(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property
Organization
International Bureau

(43) International Publication Date

(10) International Publication Number

WO 2004/040414 A2

13 May 2004 (13.05.2004) PCT
(51) International Patent Classification’: GO6F (74)
(21) International Application Number:
PCT/US2003/034049
(81

(22) International Filing Date: 24 October 2003 (24.10.2003)

(25) Filing Language:
(26) Publication Language:

(30) Priority Data:
60/422,063

(71) Applicant:
[US/US]; 6640 Via Del Oro, Suite 120, San
95119 (US).

(72) Inventor:
Road, #204, San Jose, CA 95119 (US).

RAMCHANDRAN, Amit; 6082

28 October 2002 (28.10.2002)

English

English

Us
(84)

QUICKSILVER TECHNOLOGY, INC.

Jose, CA

Monterey

Agents: KULAS, Charles, J. et al.; Carpenter and Kulas,
LLP., 1900 Embarcadero Road, Suite 109, Palo Alto, CA
94303 (US).

Designated States (national): AE, AG, AL, AM, AT, AU,
AZ,BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU,
CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE,
GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR,
KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK,
MN, MW, MX, MZ, NI, NO, NZ, OM, PG, PH, PL, PT,
RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR,
TT, TZ, UA, UG, UZ, VC, VN, YU, ZA, 7ZM, ZW.

Designated States (regional): ARIPO patent (GH, GM,
KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW),
Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
Buropean patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE,
ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO,
SE, SI, SK, TR), OAPI patent (BF, BJ, CF, CG, CI, CM,
GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

[Continued on next page]

(54) Title: ADAPTABLE DATAPATH FOR A DIGITAL PROCESSING SYSTEM

(57) Abstract: The present invention includes a

[T XL

1
1
"DATA PATH /
229

Data Path Detailed

DATAPATH

- 7
{gT FBRIH KE i g
’%logﬁiagram !

S—
—
= RXN Instruction Set Architecture
— adaptable high-performance node (RXN) with
—— several features that enable it to provide high
= 16 (20 performance along with adaptability. A preferred
— 4/\/ % embodiment of the RXN includes a run-time
= FOUR T T DATA VALIES FROMAOTAL J configurable data path and control path. The RXN
—— * supports multi-precision arithmetic including 8, 16,
= TR ‘ 1 24, and 32 bit codes. Data flow can be reconfigured
— 2o [’g‘i 0aG F F“ Zv_o to minimize register accesses for different
— ~ {30 (Tfl_g'—'; . t: &_q ?1_{ U /‘ 132 operations. For example, multiply-accumulate
= r B 1 R i operations can be performed with minimal, or no,
— :‘ %o iﬂd : 7 register stores by reconfiguration of the data path.
_— [i . ' P Predetermined kernels can be configured during
— i Programmable [~ i E Programmable ‘; a setup phase so that the RXN can efficiently
= E Array Pt —| | U M’:‘éra‘}' execute, e.g., discrete cosine transform (DCT),
— E MU}';‘P,{;?"S E | ?P :'J{e)rs fast-Fourier transform (FFT) and other operations.
f— 1 (PAM) 3“5‘ _E—’E Other features are provided.
i ! 1
8 EE AL Yy
R = s !
i S e i
150 T (b |
: o ——— 2o R ;
e |
g g a2 a4 A et g
i ! 1
< (60T omeme feim }
S ool B f
5 | e |
g % 16&%?\!’?3;::&” : E
I 1
(@]

WO 2004/040414 A2 I} 110 0000 00000 A 00 AR

Published: For two-letter codes and other abbreviations, refer to the "Guid-
— without international search report and to be republished — ance Notes on Codes and Abbreviations” appearing at the begin-
upon receipt of that report ning of each regular issue of the PCT Gagzette.

WO 2004/040414 PCT/US2003/034049

ADAPTABLE DATAPATH FOR A DIGITAL PROCESSING SYSTEM

CLAIM OF PRIORITY
- This application claims priority from U.S. Provisional Patent Application Serial
No. 60/422,063, filed Oct. 28, 2002; entitled “RECONFIGURATION NODE RXN” the
disclosure of which is incorporated By reference in its entirety herein.

