A 000 N R X O

WO 03/071383 A2

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date

(10) International Publication Number

28 August 2003 (28.08.2003) PCT WO 03/071383 A2
(51) International Patent Classification”: GO6F Theodore, J. [US/US]; 22151 Little Pond Road, Kildeer,
IL 60047 (US). GRUSON, Mathew [US/US]; 5418

(21) International Application Number: PCT/US03/04161 Cromer Place, Woodland Hills, CA 91367 (US).

(22) International Filing Date: 11 February 2003 (11.02.2003)

(25) Filing Language: English

(26) Publication Language: English
(30) Priority Data:
60/357,729 18 February 2002 (18.02.2002) US
(71) Applicant (for all designated States except US): INTER-
ACTIVE SCIENCES, INC. [US/US]; 22151 Little Pond

Road, Kildeer, IL 60047 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): MARKLEY,

(74) Agent: SAMMONS, Barry, E.; Quarles & Brady LLP,

411 E. Wisconsin Avenue, Milwaukee, WI 53202 (US).
(81) Designated States (national): AE, AG, AL, AM, AT, AU,
AZ,BA, BB, BG, BR,BY, BZ, CA, CH, CN, CO, CR, CU,
CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH,
GM, HR, HU, ID, IL,, IN, IS, JP, KE, KG, KP, KR, KZ, L.C,
LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MV,
MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG,
SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC,
VN, YU, ZA, ZM, ZW.
(84) Designated States (regional): ARIPO patent (GH, GM,
KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW),
Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE,

[Continued on next page]

(54) Title: DEVELOPMENT SYSTEM FOR MULTIMEDIA PROGRAMS AND PLATFORM FOR PERFORMING SUCH PRO-

GRAMS

(57) Abstract: A game development system server stores
a master asset pool which is available to a plurality of
workstations. Each workstation includes game development
tools tailored to the needs of game development team members
and these are employed to develop game assets stored in the
master asset pool. A game is built by selectively concatenating
game assets and combining the resulting game program with
a game platform program. The game platform program is
installed on a user’s general purpose personal computer to
transform it into a dedicated game machine capable of running
games from the game development system.

w0 03/071383 A2 NN 00 0O RO O

ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, SE, SI, For two-letter codes and other abbreviations, refer to the "Guid-
SK, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ance Notes on Codes and Abbreviations" appearing at the begin-
GQ, GW, ML, MR, NE, SN, TD, TG). ning of each regular issue of the PCT Gazette.

Published:
— without international search report and to be republished
upon receipt of that report

WO 03/071383 PCT/US03/04161

DEVELOPMENT SYSTEM FOR MULTIMEDIA COMPUTER PROGRAMS
AND PLATFORM FOR PERFORMING SUCH PROGRAMS

BACKGROUND OF THE INVENTION

[0001] The field of the invention is the development of multimedia programs such as
computer games and simulators. Such programs are characterized by their sophisticated
graphic and sound presentation and a high level of user interaction through the use of a

keyboard, mouse, joystick or the like.

[0002] Technology has done some wonderful things for the electronic entertainment
industry, but these innovations have come with a cost. The escalating complexity of the
programming involved in game production continues to create budget overruns, missed
deadlines, and lengthening times to market. Programming becomes expensive as the software
talent shortage continues. Game programmers command premium salaries well above their
counterparts ih other industries. Also, because of the complexity of today’s products, often a
significant amount of experimentation must be done during the programming phase to ensure
that the product achieves peak performance, meets minimum quality standards, and works
with the latest technologies. The reliability of newly developed technology is highly

unpredictable, which places both development costs and schedules at risk.

[0003] On February 16, 2000 in Cambridge, Massachusetts, Massachusetts Institute
of Technology held the nation’s first conference to explore the role of video and computer
games in popular culture. Conference organizer Professor Henry Jenkins declared that the
event firmly established that “games are at an important threshold economically,
technologically, culturally and aestheticaﬂy’ >, At the event some “worried that the new
processing power would push up the cost of game production and raise the technical
expectations to the point that smaller companies or even mid-level developers would have

trouble competing.”

[0004] Developers creating electronic entertainment products are usually independent
teams or companies whose primary desire is to create compelling, addictive games.
Marketing, sales and distribution are all handled by a publisher. Many publishers have their

own in-house development teams or divisions, called studios. Such studios usually consist of

WO 03/071383 PCT/US03/04161
artists, programmers, and game designers. Sometimes, if they are large enough, the

development team has in-house music and sound capability.

[0005] A new product begins with a game concept and proceeds through the design
phase into production. Production consumes the bulk of the time and resources of the team.
This is the period when the team falls behind schedule usually because of the complexity of
software. The time to perform programming tasks is exceedingly difficult to forecast.
Because the game industry is highly competitive, each new product must push the state-of-
the-art as far as possible. This causes the programmers to venture into areas that are
especially challenging. The single biggest reason for slipped schedules, missed released

dates, and blown budgets is unanticipated technical surprises.

[0006] As the product nears completion, a quality assurance group scrutinizes the
product looking for bugs. Quality assurance also assists the development team to balance the
game play so that it is not too difficult (frustrating) or too easy (not fun). The length of time a
product spends in quality assurance is in direct proportion to the level of complexity of the
software and the technology base they use. If the software is derivative work (based on a
prior released and well debugged product), the length of time can be shortened significantly.
If the product uses a robust and well debugged technology base, this time can be reduced even

more.

[0007] Games may be created for use on console game platforms such as those

manufactured by Sony and Nintendo, or they may be created for use on personal computers
using operating systems such as those sold by Microsoft Corporation. Because the console
game platforms are computers dedicated to performing game programs specifically written

for them, the user need only insert a CD into the console and begin playing.

[0008] The same is not true for computer games intended for use on a general-purpose
personal computer. The game program must be loaded into the computer like any other
program and this can lead to problems. These problems can occur more often with computer
games because they make use of state-of-the-art graphic boards, sound boards, and other input

and output devices that must be properly supported.

WO 03/071383 PCT/US03/04161
[0009] For the most part, game distribution is done using CDs, which are sold through
the traditional retail channels. Most publishers would like to deliver over the Internet, but the
bandwidth just is not there. Because console platforms are physical hardware, it is not
possible to deliver game software to them over the Internet without significant redesign of the
hardware, but an increasing number of personal computers have high speed Internet
connections. Most computer games are 600 to 800 megabytes in size, with some reaching
four times this amount. As a practical matter, such game programs are too large to distribute

via the Internet with current technology.

