3255
 337 3265
 338 3275
 339 3285
 340 3295
 341 3305
 342 3315
 343 3325
 344 3335
 345 3345
 346 3355
 347 3365
 348 3375
 349 3385
 350 3395
 351 3405
 352 3415
 353 3425
 354 3435
 355 3445
 356 3455
 357 3465
 358 3475
 359 3485
 360 3495
 361 3505
 362 3515
 363 3525
 364 3535
 365 3545
 366 3555
 367 3565
 368 3575
 369 3585
 370 3595
 371 3605
 372 3615
 373 3625
 374 3635
 375 3645
 376 3655
 377 3665
 378 3675
 379 3685
 380 3695
 381 3705
 382 3715
 383 3725
 384 3735
 385 3745
 386 3755
 387 3765
 388 3775
 389 3785
 390 3795
 391 3805
 392 3815
 393 3825
 394 3835
 395 3845
 396 3855
 397 3865
 398 3875
 399 3885
 400 3895
 401 3905
 402 3915
 403 3925
 404 3935
 405 3945
 406 3955
 407 3965
 408 3975
 409 3985
 410 3995
 411 4005
 412 4015
 413 4025
 414 4035
 415 4045
 416 4055
 417 4065
 418 4075
 419 4085
 420 4095
 421 4105
 422 4115
 423 4125
 424 4135
 425 4145
 426 4155
 427 4165
 428 4175
 429 4185
 430 4195
 431 4205
 432 4215
 433 4225
 434 4235
 435 4245
 436 4255
 437 4265
 438 4275
 439 4285
 440 4295
 441 4305
 442 4315
 443 4325
 444 4335
 445 4345
 446 4355
 447 4365
 448 4375
 449 4385
 450 4395
 451 4405
 452 4415
 453 4425
 454 4435
 455 4445
 456 4455
 457 4465
 458 4475
 459 4485
 460 4495
 461 4505
 462 4515
 463 4525
 464 4535
 465 4545
 466 4555
 467 4565
 468 4575
 469 4585
 470 4595
 471 4605
 472 4615
 473 4625
 474 4635
 475 4645
 476 4655
 477 4665
 478 4675
 479 4685
 480 4695
 481 4705
 482 4715
 483 4725
 484 4735
 485 4745
 486 4755
 487 4765
 488 4775
 489 4785
 490 4795
 491 4805
 492 4815
 493 4825
 494 4835
 495 4845
 496 4855
 497 4865
 498 4875
 499 4885
 500 4895
 501 4905
 502 4915
 503 4925
 504 4935
 505 4945
 506 4955
 507 4965
 508 4975
 509 4985
 510 4995
 511 5005
 512 5015
 513 5025
 514 5035
 515 5045
 516 5055
 517 5065
 518 5075
 519 5085
 520 5095
 521 5105
 522 5115
 523 5125
 524 5135
 525 5145
 526 5155
 527 5165
 528 5175
 529 5185
 530 5195
 531 5205
 532 5215
 533 5225
 534 5235
 535 5245
 536 5255
 537 5265
 538 5275
 539 5285
 540 5295
 541 5305
 542 5315
 543 5325
 544 5335
 545 5345
 546 5355
 547 5365
 548 5375
 549 5385
 550 5395
 551 5405
 552 5415
 553 5425
 554 5435
 555 5445
 556 5455
 557 5465
 558 5475
 559 5485
 560 5495
 561 5505
 562 5515
 563 5525
 564 5535
 565 5545
 566 5555
 567 5565
 568 5575
 569 5585
 570 5595
 571 5605
 572 5615
 573 5625
 574 5635
 575 5645
 576 5655
 577 5665
 578 5675
 579 5685
 580 5695
 581 5705
 582 5715
 583 5725
 584 5735
 585 5745
 586 5755
 587 5765
 588 5775
 589 5785
 590 5795
 591 5805
 592 5815
 593 5825
 594 5835
 595 5845
 596 5855
 597 5865
 598 5875
 599 5885
 600 5895
 601 5905
 602 5915
 603 5925
 604 5935
 605 5945
 606 5955
 607 5965
 608 5975
 609 5985
 610 5995
 611 6005
 612 6015
 613 6025
 614 6035
 615 6045
 616 6055
 617 6065
 618 6075
 619 6085
 620 6095
 621 6105
 622 6115
 623 6125
 624 6135
 625 6145
 626 6155
 627 6165
 628 6175
 629 6185
 630 6195
 631 6205
 632 6215
 633 6225
 634 6235
 635 6245
 636 6255
 637 6265
 638 6275
 639 6285
 640 6295
 641 6305
 642 6315
 643 6325
 644 6335
 645 6345
 646 6355
 647 6365
 648 6375
 649 6385
 650 6395
 651 6405
 652 6415
 653 6425
 654 6435
 655 6445
 656 6455
 657 6465
 658 6475
 659 6485
 660 6495
 661 6505
 662 6515
 663 6525
 664 6535
 665 6545
 666 6555
 667 6565
 668 6575
 669 6585
 670 6595
 671 6605
 672 6615
 673 6625
 674 6635
 675 6645
 676 6655
 677 6665
 678 6675
 679 6685
 680 6695
 681 6705
 682 6715
 683 6725
 684 6735
 685 6745
 686 6755
 687 6765
 688 6775
 689 6785
 690 6795
 691 6805
 692 6815
 693 6825
 694 6835
 695 6845
 696 6855
 697 6865
 698 6875
 699 6885
 700 6895
 701 6905
 702 6915
 703 6925
 704 6935
 705 6945
 706 6955
 707 6965
 708 6975
 709 6985
 710 6995
 711 7005
 712 7015
 713 7025
 714 7035
 715 7045
 716 7055
 717 7065
 718 7075
 719 7085
 720 7095
 721 7105
 722 7115
 723 7125
 724 7135
 725 7145
 726 7155
 727 7165
 728 7175
 729 7185
 730 7195
 731 7205
 732 7215
 733 7225
 734 7235
 735 7245
 736 7255
 737 7265
 738 7275
 739 7285
 740 7295
 741 7305
 742 7315
 743 7325
 744 7335
 745 7345
 746 7355
 747 7365
 748 7375
 749 7385
 750 7395
 751 7405
 752 7415
 753 7425
 754 7435
 755 7445
 756 7455
 757 7465
 758 7475
 759 7485
 760 7495
 761 7505
 762 7515
 763 7525
 764 7535
 765 7545
 766 7555
 767 7565
 768 7575
 769 7585
 770 7595
 771 7605
 772 7615
 773 7625
 774 7635
 775 7645
 776 7655
 777 7665
 778 7675
 779 7685
 780 7695
 781 7705
 782 7715
 783 7725
 784 7735
 785 7745
 786 7755
 787 7765
 788 7775
 789 7785
 790 7795
 791 7805
 792 7815
 793 7825
 794 7835
 795 7845
 796 7855
 797 7865
 798 7875
 799 7885
 800 7895
 801 7905
 802 7915
 803 7925
 804 7935
 805 7945
 806 7955
 807 7965
 808 7975
 809 7985
 810 7995
 811 8005
 812 8015
 813 8025
 814 8035
 815 8045
 816 8055
 817 8065
 818 8075
 819 8085
 820 8095
 821 8105
 822 8115
 823 8125
 824 8135
 825 8145
 826 8155
 827 8165
 828 8175
 829 8185
 830 8195
 831 8205
 832 8215
 833 8225
 834 8235
 835 8245
 836 8255
 837 8265
 838 8275
 839 8285
 840 8295
 841 8305
 842 8315
 843 8325
 844 8335
 845 8345
 846 8355
 847 8365
 848 8375
 849 8385
 850 8395
 851 8405
 852 8415
 853 8425
 854 8435
 855 8445
 856 8455
 857 8465
 858 8475
 859 8485
 860 8495
 861 8505
 862 8515
 863 8525
 864 8535
 865 8545
 866 8555
 867 8565
 868 8575
 869 8585
 870 8595
 871 8605
 872 8615
 873 8625
 874 8635
 875 8645
 876 8655
 877 8665
 878 8675
 879 8685
 880 8695
 881 8705
 882 8715
 883 8725
 884 8735
 885 8745
 886 8755
 887 8765
 888 8775
 889 8785
 890 8795
 891 8805
 892 8815
 893 8825
 894 8835
 895 8845
 896 8855
 897 8865
 898 8875
 899 8885
 900 8895
 901 8905
 902 8915
 903 8925
 904 8935
 905 8945
 906 8955
 907 8965
 908 8975
 909 8985
 910 8995
 911 9005
 912 9015
 913 9025
 914 9035
 915 9045
 916 9055
 917 9065
 918 9075
 919 9085
 920 9095
 921 9105
 922 9115
 923 9125
 924 9135
 925 9145
 926 9155
 927 9165
 928 9175
 929 9185
 930 9195
 931 9205
 932 9215
 933 9225
 934 9235
 935 9245
 936 9255
 937 9265
 938 9275
 939 9285
 940 9295
 941 9305
 942 9315
 943 9325
 944 9335
 945 9345
 946 9355
 947 9365
 948 9375
 949 9385
 950 9395
 951 9405
 952 9415
 953 9425
 954 9435
 955 9445
 956 9455
 957 9465
 958 9475
 959 9485
 960 9495
 961 950

Pertuzumab Variant Light Chain

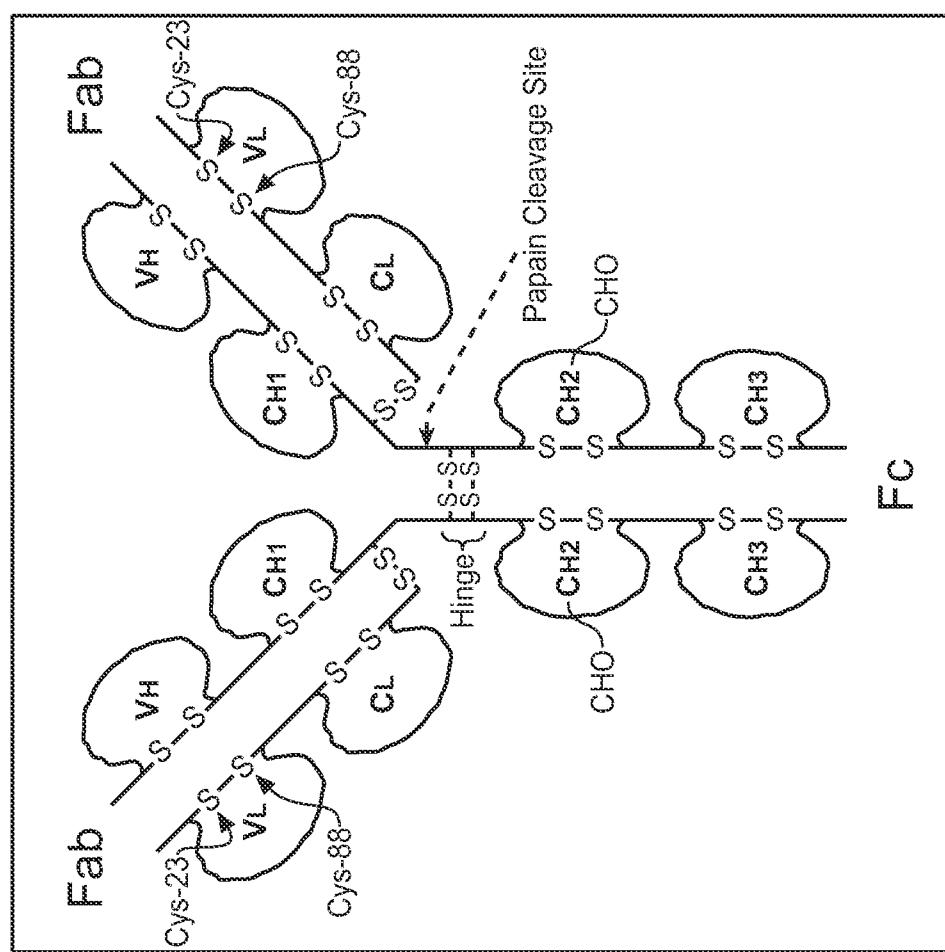
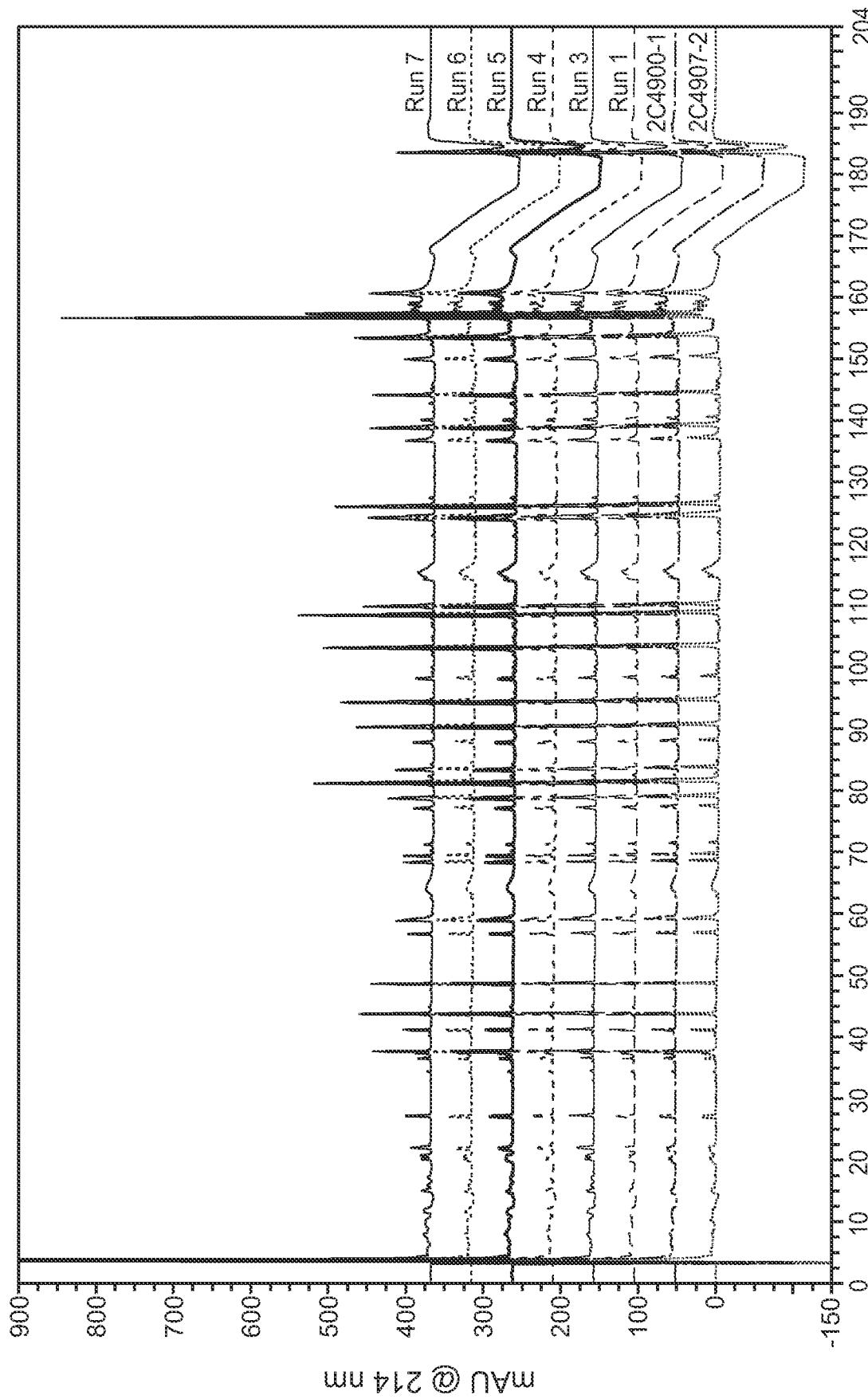
1 V H S D I Q M T Q S P S S E S A S V G D R V T I T C K A S Q D V S I G V A W Y Q Q K P G K
 15
 46 A P K L L I Y S A S Y R Y T G V P S R F S G S G T D P T L T I S S L Q P E D F A T Y Y
 60
 91 C Q Q Y Y I Y P Y T F G Q G T K V E I K R T V A A P S V F I F P P S D E Q L K S G T A S V
 75
 105
 136 V C L L N N F Y P R E A K V Q W K V D N A L Q S G N S Q E S V T P Q D S K D S T Y S L S S
 120
 150
 181 T L T L S K A D Y E K H K V Y A C E V T H Q G L S S P V T K S F N R G E C (SEQ ID NO: 15)
 165
 195
 210
 217

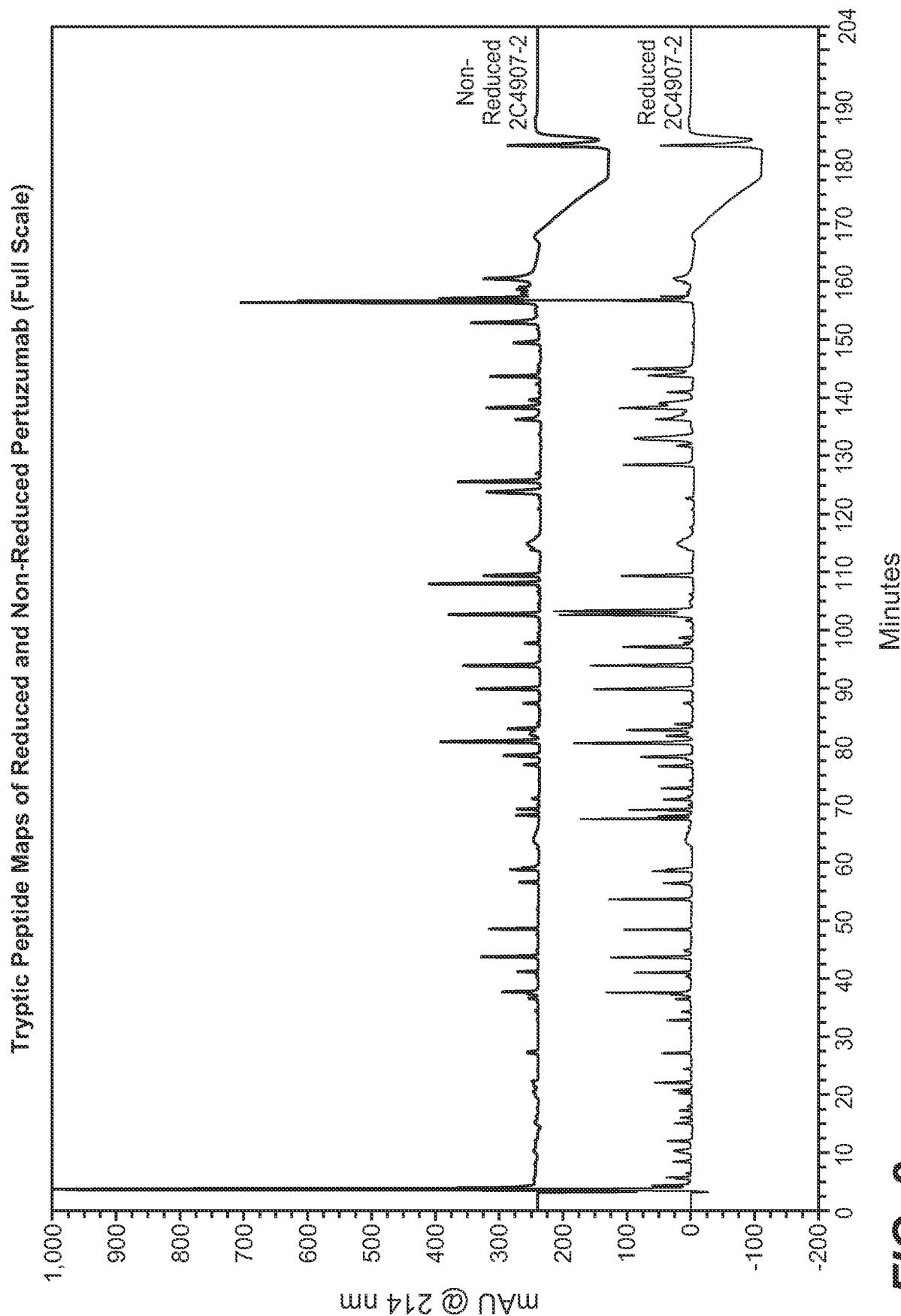
FIG. 5A

Pertuzumab Variant Heavy Chain

1 E V Q L V E S G G G L V Q P G G S L R I S C A A S G F T F T D Y T M D W V R Q A P G K G I 45
 46 E W V A D V N P N S G G S I Y N Q R F K G R F T L S V D R S K N T L Y L Q M N S L R A E D 90
 91 T A V Y Y C A R N L G P S F Y F D Y W G Q G T L V T V S S A S T K G P S V F P L A P S S K 135
 136 S T S G G G T A A L G C L V K D Y F P E P V T V S W N S G A L T S G V H T F P A V L Q S S G 180
 181 L Y S L S S V V T V P S S S L G T Q T Y I C N V N H K P S N T K V D K K V E P K S C D K T 225
 226 H T C P P C P A P E L L G G P S V F L F P P K P K D T L M I S R T P E V T C V V D V S H 270
 271 E D P E V K F N W Y V D G V E V H N A K T K P R E Q Y N S T Y R V V S V L T V L H Q D W 315
 316 L N G K E Y K C K V S N K A L P A P I E K T I S K A K G Q P R E P Q V V Y T L P P S R E E M 360
 361 T K N Q V S L T C L V K G F Y P S D I A V E W E S N G Q P E N N V K T P P V L D S D G S 405
 406 F F L Y S K L T V D K S R W Q Q G N V F S C S V M H E A L H N H Y T Q K S L S P G K 449
 (SEQ ID NO: 16)