This application is related to the following co-pénding U.S. Patent Applications
that are each incorporated by reference as if set forth in full ol this application:

“INPUT PIPELINE REGISTERS FOR A NODE IN AN ADAPTIVE
COMPUTING ENGINE,” [no serial no. assigned yet] filed on July 23, 2003 (Attorney Docket
No. 021202-003720US); |

“CACHE FOR INSTRUCTION SET ARCHITECTURE USING INDEXES TO
ACHIEVE COMPRESSION,” Serial No. 10/628,083 filed on July 24, 2003 (Attorney Docket
No. 021202-003730U8S);

“METHOD FOR ORDERING OPERATIONS FOR SCHEDULING BY A
MODULO SCHEDULER FOR PROCESSORS WITH A LARGE NUMBER OF FUNCTION
UNITS AND RECONFIGURABLE DATA PATHS,” Serial No. 10/146,857, filed on May 15,
- 2002 (Attorney Docket No. 021202-002700US);

“UNIFORM INTERFACE FOR A FUNCTIONAL NODE IN AN ADAPTIVE
COMPUTING ENGINE,” Serial No. 10/443,554, filed on May 21, 2003 (Attorney Docket No.
021202-003400US);

“HARDWARE TASK MANAGER FOR ADAPTIVE COMPUTING,” Serial
No. 10/443,501, filed on May 21, 2003 (Attorney Docket No. 021202-003500US);

“ADAPTIVE INTEGRATED CIRCUITRY WITH HETEROGENEOUS AND
RECONFIGURABLE MATRICES OF DIVERSE AND ADAPTIVE COMPUTATIONAL
UNITS HAVING FIXED, APPLICATION SPECIFIC COMPUTATIONAL ELEMENTS,”
Serial No. 09/815,122, filed on March 22, 2001;

WO 2004/040414 PCT/US2003/034049

‘BACKGROUND OF THE INVENTION

This invention is related in general to digital processing architectures and more
specifically to the use of a adaptable data path using register files to efficiently implement digital
signal processing operations.

Digital signal processing (DSP) calculations require many iterations of fast multiply-
accumulate and other operations. Typically, the actual operations are accomplished by
“functional units” such as multipliers, adders, accumulators, shifters, etc. The functional units
obtain values, or operands, from a fast main memory such as random access memory (RAM).
The DSP system can be included within a chip that resides in a device such as a consumer
electronic device, computer, etc.

The design of a DSP chip can be targeted for specific DSP applications. For example,
in a cellular telephone, a DSP chip may be optimized for time-division multiple access (TDMA)
processing. A voice-over-internet protocol (VOIP) application may require vocoding operations,
and éo on. Itis desirable for a chip manufacturer to provide a single chip design that can be
adapted to different DSP applications. Such a chip is often described as an adaptable, or
configurable, design.

One aspect of an adaptable design for a DSP chip includes allowing flexible and
configurable routing between the different functional units, memory and other components such
as registers, input/output and other resources on the chip. A traditional approach to providing
flexible routing uses a data bus. ‘Such an approach is shown in Fig. 1.

In Fig. 1, memory bus 10 interfaces with a memory (not shown) to provide values from
the memory fo processing components such as functional unit blocks 30, 32 :_md 34. Values from
memory bus 10 are selected and routed through memory bus interface 20 to data path bus 36.
The functional unit blocks are able to obtain values from data path bus 36 by using traditional
bus arbitration logic (e.g., address lines, bus l;usy, etc.). Within a block, such as functional unit
block 30 of Fig. 1, there may be many different components, such as a bank of multipliers, to
which the data from data path bus 36 can be transferred. In this manner, any arbitrary value from
memory can be provided to any functional unit block, and to components within blocks of
functional units. .

Values can also be provided between functional unit blocks by using the data path bus.
Another resource is register file 60 provided on data path bus 36 by register file interface 50.