SUMMARY OF THE INVENTION

[0010] The present invention is a game development system which aids game
developers by decreasing the technical risk, decreasing their development costs, and
decreasing their time to market. The invention also includes a user game platform, which
creates a game environment on a general purpose personal computer that facilitates the
playing of games produced by the development system by transforming it into a special

purpose computer game playing machine.

[0011] The Development System provides game developers with a significant amount
of the technology needed to develop computer/video games. This system provides a complete
start-to-finish development environment. The development system consists of sets of tools,

and a “development mode” version of the runtime platform.

[0012] There are different development systems (DS) for different game genre. All
games have some common software elements such as mouse or joystick controls, menu
systems, etc. In addition, specific game types or classifications, called “genres”, have unique
requirements that are not shared with other genres. For example, role-playing games (RPGs)
calculate the results of a combat encounter based on rules that the game designer chooses.
Virtually all role-playing games have these combat systems and therefore become unique
software for that genre. Other software, such as a real-time 3D rendering engine, may be used
in more than one, but not all genres. Each development system addresses the specific needs
of a target genre, and is distributed to developers as complete “kits”. Much of the code is

shared between genres but this is transparent to developers. This allows one to reuse more

WO 03/071383 PCT/US03/04161
code, and when a developer acquires subsequent a development system for a different genre,

they will already be familiar with many of the tools.

[0013] The game platform is deployed on consumers’ machines, and provides their
personal computers with the capability of playing games developed with the development
system. The platform is installed the first time they install any game developed with the
development system and it is used to run subsequently installed games. The platform offers
numerous advantages to the consumer: greatly simplified installation of subsequent games;
consistent launcher interface; automatic online product updates; standardized product

registration.

[0014] The development system includes sets of “role oriented tools” that assures
each member of the development team has tools oriented to their role in the project. For
example, a tool set for artists is written using artist-terminology in the interface (reduces
training time), and do not require the artist to be a programmer. A tool set used by designers
is written with their skillset in mind, and do not require designers to have artistic or

programming skills.

BRIEF DESCRIPTION OF THE DRAWINGS
[0015] Fig. 1 is a pictorial representation of a game development system which
employs the present invention connected through the Internet to personal computers which

employ the present invention to play developed games;

[0016] Fig. 2 is a pictorial representation of a work station which forms part of the

game development system in Fig. 1;
[0017] Fig. 3 is a block diagram of the work station of Fig. 2;

[0018] Fig. 4 is a block diagram of the game development system which resides on

the server and workstations of Fig. 1;

[0019] Fig. 5 is a block diagram of a game platform and game which resides on a

personal computer in Fig. 1;

WO 03/071383 PCT/US03/04161
[0020] Fig. 6 is a schematic representation of the layers in which a game program

code is divided when produced on the game development system of Fig. 4

[0021] Fig. 7 is a pictorial representation of how game program code from different

layers is combined to form game programs;

[0022] Fig. 8 is a pictorial representation of data structures in the game development

system of Fig. 4; and

[0023] Fig. 9 is a pictorial representation of data structures in the game platform of

Fig. 5.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT

[0024] Referring particularly to Fig. 1, the preferred embodiment of a game
development system includes a server 2 and one or more work stations 4. As will be
described in more detail below, the server 2 stores a master asset pool and a number of
programs that enable an operator at one of the workstations 4 to create a game program and
produce it for distribution in a removable storage media such as a CD, or export it over the
Internet 6 to a customer personal computer 8. Typically, however, a game program will be
created by a team, and each team member will make their contribution through a separate
workstation 4. For example, one workstation 4 may be configured for use by an artist who
uses an artist tool set and programs such as that sold under the trademark “Photoshop” to
create the scenes in the game program. Another workstation 4 may be configured to use a
game designer tool set such as a game logic scripter program, and yet another workstation 4

may be configured with a programming tool set such as a C++ program editor.

[0025] Referring particularly to Fig. 2, the workstation 4 includes a mini-tower 10
which houses a processor and associated circuitry, memory, and peripheral interface circuits.
One of the peripheral devices is a commercially available CRT monitor 12 which connects to
a graphics circuit housed in the mini-tower 10, and another peripheral device is a keyboard
and mouse 14 that connects to a PCI-based controller in the mini-tower 10. An operator may
input data through the keyboard and control the position of a cursor on the monitor display 12

using the mouse. Typically, the workstation 4 also includes loudspeakers 16 that are driven

WO 03/071383 PCT/US03/04161

by a PCI-based sound card in the mini-tower 10 and one or more special purpose input

devices such as a joystick (not shown).

[0026] Referring particularly to Fig. 3, the workstation 4 includes a processor 20
which executes instructions stored in a memory 22. The processor 20 is a commercially
available device such as that sold by Sun Microsystems, Inc. under the trademark
UltraSPARC-IIi. It incorporates on-chip memory and I/O control to facilitate system
integration. It is a superscalar processor implementing the SPARC-V9 64-bit RISC
architecture and executing the instruction set sold commercially under the trademark “VIS™.
It also includes an integral PCI bus driver which provides a direct interface with a 32-bit PCI
bus 24. It also includes integral memory managerﬁent circuitry for handling all external
memory 22. Other general-purpose computers can be used, such as computers based on Intel,

Advanced Micro Devices and Motorola microprocessors.

[0027] The PCI bus 24 is an industry standard bus that transfers 32-bits of data
between the processor 20 and a number of peripheral controller cards. These include a PCI
EIDE controller 26 which provides a high-speed transfer of data to and from a CD ROM
drive 28 and a disc drive 30. An Ethernet controller 32 supports data transfer with a number
of peripheral devices, including input from the keyboard and mouse 14 and communication
with Ethernet ports on the server 2. A graphics controller 34 couples the PCI bus 24 to the
CRT monitor 12 through a standard VGA connection 36 and a sound card 23 couples the PCI
bus 24 to the loudspeakers 16. Many other devices can be connected to the workstation 4

using an appropriate PCI compatible interface circuit and associated driver software,

[0028] Architecturally the personal computers 8 used by customers are very similar to
the workstations 4 described above, but they typically employ microprocessors manufactured
by Intel Corporation or Advanced Micro Devices Corporation, and employ a “windows”
operating system sold by Microsoft Corporation. The particular hardware, such as the sound
card and graphics controller card, used on a customer’s personnel computer 8 may vary
considerably in capability and features. One of the objects of the present invention is to
insulate the game program from such variations by providing a game platform program

resident on the customer’s computer that will be described in more detail below.

