Title: A BLUES-SLIDE FOR A GUITAR PLAYER

Abstract: A blues-slide (1) comprises a ring (8) of relatively short axial length for engaging a proximal phalanx (10) of a finger (2) on which the blues-slide (1) is worn. A string engaging member (15) extends axially from the ring (8) for engaging the strings (7) of a guitar (5). The ring (8) is of internal diameter to permit rotation of the ring (8) through approximately 180° for orienting the blues-slide between an operative orientation with the string engaging member (15) extending along the inside of the finger (2) on which the blues-slide is worn for engaging and sliding along the strings (7) of the guitar (5) for producing a portamento effect, and an inoperative orientation with the string engaging member (15) extending outwardly from the finger (2) clear of the inside of the finger (2). The ring (8) is of short axial length for permitting bending of the knuckles at respective opposite ends of the phalanx (10) engaged by the ring (8) when the blues-slide (1) is in the inoperative orientation.
"A blues-slide for a guitar player"

The present invention relates to a blues-slide for attaching to a finger of one hand of a guitar player for producing a portamento effect on the guitar.

Such blues-slides are known, for example, a blues-slide is known from British published Patent Application No. 2,366,443 of Philip Ian Michael Hoolahan. Such blues-slides, typically, comprise a tubular member which is worn on a finger of the hand, the fingers of which engage the guitar strings, for urging the guitar strings against the fret board for selecting a chord or a single note passage to be played. Some blues-slides merely comprise an elongated tubular member which is placed on one of the fingers, typically, the third finger of the hand when it is desired to produce the portamento effect, and must be removed in order to permit normal fingering of the strings on the fret board. This is a considerable disadvantage for guitar players when it is necessary to produce portamento effects in the middle of a tune. The necessity of having to place the blues-slide on the finger to produce the portamento effect, and subsequently having to remove the blues-slide in order to finger the guitar strings unobstructed, interrupts the flow of the tune. This is undesirable.

The blues-slide disclosed in British published Patent Application Specification No. 2,366,443 makes some attempt at overcoming this problem. The blues-slide disclosed in the British specification is of tubular construction, comprising a tubular member. However, the respective ends of the tubular member are cut at an angle in order to provide the tubular member with one long side, and a diametrically opposite short side, the length of the short side being less than a typical spacing between adjacent knuckles of the finger on which the blues-slide is to be worn. The tubular member is rotatable through 180° on the finger of a player between a first orientation with the long side of the blues-slide coinciding with the inside of the finger of the player for engaging the strings of the guitar, to produce the portamento effect, and a second orientation with the short side coinciding with the inside of the finger of the player for facilitating bending of the knuckles of the finger, when the blues-slide is
not required, for facilitating normal fingering of the guitar strings.

However, the blues-slide of this British published Application specification suffers from the disadvantage that although the short side is relatively short, and can more than likely be made sufficiently short for locating between the knuckles on the finger of a player, the ends of the tubular member of the blues-slide diverge outwardly from the short side to the long side, and in general, prevent full bending of the knuckles adjacent the respective ends of the blues-slide, thereby hindering normal fingering of the strings during normal play of the guitar. Additionally, the blues-slide of the British Specification does not facilitate third or fourth finger multi-string engagement, in other words depression of two or more strings at the same time which is a requirement in many chord fingerings, since depending on which of the fingers the blues-slide is worn, the short side of the tubular member hits off the fretboard, thus, fouling the strings, when the blues-slide is worn with the short side of the tubular member coinciding with the inside of the finger.

There is therefore a need for a blues-slide which overcomes the problems of known blues-slides.

The present invention is directed towards providing such a blues-slide.

