OFFICE DE LA PROPRIETE

INTELLECTUELLE DU CANADA t‘.

OPIC CIPO

PROPERTY OFFICE

(72) COOKE, LAURENCE H., US

(72) PHILLIPS, CHRISTOPHER E., US
(72) WONG, DALE, US

(71) CHAMELEON SYSTEMS, INC., US

51) Int.C1.” GO6F 12/02
(30) 1997/06/27 (08/884,377) US

(12) (19) (CA) Dem ande-Application

(CANADIAN INTELLECTUAL

(21) (A1) 2,290,649
86) 1998/06/29
&7) 1999/01/07

54) PROCEDE DE COMPILATION DE LANGAGES DE

PROGRAMMATION AVANCEE

54y METHOD FOR COMPILING HIGH LEVEL PROGRAMMING

LANGUAGES

'T.

101...PROGRAMMING LANGUAGE SQURCE CODE
103...50URCE CODE COMPILER

105...COMPILED CODE INTERMEDIATE FORMAT
107...CODE GENERATOR FOR MICROPROCESSOR
109...0BJECT CODE FOR MICROPROCESSOR
111...0PTIMIZER AND PARALLELIZER

115...CIRCUIT PRIMITIVES LIBRARY

113...SILICON COMPILER FOR INTEGRATED CIRCUIT
117...APPLICATION SPECIFIC INTEGRATED CIRCUIT

(57) L’ invention concerne un programme informatique
(101) €crit dans un langage de programmation avancee,
qu est compilé (103) sous forme d’une structure de
données intermediaire (105) qui represente sa commande
et son debit de donnees. Cette structure de donnees est
analys¢e (111) en vue de 1'identification de blocs de
logique cruciaux pouvant €tre implanteés comme un
circuit integre (117) spécifique a une application, pour
I’amelioration de 1’efficacite de fonctionnement globale.
Les blocs de logique cruciaux sont d’abord transformes

I*I Industrie Canada Industry Canada

(57) A computer program (item 101), written 1n a high
level programming language, 1s compiled (item 103) 1nto
an mtermediate data structure (105) which represents its
control and data flow. This data structure 1s analyzed
(item 111) to 1dentify critical blocks of logic which can
be mmplemented as an application specific integrated
circuit (1item 117) to improve the overall performance.
The critical blocks of logic are first transformed 1nto new
equvalent logic with maximum data parallelism. The
new parallelized logic 1s then translated mto a Boolean

OFFICE DE LA PROPRIETE SRR

INTELLECTUELLE DU CANADA

SONRR e am AX,
NN/ S []

- LN W W NN (]
. - “;‘\:l LY : -'-% x\.\
- - 1.. - N L.

L]
.‘.‘ L n “ d
e Mg, e " "',.‘ e AN - o At 4
* b g - 4+ ¢ N o« W\ aq an
chaaw + u a b g e anha
‘c. "‘\ v.(..\ -‘-_ \‘oqa‘o_. " ‘t -
LY . L) a q‘q] LI) Y
\. .l‘. q. Re s by N
[] .. L] - » . hkn
- X . v_. . \‘;‘ “0 a‘_. L, m
e R A, N Tntay ALY
L] LY N
- % L) "

CIPO

PROPERTY OFFICE

en une nouvelle logique €quivalente avec un parall€lisme
des donnees maximum. L a nouvelle logique parall€lisce
est ensuite traduite en une representation de porte
boolé¢enne pouvant €tre implantée sur un circuit integre
(117) specifique a une application. Ledit circuat (117) est
couple a un microprocesseur generique par des
instructions speciales pour le microprocesseur (107). Le
programme 1nformatique origmal est ensuite compile
sous forme de code objet (109) a 1"aide du nouvel
ensemble d instructions cible ¢tendu.

I*I Industrie Canada Industry Canada

(CANADIAN INTELLECTUAL

21 (A1) 2,290,649
(86) 1998/06/29
87y 1999/01/07

gate representation which 1s suitable for implementation
on an application specific integrated circuit (item 117).
The application specific mtegrated circuit (item 117) 1s
coupled with a generic microprocessor via custom
instructions for the microprocessor (item 107). The
original computer program 1s then compiled nto object
code (item 109) with the new expanded target instruction
set.