WO 03/071383 PCT/US03/04161
[0029] Referring particularly to Fig. 4, the game development system includes an
asset manager 50. Typical games today can contain tens of thousands of assets in the form of
graphic images, sound files, code etc. An asset is a game related element that is unique to the
game and gives the game it’s personality—for example, a drawing that is the background for
a particular scene is an ‘art asset’; a sound that is heard in the game is an ‘audio asset’, etc.
The asset manager 50 operates identically for all genres, and includes tools to manage the
project, track revisions to code and data, and allow each development team member to test
their own changes (code or assets) in the actual game without programmer assistance and
without interfering with the work of others. It allows anyone developing assets to see how
those assets perform in the actual product instantly. This instant feedback loop allows an
artist to make sure their assets behave as expected without having to wait for an integration
phase. This shortens the error “detect and correct” loop to the point where people developing
assets can be assured that their components are working properly without the aid of a
programmer. To accomplish this, the asset manager keeps local copies (‘local’ meaning on
the particular user’s workstation) of all assets in the game. When a developer creates an asset
(or modifies an existing one) the new information is kept locally, and only affects the local
version of the game. Thus, an artist can create a new background, and play the game with
their local asset pool to see what it looks like. None of the other team members will see this
new background until the team member who created it integrates it into the Master Asset Pool
via the Update/Revision Controller (62). In this way, if a programmer were to be testing code
that is not fully debugged, it will not interfere with the work of the other team members.
Likewise, if an artist is creating a new animation and is testing it in the game (their local

version of the game), the unfinished work will not interfere with anyone else’s work.

[0030] Each game program developer has access to two asset pools. A master asset
pool 52 lives on thé server 2, and contains the master copies of each asset, and a local asset
pool 54 lives on the developer’s workstation hard drive 30, and is used to test changes to the
game. The two asset pools are automatically synchronized with each other, removing any

chance of a developer “forgetting” to update critical files they have worked on.

[0031] Industry-standard tools 56 with which developers are already familiar are fully
supported. Assets created with these tools 56 are “imported” into the system when created,

and re-imported if updated. Revisions are tracked allowing a developer to “rewind” code or

WO 03/071383 PCT/US03/04161
assets to a prior state. Artists, game designers and sound artists think and work different than
programmers and one aspect of the present invention is to tailor the developer tools to the
particular “talent-types” on the development team. This tailoring is done by creating user
interfaces that follow the thinking pattern of each different type of talent. In addition, the
language and terms are tailored to each talent type. By using plug-ins to the tools that each
talent-type uses, we keep the talent-type in their own world or domain of understanding. For
example, the interface terminology is appropriate to the user: A programmer’s tool might

refer to a single piece of art as a “bitmap” whereas the artist’s tool refers to it as a “cell”.

[0032] For each class of asset in a project (bitmap, sound file, animation, etc.) an asset
importer 58 handles the task of moving the asset into the local asset pool 54. The importers
58 use an asset database 60 to keep track of which assets have been updated in the local data
pool. Where possible, these importers 58 are “plug-ins” to standard tools, allowing someone
using (for example) PhotoShop to import a background image into the system without leaving
PhotoShop. These importers 58 convert standard formats into common system formats.
Metadata that is not part of the original file may also be included. Any preprocessing that
will save time at runtime (i.e., speed up the game) is done by the importer 58. Where

appropriate, data compression is also applied.

[0033] The asset database 60 contains only metadata (the actual assets are stored in
the asset pools). The database 60 stores data which enables one to know exactly how many
assets are in the game being developed, where they are, who (if anyone) is working on them
and has them locked, who revised what when, and what language (if any) the asset was
created for. Most of the tools access and/or update this database 60 and this information is
used by the asset manager 50 to keep track of all project assets (which can number in the tens

of thousands for highly-complex game projects.

[0034] An updater/revision controller 62 couples the local asset pool 54 on a game
developer’s workstation 4 with the master asset pool 52 on the server 2. The job of the
updater/revision controller 62 is to synchronize the master asset pool 52 with the local asset
pool 54 for each developer. It also synchronizes raw assets used by tools that are not included
in the final build (i.e. script “source code”, raw meshes and maps before rendering, etc.).

This synchronization assures that each game program developer employs the latest assets

WO 03/071383 PCT/US03/04161
from the master asset pool 52, and it enables a developer on one workstation 4 to “check out”

and lock specific assets they are going to be working on.

[0035] The controller 62 also enables a developer to test assets they are working
locally at a workstation 4 without affecting the master asset pool 52 and then “check in” and
unlock an asset that has been updated and tested. The controller 62 also maintains multiple
“rewind” files, which enables earlier versions of assets to be retrieved in case a mistake is
made or an asset is accidentally ruined. The controller 52 also maintains a history file which

indicates who has checked out and modified each asset and when.

[0036] The information maintained by the updater/revision controller 62 is used by a
project manager program 64 which allows developers to set and check various project-wide
attributes. The project manager 64 enables a developer to set which project they are working
on. Every tool in the system knows which project a particular developer is working on at any
given moment. If an artist (for example) is working on multiple projects, a couple of clicks is
all it takes for them to switch projects and work on something different without mixing up
assets between projects. It allows new projects to be created. It allows a project manager to
see statistics on their asset pools 52 and 54 and it allows a project manager to define new
language sets (i.e. add Brazilian Portuguese to the list of languages the game is being
developed for).

[0037] Most of the tools used by game developers on the team are specially
developed; or adapted tools for the particular talent-type. However, other general purpose
tools, such as a C++ program editor, are also provided for more sophisticated developers who
desire to write lower level, game specific routines. Microsoft C++ is the base compiler
language supported by the system because of its universal acceptance as the compiler of
choice for game developers. Where appropriate, the tools are integrated into Microsoft’s
Visual Studio, allowing developers quick access to development system functionality. The
tools are also capable of operating in a standalone environment, so Visual Studio is not
actually required, and developers who prefer other integrated development environments
(Borland’s C++ IDE for example) have access to all functionality. The runtime code is
developed in MSC++ and assembly language (Where appropriate). Developers have AP1

level access to all the modules in the game platform software. An API, or Application

WO 03/071383 PCT/US03/04161
Programmer Interface, defines how to communicate with the software modules. It defines the
inputs and outputs and how to manipulated them to achieve the desired function provided by
the module. API access through C++ code gives more control, but requires a more thorough
and technical understanding of the system, whereas the access to this functionality using a
tool (e.g., accessed in a simple scripting language, or by manipulating a tool) is far easier, but
more limited. For example, a developer can say “play the gunshot sound here” with a tool,
without any programming. A programmer on the other and can use the API to “play the
sound, on this channel, with this priority level, and when it’s done playing, trigger an event
called <whatever>". The latter is far more sophisticated, and only accessible via an APL
Most developers won’t need this level of access, and can do most of what they need through

the tools.

