Title: DOMESTIC TO INTERNATIONAL COLLECT CALL BLOCKING

Abstract: A method and device (100) for preventing fraud in collect calls from a domestic origin point (120) to an international terminating point (160) through a long-distance telecommunications system is described. In the system and method, a screening for international calls database (170) is added to the call processing system platform (150). The screening of international calls database (170) contains records keyed by country codes, and each record has a blocked collect call field using the destination numbers that are blocked from receiving collect calls. When a domestic-to-international collect call is made, the record corresponding to the country code of the international terminating point of the collect call is retrieved from the screening for international calls database (170). This record is checked to determine if the destination number of the collect call matches any destination numbers listed in the blocked collect call field of the country code database record. If there is a match, the call is blocked.
DOMESTIC TO INTERNATIONAL COLLECT CALL BLOCKING

BACKGROUND

1. Technological Field

The present application relates generally to fraud control in telecommunications systems and, in particular, to preventing fraud in collect calls from a domestic origin point to an international terminating point in a long distance telecommunications network.

2. Description of the Related Art

The telecommunications industry has experienced significant changes in the way that customers are billed for their telephone calls. From the once simple method of billing the originating caller, many methods have been developed, allowing greater flexibility for the telecommunications customer. A predominant method for making telephone calls away from home or the office is by utilizing a collect calling scheme to charge the call. In this scheme, the party at the terminating end of the connection pays the charges associated with the call. This method has grown to include international destinations, which is the subject of the present invention.

Collect call customers may use any telephone facility, including public facilities, to make a call that will be charged to the account of the receiving party. When calling domestically, the process of making collect calls typically includes dialing an access number, such as "0" or "1-800-COLLECT", waiting for an automatic audio prompt or an operator, and then entering the calling party's name and the called party's number. After that, the connection is made with the terminating party and authorization from the called party is sought. If authorization is given, the call is released and the parties continue their conversation. These collect calls are one type of a category of phone calls called "special
service" calls. These special service calls, which include "700", "800/888", and "900" number calls, allow contemporary telecommunications networks to provide many services beyond direct long distance dialing. It is the long distance carriers that provide this special service call processing, which allows for toll-free calls, calling card calls, special rate calls, etc.

An example of a domestic collect call will now be described, with reference to FIGs. 1A, 1B, and 2. In FIGs. 1A and 1B, a caller at telephone 111 wishes to make a collect call to telephone 199. The caller may enter an access code or "0" and the terminating number to initiate the collect call. The call is then routed through Local Exchange Carrier (LEC) 120. A local exchange carrier refers to local telephone companies, such as the Regional Bell Operating Companies (RBOCs), which provide local transmission services for their customers. For purposes of the present description, we are assuming that the call is either to a long-distance termination point or that the caller at telephone 111 dialed in an access code that is routed to a long distance carrier. Either way, the call will be routed to a long distance telecommunications company. Specifically, the routers in the LEC will forward the call to the network of the appropriate long distance carrier (or Inter-Exchange Carrier IXC) 130.

After switching through LEC switches 122 and 124, the collect call is routed from POP (Point-of-Presence) switch 125 into the IXC 130, and then through IXC switches 137 and 132, to a bridge switch 135. The purpose of the bridge switch 135 is to receive calls from the IXC network and bridge them to Automatic Call Distributor (ACD) 140 and, ultimately, into the Intelligent Services Network platform (ISN) 150. Because special service calls require special call processing, they are typically routed to a call processing platform, such as the ISN platform 150. There are a number of ISNs within the IXC, but, for the purpose of understanding the present invention, one ISN will suffice.