CA 02290649 1999-11-18

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

PCT

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 0 :

GO6F 12/02

WO 99/00731

(11) International Publication Number:

(43) International Publication Date: 7 January 1999 (07.01.99)

(21) International Application Number:

(22) International Filing Date:

(30) Priority Data:
08/884,377

(63) Related by Continuation (CON) or Continuation-in-Part

(CIP) to Earlier Application

US
Filed on

27 June 1997 (27.06.97)

A ey

PCT/US98/13563 | (81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR, |
BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FIl, GB, GE,
GH, GM, GW, HU, ID, IL, IS, JP, KE, KG, KP, KR, KZ
LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW,
MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL,
TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZW, ARIPO
patent (GH, GM, KE, LS, MW, SD, SZ, UG, ZW), Eurasian
patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European
patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR,
IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF,
CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).

29 June 1998 (29.06.98)

US

08/884,377 (CON)
27 June 1997 (27.06.97)

Published
With international search report.

(71) Applicant (for all designated States except US): CHAMELEON
SYSTEMS, INC. [US/US]; Suite 275, 960 N. San Antonio
Road, Los Altos, CA 94022 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): COOKE, Laurence, H. |
[US/US]); 25399 Spanish Ranch Road, Los Gatos, CA 95030
(US). PHILIPS, Christopher, E. [US/US]; 5888 Assis Court, !
San Jose, CA 95138 (US). WONG, Dale [US/US]; 855 35th
Avenue, San Francisco, CA 94121 (US).

(74) Agent: KREBS, Robert, E.; Burns, Doane, Swecker & Mathis,
L.L.P., P.O. Box 1404, Alexandria, VA 22313-1404 (US).

(34) Title: METHOD FOR COMPILING HIGH LEVEL PROGRAMMING LANGUAGES

(S7) Abstract

A computer program (item 101),
written in a high level programming lan-
guage, 1s compiled (item 103) into an in-
termediate data structure (105) which rep-
resents 1ts control and data flow. This data
structure 1s analyzed (item 111) to iden-
tify critical blocks of logic which can be
implemented as an application specific in-
| tegrated circuit (item 117) to improve the
overall performance. The critical blocks of
logic are first transformed into new equiva-
lent logic with maximum data parallelism.
The new parallelized logic is then trans-
lated into a Boolean gate representation [

which 1s suitable for implementation on an -

application specific integrated circuit (item
117). The application specific integrated
circuit (item 117) is coupled with a generic
MICroprocessor via custom instructions for
the microprocessor (item 107). The orig-
inal computer program is then compiled

into object code (item 109) with the new
expanded target instruction set.

— K
|

101...PROGRAMMING LANGUAGE SOURCE CODE
103...SOURCE CODE COMPILER

105...COMPILED CODE INTERMEDIATE FORMAT
10/7...CODE GENERATOR FOR MICROPROCESSOR
108...0BJECT CODE FOR MICROPROCESSOR
111...0PTIMIZER AND PARALLELIZER

115...CIRCUIT PRIMITIVES LIBRARY

113...SILICON COMPILER FOR INTEGRATED CIRCUIT

| 117...APPLICATION SPECIFIC INTEGRATED CIRCUIT

CA 02290649 1999-11-18

- WO 99/00731 PCT/US98/13563

10

15

20

25

30

METHOD FOR COMPILING HIGH LEVEL PROGRAMMING LANGUAGES

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates to reconfigurable computing.

2. State of the Art

Traditionally, an integrated circuit must be designed by describing its structure

with circuit primitives such as Boolean gates and registers. The circuit designer must
begin with a specific application in mind, €.g. a video compression algorithm, and the
resulting integrated circuit can only be used for the targeted application.

Alternatively, an integrated circuit may be designed as a general purpose

microprocessor with a fixed instruction set, e.g. the Intel x86 processors. This allows

flexibility in writing computer programs which can invoke arbitrary sequences of the

microprocessor instructions. While this approach increases the flexibility, it decreases
the performance since the circuitry cannot be optimized for any specific application.
It would be desirable for high level programmers to be able to write arbitrary

computer programs and have them automatically translated into fast application specific
integrated circuits. However, currently there is no bridge between the computer
programmers, who have expertise in programming languages for microprocessors, and
the application specific integrated circuits, which require expertise in circuit design.
Research and development in integrated circuit design 1s attempting to push the
level of circuit description to increasingly higher levels of abstraction. The current
state of the art is the "behavioral synthesizer” whose input is a behavioral language
description of the circuit’s register/transfer behavior and whose output 1s a structural
description of the circuit elements required to implement that behavior. The input
description must have targeted a specific application and must describe its behavior in

high level circuit primitives, but the behavioral compiler will automatically determine