FIG. 5B


FIG. 6

9 / 42

Non-Reduced (Native) Tryptic Peptide Maps of Pertuzumab

FIG. 7

10 / 42

FIG. 8

11 / 42

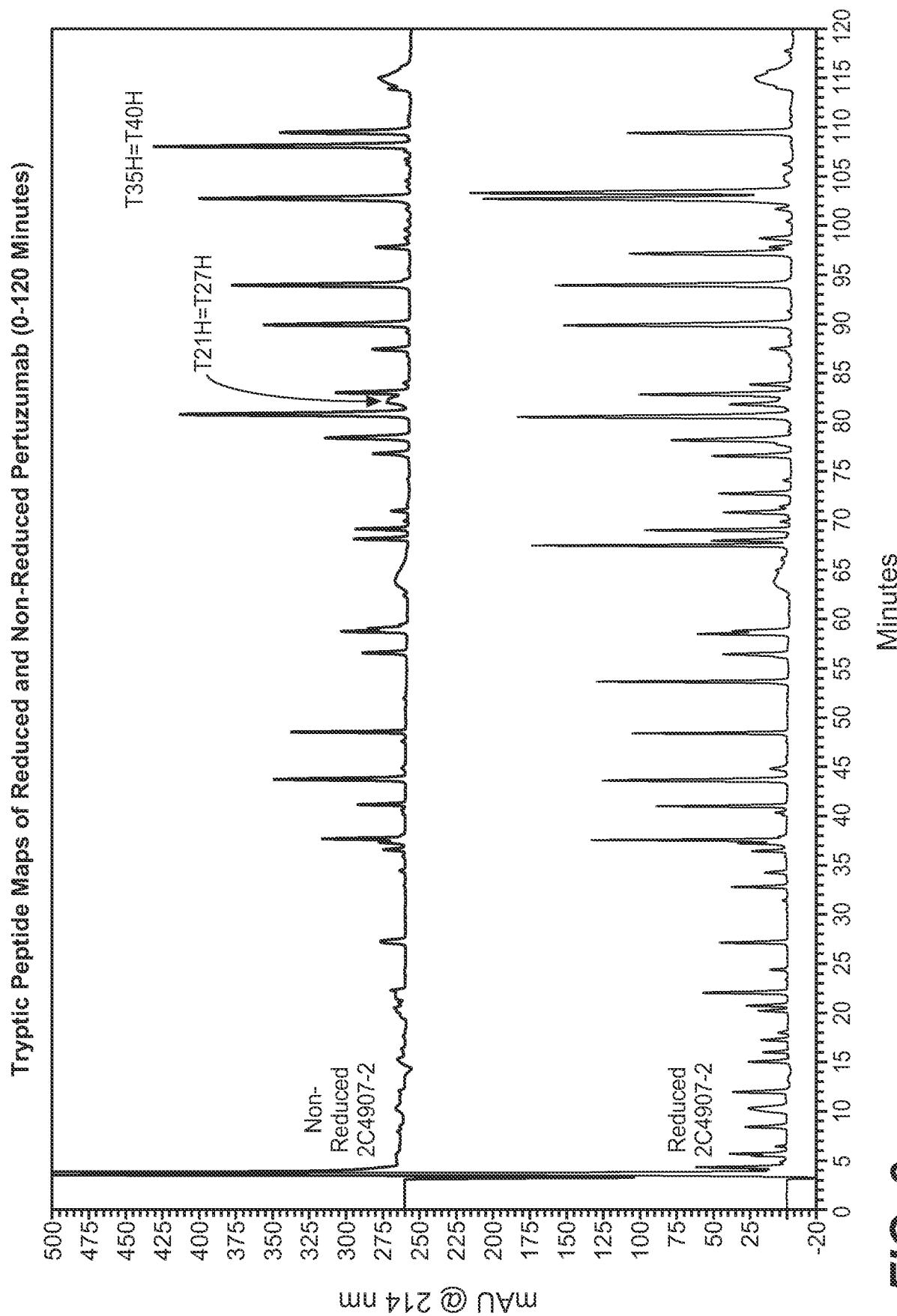
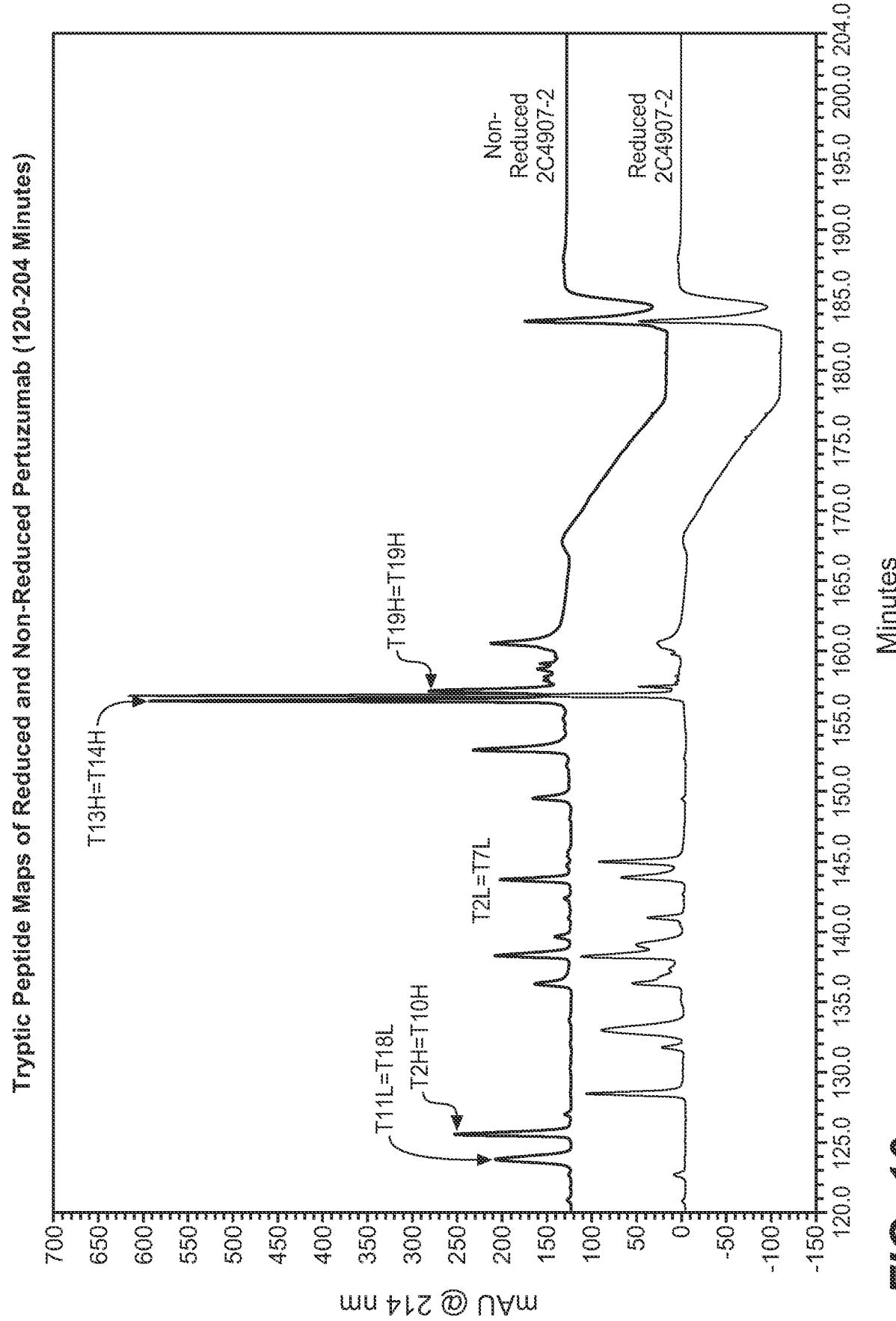



FIG. 9

12 / 42

FIG. 10

13 / 42

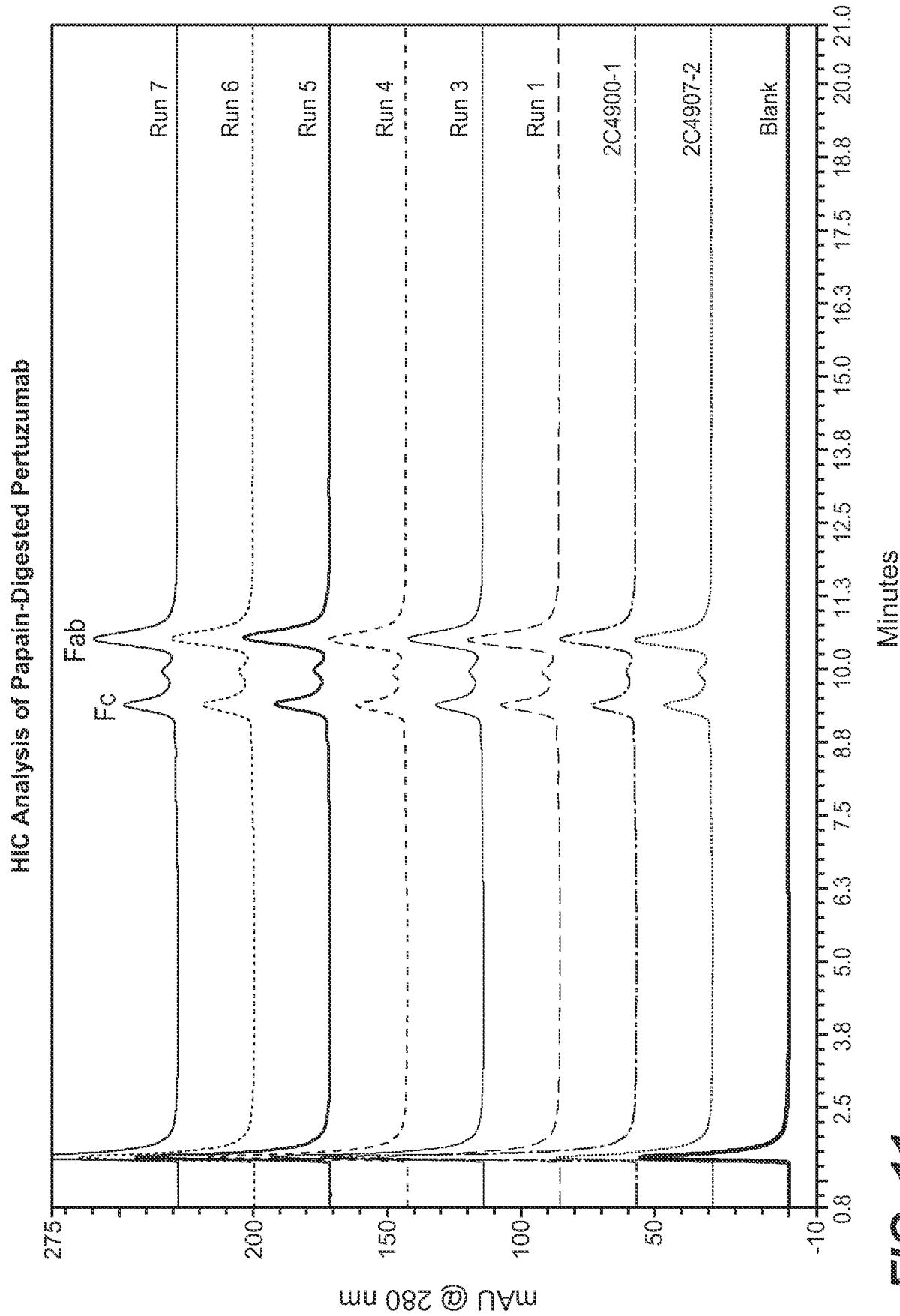


FIG. 11

HIC Analysis of Papain-Digested Pertuzumab (Expanded View)

