
(12) United States Patent
Sofia et al.

US00938.9990B2

US 9,389,990 B2
*Jul. 12, 2016

(10) Patent No.:
(45) Date of Patent:

(54)

(71)

(72)

(73)

(*)

(21)

(22)

(65)

(63)

(51)

(52)

(58)

SELF VERIFYING DEVICE DRIVER FOR
MULTI-VERSION COMPATIBLE DATA
MANIPULATION DEVICES

Applicant: International Business Machines
Corporation, Armonk, NY (US)

Inventors: Anthony T. Sofia, Highland, NY (US);
Brad D. Stilwell, Poughkeepsie, NY
(US)

INTERNATIONAL BUSINESS
MACHINES CORPORATION,
Armonk, NY (US)

Assignee:

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 0 days.
This patent is Subject to a terminal dis
claimer.

Appl. No.: 14/502,272

Filed: Sep. 30, 2014

Prior Publication Data

US 2015/O269,057 A1 Sep. 24, 2015

Related U.S. Application Data
Continuation of application No. 14/219.347, filed on
Mar. 19, 2014.

Int. C.
G06F II/36 (2006.01)
G06F 17/50 (2006.01)
U.S. C.
CPC G06F II/368 (2013.01); G06F II/3688

(2013.01); G06F II/3692 (2013.01); G06F
II/3696 (2013.01); G06F 17/5009 (2013.01)

Field of Classification Search
CPC G06F 11/3668; G06F 11/368; G06F

11/3696; G06F 11/261
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

5,301,312 A 4/1994 Christopher, Jr. et al.
5,557,740 A 9, 1996 Johnson et al.
5,717.903 A * 2/1998 Bonola GO6F 13,105

TO3/24

(Continued)

OTHER PUBLICATIONS

IBM; "Method and Apparatus for Distributed Open Systems Device
Drivers Functional Verification Test'. An IP.com Prior Art Database
Technical Disclosure: http://ip.com/IPCOM/000019251D; Sep. 8,
2003, pp. 1-4.

(Continued)

Primary Examiner — Joseph Schell
(74) Attorney, Agent, or Firm — Cantor Colburn LLP:
William A. Kinnaman, Jr.

(57) ABSTRACT

A method, system, and computer program product are
described. The system includes a first memory device to store
programming code of the device driver, the device driver
providing an interface to a data manipulation device, and a
second memory device to store a test case to test the device
driver, the device driver receiving version information speci
fying a targeted version or the device driver determining the
version independently of the test case. The system also
includes a third memory device to store a simulation includ
ing a version verification portion and a data manipulation
portion, and a processor to execute the test case on the device
driver, execution of the test case including, based on a request
by the device driver, execution of the version verification
portion of the simulation and, based on a result of executing
the version verification portion, execution of the data manipu
lation portion of the simulation.

10 Claims, 3 Drawing Sheets

execute test case in device driver 310

S.

obtain information from device avy
320

determine device version
330

366) yes.

return error

not
werified

350

verify version specific information

verified

call common simulation 370

US 9,389,990 B2
Page 2

(56) References Cited 2013/0085720 A1* 4/2013 Xie GO6F 9/455
TO3/1

U.S. PATENT DOCUMENTS
OTHER PUBLICATIONS

6,243,833 B1* 6/2001 Hitchcock GO6F 1 1/2215
T14? 33 IBM; "Methodology to Exchange Real Device Access by Device

25. R: ck s38. PS Jr. et al. 717/126 Simulation in Embedded Systems'; An IP.com Prior Art Database
w alClea .

2004/003 0809 A1 2/2004 Lozano G06F94411 Technical Disclosure: http://ip.com/IPCOM/000018954D: Aug. 22,

2011/0307739 A1* 12/2011 El Mahdy G06F 11.261
T14, 28 * cited by examiner

US 9,389,990 B2 Sheet 1 of 3 Jul. 12, 2016 U.S. Patent

00T/

US 9,389,990 B2 Sheet 2 of 3 Jul. 12, 2016 U.S. Patent

US 9,389,990 B2 U.S. Patent

US 9,389,990 B2
1.