According to the invention there is provided a blues-slide for attaching to a finger of one hand of a guitar player for producing a portamento effect when brought into engagement with one or more of the strings of the guitar and urged along the string or strings thereof, the blues-slide comprising a ring for engaging on the finger of the guitar player, the ring defining a central axis, and an elongated string engaging member extending from the ring in a direction substantially parallel to the central axis, so that by rotating the ring on the finger, the string engaging member can be selectively urged between an operative orientation extending along the inside of the finger for urging by the finger into engagement with the string or strings of the guitar, and an inoperative orientation clear of the inside of the finger for facilitating normal fingering of the strings of the guitar.
In one embodiment of the invention the ring is of relatively short axial length, and preferably, is of axial length sufficiently short for facilitating bending of knuckle joints on respective ends of a phalanx of the finger on which the blues-slide is located.

In one embodiment of the invention the ring is adapted for engaging the phalanx closest to the corresponding metacarpus of the hand.

In one embodiment of the invention the string engaging member is of arcuate transverse cross-section, and preferably, is of arcuate angular width in the range of 60° to 180° adjacent a proximal end thereof, and preferably, is of arcuate angular width in the range of approximately 100° to 140° adjacent the proximal end thereof, and ideally, is of arcuate angular width of approximately 120° adjacent the proximal end thereof.

In one embodiment of the invention the string engaging member is of arcuate angular width in the range of 120° to 260° adjacent a distal end thereof.

Preferably the string engaging member is of arcuate angular width in the range of 180° to 250° adjacent the distal end thereof. Advantageously, the string engaging member is of arcuate angular width in the range of 200° to 240° adjacent the distal end thereof, and ideally, the string engaging member is of arcuate angular width of approximately 240° adjacent the distal end thereof.

Preferably, the arcuate angular width of the string engaging member is greater adjacent the distal end thereof than adjacent the proximal end thereof, and advantageously, the arcuate width of the string engaging member progressively increases from the proximal end to the distal end.

In another embodiment of the invention the string engaging member is of axial length in the range of 50mm to 75mm, and is preferably of axial length in the range of 55mm to 65mm, and ideally, is of axial length of approximately 58mm, and in
another embodiment of the invention the axial length of the string engaging member is approximately 65mm. In another embodiment of the invention the ring is of axial length in the range of 5mm to 10mm, and ideally, is of axial length of approximately 7mm.

In one embodiment of the invention the ring and the string engaging member are of a rigid material.

In another embodiment of the invention an inner surface defined by the string engaging member is lined with a lining of resilient material for abutting the inside of a finger on which the blues-slide is worn.

In a further embodiment of the invention the ring defines an inner surface, and the inner surface thereof is lined with a lining of resilient material.

Preferably, each lining acts as a vibration absorber. Advantageously, each lining is of an expanded closed cell plastics material.

In one embodiment of the invention a diameter reducing insert engageable with the ring of the blues-slide is provided for reducing the internal diameter of the ring thereof for accommodating fingers of different cross-sections.

The advantages of the invention are many. Firstly, by virtue of the fact that the ring is of relatively short axial length, and furthermore, by virtue of the fact that the arcuate angular width of the string engaging member at the proximal end is relatively small, there is no danger of the blues-slide when in the inoperative orientation interfering with either of the knuckles at the respective opposite ends of the proximal phalanx or any other phalanx on which the blues-slide is worn. Additionally, by virtue of the fact that the string engaging member extends from one side only of the ring, the blues-slide according to the invention can be worn on the proximal phalanx, which is the longest of the three phalanges, and furthermore, when worn on the proximal phalanx, the string engaging member extends to approximately the tip of
the finger on which the blues-slide is worn, thereby facilitating engagement with all six strings of a guitar if desired. However, if it is desired to produce the portamento effect with less than six strings, this can also be achieved.

Providing the lining of resilient material on the inner surface of the ring and on the string engaging member has the advantage that, the lining acts as a vibration absorber, thereby absorbing discordannt vibrations which helps to increase and sustain the portamento effect of the selected note or notes, and also improves the overall timber and tone of the selected note or notes.

The diameter reducing insert for engaging the ring of the blues-slide, provides the added advantage that the blues-slide can be adapted to fit fingers of differing cross-section.