WO 2004/040414 PCT/US2003/034049

Register file 60 includes a bank of fast registers, or fast RAM. Register file interface 50 allows
values from data path bus 36 to be exchanged with the register file. Typically, any register or
memory location within register file 60 can be placed on data path bus 36 within the same
amount of time (e.g., a single cycle). One way to do this is to provide an address to a location in
the register file, either on the data path bus, itself, or by using a separate set of address lines.
This approach is very flexible in that any value in a component of a functional unit block can be
transferred to any location within the register file and vice versa.

' However, a drawback with the approach of Fig. 1, is that such a design is rather
expensive to create, slow and does not scale well. A bus approach requires considerable
overhead in control circuitry and arbitration logic. This takes up real estate on the silicon chip
and increases power consumption. The use of a large, randomly addressable register file also is
quite costly and requires inclusion of tens of thousands of additional transistors. The use of such
- complicated logic often requires bus cycle times to be slower to accommodate all of the
switching activity. Finally, such an approach does not scale well since, e.g., adding more and
more functional unit blocks will require additional addressing capability that may mean more
lines and logic. Additional register file space may also be required. The data path bus would
also need to be routed to connect to the added components. Each functional unit block also
requires the bus control and arbitration circuitry. .

Thus, it is desirable to provide an interconnection scheme for digital processor

applications that improves over one or more of the above, or other, shortcomings in the prior art.

SUMMARY OF THE INVENTION

The present invention uses dedicated groups of configurable data path lines to transfer
data values from a main memory to functional units. Each group of data path lines includes a
register file dedicated for storage for each group of lines. Functional units can obtain values
from, and store values to, main memory and can transfer values among the registers and among
other functional units by using the dedicated groups of data path lines and a data address
generator (DAG).

DAG circuitry interfaces each group of datapath lines to a main memory bus. Each
DAG is controllable to select a value of varying bit width from the memory bus, or to select a
value from another group of data path lines. In a preferred embodiment, eight groups of 16 data

3

WO 2004/040414 PCT/US2003/034049

path lines are used. Each group includes a register file of eight 16-bit words on each group of 16
data path lines. Registers can hold a value onto their associated group of data path lines so that
the value is available at a later time on the lines without the need to do a later data fetch.

In one embodiment the invention provides a data path circuit in a digital processing
device, wherein the data path circuit is coupled to a memory bus for obtaining values from a
memory, the data path circuit comprising a first plurality of data lines; a first data address
generator for coupling the first plurality of data lines to the memory bus so that a value from the
memory transferred by the memory bus can be placed onto the first plurality of data lines;
one or more functional units for performing a digital operation coupled to the plurality of data
lines; and a register coupled to the first plurality of data lines, wherein the register selectively
stores a value from the first plurality of data lines so that the value is selectively available on the
first plurality of data lines.

Another aspect of the invention provides both general and direct data
paths between array multipliers and accumulators. Banks of accumulators are coupled to the
groups of configurable data path lines and are also provided with direct lines to the multipliers.
An embodiment of the invention provides a digital processing system comprising a multiplier; an
accumulator; a configurable data path coupled to the multiplier and the accumulator; and a direct

data path coupled between the multiplier and the accumulator.

BRIEF DESCRIPTION OF THE DRAWINGS
Fig. 1 shows a prior art approach using a data path bus;

Fig. 2 illustrates the configurable data path arrangement of the present invention;

DETAILED DESCRIPTION OF THE INVENTION
A preferred embodiment of the invention is incorporated into a node referred to as a
Adaptable Node (RXN) in a adaptive computing engine (ACE) manufactured by Quicksilver,
Inc., of San Jose, California. Details of the ACE engine and RXN node can be found in the
priority and related patent applications reference above. Aspects of the invention described
herein are adaptable for use with any generalized digital processing system, such as a system

adapted for digital signal processing or other types of processing.

4

WO 2004/040414 PCT/US2003/034049

Fig. 2 illustrates the configurable data path arrangement of the present invention.