[0038] All of a game’s assets can be grouped by their logical location in the game
being developed. For example, a game can be divided into scenes, pages, rooms, levels, etc.
Because the grouping nomenclature changes from genre to genre, the universal term for a
collection of assets grouped by their placement in the game is the “section”. For example, a
menu screen developed with our menu generation tool will have numerous assets associated
with it (artwork, sounds, animations, etc.). Since those assets all appear in the same section,
the runtime code that displays the menu can load them into computer RAM during runtime as

a group. The developer does not need to load each individual button and sound effect.

[0039] This is accomplished by physically storing the assets in each section together
in the master asset pool 52. The resulting section of assets offers a number of advantages.
Games distributed online can be downloaded a section at a time (a section may be a “level” in
a “twitch” game, or a “scene” or “act” in a story game). Games can span multiple CDs/DVDs
and the developer will not need to worry about when to prompt for the insertion of a new
disc. Games can be partially installed, having only those assets and modules that manipulate
the assets which should run instantly (like opening screen), or those requiring hard-drive
speeds (such as full-screen animations) installed on the hard drive. Download versions of
games can be created that differ from their CD-delivered versions by eliminating entire
sections of large-sized assets (i.e. the download version may not contain the full opening
animation). The code is identical, essentially using a simple “if the opening animation asset

file is present, play it, otherwise don’t” algorithm.

-10-

WO 03/071383 PCT/US03/04161
[0040] When a game is to be assembled into an integral program, an asset
concatenator 66 is employed to selectively build the game program. The asset concatenator
builds the final distribution data files 68 (HAGS) from the master asset pool 52. Different
build scripts can be developed for different types of builds (i.e., demo vs. full game). Only
assets needed by the desired build type are included in the final .HAGs. This program is also
aware of which language is being built, and will include the appropriate assets for the target
language. The final .HAG files contain all the information necessary for a particular
version/type/language of the game program. Further data compression is performed at this
step if appropriate. The HAG files are concatenated/compressed game assets. The HAG files are

decompressed during game play and turned back into assets for use with game platform modules.

[0041] The operation of the asset concatenator 66 is scripted, and it can use multiple
build scripts 70 to build different versions of the game from the asset pool 52. Building a
demo version of a game involves only a couple of mouse clicks. Assets and code common to
both the demo and the full game are not duplicated, removing the problems inherent in code
divergence — if a bug is fixed or an improvement is made in a part of the actual game that

appears in the demo, the demo is updated automatically.

[0042] All assets in the pool 52 are tagged by their language, or by their non-
language-specific status. Games are sold worldwide and when for example, a game is used in
Germany any assets in the game that use English must be converted to German. By tagging
which assets are language dependent we can quickly identify those assets so they can be
changed when a language conversion is needed. In addition, often a game will ship with more
than one language. For many of the assets there must be a version for each language the
game supports. At the start of game-play the consumer selects which language they want to
use. The assets must have a way to identify them so the proper one can be loaded during
game play. The assets are kept in parallel asset pools. The different language-specific-assets
all have the same filenames so when a language option program 72 creates a version of the
product in (say) French, no code has to change. Other programs check the asset pool 52 and
report on which assets need to be localized, and report on the completeness of any particular
language. Once the localized assets are in the system, building a version of the game in a
different language is no more complex than checking the “French” box and hitting the [Build]

button.

11-

WO 03/071383 PCT/US03/04161
[0043] The final game product is produced by a project builder program 74. It
produces the final master for storage on a CD or DVD, or for downloading through the
Internet. It is also script driven and is responsive to the language options 72 and the type of
game (e.g. demo/full game) being built. The project builder 74 assembles the .-HAG files 68,
the installer program 76 and the game platform program and data files 78. It also assembles

ancillary files 80 containing such things as readme.doc files and autoplay files.

[0044] When the developer creates a final “build” of the game, the project builder 74
encrypts the resulting files. These files are the actual game assets, and are the data read by
and manipulated by the game platform modules in the customer’s personal computer in order
to play the game. These files are encrypted with a “then current” private encryption key
specific to the particular game program developer. The versions of the runtime platform
modules that are included with that build as part of the platform files will hold the decryption
key, and security servers will record which keys were granted for which game build. At
runtime (when the end-user plays the game) the files must be decrypted in order for the game

to work.

[0045] One of the popular ways of wasting time in game program development is
making mistakes when creating the “final build”. Developers normally manually compile
assets, move them to a staging area, then add all of the various files needed for the build.
With a manual process mistakes are quire common, (especially for an overworked developer
on a deadline). The above-described automated build tools allow the project manager or lead

developer to produce a burner-ready product image with a single mouse click.

[0046] During both the development phase and the on-going maintenance phase of a
game product, the runtime code can be executed in a number of different modes using a test
program 82. The test program 82 can be configured by the developer to assemble runtime
assets from a local pool 54, the master pool 52, or from .HAG files 68. This allows a
developer at a workstation 4 to run the game locally, using their local asset pool, using
exactly the same platform modules and any game script assets as the final game and platform.
This allows far faster and easier debugging, and eliminates hard-to-fix bugs that only occur in

the final build but are not reproducible in test modes.

-12-

WO 03/071383 PCT/US03/04161
[0047] This test program 82 also provides developers with the ability to easily meet
the need to frequently produce “in-house demos” (i.e., showing project manager, executives,
investors, etc. their progress). A snapshot can be taken of the current platform modules and
asset pool, and copied to another folder or a CD, which will operate entirely on its own

without requiring a final installer or even a final build.

[0048] To better understand the structure and operation of the game program that is
developed using the system depicted in Fig. 4 and run on the system of Fig. 5, the “stratified”
runtime program code must be understood. Referring particularly to Fig. 6, the runtime
program code needed to perform a game on a personal computer 8 is stratified into four layers
100, 102, 104 and 106. As will become apparent from the discussion below, some of these
layers of code form genre specific “engines” which reside in the game platform resident on
the customer’s personal computer 8 and other layers of runtime code are specific to a

particular game and must be distributed in some manner to the customer’s personal computer.

[0049] The lowest level of runtime code is in layer 1. Layer 1 code includes low-level
drivers designed to take advantage of the benefits of a particular hardware/operating system
platform. There is one implementation of this layer written for each such supported platform.
The interface to all low-level routines is defined such that an implementation of this
“hardware abstraction layer” for the X-Box requires minimal changes to the upper layers. In
this way, porting a game from the PC to the X-Box (for example) requires less time than

porting other games.

