

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(10) International Publication Number

WO 2018/189522 A1

(43) International Publication Date
18 October 2018 (18.10.2018)

W

(51) International Patent Classification:
A61K 39/29 (2006.01) *A61K 39/00* (2006.01)

KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(21) International Application Number:
PCT/GB2018/050948

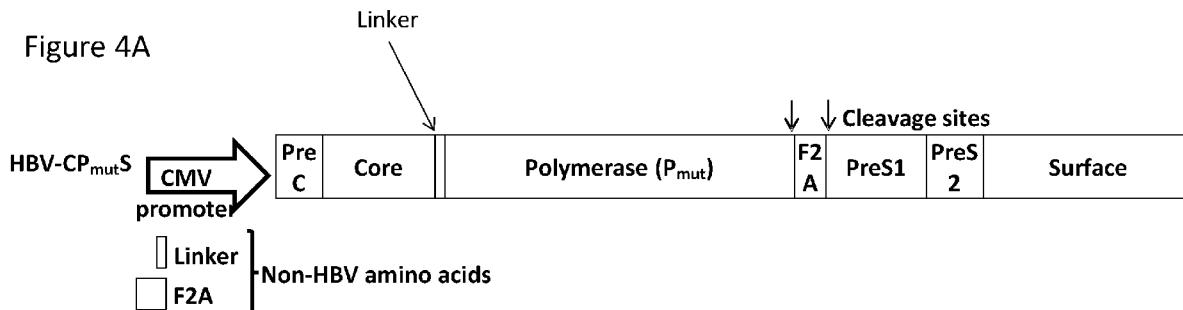
(22) International Filing Date:
10 April 2018 (10.04.2018)

(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, KM, ML, MR, NE, SN, TD, TG).

(25) Filing Language:
English

(26) Publication Language:
English

(30) Priority Data:
1705765.4 10 April 2017 (10.04.2017) GB


(71) Applicant: OXFORD UNIVERSITY INNOVATION LTD. [GB/GB]; Buxton Court, 3 West Way, Oxford Oxfordshire OX2 0JB (GB).

(72) Inventors: BARNES, Eleanor; c/o Oxford University Innovation Limited, Buxton Court, 3 West Way, Oxford Oxfordshire OX2 0JB (GB). CHINNAKANNAN, Senthil; c/o Oxford University Innovation Limited, Buxton Court, 3 West Way, Oxford Oxfordshire OX2 0JB (GB).

(74) Agent: BARKER BRETTELL LLP; Medina Chambers, Town Quay, Southampton Hampshire SO14 2AQ (GB).

(81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP,

(54) Title: HBV VACCINE

(57) Abstract: The invention relates to a multi-HBV immunogen viral vector vaccine comprising: a viral vector comprising an immunogen expression cassette, wherein the expression of a protein encoded by the expression cassette is arranged to be driven by a promoter, wherein the immunogen expression cassette encodes: a) HBV Core; b) a modified HBV polymerase (P_{mut}), wherein the modification is a mutation to wild-type HBV polymerase to substantially remove polymerase function; c) HBV surface antigen (HbsAg); and d) an intergenic sequence that is arranged to cause expression of at least the HBV surface antigen (HbsAg) as a separate protein from the HBV core and the modified HBV polymerase (P_{mut}), wherein the intergenic sequence is downstream (3') of the sequences encoding the HBV core and the modified HBV polymerase (P_{mut}) and upstream (5') of the sequence encoding the HBV surface antigen (HbsAg); and related compositions, vaccination methods and methods of treatment or prophylaxis of HBV infection.

HBV VACCINE

This invention relates to multi-antigen HBV immunogen for viral vectored vaccines for therapeutic vaccination of chronic hepatitis B.

5

Hepatitis B is a viral infection that attacks the liver and can cause both acute and chronic disease. The Hepatitis B virus (HBV) is transmitted through contact with the blood or other body fluids of an infected person. There is no specific treatment for acute hepatitis B. Therefore, care is aimed at maintaining comfort and adequate 10 nutritional balance, including replacement of fluids lost from vomiting and diarrhoea. However, the mainstay of tackling acute Hepatitis B is by prevention using vaccination. Once established, chronic hepatitis B infection can be treated with drugs, including oral antiviral agents. Treatment can slow the progression of cirrhosis, reduce incidence of liver cancer and improve long-term survival. However, once 15 chronic infection is established spontaneous viral control is rare. A major goal therefore is to develop immunotherapeutic HBV vaccines to induce viral control or cure.

Currently, there are few different T-cell inducing vaccines in Phase I and Phase II 20 clinical trials, all of which are based on either one or two full length HBV-antigens or multiple truncated or full length chimeric HBV-antigens or synthetic peptides based on the HBV-proteome. GS-4774, by GlobeImmune is currently in Phase II clinical trial (GS-4774 has heat-inactivated yeast cells expressing a chimera of HBx HBsAg and HBcAg. TG1050, by Transgene is currently in Phase I clinical trial (TG1050 is a 25 human adenovirus serotype 5 based vaccine encoding a chimera of truncated version of three HBV antigens, core-Polymerase-Envelope). HepTcell™, by Altimmune is currently in Phase I clinical trial (HepTcell is a completely synthetic peptide product, based on 9 synthetic 32-40 mer peptides derived from conserved regions of HBV protein). INO-1800, by Inovio is currently in Phase I clinical trial (INO-1800 is a 30 multi-antigen SynCon® DNA immunotherapy targeting hepatitis B virus clades A & C surface antigens & HBV core antigens). Currently available prophylactic HBV vaccines (generally based on HBV protein vaccines) have no therapeutic effect on chronically infected HBV individuals and hence they fail to control chronic HBV infection.

Therefore, an aim of the present invention is to provide an improved vaccine for HBV infection.

According to a first aspect of the invention, there is provided a multi-HBV 5 immunogen viral vector vaccine comprising:

a viral vector comprising an immunogen expression cassette, wherein the expression of a protein encoded by the expression cassette is arranged to be driven by a promoter, wherein the immunogen expression cassette encodes:

- a) HBV Core;
- 10 b) a modified HBV polymerase (P_{mut}), wherein the modification is a mutation to wild-type HBV polymerase to substantially remove polymerase function;
- c) HBV surface antigen (HbsAg); and
- d) an intergenic sequence that is arranged to cause expression of at least the HBV surface antigen (HbsAg) as a separate protein from the HBV core and the 15 modified HBV polymerase (P_{mut}),

wherein the intergenic sequence is downstream (3') of the sequences encoding the HBV core and the modified HBV polymerase (P_{mut}) and upstream (5') of the sequence encoding the HBV surface antigen (HbsAg).

20 The intergenic sequence may comprise a cleavage domain, an IRES (Internal Ribosomal Entry Site), a splicing signal, or a secondary promoter. In one embodiment, the intergenic sequence comprises a cleavage domain comprising a sequence arranged to cause ribosome skipping. In another embodiment, the intergenic sequence comprises a secondary promoter to promote expression of at least the surface antigen 25 (HbsAg).

Induction of a strong, multi-antigen specific T cell response against different HBV proteins is thought to play a major role in viral clearance of a resolving chronic HBV infection. For induction of a multi-antigen T-cell response, it can be important to have 30 maximal number of T-cell epitopes, which requires encoding full-length HBV proteins within a T-cell inducing HBV vaccine. Some of the current HBV vaccines under development do not encode full-length HBV antigens. The present invention vaccine can encode 3 full-length proteins of HBV (namely the Core, optionally with Pre-Core region, Polymerase and Surface proteins). In addition, the vaccine design utilizes an at 35 least two-protein expression, for example using an F2A peptide cleavage strategy to

encode a separate surface protein, which in addition to the induction of T-cell response could also induce an antibody response that could possibly have a role in potentiating the therapeutic effect of T-cell vaccine, with possible help in clearance of the virus within a chronically infected individual. Inducing antibodies based on a 5 mammalian system (compared to other systems, for e.g. Yeast) has a selective advantage of providing the mammalian-type glycosylation that could induce antibodies appropriate for the natural host.

The invention advantageously provides a single vaccine encoding full-length multiple-10 HBV antigens that could induce broad T-cell response and in-addition could also induce antibodies to the surface protein. The new HBV immunogen at least encompasses three full length HBV-antigens (namely the Core, Polymerase and Surface) and encoded them into a viral vector, such as the Chimpanzee adeno and MVA viral vectors. In addition, the HBV-polymerase protein in the immunogen is 15 provided with mutations that abolish its function, which avoids its participation in HBV genome replication and improves safety for the vaccine.

By using a peptide cleavage strategy, for example by using a Furin-2A cleavage sequence, or a secondary promoter, the transgene cassette can generate at least two 20 proteins, a fused core and polymerase protein and a separate surface protein, both of which generates a T-cell immune response. The encoded surface protein, in addition to the generation of T-cell immune response can also generate an antibody response.

Immunogen expression cassette

25 The skilled person will recognize that the cleavage domain may not lead to cleavage on all occasions, for example F2A based ribosomal skipping events may occur in a small proportion of expressions, such that a small proportion of proteins made will be a fusion of all the HBV proteins/antigens that would otherwise be separated by the 30 cleavage. Therefore, in one embodiment, the immunogen expression cassette may further encode a fusion protein comprising at least the HBV Core, modified HBV polymerase (Pmut) and HBV surface antigen.

In one embodiment, the immunogen expression cassette further encodes HBV Pre-35 Core (PreC). In another embodiment, the immunogen expression cassette further

encodes HBV PreS1, and/or a truncated form thereof. In another embodiment, the immunogen expression cassette further encodes HBV PreS2.

In one embodiment, the immunogen expression cassette further encodes HBV Pre-
5 Core (PreC) and HBV PreS1, or a truncated form of HBV PreS1. In another embodiment, the immunogen expression cassette further encodes HBV Pre-Core (PreC) and HBV PreS2. In one embodiment, the immunogen expression cassette further encodes HBV Pre-Core (PreC) and HBV PreS1, and a truncated form of PreS1. In one embodiment, the immunogen expression cassette further encodes HBV Pre-
10 Core (PreC), HBV PreS1, and/or a truncated form thereof, and HBV PreS2.

In an embodiment wherein the HBV Pre-core and Core are encoded, the immunogen expression cassette may be capable of expressing the HBV e-Antigen. The skilled person in the art will recognise that HBV e-Antigen comprises or consists of the 10 C-terminal amino acids of Pre-Core and the 149 N-terminal amino acids of the Core. For the expression of HBV e-Antigen, the Pre-Core and Core are expressed together and this whole expressed protein undergoes N-terminal and C-terminal cleavage.
15

In one embodiment, the HBV Core and modified polymerase (Pmut) are arranged to be
20 expressed as a fusion protein. In an embodiment wherein the immunogen expression cassette encodes HBV Pre-core, the HBV Pre-core, HBV Core and modified polymerase (Pmut) are arranged to be expressed as a fusion protein.

In one embodiment the immunogen expression cassette encodes at least two proteins,
25 comprising a first fusion protein comprising at least the HBV Core and the modified HBV polymerase (Pmut), and a second protein comprising at least the HBV surface antigen (HbsAg). In another embodiment the immunogen expression cassette encodes only two proteins, comprising a first fusion protein comprising at least the HBV Core and the modified HBV polymerase (Pmut), and a second protein comprising at least
30 the HBV surface antigen (HbsAg).

In one embodiment, the immunogen expression cassette does not encode HBV X protein.

In one embodiment, the immunogen expression cassette may comprise a nucleic acid sequence encoding any one of:

SIi-HBV-CPmutS;

SIi-HBV-SCPmut;

5 HBV-CPmutS

SIi-HBV-CPmutPreS-S(sh);

SIi-HBV-CPmutPreS-TPA-S(sh);

SIi-HBV-PreS-Pmut-C;

MVA-SIi-HBV-PreS-Pmut-C-S(sh); or

10 MVA-SIi-HBV-PreS-Pmut-C-TPA-S(sh), as described herein.

In one embodiment, the immunogen expression cassette comprises SEQ ID NO: 46 (SIi-HBV-CPmutS) or a variant thereof. A variant of SEQ ID NO: 46 may comprise a

sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 98%, 99%, or 99.5% identity with SEQ ID NO: 46. The variant of SEQ ID NO: 46 may encode protein that

15 substantially retains the immunogenicity of equivalent protein encoded by SEQ ID NO: 46.

In one embodiment, the immunogen expression cassette comprises SEQ ID NO: 47 (SIi-HBV-SCPmut) or a variant thereof. A variant of SEQ ID NO: 47 may comprise a

20 sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 98%, 99%, or 99.5% identity with SEQ ID NO: 47. The variant of SEQ ID NO: 47 may encode protein that

substantially retains the immunogenicity of equivalent protein encoded by SEQ ID NO: 47.

25 In another embodiment, the immunogen expression cassette comprises SEQ ID NO: 48 (SIi-HBV-CPmutPreS-S(sh)) or a variant thereof. A variant of SEQ ID NO: 48 may

comprise a sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 98%, 99%, or 99.5% identity with SEQ ID NO: 48. The variant of SEQ ID NO: 48 may encode

protein that substantially retains the immunogenicity of equivalent protein encoded by

30 SEQ ID NO: 48.

In another embodiment, the immunogen expression cassette comprises SEQ ID NO: 49 (SIi-HBV-CPmutPreS-TPA-S(sh)) or a variant thereof. A variant of SEQ ID NO: 49 may comprise a sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 98%, 99%,

35 or 99.5% identity with SEQ ID NO: 49. The variant of SEQ ID NO: 49 may encode

protein that substantially retains the immunogenicity of equivalent protein encoded by SEQ ID NO: 49.

In one embodiment, the immunogen expression cassette comprises SEQ ID NO: 59
5 (SII-HBV-PreS-Pmut-C) or a variant thereof. A variant of SEQ ID NO: 59 may comprise a sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 98%, 99%, or 99.5% identity with SEQ ID NO: 59. The variant of SEQ ID NO: 59 may encode protein that substantially retains the immunogenicity of equivalent protein encoded by SEQ ID NO: 59.

10

In one embodiment, the immunogen expression cassette comprises SEQ ID NO: 24 (MVA-SII-HBV-PreS-Pmut-C-S(sh)) or a variant thereof. A variant of SEQ ID NO: 24 may comprise a sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 98%, 99%, or 99.5% identity with SEQ ID NO: 24. The variant of SEQ ID NO: 24 may encode protein that substantially retains the immunogenicity of equivalent protein encoded by SEQ ID NO: 24.

In one embodiment, the immunogen expression cassette comprises SEQ ID NO: 27 (MVA-SII-HBV-PreS-Pmut-C-TPA-S(sh)) or a variant thereof. A variant of SEQ ID NO: 27 may comprise a sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 98%, 99%, or 99.5% identity with SEQ ID NO: 27. The variant of SEQ ID NO: 27 may encode protein that substantially retains the immunogenicity of equivalent protein encoded by SEQ ID NO: 27. In one embodiment, the immunogen expression cassette comprises SEQ ID NO: 58 (MVA-SII-HBV-PreS-Pmut-C-TPA-S(sh)) or a variant thereof. A variant of SEQ ID NO: 58 may comprise a sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 98%, 99%, or 99.5% identity with SEQ ID NO: 58. The variant of SEQ ID NO: 58 may encode protein that substantially retains the immunogenicity of equivalent protein encoded by SEQ ID NO: 58.

30 **Viral vector**

The viral vector may comprise a virus. The immunogen expression cassette sequence of the invention may be cloned into any suitable viral vector that is known to elicit good immune response. Suitable viral vectors have been described in Dicks et al (Vaccine. 35 2015 Feb 25;33(9):1121-8. doi: 10.1016/j.vaccine.2015.01.042. Epub 2015 Jan 25), Antrobus et

al (Mol Ther. 2014 Mar;22(3):668-74. doi: 10.1038/mt.2013.284. Epub 2013 Dec 30.), and (Warimwe et al. (Virol J. 2013 Dec 5;10:349. doi: 10.1186/1743-422X-10-349), which are incorporated herein by reference.

5 The viral vector may be an attenuated viral vector. The viral vector may comprise an adenovirus, such as a human or simian adenovirus. In one embodiment, the viral vector comprises an adenovirus, such as a group E simian adenovirus, when used in a prime vaccine of a prime boost regime. The viral vector may comprise a group E simian adenovirus. The viral vector may comprise ChAdOx1 (a group E simian 10 adenovirus, like the AdCh63 vector used safely in malaria trials) or ChAdOx2. The skilled person will be familiar with ChAdOx1 based viral vectors, for example from patent publication WO2012172277, which is herein incorporated by reference. The viral vector may comprise AdCh63. The viral vector may comprise AdC3 or AdH6. In one embodiment, the viral vector is a human serotype. In another embodiment, the 15 viral vector comprises Modified Vaccinia Ankara (MVA). The viral vector may comprise MVA when used as a vaccine boost in a prime boost regime. In one embodiment, the viral vector comprises an adenovirus, such as a group E simian adenovirus, when used in a prime vaccine of a prime boost regime, and may comprise MVA when used as a vaccine boost in a prime boost regime. The skilled person will 20 be familiar with MVA based viral vectors, for example from US patent publication US9273327, which is herein incorporated by reference.

MVA advantageously allows expression of more than one protein using different pox viral promoters.

25 In an alternative embodiment, the viral vector may comprise Adeno-associated virus (AAV) or *Lentivirus*. In another embodiment, the viral vector may comprise any of Vaccinia virus, fowlpox virus or canarypox virus (e.g. members of *Poxviridae* and the genus *Avipoxvirus*), or New York attenuated vaccinia virus (Tartaglia et al. Virology. 30 1992 May;188(1):217-32, which is herein incorporated by reference). In another embodiment, the viral vector may comprise any of Herpes simplex virus, Human Cytomegalovirus, Measles virus (MeV), Sendai virus (SeV), *Flavivirus* (e.g. Yellow Fever Virus – 17D), or *alphavirus* vectors, such as Sindbis virus (SINV), Venezuelan equine encephalitis virus, or Semliki forest virus.

In one embodiment, the viral vector may comprise nucleic acid comprising the sequence of SEQ ID NO: 39 and 40 (ChAdOx1) or a variant thereof. A variant of SEQ ID NO: 39 and 40 may comprise a sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 98%, 99%, or 99.5% identity with SEQ ID NO: 39 and 40. The variant of 5 SEQ ID NO: 39 and 40 may encode a viral vector that substantially retains the function of the viral vector of SEQ ID NO: 39 and 40 (ChAdOx1).

In one embodiment, the viral vector may comprise nucleic acid comprising the sequence of SEQ ID NO: 41 and 42 (ChAdOx2) or a variant thereof. A variant of SEQ 10 ID NO: 41 and 42 may comprise a sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 98%, 99%, or 99.5% identity with SEQ ID NO: 41 and 42. The variant of SEQ ID NO: 41 and 42 may encode a viral vector that substantially retains the function of the viral vector of SEQ ID NO: 41 and 42 (ChAdOx2).

15 In one embodiment, the viral vector may comprise nucleic acid comprising the sequence of SEQ ID NO: 44 and 45 (MVA) or a variant thereof. A variant of SEQ ID NO: 44 and 45 may comprise a sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 98%, 99%, or 99.5% identity with SEQ ID NO: 44 and 45. The variant of SEQ ID NO: 44 and 45 may encode a viral vector that substantially retains the function of 20 the viral vector of SEQ ID NO: 44 and 45 (MVA).

In one embodiment, the viral vector encodes any one of:

SIi-HBV-CPmutS;
SIi-HBV-SCPmut;
25 SIi-HBV-CPmutPreS-S(sh);
SIi-HBV-CPmutPreS-TPA-S(sh);
MVA-SIi-HBV-PreS-Pmut-C-S(sh); or
MVA-SIi-HBV-PreS-Pmut-C-TPA-S(sh), as described herein.

30 In one embodiment, the viral vector encodes SEQ ID NO: 3 (SIi-HBV-CPmutS) or a variant thereof. A variant of SEQ ID NO: 3 may comprise a sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 98%, 99%, or 99.5% identity with SEQ ID NO: 3. The variant of SEQ ID NO: 3 may substantially retain the immunogenicity of SEQ ID NO: 3.

In one embodiment, the viral vector encodes SEQ ID NO: 11 (SII-HBV-SCPmut) or a variant thereof. A variant of SEQ ID NO: 11 may comprise a sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 98%, 99%, or 99.5% identity with SEQ ID NO: 11. The variant of SEQ ID NO: 11 may substantially retain the immunogenicity of SEQ 5 ID NO: 11.

In one embodiment, the viral vector encodes SEQ ID NO: 13 (SII-HBV-CPmutPreS-S(sh)) or a variant thereof. A variant of SEQ ID NO: 13 may comprise a sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 98%, 99%, or 99.5% identity with SEQ ID NO: 13. The variant of SEQ ID NO: 13 may substantially retain the immunogenicity of SEQ ID NO: 13. 10

In one embodiment, the viral vector encodes SEQ ID NO: 25 (SII-HBV-CPmutPreS-TPA-S(sh)) or a variant thereof. A variant of SEQ ID NO: 25 may comprise a sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 98%, 99%, or 99.5% identity with SEQ ID NO: 25. The variant of SEQ ID NO: 25 may substantially retain the immunogenicity of SEQ ID NO: 25. 15

In one embodiment, the viral vector encodes SEQ ID NO: 23 (MVA-SII-HBV-PreS-Pmut-C-S(sh)) or a variant thereof. A variant of SEQ ID NO: 23 may comprise a sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 98%, 99%, or 99.5% identity with SEQ ID NO: 23. The variant of SEQ ID NO: 23 may substantially retain the immunogenicity of SEQ ID NO: 23. 20

25 In one embodiment, the viral vector encodes SEQ ID NO: 26 (MVA-SII-HBV-PreS-Pmut-C-TPA-S(sh)) or a variant thereof. A variant of SEQ ID NO: 26 may comprise a sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 98%, 99%, or 99.5% identity with SEQ ID NO: 26. The variant of SEQ ID NO: 26 may substantially retain the immunogenicity of SEQ ID NO: 26.

30

In one embodiment, the viral vector comprises the nucleic acid sequence of SEQ ID NO: 46 (SII-HBV-CPmutS) or a variant thereof. A variant of SEQ ID NO: 46 may comprise a sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 98%, 99%, or 99.5% identity with SEQ ID NO: 46.

35

In one embodiment, the viral vector comprises the nucleic acid sequence of SEQ ID NO: 47 (SII-HBV-SCPmut) or a variant thereof. A variant of SEQ ID NO: 47 may comprise a sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 98%, 99%, or 99.5% identity with SEQ ID NO: 47.

5

In one embodiment, the viral vector comprises the nucleic acid sequence of SEQ ID NO: 48 (SII-HBV-CPmutPreS-S(sh)) or a variant thereof. A variant of SEQ ID NO: 48 may comprise a sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 98%, 99%, or 99.5% identity with SEQ ID NO: 48.

10

In one embodiment, the viral vector comprises the nucleic acid sequence of SEQ ID NO: 49 (SII-HBV-CPmutPreS-TPA-S(sh)) or a variant thereof. A variant of SEQ ID NO: 49 may comprise a sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 98%, 99%, or 99.5% identity with SEQ ID NO: 49.

15

In one embodiment, the viral vector comprises the nucleic acid sequence of SEQ ID NO: 24 (MVA-SII-HBV-PreS-Pmut-C-S(sh)) or a variant thereof. A variant of SEQ ID NO: 24 may comprise a sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 98%, 99%, or 99.5% identity with SEQ ID NO: 24.

20

In one embodiment, the viral vector comprises the nucleic acid sequence of SEQ ID NO: 27 (MVA-SII-HBV-PreS-Pmut-C-TPA-S(sh)) or a variant thereof. A variant of SEQ ID NO: 27 may comprise a sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 98%, 99%, or 99.5% identity with SEQ ID NO: 27. In one embodiment, the viral vector comprises the nucleic acid sequence of SEQ ID NO: 58 (MVA-SII-HBV-PreS-Pmut-C-TPA-S(sh)) or a variant thereof. A variant of SEQ ID NO: 58 may comprise a sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 98%, 99%, or 99.5% identity with SEQ ID NO: 58.

25

30 Promoter

In one embodiment, the promoter is encoded in the immunogen expression cassette, for example the promoter may be encoded at, or adjacent to, the 5' end of the immunogen expression cassette. Alternatively, the promoter may be encoded as part of the viral vector nucleic acid outside of the immunogen expression cassette. For

35

example the promoter may be encoded upstream (5') of the immunogen expression cassette.

5 The promoter may promote the expression of all the encoded protein of the immunogen expression cassette. In an alternative embodiment wherein the immunogen expression cassette comprises a secondary promoter, the promoter may be a primary promoter that is arranged to promote expression of at least the HBV core and modified polymerase (Pmut), and optionally not the HBV surface antigen (HbsAg) which may be arranged to be promoted separately by the secondary promoter.

10

The skilled person will recognise that any suitable promoter may be used as the primary and/or secondary promoter as appropriate for the host for expression. In one embodiment, the promoter comprises a CMV promoter. The CMV promoter may comprise the long or short CMV promoter. In an embodiment wherein the viral vector 15 comprises an Adenoviral vector, such as ChAdOx1 or 2, the promoter may comprise a CMV promoter, SV40 promoter, or EFla promoter. In an embodiment wherein the viral vector comprises an Adenoviral vector, such as ChAdOx1 or 2, the promoter may comprise a CMV promoter.

20 The promoter element(s) used in the vector, for example adenoviral vector, (such as ChAdOx1 or 2) may comprise a tetracycline operator (*tetO*) sequence. A tetracycline operator (*tetO*) sequence is helpful for generation of viral vectors that can express foreign proteins that are toxic to cells within which they are generated.

25 In another embodiment, the promoter comprises a pox viral promoter. In an embodiment wherein the viral vector comprises MVA, the promoter may comprise a pox viral promoter, such as F11. In one embodiment, the promoter comprises early F11 promoter. Alternatively, the pox viral promoter may comprise an early promoter, for example selected from any of B8R, K6L, A44L, C11R, and B2R, a promoter with 30 early and late activity, for example selected from mH5, p7.5, and SSP, or a late promoter, for example FP4b.

35 Early promoter based transgene expression is can be useful for an immunogen intended primarily for T-cell response (there is a higher magnitude of T-cell induction upon usage of these early promoters). However promoters with both early and late

activity can be used for an immunogen intended for inducing antibody response. However, these early and late activity promoters can also be used for an immunogen intended for T-cell induction.

5 In one embodiment, the promoter comprises or consists of the nucleic acid sequence of SEQ ID NO: 50 or 52 (CMV long or short promoter) or variants thereof. A variant of SEQ ID NO: 50 or 52 may comprise a sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 98%, 99%, or 99.5% identity with SEQ ID NO: 50 or 52 respectively. The variant may substantially retain the promoter function of SEQ ID
10 NO: 50 or 52).

In one embodiment, the promoter comprises or consists of a sequence located in the F11 Left flank sequence (SEQ ID NO: 35) or a variant thereof. A variant may comprise a sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 98%, 99%, or
15 99.5% identity with the promoter sequence located in the F11 Left flank sequence (SEQ ID NO: 35). The variant may substantially retain the promoter function of the promoter located in the F11 Left flank sequence (SEQ ID NO: 35).

Secondary Promoter

20 In one embodiment, the immunogen expression cassette encodes a secondary promoter. In an embodiment wherein a secondary promoter is provided in addition to the first/primary promoter, the secondary promoter may be encoded by/within the immunogen expression cassette. The secondary promoter may be encoded 3' of the first/primary promoter. The secondary promoter may be encoded 3' of the first protein/antigen to be expressed, for example downstream of the HBV core and HBV modified polymerase and upstream of the HBV surface antigen. The secondary promoter may promote the expression of at least the HBV surface antigen.
25

30 The secondary promoter may comprise a pox viral promoter. The secondary promoter may comprise pox viral early promoters, such as any of B8R, K6L, A44L, C11R, and B2R, or pox viral promoters with early and late activity, such as mH5, p7.5 or SSP, or a late promoter such as FP4b.

In one embodiment, the secondary promoter comprises early/late promoter mH5. In one embodiment, the secondary promoter comprises or consists of the nucleic acid sequence of SEQ ID NO: 28 (mH5 promoter) or a variant thereof. A variant of SEQ ID NO: 28 may comprise a sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 5 98%, 99%, or 99.5% identity with SEQ ID NO: 28. The variant may substantially retain the secondary promoter function of SEQ ID NO: 28).

In another embodiment, the secondary promoter may comprise a SV40 promoter or EF1a promoter.

10

Cleavage domain

In one embodiment, the immunogen expression cassette encodes a cleavage domain. In one embodiment, the cleavage domain is a post-translation proteolytic cleavage 15 domain, which allows for the cleavage of a translated protein, for example by a proteolytic cleavage enzyme. The cleavage enzyme may be provided by the host, for example the host being vaccinated, such as a human. In another embodiment, the cleavage enzyme may be encoded in the immunogen expression cassette or viral vector. In one embodiment, the cleavage domain comprises a non-HBV sequence, for 20 example, a mammalian sequence. In one embodiment, the cleavage domain comprises a human derived sequence.

In one embodiment, the cleavage domain comprises a ribosome skipping cleavage domain. In one embodiment, the cleavage domain comprises a Furin recognition site 25 comprising or consisting of the sequence RXRR, where X could be any amino acid. In one embodiment, the cleavage domain comprises a Furin recognition site and a 2A peptide sequence. The 2A peptide sequence may comprise FMDV (Foot and Mouth Disease Virus) 2A peptide sequence (APVKQTLNFDLLKLAGDVESNPGP – SEQ ID NO: 43). Alternatively, 2A peptides may be selected from P2A (porcine teschovirus-1 30 2A), T2A (Thosea asigna virus 2A), and E2A (equine rhinitis A virus [ERAV] 2A). Any picorna virus 2A peptide sequence may be provided for, and function as, a peptide cleavage site. Therefore, the cleavage domain may comprise a sequence encoding picorna virus 2A peptide sequence.

In one embodiment, the cleavage domain comprises or consists of Furin-2A (F2A) peptide sequence or a functional variant thereof. The cleavage domain may comprise or consists of the sequence of SEQ ID NO: 9 or a variant thereof. A variant of SEQ ID NO: 9 may comprise a sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 5 98%, 99%, or 99.5% identity with SEQ ID NO: 9. The variant of SEQ ID NO: 9 may substantially retain the cleavage function of SEQ ID NO: 9.

F2A is advantageously short (only 28 amino acids), which helps to provide appropriate inserts and express more than one protein from vectors that can have a 10 size limit, such as Adenovirus based vectors, including ChAdOx1/2.

