
STORAGE DEVICE

1

3,477,476 STORAGE DEVICE

Charles W. Brouwer, East Greenwich, and Hans H. Richter, Warwick, R.I., assignors to Leesona Corporation, Warwick, R.I., a corporation of Massachusetts

Filed Feb. 26, 1968, Ser. No. 708,272 Int. Cl. D03d 47/30; B65h 59/22

U.S. Cl. 139-122

4 Claims

ABSTRACT OF THE DISCLOSURE

Apparatus for continuously unwinding yarn from a supply and releasably storing the yarn. The yarn is guided into a helical loop having more than 180° of arc 15 and pressurized fluid from within the loop is directed outwardly against the yarn. As tension in the yarn decreases, the yarn expands outwardly to form a larger loop, and as tension in the yarn increases, the yarn contracts to form a smaller loop.

The present invention relates generally to textile machinery and more specifically to apparatus for releasably storing a strand of yarn.

In the following specification, the term "yarn" is employed in a general sense to denote all kinds of strand material, either textile or otherwise, and the term "package" denotes the product of a winding machine, whatever its form.

In certain textile operations, a strand of yarn is drawn intermittently and at high speed from a supply package. One typical operation involves a so-called shuttleless weaving machine in which, during the course of a pick, one yarn carrier draws a substantially doubled length of 35 yarn from the supply package through a portion of a shed of a fabric being woven. The doubled length of yarn, which is sufficiently long to reach across the width of the fabric, is then transferred within the shed to another carrier which takes no additional yarn from the supply package but draws the yarn already provided through the remainder of the shed. Thus yarn is withdrawn from the supply package of a shuttleless weaving machine only during one-half of a pick. Further, since an entire pick consumes only a fraction of the time period 45 involved in a complete operating cycle of the shuttleless weaving machine, it follows that yarn is withdrawn from the supply package during a small portion of the operating cycle and remains dormant during the remainder of the cycle. This results in intermittent high speed withdrawal of yarn from the supply package and imposes on the strand high tensile forces which are particularly harmful to yarns of a staple variety. These high tensile forces often cause yarn breakage at the supply package itself or shelling of yarn from the supply package which eventually results in yarn breakage.

From experience, it is known that if yarn were to be continuously, instead of intermittently, withdrawn from a supply package, the speed of withdrawal could be substantially reduced. In a typical operation of a shuttleless weaving machine, the speed of withdrawal could be reduced by a factor between five and eight times over the conventional operation. For this reason, various mechanisms have been devised for continuously withdrawing the yarn from a supply package and storing it in a suitable

2

manner until called for by a yarn carrier which operates to draw filling yarn through the shed formed by warp yarns. These devices which include elaborate linkages, rotating discs and drums, and various other mechanical expedients, are often complicated in their design, costly to produce, and may even be harmful to the yarn.

According to the present invention, yarn from the supply package is threaded into and out of a storage device in which the yarn is guided into a helical loop having more than 180° of arc. Pressurized fluid from within the loop is directed outwardly against the yarn. As tension in the yarn decreases, as when there is no demand for yarn, the yarn expands outwardly to form a larger loop. However, when tension in the yarn is increased above a pre-established limit, as when yarn is demanded by a yarn carrier, the yarn is drawn inwardly against the pressurized fluid to form a smaller loop. Readily adaptable to existing machinery, the invention is inexpensive to produce, harmless to the yarn, has no moving parts, and is effective in withdrawing yarn from all sizes and shapes of yarn packages.

Accordingly, it is an object of the invention to provide a new and improved yarn storage device.

Another object of the invention is to provide a new and improved yarn storage device adapted to delivery yarn to an intermittently operated take-up while continuously unwinding yarn from a supply package.

Yet another object of the invention is the provision of a new and improved yarn storage device which is fluid operated. A related object is the provision of such apparatus having no moving parts. Another related object is the provision of such apparatus which can be readily threaded up.

Still another object of the invention is the provision of a new and improved yarn storage device adapted to guide a strand of yarn into a path including a loop having more than 180° of arc and responsive to tension in the strand for varying the magnitude of the loop.

A further object of the invention is to provide a new and improved weaving machine having a fluid operated storage device for releasably storing yarn intermediate the supply package and the filling carrier.

Other and further objects and advantages of the invention will be obvious or will be presented in the description which follows, taken together with the accompanying drawings.