SELF VERIFYING DEVICE DRIVER FOR
MULTI-VERSION COMPATIBLE DATA

MANIPULATION DEVICES

This application is a continuation of U.S. application Ser.
No. 14/219,347 filed Mar. 19, 2014, the disclosure of which is
incorporated by reference herein in its entirety.

BACKGROUND

The present invention relates to a hardware device simula
tion and device driver, and more specifically, to a self-verify
ing device driver for multi-version compatible data manipu
lation devices.
A data manipulation device is a hardware based product

(e.g., microprocessor). Over the life cycle of the product,
multiple different versions of the same physical device may
be produced with upgrades or modifications. The underlying
data manipulation remains in the same format for every ver
sion (backwards and forward compatible) even though differ
ent characteristics and options may exist among the versions.
The device driver is a computer program that controls the data
manipulation device. That is, the device driver provides a
Software interface to the data manipulation device and is used
to issue commands to the data manipulation device to obtain
output. The device driver maintains information regarding a
pool of data manipulation devices and this pool can have data
manipulation devices of multiple versions. The device driver
is tested by executing test cases that issue commands to the
device driver which in turn builds requests that are presented
to the data manipulation device, implemented in hardware or
as a simulation. The commands to the device driver from the
test case may or may not specify a specific device version
which must be used. When there is no device version speci
fied, the device driver may choose any data manipulation
device and build a command block for that version. When the
device driver is coupled to a particular data manipulation
device that it will send requests to, the device driver deter
mines the version of that data manipulation device through a
handshake or interrogation process.

SUMMARY

According to an embodiment, a system to test a device
driver includes a first memory device configured to store
programming code of the device driver, the device driver
providing an interface to a data manipulation device; a second
memory device configured to store a test case to test the
device driver, the device driver receiving version information
specifying a targeted version of the data manipulation device
to be targeted by the device driver from the test case or the
device driver determining the targeted version of the data
manipulation device independently of the test case; a third
memory device configured to store a simulation including a
version verification portion and a data manipulation portion,
the data manipulation portion remaining unchanged for every
version of the data manipulation device; and a processor
configured to execute the test case on the device driver, execu
tion of the test case being configured to include, based on a
request by the device driver, execution of the version verifi
cation portion of the simulation and, based on a result of
executing the version verification portion, execution of the
data manipulation portion of the simulation.

According to another embodiment, a non-transitory com
puter program product stores instructions which, when
executed by a processor, cause the processor to implement a
method of verifying a version of a data manipulation device in

5

10

15

25

30

35

40

45

50

55

60

65

2
a request by a device driver under test. The method includes
determining whether the version of the data manipulation
device in the request is a match or a non-match with a targeted
version of the data manipulation device, the targeted version
being either specified in a test case being executed by the
device driver or determined independently of the test case:
and calling a data manipulation simulation based on the deter
mining, the data manipulation simulation being unchanged
for every version of the data manipulation device in the
request.

Additional features and advantages are realized through
the techniques of the present invention. Other embodiments
and aspects of the invention are described in detail herein and
are considered a part of the claimed invention. For a better
understanding of the invention with the advantages and the
features, refer to the description and to the drawings.

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWINGS

The subject matter which is regarded as the invention is
particularly pointed out and distinctly claimed in the claims at
the conclusion of the specification. The forgoing and other
features, and advantages of the invention are apparent from
the following detailed description taken in conjunction with
the accompanying drawings in which:

FIG. 1 is a block diagram of a system that tests the device
driver according to an embodiment of the invention;

FIG. 2 is a functional flow diagram of the simulation
according to embodiments of the invention; and

FIG.3 is a process flow of a method of verifying the device
driver request according to embodiments of the invention.

DETAILED DESCRIPTION

As noted above, a device driver is a Software program that
controls a hardware based data manipulation device. The
device driver is tested with test cases that specify parameters
to the device driver which build requests to be passed to the
data manipulation device. The data manipulation device can
either be a software simulation, as referenced in this docu
ment, or an actual hardware device. The simulation is likely
based on the initial data manipulation device version, but
newer data manipulation device versions may require a
slightly different request structure. While the device driver
must be tested to ensure that it is sending the correct request
based on the specified version of the data manipulation
device, modifying or adding simulations for every version of
the data manipulation device may be undesirable. It may also
be undesirable to rework an existing body of test cases.