In an embodiment where the viral vector is MVA, or otherwise a viral vector is used as a boost vaccination following a prime vaccination, a different cleavage domain may be provided to avoid any potential boosting of T-cell responses to the cleavage domain 15 of the prime vaccination. Alternatively a secondary promoter may be used instead of a cleavage domain in order to avoid any potential boosting of T-cell responses to a cleavage domain of a prime vaccination.

IRES (Internal Ribosomal Entry Site)

20

In one embodiment, the immunogen expression cassette encodes an Internal Ribosome Entry Site (IRES). The skilled person will recognise that an IRES is an RNA structures that allows cap independent initiation of translation, and is able to initiate translation in the middle of a messenger RNA.

25

Splicing Signal

In one embodiment, the immunogen expression cassette encodes an mRNA splicing signal. The skilled person will be familiar with commonly used splicing signals that 30 are appropriate for this use. One such example of an mRNA splicing signal that may be used is a chimeric intron composed of the 5' donor site from the first intron of the human β -globin gene and the branch and 3' acceptor site from the intron of an immunoglobulin gene heavy chain variable region in the expression vector pCI-neo Mammalian Expression Vector (Promega).

35

HBV Pre-Core (PreC)

The HBV PreC may comprise or consist of a full length wild-type HBV PreC sequence, or a variant thereof. The HBV PreC variant may comprise or consist of a truncated HBV PreC sequence.

5

The HBV PreC may comprise or consist of the sequence of SEQ ID NO: 16 or a variant thereof. A variant of SEQ ID NO: 16 may comprise a sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 98%, 99%, or 99.5% identity with SEQ ID NO: 16.

10 The variant of SEQ ID NO: 16 may substantially retain the immunogenicity of SEQ ID NO: 16. The variant of SEQ ID NO: 16 may substantially retain the tertiary structure of SEQ ID NO: 16.

HBV Core

15 The HBV Core may comprise or consist of a full length wild-type HBV Core sequence, or a variant thereof. The HBV Core variant may comprise or consist of a truncated HBV Core sequence. The HBV Core may not comprise HBV Pre-Core.

20 The HBV Core may comprise or consist of the sequence of SEQ ID NO: 6 or a variant thereof. A variant of SEQ ID NO: 6 may comprise a sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 98%, 99%, or 99.5% identity with SEQ ID NO: 6. The variant of SEQ ID NO: 6 may substantially retain the immunogenicity of SEQ ID NO: 6. The variant of SEQ ID NO: 6 may substantially retain the tertiary structure of SEQ ID NO: 6.

25

HBV e-Antigen (HBeAg)

30 The HBV e-Antigen (HBeAg) may comprise or consist of a full length wild-type HBV e-Antigen sequence, or a variant thereof. The HBV e-Antigen variant may comprise or consist of a truncated HBV e-Antigen sequence.

The HBV e-Antigen (HBeAg) may comprise or consist of the sequence: SKLCLGWLWGMDIDPYKEFGASVELLSFLPSDFPSIRDLDTASALYREALESPE HCSPHHTALRQAILCWGELMNLATWVGSNLEDPASRELVVSYVNVNMGLKIRQ

LLWFHISCLTFGRETVEYLVSFGVWIRTPPAYRPPNAPISTLPETTVV (SEQ ID NO: 17).

The HBV e-Antigen (HBeAg) may comprise or consist of the sequence of SEQ ID NO: 17 or a variant thereof. A variant of SEQ ID NO: 17 may comprise a sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 98%, 99%, or 99.5% identity with SEQ ID NO: 17. The variant of SEQ ID NO: 17 may substantially retain the immunogenicity of SEQ ID NO: 17. The variant of SEQ ID NO: 17 may substantially retain the tertiary structure of SEQ ID NO: 17.

10

Modified HBV polymerase

The modified HBV polymerase (P_{mut}) may comprise or consist of a truncated HBV polymerase. In particular, the mutation to wild-type HBV polymerase to substantially remove polymerase function may comprise a sequence encoding a truncated HBV polymerase. Alternatively or additionally, the mutation comprises one or more point mutations to the encoded HBV polymerase sequence. The modification may comprise one or more amino acid substitutions, deletions or additions in the encoded HBV polymerase sequence. In one embodiment, the modified HBV polymerase (P_{mut}) is not a truncated form of HBV polymerase (i.e. it is full length relative to wildtype HBV polymerase).

The modified HBV polymerase (P_{mut}) may comprise or consist of the sequence of SEQ ID NO: 8 or a variant thereof. A variant of SEQ ID NO: 8 may comprise a sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 98%, 99%, or 99.5% identity with SEQ ID NO: 8. The variant of SEQ ID NO: 8 may substantially retain the immunogenicity of SEQ ID NO: 8. The variant of SEQ ID NO: 8 may substantially retain the tertiary structure of SEQ ID NO: 8.

The modification may be a mutation that prevents protein priming. Additionally or alternatively mutations may be provided in the reverse transcriptase and/or RNAase domains to prevent their function. Further additionally or alternatively the mutation may be structural such that it disrupts the correct protein folding of the polymerase. The modifications may comprise one or more, or all of Y63, C323, C334, C338, C352, R714, D788, R792, or equivalent residues thereof, by reference to wild-type HBV

polymerase consensus sequence herein (i.e. SEQ ID NO: 19). In one embodiment the modifications may comprise one or more, or all of Y63A, C323A, C334A, C338A, C352A, R714A, D788A, R792A, or equivalent residues thereof, by reference to wild-type HBV polymerase consensus sequence herein (i.e. SEQ ID NO: 19). In another 5 embodiment, the modifications may comprise one or more, or all of R714, D788, and R792, or equivalent residues thereof, by reference to wild-type HBV polymerase consensus sequence herein (i.e. SEQ ID NO: 19). In one embodiment the modifications may comprise one or more, or all of R714A, D788A, and R792A, or equivalent residues thereof, by reference to wild-type HBV polymerase consensus 10 sequence herein (i.e. SEQ ID NO: 19). Reference to equivalent residues is understood to mean that the HBV polymerase may be based on an alternative sequence than the HBV polymerase sequence provided herein, and that numbering or identity of amino acid residues may differ between the sequences. Such differences and equivalency may be readily determined by an alignment of the HBV polymerase sequence with the 15 wild-type HBV polymerase consensus sequence herein (i.e. SEQ ID NO: 19).

Mutations R714A, D788A, R792A advantageously stop polymerase function. However, one or more, or all of, additional mutations of Y63 and other cysteine 20 mutations of C323, C334, C338, and C352 may be added as an extra measure in the event of a reversion within those functional mutations. The additional mutations may comprise Y63A, C323A, C334A, C338A, and/or C352A.

The mutations advantageously provide that the HBV polymerase function is disrupted by (a) RNAase H functional mutations, to stop its enzyme activity, and/or (b) Y63A 25 mutation to stop the first step of replication (Priming of DNA synthesis), and/or (c) cysteine mutations to disrupt its native conformation and stop the HBV polymerase from participating in the initial steps of viral replication (protein priming, RNA binding and RNA packaging).

30 The skilled person will be familiar with various HBV polymerase modifications that can be provided which significantly reduce or ablate function, and can be provided in the modified polymerase according to the invention. Such modifications are for example described in WO2016020538, WO2013007772, and WO2011015656, which are incorporated herein by reference.

In one embodiment, the modified polymerase is modified so as to exhibit a reduced reverse-transcriptase (RTase) enzymatic activity with respect to a wild-type HBV polymerase. The reduction of RTase activity may be provided by one or more mutation(s) in the domain responsible for RTase enzymatic activity.

5 Four residues have been found to be involved in RTase activity, forming a motif "YMDD" (for Tyr, Met, Asp and Asp residues) at approximately position 538 to approximately position 541 of a wild-type HBV polymerase. The present invention encompasses any mutation(s) in this motif, or elsewhere in the RTase domain, that provides a significant reduction (e.g. at least a 10 fold reduction) or ablation of the

10 RTase activity. Representative examples of suitable RTase-deficient polymerase mutants are described in Radziwill et al. (1990, J. Virol. 64:613), in Bartenschlager et al. (1990, J. Virol. 64:5324) and in Jeong et al. (1996, Biochem Biophys Res Commun. 223(2):264), which are incorporated herein by reference. In one embodiment, the modified polymerase may comprise the substitution of the first Asp residue of the

15 YMDD motif or of the amino acid residue located in an equivalent position in a native HBV polymerase to any amino acid residue other than Asp, with an optional substitution to a His residue (D540H mutation).

Additionally or alternatively, the modified polymerase may be modified to provide a

20 reduced RNase H enzymatic activity with respect to wild-type HBV polymerase. The reduction of RNase H activity may be provided by one or more mutation(s) in the domain responsible for RNase H enzymatic activity. The functional domain involved in RNase H activity is within the C-terminal portion of HBV polymerase, approximately from position 680 to the C-terminal position 832 of wild-type polymerase, and the modified polymerase of the present invention may encompass any mutation(s) in this domain that provides a significant reduction (e.g. at least a 10 fold reduction) or ablation of the RNase H activity. Representative examples of suitable RNase H-deficient polymerase mutants are described in Radziwill et al. (1990, J. Virol. 64:613), in Bartenschlager et al. (1990, J. Virol. 64:5324).

30

HBV surface antigen (HbsAg)

The skilled person will understand that PreS1 and PreS2 are components of the Large (L) form of HBV surface protein (e.g. L form = PreS1+PreS2+S). The medium (M)

form of HBV surface protein has PreS2+S. Having such sequences together means that T-Cell epitopes are included in those sequential order.

5 The HbsAg may comprise or consist of a full length wild-type HbsAg sequence, or a variant thereof. The HbsAg variant may comprise or consist of a truncated HbsAg sequence.

10 The HbsAg including the PreS1 and PreS2 sequences may comprise or consist of the sequence of SEQ ID NO: 10 or a variant thereof. A variant of SEQ ID NO: 10 may comprise a sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 98%, 99%, or 99.5% identity with SEQ ID NO: 10. The variant of SEQ ID NO: 10 may substantially retain the immunogenicity of SEQ ID NO: 10. The variant of SEQ ID NO: 10 may substantially retain the tertiary structure of SEQ ID NO: 10.

15 In another embodiment, the HbsAg may comprise the surface antigen without PreS1 and/or PreS2. The HbsAg may comprise or consist of the sequence of SEQ ID NO: 18 or a variant thereof. A variant of SEQ ID NO: 18 may comprise a sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 98%, 99%, or 99.5% identity with SEQ ID NO: 18. The variant of SEQ ID NO: 18 may substantially retain the immunogenicity 20 of SEQ ID NO: 18. The variant of SEQ ID NO: 18 may substantially retain the tertiary structure of SEQ ID NO: 18.

25 In one embodiment, the HbsAg may comprise or consist of any one or all of the four known transmembrane regions in HbsAg (amino acids 1-226), which are amino acids (8-32) FLGPLLVLQAGFLLTRILTIPQSL (SEQ ID NO: 54), amino acids (80-98) FIIFLFILLLCLIFLLVLL (SEQ ID NO: 55), amino acids (160-184) RFLWEWASVRFSWLSLLVPFVQWFV (SEQ ID NO: 56), and amino acids (189-210) TVWLSVIWMMWYWGPSLYNILS (SEQ ID NO: 57) respectively. In one embodiment, the HbsAg may at least comprise or consist of the HbsAg transmembrane 30 region of amino acids (8-32) FLGPLLVLQAGFLLTRILTIPQSL (SEQ ID NO: 54).

HBV PreS1

35 The HBV PreS1 may comprise or consist of a full length wild-type HBV PreS1 sequence, or a variant thereof. The HBV PreS1 may comprise or consist of the

sequence of SEQ ID NO: 52 or a variant thereof. A variant of SEQ ID NO: 52 may comprise a sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 98%, 99%, or 99.5% identity with SEQ ID NO: 52. The variant of SEQ ID NO: 52 may substantially retain the immunogenicity of SEQ ID NO: 52. The variant of SEQ ID NO: 52 may 5 substantially retain the tertiary structure of SEQ ID NO: 52.

The HBV PreS1 variant may comprise or consist of a truncated HBV PreS1 sequence, for example CΔPreS1 or NΔPreS1 described herein (CΔPreS1 refers to C-terminal truncated PreS1 and NΔPreS1 refers to N-terminal truncated PreS1). In one 10 embodiment, the immunogen expression cassette may encode both NΔPreS1 and CΔPreS1. In an embodiment wherein the immunogen expression cassette encodes both NΔPreS1 and CΔPreS1, the NΔPreS1 may be encoded upstream (5') of intergenic sequence and the CΔPreS1 may be encoded downstream (3') of intergenic sequence. In an embodiment wherein the immunogen expression cassette encodes NΔPreS1 15 upstream (5') of intergenic sequence, it may be fused with PreS2 and/or the modified polymerase (Pmut). In an embodiment wherein the immunogen expression cassette encodes NΔPreS1 upstream (5') of intergenic sequence, it may be fused with PreS2 and/or the modified polymerase (Pmut) and the CΔPreS1 encoded downstream (3') of intergenic sequence may be fused with the surface antigen (HbsAg).

20

CΔPreS1

In one embodiment, the immunogen expression cassette encodes a truncated form of 25 HBV PreS1. The truncation may comprise a C-terminal truncation. In one embodiment, the truncated HBV PreS1 comprises CΔPreS1 (SEQ ID NO: 21) described herein. In one embodiment, the truncated PreS1, such as CΔPreS1 described herein, is arranged to be expressed a fusion protein with the HBV surface antigen (S / HbsAg). A linker sequence, such as a linker described herein, may be provided 30 between the truncated PreS1 and surface antigen (S / HbsAg). For example, CΔPreS1 + linker + S (described herein as S(sh)). The nucleotide sequence encoding S(sh) may comprise or consist of SEQ ID NO: 61.

The CΔPreS1 may comprise or consist of the sequence of SEQ ID NO: 21 or a variant thereof. A variant of SEQ ID NO: 21 may comprise a sequence having at least 70%, 35 75%, 80%, 85%, 90%, 95%, 98%, 99%, or 99.5% identity with SEQ ID NO: 21. The

variant of SEQ ID NO: 21 may substantially retain the immunogenicity of SEQ ID NO: 21. The variant of SEQ ID NO: 21 may substantially retain the tertiary structure of SEQ ID NO: 21.

5 In one embodiment, the truncated PreS1, such as CΔPreS1 described herein, optionally with a fused surface antigen, is encoded downstream (3') of the intergenic sequence.

10 The PreS1 truncation advantageously favours antibody generation for both T-cell and antibody response for the HBV antigens provided in the immunogen expression cassette. Without being bound by theory, antibody generation is possibly due to proper folding of PreS1 and Surface antigens.

NΔPreS1

15 In one embodiment, the truncated PreS1 comprises NΔPreS1 as described herein. The NΔPreS1 and PreS2 fusion may comprise or consist of SEQ ID NO: 15/38, or a variant thereof. A variant of SEQ ID NO: 15/38 may comprise a sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 98%, 99%, or 99.5% identity with SEQ ID NO: 20 15/38. The variant of SEQ ID NO: 15/38 may substantially retain the immunogenicity of SEQ ID NO: 15/38.

25 The NΔPreS1 and PreS2 fusion sequence advantageously provides a good T-cell response. NΔPreS1 advantageously includes amino acids in a sequence that would still preserve T-cell epitopes (8-11 amino acids for CD8 T-cell epitopes and slightly longer (12-16) for CD4 T-cell epitopes.

30 In an embodiment wherein the immunogen expression cassette encodes NΔPreS1 fused with PreS2 upstream (5') of intergenic sequence, it may be further fused with the modified polymerase (Pmut). A linker sequence, such as a linker described herein, may be provided between the PreS2 and modified polymerase (Pmut). For example, NΔPreS1 + PreS2 + linker + Pmut.

HBV PreS2

The HBV PreS2 may comprise or consist of a full length wild-type HBV PreS2 sequence, or a variant thereof. The HBV PreS2 variant may comprise or consist of a truncated HBV PreS2 sequence.

5 The HBV PreS2 may comprise or consist of the sequence of SEQ ID NO: 53 or a variant thereof. A variant of SEQ ID NO: 53 may comprise a sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 98%, 99%, or 99.5% identity with SEQ ID NO: 53. The variant of SEQ ID NO: 53 may substantially retain the immunogenicity of SEQ ID NO: 53. The variant of SEQ ID NO: 53 may substantially retain the tertiary 10 structure of SEQ ID NO: 53.

Peptide Adjuvant

15 The immunogen expression cassette may further encode a peptide adjuvant. The peptide adjuvant may comprise TPA (tissue plasminogen activator). In one embodiment, the peptide adjuvant may comprise a human or non-human invariant chain (Ii), or a fragment thereof. A fragment of the long isoform (isoform (b)) of the human CD74 molecule, is also known as the invariant chain (Nucleic Acids Res. 1985 December 20; 13(24): 8827-8841). It is known that N-terminal fragments of the 20 invariant chain (Ii) which comprise at least the transmembrane domain thereof, provide a surprisingly effective adjuvant function when expressed as a fusion protein with an antigen of interest. Fragments encompassing the transmembrane domain and the cytoplasmic domain, and preferably including the N-terminal 16 amino acids of the long isoform of the protein are particularly efficacious.

25 The invariant chain may comprise or consist of a shark invariant chain (SIi), or fragment or a functional variant thereof. The variant shark invariant chain (SIi) may comprise a truncated invariant shark invariant chain. Other non-human animal sources of an invariant chain, or fragment thereof, include chicken, quail, trout, zebrafish, 30 carp, frog, grouper, shark, mandarin fish or mallard. The skilled person will be familiar with appropriate invariant chains, or fragments thereof, for use as peptide adjuvants encoded in an expression cassette/vector, for example the invariant chain may be any invariant chain as provided in WO2015082922, which is incorporated herein by reference.

The peptide adjuvant may comprise or consist of the sequence of SEQ ID NO: 4 (SII) or a variant thereof. A variant of SEQ ID NO: 4 may comprise a sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 98%, 99%, or 99.5% identity with SEQ ID NO: 4. The variant of SEQ ID NO: 4 may substantially retain the adjuvant function of 5 SEQ ID NO: 4.

The peptide adjuvant may be encoded by a sequence comprising or consists of the sequence of SEQ ID NO: 29 (TPA nucleic acid sequence) or a variant thereof. A variant of SEQ ID NO: 29 may comprise a sequence having at least 70%, 75%, 80%, 10 85%, 90%, 95%, 98%, 99%, or 99.5% identity with SEQ ID NO: 29. The variant of SEQ ID NO: 29 may encode a peptide adjuvant that substantially retains the adjuvant function of the TPA encoded by SEQ ID NO: 29. The peptide adjuvant may be encoded by a sequence comprising or consists of the sequence of SEQ ID NO: 60 (TPA nucleic acid sequence) or a variant thereof. A variant of SEQ ID NO: 60 may 15 comprise a sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 98%, 99%, or 99.5% identity with SEQ ID NO: 60. The variant of SEQ ID NO: 60 may encode a peptide adjuvant that substantially retains the adjuvant function of the TPA encoded by SEQ ID NO: 60.

20 The peptide adjuvant may comprise or consist of the sequence of SEQ ID NO: 30 (TPA) or a variant thereof. A variant of SEQ ID NO: 30 may comprise a sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 98%, 99%, or 99.5% identity with SEQ ID NO: 30. The variant of SEQ ID NO: 30 may substantially retain the adjuvant function of SEQ ID NO: 30.

25 The peptide adjuvant may be encoded at an N-terminal position of a protein/antigen to be expressed from the immunogen expression cassette. A first peptide adjuvant may be encoded at an N-terminal position of a first protein/antigen (such as the Core and Polymerase fusion) to be expressed from the immunogen expression cassette, and a 30 second peptide adjuvant may be encoded at an N-terminal position of a second protein/antigen (such as surface antigen) to be expressed from the immunogen expression cassette.

HBV genotype

The HBV may be HBV genotype C. In another embodiment, the HBV may be of any one of the 10 genotypes (A-J). All of the encoded HBV proteins/antigens may be derived from one genotype, for example HBV genotype C.

5 Linkers

In one embodiment, linker residues may be encoded between one or more, or all, of the protein/antigen sequences that are provided in a fusion protein (e.g. providing junctions between the sequences in the protein). In an embodiment comprising a 10 peptide adjuvant, a linker may be encoded between the peptide adjuvant and the downstream encoded protein/antigen. In one embodiment, a linker is encoded between the sequences of the HBV core and modified HBV polymerase.

The linker residues may comprise random amino acid sequences, or amino-acids that 15 have been selected to be non-immunogenic based on epitope prediction computer programs or experiments in animal models. For example, a linker may not be considered if it is predicted or known to be an epitope (i.e. in order to avoid an immune response to epitopes, e.g. artificial epitopes, not found in HBV. The linker may be flexible. The linker may comprise or consist of K, G, P or S amino acid 20 residues, or combinations thereof. In one embodiment, the linker may comprise or consist of G and/or P amino acid residues. The linker residues may be between 1 and 10 amino acids in length. In another embodiment, the linker residues may be between 2 and 8 residues in length. In another embodiment, the linker residues may be between 1 and 6 residues in length.

25

A linker may comprise or consist of any of the sequences KGGGPGGG (SEQ ID NO: 5), GGGSGGG (SEQ ID NO: 7), KGGS (SEQ ID NO: 14), KSP, GSKGK (SEQ ID NO: 20), LEGGSGG (SEQ ID NO: 22), SKSGPPSGKS (SEQ ID NO: 31), GSKSGSK (SEQ ID NO: 32), SKSPGSGPP (SEQ ID NO: 33), or ASKGGKSG (SEQ ID NO: 34).

30

In one embodiment, a linker may comprise the sequence KGGGPGGG (SEQ ID NO: 5). In another embodiment, a linker may comprise the sequence GGGSGGG (SEQ ID NO: 7). In another embodiment, a linker may comprise the sequence KGGS (SEQ ID NO: 14). In another embodiment, a linker may comprise the sequence KSP. In another 35 embodiment, a linker may comprise the sequence GSKGK (SEQ ID NO: 20). In

another embodiment, a linker may comprise the sequence LEGGSGG (SEQ ID NO: 22). In another embodiment, a linker may comprise the sequence SKSGPPSGKS (SEQ ID NO: 31). In another embodiment, a linker may comprise the sequence GSKSGSK (SEQ ID NO: 32). In another embodiment, a linker may comprise the sequence 5 SKSPGSGPP (SEQ ID NO: 33). In another embodiment, a linker may comprise the sequence ASKGGKSG (SEQ ID NO: 34).

Advantageously, the use of linkers can avoid generation of peptides with homology to human proteome (which could potentially generate immune response to self-antigen) 10 and they avoid immune-dominant artificial epitopes. Additionally, linkers can provide a flexible hinge between segments of protein, so that they can fold into their native conformation. For example, a linker between CΔPreS1 and S allows independent folding of CΔPreS1 and S, so that they could generate antibodies for conformational epitopes for the respective proteins.

15

Linkers may be varied between different immunogen expression cassettes. Using different linkers avoids boosting of any T-cell response created to any potential artificial epitopes (i.e. by changing linkers or changing junctions). For example, when 20 vaccines are used in prime boost vaccination strategies, changing the linkers or the order of proteins within the immunogen layout, helps to overcome boosting of artificial epitope response.

Other elements of the immunogen expression cassette(s)

25 In an embodiment wherein the immunogen expression cassette is for use in an MVA vector, the immunogen expression cassette may further comprise F11 left and right flanking sequences to allow insertion into the MVA F11 locus by homologous recombination.

30 The F11-left flank sequence may comprise or consist of the sequence of SEQ ID NO: 35, or a variant thereof. The F11-right flank sequence may comprise or consist of the sequence of SEQ ID NO: 36, or a variant thereof. A variant of SEQ ID NO: 35 or 36 may comprise a sequence having at least 70%, 75%, 80%, 85%, 90%, 95%, 98%, 99%, or 99.5% identity with SEQ ID NO: 35 or 36 respectively. The variant of SEQ ID NO: 35 or 36 may substantially retain the homologous recombination function of SEQ ID

NO: 35 or 36 respectively. The skilled person will appreciate that 1, 2, 3, 4, 5 or more amino acid residues may be substituted, added or removed without affecting function. For example, conservative substitutions may be considered.

- 5 The immunogen expression cassette may further comprise a transcription terminator sequence. The transcription terminator sequence may be provided in embodiments of the immunogen expression cassette comprising a secondary promoter. For example, the transcription terminator sequence may be provided downstream of a protein expressed by the primary promoter, but before (upstream of) the secondary promoter.
- 10 The transcription terminator sequence may comprise or consist of the sequence TTTTGT, or variants thereof.

In one embodiment, the immunogen expression cassette described herein may be isolated or provided in a non-viral vector.

- 15 Therefore, according to another aspect of the present invention there is provided a nucleic acid comprising the immunogen expression cassette described herein, optionally wherein the nucleic acid is isolated nucleic acid.
- 20 According to another aspect of the invention there is provided a composition comprising the viral vector according to the invention, optionally wherein the composition is a pharmaceutically acceptable composition.
The composition may be immunogenic, for example in a mammal, such as a human.
- 25 The composition may comprise a pharmaceutically acceptable carrier. The composition may be a pharmaceutical composition comprising a pharmaceutically acceptable carrier. The composition may be for use in the prophylaxis or treatment of HBV infection.
- 30 According to another aspect of the invention there is provided a method of treatment or prophylaxis of HBV infection comprising the administration of the viral vector, nucleic acid or composition according to the invention.
The method of treatment or prophylaxis of HBV infection may be a method of vaccination.

According to another aspect of the invention there is provided a viral vector, nucleic acid or composition according to the invention for use in the treatment or prevention of HBV infection, optionally wherein the use is in a vaccine.

5

According to another aspect of the invention there is provided a vaccine comprising the viral vector, nucleic acid or composition according to the invention.

10 The vaccine may be a prime vaccine. The vaccine may be a boost vaccine. Where a boost vaccine is provided following a prime vaccine, the viral vector may be a different viral vector according to the invention.

15 Advantageously, the provision of a different viral vector between prime and boost vaccines can avoid the provision of “false” epitopes formed across junctions of one protein/antigen sequence with another. i.e. the same junction may not occur in a re-ordered protein.

According to another aspect of the invention, there is provided a prime boost vaccination kit comprising

20 -a prime vaccination according to the invention;
-a boost vaccination according to the invention.

The prime and boost vaccination may comprise different viral vectors.

25 The viral vector may be used in a vaccine in combination with another therapeutically or prophylactically active ingredient. The viral vector may be used in a vaccine in combination with an adjuvant.

30 The viral vector, nucleic acid encoding the viral vector may be provided in a pharmaceutically acceptable carrier.

The viral vector or composition according to the invention may not comprise wild-type HBV, or the nucleic acid according to the invention may not encode wild-type HBV.

35

Reference to sequence "identity" used herein may refer to the percentage identity between two aligned sequences using standard NCBI BLASTp parameters (<http://blast.ncbi.nlm.nih.gov>).

5 The term "immunogenic", when applied to the viral vector, nucleic acid or composition of the present invention means capable of eliciting an immune response in a human or animal body. The immune response may be protective of HBV. The term "protective" means prevention of Hepatitis B disease, a reduced risk of Hepatitis B disease, reduced risk of HBV infection, transmission and/or progression, reduced
10 severity of Hepatitis B disease, a cure of Hepatitis B, an alleviation of symptoms of Hepatitis B, or a reduction in severity of Hepatitis B disease symptoms.

The term "prophylaxis" means prevention of or protective treatment for Hepatitis B. The prophylaxis may include a reduced risk of HBV infection, transmission and/or
15 Hepatitis B disease progression, or reduced severity of Hepatitis B disease.

The term "treatment", means a cure of Hepatitis B, an alleviation of symptoms, or a reduction in severity of Hepatitis B disease or Hepatitis B disease symptoms.

20 With reference to "variant" nucleic acid sequences, the skilled person will appreciate that 1, 2, 3, 4, 5 or more codons may be substituted, added or removed without affecting function. For example, conservative substitutions may be considered.

With reference to "variant" amino acid sequences, the skilled person will appreciate
25 that 1, 2, 3, 4, 5 or more amino acids may be substituted, added or removed without affecting function. For example, conservative substitutions may be considered.

The skilled person will understand that optional features of one embodiment or aspect
30 of the invention may be applicable, where appropriate, to other embodiments or aspects of the invention.

Embodiments of the invention will now be described in more detail, by way of example only, with reference to the accompanying drawings.

Figure 1: (A) Phylogenetic relationship of 1447 HBV genotype C sequences used to generate consensus sequence (B) Comparison of HBV genotype C consensus (SEQ ID NO: 1) and KP017269.1 HBV isolate JP-02 (SEQ ID NO: 2). 1447 HBV genotype C nucleotide sequences, downloaded from HBV data base, HBVdb: <https://hbvdb.ibcp.fr/HBVdb/HBVdbIndex>, were aligned using MAFFT (a multiple sequence alignment program), to generate the HBV genotype C consensus sequence and a phylogenetic tree and. Alignment of 3215 nucleotide sequences of the consensus and chosen patient's sequence (KP017269.1 HBV isolate JP-02) showed three nucleotide differences (at positions 52, 1053 and 2699), which are highlighted in grey colour. The sequence of the HBV genotype C consensus sequence generated from 1447 genotype c isolate jp-02 is provided below.

Figure 2: (A) HBV viral genome and codon layout. The HBV virion has a partial double stranded DNA (having a full length negative strand DNA and a partially synthesised positive strand DNA attached to the polymerase protein). The genome is approximately 3.2 Kb in length and has four major codons: core (including the precore region), polymerase, surface (including the preS1 and preS2 region) and X. (B) HBV Immunogen Layout. Two immunogens SIi-HBV-CPmutS and SIi-HBV-SCPmut were designed. Both immunogens encodes HBV codons (encompassing precore, core, polymerase [Pmut], preS1, preS2 and surface proteins) and non HBV codons (comprising of a truncated Shark Invariant chain [SIi], two linkers [represented in Turquoise blue colour] and a Furin 2A [F2A] peptide sequence). Within the mammalian expression cassette, the immunogen codon sequences are placed next to CMV promoter. (C) *Invitro* expression analysis. Plasmids encoding SIi-HBV-CPmutS and SIi-HBV-SCPmut were transfected into HEK293A cells. 24 hours post-transfection, cells were lysed and the lysates were analysed in Western blot experiments using mouse anti-HBV-PreS1 and mouse anti-HBV-Polymerase antibodies. Blots probed with mouse anti-GAPDH served as loading controls. (D) ChAdOX2-SIi-HBV-CPmutS. The mammalian expression cassette with SIi-HBV-CPmutS immunogen codons was inserted into the replication deficient ChAdOx2 vector. Recombinant ChAdOX2-SIi-HBV-CPmutS virus was generated by transfecting the ChAdOX2-SIi-HBV-CPmutS vector into T-

REx™-293 cells (Thermo Fisher Scientific) using standard methods as previously described.