An exemplary and simplified diagram of the ISN platform 150 will now be described with reference to FIG. 2. The ACD 140 is under the direct control of the
Application Processor APP 156, which is a general purpose computer that functions as the central point for call routing control in the ISN 150. When the collect call arrives at the ACD 140, the ACD 140 makes a request to the APP 156 for directions as to how the call should be handled. Such a request would usually be accompanied by information concerning the call; e.g., the destination number, or Automatic Number Identifier (ANI), of the call, as well as the access code, if one was used. The APP 156 would recognize that the call is a collect call and, consequently, the APP 156 would instruct the ACD 140 to deliver the call to the appropriate queue. In this case, the APP 156 may send it to either to a live operator at the Manual Telecommunications Operator Console (MTOC) 154, or to the Automatic Response Unit (ARU) 152. The ARU 152 comprises two components, one to process the call, the other to prompt the caller with a voice response system. It is the ARU 152 that will ask the caller for the required final destination number (if it wasn’t entered initially), the calling party’s name, and any additional information. When a live operator is used, the operator enters the same information at the MTOC 154. Whether the call is routed to the ARU 152 or the MTOC 154, the same information will be entered. In other words, regardless of whether it is entered by the operator at the MTOC 154 or by the caller at her telephone 111 to the ARU 152, items such as the calling party’s name will have to be entered.

The various elements in the ISN platform 150 are connected by a Local Area Network (LAN) 158, such as Ethernet or DECNet. Regardless of whether the collect call is being processed at the ARU 152 or the MTOC 154, certain validation information concerning the final destination, the paying party’s telephone 199, needs to be obtained. For instance, whether the destination number is a pay phone needs to be determined prior to calling the destination number in order that fraud is avoided. Because of this and other reasons, the Bell companies developed the Line Information Database (LIDB) system in the early 1980’s. This is a central database accessible from all telecommunications switches which provides information concerning credit validation; both the LECs and the IXC’s have access to the LIDB and use it for call credit verification. A simplified view of this relationship is shown in Figs. 1 and 2, where the LIDB 170 is directly connected to
the ISN 150 and shares information with LECs 120 and 160. This is simplified because the real system consists of multiple LIDBs, where each LEC maintains a centralized LIDB that is continually sharing information and updating the other LIDBs. The centralized LIDB for LEC 160 is the primary source for information on any terminating points serviced by LEC 160. IXCs may keep their own local copy for frequently accessed numbers of other LIDBs and for other systems to obtain information concerning their card holders. Even within an individual LEC or IXC, there are multiple intermediaries between the centralized LIDB and the automated switches or line operators that use LIDB information. For instance, an ISN platform 150 will often maintain a local copy of the LIDB 170 for quicker access. However, the entire system is often referred to as a single LIDB, as one skilled in the relevant art would know.

In our example, either the MTOC 154 or the ARU 152 accesses the LIDB 170 through the LAN 158, as shown in FIG. 2. The LIDB 170 validates the credit of the destination number, or called party, before the MTOC 154 or ARU 152 contacts the called party for authorization of the collect call. Once the call is credit validated, either the ARU 152 or MTOC 154 connects the terminating leg of the call, as shown in FIG. 1B. The terminating leg extends through IXC switches 132, 131, and 133, to the POP switch 166 of LEC 160. Once in LEC 160, the call is switched through LEC switches 164 and 162 to the called party's telephone 199. If someone answers at telephone 199, either the ARU 152 or MTOC 154 attempts to get authorization from the called party. If authorization is received, either the ARU 152 or MTOC 154 releases the call to the automated switches of the IXC network 130. This means the call is torn down from the bridge switch 135 and maintained by the IXC switches for the duration of the call. If the called party declines to authorize the call, the terminating leg of the call will be disconnected.

Fraud analysts or automated programs located at the Fraud Control console 100 can also access the LIDB 170 to read or alter information. Fraud Control 100 monitors the traffic on IXC network 130 and attempts to isolate suspicious activity. Thresholds are
kept in order to issue alerts when traffic shows symptoms of fraudulent activity. If Fraud Control 100 finds fraudulent activity at a certain terminating telephone, Fraud Control 100 may enter the LIDB 170 and change the records so that the terminating ANI can no longer receive collect calls.