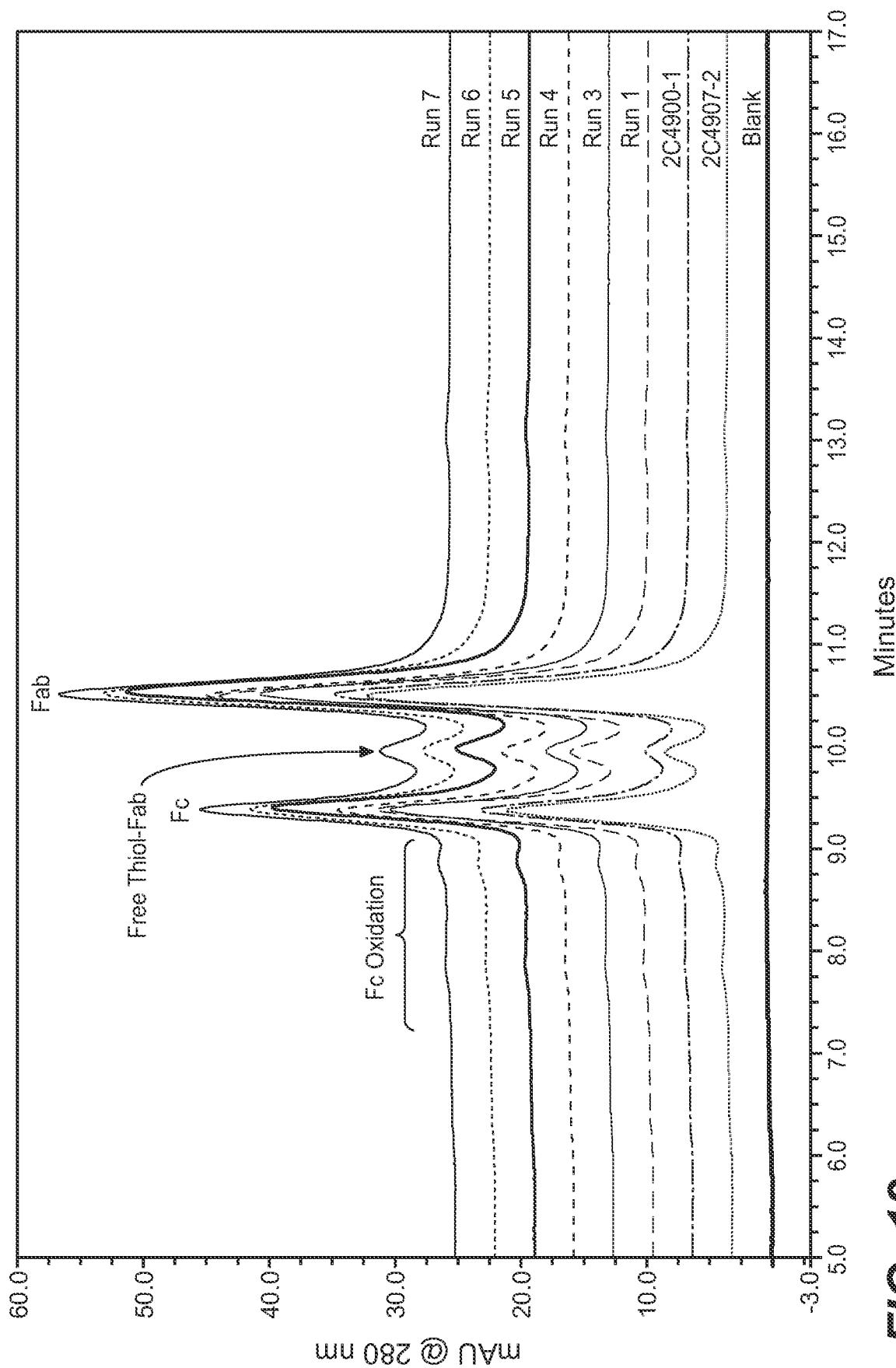


FIG. 12

15 / 42

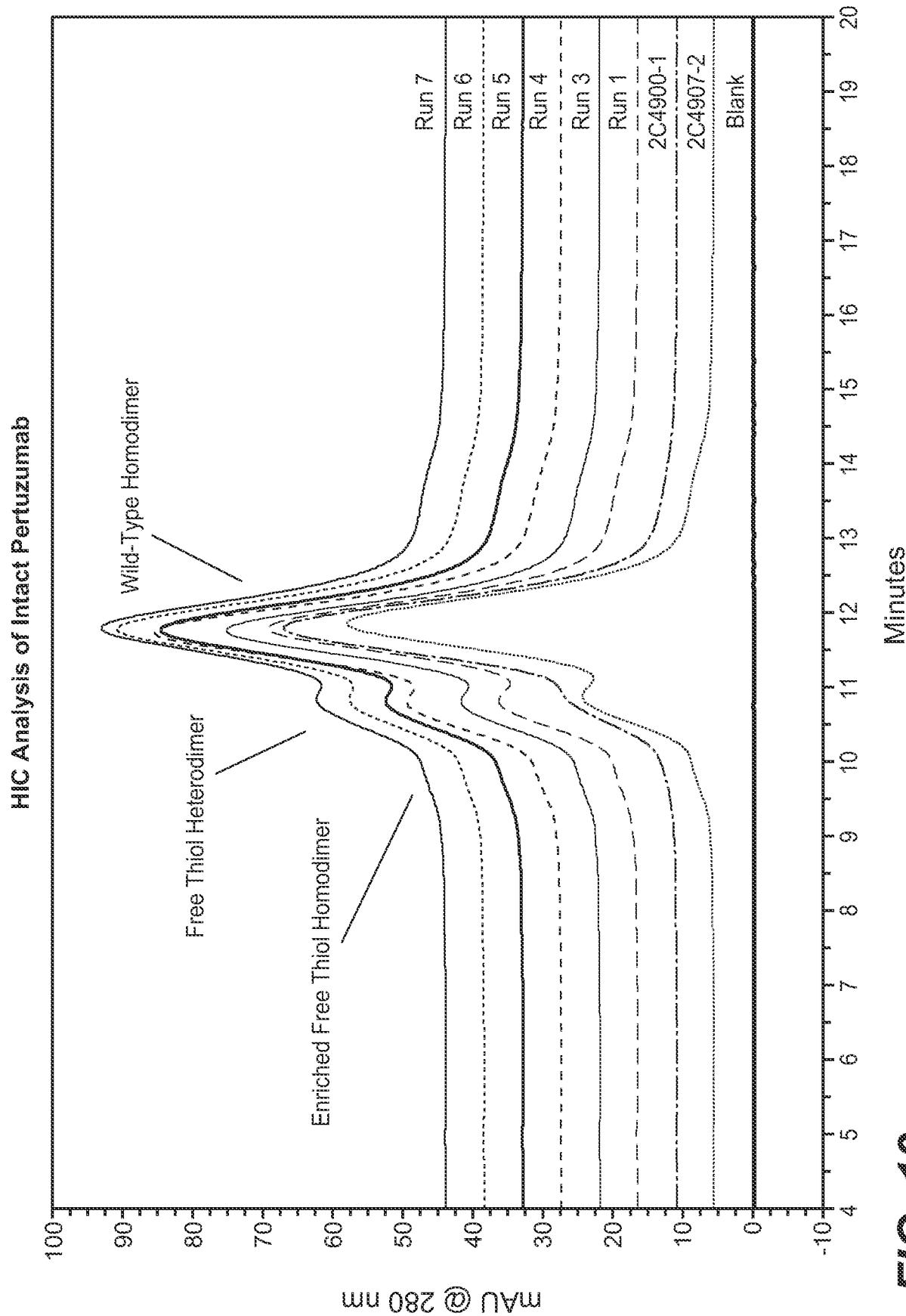


FIG. 13

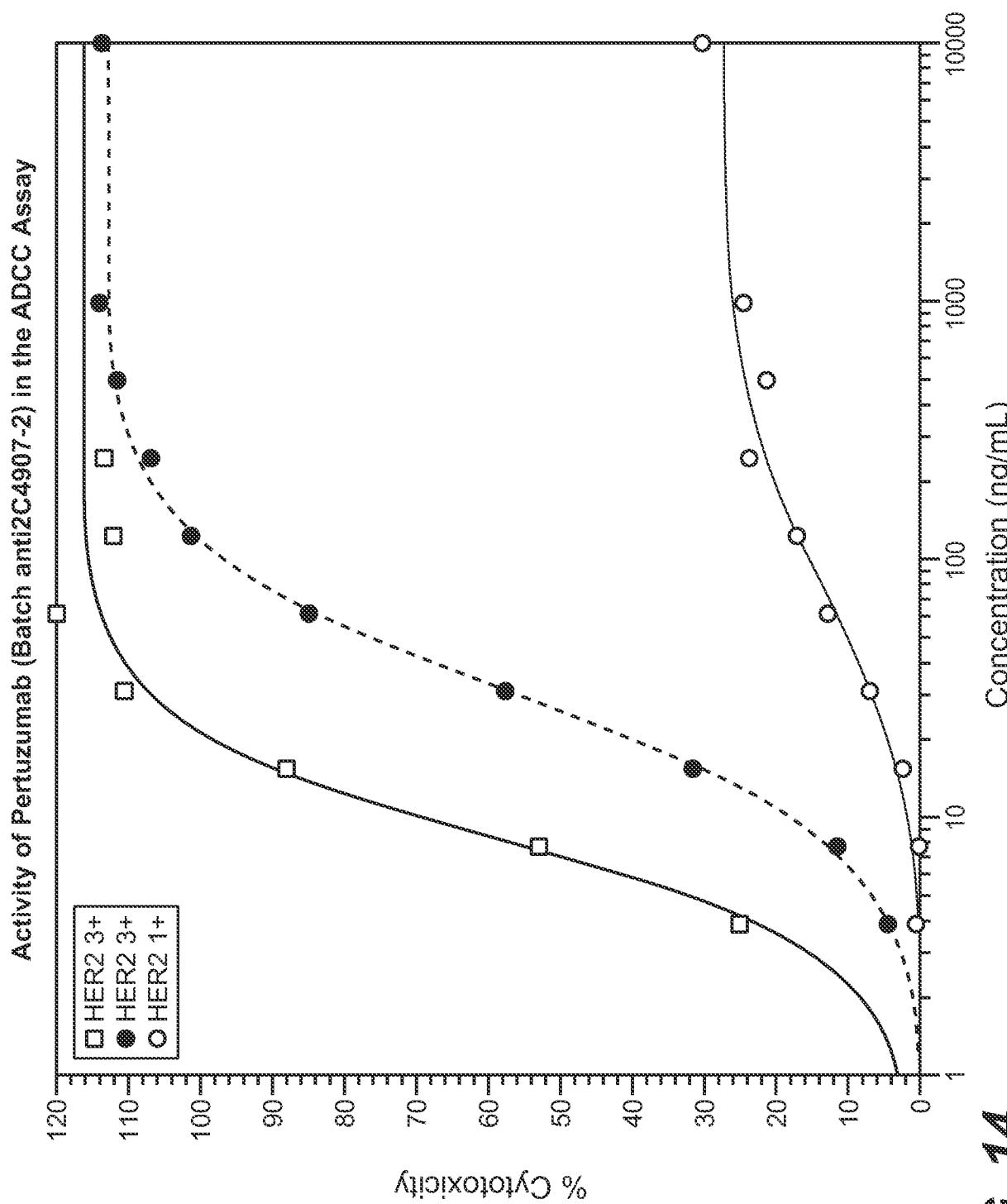


FIG. 14

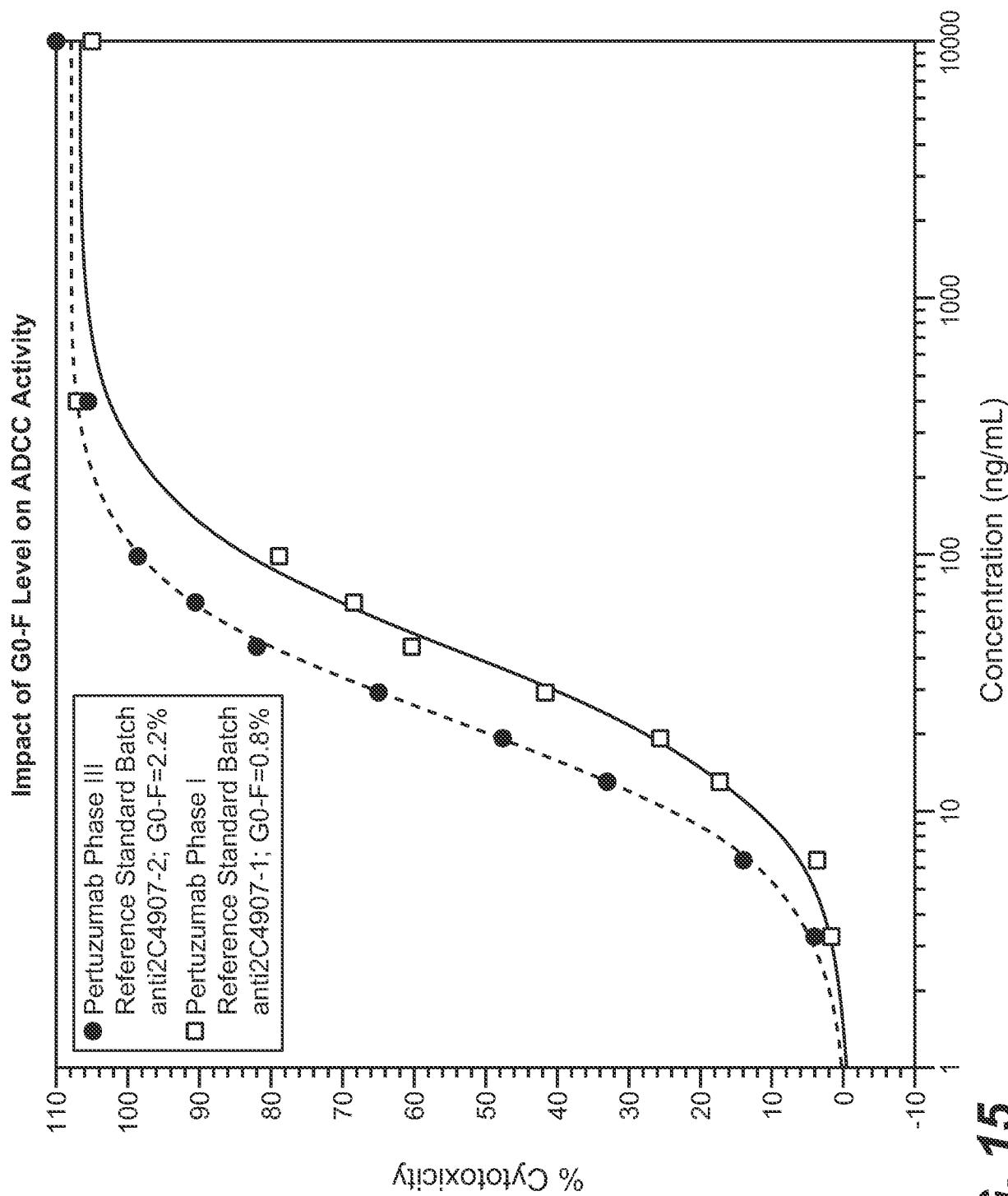
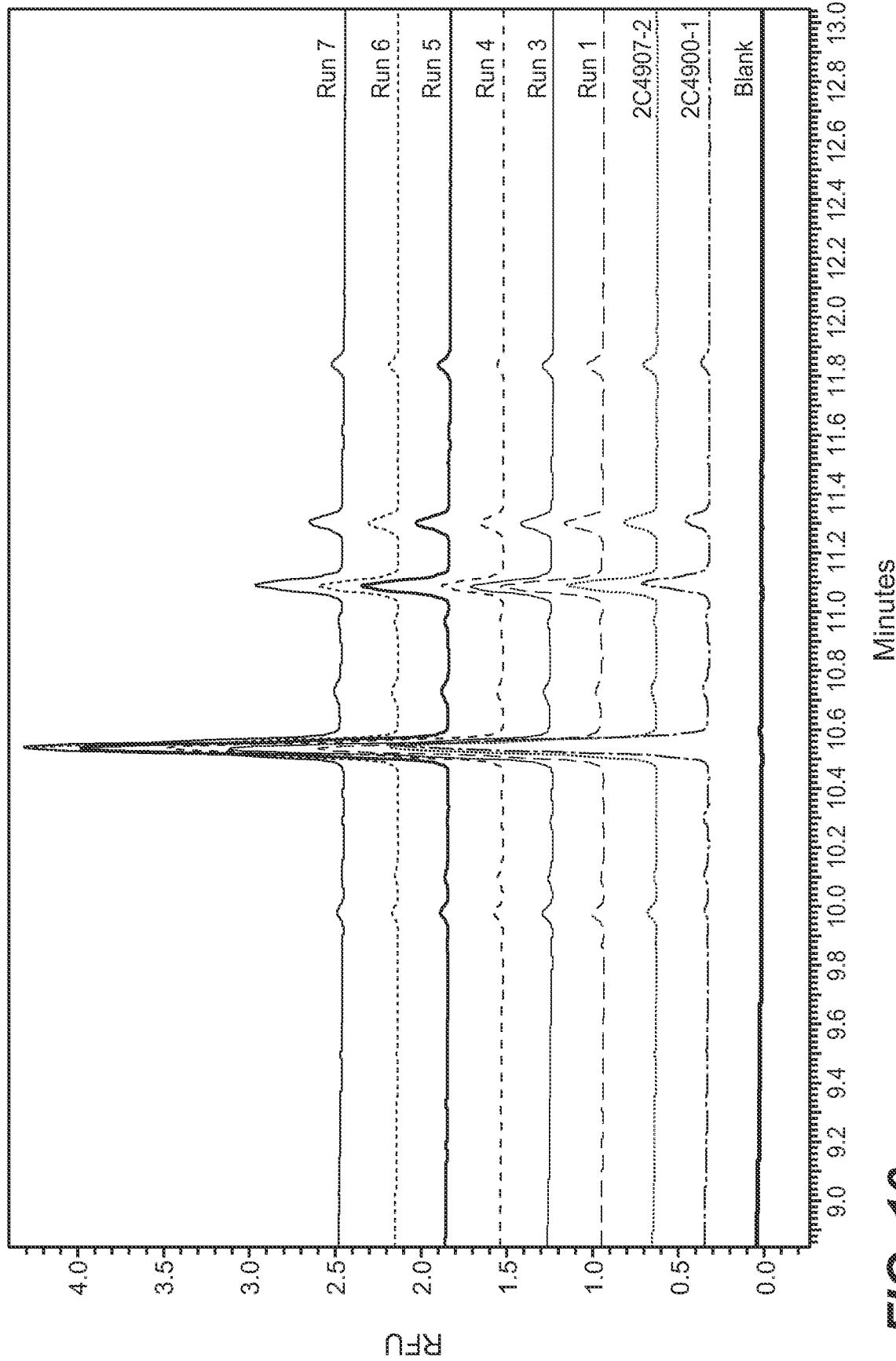
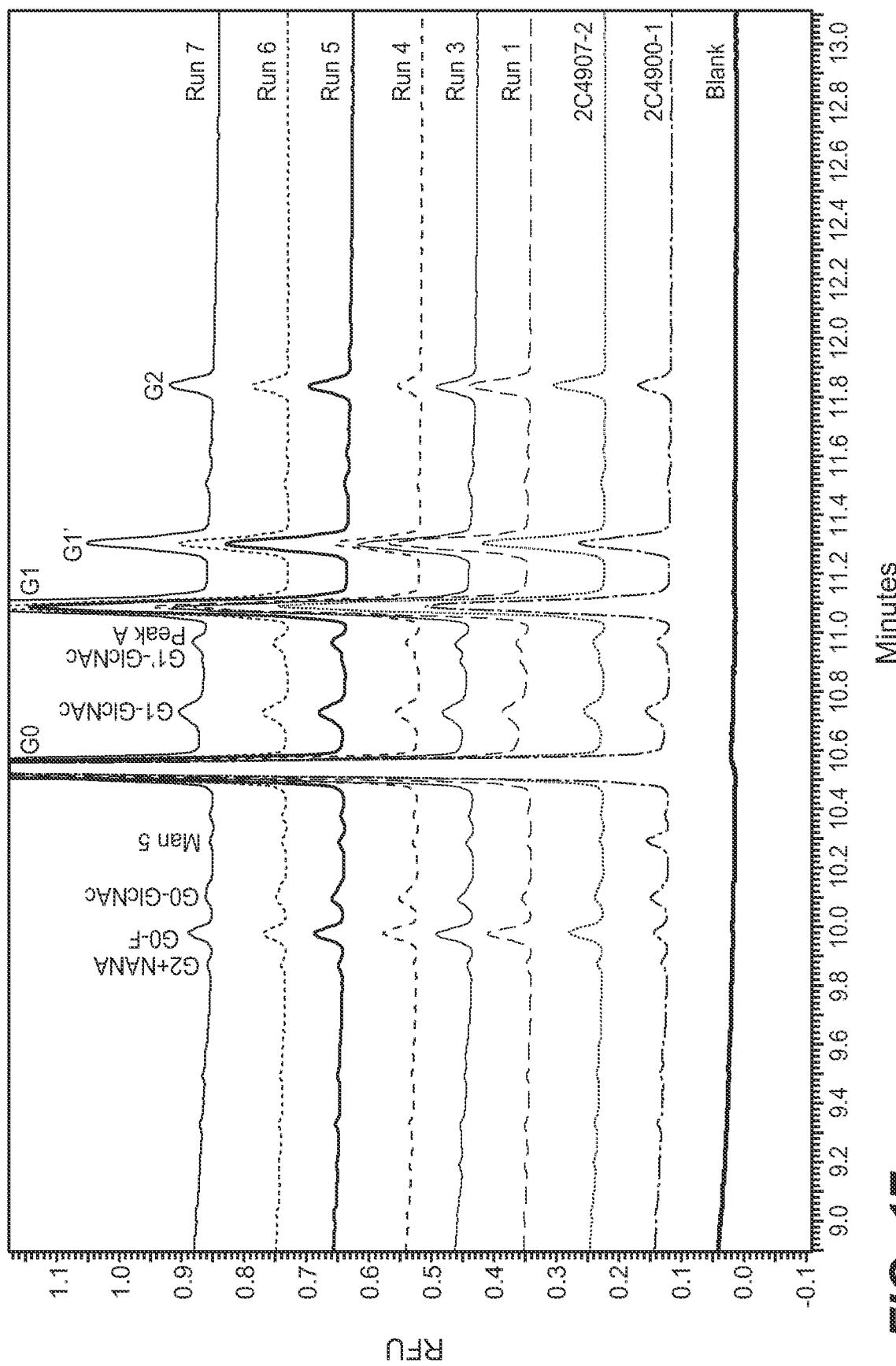
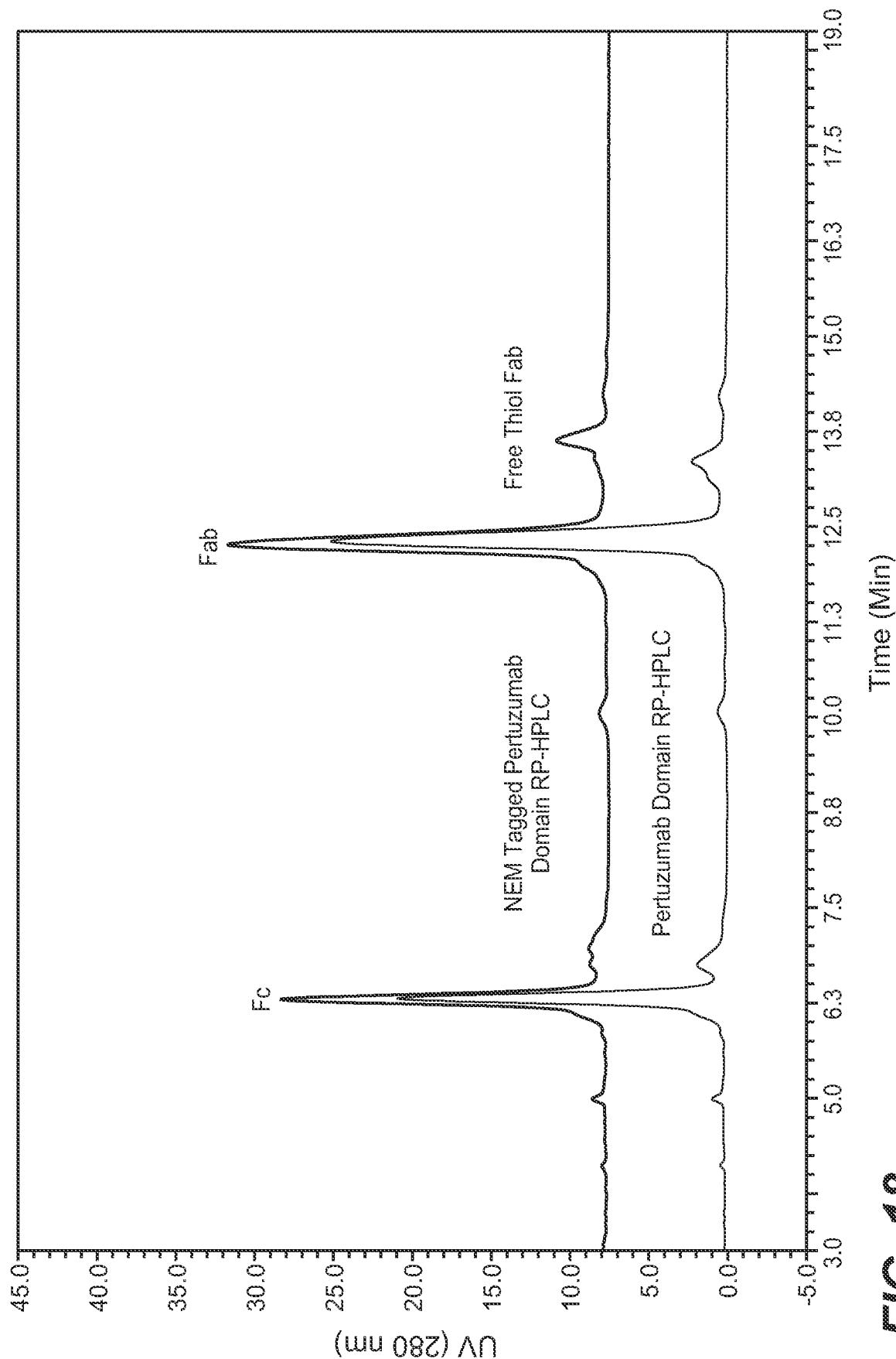


FIG. 15

Capillary Electrophoresis Analysis of N-Linked Oligosaccharides Released from Pertuzumab


FIG. 16

19 / 42

Capillary Electrophoresis Analysis of N-Linked Oligosaccharides Released from Pertuzumab (Expanded View)