Figure 3: Testing ChAdOx2-SIi-HBV-CPmutS vaccine in naive mice models. (A) Spleenocyte responses in BALB/c mice (B) Intra Hepatic Lymphocyte responses in BALB/c mice (C) Spleenocyte responses in CD1 mice (D) Intra Hepatic Lymphocyte responses in CD1 mice. BALB/c mice (4 mice at the age of 7 weeks) and CD1 (2 mice at age of 18 weeks and 5 mice at age of 13 weeks) were vaccinated by intramuscular injections with 4×10^7 10 IU and 5×10^7 IU per mice respectively of ChAdOx2-SIi-HBV-CPmutS vaccine. 14 days post-vaccination, mice were sacrificed, spleenocytes and intra hepatic lymphocytes (IHL) were isolated from spleen and liver according to standard protocol. 2×10^5 spleenocytes and 1×10^5 IHL's were plated on to ELISPOT plates (pre-coated with Anti-mouse INF γ monoclonal antibody, by 15 overnight incubation) along with DMSO (1%) or non-HBV peptide pool (A,I, L at a concentration of 3 μ g/ml) or HBV peptide pool (Core, Pol-1, Pol-2, Pol-3, Pol-4, PreS1/S2 and Surface at a concentration of 3 μ g/ml) or a positive 20 control mitogen (PHA or Concanavalin A at a concentration of 10 μ g/ml and 12.5 μ g/ml respectively). After an overnight 15 hours incubation at 37°C, the plates were washed 7x with PBS and incubated with Biotin conjugated mouse 25 anti-INF γ for 2 hours at room temperature, followed by 4x wash with PBS and AP conjugated anti-biotin incubation for 2 hours at room temperature. The plates were then washed 4x with PBS and developed with BCIP/NBT substrate until spots appeared on the wells. After a final wash with water and drying the spot forming units (SFU) per million cells from individual wells were counted 30 on a automated ELISpot plate reader. ELISPOT responses for each peptide pool stimulus with spleenocytes and IHL's from BALB/c and CD1 mice are represented in separate charts. Total responses from HBV peptide stimulus were also calculated by combining ELISPOT responses to all HBV peptide pools (Core, Pol-1, Pol-2, Pol-3, Pol-4, PreS1/S2 and Surface).

Figure 4: Comparison of the immunogenicity of HBV immunogen SIi-HBV-CPmutS with and without Shark Invariant chain (SIi). (A) HBV-CPmutS immunogen layout. The immunogens HBV-CPmutS was generated by deleting the SIi and first linker present in SIi-HBV-CPmutS. HBV-CPmutS 35

has exactly the same amino acids, except that it lacks the SIi and first linker sequence that is present in the SIi-HBV-CPmutS immunogen. **(B) Spleenocyte responses in CD1 mice. (C) Intra Hepatic Lymphocyte responses in CD1 mice.** ChAdOX2-HBV-CPmutS was generated as described earlier and CD1 mice (10 mice at age of 7 weeks) were vaccinated by intramuscular injections with 5×10^7 IU per mice ChAdOx2-HBV-CPmutS vaccine and 14 days post-vaccination mice were sacrificed and spleenocytes and intra hepatic lymphocytes response data were generated, as described earlier. Data from 5 and 10 CD1 mice vaccinated with ChAdOx2-SIi-HBV-CPmutS and ChAdOx2-HBV-CPmutS respectively were compared and represented in charts for ease of comparision.

Figure 5A: Schematic layout of SIi-HBV-CPmutPreS-S(sh).

15 **Figure 5B: Schematic layout of SIi-HBV-CPmutPreS-TPA-S(sh).**

Figure 6A: Schematic layout of MVA-SIi-HBV-PreS-P_{mut}-C-S(sh).

20 **Figure 6B: Schematic layout of MVA-SIi-HBV-PreS-Pmut-C-TPA-S(sh).**

25 **Figure 7: Testing ChAdOx1-SIi-HBV-CPmutS vaccine in BALB/c mice, splenocyte response:** BALB/c mice (8 mice at the age of 8 weeks) were vaccinated by intramuscular injections with 5×10^7 IU per mice of ChAdOx1-SIi-HBV-CPmutS vaccine. 14 days post-vaccination, mice were sacrificed; splenocyte response data were generated, as described earlier. Splenocyte T-cell response for each peptide pool stimulus and pooled total response from all HBV-peptide pools are represented in the bar chart.

30 **Figure 8: Comparison of the immunogenicity of HBV immunogen SIi-HBV-CPmutS encoded via ChAdOx1 and ChAdOx2.** HBV-CPmutS immunogen encoding ChAdOx1 and ChAdOx2 viral vectored vaccines were generated, as previously described (figure 2D). 10 CD1 mice at age of 7 weeks and 8 CD1 mice at age of 8 weeks were vaccinated by intramuscular injections with 5×10^7 IU per mice of ChAdOx2-HBV-CPmutS and ChAdOx1-HBV-CPmutS vaccine, respectively, and 14 days post-vaccination mice were

sacrificed and splenocyte response data were generated, as described earlier. Data from 10 and 8 CD1 mice vaccinated with ChAdOx2-SIi-HBV-CPmutS and ChAdOx1-HBV-CPmutS were compared and represented in charts for ease of comparison. A statistically significant higher magnitude of total splenocyte T-cell response was observed in mice vaccinated with ChAdOx2-HBV-CPmutS vaccine, compared to the ChAdOx1-HBV-CPmutS vaccine.

Figure 9: Comparison of the immunogenicity of HBV immunogen SIi-HBV-CPmutPreS-S(sh) (termed as HBV-v2) encoded via ChAdOx1 and ChAdOx2 viral vectors using either a short CMV promoter or long CMV promoter. Two short CMV promoter and one long CMV promoter based SIi-HBV-CPmutPreS-S(sh) immunogen (termed as HBV-v2) encoding ChAdOx1 (ChAdOx1-LP-HBV-v2 and ChAdOx1-SP-HBV-v2) and ChAdOx2 (ChAdOx2-SP-HBV-v2) vaccines were generated as previously described. 15 Balbc mice at age of 8 weeks were split into 3 groups (5 mice per group) and vaccinated by intramuscular injections with 5×10^7 IU of ChAdOx1-SP-HBV-v2 or ChAdOx2-SP-HBV-v2 or ChAdOx1-LP-HBV-v2 vaccine. 14 days post-vaccination mice were sacrificed and splenocyte response data were generated as previously described. Comparative data from all three HBV-v2 vaccines are represented in the same chart for ease of comparison. A statistically significant higher magnitude of total splenocyte T-cell response was observed in mice vaccinated with ChAdOx1-SP-HBV-v2 vaccine, compared to the other two HBV-v2 vaccines. In addition, the ChAdOx2-SP-HBV-v2 vaccine showed a statistically significant higher magnitude of total splenocyte T-cell response compared to the ChAdOx1-LP-HBV-v2 vaccine.

Figure 10A-G: show immunogen layout for (A) SIi-HBV-CPmutS; (B) SIi-HBV-SCP_{mut} (C) HBV-CP_{mut}S (D) SIi-HBV-CP_{mut}PreS-S(sh) (E) MVA-SIi-HBV-PreS-P_{mut}-C-S(sh) (F) SIi-HBV-CP_{mut}PreS-TPA-S(sh), and (G) MVA-SIi-HBV-PreS-P_{mut}-C-TPA-S(sh).

A HBV vaccine was generated based on the HBV genotype C, one of the commonest HBV genotypes in South East Asia that has more frequent association with chronic HBV infection. To design the HBV immunogen, a patient's HBV genotype C sequence (GeneBank: KP017269.1) was selected that was closest to the consensus, this was

generated by aligning 1447 HBV-genotype-C sequences from HBVdb, a Hepatitis Virus B database (Figure 1A and 1B). The chosen HBV genotype C sequence had only three nucleotide changes compared to the consensus, of which two were silent mutations and one had a mutation in the polymerase protein (Figure 1C).

5

A strong and multi-antigen specific T cell response against different HBV proteins is believed to play a major role in viral clearance of a resolving HBV infection. Based on this HBV immunogens have been designed that encode all major proteins of the virus, namely the core (including the Pre-core region), a non-functional polymerase 10 Pmut (Pmut: HBV polymerase with functional mutations, aiming to discourage the vaccine encoded polymerase's ability to participate in HBV viral replication) and the surface protein (including its PreS1 and PreS2 regions). Figure 2A and 2B shows the codon layout of HBV genome and a schematic representation of the first two HBV vaccine immunogen designs respectively. The layout has been designed to encode pre- 15 core, core and Pmut as a fusion protein and a separate surface protein using a furin 2A (F2A) peptide cleavage mechanism, which by causing ribosomal skipping events, helps to encode two proteins from a single open reading frame.

20 Encoding multiple proteins within a single transgene cassette requires careful design, where the proximity of codon sequence to CMV promoter plays an important role in the level of expression of the encoded proteins. To analyse this two immunogens (Figure 2B), SIi-HBV-CPmutS and SIi-HBV-SCPmut, we generated which encodes the surface protein either at the end or the beginning of the immunogen cassette 25 respectively and tested them in Western blot expression studies. Western blot expression analysis showed that layout SIi-HBV-CPmutS has the best F2A cleavage possibility, which generates large amounts of the expected CPmut and S proteins when compared to the SIi-HBV-SCPmut (Figure 2c).

30 Based on this observation, we decided to take forward SIi-HBV-CPmutS immunogen layout for the generation of chimpanzee adenovirus (ChAdOx2) based T-cell inducing HBV vaccine (Figure 2D). A small scale batch of ChAdOx2-SIi-HBV-CPmutS was manufactured at the viral vector core facility of the Jenner Institute, University of Oxford, following good manufacturing practices, and used in mice immunogenicity studies.

35

The ability of ChAdOx2-SIi-HBV-CPmutS vaccine to generate a T-cell immune response was tested using naive mice models. Naive BALB/c and CD1 mice were immunized with 4×10^7 IU and 5×10^7 IU per mice respectively of ChAdOx2-SIi-HBV-CPmutS vaccine by intra-muscular injections. 14 days post vaccination mice 5 were sacrificed and IFN- γ ELISPOT assays were performed with spleenocytes and intra hepatic lymphocytes (IHL) isolated from spleen and liver. Synthetic peptides of 15mers, overlapping by 11 amino acids, generated across the whole of SIi-HBV-CPmutS immunogen, were combined into specific pools (representing different regions of the SIi-HBV-CPmutS immunogen) and used as a stimulant in IFN- γ 10 ELISPOT assays. Results showed that the ChAdOx2-SIi-HBV-CPmutS vaccine generated a good IFN- γ ELISPOT response to SIi-HBV-CPmutS immunogen (Figure 3). Both BALB/c and CD1 mice showed stronger responses to the polymerase and surface proteins, a weak response to the core protein and negligible or no response to the non-HBV proteins (Shark Invariant chain [SIi], F2A and linkers) in the 15 immunogen.

Previous studies have shown that the shark invariant chain (SIi), when placed at the N-terminus of the immunogen, functions as a molecular adjuvant and increases the overall T-cell immune response to the immunogen. To test this, we generated a HBV 20 immunogen without SIi (HBV-CPmutS vaccine) (Figure 4A), and then generated a ChAdOx2-HBV-CPmutS vaccine and tested them in similar CD1 mice immunogenicity experiments. Results showed that the SIi vaccine (ChAdOx2-SIi-HBV-CPmutS) generates a higher magnitude of IFN- γ ELISPOT response (both Splenocyte and Intra Hepatic Lymphocyte IFN- γ ELISPOT response, represented in 25 figure 4B, 4C) compared to the Non-SIi vaccine (ChAdOx2-HBV-CPmutS).

The main aim of the viral vectored HBV vaccine design is to generate both T-cell and antibody response to the HBV immunogen. In order to generate a successful antibody response, the immunogen encoded protein has to fold into its native conformation. To 30 provide this, HBV immunogens, SIi-HBV-CPmutPreS-S(sh) and SIi-HBV-CPmutPreS-TPA-S(sh) (Figure 5A and 5B) were designed, which encode the N-terminal half of PreS1 domain fused with a linker to the S domain of surface protein, as the antibody inducing immunogen component, and the remaining peptide sequences of the surface protein (the C-terminal half of PreS1 domain and the whole PreS2 35 domain) were fused to the PreCore/Core/Pmut, in order to preserve the T-cell epitopes

that would be required for generation of T-cell immune response. Figure 5A and 5B shows a schematic layout of SIi-HBV-CPmutPreS-S(sh).

MVA-HBV immunogens were also designed, which followed designs similar to SIi-HBV-CPmutPreS-S(sh) and SIi-HBV-CPmutPreS-TPA-S(sh). However, the T-cell component of HBV immunogen SIi-HBV-CPmutPreS is encoded by the early promoter F11 and the antibody inducing component S(sh) or TPA- S(sh) is encoded by the early/late promoter mH5. The cloning cassette also has F11-left flank and F11-right flank sequences, to allow insertion into the F11 locus, by homologous recombination. Figure 6A and 6B shows schematic layouts of MVA-SIi-HBV-PreS-Pmut-C-S(sh) and MVA-SIi-HBV-CPmutPreS-TPA-S(sh) respectively.

Conclusion: The novel multi-antigen HBV immunogen based ChAdOx2-SIi-HBV-CPmutS are highly immunogenic in naive mice models. These studies pave way for future studies in chronic HBV mice models, to assess their ability to overcome chronic HBV infection through immunotherapeutic approaches.

Sequences:

HBV genotype C consensus sequence generated from 1447 genotype C sequences (3215 base pairs) is provided as SEQ ID NO: 1. The Sequence of KP017269.1 HBV isolate JP-02 is provided as SEQ ID NO: 2.

Example Cassettes

1. SIi-HBV-CP_{mut}S

25 1.1. SIi-HBV-CP_{mut}S: Immunogen layout is shown in Figure 10A

1.2. SIi-HBV-CP_{mut}S: Amino acid sequence (SEQ ID NO: 3)

MSLLWGGVTVLAAMLIAGQVASVVFLVKGGGPGGGMQLFHLCLIISCSCP
VQASKLCLGWLWGMDIDPYKEFGASVELLSFLPSDFPSIRDLLDTASALYRE
30 ALESPEHCSPHHTALRQAILCWGELMNLATWVGSNLEDPASRELVVSYVNV
NMGLKIRQLLWFHISCLTFGRETVLEYLVSGVWIRTPPAYRPPNAPISTLPE
TTVVRRGRSPRRRTPSRRRSQSPRRRSQSRESQCGGGSGGGMPLSYQH
FRKLLLLDDEAGPLEEELPRLADEGLNRRVAEDLNLGNLNVSIWTHKVGNF
TGLASSTVPVFNPEWQTPSFPHIHLQEDIINRCQQYVGPLTVNEKRLKLIMPA
35 RFYPNLTKYLPLDKGIKPYYPEHAVNHYFKTRHYLHTLWKAGILYKRETTRS

ASFCGSPYSWEQELQHGRFLVFQTSTRHGDESFCSSGILSRSPVGPCVRSQL
 KQSRLGLQPQQGSLARGKSGRSGSIRARVHPTTRRSFGVEPGSGHIDNSASST
 SSCLHQSAVRKTAYSHLSTSQRQSSGHAVELNIPPSSARSQSEGPIFSAWWL
 QFRNSKPASDYALTHIVNLLEDWGPATEHGEHNIRIPRTPARVTGGVFLVDKN
 5 PHNTTESRLVVDFSQFSRGSTHVSWPKFAVPNLQSLTNLLSSNLSWLSLDVSA
 AFYHIPLHPAAMPHLLVGSSGLPRYVARLSSTSRRNINYQHGTMQDLHDCSR
 NLYVSLLLYKTFGRKLHLYSHPIILGFRKIPMGVGLSPFLAQFTSAICSVVR
 RAFPHCLAFSYMDDVVLGAKSVQHLESLFTSITNFLLSLGIHLNPNKTRWGY
 SLNFMGYVIGSWGTLPQEHLVLIKQCFRKLPVNRPIDWKVCQRIVGLGFAA
 10 PFTQCGYPALMPLYACIQSKQAFTFSPTYKAFLCKQYLNLYPVARQRSGLCQ
 VFADATPTGWLGAIGHRAAMRGTFVAPLPIHTAELLAACFARSRSAGAKLIGTD
 NSVVLRSRKYTSFPWLLGCAANWILRGTSFVYVPSALNPAADPSAGRLGLYRP
 LLHLPFRPTTGRTSLYAVSPSVPSPHLPDRVHFASPLHVAWRPPRKRRAPVKQ
TLNFDLLKLAGDVENPGPMGGWSSKPRQGMGTNLSVPNPLGFFPDHQLDP
 15 AFGANSNNPDWDFNPNKDHWPEANQVGAGAFGPGFTPPHGGLLGWSPQAQ
 GILTTVPAAPPPASTNRQSGRQPTPISPLLRDSHPQAMQWNSTTFHQALLDPR
 VRGLYFPAGGSSSGTVNPVPTTASPISSIFSRTGDPAPNMENTSGFLGPLLV
 QAGFFLLTRILTIPQSLDSWWTSNFLGGAPTCPGQNSQSPTSNHSPTSCPPICP
 GYRWMCLRRFIIFL~~FILL~~CLIFLLVLLDYQGMLPVCPLLPGTSTTGPCKTCT
 20 IPAQGTSMFPSCCCTKPSDGNCTCIPSSWAFARFLWEWASVRFWSWLSLLV
 VQWFVGLSPTVWLSVIWMMWYWGPSLYNILSPFLPLPIFFCLWVYI

1.3. **SIi-HBV-CP_{mut}S: Description for amino acid sequences of HBV immunogen**

25 1.3.1. First amino acid of polypeptide = M
 1.3.2. Shark Invariant chain (SIi) = SLLWGGVTVLAAMLIAGQVASVVFLV
 (SEQ ID NO: 4)
 1.3.3. Linker = KGGGPGGG (SEQ ID NO: 5)
 1.3.4. C =
 30 1.3.4.1. PreC =
 MQLFHLCCLIISCSCPTVQASKLCLGWLWG (SEQ ID NO: 16)
 1.3.4.2. Core =
 MDIDPYKEFGASVELLSFLPSDFPSIRDLLDTASALYREALESP
 EHCSPHHTALRQAILCWGELMNLATWVGSNLEDPASRELVVSY
 35 VNVNMGLKIRQLLWFHISCLTFGRETVEYLVSFGVWIRTPPAY
 RPPNAPISTLPETTVVRRGRSPRRRTSPRRRSQSPRRRSQS
 RESQC (SEQ ID NO: 6)
 1.3.5. Linker = GGGSGGGG (SEQ ID NO: 7)
 1.3.6. Pmut = (mutations: Y63A, C323A, C334A, C338A, C352A, R714A,
 40 D788A, R792A)

5	MPLSYQHFRKLLLLDDEAGPLEEELPRLADEGLNRRVAEDLNLGNL NVSIPWTHKVG NFTGL ASSTVPVFNPEWQTPSFPHIHLQEDIINRCQQ YVGPLTVNEKRRKLIMPARFYPNLT KY LP D KGIK Y Y P EHAVNHY FKTRH Y LHTLWKAGILYKRETTR S ASFCGSPYSWEQELQHGRLVFQT STRHGDESFC S QSSGILSRSPVG C VRSQLKQSRLGLQPQQGSLARGK SGRSGSIRARVHPT TR RSFGVE PS GS H IDNSASSTSSCLHQS A VRKT AYSHLSTS K RQSSSGHA V ELHNIPPSSARSQSEGPIFSA W WLQFRNSK <u>PASDY</u> AL THIVNLLEDWGP <u>A</u> TEHGEHNIRIPRT P ARV T GGVFLVDKN PHNTTESRLVVDFSQFSRG ST HVS W PKFAV P NLQSLTNLLSSNLSTFG RKLHLYSHPIILGFRKIPMGVGLSPFLLAQFTSAICSVVRRAFPHCLAF SYMDDVV L GAKSVQHLES L FTSITNF L LSGIH L NP N KRWGYSLN FMGYVIGSWG T LPQEHIVL K IKQCFR K LPVN R PIDW K V C Q R I V GLG FAAPFTQC G Y P ALM P LYACI Q SKQAF T S P TYKAFLCKQ Y LNLYPVA RQRSGLCQVFADATPTG W GLAIGH R <u>AMRGTFV</u> APLPIHTAELLAACF ARSRS G AKLIGTDNSV V LSRK Y TSFPWLLGCAANWILRG T SFVYVPS ALNPA <u>ADPSA</u> GR L GLY R PLLHLP R PTT G RT S LYAVSPS V PSHLP D RV HFASPLHVAWRPP (SEQ ID NO: 8)
10	
15	

20 1.3.7. Furin 2A (F2A) = **RKRRAPVKQTLNFDLLLAGDVESNPGP** (SEQ ID NO: 9)

1.3.8. Surface proteins (S) =

1.3.8.1. PreS1 =

MGGWSSKPRQGMGTNLSPNPLGFFPDHQLDPAFGANSNNPDWD
FNPNKDHWPEANQVGAGAFGPGFTPPHGGLLGWSPQAQGILTTVP
AAPPASTNRQSGRQPTPISPPLRDSHPQA (SEQ ID NO: 52)

25 1.3.8.2. PreS2 =

MQWNSTTFHQALLDPRVRGLYFPAGGSSSGTVNPVPTTASPISSIFS
RTGDPAPN (SEQ ID NO: 53)

1.3.8.3. Surface (S) =

30 MENTTSGFLGPLLVLQAGFFLLTRILTIPQSLDSWWTSLNFLGGAPTC
PGQNSQSPTSNHSPTSCPPICPGYRWMCLRRFIIFLFILLCLIFLLVLL
DYQGMLPVCPLLPGTSTTSTGPKTCTIPAQGTSMPSCCCTKPSDGN
CTCIPIPSSWAFARFLWEWASVRFSWLSLLVPFVQWFVGLSPTVWLS
VIWMMWYWGPSIYNII.SPEIPLI.PIFECI.WVYI (SEQ ID NO: 10)

35 The SII-HBV-CPmutS nucleotide sequence is provided as SEQ ID NO: 46.

2. SII-HBV-SCP_{mut}

2.1. SII-HBV-SCP_{mut}: Immunogen layout is shown in Figure 10B

40 2.2. SII HBV-SCP_{mut}: Amino acid sequence (SEQ ID NO: 11)

45 MSELWGVIVLAAKMLAQVAVSVVLEYQGMGCVSSKPRQGMGPNESV
NPLGFFPDHQLDPAFGANSNNPDWDFNPKNKDHWPEANQVGAGAFGPGFTPP
HGGLLGWSPQAQGILTTVPAAPPPASTNRQSGRQPTPISPLRDSHPQAMQWN
STTFHQALLDPRVRGGLYFPAGGSSSGTVNPVPTTASPISSIFSRTGDPAPNMEN
TTSGFLGPLLVLQAGFFLLTRILTIPQSLSWWTSNFLGGAPTCPGQNSQSPT
SNHSPTSCPPICPGYRWMCLRRFIIFLFI~~LL~~CLIFLLVLLDYQGMLPVCPLLPG

TSTTSTGPKTCTIPAQGTSMPSCCCTKPSDGNCIPIPSSWAFARFLWEWA
 SVRFSWLSLLVPFVQWFVGLSPTVWLSVIWMMWYWGPSLYNILSPFLPLPIF
 FCLWVYIRKRRAPVKQTLNF DLLKLAGDVE SNPGPMQLFHLCLIISCSCPTV
 QASKLCLGWLWGMDIDPYKEFGASVELLSFLPSDFPSIRDLLDTASALYREA
 5 LESPEHCSPHHTALRQAILCWGELMNLATWVGSNLEDPASRELVVSYVNVN
 MGLKIRQLLWFHISCLTFGRETVLEYLVSGVWIRTPPAYRPPNAPISTLPET
 TVVRRRRGRSPRRRTPSPRRRRSQSPRRRSQSRESQCGGGSGGGMPLSYQHF
 RKLLLLDDEAGPLEEELPRLADEGLNRRVAEDLNGLGNLNVSIPWTHKVGIFT
 10 GLASSTVPVFNPEWQTPSFPHIHLQEDIINRCQQYVGPLTVNEKRLKLIMPAR
 FYPNLTKYLPLDKGIKPYYPEHAVNHYFKTRHYLHTLWKAGILYKRETTRSA
 SFCGSPYSWEQELQHGRLVFQTSTRHGDESFCQSMSGILSRSPVGPCVRSQLK
 QSRLGLQPQQGSLARGKSGRSGSIRARVHPTRRSGVEPSGSGHIDNSASSTS
 SCLHQSAVRKTAYSHLSTSQRQSSGHAVELNIPPSSARSQSEGPIFSAWWL
 QFRNSKPASDYALTHIVNLLEDWGPATEEHGEHNIRIPRTPARVTGGVFLVDKN
 15 PHNTTESRLVVDFSQFSRGSTHVS WPKFAVPNLQSLTNLSSNLSWLSDVSA
 AFYHIPLHPAAMPHLLVGSSGLPRYVARLSSTSRNIN YQHGTMQDLHDCSR
 NLYVSLLLYKTFGRKLHLYSHPIILGFRKIPMGVGLSPFLAQFTSAICSVVR
 RAFPHCLAFSYMDDVVLGAKSVQHLESLFTSITNFLLSLGIHLNPNKTRWGY
 SLNFMGYVIGSWGTLQPQEHLKIKQCFRKLPVNRPIDWKCQRIVGLGFAA
 20 PFTQCGYPALMPLYACIQSKQAFTFSPTYKAFLCKQYLNLYPVARQRSGLCQ
 VFADATPTGWLGAIGHRAMRGTFVAPLPIHTAELLAACFARSRSAKLIGTD
 NSVVLRSRKYTSFPWLLGCAANWILRGTSFVYVPSALNPADPSAGRGLGLYRP
 LLHLPFRPTTGRTSLYAVSPSPVSHLPDRVHFASPLHVAWRPP

25 2.3. **SIi-HBV-SCP_{mut}:** Description for amino acid sequences of HBV immunogen

2.3.1. First amino acid of polypeptide = M

2.3.2. Shark Invariant chain (SIi) = SLLWGGVTVLAAMLIAGQVASVVFLV
(SEQ ID NO: 4)

30 2.3.3. Linker = KGGS (SEQ ID NO: 14)

2.3.4. Surface proteins (S) =

2.3.4.1. PreS1 =
 MGGWSSKPRQGMGTNLSVPNPLGFFPDHQLDPAFGANSNNPDWD
 FNPNKDHWPEANQVGAGAFGPGFTPPHGGLLGWSPQAQGILTTVP
 35 APPPASTNRQSGRQPTPISPPLRDHPQA (SEQ ID NO: 52)

2.3.4.2. PreS2 =
 MQWNSTTFHQALLDPRVRGLYFPAGGSSSGTVNPVPTTASPISSIFS
 RTGDPAPN (SEQ ID NO: 53)

2.3.4.3. Surface (S) =

40 MENTTSGFLGPLLVLQAGFFLLTRILTIPQSLDSWWTSNLNFLGGAPTC
 PGQNSQSPTSNHSPTSCPPICPGYRWMCLRRFIIFLILLCLIFLLVLL
 DYQGMLPVCPLLPGTTSTGPKTCTIPAQGTSMPSCCCTKPSDGN
 CTCIPIPSSWAFARFLWEWASVRFSWLSLLVPFVQWFVGLSPTVWLS
 VIWMMWYWGPSLYNILSPFLPLPIFFCLWVYI (SEQ ID NO: 10)

45 2.3.5. Furin 2A (F2A) = RKRRAPVKQTLNF DLLKLAGDVE SNPGP (SEQ ID NO: 9)

2.3.6. C =

2.3.6.1. PreCore =

MQLFHLCCLIISCSCPCTVQASKLCLGWLWG (SEQ ID NO: 16)

2.3.6.2. Core =

5 MDIDPYKEFGASVELLSFLPSDFPSIRDLLDTASALYREALESP
EHCSPHHTALRQAILCWGELMNLATWVGSNLEDPASRELVVSY
VNVNMGLKIRQLLWFHISCLTFGRETVELYLVSGVWIRTPPAY
RPPNAPISTLPETTVVRRGRSPRRRTSPRQQRSQSPRRRSQS
RESQC (SEQ ID NO: 6)

2.3.7. Linker = GGGSGGG (SEQ ID NO: 7)

10 2.3.8. Pmut = (mutations: Y63A, C323A, C334A, C338A, C352A, R714A,
D788A, R792A)

15 MPLSYQHFRKLLLLDEAGPLEEELPRLADEGLNRRVAEDLNLGNLNVSIPWTH
KVGNFTGLASSTVPVFNPEWQTPSFPHIHLQEDIINRCQQYVGPLTVNEKRLKLI
MPARFYPNLTKYLPLDKGIKPYYPEHAVNHYFKTRHYLHTLWKAGILYKRETTR
SASFCGSPYSWEQELQHGRLFVQTSTRHGDESFCSQSSGILSRSPVGPVCVRSQLKQ
15 SRLGLQPQQGSLARGKSGRSGSIRARVHPTTRRSFGVEPSGSGHIDNSASSTSSCL
HQSAVRKTAYSHLSTSQRQSSGHAVELNIPPSSARSQSEGPIFSAWWLQFRNSK
PASDYALTHIVNLLEDWGPATEHGEHNIRIPRTPARVTGGVFLVDKNPHNTTESR
20 LVVDFSQFSRGSTHVSWPKFAVPNLQSLTNLLSSNLSTFGRKLHLYSHPIILGFRKI
PMGVGLSPFLLAQFTSAICSVVRAFPHCLAFSYMDDVVLGAKSVQHLESLFTSIT
NFLLSLGIHLNPNKTKRGYSLNFMGYVIGSWGTLQPQEHLKIKQCFRKLGVNR
PIDWKVCQRIVGLLGFAAPFTQCGYPALMPLYACIQSKQAFTFSPTYKAFLCKQY
LNLYPVARQRSGLCQVFADATPTGWLAIHGRAMRGTFVAPLPIHTAELLAACF
25 ARSRSGAKLIGTDNSVVLSRKYTSFPWLLGCAANWILRGTSFVYVPSALNPAADP
SAGRLGLYRPLLHLPFRPTTGRTSLYAVSPSVPSHLPDRVHFASPLHVAWRPP
(SEQ ID NO: 8)