The invention will be more clearly understood from the following description of a preferred embodiment thereof, which is given by way of example only, with reference to the accompanying drawings, in which:

Fig. 1 is a perspective view of a blues-slide according to the invention,

Fig. 2 is a side elevational view of the blues-slide of Fig. 1,

Fig. 3 is an end view of the blues-slide of Fig. 1,

Fig. 4 is a perspective view of the blues-slide of Fig. 1 in use in an operative orientation,

Fig. 5 is a perspective view of the blues-slide of Fig. 1 in use in an inoperative orientation,

Fig. 6 is an end view of an insert for the blues-slide of Fig. 1, and
Fig. 7 is a transverse cross-sectional side elevational view of the insert of Fig. 6 on the line VII – VII of Fig. 6.

Referring to the drawings, there is illustrated a blues-slide according to the invention, indicated generally by the reference numeral 1, for attaching to a finger 2 of a hand 3 of a guitar player for producing a portamento effect from a guitar 5, a portion of the fret board 6 and the strings 7 of which is illustrated in Figs. 4 and 5. The blues-slide 1 comprises a ring 8 for engaging a proximal phalanx 10 of the finger 2 on which the blues-slide 1 is worn, in other words the phalanx which is closest to the corresponding metacarpus (not shown) of the hand 3. In this embodiment of the invention the blues-slide 1 is typically suitable for wearing on the third finger 2 of the hand 3 counting from the index finger, which is indicated by the reference numeral 11. The ring 8 defines a geometrical central axis 14. A string engaging member 15 extends axially from a proximal end 16 at one axial end of the ring 8 to a distal end 17. The ring 8 is of diameter for facilitating rotation of the ring 8 on the proximal phalanx 10, so that by rotating the blues-slide 1 on the finger 2 through 180°, the blues-slide 1 can be selectively urged between an operative orientation illustrated in Fig. 4 with the string engaging member 15 located on the inside of the third finger 2 so that the string engaging member 15 can be brought into engagement with one or more of the strings 7 of the guitar 5 for producing a portamento effect, and an inoperative orientation illustrated in Fig. 5 with the string engaging member 15 extending from the outside of the proximal phalanx 10 of the finger 2 for facilitating normal fingerling of the strings 7 of the guitar 5 for selecting the chords to be played.

The ring 8 is of relatively short axial length A, and in this embodiment of the invention is approximately 7mm in axial length, so that the ring 8 is considerably shorter than the proximal phalanx 10 in order to facilitate full bending of the respective knuckle joints at the respective opposite ends of the proximal phalanx 10. The outer diameter of the ring 8 is 25.4mm, and the internal diameter of the ring 8 is 23.6mm. The string engaging member 15 is of arcuate transverse cross-section and extends along the ring 8 at the proximal end 16 for an arcuate angular width α of approximately 120°. The arcuate angular width β of the string engaging member 15
adjacent the distal end 17 is approximately 240°, and the arcuate width of the string engaging member 15 progressively increases from the proximal end 16 to the distal end 17. The axial length B of the string engaging member 15 is 58mm, and thus the overall length C of the blues-slide 1 including the axial length A of the ring 8 and the axial length B of the string engaging member 15 is 65mm. Accordingly, by virtue of the fact that the ring 8 is of axial length of only 7mm, and the arcuate angular width of the string engaging member 15 adjacent the proximal end 16 is only 120°, and furthermore, by virtue of the fact that the rate at which the arcuate width of the string engaging member increases along its axial length is relatively small, the string engaging member 15, when the blues-slide 1 is in the inoperative orientation, does not in any way interfere with the bending of the knuckles on the respective opposite ends of the proximal phalanx 10 of the finger 2 on which the blues-slide 1 is worn.