In the drawings:

FIG. 1 is a fragmentary schematic view, in perspective, of a shuttleless weaving machine embodying the invention;

FIG. 2 is an enlarged top plan view of a yarn storage device illustrated in FIG. 1;

FIG. 3 is a further enlarged, fragmentary section view taken substantially along line 3—3 in FIG. 2; and

FIG. 4 is a front elevation view of the device illustrated in FIG. 2, to a reduced scale.

Refer now to the drawings and initially to FIG. 1 in which a supply package P is suitably mounted adjacent a weaving machine L of the so-called shuttleless variety. Filling yarn Y is drawn from the package P through a suitable tensioner 10 by a pair of spaced apart guides 11 and 12, or the like, so as to be threadedly received for passage into and out of a yarn storage device 14.

Drawing the filling yarn Y from the package P are a pair of cooperating carriers 16 and 18 operable for in-

serting the filling yarn Y through a shed S formed by warp yarns W in the course of weaving a fabric F. The carriers 16 and 18 are fixed, respectively, to the ends of flexible tapes 20 and 22 which in turn have their opposite ends fixed to a pair of rotatable tape wheels 24 and 26. In a suitably synchronized operation, the tape wheels 24 and 26 are oppositely rotated so as to advance the respective carriers 16 and 18 in opposite directions through the shed S. When the carriers 16 and 18 meet at a location adjacent the center of the fabric F (indicated by $_{10}$ broken lines in FIG. 1), the filling yarn Y carried by the carrier 16 from the right edge of the fabric F (FIG. 1) is transferred to the carrier 18 for the remainder of the pick or travel through the shed S upon reversal of the tape wheels 24 and 26. At the moment of transfer, 15 a suitable yarn clamp 28 adjacent the right edge of the fabric F being woven (FIG. 1) is closed, that is, moved from a solid line position to a dotted line position to firmly hold the filling yarn Y while the carrier 18 draws the free end of filling yarn toward the left edge of the fabric F 20

Turning now to FIGS. 2 and 3, the yarn Y is guided into a helical-shaped passage 30 defined between a front assembly 32 and a rear assembly 34 of the storage device 14. Initial thread-up of the yarn from the supply package 25 P through the storage device 14 can be readily accomplished by a circular pass of yarn around the outer peripheral edge of the device so as to follow a helical loop or path through the passage 30. The assemblies 32 and 34 are similarly constructed, each assembly including, re- 30 spectively, an annular support 35 and 36. Suitably fixed as by welding to an outer end of the annular support 35 is a front plate 38 having a central aperture 40. Corresponding to the front plate 38 but absent a central aperture, a rear plate 42 is welded to an outer end of the 35 annular support 36. The inner ends of the annular supports 35 and 36 opposite their respective plates 38 and 42 are provided with parallel but spaced apart helical surfaces 44 and 46 to which are respectively welded a pair of parallel discs 48 having central apertures 50 (FIG. 3) 40 and extending radially outwardly from the annular supports 35 and 36.

In order for the discs 48 to conform to the helical surfaces 44 and 46, each disc is slit radially and laterally offset along a generally radial zone 52 (FIGS. 2 and 4) 45 extending from its central aperture 50 (FIG. 3) to its peripheral rim. A plurality of stiffeners in the form of ribs 47 are welded to the outer surfaces of the discs 48 and to the outer peripheral surfaces of the annular supports 35 and 36 from which they radially extend.

One end of a nozzle 54 is welded to the inner surface of the rear plate 42 and extends through the supports 35 and 36 and the aperture 40 in the front plate 38. A gasket washer 56 is fittingly received over a threaded portion 58 of the nozzle 54 and a nut 60 engaging the threaded portion 58 is tightened to draw the front assembly 32 and the rear assembly 34 towards one another. Between the discs 48 a plurality of uniform spacers 62 are suitably held by fasteners 63 and arranged at circumferentially spaced locations having a common radial distance from the nozzle 54. The spacers 62 serve to separate the assemblies 32 and 34 and therefore the discs 48 to a predetermined extent, which may vary by suitably employing spacers of different lengths enabling the storage device 14 to accommodate accordingly different weights or sizes of yarns.