-1-

W APAGPNET ENY BPA A A P, vy arnan V"

CA 02290649 1999-11-18

- WO 99/00731 PCT/US98/13563

-

how many low level circuit primitives are required, how these primitives will be shared

between different blocks of logic, and how the use of these primitives will be
scheduled. The output description of these circuit primitives is then passed down to a
“logic synthesizer” which maps the circuit primitives onto a library of available “cells”,

5 where each cell is the complete implementation of a circuit primitive on an integrated
circuit. The output of the logic synthesizer is a description of all the required cells and
their interconnections. This description is then passed down to a “placer and router’
which determines the detailed layout of all the cells and interconnections on the
integrated circuit.

10 On the other hand, research and development in computer programming 1s also
attempting to push down a level of abstraction by matching the specific application
programs with custom targeted hardware. One such attempt is the Intel MMX
instruction set. This instruction set was designed specifically to accelerate applications
with digital signal processing algorithms. Such applications may be written generically

15 and an MMX aware compiler will automatically accelerate the compiled code by using
the special instructions. Another attempt to match the application with appropriate
hardware is the work on parallelizing compilers. These compilers will take a computer
program written in a sequential programming language and automatically extract the
implicit parallelism which can then be targeted for execution on a variable number of

20 processors. Thus different applications may execute on a different number of
processors, depending on their particular needs.

Despite the above efforts by both the hardware and software communities, the
gap has not yet been bridged between high level programming languages and integrated
circuit behavioral descriptions.

25
SUMMARY OF THE INVENTION
A computer program, written in a high level programming language, is
compiled mnto a; intermediate data structure which represents its control and data flow.
This data structure is analyzed to identify critical blocks of logic which can be

30 implemented as an application specific integrated circuit to improve the overall

.

CA 02290649 1999-11-18

~ WO 99/00731 PCT/US98/13563

performance. The critical blocks of logic are first transformed into new equivalent
logic with maximal data parallelism. The new parallelized logic 1s then translated 1nto
a Boolean gate representation which is suitable for implementation on an application

, specific integrated circuit. The application specific integrated circuit is coupled with a

5 generic microprocessor via custom instructions for the microprocessor. The original

computer program is then compiled into object code with the new expanded target
instruction set.
In accordance with one embodiment of the invention, a computer implemented

method automatically compiles a computer program written in a high level

10 programming language into a program for execution by one or more application
specific integrated circuits coupled with a microprocessor. Code blocks the functions
of which are to be performed by circuitry within the one or more application specific
integrated circuits are selected, and the code blocks are grouped into groups based on at
least one of an area constraint and an execution timing constraint. Loading and

15 activation of the functions are scheduled; and code is produced for execution by the

microprocessor, including instructions for loading and activating the functions.

In accordance another aspect of the invention, a computer implemented method
automatically compiles a computer program written in a high level programming
language into one or more application specific integrated circuits. In accordance with

20 yet another aspect of the invention, a computer implemented method automatically
compiles a computer program written in a high level programming language INtO One or
more application specific integrated circuits coupled with a standard miCroprocessor.

In accordance with still another aspect of the invention, a reconfigurable logic block is
locked by compiled instructions, wherein an activate configuration instruction locks the

75 block from any subsequent activation and a release configuration instruction unlocks the
block. In accordance with a further aspect of the invention, a high level programming

language compiler automatically determines a set of one or more special instructions to

extend the standard instruction set of a microprocessor which will result in a relative
performance improvement for a given input computer program. In accordance with yet

30 a further aspect of the invention, a method is provided for transforming the execution

~

.-.)-.

TVVEV AV, ABAE Pt da i Aa by s e e

10

15

20

25

30

CA 02290649 1999-11-18

- WO 99/00731 PCT/US98/13563

of more than one microprocessor standard instruction into the execution of a single
special instruction. In accordance with still a further aspect of the invention, a high

level programming language compiler is coupled with a behavioral synthesizer via a

data flow graph intermediate representation.

BRIEF DESCRIPTION OF THE DRAWING
The present invention may be further understood from the following description
in conjunction with the appended drawing. In the drawing:
Figure 1 shows the design methodology flow diagram of the preterred

embodiment of a compiler.