[0050] These are the lowest-level routines, and generally consist of API wrappers for
machine-specific functions. Regardless of the platform, the APIs for modules in layer 1 will
be nearly identical as seen by layer 2. Example layer 1 modules include the following.

J 2-D display manager — Controls 2-D displays (including output from 3-D routines).
Support retrace synchronization, multiple layers, and is tweaked for the capabilities of each
platform.

o 3-D display manager — Handles the lowest lever of 3-D image generation. This layer
will be extensive, but will also be tweaked for the capabilities of each platform. Note that in
this context, the PC will actually be considered multiple platforms depending on which third
party 3-D hardware is in use.

-13-

WO 03/071383 PCT/US03/04161
o Sound manager — Controls audio output. Support multiple channels, surround sound,
3-D audio imaging, sound layering and mixing and other capabilities of the supported
hardware.
. Input manager — Handles all input devices (mouse, keyboard, joystick, flight yoke,
etc.).
. Memory management — Used primarily by the Asset Manager (in Level 2), performs
the low-level allocation and deallocation of system memory. Platform-specific quirks
(garbage collection, heap defragmentation, etc.) are handled automatically.
o File /O manager — used primarily for non-asset related read and write operations. For
example, the “save game” function of a PC will involve file writes, while the same thing on a
console will involve read/write to/from EEPROM and/or memory cards.
. COM I/O manager — for client/client and client/server communications. These low
level routines will involve the establishment of connections, transfer to information packets,
and will handle the platform-specific aspects of inter-machine communications (i.e., support

for a PC on a LAN, an X-Box modem, etc.).

[0051] The level 2 layer runtime code contains universal routines used by all games in
all game genres. This code is used regardless of the hardware/operating system platform.
Because it is universal, there is only one implementation of this runtime code and most of the
engine’s runtime code will be written in this layer. This layer, along with layer 3, contain the
APIs developers are advised to use. Some of the items in this layer appear similar to those in
layer 1; the difference is that these layer 2 items are non-platform-specific, and perform
higher-level functions. These routines are further divided into sublayers, allowing developers
to choose how intimately they use each function. If, for example, one of the layer 3 routines
provides 95% of the functionality a developer needs for a particular operation, they can
achieve the other 5% by accessing the next deepest layer. Note that the 3-D support at this
level is for basic object rendering only. First person “run through the dungeon” 3-D

considered genre-specific (first person shooters), and is therefore part of layer 3.

[0052] Low-Level Layer 2 Modules include the following.
o 2-D Display manager — handles the high-level aspects of placing images on the screen.
This layer is where the matte management is performed (resolving layers, updating only

portions of the screen that have changed, etc.).

-14-

WO 03/071383 PCT/US03/04161
. Simple 3-D manager — Allows rendering of simple 3-D objects. These functions are
primarily intended for 3-D support in primarily 2-D environments. For example, rendering
houses and buildings in a sim, or rendering an animated 3-D object in a 2-D scene will be
accomplished by these functions.
. Audio manager — These non-platform-specific routines allow the playing of music and
sound effects. Layering, mixing and 3-D imaging are supported.
. Input manager — Gives higher-level routines (and the developer if desired) access to
all input devices. As an example of how the code is layered, at this level there exist events
such as “key pressed” or “mouse moved left”. In layer 3, the developer does not need to
worry about which keys/devices are assigned to what actions, and deals with events like
“player moved left” or “player fired” (no need to know what key/button that happened to be).
. File I/O manager — handles the retrieval of data from the file system. Normally the
developer will not use these functions since the asset manager handles most loading
operations, however if they wish to manually open a file, the /O manager will make sure all
of our development modes are supported (i.e., its transparent to the developer where the data
are coming from: local asset pool, master pool, etc.).
. Asset Loader — These functions allow a developer to manually load (or unload) an
asset. Normally asset loading is done by the asset manager, but it a developer wants to
manually load an asset (like config or .INI file they developed) this functions provided the
ability.
o COM T/O manager — the low-level layer 2 version of the COM manager allows the
developer the ability to manually open and close connections, and to manually transfer data
packets. Normally they would use higher-level functionality.
o Memory management — The low-level 2 memory manager allows the developer to
allocate/deal locate memory for their own purposes. They may be generating data tables not

supported by the development system,; this function allows them to allocate memory for their

own use.
[0053] High-Level Layer 2 Modules include the following.
. Asset manager — the high-level layer 2 asset manager allows the loading and

unloading of individual assets, or of all assets required by a particular section of the game (a

“section” could be a screen, page, scene, menu, game level, etc. depending on the genre of

-15-

WO 03/071383 PCT/US03/04161
game being developed).
o Runtime support for tool-generated objects — this group of routines allows the
developer access to the game objects they have created in tools. For example, if they have
built a complex menu screen suing a tool, they can call up that menu from here. Advanced
developers can also derive custom objects for the tool-generated objects, giving them a great
deal of power and flexibility.
o Animation objects — the highest level of access to the animation system. Animations
that are not part of a tool-generated object can be loaded, run, stopped, unloaded, etc. The

developer can use existing animation objects, or derive their own from out base classes.

. Load/Save operations — Provides high-level access to “save game” and “restore game”
functionality.
. Access to platform functionality — The API allows the developer to get information

from the modules in the platform itself. The platform supports such functions as “has the
user registered this game?”. These are platform functions since the platform handles product
registration. It may be helpful to know if the user is registered, their name, their preference

settings, etc.

[0054] The level 3 layer runtime code contains functions specific to a particular genre
of game. For example, character management is important to a role playing game, but not to
a simulator game. There is one implementation of layer 3 runtime code for each genre of

game supported. Examples of code found in this layer for a role playing game are:

Map manager,
character manager; and

perspective display engine.

[0055] Examples of code found in this layer for a 3-D shooter game are:

3-D display engine;
enemy Al modules; and

projectile/character collision detection.

WO 03/071383 PCT/US03/04161
[0056] The level 4 layer runtime code includes routines written for a specific game.
Code is placed in this layer when there is no plan to reuse it in other games. An object of the
present invention is to keep the runtime code in this level 4 layer to a minimum. That is,
when a game (layer 2) of a particular genre (layer 3) for a supported hardware/operating
system platform (layer 1) is to be created, only the runtime code is needed to distinguish the
game in an artistic and game rules sense from other games in this genre. This ability to reuse

significant amounts of runtime code is illustrated in Fig. 7.