Embodiments of the systems and methods detailed herein
relate to a verification layer between the device driver and the
data manipulation implemented in a simulation of a data
manipulation device. Because the Verification layer sepa
rately verifies requests from the device driver with regard to
version-specific characteristics, the Verification layer facili
tates maintaining the core simulation of the data manipulation
device. Further, because of the handshake or interrogation
procedure of the device driver with the data manipulation
device (or simulation) that facilitates the device driver deter
mining the version to address in Subsequent requests, the
regression test Suite may also remain unchanged for every
version of the data manipulation device. That is, for newer
version of a data manipulation device, the test case would
simply not specify a version at all.

FIG. 1 is a block diagram of a system 100 (add to FIG. 1)
that tests a device driver 120 according to an embodiment of

US 9,389,990 B2
3

the invention. The system 100 (e.g., a computer system)
includes an input interface 112, one or more processors 114,
one or more memory devices 116, and an output interface
118. The memory device 116 may store the device driver 120
(programming code), the simulation 130 of the data manipu
lation device according to embodiments of the invention, and
the test cases 140. In alternate embodiments, one or more of
the device driver 120, the simulation 130, and the test cases
140 may be stored in a memory device other than the memory
device 116 that is accessible through the input interface 112,
for example. As shown, the system 100 running the device
driver 120 programming code may be coupled to one or more
hardware-based data manipulation devices. After Successful
testing, the device driver 120 may be used with a data manipu
lation device of any known version. The processor 114 pro
cesses the programming code of the device driver 120 for the
various test cases 140. The test cases 140 executed by the
device driver 120 are verified using the simulation 130. As
further detailed below, the simulation 130 according to
embodiments of the invention includes two portions or layers.
In addition to the common simulation portion (core data
manipulation) that is common to all versions of the data
manipulation device, another portion (layer) is added to the
simulation 130 to verify the request from the device driver
120.

FIG. 2 is a functional flow diagram of the simulation 130
according to embodiments of the invention. The flow begins
when the device driver 120 executes a test case 140 (210). As
noted above, the test case 140 itself may specify a version of
the data manipulation device for the device driver 120 to
target. Alternately, the version may be determined by the
device driver 120 independently of the test case 140. That is,
the test case 140 may not specify a version so that the device
driver 120 can determine a (newer) version based on initial
communication with the simulation 130. The functional flow
is separated into the version verification portion 220 and the
data manipulation portion 260. In the version verification
portion 220, a function 230 includes determining the version
specified by the device driver 120 in its request. Another
function 240 in the version verification portion 220 is deter
mining whether the version specified in the request is the
version that is expected. The version verification portion 220
of the simulation 130 knows both the version specified by the
device driver 120 and the version that should have been speci
fied by the device driver 120 in the following ways. The
version verification portion 220 uses the following informa
tion: device information (handle for a specific version of the
data manipulation device) per device driver 120 input/output;
Software token setup for each input/output that contains infor
mation about device driver 120 decisions and user request
parameters (that led to those decisions); and the input/output
request with associated input/output memory. This informa
tion used by the verification portion 220 is independent of
whether the test case 140 specified the version or not. Using
this information, the version verification portion 220 accesses
the internal memory of the device driver 120 and indexes the
internal memory with the information to determine the ver
sion of the data manipulation device and other characteristics
known to the device driver 120. The software token contains
indicators of how the decisions were made about the request
being built by the device driver 120. That is, the software
token provides the information about the correct version of
the data manipulation device and the internal memory pro
vides information in the device driver 120 regarding that
version. The correct version information (from the software
token and internal memory) may be cross validated with the
version (request values) set up by the device driver 120 (deter