The SIi-HBV-SCPmut nucleotide sequence is provided as SEQ ID NO: 47:

30 3. **HBV-CP_{mut}S**

3.1. HBV-CP_{mut}S: Immunogen layout is shown in Figure 10C

3.2. HBV-CP_{mut}S: Amino acid sequence (SEQ ID NO: 12)

35 MQLFHLCCLIISCSCPCTVQASKLCLGWLWGMDIDPYKEFGASVELLSFLPSDFP
SIRDLLDTASALYREALESPEHCSPHHTALRQAILCWGELMNLATWVGSNLE
DPASRELVVSYVNVMGLKIRQLLWFHISCLTFGRETVELYLVSGVWIRTPP
AYRPPNAPISTLPETTVVRRGRSPRRRTSPRQQRSQSPRRRSQSRESQCG
GGGSGGGMPLSYQHFRKLLLLDEAGPLEEELPRLADEGLNRRVAEDLNLGN
LNVSIPWTHKVGNFTGLASSTVPVFNPEWQTPSFPHIHLQEDIINRCQQYVGPL
40 TVNEKRLKLIMPARFYPNLTKYLPLDKGIKPYYPEHAVNHYFKTRHYLHTL
WKAGILYKRETTRSASFCGSPYSWEQELQHGRLFVQTSTRHGDESFCSQSSGI
LSRSPVGPVCVRSQLKQSRLGLQPQQGSLARGKSGRSGSIRARVHPTTRRSFGV
EPSGSGHIDNSASSTSSCLHQSAVRKTAYSHLSTSQRQSSGHAVELNIPPSS
ARSQSEGPIFSAWWLQFRNSKPASDYALTHIVNLLEDWGPATEHGEHNIRIPR

TPARVTGGVFLVDKNPHNTTESRLVVDFSQFSRGSTHVSWPKFAVPNLQSLT
 NLLSSNLSWLSLDVSAAFYHIPLHPAAMPHLLVGSSGLPRYVARLSSTSRNIN
 YQHGTMQDLHDCSRNLVSVLILYKTFGRKLHLYSHPIILGFRKIPMGVGLS
 PFLLAQFTSAICSVVRRAFPHCLAFSYMDDVVLGAKSVQHLESLFTSITNFLS
 5 LGIHLNPNKTKRWGYSNFMGYVIGSWGTLPQEHLVLIKQCFRKLPVNRPID
 WKVCQRIVGLLGFAAPFTQCGYPALMPLYACIQSKQAFTRFSPTYKAFLCKQY
 LNLYPVARQRSGLCQVFADA TPTGWGLAIGHRAAMRGTFVAPLPIHTAELLA
 CFARSRSGAKLIGTDNSVVLRSKYTSFPWLLGCAANWILRGTSFVYVPSALNP
 AADPSAGRGLYRPLLHLPFRPTTGRTSLYAVSPVPSHLPDRVHFASPLHVA
 10 WRPPRKRRAPVKQTLNFLLKLAGDVENPPGPMGGWSSKPRQGMGTNLS
 VPNPLGFFPDHQLDPAFGANSNNPDWDFNPNKDHWPEANQVGAGAFGPGFT
 PPHGGLLGWSPQAQGILTTVPAAPPPASTNRQSGRQPTPISPLRDSHPQAMQ
 WNSTTFHQALLDPRVRGLYFPAGGSSGTVNPVPTTASPISSIFSRTGDPAPNM
 ENTTSGLGPLVLQAGFFLLTRILTIPQSLDSWWTSNFLGGAPTCPGQNSQS
 15 PTSNHSPTSCPPICPGYRWMCLLRFIIFLFILLCLIFLLVLLDYQGMLPVCPLLP
 GTSTTGPKTCTIPAQGTSMFPSCCCTKPSDGNCTCIPIPSSWAFARFLWEW
 ASVRFSWLSLLVPFVQWFVGLSPTVWLSVIWMMWYWGPSLYNILSPFLPLLP
 IFFCLWVYI

20 3.3. **HBV-CP_{mut}S: Description for amino acid sequences of HBV immunogen**

3.3.1. C =

3.3.1.1. PreCore =

MQLFHLCIISCSCPTVQASKLCLGWLWG (SEQ ID NO: 16)

3.3.1.2. Core =

MDIDPYKEFGASVELLSFLPSDFPSIRDLLTASALYREALESP
 EHCSPHHTALRQAILCWGELMNLATWVGSNLEDPASRELVVSY
 VNVNMGLKIRQLLWFHISCLTFGRETVLEYLVSFGVWIRTPPAY
 RPPNAPILSTLPETTVVRRGRSPRRRTSPRRRSQSPRRRSQS
 RESQC (SEQ ID NO: 6)

30 3.3.2. Linker = GGGSGGG (SEQ ID NO: 7)

3.3.3. Pmut = (mutations: Y63A, C323A, C334A, C338A, C352A, R714A, D788A, R792A)

35 MPLSYQHFRKLLLLDEAGPLEEELPRLADEGLNRRVAEDLNLGNLNVSI
 WTHKVGNFTGLASSTVFVNPEWQTPSFPHIHLQEDIINRCQQYVGPLTVNE
 KRRKLIMPARFYPNLTKYLPLDKGIKPYYPEHAVNHFKTRHYLHTLWKA
 GILYKRETTRSASFCGSPYSWEQELQHGRLVFQTSTRHGDESFCSQSSGILSR
 SPVGPCVRSQLKQSRLGLQPQQGSLARGKSGRSGSIRARVHPTRRSFGVEP
 SGSGHIDNSASSTSSCLHQSAVRKTAYSHLSTSKRQSSSGHAVELHNIPPSSA
 RSQSEGPIFSAWWLQFRNSKPASDYALTHIVNLLEDWGPATEHGEHNIRIPR
 TPARVTGGVFLVDKNPHNTTESRLVVDFSQFSRGSTHVSWPKFAVPNLQSL
 40 TNLLSSNLSTFGRKLHLYSHPIILGFRKIPMGVGLSPFLLAQFTSAICSVVRRA

5 FPHCLAFSYMDDVVLGAKSVQHLESLFTSITNFLSLGIHLNPNTKRWGYS
 LNFMGYVIGSWGTLQEHIVLKIKQCFRKLGVNRPIDWKVCQRIVGLLGA
 APFTQCGYPALMPLYACIQSKQAFITSPTYKAFLCKQYLNLYPVARQRSGL
 CQVFADATPTGWLGAIGHRAMRGTFVAPLPIHTAELAACFARSRSAGAKLI
 GTDNSVVLRSKYTSFPWLLGCAANWILRGTSFVYVPSALNPAADPSAGRLG
 LYRPLLHLPFRPTTGRTSLYAVSPSVPSHLPDRVHFASPLHVAWRPP (SEQ
 ID NO: 8)

3.3.4. Furin 2A (F2A) = **RKRRAPVKQTLNF DLLKLAGDVE SNPGP** (SEQ
 ID NO: 9)

10 3.3.5. Surface proteins (S) =

3.3.5.1. PreS1 =

MGGWSSKPRQGMGTNLSVPNPLGFFPDHQLDPAFGANSNNPDWD
 FNPNKDHWPEANQVGAGAFGPGFTPPHGGLLGWSPQAQGILTTVP
 APPPASTNRQSGRQPTPISPLRDHPQA (SEQ ID NO: 52)

15 3.3.5.2. PreS2 =

MQWNSTTFHQALLDPRVRGLYFPAGGSSGTVNPPVPTTASPISSIFS
 RTGDPAPN (SEQ ID NO: 53)

3.3.5.3. Surface (S)

20 MENTTSGFLGPLLVLQAGFFLLTRILTIPQSLDSWWTSLNFLGGAPTC
 PGQNSQSPSTSNSPTSCPPICPGYRWMCLRRFIIFLFILLCLIFLLVLL
 DYQGMLPVCPLPGTSTTGPCKTCTIPAQGTSMFPSCCCTKPSDGN
 CTCIPIPSSWAFLWEWASVRFSWLSLLVPFVQWFVGLSPTVWLS
 VIWMMWYWGPSLYNILSPFLPLPIFFCLWVYI (SEQ ID NO: 10)

25

4. **SIi-HBV-CP_{mut}PreS-S(sh)**

4.1. SIi-HBV-CP_{mut}PreS-S(sh): Immunogen layout is shown in Figure 10D

4.2. SIi-HBV-CP_{mut}PreS-S(sh): Amino acid sequence (SEQ ID NO: 13)

30 MSLLWGGVTVLAAMLIAGQVASVVFLVKGGGPGGGMQLFHLCLIISCSCPT
 VQASKLCLGWLWGMDIDPYKEFGASVELLSFLPSDFFPSIRDLLDTASALYRE
 ALESPEHCSPHHTALRQAILCWGELMNLATWVGSNLEDPASRELVVSYVNV
 NMGLKIRQLLWFHISCLTFGRETVLEYLVSFGVWIRTPPAYRPPNAPISTLPE
 TTVVRRGRSPRRRTSPRRRSQSPRRRSQSRESQCGGGSGGGMPLSYQH
 35 FRKLLLLDDEAGPLEEELPRLADEGLNRRVAEDNLGNLNVSIWTHKVGNF
 TGLASSTVPVFNPEWQTPSFPHIHLQEDIINRCQQYVGPLTVNEKRLKLIMPA
 RFYPNLTKYLPLDKGIKPYYPEHAVNHYFKTRHLYLHTLWKAGILYKRETRRS
 ASFCGSPYSWEQELQHGRLFQTSTRHGDESFCSSGILSRSPVGPCVRSQI
 KQSRLGLQPQQGSLARGKSGRSIRARVHPTTRRSFGVEPSGSGHIDNSASST
 40 SSCLHQSAVRKTAYSHLSTSQRQSSGHAVELHNIPPSSARSQSEGPIFSAWWL
 QFRNSKPASDYALTHIVNLLEDWGPATEHGEHNIRIPRTPARVTGGVFLVDKN

PHNTTESRLVVDFSQFSRGSTHVSWPKFAVPNLQSLTNLLSSNLSTFGRKLHL
 YSHPIILGFRKIPMGVGLSPFLLAQFTSAICSVVRRAFPHCLAFSYMDDVVLGA
 KSVQHLESLFTSITNFLLSLGIHLNPNTKRWGYSNFMGYVIGSWGTLQPQE
 5 IVLKIKQCFRKLPVNRPIDWKVCQRIVGLLGFAAPFTQCGYPALMPLYACIQS
 KQAFTFSPPTYKAFLCKQYLNLYPVARQRSGLCQVFADATPTGWGLAIGHRA
 MRGTFVAPLPIHTAELLAACFARSRSGAKLIGTDNSVVLRSKYTSFPWLLGCA
 ANWILRGTSFVYVPSALNPAADPSAGRLGLYRPLLHPFRPTTGRTSLYAVSP
 SVPSHLPDRVHFASPLHVAWRPPKSPNSNNPDWDFNPNKDHWPEANQVGAG
 AFGPGFTPPHGLLGWSPQAQGILTTVPAAPPPASTNRQSGRQPTPISPLRDS
 10 HPQAMQWNSTTFHQALLDPRVRGLYFPAGGSSGTVNVPVPTTASPISSIFSRT
GDPAPNGSKGKRKRRAPVKQTLNF DLLKLAGDVESNPGPMGGWSSKPRQG
 MGTNLSVPNPLGFFPDHQQLDPAFGANSNNPDWDFNPNKDHWPEANQVGLEG
GSGGMENTTSGFLGPLLVLQAGFFLLTRILTIPQSLDSWWTSLNFLGGAPTCP
 GQNSQSPTSNHSPTSCPPICPGYRWMCLRRFIIFLFILLCLIFLLVLLDYQGML
 15 PVCPLLPGTSTTSTGPCKTCTIPAQGTSMFPSCCCTKPSDGNCCTCIPSSWAFA
 RFLWEWASVRFWSLSSLVPFVQWFVGLSPTVWLSVIWMMWYWGPSLYNILS
 PFLPLLIFFCLWVYI

4.3. **SIi-HBV-CP_{mut}PreS-S(sh): Description for amino acid sequences of HBV**
 20 **immunogen**

- 4.3.1. First amino acid of polypeptide = M
- 4.3.2. Shark Invariant chain (SIi) = SLLWGGVTVLAAMLIAGQVASVVFLV
(SEQ ID NO: 4)
- 4.3.3. Linker = KGGGPGGG (SEQ ID NO: 5)
- 25 4.3.4. C =
 - 4.3.4.1. PreCore =

MQLFHLCIISCSCPTVQASKLCLGWLWG (SEQ ID NO: 16)
 - 4.3.4.2. Core =

MDIDPYKEFGASVELLSFLPSDFPSIRDLLDTASALYREALESP
EHCPHHTALRQAILCWGELMNLATWVGSNLEDPASRELVVSY
VNVNMGLKIRQLLWFHISCLTFGRETVELYLSFGVVWIRTPPAY
RPPNAPILSTLPETTVVRRGRSPRRRTSPRRRSQSPRRRSQS
RESQC (SEQ ID NO: 6)
- 30 4.3.5. Linker = GGGSGGG (SEQ ID NO: 7)
- 35 4.3.6. Pmut = (mutations: Y63A, C323A, C334A, C338A, C352A, R714A,
D788A, R792A)

MPLSYQHFRKLLLLDEAGPLEELPRLADEGLNRRVAEDLN LGNLNV SIP
WTHKVGNF TGLASTVPVNPEWQTPSFPHIHLQEDIINRCQQYVGPLTVNE
KRRKLIMPARFYPNLTKYPLDKGIKPYYPEHAVNHYFKTRHYLHTLWKA
GILYKRETTRSASF CGSPYSWEQELQHGRLVFQTSTRHGDESFC SQSSGILSR
SPVGPCVRSQ LKQSRGLQPQQGSLARGKSGRSGSIRARVHPTRRSFGVEP
SGSGHIDNSASSTSSCLHQSAVRKTAYSHLSTS KRQSSSGHA VELHNIPPSSA
RSQSEGPIFSAWWLQFRNSKPASDYALTHIVNLLEDWGPATEHGEHNIRIPR

TPARVTGGVFLVDKNPHNTTESRLVVDFSQFSRGSTHVSWPKAVPNLQSL
 TNLLSSNLSTFGRKLHLYSHPIILGFRKIPMGVGLSPFLLAQFTSAICSVVRRA
 FPHCLAFSYMDDVVLGAKSVQHLESLFTSITNFLLSLGIHLNPNTKRWGYS
 5 LNFMGYVIGSWGTLQPQEHLVLIKQCFRKLGVNRPIDWKVCQRIVGLLGA
 APFTQCGYPALMPYACIQSKQAFQFTFSPTYKAFLCKQYLNLYPVARQRSGL
 CQVFADATPTGWLGAIGHRAMRGTFVAPLPIHTAELLAACFARSRSAKLI
 GTDNSVVLRSKYTSFPWLLGCAANWILRGTSFVYVPSALNPAADPSAGRLG
 LYRPLLHLPFRPTTGRTSLYAVSPSPVSHLPDRVHFASPLHVWRPP (SEQ
 ID NO: 8)

10 4.3.7. Linker = **KSP**

4.3.8. N_APreS1 and PreS2 =

NSNNPDWDFNPNKDHWPEANQVGAGAFGPGFTPPHGGLLGWSPQA
 QGILTTVPAAPPPASTNRQSGRQPTPISPPLRDSHPQAMQWNSTTFHQ
 15 ALLDPRVRGLYFPAGGSSSGTVNPVPTTASPISSIFSRTGDPAPN (SEQ
 ID NO: 15)

4.3.9. Linker = **GSKGK** (SEQ ID NO: 20)

4.3.10. Furin 2A (F2A) = **RKRRAPVKQTLNF DLLKLAGDVE SNP GP** (SEQ
 ID NO: 9)

4.3.11. **S(sh)** =

20 4.3.11.1. C_APreS1 =

MGGWSSKPRQGMGTNLSVPNPLGFFPDHQLDPAFGANSNNPD
 WDFNPNKDHWPEANQVG (SEQ ID NO: 21)

4.3.11.2. Linker = **LEGGSGG** (SEQ ID NO: 22)

4.3.11.3. Surface (S) =

25 MENTTSGFLGPLLVLQAGFFLLTRILTIPQSLDSWWTSLNFLGGAPTC PGQN
 SQSPTSNHSPTSCPPICPGYRWMCLRRFIIFLFI LLCLIFLLVLLDYQGMLPV
 CPLLPGTSTTSTGPCKTCTIPAQGTSMFPSCCCTKPSDGNCTCIPSSWAFAR
 FLWEWASVRFWSLLVPFVQWFVGLSPTVWLSVIWMMWYWG PSLYNIL
 SPFLPLPIFFCLWVYI (SEQ ID NO: 18)

30

The SIi-HBV-CPmutPreS-S(sh) nucleotide sequence is provided as SEQ ID NO: 48.

5. MVA-SIi-HBV-PreS-P_{mut}-C-S(sh)

35 5.1. MVA-SIi-HBV-PreS-P_{mut}-C-S(sh): Immunogen layout is shown in Figure
10E

5.2. MVA-SIi-HBV-PreS-P_{mut}-C-S(sh): Amino acid sequence (SEQ ID NO: 23)

MSLLWGGVTVLAAMLIAGQVAVVFLVSKSGPPSGKSNSNNPDWDFNPNKDHWPEAN
 QVGAGAFGPGFTPPHGGLLGWSPQAQGILTTVPAAPPPASTNRQSGRQPTPISPPLRDSHP
 40 QAMQWNSTTFHQALLDPRVRGLYFPAGGSSSGTVNPVPTTASPISSIFSRTGDPAPNGSKS
GSKMPLSYQHFRKLLLDDEAGPLEELPRLADEGLNRRVAEDLN LGN LNVSIPWTHKV
 GNFTGLASSTVPVNPEWQTPSFPHIHLQEDIINRCQQYVGPLTVNEKRLKLIMPARFYP
 NLTKYPLDKGIKPYYPEHAVNHYFKTRHYLHTLWKAGILYKRETTR SASFCGSPYSWE
 QELQHGRLVFQTSTRHGDESFC SQSSGILSRSPVGPCVRSQ LKQSRLGLQPQQGSLARGKS
 45 GRSGSIRARVHPTTRRSFGVEPSGS GHIDNSASSTSSCLHQSAVRKTAYSHLSTS KRQSSSG

HAVELHNIPSSARSQSEGPIFSAWWLQFRNSKPASDYALTHIVNLLEDWGPATEHGEHNI
 RIPRTPARVTGGVFLVDKNPHNTTESRLVVDFSQFSRGSTHVSWPKFAVPNLQSLTNLLSS
 NLSWLSLDVSAAFYHIPLHPAAMPHLLVGSSGLPRYVARLSSTSRNINYQHGTMQDLHDS
 CSRNLYVSLLLYKTFGRKLHLYSHPIILGFRKIPMGVGLSPFLAQFTSAICSVVRAFPH
 5 CLAFSYMDDVVLGAKSVQHLESLFTSITNFLSLGIHLNPNKTRWGYSLFNMGYVIGSW
 GTLPQEHIVLKIKQCFRKLPVNRPIDWKVCQRIVGLGFAAPFTQCGYPALMPLYACIQSK
 QAFTFSPTYKAFLCKQYLNLYPVARQRSGLCQVFADATPTGWLAIHGRAMRGTFVAPL
 PIHTAELLAACFARSRSRGAKLIGTDNSVVLRSRKYTSFPWLLGCAANWILRGTSFVYVPSAL
 NPAADPSAGRLGLYRPLLHLPFRPTGRTSLYAVSPSVPSPHLDRVHFASPLHVAWRPPSK
 10 SPGSGPPMQLFHLCIISCSCPTQASKLCLGWLWGMDIDPYKEFGASVELLSFLPSDFFP
 SIRDLDTASALYREALESPEHCSPHHTALRQAILCWGELMNLATWVGSNLEDPASRELV
 VSYVNVMGLKIRQLLWFHISCLTFGRETVLEYLVSFGVWIRTPPAYRPPNAPISTLPET
 TVVRRGRSPRRTPSPRRRSQSPRRRSQSRESQC

15 MGGWSSKPRQGMGTNLSVPNPLGFFPDHQLDPAFGANSNNPDWDFNPNKDHWPEANQV
GASKGGKSGMENTTSGFLGPLLVHQAGFFLLTRILTIPQSLDSWWTSLNFLGGAPTCGQ
 NSQSPTSNHSPTSCPPICPGYRWMCLRRFIIFLFI_{LL}CLIFLLVLLDYQGMLPVCP_{LL}PGTS
 TTSTGPKTCTIPAQGTSMPSCCCTKPSDGNC_{TC}IPSSWAFARFLWEWASVRF_{SW}LSL
 LVPFVQWFVGLSPTVWLSVIWMMWYWP_{SL}YNILSPFLPLPIFFCLWVYI

20

5.3. **MVA-SIi-HBV-PreS-P_{mut}-C-S(sh): Description for amino acid sequences of HBV immunogen**

5.3.1.1. First amino acid of polypeptide = M

5.3.1.2. Shark Invariant chain (SIi) =
 25 SLLWGGVTVLAAMLIAGQVAVVVFLV (SEQ ID NO: 4)

5.3.1.3. Linker = SKSGPPSGKS (SEQ ID NO: 31)

5.3.1.4. N_APreS1 and PreS2 =
 30 NSNNPDWDFNPKDHWPEANQVGAGAFGPGFTPPHGGLLGWS
 PQAQGILTTVPAAPPA_{ST}NRQSGRQPTPISPLRD_{SH}PQAMQW
 NSTTFHQALLDPRVRGLYFPAGGSSGTVPVPTTASPISSIFSRT
 GDPAPN (SEQ ID NO: 15)

5.3.1.5. Linker = GSKSGSK (SEQ ID NO: 32)

5.3.1.6. P_{mut} = (mutations: Y63A, C323A, C334A, C338A, C352A,
 R714A, D788A, R792A)
 35 MPLSYQHFRK_{LLL}DDEAGPLEELPRLADEGLNRRVAEDLNL
 GN_{LN}VSI_WTHKVGNFTGLASSTVPVFNPEWQTPSFPHIHLQED
 IINRCQQYVGPLTVNEK_{RR}LKLIMP_{FY}PNLT_{KY}LPLDKGIKP
 YYPEHAVNHYFKTRH_{YL}LHTLWKAGILYKRET_{TR}SASFCGSPYS
 WEQELQHGR_{LV}FQTSTRHGDESFC_{SQ}SSGILSRSPVG_{PC}VRSQL
 40 KQSRLGLQPQQGSLARGKSGRSGSIRARVHPTRRSGVEPSGS
 GHIDNSASSTSSCLHQSAVRKTAYSHLSTS_KRQSSSGHAVELN
 IPPSSARSQSEGPIFSAWWLQFRNSKPASDYALTHIVNLLEDWG

5 **PATEHGEHNIRIPRTPARVTGGVFLVDKNPHNTTESRLVVDFSQ**
FSRGSTHVSWPKFAVPNLQLSLTNLLSSNLSTFGRKLHLYSHPIIL
GFRKIPMGVGLSPFLLAQFTSAICSVVRRAFPHCLAFSYMDDVV
LGAKSVQHLESLFTSITNFLLSLGIHLNPNKTRWGYSLNFMGY
10 **VIGSWGTLQPQEHLVKIKQCFRKLPVNRPIDWKVCQRIVGLLF**
AAPFTQCGYPALMPLYACIQSKQAFTFSPTYKAFLCKQYLNLYP
VARQRSGLCQVFADATPTGWLGAIGHRAMRGTFVAPLPIHTAE
LLAACFARSRSRSGAKLIGTDNSVVLSRKYTSFPWLLGCAANWILR
GTSFVYVPSALNPAADPSAGRGLYRPLLHLPFRPTTGRTSLYA
VSPSVPSHLPDRVHFASPLHVAWRPP (SEQ ID NO: 8)

15 5.3.1.7. Linker = **SKSPGSGPP** (SEQ ID NO: 33)
5.3.1.8. C =
5.3.1.8.1. PreCore
MQLFHLCIISCSCTVQASKLCLGWLWG (SEQ ID NO: 16)
5.3.1.8.2. Core =
MDIDPYKEFGASVELLSFLPSDFPSIRDLLDTASALYREALESP
EHCSPHHTALRQAILCWGELMNLATWVGSNLEDPASRELVVSY
VNVNMGLKIRQLLWFHISCLTFGRETVLEYLVSFGVWIRTPPAY
20 **RPPNAPISTLPETTVVRRGRSPRRRTSPRRRSQSPRRRSQS**
RESQC (SEQ ID NO: 6)

25 5.3.1.9. **S(sh)**
5.3.1.9.1. C_ΔPreS1 =
MGGWSSKPRQGMGTNLSVPNPLGFFPDHQLDPAFGANSNN
PDWDFNPNKDHWPEANQVG
5.3.1.9.2. Linker =
ASKGGKSG (SEQ ID NO: 34)
5.3.1.9.3. Surface =
MENTTSGFLGPLLVLQAGFLLTRLTIPQSLDSWWTSLNFL
GGAPTCPGQNSQSPTSNSHSPTCPPICPGYRWMCLRRFIIFL
30 **ILLLCCLIFLLVLLDYQGMLPVCPLLPGTSTTSTGPCKTCTIPA**
QGTSMFPSCCCTKPSDGNCCTCIPSSWAFARFLWEWASVR
FSWLSLLVPFVQWFVGLSPTVWLSVIWMMWYWGPSLYNI
LSPFLPLLIFFCLWVYI (SEQ ID NO: 18)

35 5.4. Nucleotide sequence of MVA-SIi-HBV-PreS-P_{mut}-C-S(sh) is provided as SEQ ID NO: 24.

5.5. Description for nucleotide sequences of MVA-SIi-HBV-PreS-P_{mut}-C-S(sh):

40 5.5.1. F11-L-Flank = bases 1 – 1097 (SEQ ID NO: 35)
5.5.2. SIi-HBV-PreS-P_{mut}-C = bases 1098 – 4838 (SEQ ID NO: 37)
5.5.3. Transcription terminator sequence = bases 4839 – 4845

TTTTTGT

5.5.4. mH5 promoter = bases 4846 – 4942 (SEQ ID NO: 28)

5.5.5. S(sh) = bases 4943 – 5824 (SEQ ID NO: 38)

5.5.6. F11-R-Flank = bases 5825 – 7143 (SEQ ID NO: 36)

6. **SII-HBV-CP_{mut}PreS-TPA-S(sh)**

5 6.1. SII-HBV-CP_{mut}PreS-TPA-S(sh): Immunogen layout is shown in Figure 10F

6.2. SII-HBV-CP_{mut}PreS-TPA-S(sh): Amino acid sequence (SEQ ID NO: 25)

MSLLWGGVTVLAAMLIAGQVASVVFLVKGGGPGGGMQLFHLCIISCSCP
 VQASKLCLGWLWGMDIDPYKEFGASVELLSFLPSDFPSIRDLLDTASALYRE
 10 ALESPEHCSPHHTALRQAILCWGELMNLATWVGSNLEDPASRELVVSYVNV
 NMGLKIRQLLWFHISCLTFGRETVEYLVSFGVWIRTPPAYRPPNAPISTLPE
 TTVVRRGRSPRRRTSPRRRSQSPRRRSQSRESQCGGGSGGGMPLSYQH
 FRKLLLLDDEAGPLEEELPRLADEGLNRRVAEDNLGNLNVSIPTWTHKVGNF
 TGLASSTVPVFNPEWQTPSFPHIHLQEDIINRCQQYVGPLTVNEKRLKLIMP
 15 RFYPNLTKYLPPLDKGIKPYYPEHAVNHYFKTRHYLHTLWKAGILYKRETTRS
 ASFCGSPYSWEQELQHGRLFQFTSTRHGDESFCSSQSSGILSRSPVGPCVRSQ
 KQSRLGLQPQQGSLARGKSGRSIRARVHPTTRRSFGVEPSGSGHIDNSASST
 SSCLHQSAVRKTAYSHLSTSQRQSSGHAVELHNIPPSSARSQSEGPIFSAWWL
 QFRNSKPASDYALTHIVNLLEDWGPATEEHGEHNIRIPRTPARVTGGVFLVDKN
 20 PHNTTESRLVVDFSQFSRGSTHVSWPKFAVPNLQSLTNLLSSNLSTFGRKLHL
 YSHPIILGFRKIPMGVGLSPFLLAQFTAICSVVRAFPHCLAFSYMDDVVLGA
 KSVQHLESLFTSITNFLLSLGIHLNPNKTRWGYSLNFMGYVIGSWGTLQEH
 IVLKIKQCFRKLPVNRPIDWKVCQRIVGLGFAAPFTQCGYPALMPLYACIQS
 KQAFTFSPTYKAFLCKQYLNLYPVARQRSGLCQVFADATPTGWGLAIGHRA
 25 MRGTFVAPLPIHTAELLAACFARSRSRSGAKLIGTDNSVVLRSKYTSFPWLLGCA
 ANWILRGTSFVYVPSALNPAADPSAGRLGLYRPLLHPFRPTTGRTSLYAVSP
 SVPSHLPDRVHFASPLHVAWRPPKSPNSNNPDWDFNPNKDHWPEANQVGAG
 AFGPGFTPPHGGLLGWSPQAQGILTVPAAPPPASTNRQSGRQPTPISPPLRDS
 HPQAMQWNSTTFHQALLDPRVRGLYFPAGGSSGTVPVPTTASPISSIFSRT
 30 GDPAPNGSKGKRKRRAPVKQTLNFDLLKLAGDVESNPPGMDAMKRGLCC
VLLCGAVFVSPSQEIHARFRMGGWSSKPRQGMGTNLSVPNPLGFFPDHQL
 DPAFGANSNNPDWDFNPNKDHWPEANQVGLEGGSGGMENTSGFLGPLLV
 LQAGFLLTRILTIPQLSDSWTSNLGGAPTCGQNSQSPSNHSPTSCPPIC
 PGYRWMCRRFIIFLFILLCLIFLLVLLDYQGMLPVCPLLPGTSTTSTGPCKTC
 TIPAQGTSMFPSCCCTKPSDGNCTCIPIPSSWAFARFLWEWASVRFSWLSLLVP
 FVQWFVGLSPTVWLSVIWMMWYWGPSLYNILSPFLPLPIFFCLWVYI

6.3. **SIi-HBV-CP_{mut}PreS-TPA-S(sh): Description for amino acid sequences of HBV immunogen**