In Fig. 2, digital processing system 100 is designed for fast DSP-type processing such
as in discrete cosine transformation (DCT), fast fourier transformation (FFT), etc. Digital
processing system 100 includes four 32-bit data path address generators (DAG) to interface
between four groups of configurable data path lines 200 and a main memory bus 110. Main
memory bus 110 is an arbitrated high-speed bus as is known in the art. Other types of main
memory accessing can be used.

Each group of 32 lines includes two subgroups of 16 lines each. Each subgroup
connected to a register files of eight 16-bit words. For example, DAG 120 is connected to
register files 180 and 182. DAG 122 is connected to register files 184 and 186. Similarly, DAGs
124 and 126 are connected to register files 188, 190 and 192, 194, respectively. Naturally, other
embodiments can use any number of DAGs, groups, subgroups register files. Although specific
bit widths, numbers of lines, components, etc., and specific connectivity are described, many
variations are possible and are within the scope of the invention. Although the DAGs play a
major role in the preferred embodiment, other embodiments can use other types of interfacing to
the main memory bus. Although the DAGs provide a high degree of configurable routing
options (as discussed below), other embodiments can vary in the degree of éonﬁgurability, and in
the specific configuration options and control methods. In some cases simple registers, register
files, multiplexers or other components might be used in place of the DAGs of the present
invention.

The use of register files on each of the discrete subgroup lines simplifies the
interconnection architecture from that of the more generalized bus and multiport register file
shown in Fig. 1 of the prior art. This approach can also provide benefits in reduced transistor
count, power consumption, improved scalability, efficient data access and other advantages.
Although configuring the data-path of the present invention may be more complex than with
generalized approaches, in practice a compiler is able to automatically handle the configuration
transparently to a human programmer. This allows creation of faster-executing code fora
variety of DSP applications by using the same hardware architecture without any placing any
undue burden on the programmer. If desired, a programmer can customize the data path

configuration in order to further optimize processing execution.

WO 2004/040414 PCT/US2003/034049

Groups of data path lines 200 are used to transfer data from memory bus 110 to
functional units within blocks 130 and 132, and also to transfer data among the functional units,
themselves. The functional unit blocks are essentially the same so only block 130 is discussed in
detail. Functional units include programmable array multipliers (PAMs) 140, accumulators (and
shift registers)150, data cache 160 and arithmetic/logic units (ALUs) 170 and 172. Naturally, the
functional units used in any specific embodiment can vary in number and type from that shown
in Fig. 2.

Functional units are connected to the data path line groups via multiplexers and
demultiplexers such as 210 and 220, respectively. Inputs and outputs (I/O s) from the functional
units can, optionally, use multiplexing to more than one subgroup of data path lines; or an /O
can be connected directly to one subgroup. A preferred embodiment uses pipeline registers
betweeﬁ I/O ports and data path lines, as shown by boxes labeled “p” in Fig. 2. Pipeline registers
allow holding data at I/O ports, onto data lines, or for other purposes. The pipeline registers also
allow obtaining a zero, 1, or other desired binary values and provide other advantages. Pipeline
registers are described in more detail in the co-pending patent application “INPUT PIPELINE
REGISTERS FOR A NODE IN AN ADAPTIVE COMPUTING ENGINE” referenced above.

Table I, below, shows DAG operations. The configuration of the data path from cycle
to cycle is set by a control word, or words obtained from the main memory bus in accordance
with controller modules such as a hardware task manager, scheduler and other processes and
components not shown in Fig. 2 but discussed in related patent applications. Part of the
configuration information includes fields for DAG operations. A DAG operation can change
from cycle to cycle and includes reading data of various widths frdm memory or from another
DAG. DAG operations other than those shown in Table I can be used. Each DAG has one 5-bit
‘dag-op’ field and one 4-bit ‘address’ field. There is a single ‘pred’ field that defines non-

sequencing operations.