[0057] Not only does this layering reduce the burden as a whole on the game
development team, but it places more of the burden on the creative artists and game designers
rather than the highly technical programmer team members. This also means that if a
customer has purchased a previous game of the same genre, only the newly created layer 4
code need be installed in his or her personal computer 8 in order to run the new game. This
makes the installation of the new game a trivial undertaking, and it makes practical the
downloading of the new game to the customer over the Internet because of the reduced file

size.

[0058] To take maximum advantage of these benefits of runtime code layering a set of
programs referred to herein as the game platform is installed in the customer’s personal
computer 8. As indicated above with reference to Fig. 4, the game platform files 78 are
included with each produced game and are installed on the customer’s computer 8 when the
game is first installed. This initial installation of the game platform is similar to any program
installation on a personal computer in which hardware and software conflicts must be
resolved. However, once the game platform is installed with properly operating layer 1 and 2
runtime code, subsequent game playing with different layer 3 and/or layer 4 runtime code is a
simple procedure. Once installed, the game platform transforms a general purpose, personal
computer 8 into a single purpose game machine much like those manufactured by Nintendo
and Sony. The user simply “clicks” on the game platform desktop icon and the program
opens by presenting a welcoming screen with a menu of options. These options include the
games to load which can be played by merely selecting it from the menu, and if needed,

inserting the game CD/DVD in the CD/DVD drive 28.

-A17-

WO 03/071383 PCT/US03/04161
[0059] Referring particularly to Fig. 5, the game platform maintains a local module
database 200 on the customer’s personal computer 8 which includes all of the runtime code
loaded from previous games as well as new or updated runtime code and associated data
structures from the current game. This local data base 200 is maintained by a module update
manager program 202. To better understand the game platform operation, the operation of

the module update manager program 202 will be explained first in detail.

[0060] The module update manager 202 assures that the customer has the latest
versions of all the runtime code modules needed for all the games they have installed. It

performs several functions:

o updates general system components (including itself);
o updates game-specific code and data (“patches”);
. replaces entire .HAG files, or for speed, downloads only new assets and rebuild the

HAG files locally (saves a great deal of time for the user);

o performs CRC checks of any security modules, and replaces them if necessary.

[0061] The game platform supports multiple copies of runtime code modules
designed for different games. This makes it possible to download an updated module that
includes updates that are intended for specific games, without changing the modules used by
games that do not require the update. This relieves the game developer of the responsibility

of making sure every update module works with every game that has already shipped.

[0062] The module update manager 202 does not care where the updates are coming
from. They will usually come from the Internet, but space permitting, each game CD/DVD
product includes the full set of updates available at the time of production. The module
update manager 202 can read an updated module used by a previously installed game #1 from

a CD just inserted to play a new game #2.

[0063] The module update manager 202 relies on a master database stored on the
server 2. Referring to Fig. 8, this database contains information 204 on each game and
information 206 on each module. The local database 200 kept on the customer’s personal
computer 8, contains only information pertinent to the games they have installed. The master

database is accessed via the Internet whenever the module update manager 202 in a game

-18-

WO 03/071383 PCT/US03/04161
platform wants to check for updates. There is an entry in the game product table 204 for each
game ever developed for the game platform. The available module table 206 contains
information on every runtime code module ever developed for the game platform. Each
product refers to all the modules which it uses, and for each product, the versions of each
module that have been certified for it are known. This allows the game platform to
understand which games need which modules, and more importantly, which modules may
NOT work with certain games. Sometimes a new ‘module’ will not be compatible with an
older game. One key feature of our system is that a game will only use those modules for
which it is certified, and will not attempt to use modules for which it is not certified, EVEN

IF the other modules are newer.

[0064] Referring particularly to Fig. 9, the local module database 200 on the
customer’s computer 8 contains information 208 on each game product they have installed.
A required module table 210 keeps track of which modules are required by each game
product; there may be multiple records for the same module because each game may require
different versions of that module. An installed module table 212 keeps track of which
modules have been installed on the customer’s machine; there is only one entry for each

module instalied.

[0065] By way of example, the product table 208 may contain an entry for Hollywood
Tycoon. That entry points to a list of required modules in the required module table 210. It
may point to the joystick controller module record, which has recorded that Hollywood
Tycoon can use version 4 or version 5 of the joystick controller module. The installed
module table 212 indicates us that version 5 of the joystick controller module is installed, so
that particular module does not need to be updated. On the other hand, if Hollywood Tycoon
needs version 6 and that version is not listed in the installed module table 212, the module

update manager 202 knows an update is required.

[0066] Once the module update manager 202 determines that an update is required,
the update process is performed. This can be done using the Internet, or it can be done using
the CD or DVD media on which the current game is stored. A list of modules to be updated
is created and the customer is notified that updates are available over the Internet and told

approximately how long it will take to download them. An “advanced user” option allows

-19-

WO 03/071383 PCT/US03/04161
computer savvy users to select which individual updates they want to install, but in most
cases all available updates will be installed. The updates are downloaded, added to the
installed module table 212 and installed. The tables are scanned again, and any modules
which are no longer required (i.e. those that have been outdated and are not required by any

older games) are removed.

[0067] Each product/game distributed for this platform includes on the CD/DVD
media as many module updates as space will allow, as well as a then-current copy of the
available module table 206. The same process described above takes place, only the updated
modules are taken from the local removable media (CD, DVD, etc.). A date-check assures
that even if someone installs a very old game, containing an outdated available module table

206 and outdated modules, they will never overwrite newer modules with older ones.

[0068] One of the unique features of this system is that is allows multiple copies of
the same module to co-exist on the game platform. If an older game works just fine with an
older module, it can continue to do so, even if a newer module is installed. Unlike most
operating systems and driver update processes, the memory update manager 202 will never
render an older game inoperative. The only way an older game will use a newer module is if

that game has been certified to use that module as reflected in the required module table 210.

[0069] An “update” can take several forms. Usually, it is a complete modules update,
consisting of single files, which are downloaded and used as-is by the game platform. These

updated modules may include part of the game platform itself.

[0070] In some cases, a small part of a large file will need to be updated. As
discussed earlier, game code and data is kept in large concatenated files (HAG files). A
game may be updated by a developer such that new runtime code and new data in the HAG
file are needed. The game code is updated in the usual fashion, but if only 1 megabyte of a 50
megabyte file needs to be updated, there is no need to download a full copy of the new file
(downloading 50 megabytes is time-consuming). Instead, “patches” can be downloaded. The
downloaded “patch file” is itself a small .HAG file, containing new and/or updated code

and/or data. The module update manager 202 recognizes the patch file as such, and rebuilds

-20-

WO 03/071383 PCT/US03/04161
the main .HAG file in the game platform using the new information from the patch file. In

this way, a huge file can be updated without having to download it in its entirety.