6.3.1. First amino acid of polypeptide = M

5 6.3.2. Shark Invariant chain (SIi) = SLLWGGVTVLAAMLIAGQVASVVFLV (SEQ ID NO: 4)

6.3.3. Linker = **KGGGPGGG** (SEQ ID NO: 5)

6.3.4. C =

10 6.3.4.1. PreCore
MQLFHLCIISCSCTPVQASKLCLGWLWG (SEQ ID NO: 16)

6.3.4.2. Core =
MDIDPYKEFGASVELLSFLPSDFPSIRDLLDTASALYREALESP
EHCSPEHHTALRQAILCWGELMNLATWVGSNLEDPASRELVVSY
VNVNMGLKIRQLLWFHISCLTFGRETVEYLVSFGVVWIRTPPAY
15 RPPNAPILSTLPETTVVRRGRSPRRRTPSPRRRRSQSPRRRSQS
RESQC (SEQ ID NO: 6)

6.3.5. Linker = **GGGSGGG** (SEQ ID NO: 7)

6.3.6. Pmut = (mutations: Y63A, C323A, C334A, C338A, C352A, R714A, D788A, R792A)

20 MPLSYQHFRKLLLLDEAGPLEEELPRLADEGLNRRVAEDNLGNLNV SIP
WTHKVGNTGLASSTVPVFNPEWQTPSFPHIHLQEDIINRCQQYVGPLTVNE
KRRKLIMPARYPNLTQYLPLDKGIKPYYPEHAVNHFKTRHYLHTLWKA
GILYKRETRASASFCGSPYSWEQELQHGRLVFQTSTRHGDESFCQS QSSGILSR
SPVGPVCVRSQLKQSRLGLQPQQGSLARGKSGRSGSIRARVHPTRRSF GVEP
25 SGSGHIDNSASSTSSCLHQSAVRKTAYSHLSTSQRQSSGHAVELHNIPPSSA
RSQSEGPIFSAWWLQFRNSKPASDYALTHIVNLLEDWGPATEHGEHNIRIPR
TPARVTGGVFLVDKNPHNTTESRLVVDFSQFSRGSTHVS WPKFAVPNLQSL
TNLLSSNLSTFGRKLHLYSHPIILGFRKIPMGVGLSPFLLAQFTSAICSVVRRA
FPHCLAFSYMDDVVVLGAKSVQHLES LFTSITNFLLSLGIHLNPNKTKRGW GYS
30 LNFMGYVIGSWGTLQEHIVLKIKQCFRKLPVNRPIDWKVCQRIVGLLGFA
APFTQCGYPALMPYACIQSKQAFTFSPTYKAFLCKQYLNLYPVARQRSGL
CQVFADATPTGWLGAIGHRAMRGTFVAPLPIHTAELLAACFARSRS GAKLI
GTDNSVVLRSKYTSFPWLLGCAANWILRGTSFVYVPSALNPAADPSAGRLG
35 LYRPLLHLPRPTTGRTSLYAVSPSVPSHLPDRVHFASPLHV AWRPP (SEQ
ID NO: 8)

6.3.7. Linker = **KSP**

6.3.8. N_ΔPreS1 and PreS2 =
NSNNPDWDFNPNKDHWPEANQVGAGAFGPGFTPPHGGLLGWSPQA
QGILTTVPAAPPPASTNRQSGRQPTPISPLRDHPQAMQWNSTTFHQ
40 ALLDPRVRGLYFPAGGSSSGTVNPVPTTASPISSIFSRTGDPAPN (SEQ
ID NO: 15)

6.3.9. Linker = **GSKGK** (SEQ ID NO: 20)

6.3.10. Furin 2A (F2A) = **RKRRAPVKQTLNF DLLKLAGDVE S NPGP** (SEQ
ID NO: 9)

45 6.3.11. TPA = **MDAMKRGLCVLLCGAVFVSPS QEIHARFRR** (SEQ ID
NO: 30)

6.3.12. S(sh) =

6.3.12.1. C_ΔPreS1 =
MGGWSSKPRQGMGTNLSVPNPLGFFPDHQLDPAFGANSNNPD
50 WDFNPNKDHWPEANQVG (SEQ ID NO: 21)

6.3.12.2. Linker = **LEGGSGG** (SEQ ID NO: 22)

6.3.12.3. Surface (S) =

5 MENTTSGFLGPLLVLQAGFFLLTRILTIPQSLDSWWTSLNFLGGAPTCGQN
 SQSPTSNHSPTSCPPICPGYRWMCLRRFIIFLFI~~LLCLIFLL~~VL~~LDY~~QGMLPV
 CPLLPGTSTTSTGPCKTCTIPAQGTS~~MF~~PSCCCTKPSDGNCTCIPSSWAFAR
 FLWEWASVRF~~W~~LSLLVPFVQWFVGLSPTVWLSVIWMMWYWG~~PS~~LYNIL
 SPFLPLLP~~IFF~~CLWVYI (SEQ ID NO: 18)

The SIi-HBV-CPmutPreS-TPA-S(sh) nucleotide sequence is provided as SEQ ID NO:

10 49.

7. MVA-SIi-HBV-PreS-P_{mut}-C-TPA-S(sh)

7.1. MVA-SIi-HBV-PreS-P_{mut}-C-TPA-S(sh): Immunogen layout is shown in
 Figure 10G

15

7.2. MVA-SIi-HBV-PreS-P_{mut}-C-TPA-S(sh): Amino acid sequence (SEQ ID
 NO: 26)

MSLLWGGVTVLAAMLIAGQVASVVFVVS**KSGPPSGKS**NSNNPDWDFNPNKDHWPEAN
 QVGAGAFGPGFTPPHGGLLGWSPQAQQILTTVPAAPPA~~ST~~NRQSGRQPTPIS~~PL~~RD~~SH~~
 20 QAMQWNSTTFHQALLDPRVRGLYFPAGGSSSGTVNPVPTTASPISSIFSRTGDPAPNGSKS
GSKMPLSYQHFRK~~LLL~~DDEAGPLEELPRLADEGLNRRVAEDNLGNLNVSIPWTHKV
 GNFTGLASSTVPVFNPEWQTPSFPHIHLQEDIINRCQQYVGPLTVNEKRLKLIMP~~AR~~FYP
 NLT~~K~~YLPLDKGIKPYYPEHAVNHYFKTRH~~Y~~LHTLWKAGILYKRETTR~~S~~ASFCGSPYSWE
 QELQHGR~~L~~V~~F~~QTSTRHGDESFCSQSSGILSRSPVG~~C~~VRSQ~~L~~KQSRLGLQPQQGSLARGKS
 25 GRSGSIRARVHPTRRSFGVEPSGSGHIDNSASSTSSCLHQSAVRKTAYSHLSTS~~K~~RQ~~SS~~SG
 HAVELNIP~~P~~S~~S~~SARSQSEGPIF~~S~~AWWLQFRNSKPASDYALTHIVNLLEDWGPATEHGEHNI
 RIPRTPARVTGGVFLVDKNPHNTTESRLVVDFSQFSRG~~ST~~HVS~~W~~PKFAVPNLQSLTNLLSS
 NLSWLSLDVSAAFYHIPLHPAAMPHLLVGSSGLPRYVARLSSTS~~R~~NINYQHGTMQDLHDS
 CSRNL~~Y~~V~~S~~LLLYKTFGRKLHLYSHPIILGFRKIPMGVGLSPFLLAQFTAICSVVRAFPH
 30 CLAFSYMDDVVLGAKSVQHLES~~L~~FTSITNF~~L~~SLGIHLNPNKTKRWG~~Y~~SLNF~~M~~GYVIGSW
 GTLPQE~~H~~IVLKIKQC~~F~~RKLPVNR~~P~~IDWKVCQ~~R~~IVGLGFAAPFTQCGYPALM~~P~~LYACIQSK
 QAFTFSPTYKAFLCKQYL~~N~~LYPVARQRSGLCQVFADATPTGWGLAIGHRAMRGTFVAPL
 PIHTAELLAACFARSRS~~G~~AKLIGTDNSVLSRK~~Y~~TSFPWLLGCAANWILRG~~T~~SFVYVPSAL
 NPAADPSAGR~~L~~GLYRPLLHLPFRPTTGR~~T~~SLYAVSPSVP~~H~~LPDRVHFASPLHVAWRPPSK
 35 SP**GPPMQLFHLCLIISCSCPT~~V~~QASKLCLGWLWGMDIDPYKEFGASVELLSFLPSDFFP
 SIR~~DL~~DTASALYREALE~~S~~PEHCS~~P~~H~~T~~ALRQ~~A~~ILCW~~G~~ELMN~~L~~ATW~~V~~GSNLED~~P~~ASREL~~V~~
 VS~~Y~~VNVNMGLKIRQLLWFHISCLTFGRE~~T~~V~~Y~~LV~~S~~FGVW~~I~~RT~~P~~AYRPPNAPI~~L~~STLPET
 TVVRRGRSPRRTPSPRRRSQS~~P~~RRRSQSRESQCMDAMKRGLCCV~~LL~~CGAVF~~V~~SPS
QEIHARFRRMGGWSSKPRQGMGTNLSVPNPLGFFPDHQLDPAFG~~G~~ANSNNPDWDFNPNKD**

HWPEANQVGASKGGKSGMENTTSGFLGPLLVQAGFFLLTRILTIPQSLDSWWTSLNFL
 GGAPTCPGQNSQSPTSNHSPTSCPPICPGYRWMCLRRFIIFLFILLCLIFLLVLLDYQGMLP
 VCPLLPGTSTTSTGPCKTCTIPAQGTSMPSCCCTKPSDGNCCTCIPSSWAFARFLWEWAS
 VRFSWLSLLVPFVQWFVGLSPTVWLSVIWMMWYWGPSLYNILSPFLPLLPIFFCLWVYI

5

7.3. MVA-SIi-HBV-PreS-P_{mut}-C-TPA-S(sh): Description for amino acid sequences of HBV immunogen

7.3.1.1. First amino acid of polypeptide = M

7.3.1.2. Shark Invariant chain (SIi) =

10 SLLWGGVTVLAAMLIAGQVAVVFLV (SEQ ID NO: 4)

7.3.1.3. Linker = SKSGPPSGKS (SEQ ID NO: 31)

7.3.1.4. N_APreS1 and PreS2 =

NSNNPDWDFNPNKDHWPEANQVGAGAFGPGFTPPHGGLLGWS
 PQAQGILTTVPAAPPPASTNRQSGRQPTPISPPLRDSHPQAMQW
 15 NSTTFHQALLDPRVRGLYFPAGGSSSGTVNPVPTTASPISSIFSRT
 GDPAPN (SEQ ID NO: 15)

7.3.1.5. Linker = GSKSGSK (SEQ ID NO: 32)

7.3.1.6. Pmut = (mutations: Y63A, C323A, C334A, C338A, C352A,
 R714A, D788A, R792A)

20 MPLSYQHFRKLLLLDEAGPLEEELPRLADEGLNRRVAEDLNL
 GNLSNVSIPWTHKVGNFTGLASSTVPVFNPEWQTPSFPHIHLQED
 IINRCQQYVGPLTVNEKRLKLIMPARYPNLTQYLPPLDKGIKP
 YYPEHAVNHYFKTRHYLHTLWKAGILYKRETRRSASFCGSPYS
 WEQELQHGRLVFQTSTRHGDESFCSSQSSGILSRSPVGPCVRSQ

25 KQSRLGLQPQQGSLARGKSGRSGSIRARVHPTRRSFGVEPSGS
 GHIDNSASSTSSCLHQSAVRKTAYSHLSTSQRQSSGHAVELHN
 IPPSSARSQSEGPIFWWLQFRNSKPASDYALTHIVNLLEDWG
 PATEHGEHNIRIPRTPARVTGGFLVDKNPHNTTESRLVVDFSQ
 FSRGSTHVSWPKFAVPNLQLSLTNLLSSNLSTFGRKLHLYSHPIIL

30 GFRKIPMGVGLSPFLLAQFTSAICSVVRAFPHCLAFSYMDVV
 LGAKSVQHLESLFTSITNFLLSLGIHLNPNKTKRWGYSLNFMGY
 VIGSWGTLQEHIVLKIKQCFRKLPVNRPIDWKVCQIRIVGLGF
 AAPFTQCGYPALMPLYACIQSQQAFTFSPTYKAFLCKQYLNLYP
 VARQRSGLCQVFADATPTGWLAIIGHRAMRGTFVAPLPIHTAE
 35 LLAACFARSRSGAKLIGTDNSVVLSRKYTSFPWLLGCAANWILR
 GTSFVYVPSALNPADPSAGRLGLYRPLLHLPFRPTTGRTSLYA
 VSSPVPSHLPDRVHFASPLHVAWRPP (SEQ ID NO: 8)

7.3.1.7. Linker = SKSPGSGPP (SEQ ID NO: 33)

7.3.1.8. C =

40 7.3.1.8.1. PreCore =
 MQLFHLCIISCSCPTVQASKLCLGWLWG (SEQ ID NO: 16)

7.3.1.8.2. Core =

MDIDPYKEFGASVELLSFLPSDFPSIRDLLDTASALYREALESP
 EHCSPHHTALRQAILCWGELMNLATWVGSNLEDPASRELVSY
 VNVNMGLKIRQLLWFHISCLTFGRETVEYLVSFGVWIRTPPAY
 RPPNAPILSTLPETTVVRRGRSPRRRTSPRRRSQSPRRRSQS
 5 RESQC (SEQ ID NO: 6)

7.3.1.9. TPA = MDAMKRGGLCCVLLCGAVFVSPSQEIHARFRR (SEQ ID NO: 30)

7.3.1.10. S(sh) =

7.3.1.10.1. C_ΔPreS1 =

10 MGGWSSKPRQGMGTNLSPNPLGFFPDHQLDPAFGANSNNPD
 WDFNPNKDHWPEANQVG (SEQ ID NO: 21)

7.3.1.10.2. Linker = ASKGGKSG (SEQ ID NO: 34)

7.3.1.10.3. Surface (S) =

15 MENTTSGFLGPLVLQAGFFLLTRILTIPQLSDSWWTSLF
 LGGAPTCGQNSQSPTSNHSPTSCPPICPGYRWMCLRRFIIF
 LFILLCLIFLLVLLDYQGMLPVCPPLPGTSTTSTGPCKTCTI
 PAQGTSMFPSCCCTKPSDGNCTCIPSSWAFARFLWEWAS
 VRFSWLSLLVPFVQWFVGLSPTVWLSVIWMMWYWGPSL
 YNILSPFLPLPIFFCLWVYI (SEQ ID NO: 18)

20 7.4. Nucleotide sequences of MVA-SIi-HBV-PreS-P_{mut}-C-TPA-S(sh) is provided
 as SEQ ID NO: 27

25 7.5. Description for nucleotide sequences of MVA-SIi-HBV-PreS-P_{mut}-C-TPA-S(sh):

7.5.1. F11-L-Flank = bases 1 – 1097 (SEQ ID NO: 35)

7.5.2. SIi-HBV-PreS-P_{mut}-C = bases 1098 – 4838 (SEQ ID NO: 37)

7.5.3. Transcription terminator sequence = bases 4839 – 4845

TTTTTGT

30 7.5.4. mH5 promoter = bases 4846 – 4942 (SEQ ID NO: 28)

7.5.5. TPA = bases 4943 – 5038 (SEQ ID NO: 29)

7.5.6. S(sh) = bases 5039 – 5920 (SEQ ID NO: 38)

7.5.7. F11-R-Flank = bases 5921 – 7239 (SEQ ID NO: 36)

35 8. Nucleotide sequences of low GC content version MVA-Sli-HBV-PreS-Pmut-C-TPA-S(sh) (SEQ ID NO: 58):

gtaatctattcgatataccgttctaacagtatactggccataactgtggatggaaaatctataataacattaatatc
 atccgatggtgctagggttattggatggatgcgtataaatttcttgcggttatcttacaagactattttatcattgggg
 tagcaaaccagagagccgaccattcgattataataaaaaatcagatgctaaacgcaattctaaatcggtggcaaagaat
 40 ctatggcatcctgaaatccttgtacgaggcattcgagacacaatcaggagcgttagaagtttaatgagtccatgttagga
 tgtttcgtttctagaatagaagacatgttacttagtgcattaatagagtatccgagaatactggaaatggggatgtat

tatcctaccaacgatatacctctatattatcgaatcatctatctgtctagattatattatagtaataatcaggaatcaa
caaatatcgatcaaattctcgatcatcttcaaaacaataccctgcaggacgtccaaactacgttaaaatgg
acaaaaggaaagtatatatcgcgtgtaaagttaccgtacctaactgaccatattccagtagttatcagatgatg
acaatactaccacccattacagtattgacgtccgtcatttactgaaactgctatcagagcaggatattcgatagtcgatt
5 aggggcttacaatggataataatattccagaactaaaaacggttactggatagtatcaagatgatttatgacttgg
cgcagttacaacaaataatttattggaacagctcatagaaaatattaactttaacaactctagtaattcgttgcattata
cattgccatttagttattgccgagcatttactcaattatgaaaccatagatccgttatatatctcagttcattata
aagaattatacgttagtagcttataaagatattaatgaatccatgagtcagatggtaaaattataaaaaagtggaaaaac
aatattttatcggtttacactATGTCACCTTGGGGCGGAGTTACAGTTCTGCTGCTATG
10 CTTATTGCTGGACAAGTTGCTTCTGTTGTGTTCTGTTCTAAATCTGGACCTCCTCTGGAAA
ATCTAATTCTAACATCCTGATTGGATTCAATCCTAACAAAGATCATTGGCCTGAAGCTAAC
AAGTTGGAGCTGGTGCTTGGACCTGGTTTACACCTCCTCATGGTGGATTGCTGGATGGC
ACCTCAAGCTCAGGGATTCTTACAACAGTTCCAGCTGCTCCTCCTGCTTCTACAAATAGAC
AATCTGGTAGACAACCTACACCTATTCTCCACCTTAGAGAGATTCTCATCCTCAAGCTATGCAA
15 TGGAATTCTACTACATTTCATCAAGCTTGCTGATCCTAGAGTTAGAGGACTTATTTCTGC
TGGTGGAGTTCTTCTGGAACAGTTAACCTGTTCTACACAGCTTCTCCAATTCTTCTATAT
TTCTAGAACAGCGATCCTGCTCCTAACAGGATCAAAATCTGGATCAAAATGCCTCTGTCTT
CAACACTTAGAAAATTGCTGCTTGTGATGATGAAGCTGGACCTTGAAGAAGAATTGCCTA
GAATTGCTGATGAAGGACTTAATAGAAGAGTTGCTGAAGATCTTAATCTGGAAATCTTAATGT
20 TTCTATTCTGGACACACAAAGTTGGAAATTTCACAGGACTTGCATCTTACAGTGCCTGTT
TTAACCTGAATGGCAAACACCTTCTTCCACATATTCTGCAAGAGGATATCATCAATAGA
TGTCAACAATATGTTGGACCACTGACAGTTAACAGTATTGCTCTGGATAAGGGATCAAACCTTATTATGCCTG
CTAGATTCTATCCTAACATCTTACAAAGTATTGCTCTGGATAAGGGATCAAACCTTATTATCCT
GAACATGCTGTGAATCACTACTTAAAACAAGACATTATCTGCATACACTGTGGAAAGCTGGTA
25 TTCTTACAAAAGAGAAACAACAAGATCTGCTTCTTGTGGATCTCCATATTCTGGAAACAA
GAACCTAACATGGTAGACTTGTGTTCTAACACATCTAACAGACATGGGATGAATCATTGTT
CTCAAAGTTCTGGAATTCTTCTAGATCTCCTGTTGGACCTGTGTTAGATCTCAACTAAACAA
TCTAGACTTGGACTTCAACCTCAACAAGGATCTTGTAGAGGAAAAAGTGGAAAGATCTGGA
TCTATTAGAGCTAGAGTTCATCCTACAACTAGAAGATCTTGGAGTTGAACCTCTGGATCTG
30 GACATATTGATAATTCTGCCTCTTACATCTTCTGCTGCATCAATCTGCTGTTAGAAAGACA
GCTTATTCTCATTGTCTACTTCTAAGAGACAATCATCTGGACATGCTGTTGAACCTCATAAT
ATTCCCTCAAGTAGTGTAGAAGTCATGAAGGACCAATATTTCAGCTGGCTTCAT
TCAGAAATTCTAACCTGCTCTGATTATGCTCTGACACATAGTTAACCTGCTGAAGATTGG

GGACCTGCTACAGAACATGGCGAACACAATATTAGAATACTAGAACTCCTGCTAGAGTTACA
GGCGGAGTCTTTGGTTGATAAGAACCTCATAATACCACAGAACATCAAGACTTGTGTTGATT
TTTCACAGTTCTAGAGGATCTACACATGTTCTGGCTAAATTGCTGTTCCAAATCTCAAT
CTCTTACAAATTGCTTCATCTAACATCTTCTGGCTGTCTTGATGTTCTGCTGCCCTTATCA
5 TATTCCCTTCATCCTGCTGCAATGCCTCATTGCTTGGATCATCTGGACTTCAAAGATATGT
TGCTAGACTTAGCTCTACATCTAGAAATATCAATTATCAGCATGGAACAATGCAGGATCTCAC
GATTCTGTAGTAGGAATCTGTATGTTCTTGCTGTATAAGACATTGGAAGAAA
TCATCTGTATTCTCACCCATTATTCTGGGTTAGAAAGATTCTATGGAGTTGGACTTCTC
CTTTTGCTTGCCTAACATCTGCTATTGTTCTGTTAGAAGGGCTTCCATTGTC
10 TTGCATTTCTTATGGATGATGTTCTGGAGCTAAATCTGTTAACATCTGAAAGTCTG
TTTACCTCTATTACTAATTCTGCTTCTGGAAATTCTGAATCCAACAAACAAAGAG
ATGGGGATATTCTCTAACATGGGATATGTTATTGGATCTGGGAACACTCCTCAAGAA
CATATCGTTGAAAATCAAGCAATGTTCAGAAA
ACTGCCTGTGAATAGACCTATTGATTGGA
AAGTTGTCAAAGAATTGTGGACTTCTGGATTGCTGCTCCTTACACAATGTGGATATCCT
15 GCTCTATGCCACTTATGCTTGTATTCAATCTAAACAGGCTTTACATTCTCAACATACAA
GCTTTCTGTAAACAGTATCTGAATCTTATCCTGTGGCTAGACAAAGATCTGGTCTTGTCA
AGTTTGCTGATGCTACACCAACAGGATGGGACTTGCTATTGGACATAGAGCTATGAGAGG
AACATTGTTGCTCCATTGCCTATTCTACAGCTGAATTGCTGCTGCTTGTAGATCTA
GAAGCGGAGCAAAACTTATTGGTACAGATAATAGTGTGCTGAGTAGAAAGTACACATCTT
20 TTCCATGGTTGGGATGTGCTGCTAATTGGATTCTAGAGGAACCTCTTGTGTTATGTTCT
TCTGCTCTTAATCCTGCAGCTGATCCATCTGCTGGTAGATTGGACTGTATAGACCACTTCTCA
TTTGCCTTGTGACCAACA
ACTGGAAAGAACATCTTATGCTGTTCTCCTCATGTTGCTGGAGGCCACCATCTAAATCTC
TTTGCCTGATAGAGTTCTTGTGCTCCACTTCTACAGCTGTTGCTGGAGGCCACCATCTAAATCTC
CAGGTTCTGGACCACCTATGCAACTTTTCTTGTGTTGATCATTAGCTGTTCTGCTTACA
25 GTTCAAGCTTCTAAACTTGTCTGGATGGCTTGGGAATGGATATTGATCCATACAAAGAAT
TTGGAGCTAGTGTGAATTGCTGTCATTCTTCCATCTGATTGTTCCCTTCTATTGATCTTC
TTGATACAGCATCTGCTCTGTATAGAGAACGCTTGAATCTCCTGAACACTGTTCTCCACATCAT
ACAGCACTAGACAAGCTATTCTTGTGTTGGGAGAACATTGATCTGCTACATGGGTTGGAT
CTAATTGGAAGATCCAGCTTAGAGAAATTGGTGGTTCTATGTTAATGTGAATATGGGACT
30 GAAAATTAGACAACGTCTTGGTTCATATCTCTGCTTACATTGGTAGAGAAACAGTTGG
AAATTGGTTCTTGGCGTTGGATTAGAACACCTCCAGCTTATAGACCTCTAACATGCTCCT
ATTGCTACACTCCTGAAACAAACAGTCGTTAGAGAGAGGAAGATCTCAAGAAGAAGA
ACACCAAGTCCTAGAAGAAGATCTCAATCACCAAGAAGAAGAAGTCAATCTAGAGA

ATCTCAATGTTGATTTGTTGACATTAAAAATTGAAAATAACAAAGGTTCTGAGGGTT
GTGTTAAATTGAAAGCGAGAAATAATCATAAATATGATTCAAGGTGACGGATCCATGGATGCTA
TGAAGCGAGGACTTGTGTTGCTTGTGGTGCCTGTTCTCCATCTCAAGAA
ATTCACTGCCAGATTCAAGAAGAATGGGAGGCTGGTCATCTAAACCTAGACAAGGCATGGAAACA
5 AATCTTCTGTTCTAATCCTTGGGATTCTTCTGATCATCAATTGGATCCAGCATTGGAGC
AAATAGTAACAATCCAGATTGGGACTTAACCCAAACAAAGATCATTGCCAGAAGCTAATCA
AGTTGGAGCATCTAAAGGTGGAAAAAGTGGAAATGGAAAACACTACATCTGGATTCTGGACC
TTTGCTTGTCTCAAGCTGGATTTCTGTTGACAAGAATACTTACAATTCTCAACTGG
ATTCTGGTGGACAAGTCTAATTTCTGGAGGTGCTCCTACATGTCCTGGACAAAATTCTCAA
10 TCTCCAACCTCTAATCATTCTCCTACATCTTGTCTCCAATTGTCCTGGATATAGATGGATGTGT
CTTAGAAGATTCAATTCTTCTTCTTCAACTGCTGCTGTGATTTCTTCTTGTGG
ATTATCAGGGAATGCTTCTGTTGTCCTTGCTTGGAACTTCTACAACAAAGTACAGGACCT
TGTAAAACATGTACAATTCCAGCACAGGGAACATCTATGTTCCAAGTTGTTGTACAAAAC
CTTCTGATGGAAATTGCACATGTATTCCATTCCAAGTTCTGGCATTGCTAGATTCTTGG
15 GAATGGGCTTCTGTTAGATTCAAGTTGGTTCTCTTTGGTTCCATTGTTCTGGTACAGTGGTTGG
ATTGTCTCCTACAGTTGGCTTCTGTTATTGGATGATGTGGTATTGGGGACCTCTTACA
ATATTTGAGTCCTTCTCCCTTGCTGCCAATTCTTTGTCTTGGTTACATTGAttaacc
gagtttctgcattattgtattcgtatgctggcaccatcaaagaatcactctaaaagataatcacacataacaata
ttactaccctattgaatgagacagccaaggatatcaagtttagtaaaatctctggtagataaagaagatactgatattgtga
20 ataatttcattaccaaaagaaattaaaaacagagacaaaatgttaatagttgtcttatcaaaccctggactttcgttgt
aattggggctTtttgtacaataatgggttgtccaatgattcatcccgaatatcaatggatgtctcccatagattatca
gatactgttatattaggagactgttgtatttaacaatataatgtccaattagattcacccaaattggctccatcagt
tagattgttaaattatttaagaatttaataaggaaacactactaaagatagaagagaatgattacattaattcatccttt
tccaacaaaaggataaacgatttatcctataaacgacgattttatcacatctacaggaggatatggatagtcttaa
25 gatagataactatgttagtaaaattgtattcgaggccacaaaattatataatgtccatggaaactacggcggagttcacagt
acccaaattctataacaatctaaaggagatgaaaaaaaaattatgtgtgtgcgtggccatggattaaactata
aattaacattttacatactctgtataaacgtgttcatatgttgtattattgatcaaactatggatggcaggaact
cattgagatattctctaaagttttaaaggcgtaacgagagaaaaggacagatcaattcgtgaaattactatccca
ctttatccggcagttattaacagtaatattaatgttataaactatttaaccgcattttcaatgaaactgaaag
30 aactaactacgaatacgaagagggaaatattataattttccctagcactgtattcggcagataaagttagataccgagc
agctatcaaattaggatttaatcttggtacaatacataaaagttatctttacagatggctctgttatacataaaattta
cgaactaccatgtcgacactttacacgcagatctaaacccgataatatcttactttgattccaatgaaccaata
ataattcatctaaaggataaaaagttgtttaatgaacgttattaaatcggcattaaacgactttgactttcccaag

8.1 Description for nucleotide sequences of low GC content version of MVA-SIi-HBV-PreS-Pmut-C-S(sh):

- 8.1.1 F11-L-Flank = bases 1 – 1097 (SEQ ID NO: 35)
- 5 8.1.2 SIi-HBV-PreS-Pmut-C = bases 1098 – 4838 (SEQ ID NO: 59)
- 8.1.3 Transcription terminator sequence = bases 4839 – 4845
TTTTTGT
- 8.1.4 mH5 promoter = bases 4846 – 4942 (SEQ ID NO: 28)
- 8.1.5 TPA = bases 4943 – 5038 (SEQ ID NO: 60)
- 10 8.1.6 S(sh) = bases 5039 – 5920 (SEQ ID NO: 61)
- 8.1.7 F11-R-Flank = bases 5921 – 7239 (SEQ ID NO: 36)

The Sequence of wild-type HBV Polymerase is provided as SEQ ID NO: 19.

15 **ChAdOx1 sequence**

ChAdOx1 sequence 5' to the immunogen cassette is provided as SEQ ID NO: 39.
ChAdOx1 sequence 3' to the immunogen cassette is provided as SEQ ID NO: 40.

ChAdOx2 sequence

20 ChAdOx2 sequence 5' to the immunogen cassette is provided as SEQ ID NO: 41.
ChAdOx2 sequence 3' to the immunogen cassette is provided as SEQ ID NO: 42.

MVA sequence

25 MVA sequence 5' to the immunogen cassette is provided as SEQ ID NO: 44. MVA sequence 3' to the immunogen cassette is provided as SEQ ID NO: 45

The CMV long promoter with Tetron Operator sequence is provided as SEQ ID NO: 50. The CMV short promoter with Tetron Operator sequence is provided as SEQ ID NO: 51.