WO 2004/040414

PCT/US2003/034049
Dag-op Mnemonic Description Cycles
. [0x00 read8 Read 8-bits from memory 1
0x01 read8x Read 8-bits from memory and sign extend to 32-bits 1
0x02 read16 Read 16-bits from memory 1
0x03 read16x Read 16-bits from memory and sign extend to 32-bits 1
0x04 read24 Read 24-bits from memory 1
0x05 read24x Read 24-bits from memory and sign extend to 32-bits 1
0x06 read32 Read 32-bits from memory 1
0x07 write§ Write 8-bits to memory 1
0x08 writel16 Write 16-bits to memory 1
0x09 write24 Write 24-bits to memory 1
0x0A write32 Write 32-bits to memory 1
0x0B writeMindp :,Nrite 32-bits (onty mode supported) to MIN write queue from the data path 1
uses

0x0C writeMinM [Write 32-bits (only mode supported) to MIN write queue from a 32-bit memory 1

read. (pipelined)
0x0D readdagl6 Read a 16 bit value from one DAG register 0
0x0E readdag32 Read a 32 bit value from two DAG registers 0
0xOF load32dp Load two 16-bit DAG registers or 32-bit write buffer using 32-bit data in 1

dp2n:dp2n+1 connecting to DAGn ,
0x10 load16dpn [oad a DAG register from an even data path bus 1
0x11 load16dpn+1 [Load a DAG register from an odd data path bus 1
0x12 modify Modify address but do not do a memory access. 1
0x13 Dagnoop Do nothing. All DAG operations execute every clock cycle until this operation 1

is chosen
0x14 Dagcont Continue the previous operation 1
0x15 writePA Writes 32-bits of data from memory into ‘tfrl’ or ‘tbrl’ 1
0x16 writeMinbuf [Write 32-bits to MIN write quene from buffer 1

TABLE 1

For dag-op: 0x00 to 0x0A, 0x0C and 0x12 the DAG operation format of Table II

applies. The address field is divided into action and context as shown.

WO 2004/040414 PCT/US2003/034049

10 6 5 4 3 21 0
Idag-op lactionlcontextlpredl
5 2 2
TABLE II
Action

The ‘action’ field describes the address modification/generation process using a set of registers
(base, limit, index and delta) pointed to by the ‘context’ field.

Table 1: DAG address calculation

action | Operation Description

00 Supply an address and post modify | Address = Base + Index

Index = Index + delta (delta is a signed value)
If Index >= limit, Index = Index — limit

If Index < 0, Index = limit + Index

01 Supply a pre-modified address Index = Index + delta (delta is a signed value)
If Index >= limit, Index = Index — limit

If Index < 0, Index = limit + Index

Address = Base + Index

11 Supply a bit-reversed address Address = Base + B-Index

B-Index = reverse carry add (Index + delta)
(delta is a signed value)

If Index >= limit, Index = Index — limit

If Index < 0, Index = limit + Index

Context

The ‘context’ field is used to point at a specific DAG setting (base, limit, index and delta) on
which an ‘action’ is performed or a DAG register is accessed (II)

Table 2: context encoding

context | Operation

00 Use setting - basen.0, limitn.0, indexn.0, deltan.0 for DAGn
01 Use setting - basen.1, limitn.1, indexn.1, deltan.1 for DAGn
10 Use setting - basen.2, limitn.2, indexn.2, deltan.2 for DAGn
11 Use setting - basen.3, limitn.3, indexn.3, deltan.3 for DAGn

For convenience, an ACTION function is defined according to the action table — ACTION (action, context) where
“action’ and ‘context’ refer to the DAG operation fields. This function is used in the individual DAG operation
descriptions.

(II) For dag-op: 0x0D to 0x11 the following DAG operation format applies:

WO 2004/040414 PCT/US2003/034049

10 65 4 3 210
| dag-op ldag-reg |context|pred|
5 2 2 2 :
The ‘dag-reg’ field is used to identify a specific 16-bit register (base or limit or index or delta)
within a DAG ‘context’ as specified by the dag-reg table (below)

Table 3: dag-reg encoding for dag-op 0x0D, 0x10 and 0x11

| dag-reg | Register
00 base
01 limit
10 index
11 delta

For operations 0xOE and 0xOF, the dag-reg field is used to address 2 DAG registers — base and limit or index and
delta or a write buffer location. In this case, the ‘dag-reg’ table is as follows: '

Table 4: dag-reg encoding for dag-op 0x0E

dag-reg | Register
0X Base and limit

1X Index and delta
X — don’t care

Table 5: dag-reg encoding for dag-op 0x0F

| dag-reg | Register
00 Base and limit
10 Index and delta
11 Location ‘n’ of write buffer for DAGn

01 - undefined

(IIT) For dag-op: 0x0B, 0x13, 0x14, and 0x16 the following DAG operation format applies:

10 65 21 0
| dag-op | 0 | pred|
5 4 2

The address field in this case is unused, which is represented as “0” in the RXN.