[0071] There are times when multiple updates are required as a group. For example,
if game code is updated, and the new code uses new assets that appear in a patch file, the user
must install neither or both updates in the game platform in order for the game to operate (if
they install only the new code, it will look for assets that are not present and will not work
properly). Such updates are considered “entwined”. Entwined updates must be downloaded
together, and the module update manager 202 user interface (the “advanced user” screen)
makes this clear, and makes it impossible for the user to select less than all of the elements of
an entwined update. For the non-advanced user, such updates are completely transparent, and

all they know is that the updates work properly.

[0072] The update process is designed to be tolerant of Internet connection problems.
Partially downloaded updates will not be installed. Should the user lose Internet connectivity
in the middle of an update (or if they accidentally power down their computer), the module
update manager 202 detects this and takes appropriate action. For example, the process of
installing entwined updates will not take place until all updates have been downloaded. If an
update is interrupted, it can be resumed at a later time. Only when all modules have been
successfully downloaded (particularly entwined updates), will the updates be installed. This

assures that at no time will a product be “partially updated” and inoperable.

[0073] As each update file is downloaded, its CRC is checked against the central
database which is stored in server 2 and which contains (among other things) the CRC value
of every asset, module, and update that can be downloaded. If the file was corrupted during
download, the module update manager 202 recognizes this and attempts to download it again
and/or allow the user the option of trying later. If a single member of an entwined set is

corrupted, no members of the set will be installed.

[0074] Referring again to Fig. 5, when the game platform is started by the customer as
indicated at 220 a check is made at process block 222 of all critical platform runtime code
modules. This includes a CRC check and it also detects if any modules have had viruses

attached to them. In either case, if corrupted critical platform modules are identified, the

-21-

WO 03/071383 PCT/US03/04161
customer is alerted and given the choice as indicated at decision block 224 to update them
using the module update manager 202. After any such updates are completed, the game

program indicated generally at 226 is performed.

[0075] The first function performed by the game program is a call to initialize the
platform as indicated at process block 228. This call tells the platform that it is about to run a
product. The platform then performs initialization procedures indicated at process block 230,
including setting up a module loader 232. The assets and modules needed by the game are
then loaded into RAM by the module loader 232. Although most will load at startup, the
developer has control over this process so that if memory conservation is a factor, runtime
code modules can load/unload “sections” of the game on an as-needed basis. Regardless of
when an asset or a module is loaded, the loader 232 CRC checks the asset or module during
the load to assure that it has not been corrupted or tampered with. Should a module fail this
CRC test, the user is given the option of downloading an uncorrupted version from the server
2 at decision block 234. Note that any copy protection modules used by the game developer
are also checked at this time. Should an end-user attempt to “hack’ around any copy

protection or shareware registration schemes, the program will not operate.

[0076] The main game code indicated at process block 236 is then performed. As
discussed above, this runtime code is primarily level 4 code which makes calls to the local
module database 200 in the game platform to perform levels 1-3 functions. This is the
“normal operation” of the game program and it continues to operate in this manner until the

user ends the game at 238.

[0077] When the user ends the game, a platform shutdown procedure 240 is called. It
releases all allocated memory, closes any open file handles, and unloads any modules that
were in use. This “cleanup” process leaves the computer as it was before the game was
executed, and assures that all modules are unloaded so that if the user were to immediately

run an older game requiring older modules, would not be any backward-compatibility issues.

[0078] When the user quits a game he/she is returned to the game platform

welcoming page. The user can select a different game to play or quit the game platform

-22-

WO 03/071383 PCT/US03/04161
entirely. When the game platform is exited, the computer is transformed back to the

computer operating system to again become a general purpose computer.

-23-

10

WO 03/071383 PCT/US03/04161

CLAIMS

1. A game platform for a general purpose computer which comprises:

means for storing a local module database containing a set of low level program
modules which direct hardware elements of the general purpose computer to perform
functions associated with games;

means for receiving a game program and updating the local module database with
updated program modules associated with the game program; and

means for performing the game program using both low level program modules and
updated program modules stored in the local module database;

whereby the platform transforms the general purpose computer into a single purpose

game computer.

2. The game platform as recited in claim 1 which includes:

means for determining what program modules are required to perform the game; and

means for comparing the required program modules with the contents of a stored
installed-module-table to determine what updated program modules are to be added to the

local module database.

3. The game platform as recited in claim 2 in which the game program is stored
on a removable media which is inserted into the general purpose computer, and the means for
determining what program modules are required includes means for reading a required-

module-table stored on the removable media.

24-

WO 03/071383 PCT/US03/04161

4. A method for making a general purpose computer operate like a special
purpose game machine for performing game programs, the steps comprising:

a) storing a local module database containing a set of low level program modules
which direct hardware elements of the general purpose computer to perform a corresponding

5 set of functions associated with games; and

b) installing a game platform program which performs a game program by
directing the low level program modules stored in the local module database;

whereby games which use functions performed by the stored low level program
modules may be performed by the general purpose computer without performing a program

10 installation procedure.

-25-

WO 03/071383 PCT/US03/04161

5. A game program development system which comprises:

a server for storing a master asset pool containing program segments for performing
computer game functions;

a set of workstations coupled to the server, each workstation being operable to create
and edit game program segments and store them in the master asset pool; and

project builder means for producing a game program by concatenating game program
segments stored in the master asset pool and combining the game program with a game
platform program, that when installed in a general purpose computer, enables the general

purpose computer to play the game program.

6. The game program development system as recited in claim 5 in which each
workstation is provided with a different set of development tools that are tailored to the needs

of different members of a game development team.

7. The game program development system of claim 5 in which a set of tools are
tailored for a visual artist and the game program segments produced by this set of tools are

images.

8. The game program development system of claim 7 in which a second set of
tools are tailored for a sound artist and the game program segment produced by this set of

tools are sound files.

9. The game program development system of claim 8 in which a third set of tools
are tailored for the game developer and the game program segments produced by this set of

tools are scripts.

-26-

5

10

WO 03/071383 PCT/US03/04161

10. A game program development system which comprises:

a server having memory for storing a master asset pool comprised of assets used in a
game program;

a work station coupled to the server and having a memory for storing a local asset
pool comprised of assets used in a game program,;

a development tool used at the work station to create an asset and import the asset into
the local asset pool;

a test program operable at the work station to test a game program using the local
asset pool; and

an update controller operable at the work station to transfer the created asset from the

local asset pool to the master asset pool.

11. The game program development system as recited in claim 10 which includes

a test program operable at the server to test a game program using the master asset pool.