However, this method of blocking fraudulent collect calls using the LIDB 170 is of no help with collect calls that originate domestically and terminate in international locations. Unlike the situation described above, there is no LIDB maintained on an international level with countries such as England or Chile. For example, when a caller at telephone 111 in FIG. 3 attempts to make a collect call to a telephone, in this case, a cellular phone in car 399, in England, the call is processed differently. Although the collect call will still go through the LEC 120, IXC switches 137 and 132, and bridge switch 135 to ACD 140 and the ISN platform 150, the processing in the ISN platform 150 is different. Because there is no international LIDB, either the MTOC 154 or ARU 152 will make no attempt at credit validation, except contacting the other country’s telecommunications carrier, in this case, British Telecom 315. Regardless of whether an operator at British Telecom 315, an operator at MTOC 154, or an automated program at ARU 152 makes the final connection with the called party, it is the foreign telephone company, British Telecom 315, which validates the final destination of the call, a cellular phone in an automobile 399. But often the foreign telephone company does not keep adequate records on all the telephones in its operating area, and the IXC network 130 will end up maintaining a long-distance connection for which no one will pay. This is particularly true of cellular phones in foreign countries, because cellular phones maintain their connection with the telephone network through a radio link with a base station 312. Cellular phones have no fixed location from which to disconnect telephone lines or block calls and, without a highly efficient local validation system in effect, can be easily used fraudulently.

Therefore, there is a need to block fraudulent collect calls from domestic originating points to international terminating points through long distance
telecommunications systems. Furthermore, the manner of blocking calls must be maintained within the long distance telecommunication system.

SUMMARY

One object of this invention is to provide a system and method of blocking domestic-to-international collect calls to suspect terminating destinations in a long distance telecommunications network.

Another object of this invention is to provide a system and a method for providing a screening database for domestic-to-international collect calls in a long distance telecommunications network.

To accomplish the above and other objects, a system and method for preventing fraud on international collect calls from an domestic origin point to an international terminating point through a long-distance telecommunications system is disclosed. In the system and method, a “Screening for International Calls” database is added to the ISN platform. This Screening of International Calls database contains records keyed by country codes, and each record has a blocked collect call field listing destination numbers or portions of destination numbers that are blocked from receiving collect calls. When a domestic-to-international collect call is made, the record corresponding to the country code of the international terminating point of the collect call is retrieved from the Screening for International Calls database. This record is checked to determine if the destination number of the collect call matches any destination numbers listed in the blocked collect call field of the country code database record. If there is a match, the call is blocked.
BRIEF DESCRIPTION OF THE FIGURES

The foregoing and other objects, aspects and advantages will be better understood from the following detailed description of a preferred embodiment as illustrated in the following drawings. In the drawings, like reference numbers indicate identical or functionally similar elements.

Figs. 1A and 1B are schematic diagrams of an exemplary domestic collect call through a long distance telecommunications system;

FIG. 2 is a schematic diagram of an exemplary and simplified call processing platform with associated fraud control system, according to the prior art;

FIG. 3 is a schematic diagram of an exemplary domestic-to-international collect call through a long distance telecommunications system, according to the prior art; and

FIG. 4 is a schematic diagram of an exemplary and simplified call processing platform with associated fraud control system, according to the preferred embodiment of the present system and method.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

In the following description, the term “network” is a short-hand description of the conglomeration of databases, trunk and telephone lines, routers, switches, protocols, and computers that are required to make a telecommunications network.

In short, the preferred embodiment of the present system and method allows particular international terminating destinations to be blocked from receiving collect calls. Each international country has a country code (CC) associated with it, and a record
is maintained for each CC. Although the preferred embodiment uses CCs, codes indicating smaller units, such as provinces or cities, could be used. These CC records are maintained in a Screening for International Calls database (SCREENING INTERNAT’L) 460, which is added to the ISN platform 150 as shown in FIG. 4. SCREENING INTERNAT’L 460 can be located outside the ISN platform 150 in other embodiments, but both Fraud Control 100 and the ISN platform 150 must have some sort of access to it. In the preferred embodiment, in a manner akin to the LIDB, there is a centralized SCREENING INTERNAT’L database for the entire IXC network 130, and smaller local copies are maintained at appropriate spots throughout the telecommunications system. Similarly to the LIDB, the SCREENING INTERNAT’L database will be referred to as a single unit in this application.