FIG. 17

20 / 42

FIG. 18

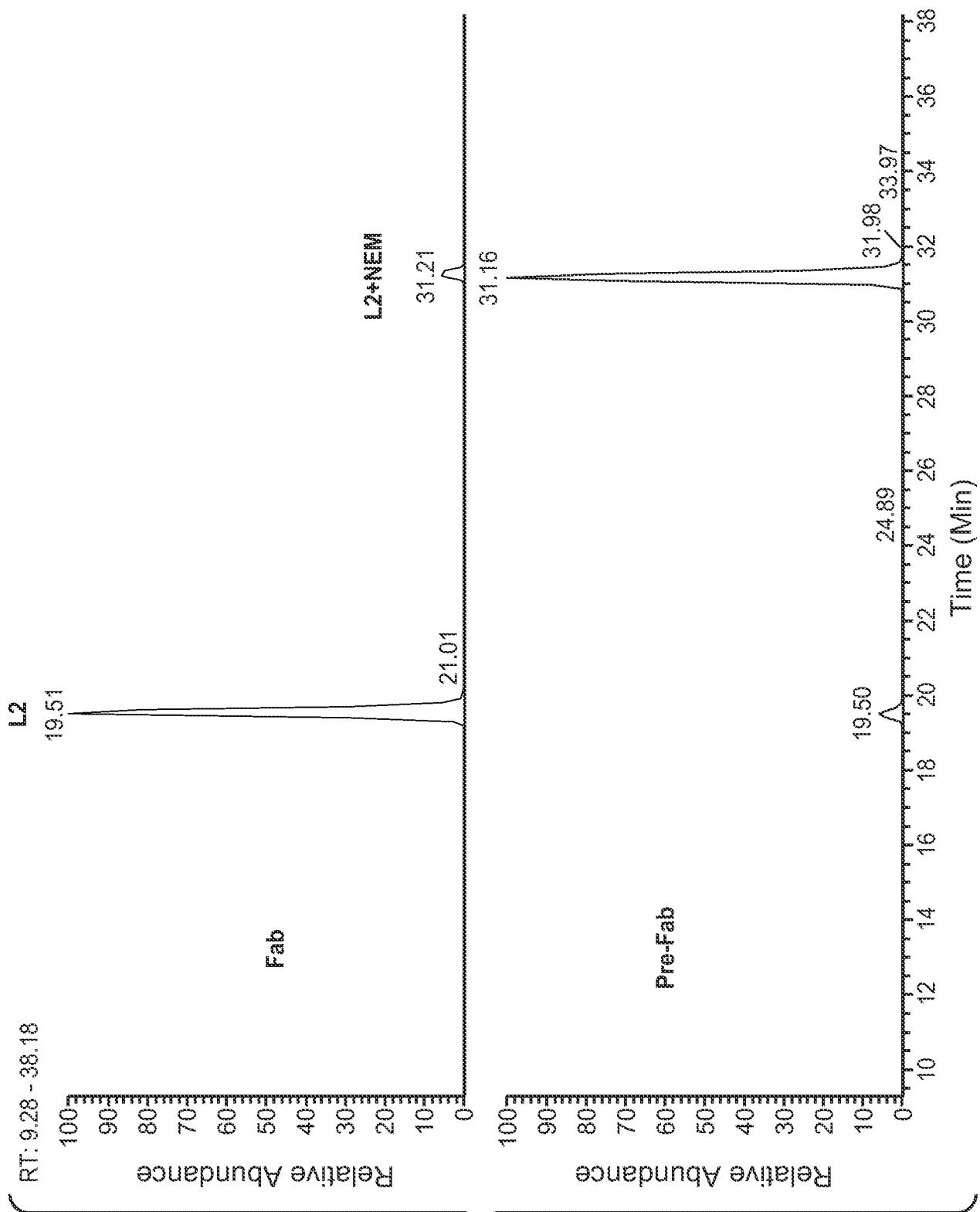


FIG. 19

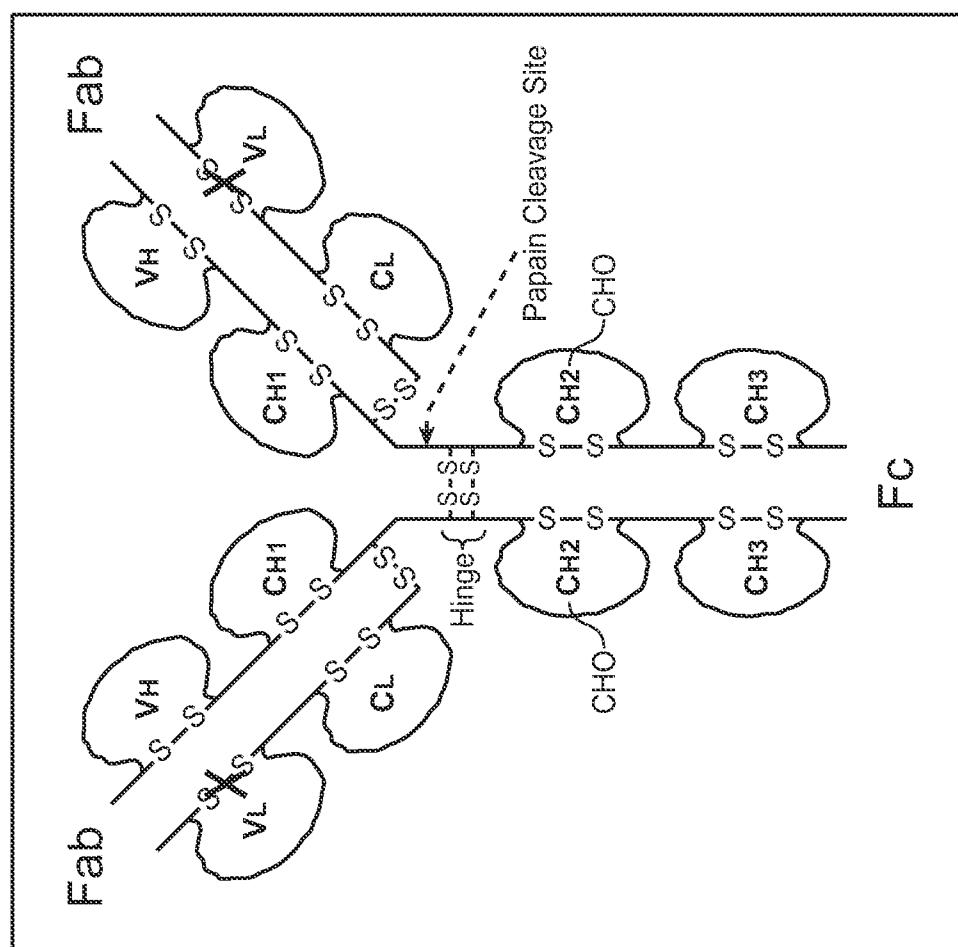


FIG. 20C

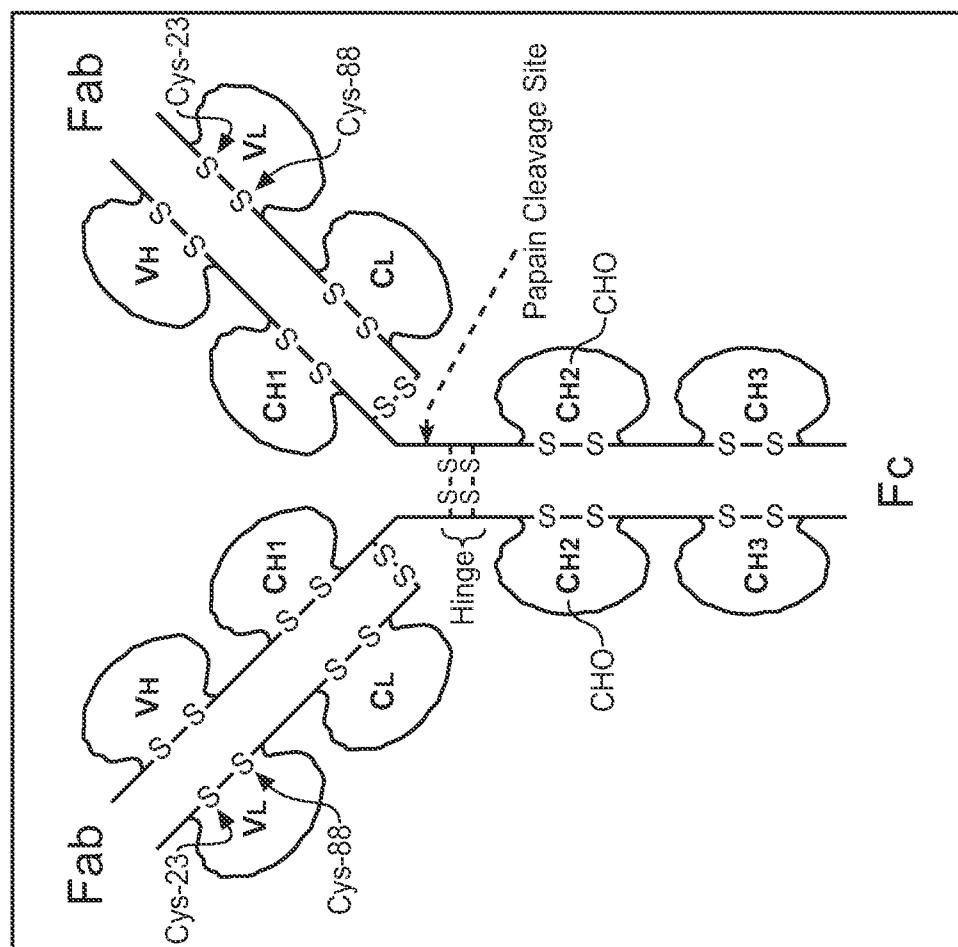
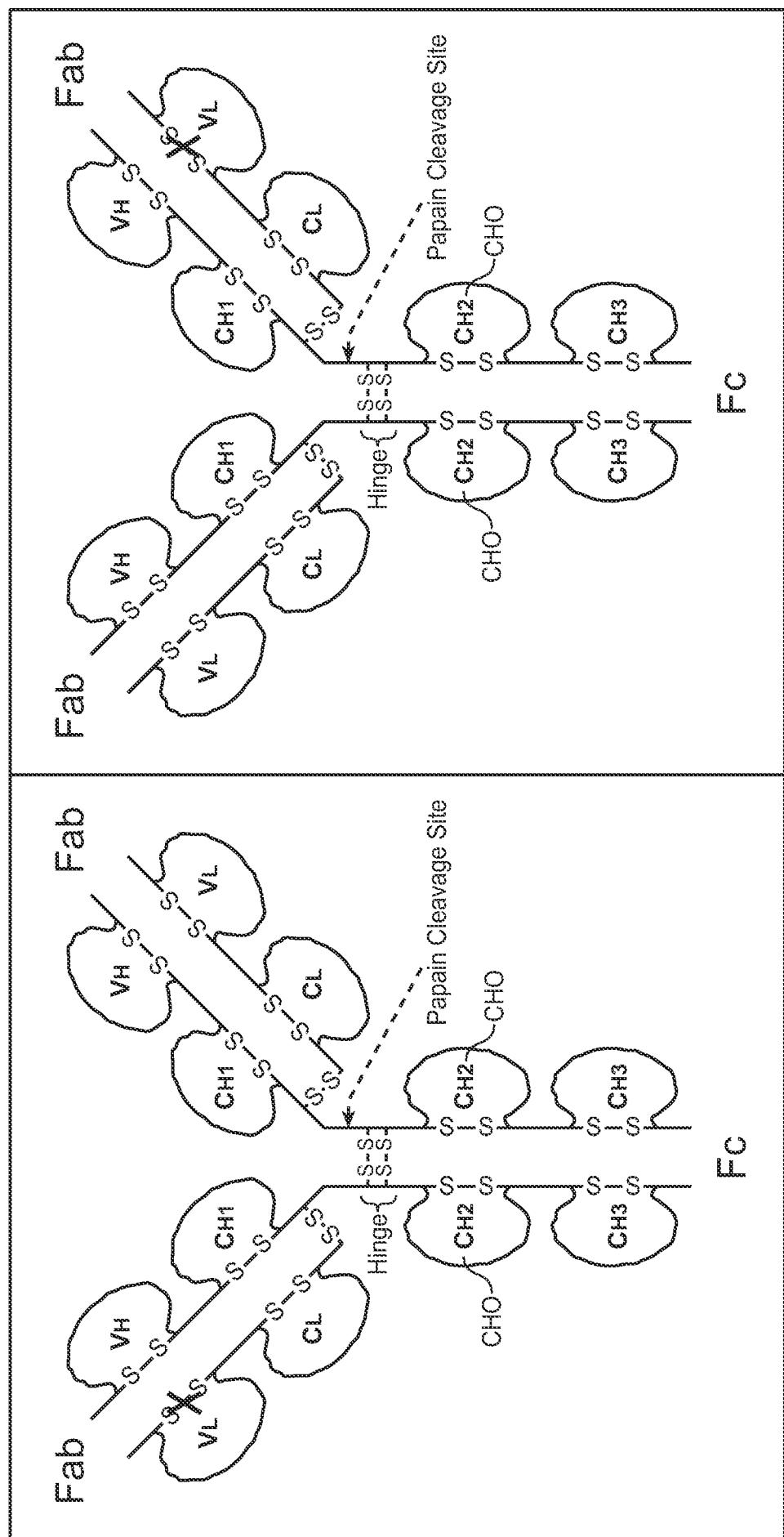
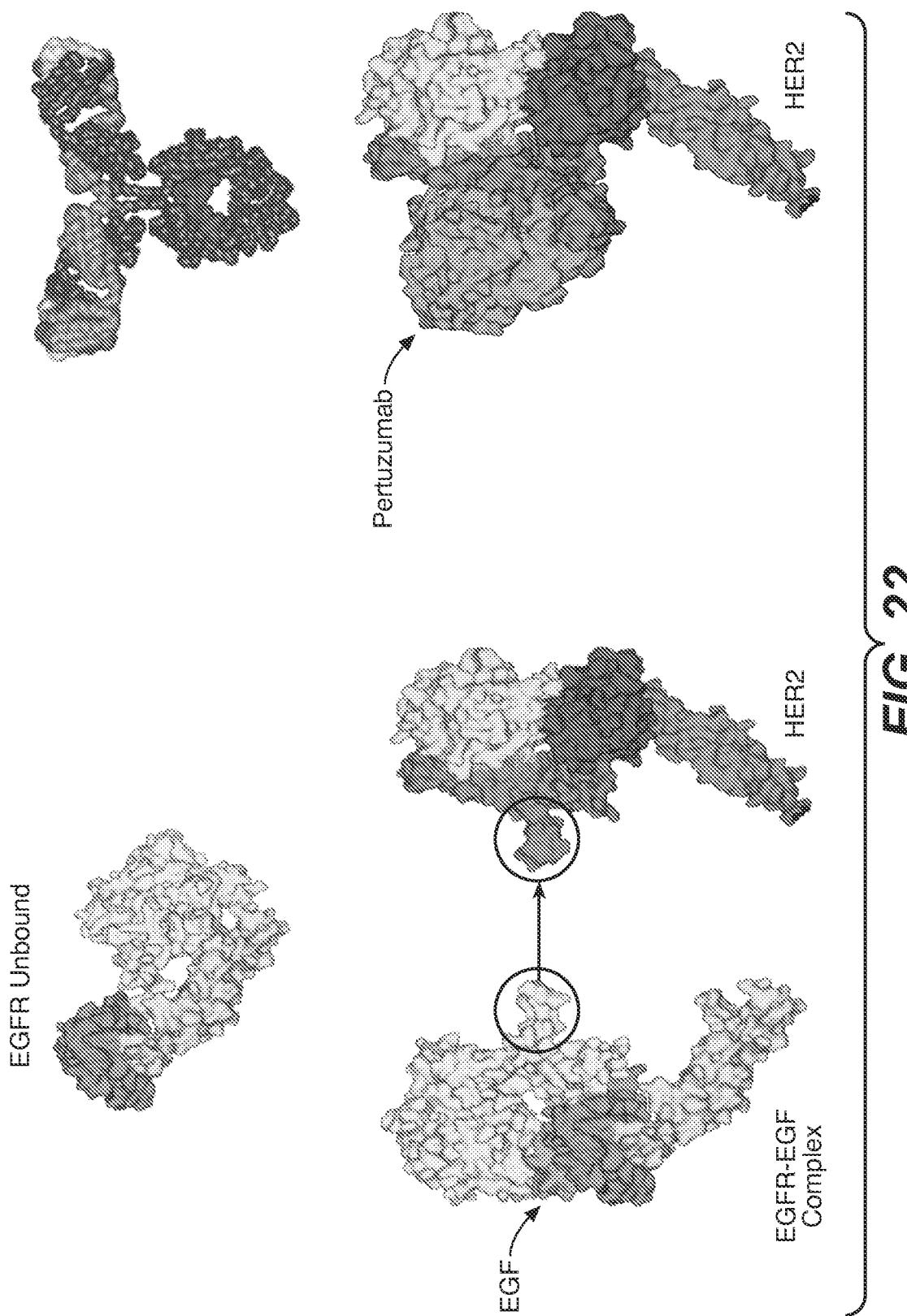
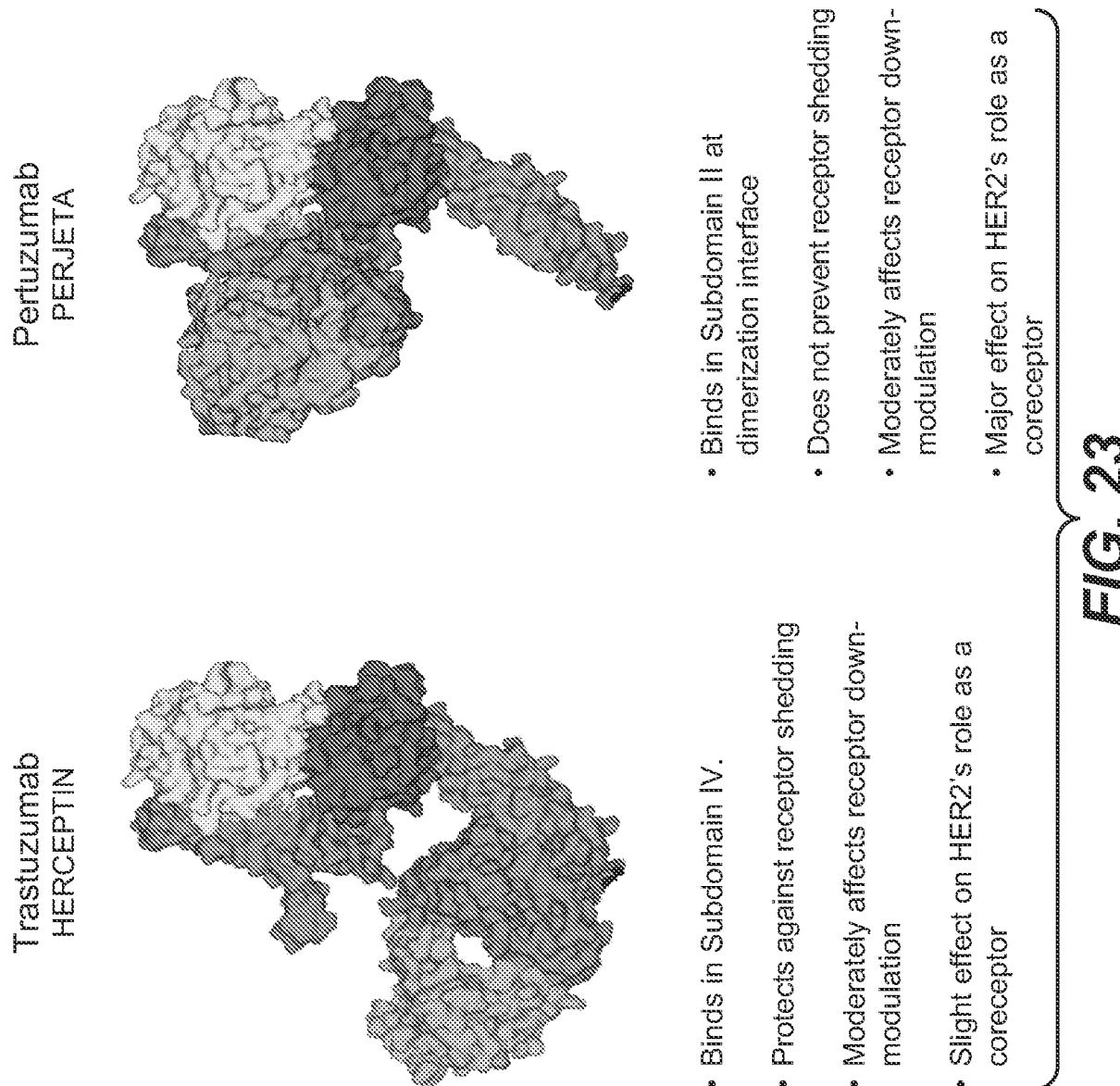


FIG. 20A

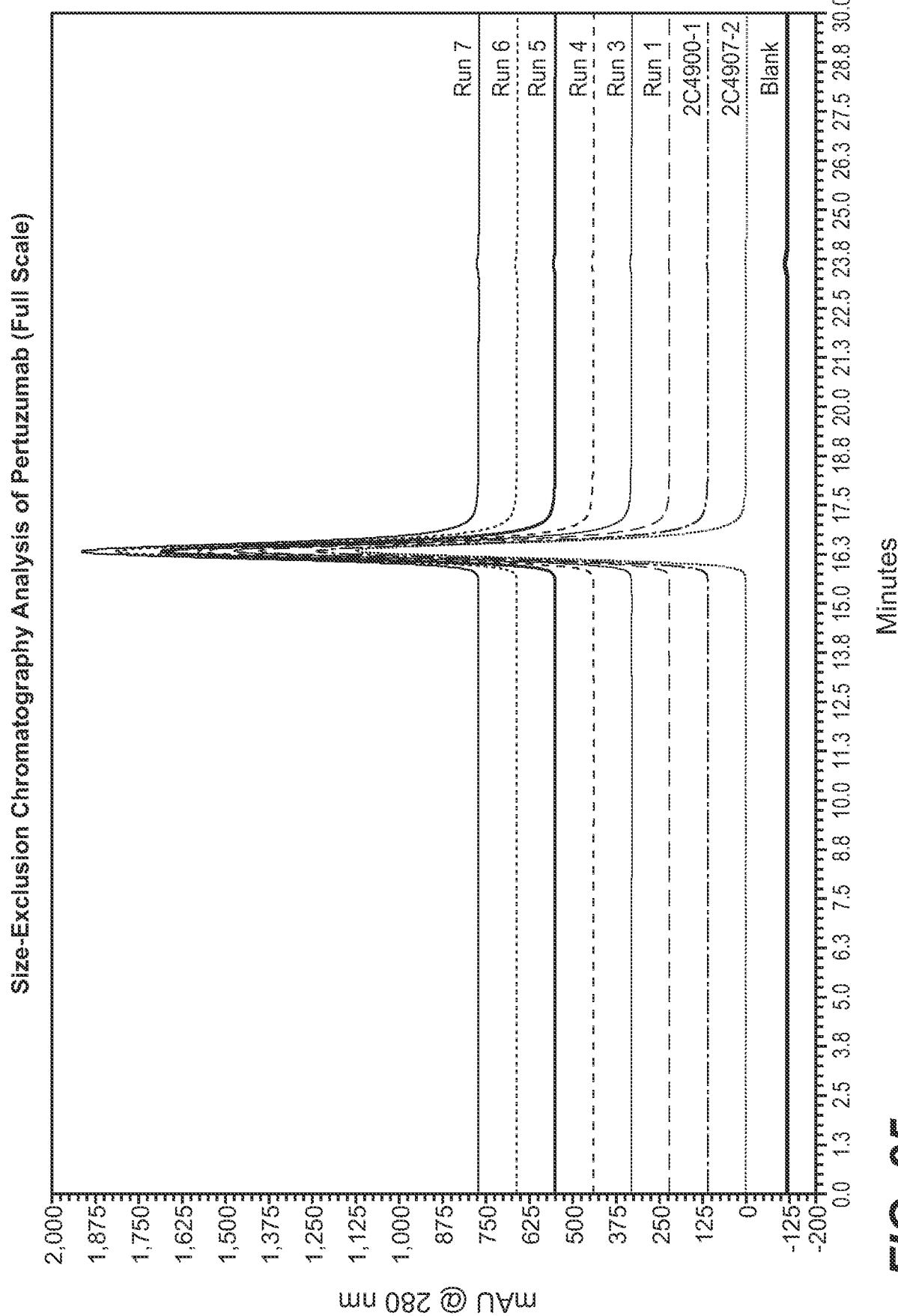




FIG. 20B

24 / 42

FIG. 21

FIG. 24A


Oligosaccharide Structures attached to IgG1

Structures	Abbreviation	Mass
$Man\alpha(1\rightarrow6) > Man\alpha(1\rightarrow6)$		
$Man\alpha(1\rightarrow3) > Man\alpha(1\rightarrow3)$		
$Man\beta(1\rightarrow3) > Man\beta(1\rightarrow4)GlcNAc\beta(1\rightarrow4)GlcNAc-$	Man5	1235
$Fuc\alpha(1\rightarrow6)$		
$GlcNAc\beta(1\rightarrow2) \left\{ \begin{array}{l} Man\alpha(1\rightarrow6) \\ Man\alpha(1\rightarrow3) \end{array} \right\} > Man\beta(1\rightarrow4)GlcNAc\beta(1\rightarrow4)GlcNAc-$	G-1	1260
$GlcNAc\beta(1\rightarrow2)Man\alpha(1\rightarrow6) > Man\beta(1\rightarrow4)GlcNAc\beta(1\rightarrow4)GlcNAc-$	GO-F	1317
$Man\alpha(1\rightarrow6) > Man\alpha(1\rightarrow6)$		
$Man\alpha(1\rightarrow3) > Man\alpha(1\rightarrow3)$		
$Man\alpha(1\rightarrow2)Man\alpha(1\rightarrow3) > Man\beta(1\rightarrow4)GlcNAc\beta(1\rightarrow4)GlcNAc-$	Man6	1398