The ring 8 defines an inner surface 18, and the string engaging member 15 defines an inner surface 19. The inner surface 18 of the ring 8 is lined with a cushioning lining 20, and the inner surface 19 of the string engaging member 15 is lined with a cushioning lining 21. The cushioning linings 20 and 21 act as vibration absorbers for increasing and sustaining the portamento effect of the selected note or notes, and improves the overall timber and tone of the selected note or notes. The cushioning linings 20 and 21 also act to enhance the longitudinal and lateral grip of the finger 2 on the blues-slide 1 for allowing greater control over the blues-slide 1 when the blues-slide 1 is being used to produce the portamento effect. Additionally, the cushioning linings 20 and 21 also act to avoid chaffing of the finger 2 on which the blues-slide 1 is worn, and add to the comfort of the guitar player. The thickness of the cushioning lining 20 in the ring 8 is slightly greater than the thickness of the cushioning lining 21 for snugly engaging the finger of the guitar player so that when the blues-slide 1 is oriented into the inoperative orientation the blues-slide 1 is retained therein. In this embodiment of the invention the cushioning linings 20 and 21 are of an expanded closed cell plastics material, which in this case is Neoprene Sponge® of approximately 1.5mm thickness to provided adequate vibration absorbing. While the cushioning lining 20 provides sufficient grip for retaining the blues-slide in the inoperative orientation, the inner surface of the cushioning lining is
such as to permit the blues-slide 1 to be readily easily rotated on the finger from one of the operative and inoperative orientations to the other.

A number of diameter reducing inserts 23, of different internal diameters is provided for inserting into the ring 8 in order to reduce the internal diameter of the ring 8 to accommodate fingers of different cross-section, and also to allow the blues-slide 1 to be worn on different fingers of a hand of a player. One of the inserts 23 is illustrated in Figs. 6 and 7, other inserts are similar to the insert 23, but of different internal diameters. Each insert 23 defines an internal surface 26 which is lined with a cushioning lining 27 similar to the cushioning lining 20 with which the inner surface 18 of the ring 8 is lined, for similarly acting as a vibration absorber. The internal diameters of the respective inserts cover a wide range of finger sizes, from childrens fingers to adults fingers. A circumferentially extending flange 24 of outer diameter corresponding to the outer diameter of the ring 8 extends around the diameter reducing ring 23 for abutting the ring 8 when the diameter reducing insert 23 is inserted in the ring 8. The flange 24 facilitates insertion and removal of the diameter reducing insert 23 into and from the ring 8. An internal chamfer 25 extends around the inner diameter of the diameter reducing ring 23 adjacent the flange 24 for accommodating the webs at the proximal end of the finger. The outer diameter of the diameter reducing insert 23 is of diameter corresponding to the inner diameter defined by the cushioning lining 20 of the ring 8, in order to provide a relatively tight type fit between the diameter reducing insert 23 and the ring 8, for in turn avoiding relative rotation and/or longitudinal sliding of the ring 8 relative to the diameter reducing insert 23.

In this embodiment of the invention the ring 8 and the string engaging member 15 are integrally formed from one tubular member of nylon based plastics material, for example, Zytel nylon resin supplied by Dupont by cutting and machining as appropriate, although it is also envisaged that the blues-slide may be of any other material, plastics or otherwise, and indeed in certain cases it is envisaged that the blues-slide may be of metal, for example, stainless steel or a lightweight alloy. Alternatively, the blues-slide may be of glass, ceramics, wood, or any other suitable
material. The inserts 23 are also of a nylon based plastics material similar to that of the blues-slide 1, although it is envisaged that the inserts 23 may be of any other suitable material, plastics or otherwise, and may be of metal, for example, stainless steel or a lightweight alloy or of glass, ceramics, wood or any other suitable material. It will also be appreciated that the inserts 23 may be of the same or a different material to that of the blues-slide 1.

In use, the blues-slide 1, with or without a diameter reducing insert 23 inserted, as appropriate, is inserted onto the third finger 2 of the relevant hand 3 of the guitar player, and the ring 8 is engaged on the proximal phalanx 10 of the finger 2. When not required, the blues-slide 1 is oriented into the inoperative orientation, and when required, the ring 8 is quickly rotated through approximately 180° on the proximal phalanx 10 into the operative orientation so that the string engaging member 15 lies along the inside of the finger 2. When no longer required, the ring 8 is again rotated through approximately 180° for orienting the blues-slide 1 into the inoperative orientation. Orientation of the blues-slide 1 can be achieved with little practice single handedly, thus, moving from the operative to the inoperative orientations and back again without any noticeable delay to the guitar player.