The CC records in the Screening for International Calls database are keyed by the country code and contain information concerning categories of billing products (calling cards, collect calls, third party calls, etc.), type of call, and blocked destination phone numbers (hereinafter “destination numbers”). Specifically, a blocked collect call field is added to the CC records in the SCREENING INTERNAT’L 460 database; and any destination number listed in that field of the CC record is blocked from receiving collect calls. In other words, when a domestic-to-international collect call is made, the CC record of a particular destination country or country code is looked up in the SCREENING INTERNAT’L 460, and it is determined if the terminating destination number of the call is listed in the blocked collect call field of the CC record. If it is, the collect call is blocked.

In the preferred embodiment, Fraud Control console 100 in FIG. 4 will determine which terminating destinations numbers in a particular country will be blocked from receiving collect calls. Many methods may be used to ascertain fraudulent destination numbers to be entered in the SCREENING INTERNAT’L 460 database. For example, past collect call destination numbers that have ended up not paying will be added to the blocked collect call field of the appropriate CC record. Further if a customer account
associated with an international destination number has an overdue balance, the
destination number will be added to the blocked collect call field of the appropriate CC
record. Either an automated program or a fraud analyst at Fraud Control console 100,
which is connected either directly or indirectly with the ISN platform 150, would add
these destination numbers to the CC record in the SCREENING INTERNAT’L 460
database. In addition, Fraud Control 100 monitors network traffic in order to determine if
particular international destination numbers exhibit suspicious behavior. Typically,
Fraud Control console 100 also receives updates from foreign telephone companies,
listing fraudulent destination numbers, or groups of destination numbers.

The Fraud Control console 100 has the ability to block larger and smaller
terminating destination numbers by altering the digits that are placed in the blocked
collect call field of a CC record. For example, although a single cellular phone with
telephone number 555-5433 could be blocked from receiving collect calls by placing
555-5433 in the blocked collect call field, it is also possible to block the whole series of
numbers that begin with 555-5 by entering 555-5*** in the blocked collect call field.
The “*” is a “wildcard” character which can represent any number. This is helpful in the
case when an entire series of numbers is being used by suspected cellular phones. It is
also helpful when fraud control 100 uses fraud-to-revenue ratio analysis on destination
exchanges, such as “555”. Once this fraud-to-revenue ratio reaches a certain threshold,
Fraud Control 100, either manned by a fraud analyst or under the control of an automated
program, will decide whether to place a block on that terminating destination exchange.
If it is decided to do so, the terminating destination exchange will be placed in the
blocked collect call field of the INTERNAT’L SCREENING database 460 CC record of
the originating country.

As an example of a domestic-to-international collect call using the preferred
embodiment, consider the exemplary call made earlier with reference to FIG. 3. A caller,
located at telephone 111 attempts to make a collect call from telephone 111 to a cellular
phone located in automobile 399 in England. In this example, the telephone number of
the cellular phone is one of a series of telephone numbers that has been recognized as fraudulent by Fraud Control 100, and entered into the blocked collect call field of the CC record of the United Kingdom. The collect call is routed through LEC switch 122 and POP switch 125 to IXC network 130, where it is connected through IXC switches 137 and 132 to bridge switch 135. From the bridge switch 135, the collect call is routed into the ACD 140 of the ISN platform 150, as shown in FIG. 4, according to a preferred embodiment of the present invention.

Once in the ISN platform 150 in FIG. 4, the domestic-to-international collect call is either routed to the MTOC 154 or ARU 152. As part of the validation process, the CC record of the United Kingdom is accessed by either the ARU 152 or the MTOC 154. The destination number of the collect call is compared with the number or numbers in the blocked collect call field of the CC record. Once it is determined that the destination cellular phone number is one of the series of numbers that is blocked from receiving collect calls, there are several courses of actions that may be taken. The collect call could be routed to a live operator to explain the situation to the caller at telephone 111. An automated message could explain the situation to the caller at telephone 111. Either way, the option of an alternative billing method could be presented to the caller. The collect call could also be abruptly terminated. Although abrupt termination may seem unfriendly, if the number of caller hangups during the explanation script reaches a certain percentage, it indicates that only hackers are attempting to reach that telephone number and the resources of the ISN platform 150 should not be wasted explaining their fraudulent activity to them.