12. The game program development system as recited in claim 11 in which the
update controller includes means for transferring assets from the master asset pool to the local

asset pool.

13. The game program development system as recited in claim 10 in which there
are a plurality of work stations, each having a memory for storing a local asset pool, each
having a development tool for creating assets for their respective local asset pools, each
having a test program operable to test a game program using their respective local asset pools,
and each having an update controller operable to transfer created assets to the master asset

pool.

14. The game program development system as recited in claim 13 in which the

development tool at each of the plurality of work stations is different from each other.

15. The game program development system as recited in claim 10 in which the
master asset pool is divided into sections, each of which includes assets associated with a

common location in the game.

27-

WO 03/071383 PCT/US03/04161

16. The game program development system as recited in claim 10 in which data is
stored in the server memory which indicates for each asset in the master asset pool whether it

is language independent or whether it is localized to a particular language.

-28-

WO 03/071383 PCT/US03/04161

1/7

////////
i
A\

FIG. 1

WO 03/071383

277

PCT/US03/04161

22 70
. Memory |~ Processor I/
93 24 A 34\
D SOUND \ 7
-] - GRAPHICS | {
CARD - ~ " |CONTROLLER
BUS
oGl EIDE KEYBOARD &| 32
'+ 26~ conTROLLER[~| ETHERNET K
‘ CONTROLLER
28 30 \ /
A 4 KEYBOARD
D /- DISC
DRIVE DRIVE

FIG. 3

PCT/US03/04161

WO 03/071383
3/7
56
, A~ —. CUSTOM ToOLs
30 | [soumo MENU | ['SCREEN] [GANE Loaic
PHOTOSHOP | rio] {eomor] |<O"ERS>(|autoe{autoen sehmca |
/ 60

ASSET ASSET
IMPORTER J \IMPORTERJ | IMPORTER

A

ASSET ASSET

IMPORTER:

ASSET
DATABASE

S (NETADATA)
58 [OCAL ASSET POOLSS. IN' LOCAL
*GENERIC TEST MODE
*LANGUAGE 1
*LANGUAGE 2 54
t 62
UPDATER /REVISION
ASSET CONTROLLER
MANAGER |
C50 » 52 .
64~ MASTER ASSET POOLN, IN MASTER N
PROJECT *GENERIC TEST MODE | TEST
MANAGER * ANGUAGE 1 PROGRAM
- “LANGUAGE 2
, 66
o ASSET
70N | CONCATENATOR
T IN FINAL
CRIPTS [
RS RUNTIME ASSET \ TEST MODE
T IMAGE (HAG FILES)
OPTIONS 68 INSTAL ER
p) A
2 PROJECT » PLATFORM|-78
___BUIDER-) CFILES
J T
74 Y ANCILLARY
FILES |80
FIG. 4 REPLICATION-READY (README,
] MASTER IMAGE ETC.)

WO 03/071383 PCT/US03/04161

4/7
PLATFORM
('START RUN J—=| CRITICAL I~_ 999
?_ MODULE CHECK FIG. 5

220

224

MODULE
UPDATE
MANAGER

202 /

CRITICAL
MODULES OK
?

MODULES UPDATED

SUCCESSFULLY
?
226 230
____________ ‘. PLATFORM |/
:] . [LINTIALIZER
! | Y __ 932
| GAVE INTIALZER [~ VODULE] 5
;] | LOADER
g 228 ; |
: | MODULE|
i ' UPDATE /
! MANAGER
| 236
'\ MAIN GAME > MLgSGEE
: CODE
I (1 DATA-BASE
1 238 :
- |)
| GAME SHUTDOWN | ! 200
S m—
| GAME /PRODUCT ! |
e e L J T
PLATFORM
SHUTDOWN.
PROCEDURE

WO 03/071383

106

PCT/US03/04161

5/7

CONTAINS CODE WRITTEN
SPECIFICALLY FOR A PARTICULAR
GAME. LITTLE OR NO REUSE

CONTAINS CODE WRITTEN
FOR A PARTICULAR. TYPE OF
GAME. HIGH REUSE

CONTAINS CODE USED BY ALL
GAMES. 100% REUSE

S T —
N e S e K
N %JN?VEF;SLA(\I'_Y 00k 1avER K]
N HARDWAIE%:\?EF?%RACT[ON C—1

CONTAINS CODE FOR A
PARTICULAR PLATFORM
(LE.PC OR X-BOX). HIGH REUSE

FIG. 6

PCT/US03/04161

WO 03/071383

6/7

X08-X HOd
NOOJOAL 3JVdS

X08-X 404
NOGOAL 33vdS

Y3AVT NOILVINIWI T X08-X

AN

£ "Il

Jd 404
NOQJIAL 3JVdS

NOOJAL 33YdS

Jd Y04

od 404
| NOOOAL QOOMATIOH

ZAN

43AV1 NOILYINIWITdWI Jd

VA

3400 TYSHIAINN

INIONT JNYD HILO0HS d-¢

INIONT INYD WIS/ NOOJAL

(3NYD dN-NMOUD)
3400 JNYD AFSHAr
MIN WOY¥4 IdV3S3

(AWYD 3AVS-Q)
3000 WYY
JNINIAGY TIVELNIV

3009 ANYD
NOOOAL 3JvdS.

- 3009 3INYO
NOOJAL JOOMATTOH

NOLLOYY1SEY
FHYMAYVH
[Y3AV1

TYSH3AINA
¢ Y¥3AAV

Ol4103dS-3UN3D
€ vl

I14103dS-3NYD
7 Hilvl

PCT/US03/04161

WO 03/071383

7177

6 VI

/\
d ————\
040 A1vadn V1vaviaw LSy
INYNITIS 31¥AdN 3INIONI 1Sy
NOILYO01 YINMO 31vadn. 19na0Yd 1Syl
HINMO T9AT] SN1Y1S .NOILYYISIDIY
TIATT ! 3LVYA NOILYTIVLSNI
SNOISY3A Q31411430 széfozzo Al o
NOISY3A NOILdI9S3d Ol
NOILdI¥40$3d £
#0l MW%_
gyl I1avl | : s
~13INCON QITIVLSNI JINAON_a3uIN0IY [N\ 3181 10naodd
¢le 0r¢ 802
Y0 :
YINMO :
@? 31¥AdN 12NQ0YHd LS
. al ¥3d073A3
894 -~ NOISYSA W SNVI-GLIND o~
NOILdI¥053a
90¢ £l T | ¥02
#dl
319v1 -
JINAOW T18VIIVAY 318v.L 19Naoyd

	Abstract
	Bibliographic
	Description
	Claims
	Drawings