(IV) For dag-op: 0x15 the following DAG operation format applies:

10 6 5 4 21 0
I dag-op |T-frllbrl | idx I pred
5 1 3 2

The “T-frl/brl’ field is used to choose between the translation fil and the translation brl

T- frl/brl | Operation
0 The ‘idx’ field points to T-fil
1 The ‘idx’ field points to T-brl

WO 2004/040414 PCT/US2003/034049

The T-frl and T-brl each have 5 32-bit locations. The ‘idx’ field is used to address these five
locations

add | Operation

000 | Location 0

001 | Location 1

010 | Location 2

011 | Location 3

100 | Location 4

101 | Location 5

Pred
The universal ‘pred’ field along with the ‘s’ bit determines whether a DAG operation is executed

or not executed. When a DAG operation is ‘not executed” due to its predication, the last executed
DAG operation executes again.

Table 6: Pred field encoding

Pred Description

00 ' Never execute

01 Always execute (execute specified operations)

10 Execute if condition is true (“‘s” bit is set) (execute
specified operation)

If condition is false (“s” bit is not set) (do not execute

the DAG operation)

11 Execute if condition is false (“s” bit is not set) (execute

specified operation)
If condition is true (“s” bit is set) (do not execute the

DAG operation)

Notel: All DAG operations execute every clock cycle until “dagnoop” operation is chosen.

Although the invention has been discussed with respect to specific embodiments

thereof, these embodiments are merely illustrative, and not restrictive, of the invention. For

10

WO 2004/040414 PCT/US2003/034049

example, although the node has been described as part of an adaptive computing machine, or
environment, aspects of the filter node design, processing and functions can be used with other
types of systems. In general, the number of lines and specific interconnections can vary in
different embodiments. Specific components, e.g., the data address generator, can be
implemented in different ways in different designs. Components may be omitted, substituted or
implemented with one or more of the same or different components. For example, a data address
generator can by substituted with a general register, or it can be a different component responsive
to a control word. Many variations are possible.

Thus, the scope of the invention is to be determined solely by the dependent claims.

11

WO 2004/040414 PCT/US2003/034049

WHAT IS CLAIMED IS:

1. A data path circuit iﬁ a digital processing device, wherein the data path
circuit is coupled to a memory bus for obtaining values from a memory, the data path circuit
comprising

a first plurality of data lines;

a first data address generator for coupling the first plurality of data lines to the
memory bus so that a value from the memory transferred by the memory bus can be placed onto
the first plurality of data lines;

one or more functional units for performing a digital operation coupled to the
plurality of data lines; and

a register coupled to the first plurality of data lines, wherein the register
selectively stores a value from the first plurality of data lines so that the value is selectively

available on the first plurality of data lines.

2. The data path circuit of claim 1, wherein the register includes a register
file for selectively storing multiple values from the first plurality of data lines and for selectively

applying the stored multiple values to the first plurality of data lines.

3. The data path circuit of claim 1, further comprising
a control signal coupled to the register for controlling storage of a value from the

first plurality of data lines.

4, The data path circuit of claim 1, wherein a data field is used to select

loading of a value on the memory bus of selectable bit width.

12 .

WO 2004/040414 PCT/US2003/034049

5. The data path circuit of claim 1, further comprising

a second plurality of data lines;

a second data address generator for coupling the second plurality of data lines to
the memory bus so that a value from the memory transferred by the memory bus can be placed
onto the second plurality of data lines; and |

wherein the second data address generator is responsive to a control signal for
selectively providing a data value from the first plurality of data lines to the second plurality of

data lines.