By use of the SCREENING INTERNAT'L database 460, many fraudulent domestic-to-international collect calls can be stopped before they are begun, thus saving money for the IXC. Having no set digit size for the blocked collect call field in the CC records allows for very fine or very coarse granularity in the blocking of these types of calls. In another embodiment, there is an additional step of determining whether there are any destination numbers listed in the blocked collect call field before comparing the
terminating destination number with the ones listed in the blocked collect call field. In this way, if there are no numbers listed in the blocked collect call field, resources and time are not wasted in making comparisons.

As one skilled in the relevant art would recognize, many elements of a telecommunications network have been left out in order not to obscure the invention in details unnecessary to the understanding of the present invention. In addition, although the above-described embodiment is the preferred embodiment, many modifications would be obvious to one skilled in the art.

While the present invention has been described with respect to a certain preferred embodiment, it should be understood that the invention is not limited to this particular embodiment, but, on the contrary, the invention is intended to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the invention as defined by the appended claims.
WHAT IS CLAIMED IS:

1. A method for preventing fraud in a collect call from a domestic origin point to an international terminating point through a long distance telecommunications system, comprising the steps of:
 a) maintaining at least one record in an international database, each record associated with an international region, each record having a label field for placing labels;
 b) accessing an international database record during call processing of a collect call, the international terminating point of said collect call being located within an international region associated with said international database record;
 c) determining if a label associated with said international terminating point matches one or more labels in the label field of said international database record; and
 d) blocking the call if it is determined there is a match in step (c).

2. The method as recited in claim 1, wherein each international terminating point has a location number, and each label corresponds to one of a portion of a location number or a complete location number.

3. The method as recited in claim 2, wherein the label associated with the collect call in step (c) is a complete location number of the international terminating point of the collect call and the labels placed in the label field are either portions representing
the left-most digits of a complete location number or complete location numbers, the
determining step (c) further comprising:

determining whether the left-most digits or all of the digits of the complete
location number of the international terminating point matches a label in the label field of
said international database record.

4. The method as recited in claim 1, wherein the collect call is a special
service call, and steps (b), (c), and (d) are performed in a call processing platform.

5. The method as recited in claim 3, further comprising the step of:
placing one or more labels in the label field of at least one international
database record by a fraud control system when collect calls to the international
terminating point represented by the one or more labels exhibit a high fraud-to-revenue
ratio or suspicious behavior.

6. The method as recited in claim 3, further comprising the step of:
placing one or more labels in the label field of at least one international database
record by a fraud control system when collect calls to the international terminating point
represented by the one or more labels have an overdue balance on the customer account
associated with said international terminating point.

7. The method as recited in claim 1, wherein the international regions
associated with international database records are countries.
8. A system for preventing fraud in a collect call from a domestic origin point to an international terminating point through a long distance telecommunications system, comprising:

an international database for maintaining at least one record, each record associated with an international region, and each record having a label field;

means for determining if a label associated with a collect call matches one or more labels in the label field of an international database record, when said international database record is accessed during call processing of said call, the international terminating point of said call being within the international region associated with said international database record; and

means for blocking the call if it is determined that the label associated with said collect call matches the one or more labels in the label field of the international database record.

9. The system as recited in claim 8, wherein each international terminating point has a location number, and each label corresponds to one of a portion of a location number or a complete location number.

10. The system as recited in claim 9, wherein the label associated with the collect call is a complete location number of the international terminating point of the collect call and the labels placed in the label field are either portions representing the leftmost digits of a complete location number or complete location numbers, the determining
means further determining whether the left-most digits or all of the digits of the complete location number of the international terminating point matches a label in the label field of said international database record.

11. The system as recited in claim 8, further comprising:
a call processing platform having the determining means and the blocking means.

12. The system as recited in claim 10, further comprising:
a fraud control system for placing one or more labels in the label field of at least one international database record when collect calls to the international terminating point represented by the one or more labels exhibit a high fraud-to-revenue ratio or suspicious behavior.

13. The system as recited in claim 12, wherein the fraud control system further places one or more labels in the label field of at least one international database record when collect calls to the international terminating point represented by the one or more labels have an overdue balance on the customer account associated with said international terminating point.