30

PreS1 sequence (SEQ ID NO: 52):

MGGWSSKPRQGMGTNLSVPNPLGFFPDHQLDPAFGANSNNPDWDFNPNKDHWP
EANQVGAGAFGPGFTPPhGGLGWSPQAQGILTTVPAAPPPASTNRQSGRQPTPI
SPPLRDSHPQA

35

PreS2 sequence (SEQ ID NO: 53):

MQWNSTTFHQALLDPRVRGLYFPAGGSSSGTVNPVPTTASPISSIFSRTGDPAPN

CLAIMS

1. A multi-HBV immunogen viral vector vaccine comprising:

5 a viral vector comprising an immunogen expression cassette, wherein the expression of a protein encoded by the expression cassette is arranged to be driven by a promoter, wherein the immunogen expression cassette encodes:

- a) HBV Core;
- b) a modified HBV polymerase (P_{mut}), wherein the modification is a mutation to wild-type HBV polymerase to substantially remove polymerase function;
- 10 c) HBV surface antigen (HbsAg); and
- d) an intergenic sequence that is arranged to cause expression of at least the HBV surface antigen (HbsAg) as a separate protein from the HBV core and the modified HBV polymerase (P_{mut}),

15 wherein the intergenic sequence is downstream (3') of the sequences encoding the HBV core and the modified HBV polymerase (P_{mut}) and upstream (5') of the sequence encoding the HBV surface antigen (HbsAg).

2. The multi-HBV immunogen viral vector vaccine according to claim 1, wherein the 20 intergenic sequence comprises a cleavage domain, an IRES (Internal Ribosomal Entry Site), a splicing signal, or a secondary promoter.

3. The multi-HBV immunogen viral vector vaccine according to claim 1, wherein the intergenic sequence comprises a cleavage domain;

25 optionally wherein the cleavage domain comprises a ribosome skipping cleavage domain;

further optionally, wherein the cleavage domain comprises or consists of Furin-2A (F2A) peptide sequence or a functional variant thereof.

30 4. The multi-HBV immunogen viral vector vaccine according to claim 1, wherein the intergenic sequence comprises a secondary promoter to promote expression of at least the surface antigen (HbsAg).

35 5. The multi-HBV immunogen viral vector vaccine according to any preceding claim, wherein the immunogen expression cassette further encodes HBV Pre-Core (PreC).

6. The multi-HBV immunogen viral vector vaccine according to any preceding claim, wherein the immunogen expression cassette further encodes HBV PreS1, and/or a truncated form thereof.

5

7. The multi-HBV immunogen viral vector vaccine according to any preceding claim, wherein the immunogen expression cassette further encodes HBV PreS2.

8. The multi-HBV immunogen viral vector vaccine according to any preceding claim, 10 wherein the immunogen expression cassette encodes HBV Pre-Core (PreC) and HBV PreS1, and a truncated form of PreS1.

9. The multi-HBV immunogen viral vector vaccine according to any preceding claim, wherein the immunogen expression cassette is capable of expressing HBV e-Antigen.

15

10. The multi-HBV immunogen viral vector vaccine according to any preceding claim, wherein the HBV Core and modified polymerase (Pmut) are arranged to be expressed as a fusion protein.

20 11. The multi-HBV immunogen viral vector vaccine according to claims 5 to 10, wherein the HBV Pre-core, HBV Core and modified polymerase (Pmut) are arranged to be expressed as a fusion protein.

25 12. The multi-HBV immunogen viral vector vaccine according to any preceding claim, wherein the immunogen expression cassette does not encode HBV X protein.

13. The multi-HBV immunogen viral vector vaccine according to any preceding claim, wherein the immunogen expression cassette comprises nucleic acid comprising the sequence of:

30 SEQ ID NO: 46 (SII-HBV-CPmutS) or a variant thereof;
SEQ ID NO: 47 (SII-HBV-SCPmut) or a variant thereof;
SEQ ID NO: 48 (SII-HBV-CPmutPreS-S(sh)) or a variant thereof;
SEQ ID NO: 49 (SII-HBV-CPmutPreS-TPA-S(sh)) or a variant thereof; SEQ ID NO: 24 (MVA-SII-HBV-PreS-Pmut-C-S(sh)) or a variant thereof; or

SEQ ID NO: 27 or SEQ ID NO: 58 (MVA-SIi-HBV-PreS-Pmut-C-TPA-S(sh)) or a variant thereof.

14. The multi-HBV immunogen viral vector vaccine according to any preceding claim,

5 wherein the viral vector encodes the amino acid sequence of:

SEQ ID NO: 3 (SIi-HBV-CPmutS) or a variant thereof.

SEQ ID NO: 11 (SIi-HBV-SCPmut) or a variant thereof.

SEQ ID NO: 13 (SIi-HBV-CPmutPreS-S(sh)) or a variant thereof.

SEQ ID NO: 25 (SIi-HBV-CPmutPreS-TPA-S(sh)) or a variant thereof.

10 SEQ ID NO: 23 (MVA-SIi-HBV-PreS-Pmut-C-S(sh)) or a variant thereof.

SEQ ID NO: 26 (MVA-SIi-HBV-PreS-Pmut-C-TPA-S(sh)) or a variant thereof.

15. The multi-HBV immunogen viral vector vaccine according to any preceding claim,

wherein the viral vector comprises an adenovirus vector or Modified Vaccinia Ankara

15 (MVA) vector.

16. The multi-HBV immunogen viral vector vaccine according to any preceding claim,

wherein the viral vector may comprise a group E simian adenovirus vector.

20 17. The multi-HBV immunogen viral vector vaccine according to any preceding claim, wherein the promoter is encoded in the immunogen expression cassette, for example the promoter may be encoded at, or adjacent to, the 5' end of the immunogen expression cassette; or

25 wherein the promoter may be encoded as part of the viral vector nucleic acid outside of the immunogen expression cassette.

18. The multi-HBV immunogen viral vector vaccine according to any preceding claim, wherein the promoter promotes the expression of all the encoded protein of the immunogen expression cassette.

30

19. The multi-HBV immunogen viral vector vaccine according to claims 1 to 17, wherein the immunogen expression cassette comprises a secondary promoter, wherein the promoter is a primary promoter that is arranged to promote expression of at least the HBV core and modified polymerase (Pmut), and not the HBV surface antigen (HbsAg) which is arranged to be promoted separately by the secondary promoter.

35

20. The multi-HBV immunogen viral vector vaccine according to any preceding claim, wherein the promoter comprises a CMV promoter or a pox viral promoter.

5 21. The multi-HBV immunogen viral vector vaccine according to any preceding claim, wherein the HBV Core comprises or consists of a full length wild-type HBV Core sequence.

10 22. The multi-HBV immunogen viral vector vaccine according to any preceding claim, wherein the modified HBV polymerase (P_{mut}) is not a truncated form of HBV polymerase (i.e. it is full length relative to wildtype HBV polymerase).

15 23. The multi-HBV immunogen viral vector vaccine according to any preceding claim, wherein the modified HBV polymerase (P_{mut}) comprises or consists of the sequence of SEQ ID NO: 8 or a variant thereof.

20 24. The multi-HBV immunogen viral vector vaccine according to any preceding claim, wherein the HbsAg comprises or consists of a full length wild-type HbsAg sequence, or a variant thereof.

25 25. The multi-HBV immunogen viral vector vaccine according to any preceding claim, wherein the immunogen expression cassette encodes a truncated form of HBV PreS1 and the truncated PreS1 is arranged to be expressed a fusion protein with the HBV surface antigen (S / HbsAg).

26 26. The multi-HBV immunogen viral vector vaccine according to claim 25, further comprising a linker sequence provided between the truncated PreS1 and surface antigen (S / HbsAg).

30 27. The multi-HBV immunogen viral vector vaccine according to claim 25 or 26, wherein the truncated PreS1 with a fused surface antigen is encoded downstream (3') of the intergenic sequence.

35 28. The multi-HBV immunogen viral vector vaccine according to any preceding claim, wherein the expression cassette encodes a $N\Delta$ PreS1 and PreS2 fusion sequence.

29. The multi-HBV immunogen viral vector vaccine according to claim 28, wherein the encoded NΔPreS1 and PreS2 fusion sequence is encoded upstream (5') of the intergenic sequence.

5

30. The multi-HBV immunogen viral vector vaccine according to claim 29, wherein the encoded NΔPreS1 and PreS2 fusion sequence is further fused with the modified polymerase (P_{mut}).

10 31. The multi-HBV immunogen viral vector vaccine according to claim 30, wherein a linker sequence is provided between the PreS2 and modified polymerase (P_{mut}).

32. The multi-HBV immunogen viral vector vaccine according to any preceding claim, wherein the immunogen expression cassette further encodes a peptide adjuvant.

15

33. The multi-HBV immunogen viral vector vaccine according to claim 32, wherein the peptide adjuvant comprises TPA (tissue plasminogen activator) or a human or non-human invariant chain (Ii), or a fragment thereof.

20 34. The multi-HBV immunogen viral vector vaccine according to any preceding claim, wherein linker residues are encoded between one or more, or all, of the protein/antigen sequences that are provided in a fusion protein.

25 35. A nucleic acid comprising or consisting of an HBV immunogen expression cassette, wherein the immunogen expression cassette encodes:

- a) HBV Core;
- b) a modified HBV polymerase (P_{mut}), wherein the modification is a mutation to wild-type HBV polymerase to substantially remove polymerase function;
- c) HBV surface antigen (HbsAg); and
- d) an intergenic sequence that is arranged to cause expression of at least the HBV surface antigen (HbsAg) as a separate protein from the HBV core and the modified HBV polymerase (P_{mut}),
wherein the intergenic sequence is downstream (3') of the sequences encoding the HBV core and the modified HBV polymerase (P_{mut}) and upstream (5') of the sequence encoding the HBV surface antigen (HbsAg).

36. The nucleic acid according to claim 35, wherein the immunogen expression cassette further encodes a promoter.

5 37. The nucleic acid according to claim 35 or 36, wherein the immunogen expression cassette is isolated or provided in a non-viral vector.

10 38. A composition comprising the viral vector according to any of claims 1 to 34 or the nucleic acid according to any of claims 35 to 37, optionally wherein the composition is a pharmaceutically acceptable composition.

39. The composition according to any of claim 38, further comprising another therapeutically or prophylactically active ingredient and/or an adjuvant.

15 40. The composition according to claim 38 or 39, wherein the composition comprises a pharmaceutically acceptable carrier and/or wherein the composition is a vaccine composition.

20 41. The composition according to any of claims 38 to 40, the viral vector according to any of claims 1 to 34 or the nucleic acid according to any of claims 35 to 37, for use in the prophylaxis or treatment of HBV infection in a subject; optionally wherein the use is as a vaccine.

25 42. A method of treatment or prophylaxis of HBV infection comprising the administration of the composition according to any of claims 38 to 40, the viral vector according to any of claims 1 to 34 or the nucleic acid according to any of claims 35 to 37, to a subject.

30 43. The composition for the use according to claim 41 of the method according to claim 42, wherein the use or administration is in combination with the use or administration of another therapeutically or prophylactically active ingredient.

44. A prime boost vaccination kit comprising

-a prime vaccination comprising the composition according to any of claims 38 to 40, the viral vector according to any of claims 1 to 34 or the nucleic acid according to any of claims 35 to 37; and

5 -a boost vaccination comprising the composition according to any of claims 38 to 40, the viral vector according to any of claims 1 to 34 or the nucleic acid according to any of claims 35 to 37.

45. The prime and boost vaccination kit according to claim 44, wherein the prime and boost vaccinations comprise different viral vectors.

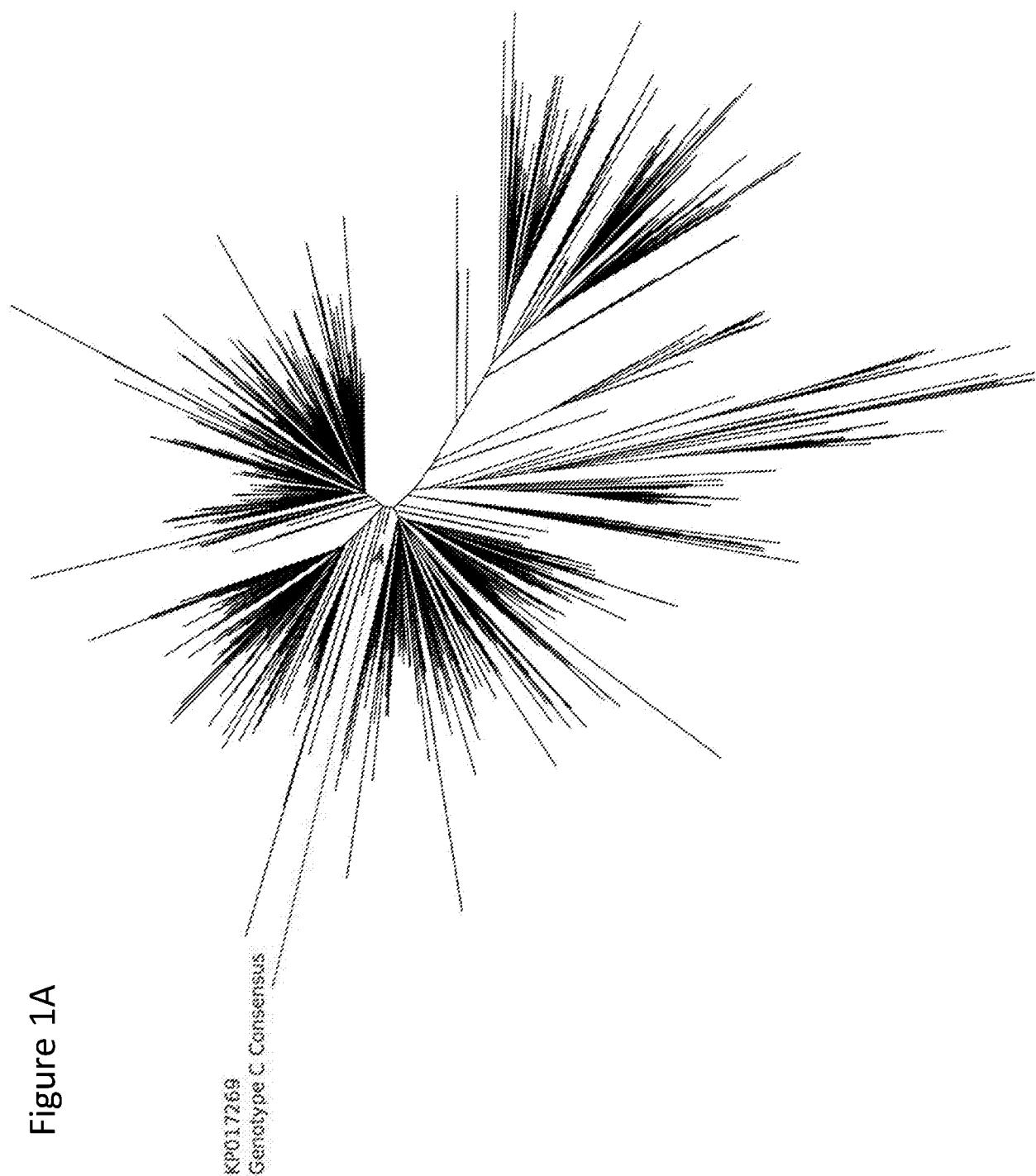


Figure 1B...

genotype C consensus:

Figure 1B continued

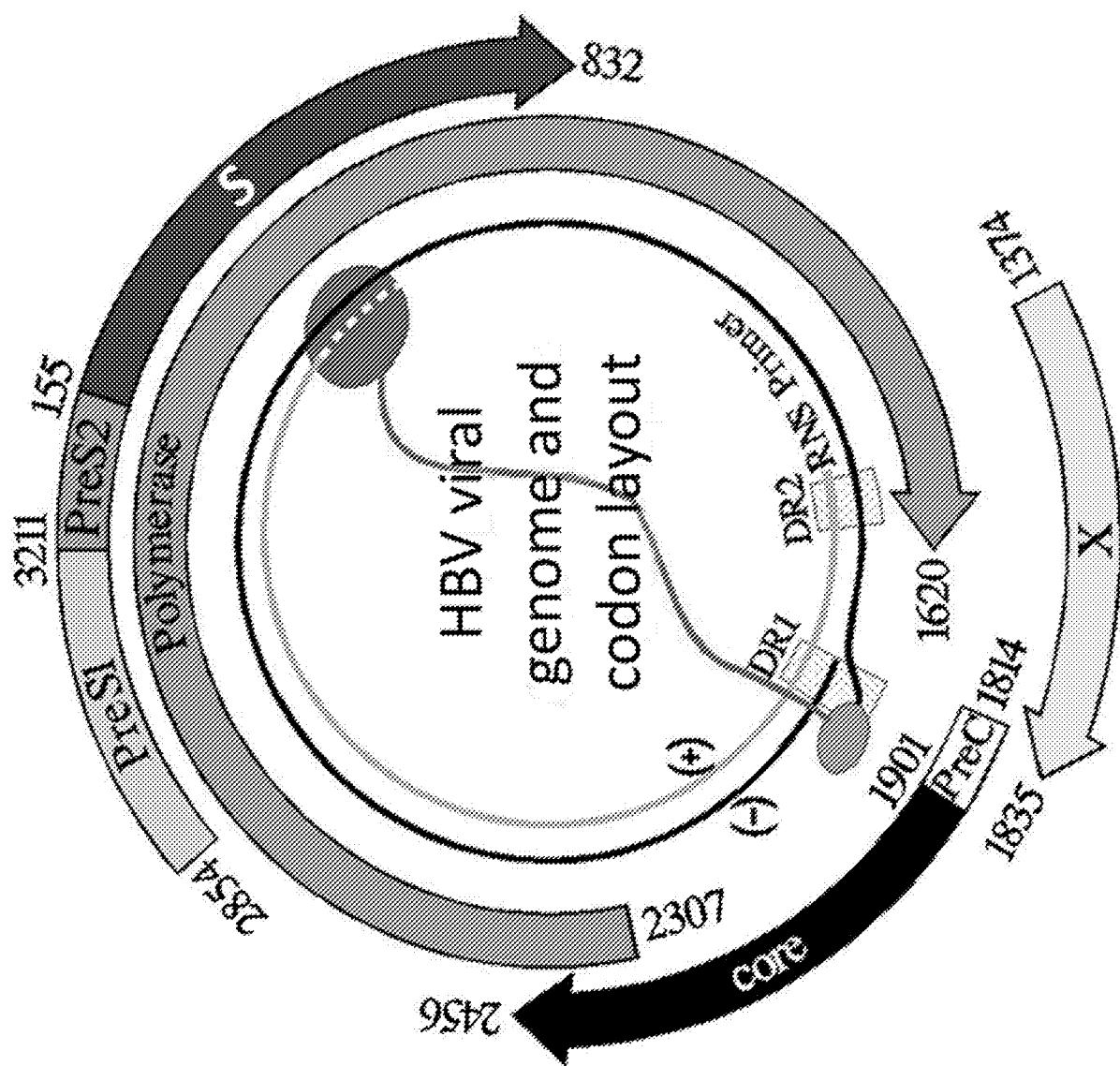


Figure 2A

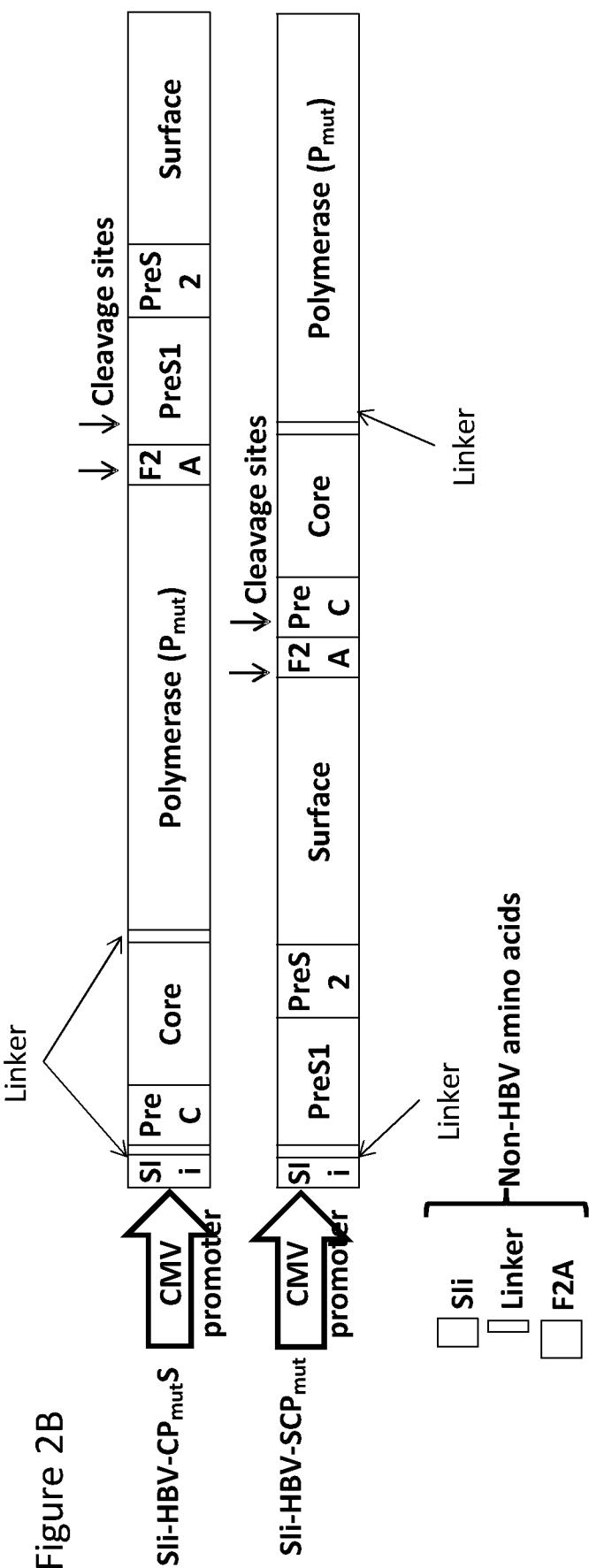


Figure 2C

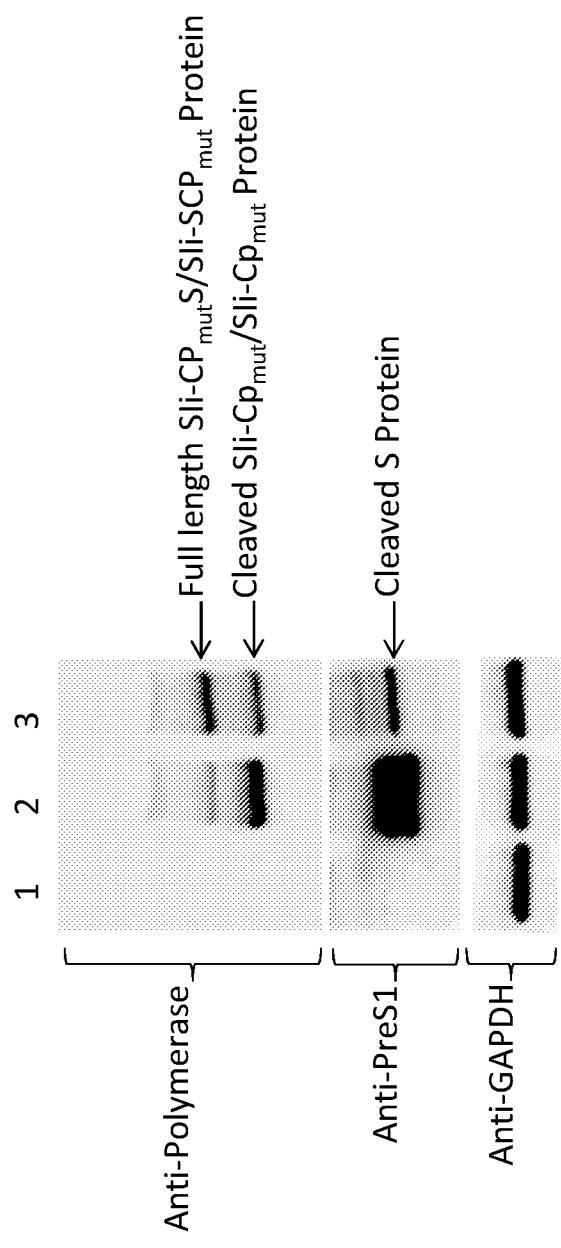


Figure 2D

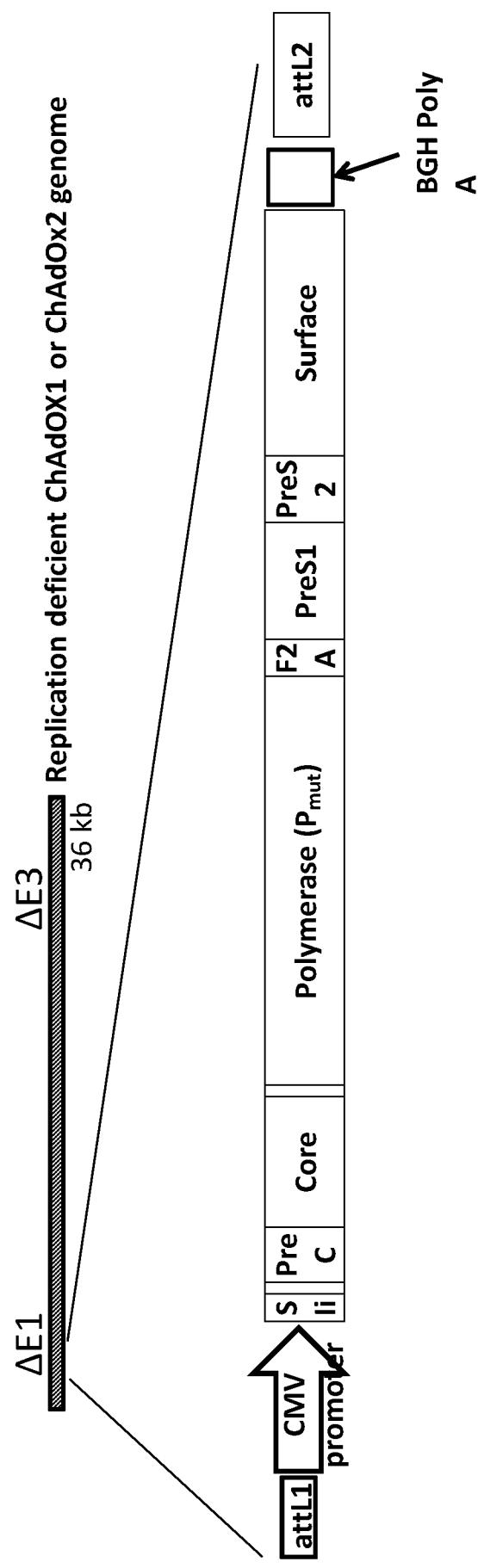


Figure 3A

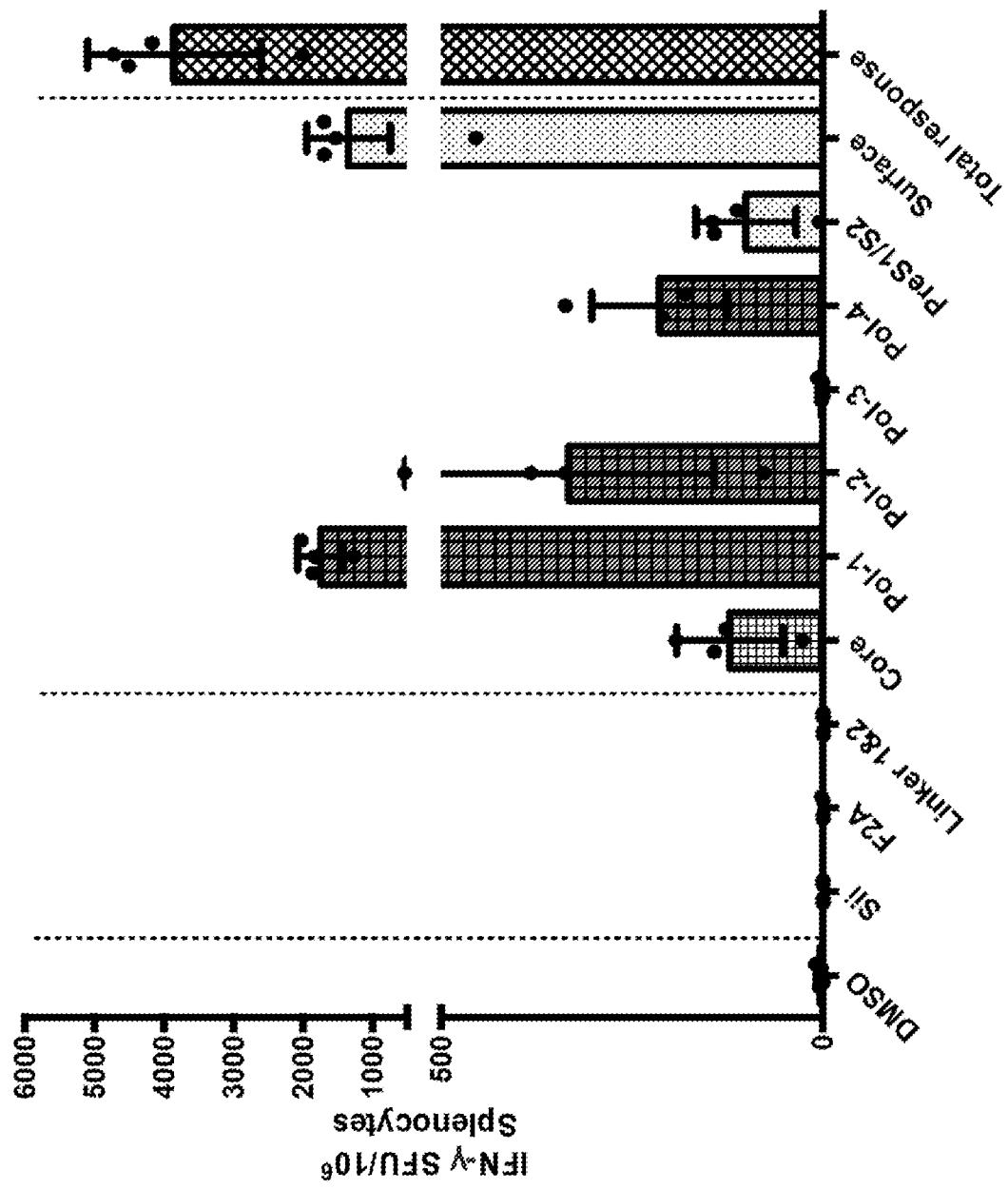
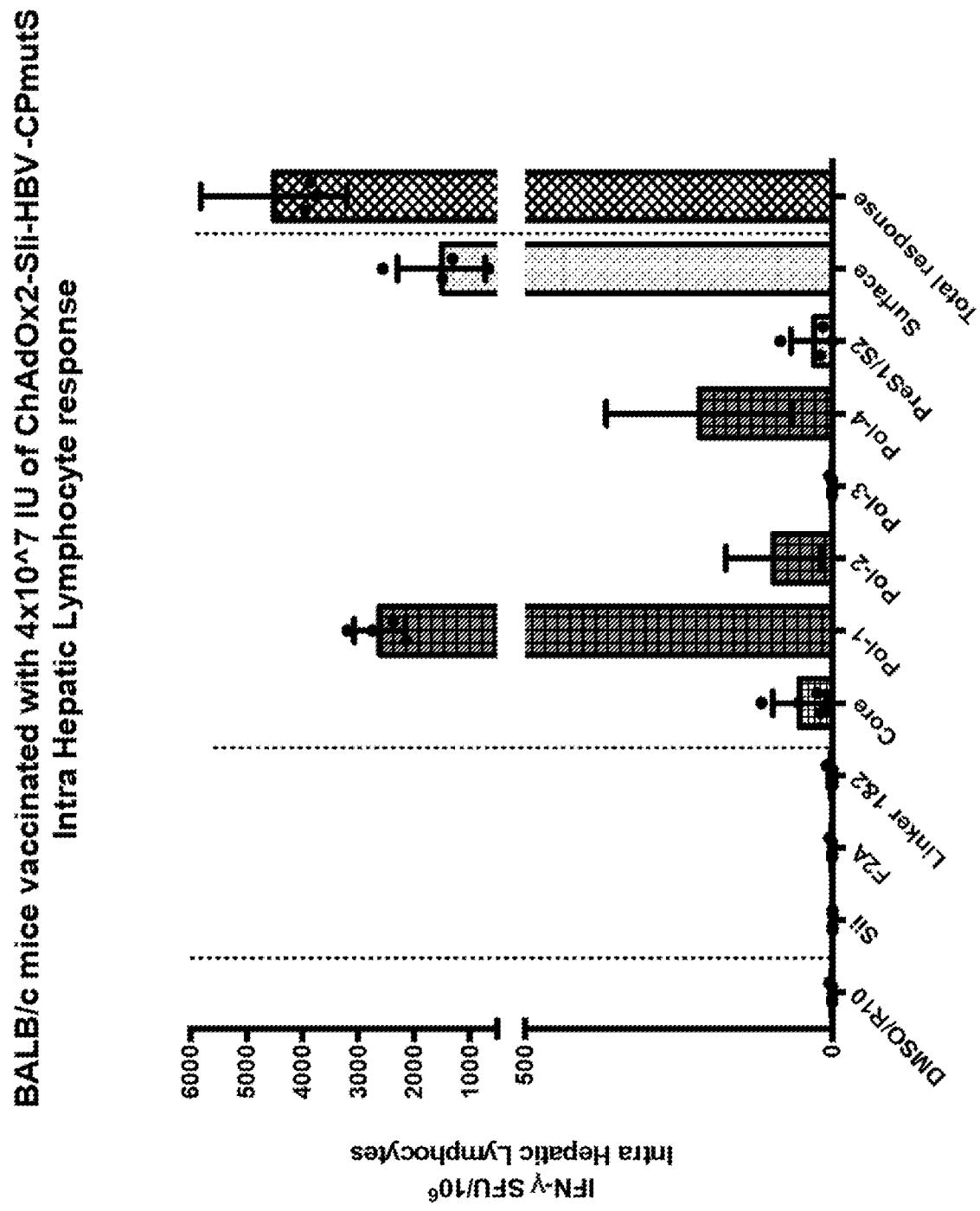