While the blues-slide has been described as comprising a cushioning lining of specific material, the lining may be of any other suitable material, and indeed, in certain cases, it is envisaged that the lining may be dispensed with. It will also be appreciated that while it is desirable to provide a diameter reducing insert, this is not essential to the invention.

While the string engaging member has been described as being of arcuate angular width which increases from its proximal end to its distal end, the string engaging member may be provided of a constant arcuate angular width. Needless to say, while the string engaging member has been described as being of specific arcuate angular width at its proximal and distal ends the string engaging member may be of other arcuate angular widths and preferred but not limiting ranges of arcuate angular widths are discussed herein.
While the string engaging member and the ring have been described as being of a specific axial lengths, blues-slides may be provided with rings and string engaging members of different axial lengths.
CLAIMS

1. A blues-slide for attaching to a finger of one hand of a guitar player for producing a portamento effect when brought into engagement with one or more of the strings of the guitar and urged along the string or strings thereof, the blues-slide comprising a ring for engaging on the finger of the guitar player, the ring defining a central axis, and an elongated string engaging member extending from the ring in a direction substantially parallel to the central axis, so that by rotating the ring on the finger, the string engaging member can be selectively urged between an operative orientation extending along the inside of the finger for urging by the finger into engagement with the string or strings of the guitar, and an inoperative orientation clear of the inside of the finger for facilitating normal fingering of the strings of the guitar.

2. A blues-slide as claimed in Claim 1 characterised in that the ring is of relatively short axial length.

3. A blues-slide as claimed in Claim 1 or 2 characterised in that the ring is of axial length sufficiently short for facilitating bending of knuckles of joints on respective ends of a phalanx of the finger on which the blues-slide is located.

4. A blues-slide as claimed in Claim 3 characterised in that the ring is adapted for engaging the phalanx closest the corresponding metacarpus of the hand.

5. A blues-slide as claimed in any preceding claim characterised in that the string engaging member is of arcuate transverse cross-section.

6. A blues-slide as claimed in Claim 5 characterised in that the string engaging member is of arcuate angular width in the range of 60° to 180° adjacent a proximal end thereof.

7. A blues-slide as claimed in Claim 6 characterised in that the string engaging
member is of arcuate angular width in the range of approximately 100° to 140° adjacent the proximal end thereof.

8. A blues-slide as claimed in Claim 7 characterised in that the string engaging member is of arcuate angular width of approximately 120° adjacent the proximal end thereof.

9. A blues-slide as claimed in any of Claims 5 to 8 characterised in that the string engaging member is of arcuate angular width in the range of 120° to 260° adjacent a distal end thereof.

10. A blues-slide as claimed in Claim 9 characterised in that the string engaging member is of arcuate angular width in the range of 180° to 250° adjacent the distal end thereof.

11. A blues-slide as claimed in Claim 10 characterised in that the string engaging member is of arcuate angular width in the range of 200° to 240° adjacent the distal end thereof.

12. A blues-slide as claimed in Claim 11 characterised in that the string engaging member is of arcuate angular width of approximately 240° adjacent the distal end thereof.

13. A blues-slide as claimed in any of Claims 9 to 12 characterised in that the arcuate angular width of the string engaging member is greater adjacent the distal end thereof than adjacent the proximal end thereof.

14. A blues-slide as claimed in any of Claims 9 to 13 characterised in that the arcuate angular width of the string engaging member progressively increases from the proximal end to the distal end.

15. A blues-slide as claimed in any preceding claim characterised in that the
string engaging member is of axial length in the range of 55mm to 65mm.

16. A blues-slide as claimed in Claim 15 characterised in that the string engaging member is of axial length of approximately 58mm.

17. A blues-slide as claimed in any preceding claim characterised in that the ring is of axial length in the range of 5mm to 10mm.