Figure 2 shows the control flow for the operation of the preferred embodiment

of an application specific integrated circuit.

Figure 3 shows a fragment of a high level source code example which can be

input into the compiler.
Figure 4 shows the microprocessor object code for the code example of Figure 3
which would be output by a standard compiler.

Figure 5 shows an example of the application specific circuitry which is output

by the compiler for the code example of Figure 3.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
In accordance with the preferred embodiment of the present invention, a

method is presented for automatically compiling high level programming languages nto

application specific integrated circuits (ASIC).
Referring to Figure 1, the computer program source code 101 1s parsed with

standard compiler technology 103 into a language independent intermediate format 105.

The intermediate format 105 is a standard control and data flow graph, but with the
addition of constructs to capture loops, conditional statements, and array accesses. The
format’s operators are language independent simple RISC-like instructions, but with
additional operators for array accesses and procedure calls. These constructs capture

all the high level information necessary for parallelization of the code. For further

4

10

15

20

25

30

WO 99/00731

CA 02290649 1999-11-18

PCT/US98/13563

description of a compiled intermediate format see for example S. P. Amarasinghe, J.
M. Anderson, C. S. Wilson, S.-W. Liao, B. M. Murphy, R. S. French, M. S.
Lam and M. W. Hall; Multiprocessors from a Software Perspective; IEEE Micro,
June 1996; pages 52-61.

Because standard compiler technology is used, the input computer program can

be any legal source code for a supported high level programming language. The
methodology does not require a special language with constructs specifically for
describing hardware implementation elements. Front end parsers currently exist for
ANSI C and FORTRAN 77 and other languages can be supported simply by adding
new front end parsers. For further information on front end parsers see for example C.
W _ Fraser and D. R. Hanson; A Retargetable Compiler for ANSI C; SIGPLAN
Notices, 26(10); October 1991.

From the intermediate format 105, the present methodology uniquely supports

code generation for two different types of target hardware: standard microprocessor and

ASIC. Both targets are needed because while the ASIC is much faster than the
microprocessor, it is also much larger and more expensive and therefore needs to be
treated as a scarce resource. The compiler will estimate the performance versus area
tradeoffs and automatically determine which code blocks should be targeted for a given
available ASIC area.

Code generation for the microprocessor is handled by standard compiler
technology 107. A code generator for the MIPS microprocessor currently exists and
other microprocessors can be supported by simply adding new back end generators. In
the generated object code 109, custom instructions are inserted which invoke the
ASIC-implemented logic as special instructions.

The special instructions are in four general categories: load_configuration,
activate configuration, invoke_configuration, release_configuration. The
load configuration instruction identifies the address of a fixed bit stream which can
configure the logic and interconnect for a single block of reconfigurable logic on the
ASIC. Referring to Figure 2, the ASIC 200 may have one or more such blocks 201a,

201b on a single chip, possibly together with an embedded microprocessor 205 and

_5-

10

15

20

25

30

CA 02290649 1999-11-18

- WO 99/00731 PCT/US98/13563

control logic 207 for the reconfigurable logic. The identified bit stream may reside in,

for example, random access memory (RAM) or read-only-memory (PROM or

EEPROM) 203. The bit stream 1s downloaded to a cache of possible block
configurations on the ASIC. The activate configuration instruction identifies a
previously downloaded configuration, restructures the reconfigurable logic on the ASIC
block according to that configuration, and locks the block from any subsequent activate
instructions. The invoke configuration instruction loads the input operand registers,
locks the output registers, and invokes the configured logic on the ASIC. After the

ASIC loads the results into the instruction’s output registers, it unlocks the registers and

the microprocessor can take the results and continue execution. The
release configuration instruction unlocks the ASIC block and makes it available for
subsequent activate configuration instructions. For further description of an embedded

microprocessor with reconfigurable logic see U.S. Patent Application 08/884,380 of L.
Cooke, C. Phillips, and D. Wong for An Integrated Processor and Programmable

Data Path Chip for Reconfigurable Computing, incorporated herein by reference.