Figure 3B

10/23

Figure 3C
CD1 mice vaccinated with 5×10^7 IU of ChAdOx2-SII-HBV-CPmutS
Splenocyte response

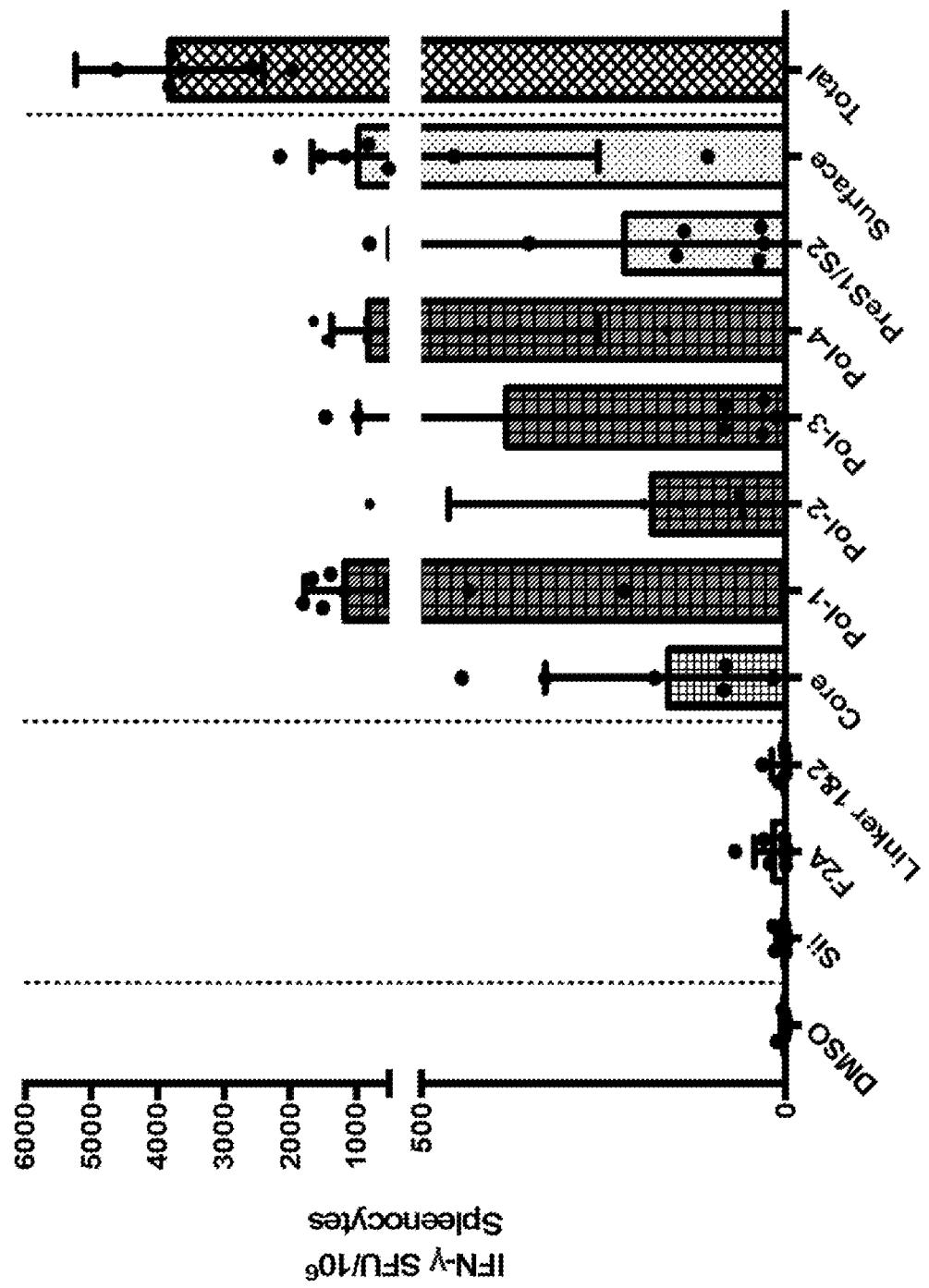
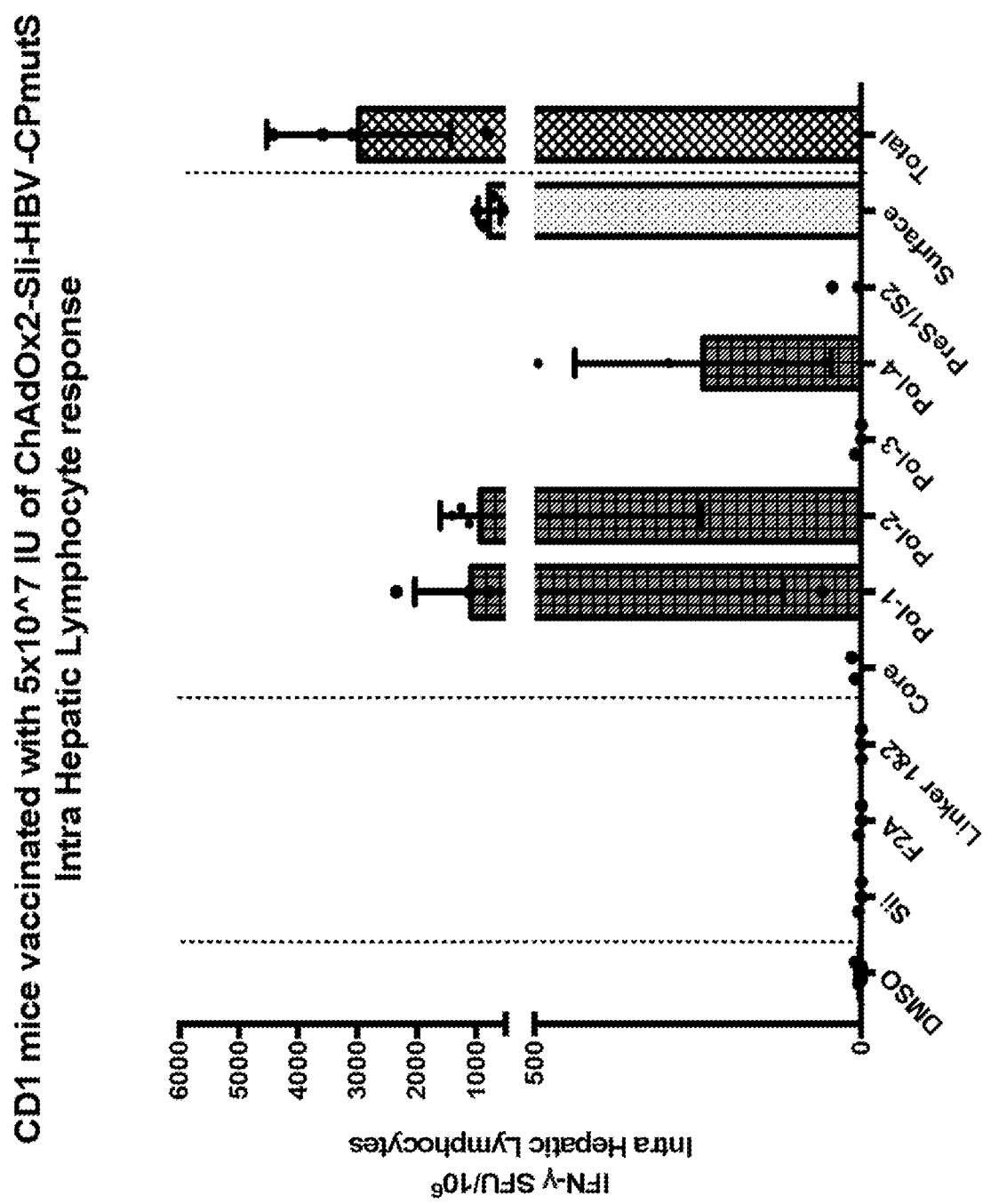
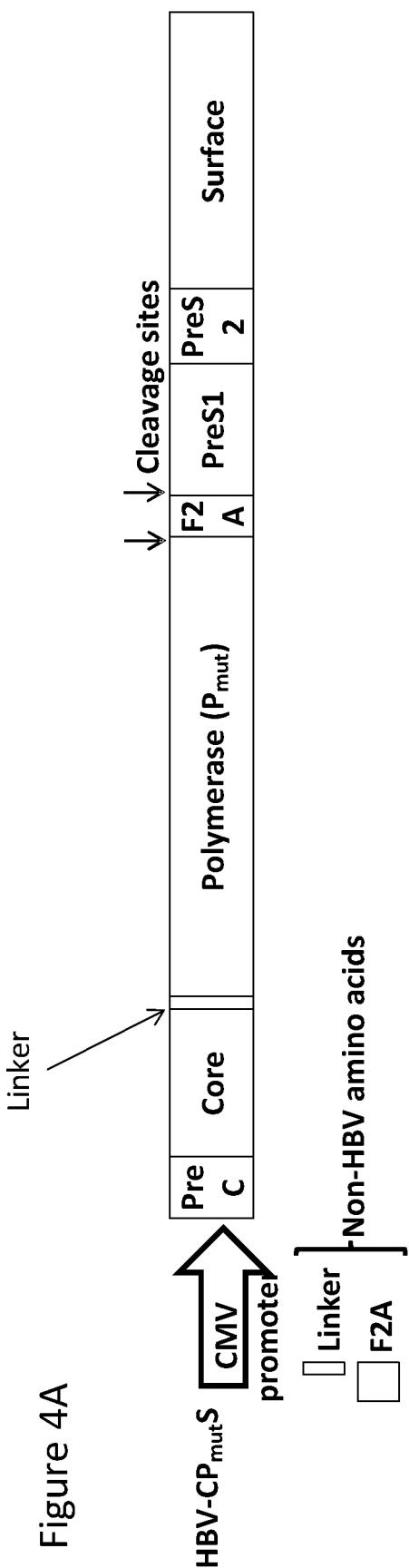
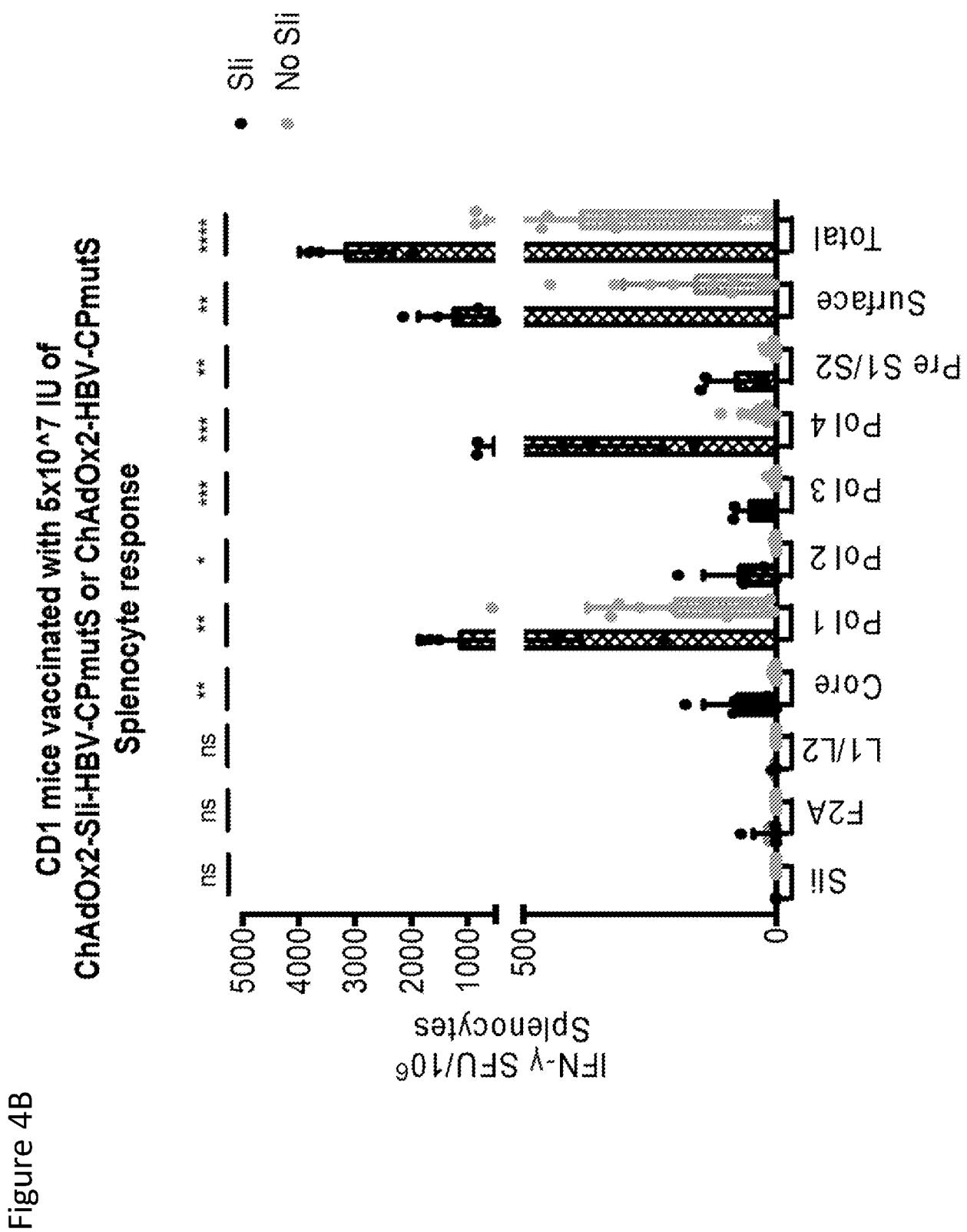
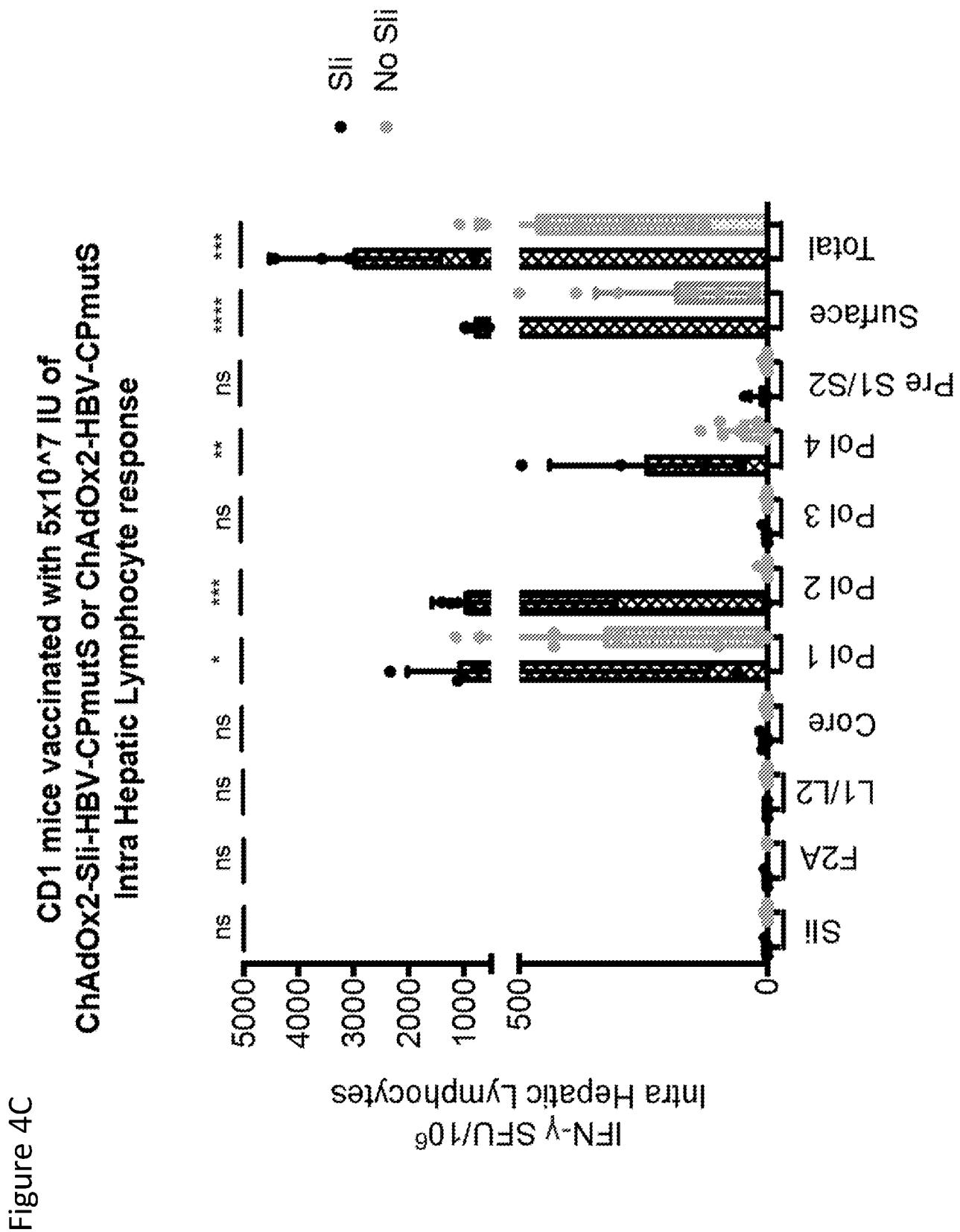





Figure 3D



13/23

14/23

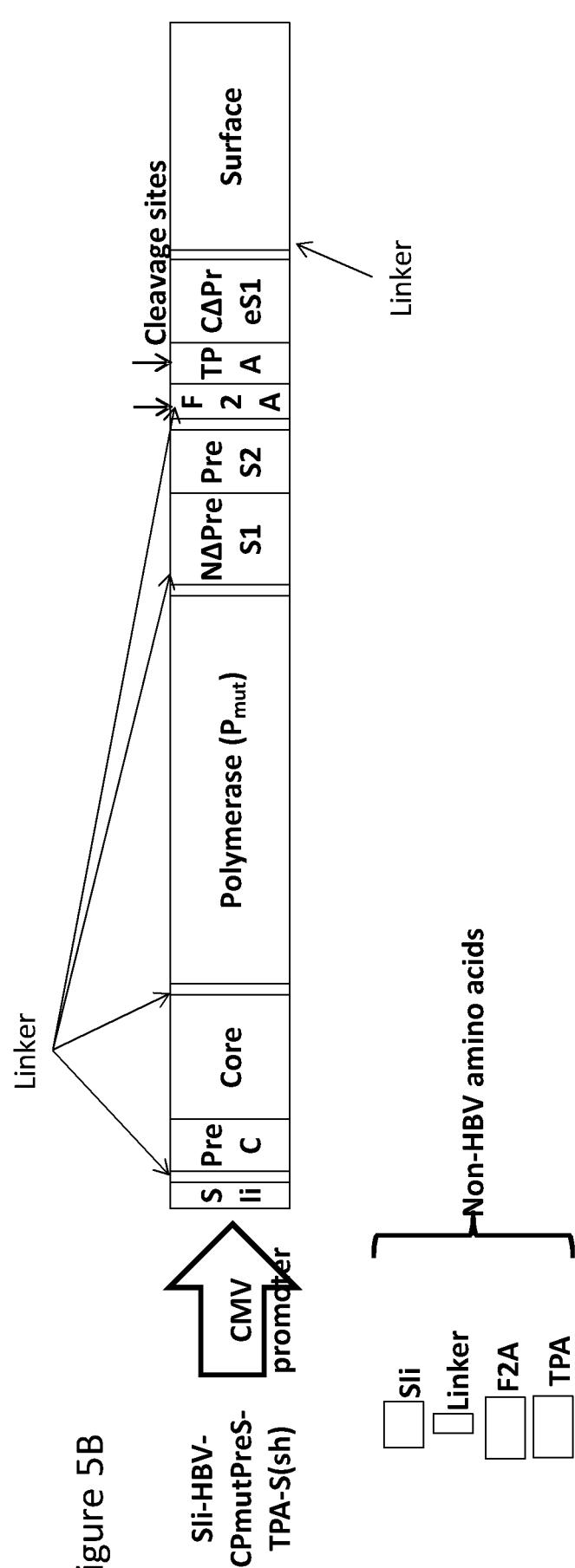
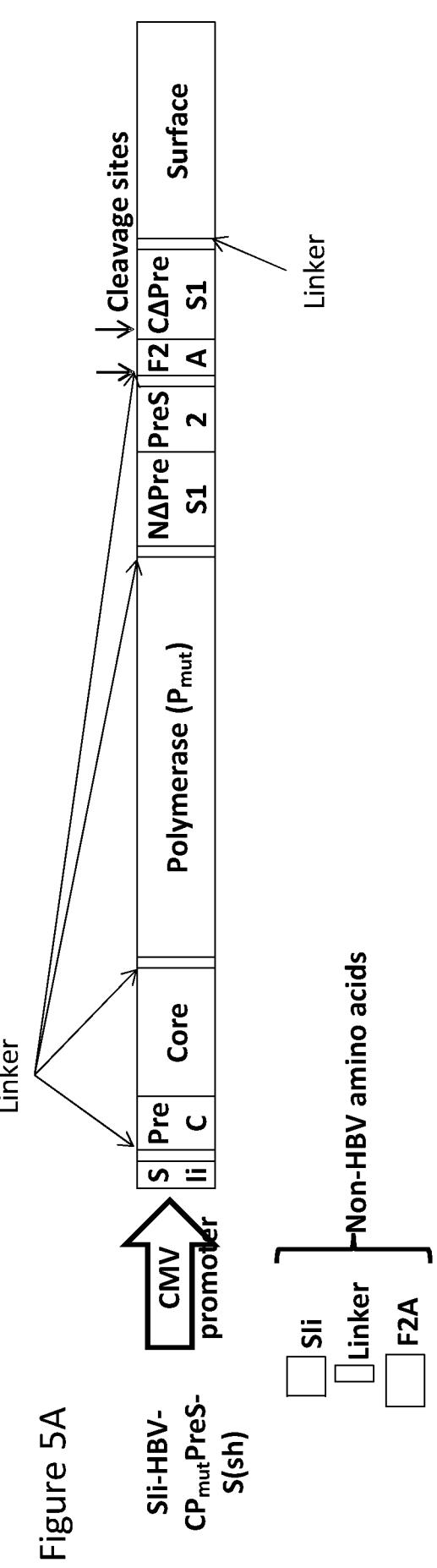



Figure 6A

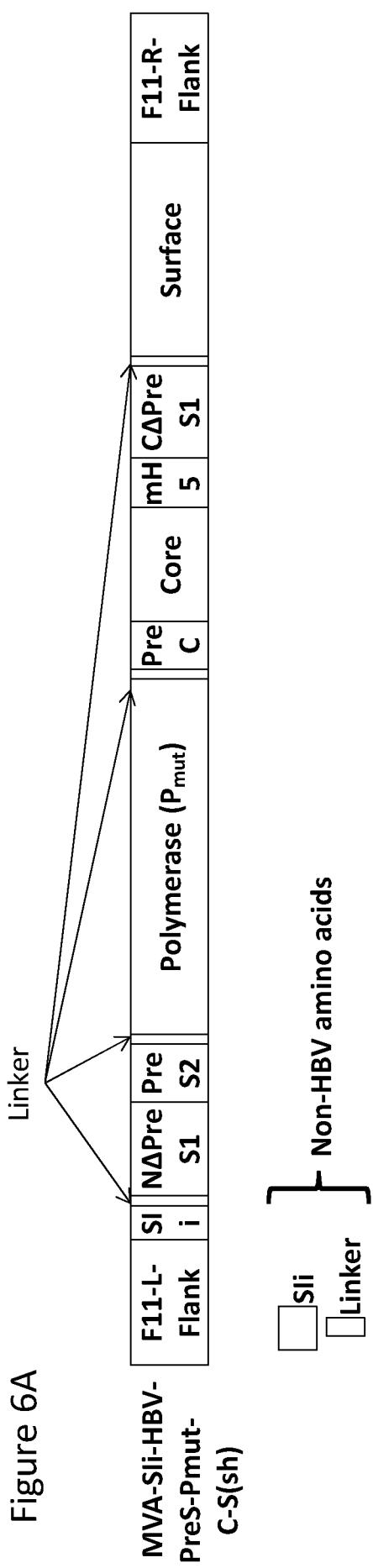


Figure 6B

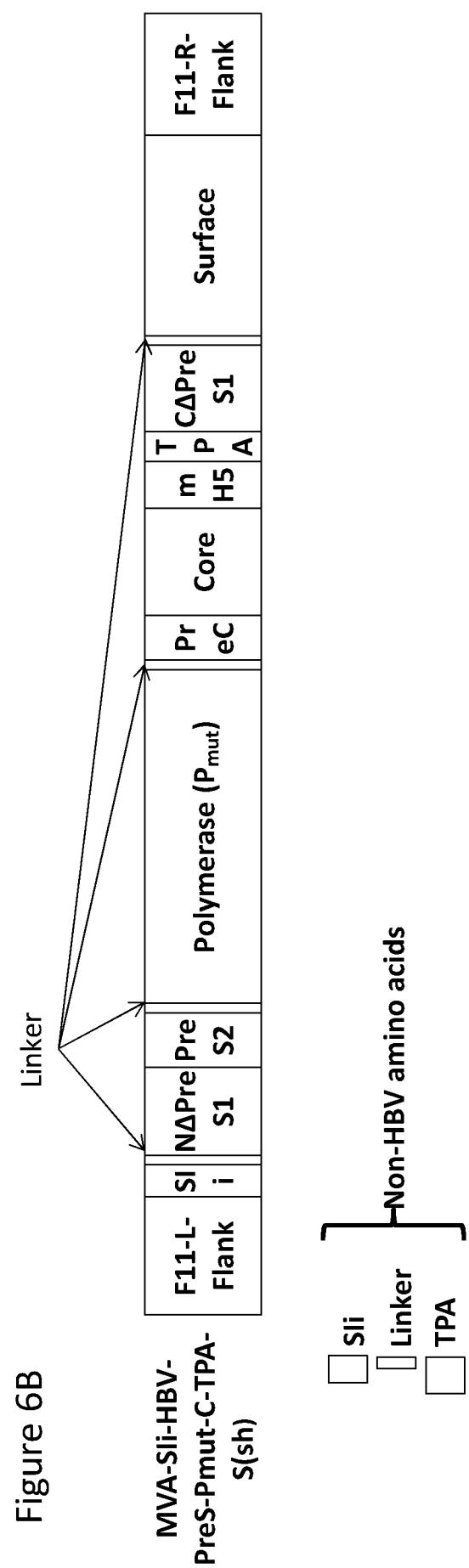
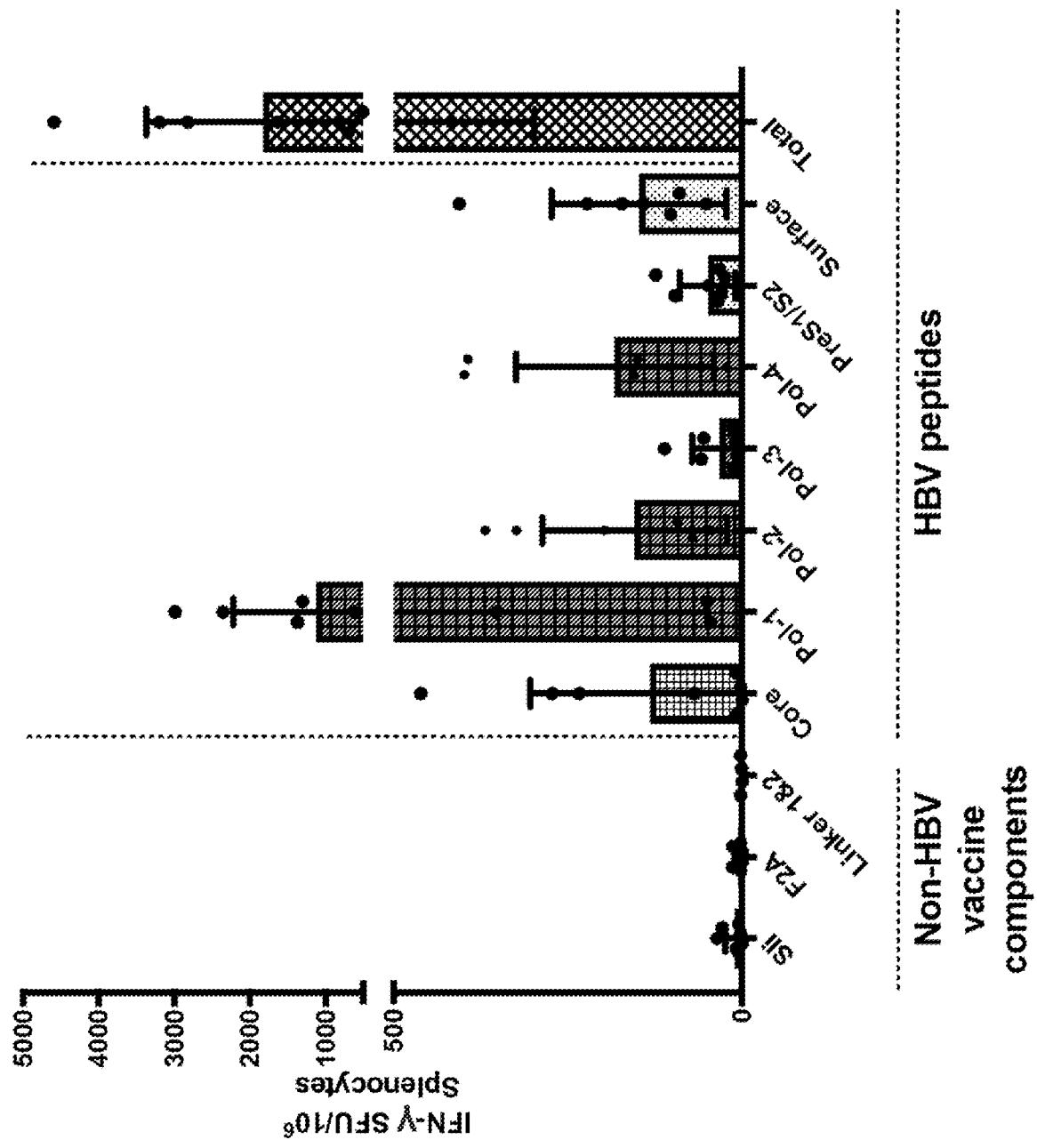