14. The system as recited in claim 8, wherein the international regions associated with international database records are countries.
15. A method for preventing fraud in a collect call from a domestic origin point to an international terminating point through a long distance telecommunications system, said collect call having a country code and a location number corresponding to the international terminating point, comprising the steps of:

a) retrieving a record keyed to the country code from an international database, said international database record having a field for blocked collect calls, said blocked collect call field being used for listing one or more of either portions representing the left-most digits of a complete location number or a complete location number;

b) determining if at least one of either portions representing the left-most digits of a complete location number or a complete location number listed in the blocked collect call field of the retrieved country code record matches the beginning digits of the location number corresponding to the international terminating point of said call; and

c) blocking said call if a match is found in step (b).

16. The method as recited in claim 15, further comprising the step of:

placing one or more either portions representing the left-most digits of a complete location number or a complete location number in the blocked collect call field of a country code record when calls to an international terminating area corresponding to said one or more either portions representing the left-most digits of a complete location number or a complete location number exhibit a suspicious pattern of activity, or collect calls to said international terminating area corresponding to said one or more blocked numbers exhibit a high fraud-to-revenue ratio.
17. The method as recited in claim 15, the blocking step (c) further comprising one of:

connecting the caller with a live operator;

connecting the caller with an automated message informing the caller of

the blocked status of the international terminating number; and

disconnecting the caller.

18. The method as recited in claim 15, the determining step further comprising:

determining if at least one entry is listed in the blocked collect call field of the retrieved international database record; and

determining if either portions representing the left-most digits of a complete location number or a complete location number listed in the blocked collect call field of the retrieved international database record matches the beginning digits of the location number corresponding to the international terminating point of said collect call, if it is determined that an entry is listed in the blocked collect call field of the retrieved international database record.

19. A system for preventing fraud in a collect call from a domestic origin point to an international terminating point through a long distance telecommunications system, said collect call having a country code and a location number corresponding to the international terminating point, comprising:
an international database for maintaining records, each record keyed to a
country code, each record having a blocked collect call field, said blocked collect call
field being used for listing one or more of either portions representing the left-most digits
of a complete location number or a complete location number;

means for retrieving an international database record of a country code
during call processing of said call, said country code being the country code
corresponding to the international terminating point;

means for determining if at least one of either portions representing the
left-most digits of a complete location number or a complete location number listed in the
blocked collect call field of the retrieved international database record matches the
beginning digits of the location number corresponding to the international terminating
point of said call; and

means for blocking said call if the determining means determines there is a
match.

20. The device as recited in claim 19, further comprising:

a call processing platform having the retrieving means, the determining
means, and the blocking means; and

a means for communicating between the call processing platform and the
international database.
21. The device as recited in claim 19, further comprising:

 a fraud control system for placing one or more either portions representing
 the left-most digits of a complete location number or a complete location number in the
 blocked collect call field of an international database record when calls to an international
 terminating area corresponding to said one or more either portions representing the left-
 most digits of a complete location number or a complete location number exhibit a
 suspicious pattern of activity or a high fraud-to-revenue ratio.
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

IPC(7) : H04M 3/00, 15/00
US CL. : 379/114.14, 189

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

U.S. : 379/114.14, 189

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category*</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>US 5,566,234 A (REED ET AL.) 15 OCTOBER 1996, SEE ENTIRE DISCLOSURE</td>
<td>1-21</td>
</tr>
<tr>
<td>Y</td>
<td>US 5,768,354 A (LANGE ET AL.) 16 JUNE 1998, SEE ENTIRE DISCLOSURE</td>
<td>1-21</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of Box C. See patent family annex.

* Special categories of cited documents:
 A document defining the general state of the art which is not considered to be of particular relevance
 E earlier document published on or after the international filing date
 L document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
 O document referring to an oral disclosure, use, exhibition or other means
 P document published prior to the international filing date but later than the priority date claimed

Date of the actual completion of the international search

15 JUNE 2002

Date of mailing of the international search report

11 JUL 2002

Name and mailing address of the ISA/US Commissioner of Patents and Trademarks

Box PCT
Washington, D.C. 20231
Facsimile No. (703) 505-8280

Authorized officer
Rexford Barnie

Telephone No. (703) 505-9744

Form PCT/ISA/210 (second sheet) (July 1998)