18. A blues-slide as claimed in Claim 17 characterised in that the ring is of axial length of approximately 7mm.

19. A blues-slide as claimed in any preceding claim characterised in that the ring and the string engaging member are of a rigid material.

20. A blues-slide as claimed in any preceding claim characterised in that an inner surface defined by the string engaging member is lined with a lining of resilient material for abutting the inside of a finger on which the blues-slide is worn.

21. A blues-slide as claimed in any preceding claim characterised in that the ring defines an inner surface, and the inner surface thereof is lined with a lining of resilient material.

22. A blues-slide as claimed in any of Claims 20 or 21 characterised in that each lining acts as a vibration absorber.

23. A blues-slide as claimed in any of Claims 20 to 22 characterised in that each lining is of an expanded closed cell plastics material.

24. A blues-slide as claimed in any preceding claim characterised in that a diameter reducing insert engageable with the ring of the blues-slide is provided for reducing the internal diameter of the ring thereof for accommodating fingers of different cross-sections.
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

IPC 7 G10D3/00

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC 7 G10D

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO—Internal

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
</table>
| X | US 5 492 046 A (JIMENEZ RAUL M)
20 February 1996 (1996-02-20)
column 1, line 32 -column 1, line 42
A column 2, line 17 -column 2, line 31
--- | 1-4, 15-19 |
| Y | US 5 981 856 A (STORY BROOKS J)
9 November 1999 (1999-11-09)
Y column 3, line 18 -column 5, line 55
--- | 1-12, 15-19, 24 |
| Y | US 4 092 894 A (CLOUGH JR ROY L)
6 June 1978 (1978-06-06)
column 3, line 40-43 -column 4, line 9-14
--- | 20-23 |
| X | US 6 242 676 B1 (ROMERO GARY P)
5 June 2001 (2001-06-05)
column 3, line 50 -column 4, line 10
--- | 1-4 |

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

* Special categories of cited documents:
 - "A" document defining the general state of the art which is not considered to be of particular relevance
 - "E" earlier document published on or after the international filing date
 - "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
 - "O" document referring to an oral disclosure, use, exhibition or other means
 - "P" document published prior to the international filing date but later than the priority date claimed
 - "S" later document published after the international filing date but not in conflict with the application but cited to understand the principle or theory underlying the invention
 - "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
 - "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
 - "*" document member of the same patent family

Date of the actual completion of the international search

17 June 2004

Date of mailing of the international search report

29/06/2004

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2
NL—2280 Hg(2) The Hague
Tel. (+31—70) 340-2040, Tx. 31 651 epo nl,
Fax: (+31—70) 340-3046

Authorized officer

Bourdier, R

Form PCT/ISA/210 (second sheet) (January 2004)
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
</table>
| X | US 5 488 891 A (BAKER MICHAEL V)
6 February 1996 (1996-02-06)
column 3, line 1 -column 3, line 48 | 1-4 |
| A | column 3, line 1 -column 3, line 48 | 13,14 |
| A | US 3 638 525 A (SCIURBA EDWARD ET AL)
1 February 1972 (1972-02-01)
column 1, line 53 -column 2, line 4
column 2, line 8 -column 2, line 13
column 2, line 20 -column 2, line 24 | 1,20-24 |
<p>| | | |
| | | |</p>
<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td>US 5492046</td>
<td>20-02-1996</td>
<td>NONE</td>
<td></td>
</tr>
<tr>
<td>US 5981856</td>
<td>09-11-1999</td>
<td>NONE</td>
<td></td>
</tr>
<tr>
<td>US 4092894</td>
<td>06-06-1978</td>
<td>NONE</td>
<td></td>
</tr>
<tr>
<td>US 6242676</td>
<td>05-06-2001</td>
<td>NONE</td>
<td></td>
</tr>
<tr>
<td>US 5488891</td>
<td>06-02-1996</td>
<td>NONE</td>
<td></td>
</tr>
<tr>
<td>US 3638525</td>
<td>01-02-1972</td>
<td>NONE</td>
<td></td>
</tr>
</tbody>
</table>