<u>Structures</u>	<u>Abbreviation</u>	<u>Mass</u>
$\text{Gal}\beta(1\rightarrow 4)\text{GlcNAc}\beta(1\rightarrow 2)\left\{ \begin{array}{c} \text{Man}\alpha(1\rightarrow 6) \\ \text{GlcNAc}\beta(1\rightarrow 2)\text{Man}\alpha(1\rightarrow 6) \end{array} \right\} \text{Man}\beta(1\rightarrow 4)\text{GlcNAc}\beta(1\rightarrow 4)\text{GlcNAc-} \text{GlcNAc}\beta(1\rightarrow 2)\text{Man}\alpha(1\rightarrow 3)$	Gt-1	1423
$\text{Gal}\beta(1\rightarrow 4)\text{GlcNAc}\beta(1\rightarrow 2)\text{Man}\alpha(1\rightarrow 6) \text{Fuc}\alpha(1\rightarrow 6)$	G0	1463
$\text{Gal}\beta(1\rightarrow 4)\text{GlcNAc}\beta(1\rightarrow 2)\text{Man}\alpha(1\rightarrow 6) \text{Fuc}\alpha(1\rightarrow 6)$	G1 (1-6)	1626
$\text{Gal}\beta(1\rightarrow 4)\text{GlcNAc}\beta(1\rightarrow 2)\text{Man}\alpha(1\rightarrow 6) \text{Fuc}\alpha(1\rightarrow 6)$	G1 (1-3)	1626
$\text{Gal}\beta(1\rightarrow 4)\text{GlcNAc}\beta(1\rightarrow 2)\text{Man}\alpha(1\rightarrow 6) \text{Fuc}\alpha(1\rightarrow 6)$	G2	1788

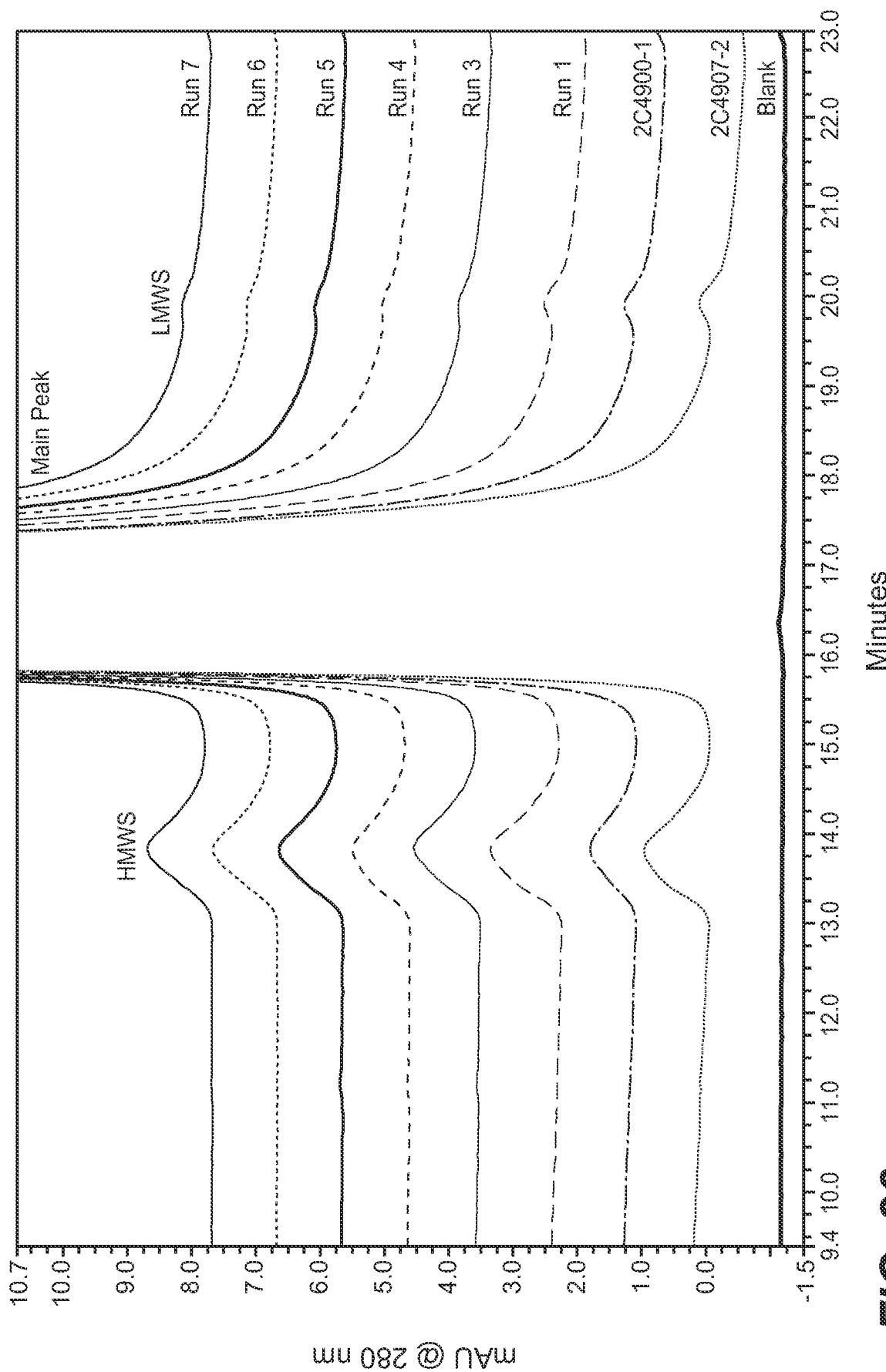
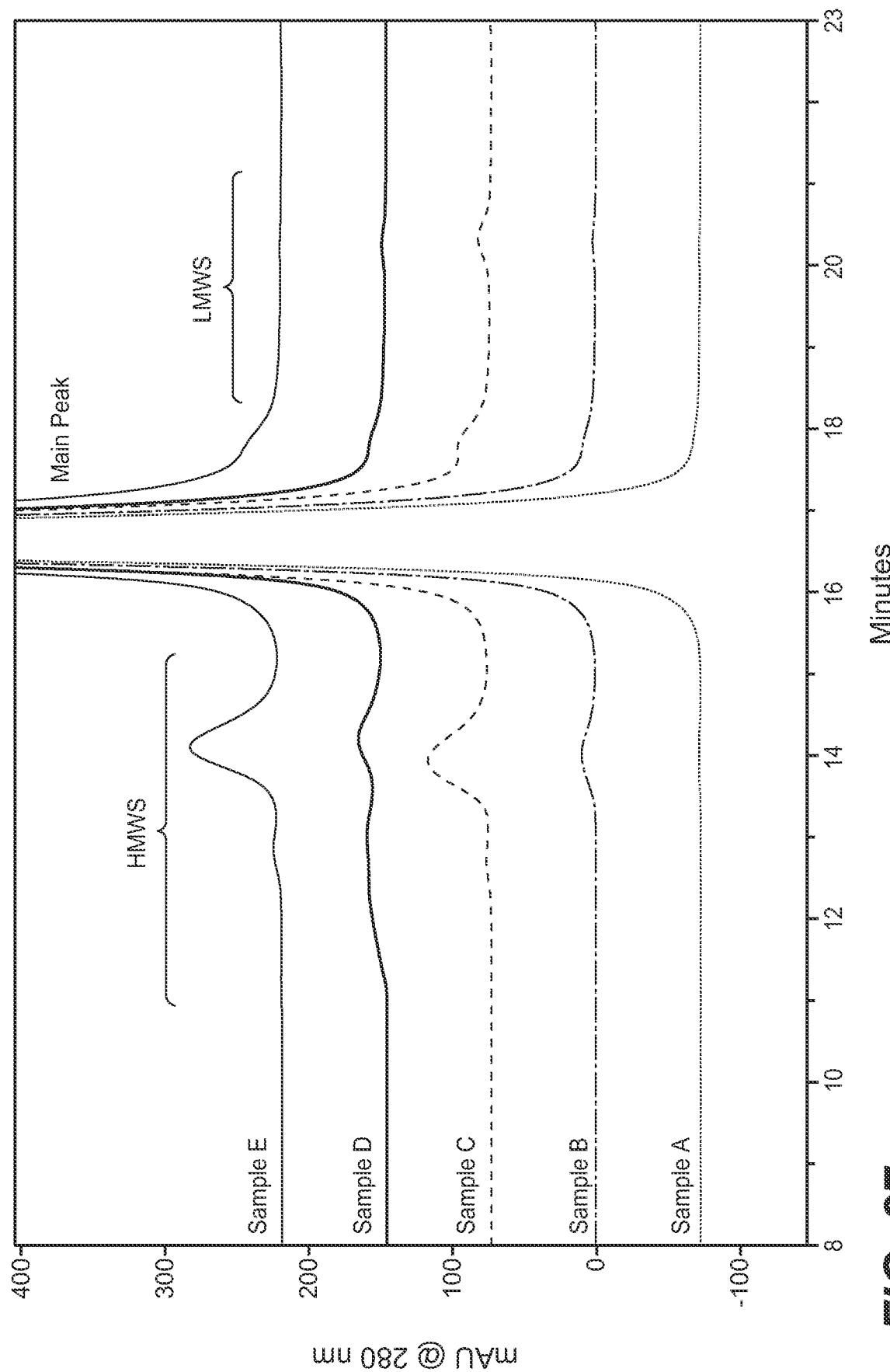

Masses shown in this figure correspond to the $(\text{M}+\text{Na})^+$ values.

FIG. 24B

FIG. 25


30 / 42

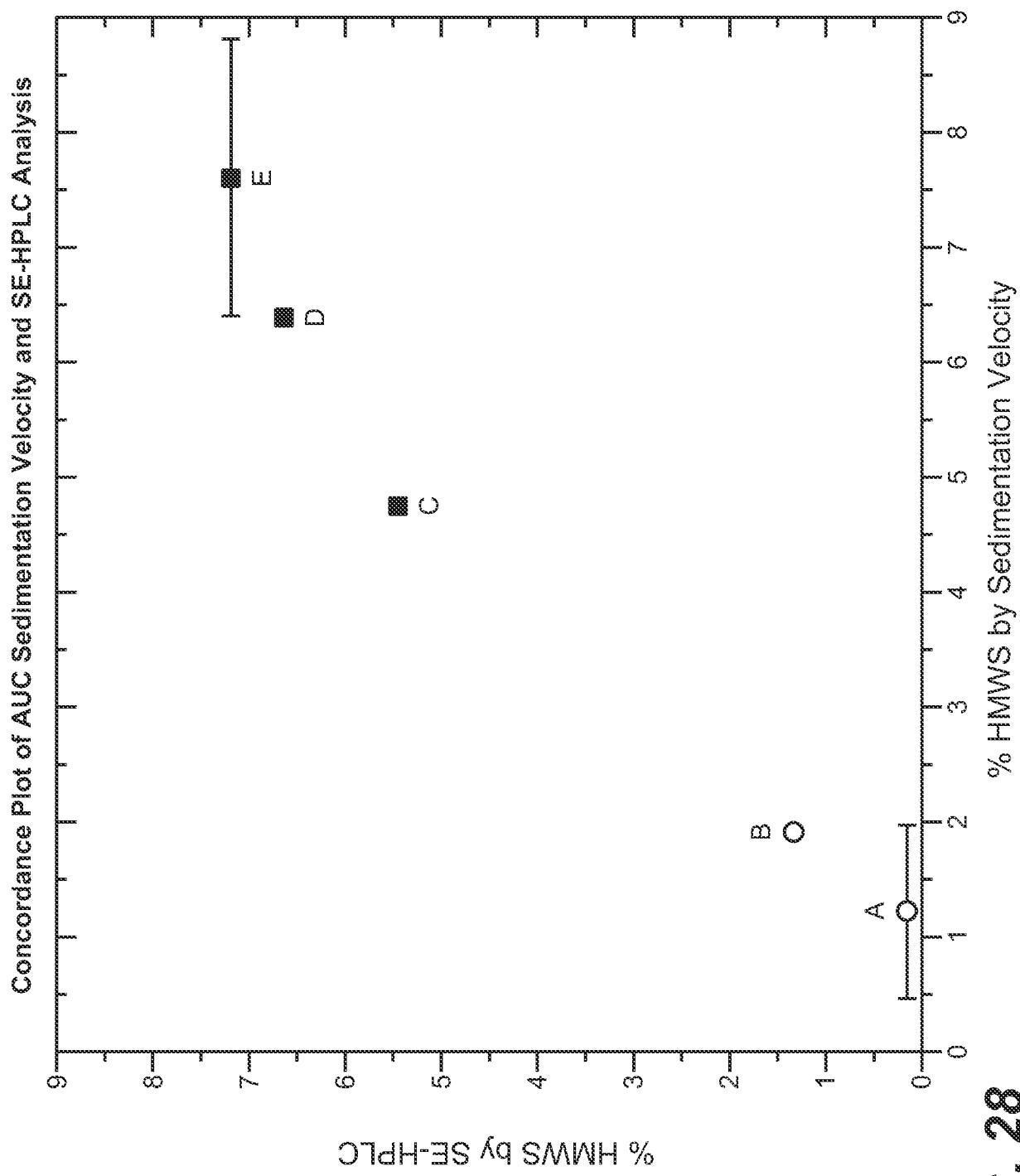

Size-Exclusion Chromatography Analysis of Pertuzumab (Expanded Scale)

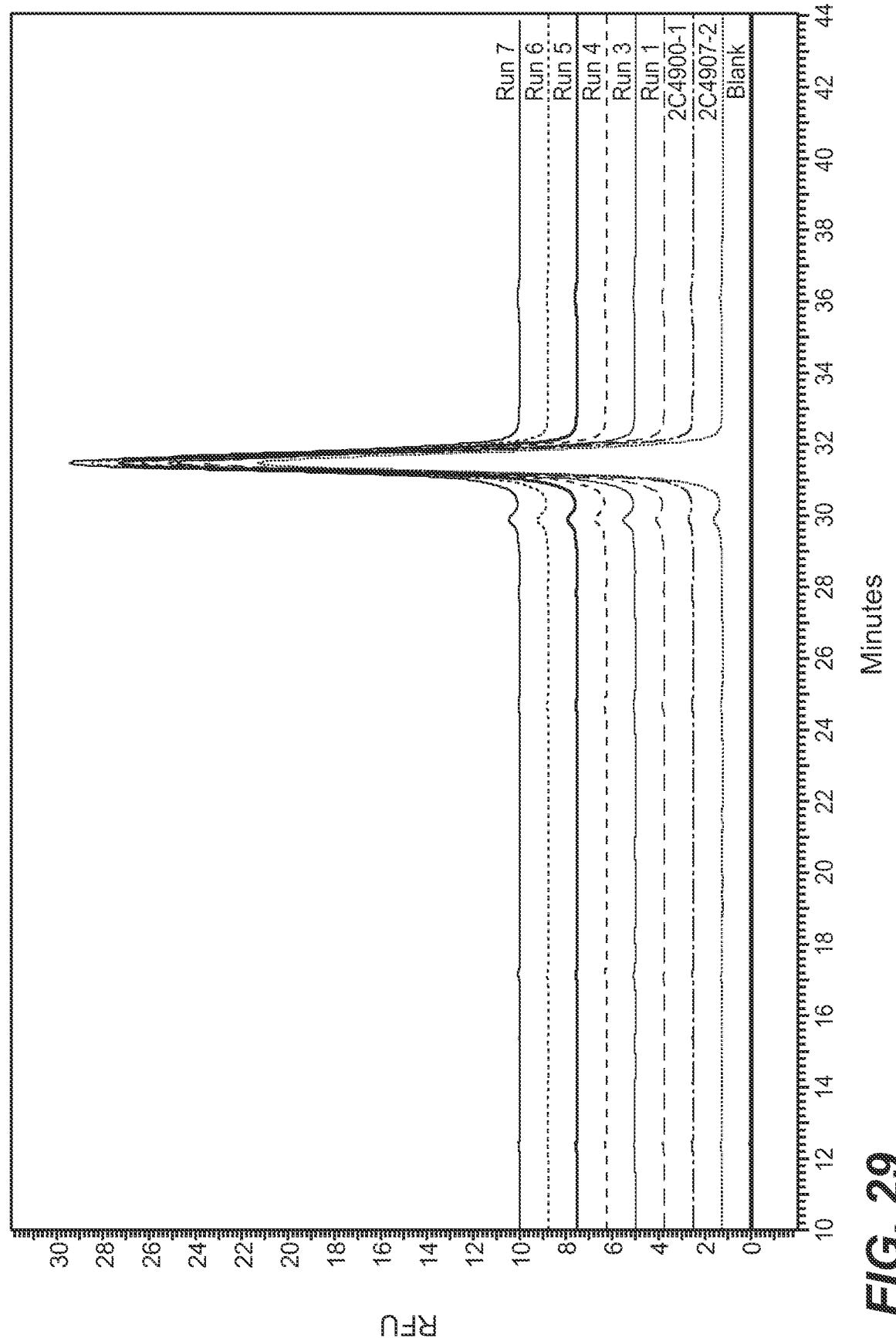
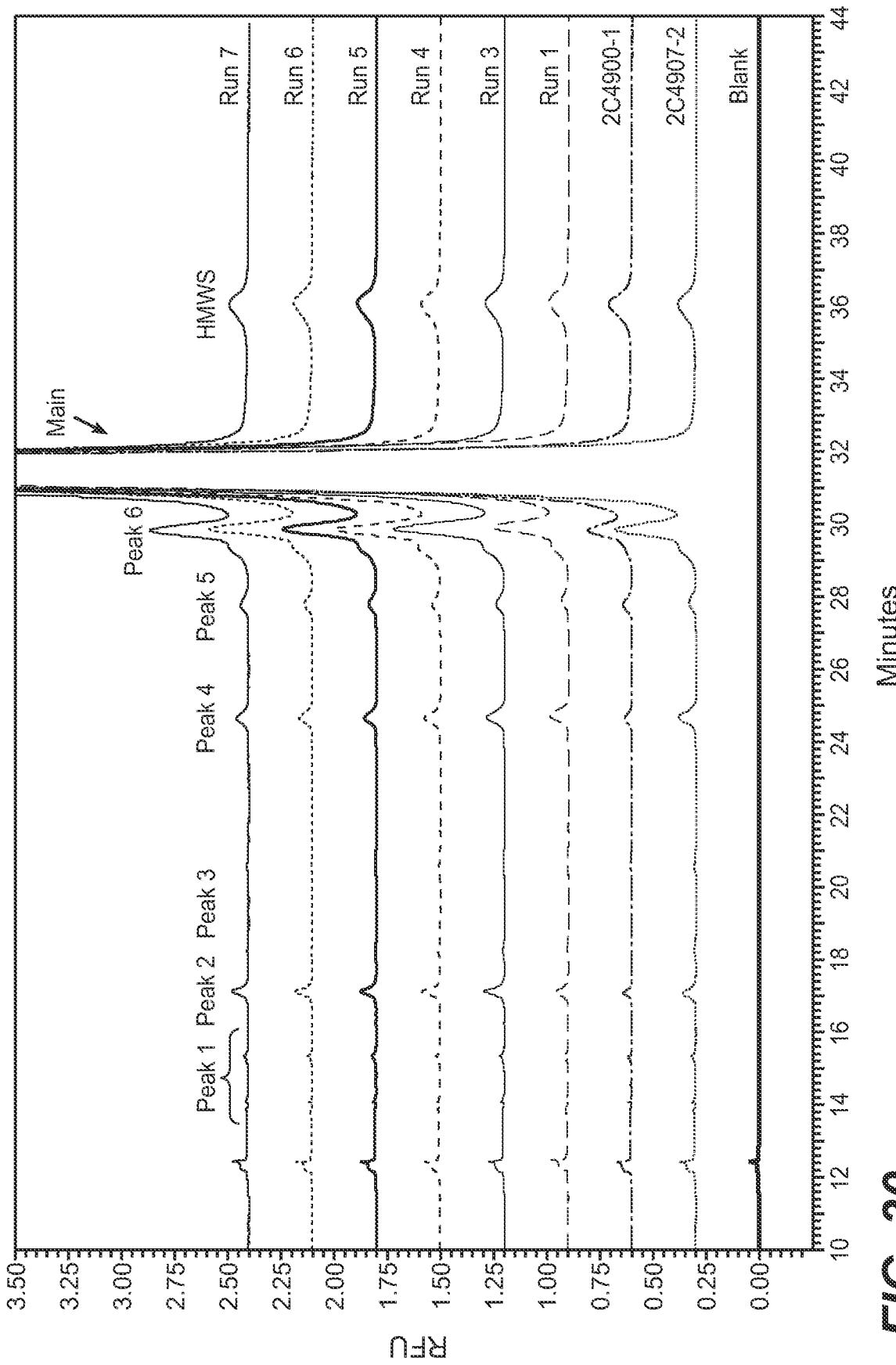
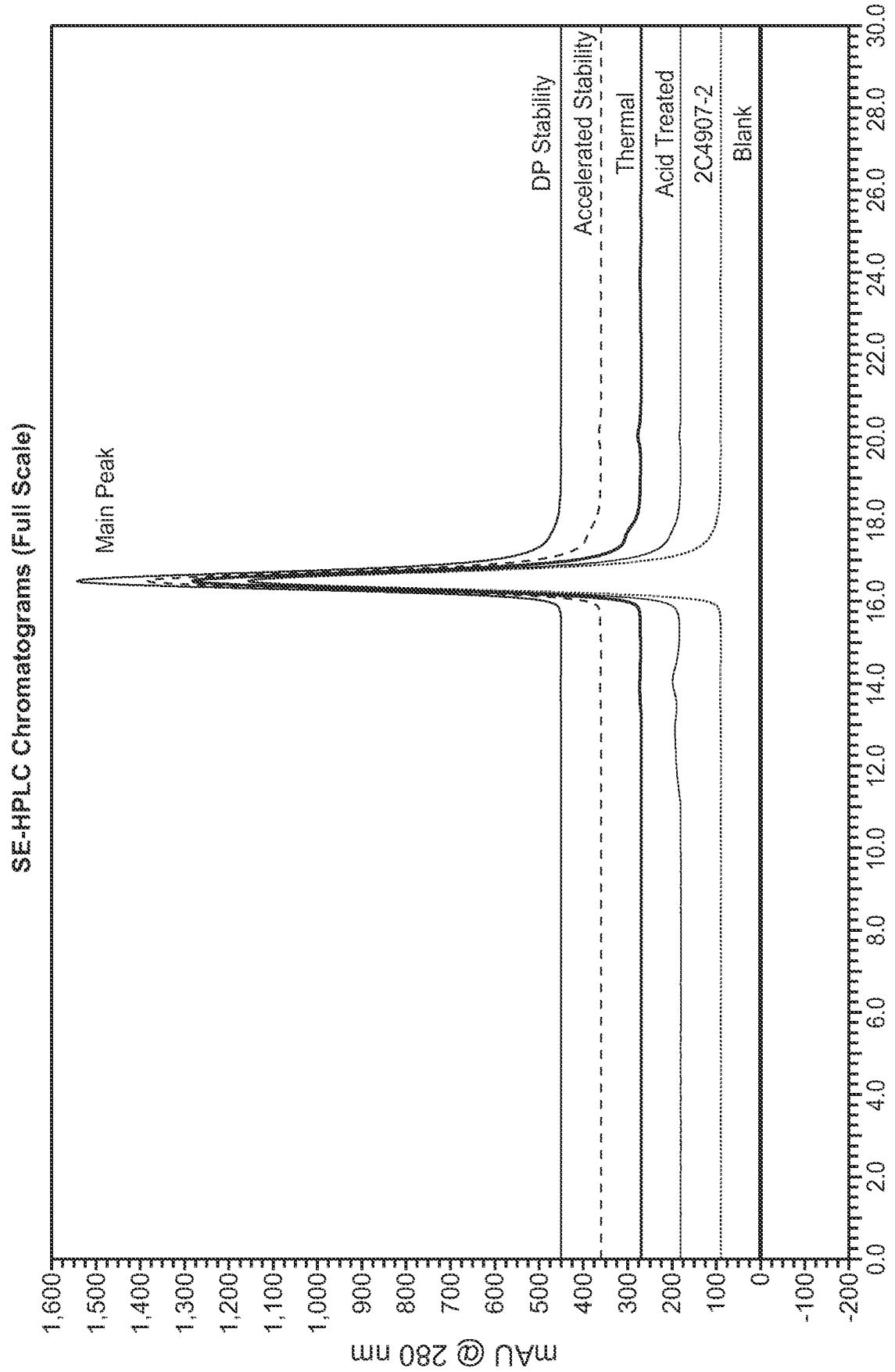
FIG. 26