Code generation for the ASIC logic can be implemented by several methods.
One implementation passes the intermediate control and data flow graphs to a
behavioral synthesis program. This interface could be accomplished either by passing
the data structures directly or by generating an intermediate behavioral language
description. For further discussion of behavioral synthesis see for example D. Knapp;
Behavioral Synthesis; Prentice Hall PTR; 1996. An alternative implementation
generates one-to-one mappings of the intermediate format primitives onto a library of
circuit implementations. For example: scalar variables and arrays are implemented as
registers and register files with appropriate bit widths; arithmetic and Boolean operators
such as add, multiply, accumulate, and compare are implemented as single cells with

appropriate bit widths; conditional branch implementations and loops are implemented
as state machines. In general, as illustrated in Figure 1, a silicon compiler 113 receives
as inputs compiled code in the intermediate format 105 and circuit primitives from a
circuit primitive library 115 and produces layout or configuration information for an

ASIC 117. For further discussion of techniques for state machine synthesis see for

-6-

10

15

20

25

CA 02290649 1999-11-18

WO 99/00731 PCT/US98/13563

example G. De Micheli, A. Sangiovanni-Vincentelli, and P. Antognett1; Design
Systems for VLSI Circuits; Martinus Nijhoff Publishers; 1987; pp. 327-364.

After the synthesis or mapping step is completed, an equivalent list of cells and
their interconnections is generated. This list is commonly referred to as a .netlist. This
netlist is then passed to a placer and router which determines the actual layout of the
cells and their interconnections on an ASIC. The complete layout is then encoded and
compressed in a bit stream format which can be stored and loaded as a single unit to
configure the ASIC. A step-by-step example of the foregoing process 1s illustrated n
Figure 3, Figure 4, and Figure 5. For a general discussion of place and route
algorithms see T. Ohtsuki; Layout Design and Verification; North-Holland; 1986; pp.
55-198.

The basic unit of code that would be targeted for an ASIC is a loop. A single
loop in the input source code may be transformed in the interrnediate format 1nto
multiple constructs for runtime optimization and parallelization by optimizer and
parallelizer 111 in Figure 1. The degree of loop transformation for parallel execution
is a key factor in improving the performance of the ASIC versus a microprocessor.
These transformations are handled by standard parallelizing compiler technology which
includes constant propagation, forward propagation, induction variable detection,
constant folding, scalar privatization analysis, loop interchange, skewing, and reversal.
For a general discussion of parallel compiler loop transformations see Michael Wolfe;

High Performance Compilers for Parallel Computing; Addison-Wesley Publishing
Company; 1996; pp. 307-363.

To determine which source code loops will yield the most relative performance

improvement, the results of a standard source code profiler are input to the compiler.

The profiler analysis indicates the percentage of runtime spent in each block of code.

By combining these percentages with the amount of possible parallelization for each

e b e Y N AR

20

30

CA 02290649 1999-11-18

- WO 99/60731 PCT/US98/13563

loop, a figure of merit can be estimated for the possible gain of each loop. For

example:

Gain = (profilePercent) * (1 - 1 / paralielPaths)
where

profilePercent = percent of runtime spent in this loop
parallelPaths = number of paths which can be executed 1n parallel

The amount of ASIC area required to implement a source code loop 1S

determined by summing the individual areas of all its mapped cells and estimating the
additional area required to interconnect the cells. The size of the cells and their
interconnect depends on the number bits needed to implement the required data
precision. The ASIC area can serve as a figure of merit for the cost of each loop. For
example:

Cost = cellArea + MAX(O, (interconnectArea - overTheCellArea))
where

cellArea = sum of all component cell areas

overTheCellArea = cellArea * (per cell area available for interconnects)
interconnectArea = (number of interconnects) *

(interconnectLength) * (interconnect width)
interconnectlength = (square root of the number of cells) / 3

For further information on estimating interconnect area see B. Preas, M.
Lorenzetti; Physical Design Automation of VLSI Systems; Benjamin/Cummings
Publishing Company; 1988; pp. 31-64.

The method does not actually calculate the figures of merit for all the loops 1n
the source code. The compiler is given two runtime parameters: the maximum area for
a single ASIC block, and the maximum total ASIC area available, depending on the
targeted runtime system. It first sorts the loops in descending order of their percentage
of runtime, and then estimates the figures of merit for each loop until 1t reaches a

predetermined limit in the total amount of area estimated. The predetermined limit 1s a

constant times the maximum total ASIC area available. Loops that require an area

larger than a single ASIC block may be skipped for a simpler implementation. Finally,
with all the loops for which figures of merit have been calculated, a knapsack algorithm

is applied to select the loops. This procedure can be trivially extended to handle the

_R-

10

15

20

25

30

CA 02290649 1999-11-18

- WO 99/00731 PCT/US98/13563

case of targeting multiple ASICs if there is no gain or cost associated with being in
different ASICs. For a general discussion of knapsack algorithms see Syslo, Deo,
Kowalik; Discrete Optimization Algorithms; Prentice-Hall; 1983; pp. 118-176.