Thus, when pressurized fluid such as air from a suitable source (not shown) is directed into a conduit 64 (FIG. 3) extending longitudinally through the nozzle 54, the fluid flows through radial apertures 66 in the nozzle 54 into a plenum chamber 68 defined by the annular supports 35 70 and 36 and by the plates 38 and 42, then radially outwardly into the passage 30. The pressure of the fluid within the plenum chamber 68 can be suitably adjusted, then maintained at a pre-established value. When the yarn clamp 28 has been suitably moved to the closed position. 75

the pressurized fluid applying a radial force on the yarn within the passage 30 urges the yarn outwardly away from the spacers 62 toward a storage position indicated by a yarn path Y_1 in FIG. 4 and draws the yarn under con-

stant tension from the supply package P.

It will be appreciated that the yarn within the passage 30 is suitably guided, as by the guides 11 and 12 into a loop having more than 180° of arc. As the arc of the loop of yarn within the passage 30 increases above 180°, so does the capacity of the storage device 14 increase for a given diameter of the device. Further, as the arc of the yarn loop increases above 180°, the smaller is the peripheral opening permitting escape of the pressurized fluid, the escape of fluid being negligible when the arc is substantially 360°. Thus, although the invention is directed to apparatus operable for guiding a strand of yarn into a path including a loop having more than 180° of arc, it is preferable for reasons of economy and capacity to provide a loop having approximately 360° of arc.

As the yarn approaches the storage position, at which time the length of varn contained within the passage 30 is still less than the length of a pick or the width of the fabric F, the yarn clamp 28 is opened and the carrier 16 begins its travel into the shed S. Momentarily, the tension in the length of yarn extending between the carrier 16 and the storage device 14 increases relative to the tension in a length of yarn extending between the supply package P and the storage device with the result that the yarn stored in the passage 30 is released to the carrier 16. That is, the stored yarn is drawn radially inwardly toward the spacers 62 against the pressure of the fluid issuing from the nozzle 54 and contracts to form a smaller loop as indicated by the yarn path Y_2 in FIG. 4. In order to achieve continuous withdrawal of yarn from the package P, a length of yarn in addition to that already contained within the passage 30 is drawn from the package P as the size of the yarn loop contracts and is of a length sufficient to complete the requirement of the carrier 16. By the time the varn approaches its maximum release position. the pick has been completed, and the yarn carriers 16 and 18 have returned to their rest positions adjacent the tape wheels 24 and 26. With the yarn clamp 28 suitably closed, pressurized fluid causes the yarn to reverse its movement within the passage 30 and return toward the storage position, continuing to drawn the yarn from the package P under substantially constant tension. Thereupon, the carrier 16 again calls for yarn for the ensuing pick, and the above-described operation is repeated.

Thus, the construction disclosed provides a device which is of a simplified construction having no moving parts and which operates to compensate for momentary or sudden changes in yarn tension whereby yarn breakage is held to a minimum.

It will be appreciated that although the description has been limited to the application of one storage device 14 for use with a weaving machine L, it is within the scope of the invention to provide two or more of the devices 14 in series, for example, to accommodate a machine having a considerable width. Further, while a specific form of the invention has been disclosed, it will be understood that various other changes and modifications may be made without departing from the spirit and scope of the invention as defined in the following claims.

What is claimed is:

- 1. Strand storage apparatus comprising means for guiding a strand into a path including a loop having more than 180° of arc, means for maintaining the strand so looped along said path, and biasing means responsive to tension in the strand for varying the magnitude of said loop.
- 2. Strand storage apparatus as set forth in claim 1 in which said biasing means is within said loop.
- in the plenum chamber 68 can be suitably adjusted, then maintained at a pre-established value. When the yarn clamp 28 has been suitably moved to the closed position, 75 a helical passage adapted to receive the strand and said

4

5

biasing means is operable to direct pressurized fluid into said passage and against the strand.

4. Strand storage apparatus comprising means for guiding a strand into a path including a loop having more than 180° of arc, said guiding means including a pair of parallel plates spaced from each other and therebetween defining a helical passage adapted to receive the strand and each having a central portion and a peripheral rim, said plates having substantially parallel opposed slits extending from said central portion to said rim and each being offset from itself along its slit, and biasing means responsive to tension in the strand for varying the magnitude of said loop, said biasing means including a plenum chamber at said central portion, a source of fluid under

constant pressure in communication with said plenum chamber, and an orifice adapted to direct said fluid from said chamber into said passage and against the strand.

References Cited

UNITED STATES PATENTS

2,741,443 4/1956 Klein. 3,303,857 2/1967 Scheffel. 3,323,754 6/1967 Nixdorf et al.

HENRY S. JAUDON, Primary Examiner

U.S. Cl. X.R.

242-147