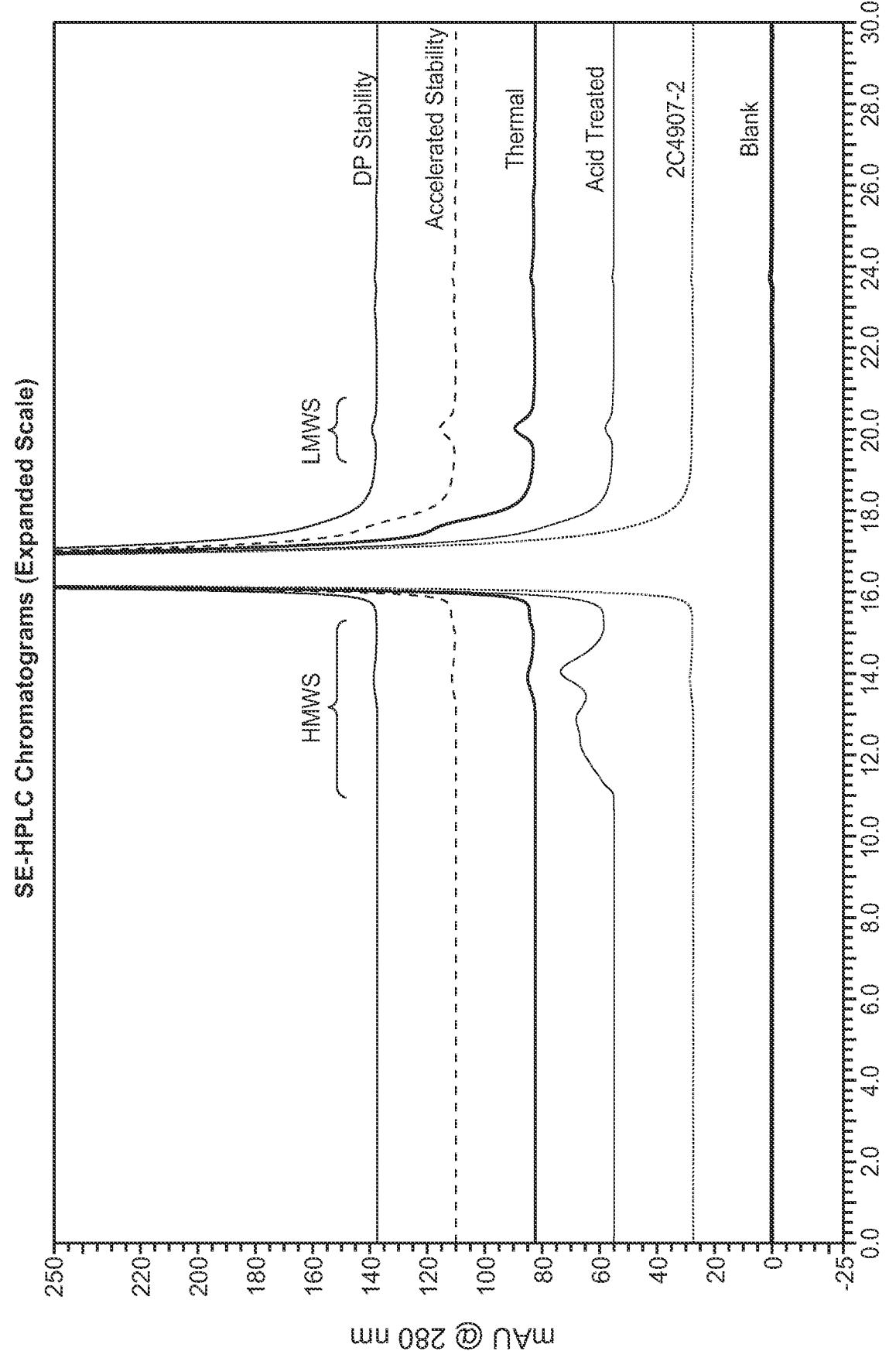
31 / 42

SE-HPLC Analysis of Pertuzumab Samples with Increased HMWS

FIG. 27

Capillary Electrophoresis Sodium Dodecyl Sulfate Analysis with
Laser-Induced Fluorescence Detection of Non-Reduced Pertuzumab


FIG. 29

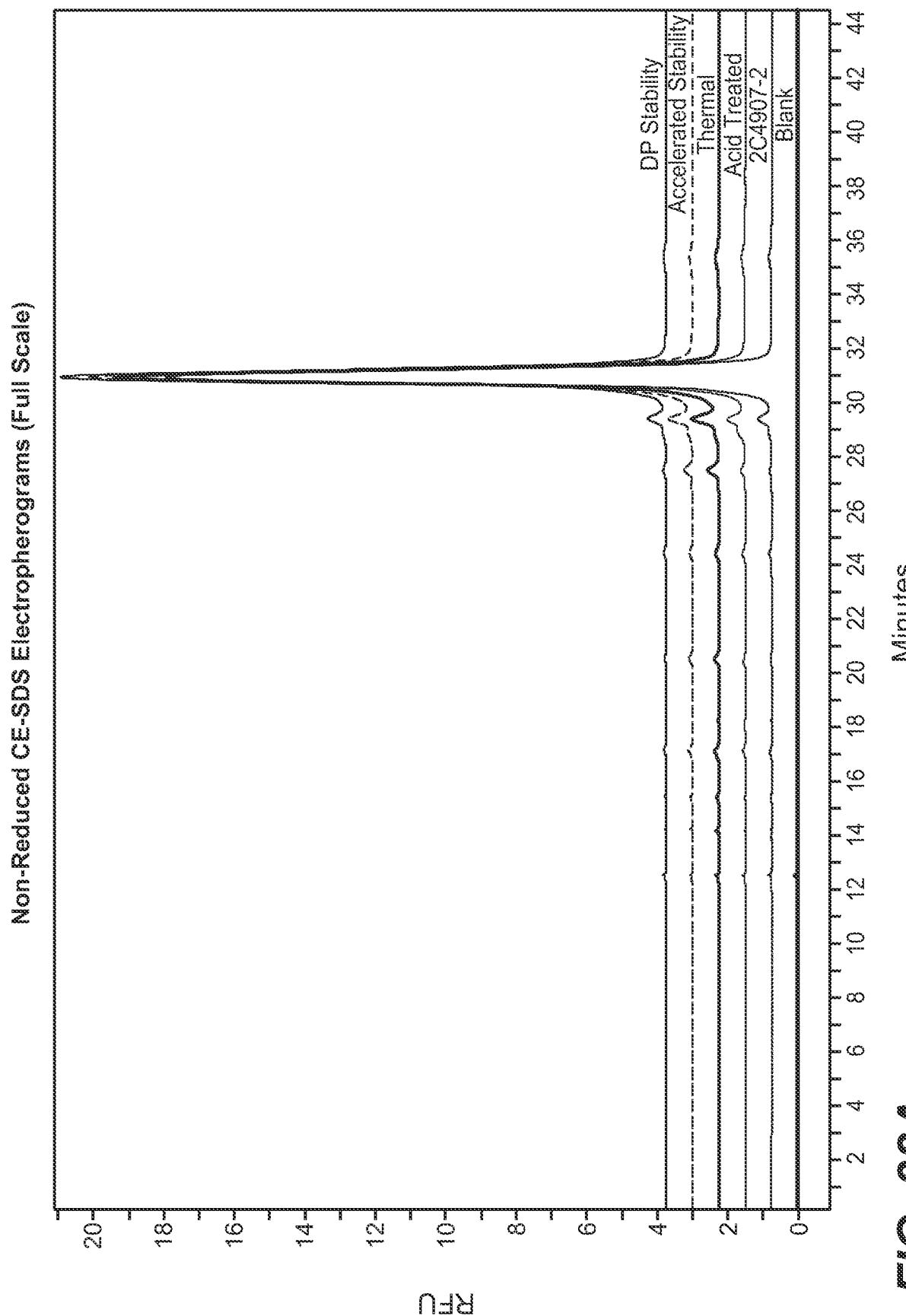

Capillary Electrophoresis Sodium Dodecyl Sulfate Analysis with Laser-Induced Fluorescence Detection of Non-Reduced Pertuzumab (Expanded View)

FIG. 30

FIG. 31A

FIG. 31B

FIG. 32A

Non-Reduced CE-SDS Electropherograms (Expanded Scale)

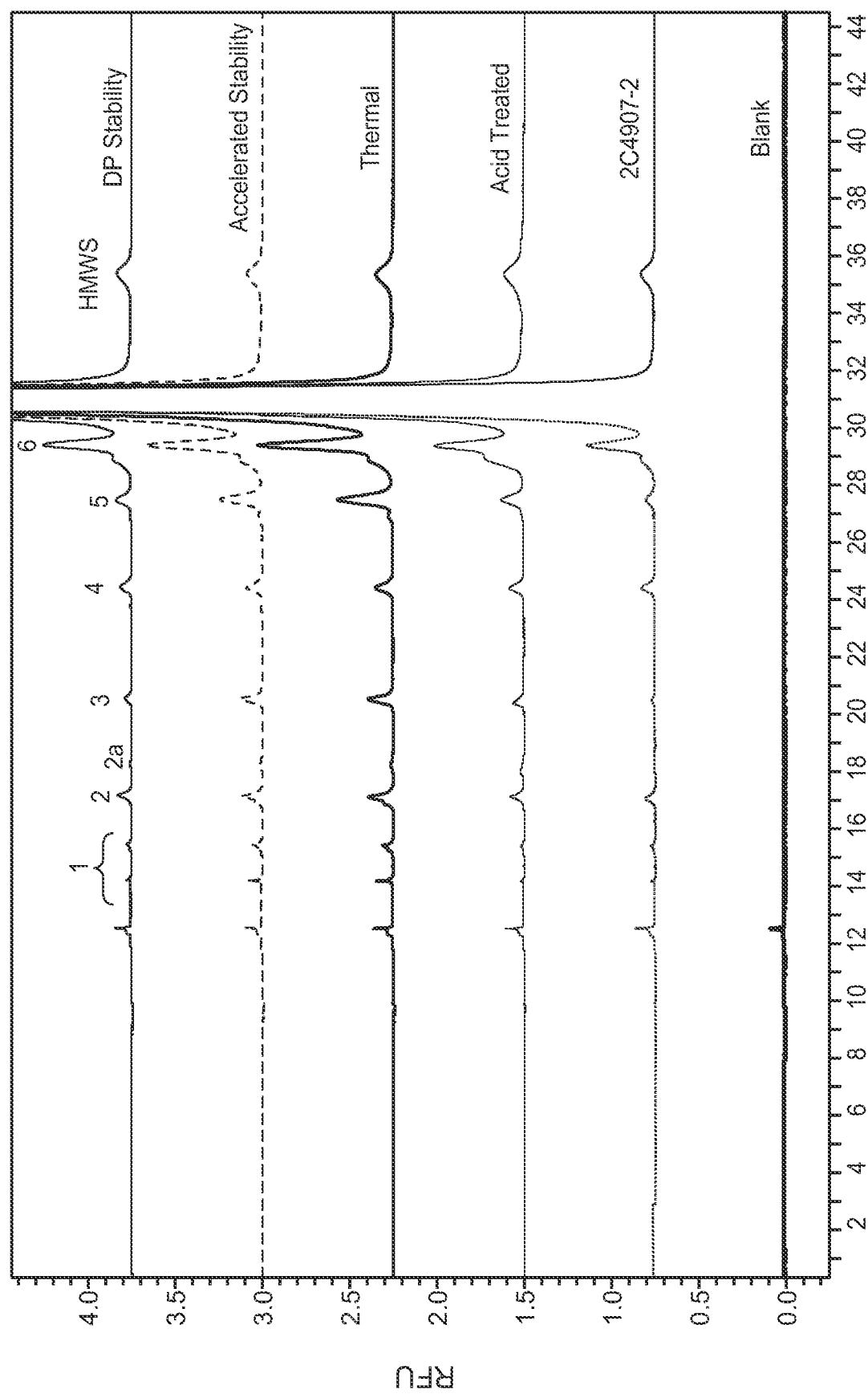
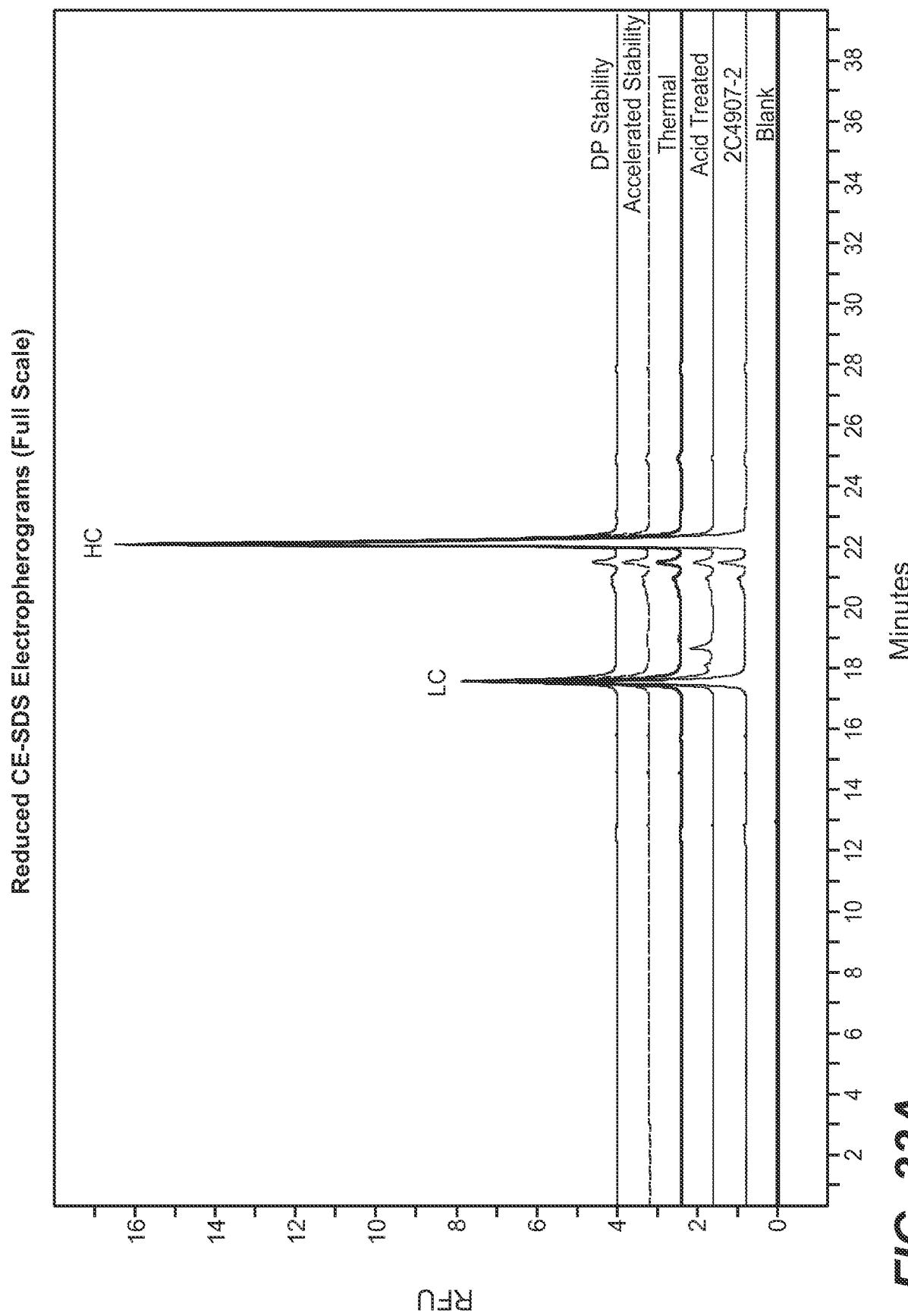



FIG. 32B

FIG. 33A

Reduced CE-SDS Electropherograms (Expanded Scale)