The various source code loops which are packed onto a single ASIC are
senerally independent of each other. With certain types of ASICs, namely a field
programmable gate array (FPGA), it is possible to change at runtime some or all of the

functions on the FPGA. The FPGA has one or more independent blocks of

reconfigurable logic. Each block may be reconfigured without affecting any other

block. Changing which functions are currently implemented may be desirable as the

computer program executes different areas of code, or when an entirely different

computer program is loaded, or when the amount of available FPGA logic changes.

A reconfigurable FPGA environment presents the following problems for the
compiler to solve: selecting the total set of functions to be implemented, partitioning
the functions across multiple FPGA blocks, and scheduling the loading and activation
of FPGA blocks during the program execution. These problems cannot be solved
optimally in polynomial time. The following paragraphs describe some heuristics
which can be successfully applied to these problems.

The set of configurations simultaneously coexisting on an FPGA at a single
instant of time will be referred to as a snapshot. The various functions comprising a
snapshot are partitioned into the separate blocks by the compiler in order to minimize
the block’s stall time and therefore minimize the overall execution schedule. A block

will be stalled if the microprocessor has issued a new activate configuration

instruction, but all the functions of the previous configuration have not yet completed.
The partitioning will group together functions that finish at close to the same time. All
the functions which have been selected by the knapsack algorithm are sorted according
to their ideal scheduled finish times (the ideal finish times assume that the blocks have
been downloaded and activated without delay so that the functions can be invoked at
their scheduled start times). Traversing the list by increasing finish times, each
function is assigned to the same FPGA block until the FPGA block’s area capacity is

reached. When an FPGA block is filled, the next FPGA block is opened. After all

0.

. "MW".IF.WW.Q.""!M.'_‘. o

10

15

20

25

30

CA 02290649 1999-11-18

) WO 9?/00731 PCT/US98/13563

functions have been assigned to FPGA blocks, the difference between the earliest and
the latest finish times is calculated for each FPGA block. Then each function is
revisited in reverse (decreasing) order. If reassigning the function to the next FPGA
block does not exceed its area capacity and reduces the maximum of the two
differences for the two FPGA blocks, then the function is reassigned to the next FPGA
block.

After the functions are partitioned, each configuration of an FPGA block may
be viewed as a single task. Its data and control dependencies are the union of 1ts
assigned function’s dependencies, and its required time is the difference between the
latest finish time and the earliest start time of its assigned functions. The set of all such
configuration tasks across all snapshots may be scheduled with standard multiprocessor
scheduling algorithms, treating each physical FPGA block as a processor. This will
schedule all the activate configuration instructions.

A common scheduling algorithm is called list scheduling. In list scheduling, the
following steps are a typical implementation:

1. Each node in the task graph is assigned a priority. The priority is
defined as the length of the longest path from the starting point of the task graph to the
node. A priority queue is initialized for ready tasks by inserting every task that has no

immediate predecessors. Tasks are sorted in decreasing order of task priorities.

2. As long as the priority queue is not empty do the following:

a. A task is obtained from the front of the queue.

b. An idle processor is selected to run the task.

C. When all the immediate predecessors of a particular task are executed,

that successor is now ready and can be inserted into the priority queue.

" For further information on multiprocessor scheduling algorithms see A.
Zomaya; Parallel and Distributed Computing Handbook; McGraw-Hill; 1996; pp.
239-273.

All the load configuration instructions may be issued at the beginning of the
program if the total number of configurations for any FPGA block does not exceed the

capacity of the FPGA block’s configuration cache. Similarly, the program may be

-10-

10

15

20

235

30

CA 02290649 1999-11-18

- WO 99/00731 PCT/US98/13563

divided into more than one section, where the total number of configurations for any
FPGA block does not exceed the capacity of the FPGA block’s configuration cache.
Alternatively, the load configuration instructions may be scheduled at the lowest
preceding branch point in the program’s control flow graph which covers all the
block’s activate_configuration instructions. This will be referred to as a covering load
mstruction. This 1s a preliminary schedule for the load instructions, but will lead to
stalls 1f the actual load time exceeds the time the microprocessor requires to go from
the load_configuration instruction to the first activate configuration instruction. In
addition, the number of configurations for an FPGA block may still exceed the capacity
of its configuration cache. This will again lead to stalls in the schedule. In such a
case, the compiler will compare the length of the stall versus the estimated gains for
each of the configurations in contention. The gain of a configuration is estimated as
the sum of the gains of its assigned functions. Among all the configurations in
contention, the one with the minimum estimated gain is found. If the stall is greater
than the minimum gain, the configuration with the minimum gain will not be used at
that point in the schedule.