10

15

25

30

35

40

45

50

55

60

65

4
mined as part of function 230) based on the input/output
request information that the version verification portion 220
also uses. This cross validation facilitates the execution of the
functions of determining whether the version is the expected
version (240).
The execution of the function (240) to check the specified

version versus the expected version results in the simulation
130 version verification portion 220 returning an error, dis
cussed further below, to the device driver 120 when the ver
sion of the data manipulation device specified in the request
from the device driver 120 does not match the version that was
supposed to be specified based on the test case 140 being
executed or the initial communication. When the version of
the data manipulation device specified in the request from the
device driver 120 does match the version that was supposed to
be specified, the version-specific characteristics of the request
are verified as part of the function 250. The version-specific
characteristics include, for example, the formatting of the
request. When the version-specific characteristics are veri
fied, the data manipulation portion 260 of the simulation 130
is executed. Regardless of the version of the data manipula
tion device, specified by the test case 140 or the initial com
munication, and the request from the device driver 120, the
data manipulation portion 260 of the simulation 130 is the
same. When a new version of the data manipulation device is
added, the new version is added to the version verification
portion 220 in order to test the device driver 120 functionality
with regard to the new version, but the data manipulation
portion 260 (and initiating test case 140) remains unchanged.
When the version-specific characteristics are not verified

as part of function 250, an erroris returned. Thus, whether the
wrong version of the data manipulation device is specified by
the device driver 120 or the wrong request characteristics
targeting the correct version are included in the request by the
device driver 120, an erroris output, and the simulation 130 is
interrupted. The format of the error may be a hardware spe
cific error code or a software specific error code. The error
codes may fit into the existing structure (i.e., match error
codes already set up for the existing data manipulation por
tion 260 of the simulation 130) such that additional changes
are not required for the test case 140 targeting a specific (new)
version of the data manipulation device. The error code may
indicate a specific verification step of the simulation 130 (e.g.,
the expected version verification (function 240), version char
acteristic verification (function 250)) that failed.

FIG.3 is a process flow of a method of verifying the device
driver 120 request according to embodiments of the inven
tion. At block 310, executing a test case 140 in the device
driver 120 includes the device driver 120 being provided with
information about the version of the data manipulation device
to target. The version may be specified by the test case 140
itself or through initial communication between the device
driver 120 and the simulation 140 (version verification por
tion 220). At block 320, obtaining information related to the
device driver 120 includes obtaining information from the
software token and the internal memory of the device driver
120 as well as information in the request generated by the
device driver 120, as discussed with reference to functions of
the version verification portion 220 above. Determining the
device version, at block 330, refers to the version specified in
the request generated by the device driver 120 and is done as
detailed with reference to function 230 above. At block 340,
the simulation 130 (version verification portion 220 of the
simulation 130) determines if the version of the data manipu
lation device specified by the device driver 120 is the expected
version of the data manipulation device. This process is
executed using the cross verification discussed above with

US 9,389,990 B2
5

reference to function 240. When it is determined (block 340)
that the correct version of the data manipulation device is
being targeted by the device driver 120 under test, verifying
version-specific information at block 360 is performed by the
version verification portion 220 of the simulator 130. As
noted above, the Verification may include Verifying format
ting, for example. When the version specific information is
verified, the version verification portion 220 of the simulation
130 calling the common simulation 130 (block 370) includes
the version verification portion 220 initiating the data
manipulation portion 260 of the simulation 130. As noted
above, the data manipulation portion 260 of the simulation
130 remains unchanged for the different versions for which
the device driver 120 is tested.
When either the expected version of the data manipulation

device is not requested by the device driver 120 (block 340) or
the version-specific information in the request is not verified
(block 360), returning an error message, at block 350, can
include the hardware specific or software specific codes dis
cussed above. As an example, the hardware specific error
codes might follow the format 0x0000ZZZZ, where ZZZZ rep
resents the hardware error code. The software specific errors
may be represented with 0xFFFFZZZZ so that the hardware
codes are distinguished from the software codes but fit within
the same structure. Even in the event that existing test cases
are not updated to recognize these new codes, the fact that the
error codes fit into the existing structure allows the test case to
still generically detect an error and perform general diagnos
tics.