Figure 7

CD1 mice vaccinated with 5×10^7 IU of ChAdOx1-Sli-HBV-CPmutS
Splenocyte response

Figure 8
CD1 mice vaccinated with 5x10⁷ IU of
ChAdOx2-SII-HBV-CPmutS and ChAdOx1-HBV-CPmutS
Splenocyte response

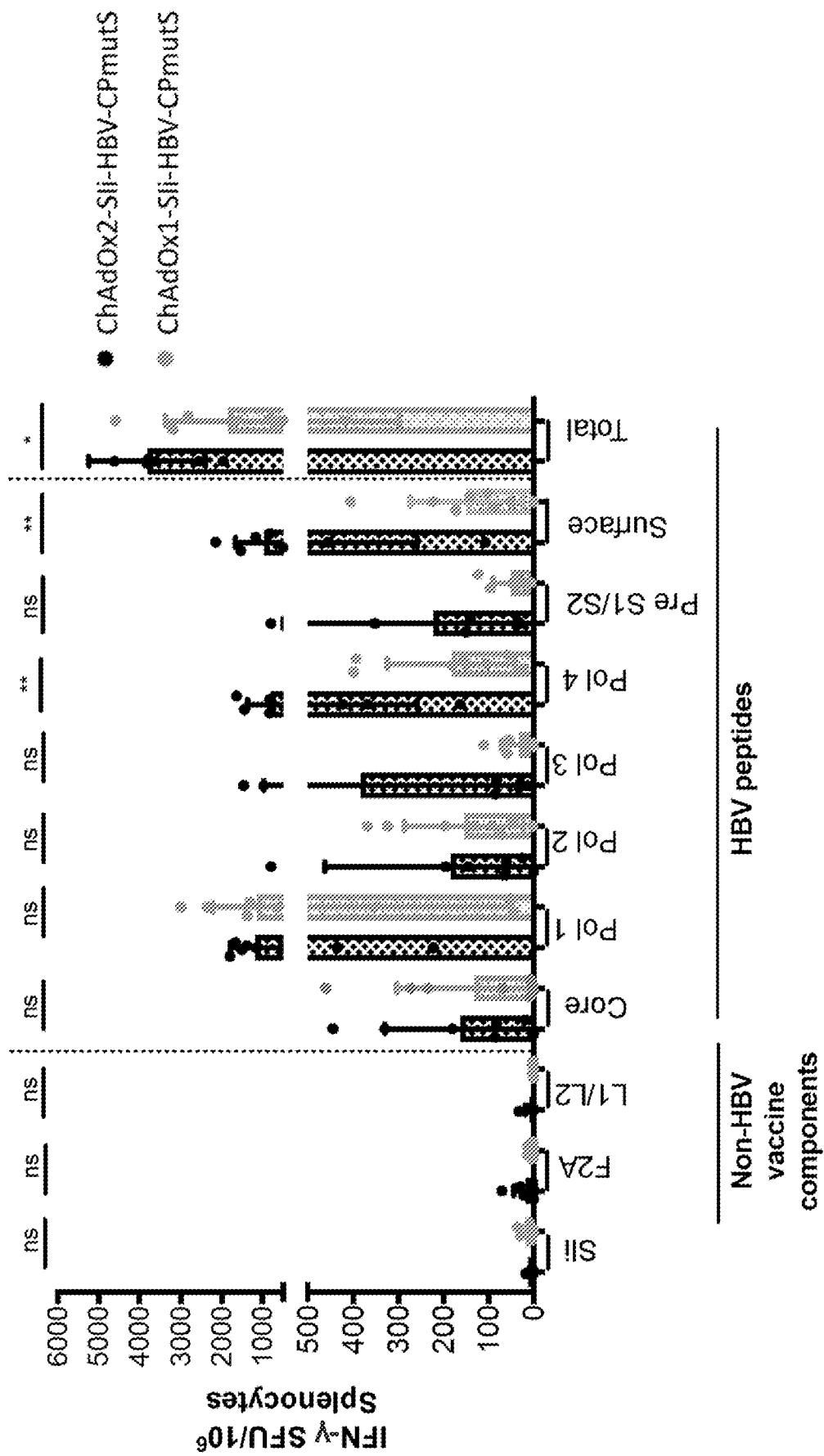


Figure 9

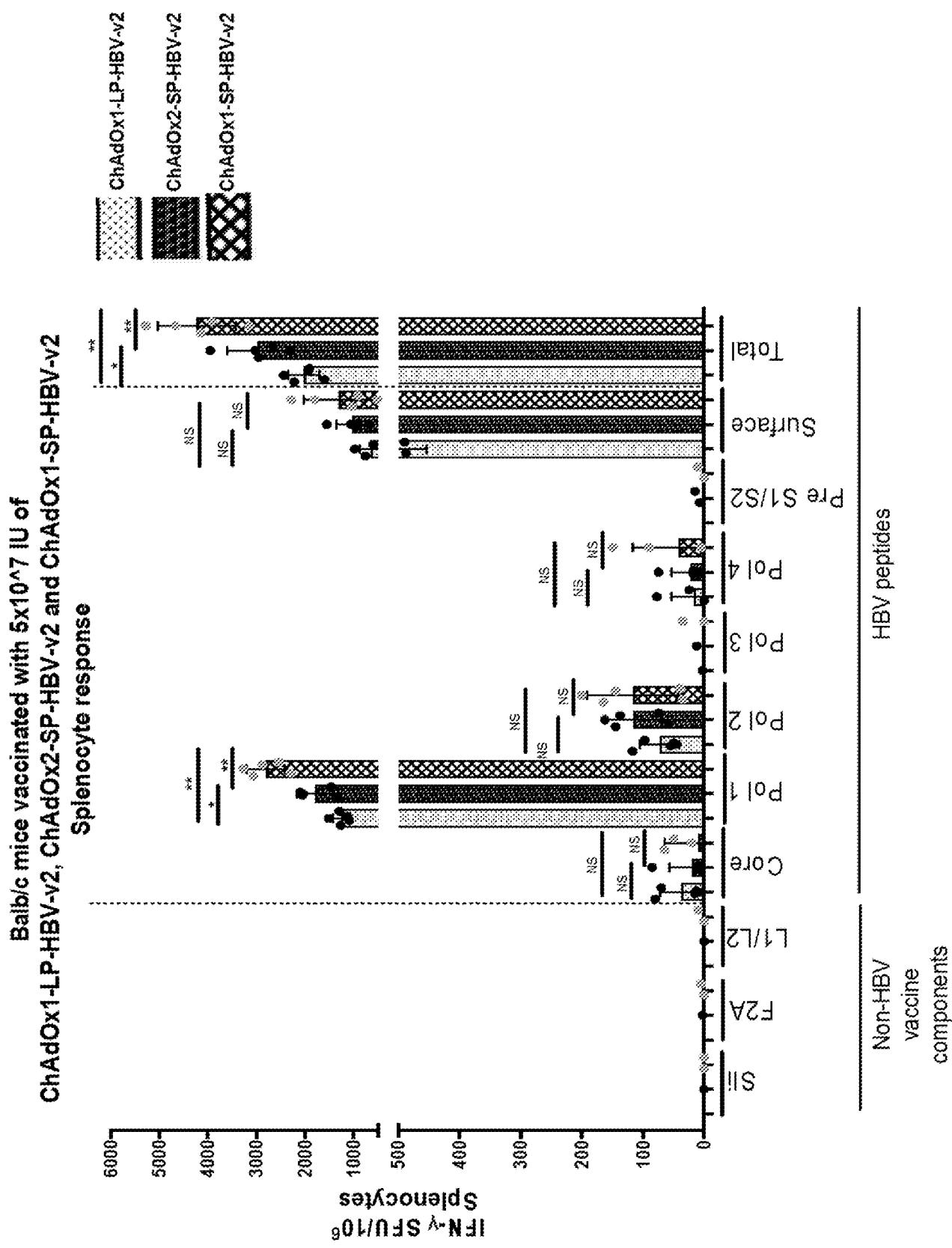


Figure 10A

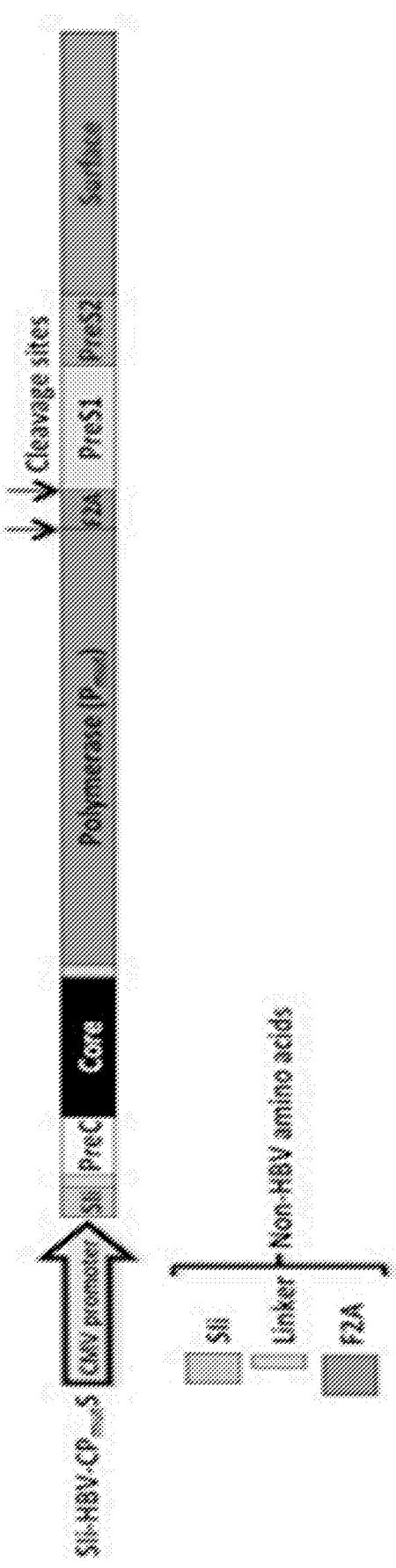


Figure 10B

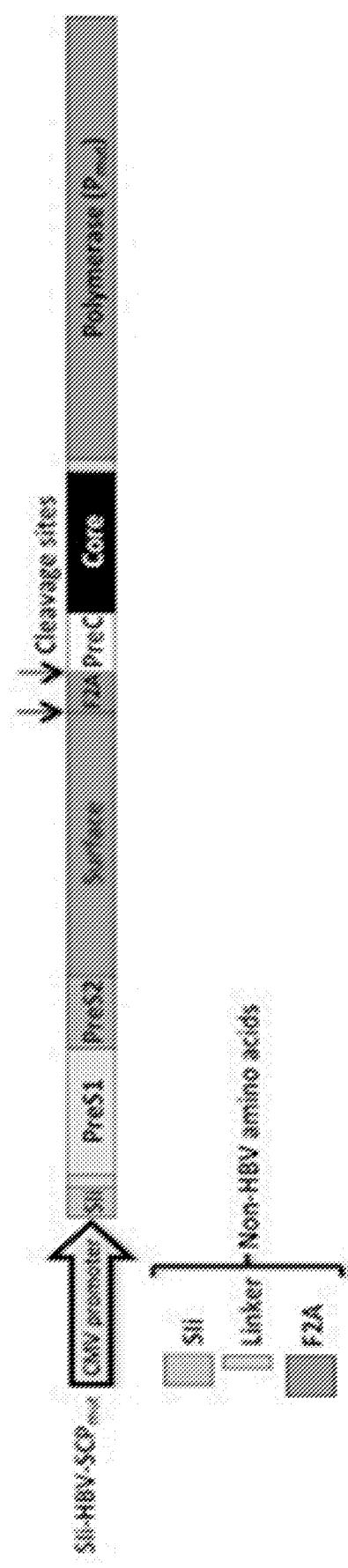


Figure 10C

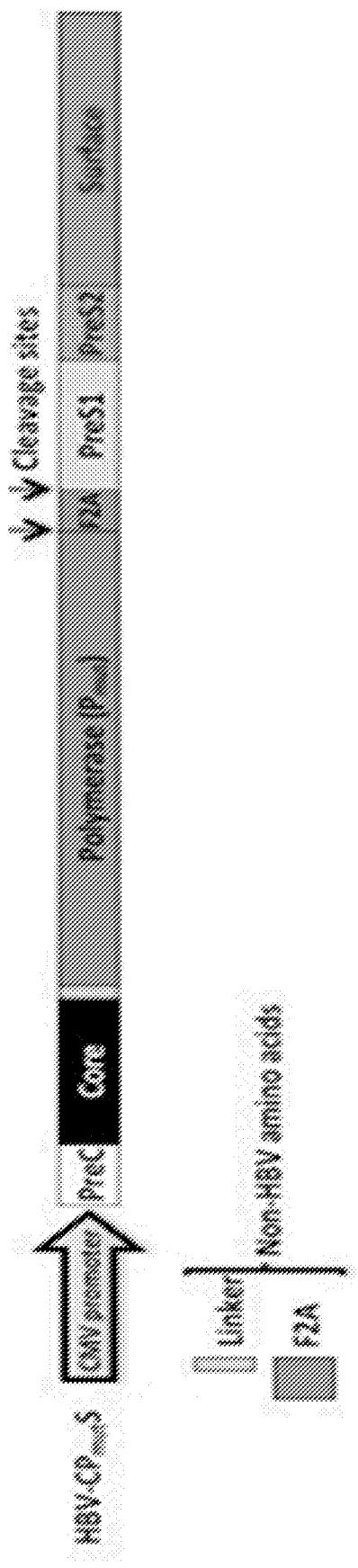


Figure 10D

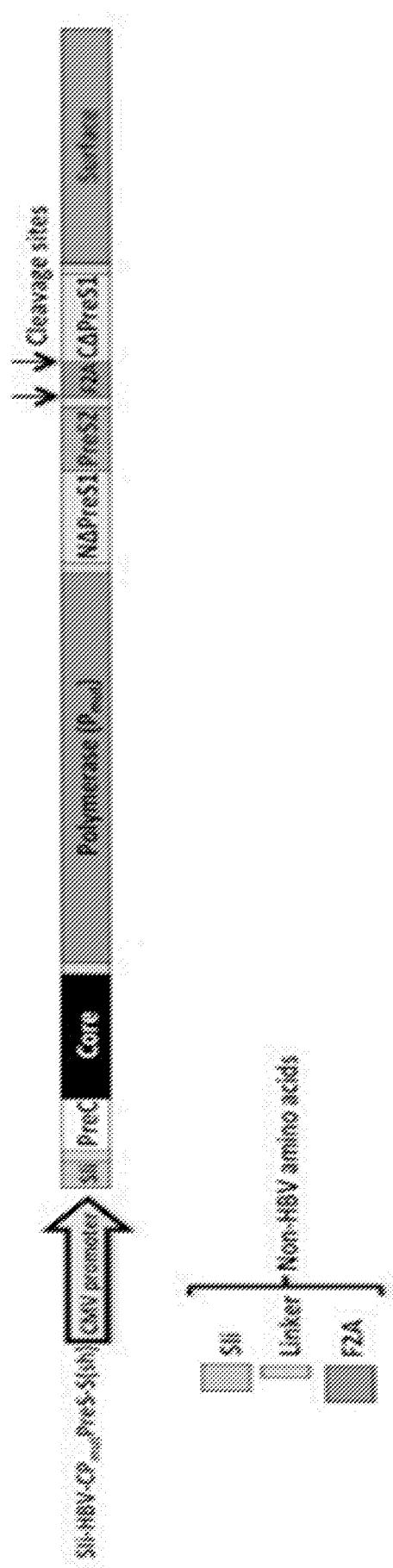


Figure 10E

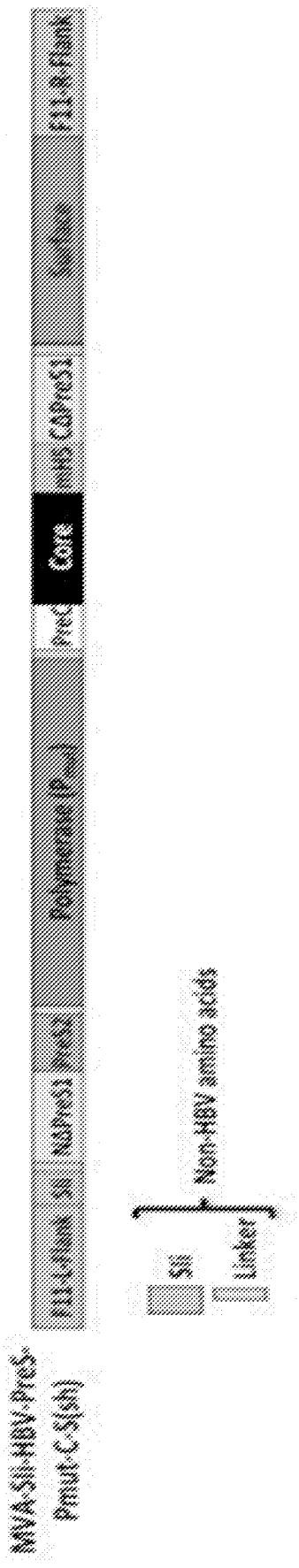


Figure 10F

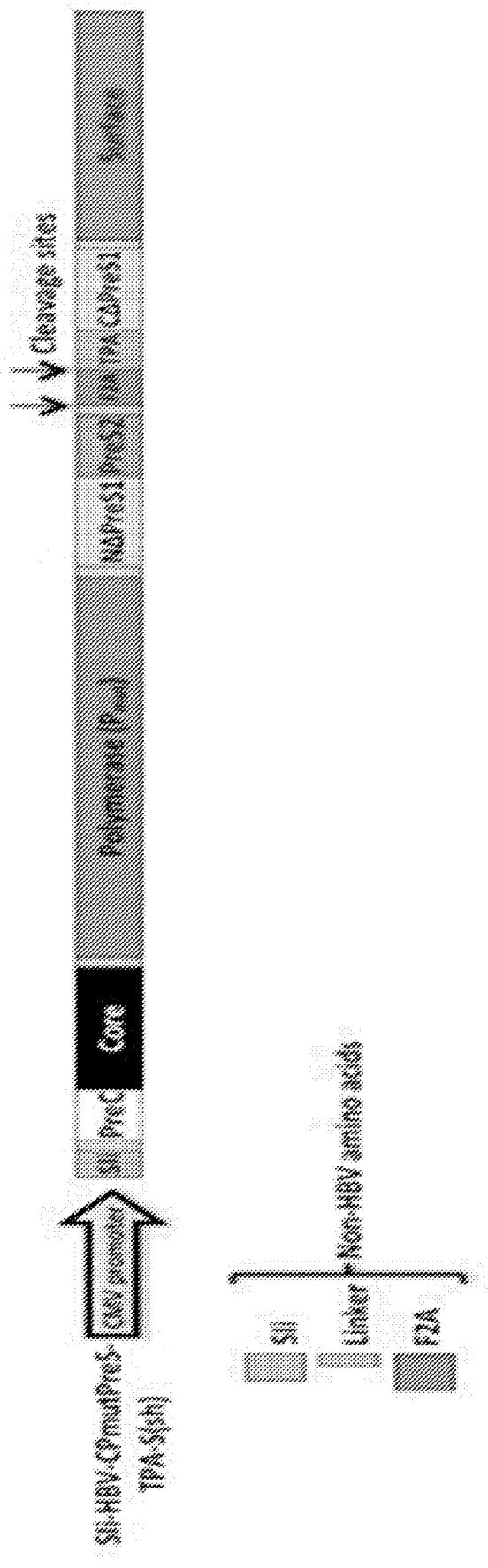
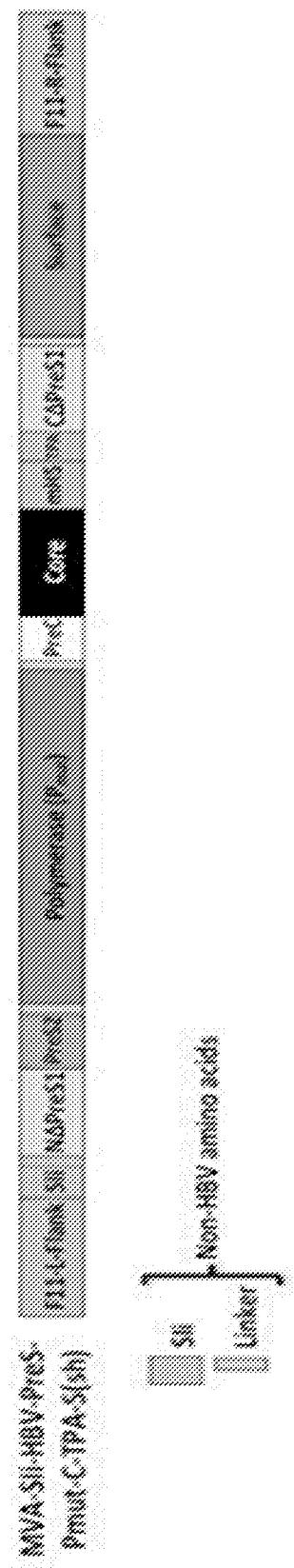



Figure 10G

INTERNATIONAL SEARCH REPORT

International application No
PCT/GB2018/050948

A. CLASSIFICATION OF SUBJECT MATTER
INV. A61K39/29 A61K39/00
ADD.

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
A61K C12N

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

EPO-Internal, BIOSIS, WPI Data, EMBASE

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Y	WO 2012/109404 A1 (GLOBEIMMUNE INC [US]; APELIAN DAVID [US]; KING THOMAS H [US]; GUO ZHIM) 16 August 2012 (2012-08-16) paragraph [0231] - paragraph [0233]; figures 1-15 ----- Y WO 2011/015656 A2 (TRANSGENE SA [FR]; MARTIN PERRINE [FR]; INCHAUSPE GENEVIEVE [FR]; SILV) 10 February 2011 (2011-02-10) paragraph [0017] - paragraph [0033] ----- Y WO 2013/007772 A1 (TRANSGENE SA [FR]; MARTIN PERRINE [FR]; SILVESTRE NATHALIE [FR]; MARCH) 17 January 2013 (2013-01-17) page 19 - page 20; figures 1-11 ----- -/-	1-45 1-45 1-45

Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents :

- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier application or patent but published on or after the international filing date
- "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search	Date of mailing of the international search report
15 June 2018	26/06/2018
Name and mailing address of the ISA/ European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Fax: (+31-70) 340-3016	Authorized officer Renggli-Zulliger, N

INTERNATIONAL SEARCH REPORT

International application No
PCT/GB2018/050948

C(Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Y	PERRINE MARTIN ET AL: "TG1050, an immunotherapeutic to treat chronic hepatitis B, induces robust T cells and exerts an antiviral effect in HBV-persistent mice", GUT, vol. 64, no. 12, 26 November 2014 (2014-11-26), pages 1961-1971, XP055453477, UK ISSN: 0017-5749, DOI: 10.1136/gutjnl-2014-308041 the whole document -----	1-45
A	WO 2008/020656 A1 (POSTECH FOUNDATION [KR]; POSCO [KR]; DONG A PHARM CO LTD [KR]; GENEXIN) 21 February 2008 (2008-02-21) abstract -----	1-45
A	SARAH KUTSCHER ET AL: "Design of therapeutic vaccines: hepatitis B as an example", MICROBIAL BIOTECHNOLOGY, vol. 5, no. 2, 29 September 2011 (2011-09-29), pages 270-282, XP055217521, ISSN: 1751-7915, DOI: 10.1111/j.1751-7915.2011.00303.x page 274 - page 277 -----	1-45

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No

PCT/GB2018/050948

Patent document cited in search report	Publication date	Patent family member(s)			Publication date
WO 2012109404	A1	16-08-2012	AU 2012214394	A1	12-09-2013
			AU 2016256751	A1	01-12-2016
			BR 112013020425	A2	13-06-2017
			CA 2827150	A1	16-08-2012
			CN 103476426	A	25-12-2013
			CO 6791572	A2	14-11-2013
			CR 20130424	A	29-11-2013
			EA 201391170	A1	28-02-2014
			EC SP13012862	A	29-11-2013
			EP 2672991	A1	18-12-2013
			EP 3266464	A2	10-01-2018
			ES 2643389	T3	22-11-2017
			IL 227900	A	28-02-2018
			JP 5745102	B2	08-07-2015
			JP 5911983	B2	27-04-2016
			JP 6109989	B2	05-04-2017
			JP 2014507144	A	27-03-2014
			JP 2015096557	A	21-05-2015
			JP 2016128513	A	14-07-2016
			JP 2017105834	A	15-06-2017
			KR 20140009344	A	22-01-2014
			MA 34956	B1	01-03-2014
			NZ 614733	A	27-03-2015
			NZ 705184	A	30-09-2016
			PE 08442014	A1	14-07-2014
			SG 192285	A1	30-09-2013
			TW 201309721	A	01-03-2013
			US 2013243805	A1	19-09-2013
			US 2014065182	A1	06-03-2014
			US 2014286984	A1	25-09-2014
			US 2015110828	A1	23-04-2015
			US 2015191509	A1	09-07-2015
			US 2017000879	A1	05-01-2017
			WO 2012109404	A1	16-08-2012
			ZA 201306481	B	27-07-2016
<hr/>					
WO 2011015656	A2	10-02-2011	AU 2010280710	A1	01-03-2012
			BR 112012002628	A2	08-11-2016
			CA 2770075	A1	10-02-2011
			CN 102573903	A	11-07-2012
			CN 105535960	A	04-05-2016
			EP 2461826	A2	13-06-2012
			HK 1223295	A1	28-07-2017
			IL 217926	A	31-07-2016
			JP 5897464	B2	30-03-2016
			JP 6246778	B2	13-12-2017
			JP 2013501038	A	10-01-2013
			JP 2016074707	A	12-05-2016
			KR 20120052352	A	23-05-2012
			NZ 598000	A	25-10-2013
			RU 2012107671	A	20-09-2013
			SG 178254	A1	29-03-2012
			TW 201106967	A	01-03-2011
			US 2013011435	A1	10-01-2013
			US 2017072047	A1	16-03-2017
			WO 2011015656	A2	10-02-2011
			ZA 201200899	B	31-10-2012
<hr/>					

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No

PCT/GB2018/050948

Patent document cited in search report	Publication date	Patent family member(s)		Publication date
WO 2013007772	A1 17-01-2013	AU 2012282506	A1	27-02-2014
		BR 112014000627	A2	17-04-2018
		CA 2841890	A1	17-01-2013
		CN 103998604	A	20-08-2014
		DK 2732034	T3	17-07-2017
		EP 2732034	A1	21-05-2014
		ES 2632497	T3	13-09-2017
		HU E033789	T2	29-01-2018
		JP 6189293	B2	30-08-2017
		JP 2014527404	A	16-10-2014
		KR 20140066997	A	03-06-2014
		MX 346835	B	31-03-2017
		NZ 620867	A	26-02-2016
		PE 12102014	A1	24-09-2014
		RU 2014104360	A	20-08-2015
		TW 201311901	A	16-03-2013
		TW 201734208	A	01-10-2017
		US 2014287480	A1	25-09-2014
		US 2017145392	A1	25-05-2017
		WO 2013007772	A1	17-01-2013
<hr/>				
WO 2008020656	A1 21-02-2008	CN 101573449	A	04-11-2009
		EP 2057268	A1	13-05-2009
		WO 2008020656	A1	21-02-2008
<hr/>				