6. A data path circuit in a digital processing device, wherein the data path circuit
is coupled to a memory bus for obtaining values from a memory, the data path circuit comprising

a plurality of groups of data lines;

a plurality of data address generators for couiﬂing the plurality of groups of data
lines to the memory bus so that a value from the memory transferred by the memory bus can be
placed onto a group of data lines;

one or more functional units for performing a digital operation coupled to the
plurality of groups of data lines; and

a plurality of registers coupled to each group of data lines on a one-to-one
correspondence, wherein the plurality of registers selectively store values from the plurality of
groups of data lines so that the values are selectively available on the plurality of groups of data

lines.

7. The data path circuit of claim 6, wherein 8 groups of 16 data lines are
used, wherein each group of data lines is coupled toa register file capable of storing 8 16-bit
words, wherein each of the data address generators can selectively provide a value on a first

group of data lines to a second group of data lines.

8. The data path circuit of claim 1, wherein the functional units include a
multiplier and accumulator, the data path circuit further comprising

a couplihg of the multiplier to the plurality of data path lines;

a coupling of the accumulator to the plurality of data path lines;

direct data lines coupled between the multiplier and the accumulator.

13

WO 2004/040414 PCT/US2003/034049

9. The data path circuit of claim 8, wherein the direct data lines are uni-

directioaal for transferring data from the multiplier to the accumulator.

10. A digital processing system comprising

a multiplier;

an accumulator;

a configurable data path coupled to the multiplier and the accumulator; and

a direct data path coupled between the multiplier and the accumulator.

14

WO 2004/040414 PCT/US2003/034049

1/2

/ LN

< MerTﬁory Bus >
N A /

Memory Bus Interface

7 M
ke //\\
Functional £ Bus - 35
Units \r Intfce [~
. P VA
Functional /L Bus -
Units Intfce ﬁ/

TTITTITT

e

Functional /— Bus)
Units % Intfce —

TTTITIIT NV o
Register File Interface .

TTITITITITITITINILL - 6°

Register File

PRIOR ART

Fig. 1

PCT/US2003/034049

WO 2004/040414
3 34 ’y 2
{ /
mmzzerrmmvmmémoumc&
WMERCRY
52 517 EACH ‘} % ‘ ;
sfo D‘:G DAG| DAG| DAG - O0
e e 132
r~ o & k £ & X k £ & 6BITSEACH [
5 X ‘ wip] i
: {90 ® ;oL I
B | |
i Ea}<_1__ P 1
. | I
i Programmable ; | Programmable i
1 I
; Array B«!—i—- ‘+’E ; Array {
; Multipliers [! ! Multipliers {
1 l I~ i
| PAM) g (PAM) |
i I . 1 = !
{ I 1 f
] * } } - i
J i
T Y N
[Emm | [EEE |
.35’0 »’:\——L RCC 258 £ 50T ! 2 N [l ACCTTSRT ST , ;
[H SZETTS +3 BITS SIGN XL —— T T2RITS +3 BITS SIGNXTY, 1
I ACC+ZSR + ST - ! [- 1 T mo&+sﬁ !
i [EITS > SBITS SRUXTH I e i > ‘: 5 l BT 3 BIS SIGUXTH. l E
g | noeeansmmian. I = T || comeramesca | !
i 1 1 I
! 1] | !
[é@/‘}-‘{ - Dafa Cache l<—~{—> <4'—>L Data Cache J E
| carry AU e] __{___,E ALD carry |
! 16-bit with carry 3 < = 16-bit with carry !
! 7 B~ i e ' |
| AU e ————> AU }
_ | 16-bif with carry S —= s 46-hit with carry 1
1 -
| {72 By _ el 1 ~) !
! L =0] Y] {
L ITs 03 Tifelfzx . 1
DATA PATH /o=l brller| o]l er DATA PATH

155 JE T T8 T oy 5 17
Figare 2. Data Path Detailed Block %)iagram

1

	Abstract
	Bibliographic
	Description
	Claims
	Drawings