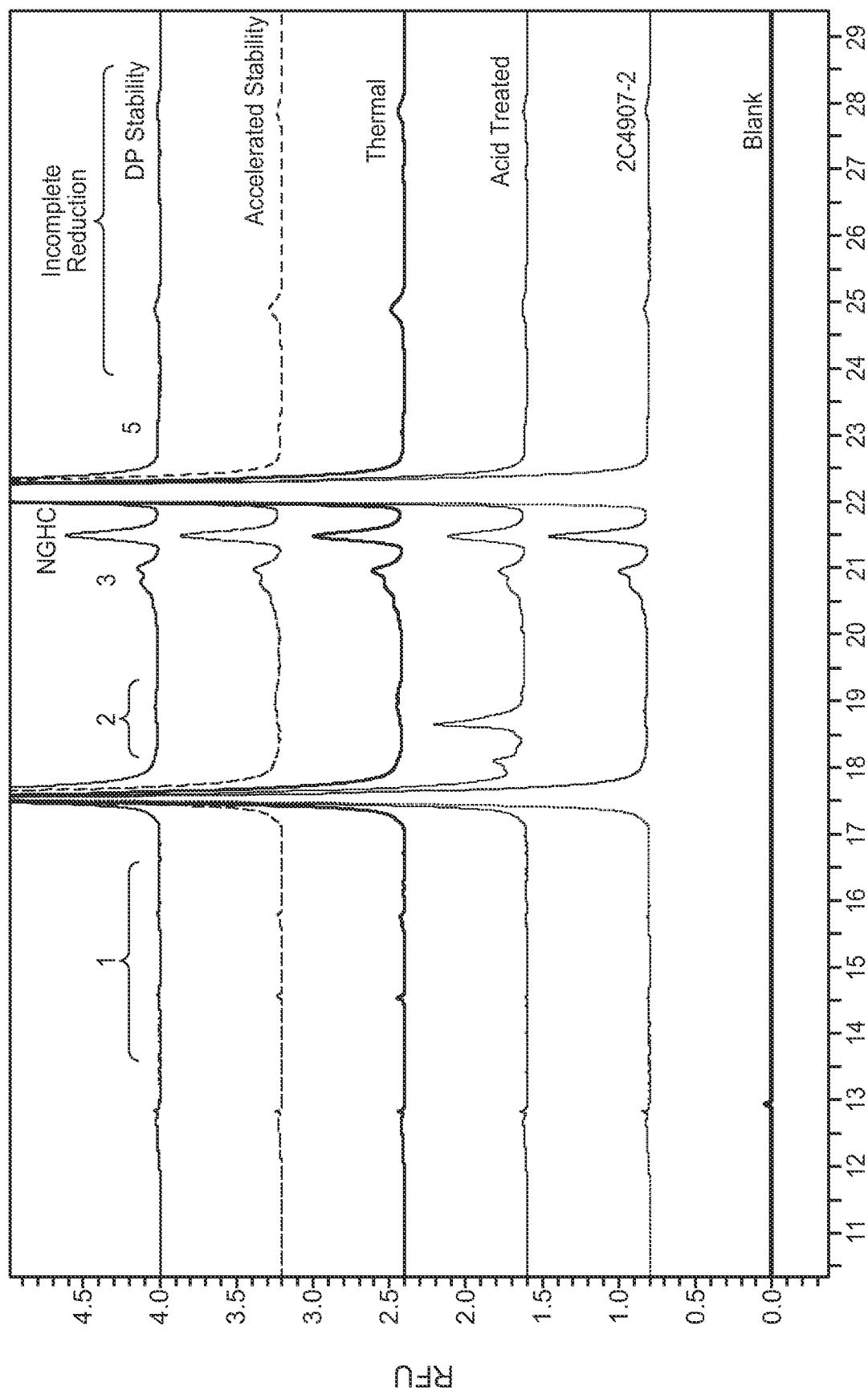
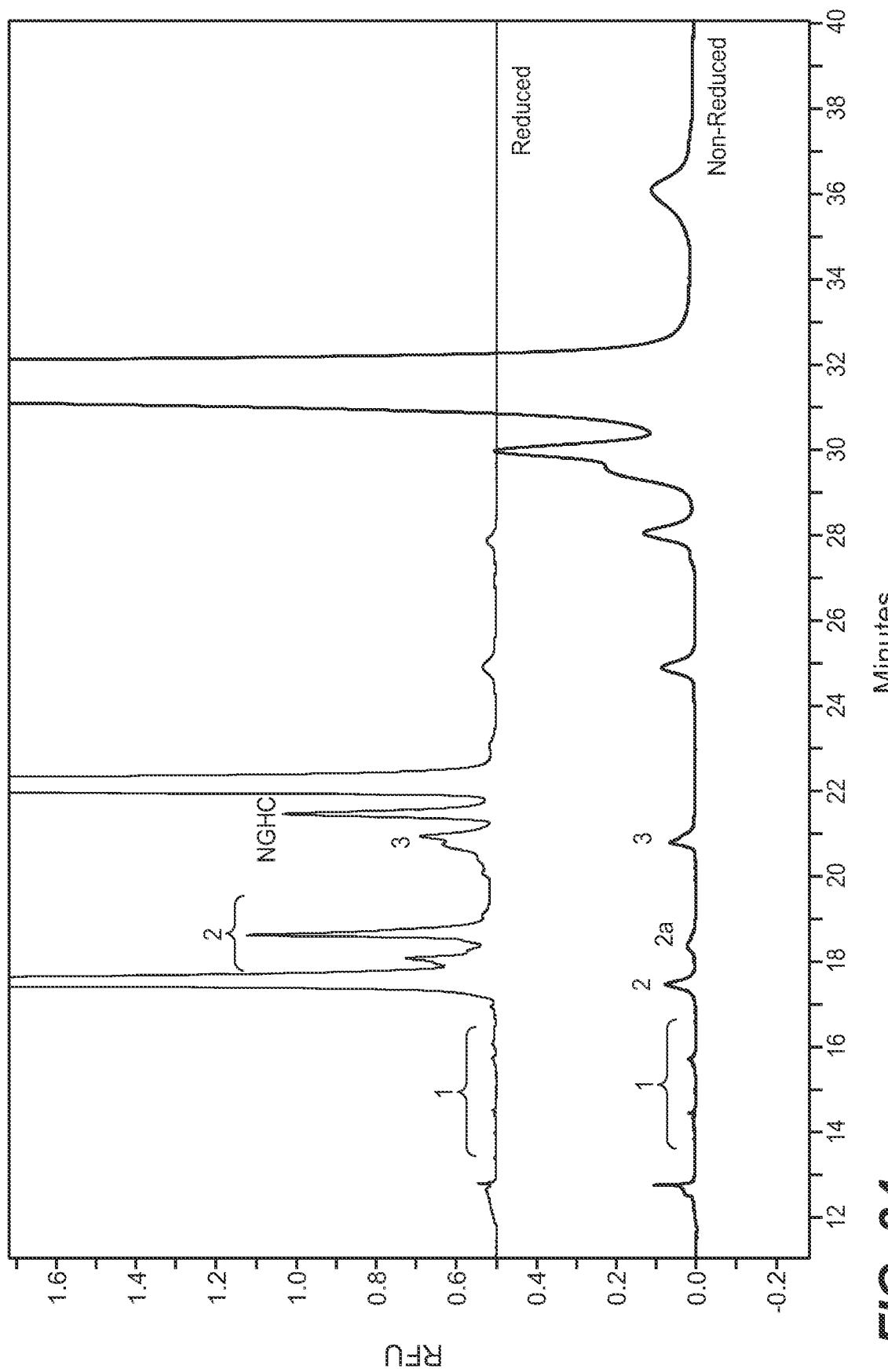



FIG. 33B

41 / 42

Comparison of Non-Reduced and Reduced CE-SDS Electropherograms
for the Acid Treated Sample (Expanded Scale)

FIG. 34

42 / 42

Correlation of Fab Quantitation between Non-Reduced CE-SDS and SE-HPLC

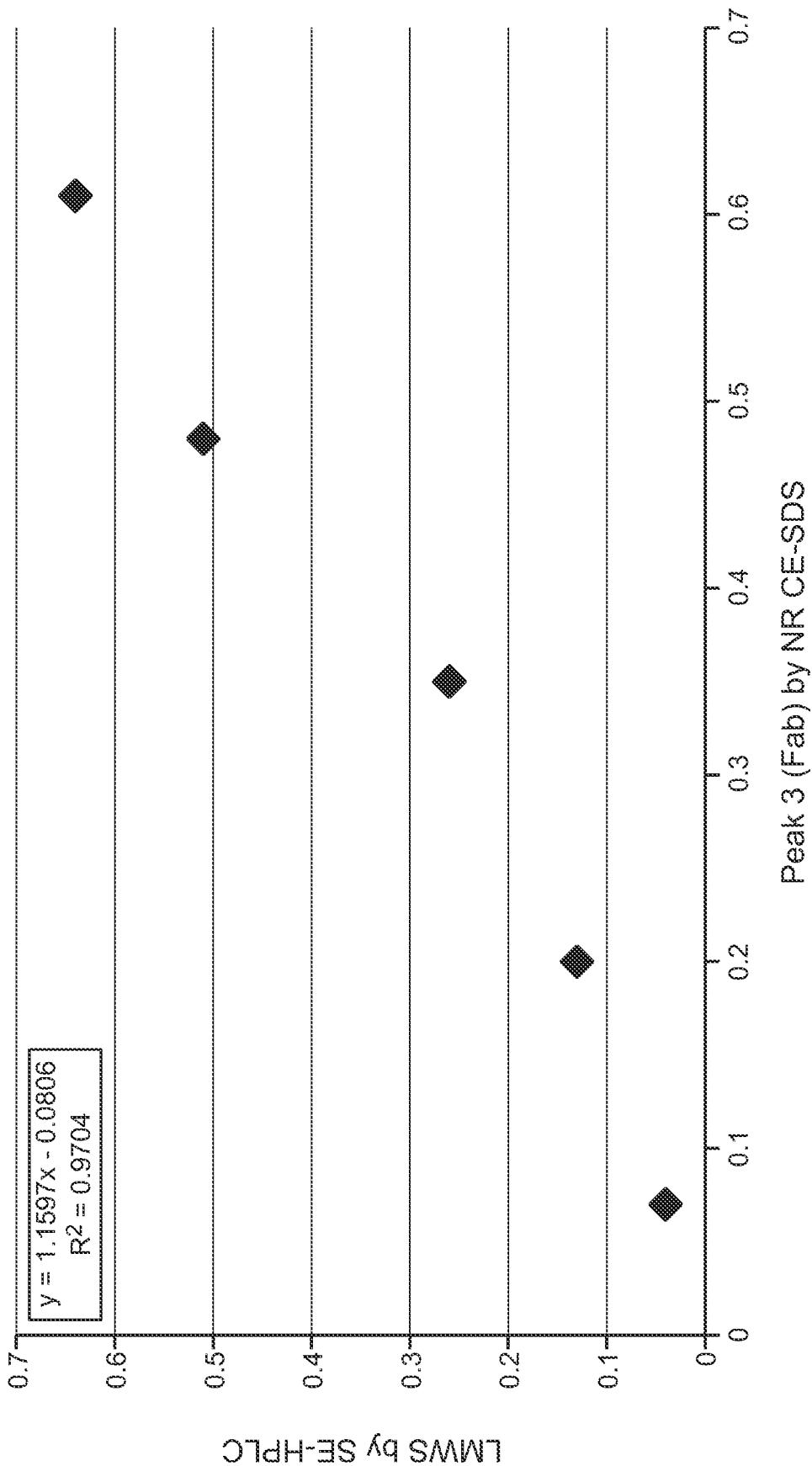


FIG. 35

P5584R1-W0_SeqList
Sequence Listing

<110> GENENTECH, INC.
GENNARO, LYNN A.
KAO, YUNG-HSIANG
ZHANG, YONGHUA

<120> PERTUZUMAB VARIANTS AND EVALUATION THEREOF

<130> P5584R1-W0

<141> 2014-04-15

<150> US 61/812,603
<151> 2013-04-16

<160> 24

<210> 1
<211> 195
<212> PRT
<213> Homo sapiens

<400> 1
Thr Glu Val Cys Thr Gly Thr Asp Met Lys Leu Arg Leu Pro Ala
1 5 10 15
Ser Pro Glu Thr His Leu Asp Met Leu Arg His Leu Tyr Glu Gly
20 25 30
Cys Glu Val Val Glu Gly Asn Leu Glu Leu Thr Tyr Leu Pro Thr
35 40 45
Asn Ala Ser Leu Ser Phe Leu Glu Asp Ile Glu Glu Val Glu Gly
50 55 60
Tyr Val Leu Ile Ala His Asn Glu Val Arg Glu Val Pro Leu Glu
65 70 75
Arg Leu Arg Ile Val Arg Gly Thr Glu Leu Phe Glu Asp Asn Tyr
80 85 90
Ala Leu Ala Val Leu Asp Asn Glu Asp Pro Leu Asn Asn Thr Thr
95 100 105
Pro Val Thr Glu Ala Ser Pro Glu Glu Leu Arg Glu Leu Glu Leu
110 115 120
Arg Ser Leu Thr Glu Ile Leu Lys Glu Glu Val Leu Ile Glu Arg
125 130 135
Asn Pro Glu Leu Cys Tyr Glu Asp Thr Ile Leu Trp Lys Asp Ile
140 145 150
Phe His Lys Asn Asn Glu Leu Ala Leu Thr Leu Ile Asp Thr Asn
155 160 165
Arg Ser Arg Ala Cys His Pro Cys Ser Pro Met Cys Lys Glu Ser
170 175 180
Arg Cys Trp Glu Glu Ser Ser Glu Asp Cys Glu Ser Leu Thr Arg
185 190 195

<210> 2
<211> 124
<212> PRT
<213> Homo sapiens

P5584R1-W0_SeqList

<400> 2
 Thr Val Cys Ala Gly Gly Cys Ala Arg Cys Lys Gly Pro Leu Pro
 1 5 10 15
 Thr Asp Cys Cys His Glu Gln Cys Ala Ala Gly Cys Thr Gly Pro
 20 25 30
 Lys His Ser Asp Cys Leu Ala Cys Leu His Phe Asn His Ser Gly
 35 40 45
 Ile Cys Glu Leu His Cys Pro Ala Leu Val Thr Tyr Asn Thr Asp
 50 55 60
 Thr Phe Glu Ser Met Pro Asn Pro Glu Gly Arg Tyr Thr Phe Gly
 65 70 75
 Ala Ser Cys Val Thr Ala Cys Pro Tyr Asn Tyr Leu Ser Thr Asp
 80 85 90
 Val Gly Ser Cys Thr Leu Val Cys Pro Leu His Asn Gln Glu Val
 95 100 105
 Thr Ala Glu Asp Gly Thr Gln Arg Cys Glu Lys Cys Ser Lys Pro
 110 115 120
 Cys Ala Arg Val

<210> 3
 <211> 169
 <212> PRT
 <213> Homo sapiens

<400> 3
 Cys Tyr Gly Leu Gly Met Glu His Leu Arg Glu Val Arg Ala Val
 1 5 10 15
 Thr Ser Ala Asn Ile Gln Glu Phe Ala Gly Cys Lys Lys Ile Phe
 20 25 30
 Gly Ser Leu Ala Phe Leu Pro Glu Ser Phe Asp Gly Asp Pro Ala
 35 40 45
 Ser Asn Thr Ala Pro Leu Gln Pro Glu Gln Leu Gln Val Phe Glu
 50 55 60
 Thr Leu Glu Glu Ile Thr Gly Tyr Leu Tyr Ile Ser Ala Trp Pro
 65 70 75
 Asp Ser Leu Pro Asp Leu Ser Val Phe Gln Asn Leu Gln Val Ile
 80 85 90
 Arg Gly Arg Ile Leu His Asn Gly Ala Tyr Ser Leu Thr Leu Gln
 95 100 105
 Gly Leu Gly Ile Ser Trp Leu Gly Leu Arg Ser Leu Arg Glu Leu
 110 115 120
 Gly Ser Gly Leu Ala Leu Ile His His Asn Thr His Leu Cys Phe
 125 130 135
 Val His Thr Val Pro Trp Asp Gln Leu Phe Arg Asn Pro His Gln
 140 145 150
 Ala Leu Leu His Thr Ala Asn Arg Pro Glu Asp Glu Cys Val Gly
 155 160 165
 Glu Gly Leu Ala

P5584R1-W0_SeqList

<210> 4
 <211> 142
 <212> PRT
 <213> Homo sapiens

<400> 4
 Cys His Gln Leu Cys Ala Arg Gly His Cys Trp Gly Pro Gly Pro
 1 5 10 15
 Thr Gln Cys Val Asn Cys Ser Gln Phe Leu Arg Gly Gln Glu Cys
 20 25 30
 Val Glu Glu Cys Arg Val Leu Gln Gly Leu Pro Arg Glu Tyr Val
 35 40 45
 Asn Ala Arg His Cys Leu Pro Cys His Pro Glu Cys Gln Pro Gln
 50 55 60
 Asn Gly Ser Val Thr Cys Phe Gly Pro Glu Ala Asp Gln Cys Val
 65 70 75
 Ala Cys Ala His Tyr Lys Asp Pro Pro Phe Cys Val Ala Arg Cys
 80 85 90
 Pro Ser Gly Val Lys Pro Asp Leu Ser Tyr Met Pro Ile Trp Lys
 95 100 105
 Phe Pro Asp Gln Glu Gly Ala Cys Gln Pro Cys Pro Ile Asn Cys
 110 115 120
 Thr His Ser Cys Val Asp Leu Asp Asp Lys Gly Cys Pro Ala Glu
 125 130 135
 Gln Arg Ala Ser Pro Leu Thr
 140

<210> 5
 <211> 107
 <212> PRT
 <213> Mus musculus

<400> 5
 Asp Thr Val Met Thr Gln Ser His Lys Ile Met Ser Thr Ser Val
 1 5 10 15
 Gly Asp Arg Val Ser Ile Thr Cys Lys Ala Ser Gln Asp Val Ser
 20 25 30
 Ile Gly Val Ala Trp Tyr Gln Gln Arg Pro Gly Gln Ser Pro Lys
 35 40 45
 Leu Leu Ile Tyr Ser Ala Ser Tyr Arg Tyr Thr Gly Val Pro Asp
 50 55 60
 Arg Phe Thr Gly Ser Gly Ser Gly Thr Asp Phe Thr Phe Thr Ile
 65 70 75
 Ser Ser Val Gln Ala Glu Asp Leu Ala Val Tyr Tyr Cys Gln Gln
 80 85 90
 Tyr Tyr Ile Tyr Pro Tyr Thr Phe Gly Gly Thr Lys Leu Glu
 95 100 105
 Ile Lys

P5584R1-W0_SeqList

<210> 6
<211> 119
<212> PRT
<213> Mus musculus

<400> 6
Glu Val Glu Leu Glu Glu Ser Gly Pro Glu Leu Val Lys Pro Gly
1 5 10 15
Thr Ser Val Lys Ile Ser Cys Lys Ala Ser Gly Phe Thr Phe Thr
20 25 30
Asp Tyr Thr Met Asp Trp Val Lys Glu Ser His Gly Lys Ser Leu
35 40 45
Glu Trp Ile Gly Asp Val Asn Pro Asn Ser Gly Gly Ser Ile Tyr
50 55 60
Asn Glu Arg Phe Lys Gly Lys Ala Ser Leu Thr Val Asp Arg Ser
65 70 75
Ser Arg Ile Val Tyr Met Glu Leu Arg Ser Leu Thr Phe Glu Asp
80 85 90
Thr Ala Val Tyr Tyr Cys Ala Arg Asn Leu Gly Pro Ser Phe Tyr
95 100 105
Phe Asp Tyr Trp Gly Glu Gly Thr Thr Leu Thr Val Ser Ser
110 115

<210> 7
<211> 107
<212> PRT
<213> Artificial Sequence

<220>
<223> Sequence is synthesized.

<400> 7
Asp Ile Glu Met Thr Glu Ser Pro Ser Ser Leu Ser Ala Ser Val
1 5 10 15
Gly Asp Arg Val Thr Ile Thr Cys Lys Ala Ser Glu Asp Val Ser
20 25 30
Ile Gly Val Ala Trp Tyr Glu Glu Lys Pro Gly Lys Ala Pro Lys
35 40 45
Leu Leu Ile Tyr Ser Ala Ser Tyr Arg Tyr Thr Gly Val Pro Ser
50 55 60
Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile
65 70 75
Ser Ser Leu Glu Pro Glu Asp Phe Ala Thr Tyr Tyr Cys Glu Glu
80 85 90
Tyr Tyr Ile Tyr Pro Tyr Thr Phe Gly Glu Glu Thr Lys Val Glu
95 100 105

Ile Lys

<210> 8
<211> 119
<212> PRT
<213> Artificial Sequence

P5584R1-W0_SeqList

<220>

<223> Sequence is synthesized.

<400> 8

Gl u	Val	Gl n	Leu	Val	5	Gl u	Ser	Gl y	Gl y	Gl y	Leu	Val	Gl n	Pro	Gl y	15	
1						10											
Gl y	Ser	Leu	Arg	Leu	20	Ser	Cys	Al a	Al a	Ser	25	Gl y	Phe	Thr	Phe	Thr	30
Asp	Tyr	Thr	Met	Asp	35	Trp	Val	Arg	Gl n	Al a	40	Pro	Gl y	Lys	Gl y	Leu	45
Gl u	Trp	Val	Al a	Asp	50	Val	Asn	Pro	Asn	Ser	55	Gl y	Gl y	Ser	Ile	Tyr	60
Asn	Gl n	Arg	Phe	Lys	65	Gl y	Arg	Phe	Thr	Leu	70	Ser	Val	Asp	Arg	Ser	75
Lys	Asn	Thr	Leu	Tyr	80	Leu	Gl n	Met	Asn	Ser	85	Leu	Arg	Al a	Gl u	Asp	90
Thr	Al a	Val	Tyr	Tyr	95	Cys	Al a	Arg	Asn	Leu	100	Gl y	Pro	Ser	Phe	Tyr	105
Phe	Asp	Tyr	Trp	Gl y	110	Gl n	Gl y	Thr	Leu	Val	115	Thr	Val	Ser	Ser		

<210> 9

<211> 107

<212> PRT

<213> Artificial Sequence

<220>

<223> Sequence is synthesized.