The terminology used herein is for the purpose of describ
ing particular embodiments only and is not intended to be
limiting of the invention. As used herein, the singular forms
“a”, “an and “the are intended to include the plural forms as
well, unless the context clearly indicates otherwise. It will be
further understood that the terms “comprises” and/or “com
prising, when used in this specification, specify the presence
of stated features, integers, steps, operations, elements, and/
or components, but do not preclude the presence or addition
of one more other features, integers, steps, operations, ele
ment components, and/or groups thereof.
The description of the present invention has been presented

for purposes of illustration and description, but is not
intended to be exhaustive or limited to the invention in the
form disclosed. Many modifications and variations will be
apparent to those of ordinary skill in the art without departing
from the scope and spirit of the invention. The embodiment
was chosen and described in order to best explain the prin
ciples of the invention and the practical application, and to
enable others of ordinary skill in the art to understand the
invention for various embodiments with various modifica
tions as are Suited to the particular use contemplated.

The flow diagrams depicted herein are just one example.
There may be many variations to this diagram or the steps (or
operations) described therein without departing from the
spirit of the invention. For instance, the steps may be per
formed in a differing order or steps may be added, deleted or
modified. All of these variations are considered a part of the
claimed invention.

While the preferred embodiment to the invention had been
described, it will be understood that those skilled in the art,
both now and in the future, may make various improvements
and enhancements which fall within the scope of the claims
which follow. These claims should be construed to maintain
the proper protection for the invention first described.

10

15

25

30

35

40

45

50

55

60

65

6
What is claimed is:
1. A system to test a device driver, the system comprising:
a first memory device configured to store programming

code of the device driver, the device driver providing an
interface to a data manipulation device;

a second memory device configured to store a test case to
test the device driver, the device driver receiving version
information specifying a targeted version of the data
manipulation device to be targeted by the device driver
from the test case or the device driver determining the
targeted version of the data manipulation device inde
pendently of the test case;

a third memory device configured to store a simulation
including a version verification portion and a data
manipulation portion, the data manipulation portion
remaining unchanged for every version of the data
manipulation device; and

a processor configured to execute the test case on the device
driver, execution of the test case being configured to
include, based on a request by the device driver, execu
tion of the version verification portion of the simulation
and, based on a result of executing the version verifica
tion portion, execution of the data manipulation portion
of the simulation.

2. The system according to claim 1, wherein the version
verification portion determines whether the version of the
data manipulation device in the request by the device driver is
a match or a non-match with the targeted version and the data
manipulation portion is executed when the version in the
request is the match with the targeted version.

3. The system according to claim 2, wherein, when the
version verification portion determines that the version in the
request is the match with the targeted version, the version
verification portion determines whether version-specific
information in the request is corrector incorrect, and the data
manipulation portion is executed when the version verifica
tion portion determines that the version-specific information
is correct.

4. The system according to claim 3, wherein the version
specific information includes a format of the request.

5. The system according to claim 3, wherein the version
Verification portion is further configured to issue an error code
when the version in the request is the non-match or when the
version-specific information is incorrect.

6. The system according to claim 5, wherein the error code
includes a hardware specific error code or a software specific
error code, the hardware specific error code and the software
specific error code including a same structure.

7. The system according to claim 5, wherein the error code
indicates whether the version in the request is the non-match
with the targeted version or the version-specific information
is incorrect.

8. The system according to claim 1, wherein the version
verification portion is further configured to determine the
targeted version based on information from a software token
and memory associated with the device driver.

9. A computer program product for verifying a version of a
data manipulation device in a request by a device driver under
test comprising:

a non-transitory storage medium readable by a processing
circuit and storing instructions for execution by the pro
cessing circuit for performing a method comprising:

determining whether the version of the data manipulation
device in the request is a match or a non-match with a
targeted version of the data manipulation device, the

US 9,389,990 B2
7

targeted version being either specified in a test case
being executed by the device driver or determined inde
pendently; and

calling a data manipulation simulation based on the deter
mining. 5

10. The computer program product according to claim 9.
further comprising verifying whether version-specific infor
mation in the request is correct or incorrect when the deter
mining indicates the match, wherein the calling the data
manipulation simulation is performed when the determining 10
indicates the match and the verifying indicates that the ver
Sion-specific information is correct.

k k k k k