<400> 9

Asp	Ile	Gl n	Met	Thr	5	Gl n	Ser	Pro	Ser	Ser	Leu	Ser	Al a	Ser	Val	15		
1																		
Gl y	Asp	Arg	Val	Thr	20	Ile	Thr	Cys	Arg	Al a	25	Ser	Gl n	Ser	Ile	Ser	30	
Asn	Tyr	Leu	Al a	Trp	35	Tyr	Gl n	Gl n	Lys	Pro	40	Gl y	Lys	Al a	Pro	Lys	45	
Leu	Leu	Ile	Tyr	Al a	50	Al a	Al a	Ser	Ser	Leu	55	Gl u	Ser	Gl y	Val	Pro	Ser	60
Arg	Phe	Ser	Gl y	Ser	65	Gl y	Ser	Gl y	Thr	Asp	70	Phe	Thr	Leu	Thr	Ile	75	
Ser	Ser	Leu	Gl n	Pro	80	Gl u	Asp	Phe	Al a	Thr	85	Tyr	Tyr	Cys	Gl n	Gl n	90	
Tyr	Asn	Ser	Leu	Pro	95	Trp	Thr	Phe	Gl y	Gl n	100	Gl y	Thr	Lys	Val	Gl u		

Ile Lys

<210> 10

<211> 119

<212> PRT

<213> Artificial Sequence

<220>

<223> Sequence is synthesized.

P5584R1-W0_SeqList

<400> 10
 Glu Val Gln Leu Val 5 Glu Ser Gly Gly 10 Leu Val Gln Pro Gly
 1 15
 Gly Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser
 20 25 30
 Ser Tyr Ala Met Ser Trp Val Arg Gln Ala Pro Gly Lys Gly Leu
 35 40 45
 Glu Trp Val Ala Val 50 Ile Ser Gly Asp Gly 55 Gly Ser Thr Tyr Tyr
 60
 Ala Asp Ser Val Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser
 65 70 75
 Lys Asn Thr Leu Tyr Leu Gln Met Asn Ser Leu Arg Ala Glu Asp
 80 85 90
 Thr Ala Val Tyr Tyr Cys Ala Arg Gly Arg 100 Val Gly Tyr Ser Leu
 95 105
 Tyr Asp Tyr Trp Gly Gln Gly Thr Leu Val 115 Thr Val Ser Ser
 110

<210> 11

<211> 214

<212> PRT

<213> Artificial sequence

<220>

<223> Sequence is synthesized.

<400> 11
 Asp Ile Gln Met Thr Gln Ser Pro Ser Ser 10 Leu Ser Ala Ser Val
 1 15
 Gly Asp Arg Val Thr Ile Thr Cys Lys Ala Ser Gln Asp Val Ser
 20 25 30
 Ile Gly Val Ala Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Lys
 35 40 45
 Leu Leu Ile Tyr Ser Ala Ser Tyr Arg Tyr 55 Thr Gly Val Pro Ser
 50 60
 Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile
 65 70 75
 Ser Ser Leu Gln Pro Glu Asp Phe Ala Thr Tyr Tyr Cys Gln Gln
 80 85 90
 Tyr Tyr Ile Tyr Pro Tyr Thr Phe Gly Gln Gly Thr Lys Val Glu
 95 100 105
 Ile Lys Arg Thr Val Ala Ala Pro Ser Val Phe Ile Phe Pro Pro
 110 115 120
 Ser Asp Glu Gln Leu Lys Ser Gly Thr Ala Ser Val Val Cys Leu
 125 130 135
 Leu Asn Asn Phe Tyr Pro Arg Glu Ala Lys Val Gln Trp Lys Val
 140 145 150
 Asp Asn Ala Leu Gln Ser Gly Asn Ser Gln Glu Ser Val Thr Glu
 155 160 165

P5584R1-W0_SeqList

Glu Asp Ser Lys Asp Ser Thr Tyr Ser Leu Ser Ser Thr Leu Thr
 170 175 180
 Leu Ser Lys Ala Asp Tyr Glu Lys His Lys Val Tyr Ala Cys Glu
 185 190 195
 Val Thr His Glu Gly Leu Ser Ser Pro Val Thr Lys Ser Phe Asn
 200 205 210
 Arg Glu Glu Cys

<210> 12

<211> 448

<212> PRT

<213> Artificial sequence

<220>

<223> Sequence is synthesized.

<400> 12

Glu Val Glu Leu Val Glu Ser Glu Glu Leu Val Glu Pro Gly
 1 5 10 15

Gly Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Thr
 20 25 30

Asp Tyr Thr Met Asp Trp Val Arg Glu Ala Pro Gly Lys Glu Leu
 35 40 45

Glu Trp Val Ala Asp Val Asn Pro Asn Ser Gly Gly Ser Ile Tyr
 50 55 60

Asn Glu Arg Phe Lys Glu Arg Phe Thr Leu Ser Val Asp Arg Ser
 65 70 75

Lys Asn Thr Leu Tyr Leu Glu Met Asn Ser Leu Arg Ala Glu Asp
 80 85 90

Thr Ala Val Tyr Tyr Cys Ala Arg Asn Leu Glu Pro Ser Phe Tyr
 95 100 105

Phe Asp Tyr Trp Glu Glu Glu Thr Leu Val Thr Val Ser Ser Ala
 110 115 120

Ser Thr Lys Glu Pro Ser Val Phe Pro Leu Ala Pro Ser Ser Lys
 125 130 135

Ser Thr Ser Glu Glu Thr Ala Ala Leu Glu Cys Leu Val Lys Asp
 140 145 150

Tyr Phe Pro Glu Pro Val Thr Val Ser Trp Asn Ser Glu Ala Leu
 155 160 165

Thr Ser Glu Val His Thr Phe Pro Ala Val Leu Glu Ser Ser Glu
 170 175 180

Leu Tyr Ser Leu Ser Ser Val Val Thr Val Pro Ser Ser Ser Leu
 185 190 195

Glu Thr Glu Thr Tyr Ile Cys Asn Val Asn His Lys Pro Ser Asn
 200 205 210

Thr Lys Val Asp Lys Lys Val Glu Pro Lys Ser Cys Asp Lys Thr
 215 220 225

His Thr Cys Pro Pro Cys Pro Ala Pro Glu Leu Leu Glu Glu Pro
 230 235 240

P5584R1-W0_SeqList

Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met Ile
 245 250 255
 Ser Arg Thr Pro Glu Val Thr Cys Val Val Val Asp Val Ser His
 260 265 270
 Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp Glu Val Glu
 275 280 285
 Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu Glu Tyr Asn Ser
 290 295 300
 Thr Tyr Arg Val Val Ser Val Leu Thr Val Leu His Glu Asp Trp
 305 310 315
 Leu Asn Glu Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu
 320 325 330
 Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala Lys Glu Glu Pro
 335 340 345
 Arg Glu Pro Glu Val Tyr Thr Leu Pro Pro Ser Arg Glu Glu Met
 350 355 360
 Thr Lys Asn Glu Val Ser Leu Thr Cys Leu Val Lys Glu Phe Tyr
 365 370 375
 Pro Ser Asp Ile Ala Val Glu Trp Glu Ser Asn Glu Glu Pro Glu
 380 385 390
 Asn Asn Tyr Lys Thr Thr Pro Pro Val Leu Asp Ser Asp Glu Ser
 395 400 405
 Phe Phe Leu Tyr Ser Lys Leu Thr Val Asp Lys Ser Arg Trp Glu
 410 415 420
 Glu Glu Asn Val Phe Ser Cys Ser Val Met His Glu Ala Leu His
 425 430 435
 Asn His Tyr Thr Glu Lys Ser Leu Ser Leu Ser Pro Glu
 440 445

<210> 13

<211> 214

<212> PRT

<213> Artificial sequence

<220>

<223> Sequence is synthesized.

<400> 13

Asp Ile Glu Met Thr Glu Ser Pro Ser Ser Leu Ser Ala Ser Val
 1 5 10 15

Gly Asp Arg Val Thr Ile Thr Cys Arg Ala Ser Glu Asp Val Asn
 20 25 30

Thr Ala Val Ala Trp Tyr Glu Glu Lys Pro Glu Lys Ala Pro Lys
 35 40 45

Leu Leu Ile Tyr Ser Ala Ser Phe Leu Tyr Ser Glu Val Pro Ser
 50 55 60

Arg Phe Ser Glu Ser Arg Ser Glu Thr Asp Phe Thr Leu Thr Ile
 65 70 75

Ser Ser Leu Glu Pro Glu Asp Phe Ala Thr Tyr Tyr Cys Glu Glu
 Page 8

P5584R1-W0_SeqList

80	85	90												
His	Tyr	Thr	Thr	Pro	Pro	Thr	Phe	Gly	Gln	Gly	Thr	Lys	Val	Glu
				95				100						105
Ile	Lys	Arg	Thr	Val	Ala	Ala	Pro	Ser	Val	Phe	Ile	Phe	Pro	Pro
				110				115						120
Ser	Asp	Glu	Gln	Leu	Lys	Ser	Gly	Thr	Ala	Ser	Val	Val	Cys	Leu
				125				130						135
Leu	Asn	Asn	Phe	Tyr	Pro	Arg	Glu	Ala	Lys	Val	Gln	Trp	Lys	Val
				140				145						150
Asp	Asn	Ala	Leu	Gln	Ser	Gly	Asn	Ser	Gln	Glu	Ser	Val	Thr	Glu
				155				160						165
Gln	Asp	Ser	Lys	Asp	Ser	Thr	Tyr	Ser	Leu	Ser	Ser	Thr	Leu	Thr
				170				175						180
Leu	Ser	Lys	Ala	Asp	Tyr	Glu	Lys	His	Lys	Val	Tyr	Ala	Cys	Glu
				185				190						195
Val	Thr	His	Gln	Gly	Leu	Ser	Ser	Pro	Val	Thr	Lys	Ser	Phe	Asn
				200				205						210
Arg	Gly	Glu	Cys											

<210> 14

<211> 449

<212> PRT

<213> Artificial sequence

<220>

<223> Sequence is synthesized.

<400> 14

Glu	Val	Gln	Leu	Val	Glu	Ser	Gly	Gly	Gly	Leu	Val	Gln	Pro	Gly
1				5				10						15
Gly	Ser	Leu	Arg	Leu	Ser	Cys	Ala	Ala	Ser	Gly	Phe	Asn	Ile	Lys
				20				25						30
Asp	Thr	Tyr	Ile	His	Trp	Val	Arg	Gln	Ala	Pro	Gly	Lys	Gly	Leu
				35				40						45
Glu	Trp	Val	Ala	Arg	Ile	Tyr	Pro	Thr	Asn	Gly	Tyr	Thr	Arg	Tyr
				50				55						60
Ala	Asp	Ser	Val	Lys	Gly	Arg	Phe	Thr	Ile	Ser	Ala	Asp	Thr	Ser
				65				70						75
Lys	Asn	Thr	Ala	Tyr	Leu	Gln	Met	Asn	Ser	Leu	Arg	Ala	Glu	Asp
				80				85						90
Thr	Ala	Val	Tyr	Tyr	Cys	Ser	Arg	Trp	Gly	Gly	Asp	Gly	Phe	Tyr
				95				100						105
Ala	Met	Asp	Tyr	Trp	Gly	Gln	Gly	Thr	Leu	Val	Thr	Val	Ser	Ser
				110				115						120
Ala	Ser	Thr	Lys	Gly	Pro	Ser	Val	Phe	Pro	Leu	Ala	Pro	Ser	Ser
				125				130						135
Lys	Ser	Thr	Ser	Gly	Gly	Thr	Ala	Ala	Leu	Gly	Cys	Leu	Val	Lys
				140				145						150

P5584R1-W0_SeqList

Asp Tyr Phe Pro Glu Pro Val Thr Val Ser Trp Asn Ser Gly Ala
 155 160 165
 Leu Thr Ser Gly Val His Thr Phe Pro Ala Val Leu Gln Ser Ser
 170 175 180
 Gly Leu Tyr Ser Leu Ser Ser Val Val Thr Val Pro Ser Ser Ser
 185 190 195
 Leu Gly Thr Gln Thr Tyr Ile Cys Asn Val Asn His Lys Pro Ser
 200 205 210
 Asn Thr Lys Val Asp Lys Lys Val Glu Pro Lys Ser Cys Asp Lys
 215 220 225
 Thr His Thr Cys Pro Pro Cys Pro Ala Pro Glu Leu Leu Gly Gly
 230 235 240
 Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met
 245 250 255
 Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val Asp Val Ser
 260 265 270
 His Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp Glu Val
 275 280 285
 Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Tyr Asn
 290 295 300
 Ser Thr Tyr Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp
 305 310 315
 Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala
 320 325 330
 Leu Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala Lys Glu Gln
 335 340 345
 Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg Glu Glu
 350 355 360
 Met Thr Lys Asn Gln Val Ser Leu Thr Cys Leu Val Lys Gly Phe
 365 370 375
 Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu Ser Asn Glu Gln Pro
 380 385 390
 Glu Asn Asn Tyr Lys Thr Thr Pro Pro Val Leu Asp Ser Asp Glu
 395 400 405
 Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val Asp Lys Ser Arg Trp
 410 415 420
 Gln Gln Gly Asn Val Phe Ser Cys Ser Val Met His Glu Ala Leu
 425 430 435
 His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro Glu
 440 445 450

<210> 15

<211> 217

<212> PRT

<213> Artificial sequence

<220>

<223> Sequence is synthesized.

P5584R1-W0_SeqList

<400> 15
 Val His Ser Asp Ile Gln Met Thr Gln Ser Pro Ser Ser Leu Ser
 1 5 10 15
 Ala Ser Val Gly Asp Arg Val Thr Ile Thr Cys Lys Ala Ser Gln
 20 25 30
 Asp Val Ser Ile Gly Val Ala Trp Tyr Gln Gln Lys Pro Gly Lys
 35 40 45
 Ala Pro Lys Leu Leu Ile Tyr Ser Ala Ser Tyr Arg Tyr Thr Gly
 50 55 60
 Val Pro Ser Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr
 65 70 75
 Leu Thr Ile Ser Ser Leu Gln Pro Glu Asp Phe Ala Thr Tyr Tyr
 80 85 90
 Cys Gln Gln Tyr Tyr Ile Tyr Pro Tyr Thr Phe Gly Gln Gly Thr
 95 100 105
 Lys Val Glu Ile Lys Arg Thr Val Ala Ala Pro Ser Val Phe Ile
 110 115 120
 Phe Pro Pro Ser Asp Glu Gln Leu Lys Ser Gly Thr Ala Ser Val
 125 130 135
 Val Cys Leu Leu Asn Asn Phe Tyr Pro Arg Glu Ala Lys Val Gln
 140 145 150
 Trp Lys Val Asp Asn Ala Leu Gln Ser Gly Asn Ser Gln Glu Ser
 155 160 165
 Val Thr Glu Gln Asp Ser Lys Asp Ser Thr Tyr Ser Leu Ser Ser
 170 175 180
 Thr Leu Thr Leu Ser Lys Ala Asp Tyr Glu Lys His Lys Val Tyr
 185 190 195
 Ala Cys Glu Val Thr His Gln Gly Leu Ser Ser Pro Val Thr Lys
 200 205 210
 Ser Phe Asn Arg Gly Glu Cys
 215

<210> 16

<211> 449

<212> PRT

<213> Artificial sequence

<220>

<223> Sequence is synthesized.

<400> 16

Glu Val Gln Leu Val Glu Ser Gly Gly Leu Val Gln Pro Gly
 1 5 10 15
 Gly Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Thr
 20 25 30
 Asp Tyr Thr Met Asp Trp Val Arg Gln Ala Pro Gly Lys Gly Leu
 35 40 45
 Glu Trp Val Ala Asp Val Asn Pro Asn Ser Gly Gly Ser Ile Tyr
 50 55 60
 Asn Gln Arg Phe Lys Gly Arg Phe Thr Leu Ser Val Asp Arg Ser

P5584R1-W0_SeqList

65

70

75

Lys Asn Thr Leu Tyr Leu Glu Met Asn Ser Leu Arg Ala Glu Asp
 80 85 90

Thr Ala Val Tyr Tyr Cys Ala Arg Asn Leu Gly Pro Ser Phe Tyr
 95 100 105

Phe Asp Tyr Trp Glu Glu Gly Thr Leu Val Thr Val Ser Ser Ala
 110 115 120

Ser Thr Lys Gly Pro Ser Val Phe Pro Leu Ala Pro Ser Ser Lys
 125 130 135

Ser Thr Ser Gly Gly Thr Ala Ala Leu Gly Cys Leu Val Lys Asp
 140 145 150

Tyr Phe Pro Glu Pro Val Thr Val Ser Trp Asn Ser Gly Ala Leu
 155 160 165

Thr Ser Gly Val His Thr Phe Pro Ala Val Leu Glu Ser Ser Gly
 170 175 180

Leu Tyr Ser Leu Ser Ser Val Val Thr Val Pro Ser Ser Ser Leu
 185 190 195

Gly Thr Glu Thr Tyr Ile Cys Asn Val Asn His Lys Pro Ser Asn
 200 205 210

Thr Lys Val Asp Lys Lys Val Glu Pro Lys Ser Cys Asp Lys Thr
 215 220 225

His Thr Cys Pro Pro Cys Pro Ala Pro Glu Leu Leu Gly Gly Pro
 230 235 240

Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met Ile
 245 250 255

Ser Arg Thr Pro Glu Val Thr Cys Val Val Asp Val Ser His
 260 265 270

Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp Gly Val Glu
 275 280 285

Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu Glu Tyr Asn Ser
 290 295 300

Thr Tyr Arg Val Val Ser Val Leu Thr Val Leu His Glu Asp Trp
 305 310 315

Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu
 320 325 330

Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly Glu Pro
 335 340 345

Arg Glu Pro Glu Val Tyr Thr Leu Pro Pro Ser Arg Glu Glu Met
 350 355 360

Thr Lys Asn Glu Val Ser Leu Thr Cys Leu Val Lys Gly Phe Tyr
 365 370 375

Pro Ser Asp Ile Ala Val Glu Trp Glu Ser Asn Gly Glu Pro Glu
 380 385 390

Asn Asn Tyr Lys Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser
 395 400 405

P5584R1-W0_SeqList

Phe Phe Leu Tyr Ser Lys Leu Thr Val Asp Lys Ser Arg Trp Gln
410 415 420

Gln Gly Asn Val Phe Ser Cys Ser Val Met His Glu Ala Leu His
425 430 435

Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro Gly Lys
440 445

<210> 17

<211> 10

<212> PRT

<213> Artificial sequence

<220>

<223> Sequence is synthesized.

<220>

<221> Xaa

<222> 10

<223> Xaa is preferably D or S

<400> 17

Gly Phe Thr Phe Thr Asp Tyr Thr Met Xaa
5 10

<210> 18

<211> 17

<212> PRT

<213> Artificial sequence

<220>

<223> Sequence is synthesized.

<400> 18

Asp Val Asn Pro Asn Ser Gly Gly Ser Ile Tyr Asn Gln Arg Phe
1 5 10 15

Lys Gly

<210> 19

<211> 10

<212> PRT

<213> Artificial sequence

<220>

<223> Sequence is synthesized.

<400> 19

Asn Leu Gly Pro Ser Phe Tyr Phe Asp Tyr
5 10

<210> 20

<211> 11

<212> PRT

<213> Artificial sequence

<220>

<223> Sequence is synthesized.

<400> 20

Lys Ala Ser Gln Asp Val Ser Ile Gly Val Ala
5 10

<210> 21

<211> 7

<212> PRT

P5584R1-W0_SeqList

<213> Artificial sequence

<220>

<223> Sequence is synthesized.

<220>

<221> Xaa

<222> 5

<223> Xaa is preferably R or L

<220>

<221> Xaa

<222> 6

<223> Xaa is preferably Y or E

<220>

<221> Xaa

<222> 7

<223> Xaa is preferably T or S

<400> 21

Ser Ala Ser Tyr Xaa Xaa Xaa

5

<210> 22

<211> 9

<212> PRT

<213> Artificial sequence

<220>

<223> Sequence is synthesized.

<400> 22

Gln Gln Tyr Tyr Ile Tyr Pro Tyr Thr

5

<210> 23

<211> 10

<212> PRT

<213> Artificial sequence

<220>

<223> Sequence is synthesized.

<400> 23

Gly Phe Thr Phe Thr Asp Tyr Thr Met Asp

5

10

<210> 24

<211> 7

<212> PRT

<213> Artificial sequence

<220>

<223> Sequence is synthesized.

<400> 24

Ser Ala Ser Tyr Arg Tyr Thr

5