When a covering load instruction is de-scheduled as above, tentative
load_configuration tasks will be created just before each activate configuration
instruction. These will be created at the lowest branch point immediately preceding the
activate instruction. These will be referred to as single load instructions. A new
attempt will be made to schedule the single load command without exceeding the FPGA
block’s configuration cache capacity at that point in the schedule. Similarly to the
previous scheduling attempt, if the number of configurations again exceeds the
configuration cache capacity, the length of the stall will be compared to the estimated
gains. In this case, however, the estimated gain of the configuration is just the gain of
the single function which wiil be invoked down this branch. Again, if the stall is

greater than the mimimum gain, the configuration with the minimum gain will not be

used at that point in the schedule.

If a de-scheduled load instruction is a covering load instruction, the process will

recurse; otherwise 1f it 1s a single load instruction, the process terminates. This process

-11-

N e o] St SPIEIICWL | - v] W W b b gy es s

CA 02290649 1999-11-18

_ WO 99/00731 PCT/US98/13563

10

15

20

can be generalized to shifting the load instructions down the control flow graph one
step at a time and decreasing the number of invocations it must support. For a single
step, partition each of the contending configurations into two new tasks. For the
configurations which have already been scheduled, split the assigned functions into
those which finish by the current time and those that don’t. For the configuration

which has not been scheduled yet, split the assigned functions into those which start

after the stall time and those that don’t.

Branch prediction may be used to predict the likely outcome of a branch and to
load in advance of the branch a configuration likely to be needed as a result of the
branch. Inevitably, branch prediction will sometimes be unsuccessful, with the result
that a configuration will have been loaded that is not actually needed. To provide for
these instances, instructions may be inserted after the branch instruction to clear the

configuration loaded prior to the branch and to load a different configuration needed

following the branch, provided that a net execution-time savings results.

It will be appreciated by those of ordinary skill in the art that the invention can
be embodied in other specific forms without departing from the spirit or essential
character thereof. The presently disclosed embodiments are therefore considered in all
respects to be illustrative and not restrictive. The scope of the invention is indicated by
the appended claims rather than the foregoing description, and all changes which come
within the meaning and range of equivalents thereof are intended to be embraced

therein.

-12-

10

15

20

23

- WO 99/00731

CA 02290649 1999-11-18

PCT/US98/13563

Claims:
1. A computer 1mplemented method for the automatic compilation of a

computer program written 1n a high level programming language into a program for

execution by one or more application specific integrated circuits coupled with a

microprocessor, the method comprising the steps of:
automatically determining a set of one or more special instructions, to be
executed by said one or more application specific integrated circuits, that will result in

a relative performance improvement for a given input computer program written for

execution by the microprocessor; and

generating code including said one or more special instructions.

2. The method of Claim 1, wherein generating code comprises producing

code for execution by the microprocessor, including instructions for loading and

activating said functions.

3. The method of Claim 2, comprising the further steps of:
selecting code blocks the functions of which are to be performed by circuitry

within the one or more application specific integrated circuits;

grouping the code blocks 1nto groups based on at least one of an area constraint

and an execution timing constraint;
scheduling loading of said functions; and

scheduling activation of said functions.

4. The method of Claim 2, comprising the further step of producing

detailed integrated circuit layouts of said circuitry.

5. The method of Claim 4, comprising the further step of producing

configuration data for said functions.

13-

.- w"*‘*'“”“““\‘ﬂ%hWM*'N"?" .. -

CA 02290649 1999-11-18

_ WO ?9/00731 PCT/US98/13563

6. The method of Claim 2, wherein said instructions include special

instructions to load, activate, invoke and/or release functions implemented on an

application specific integrated circuit.

5 7. The method of Claim 2, wherein grouping comprises calculating start

and finish times for the selected blocks of code.

8. The method of Claim 7, wherein the start and finish times are calculated

assuming that the selected code blocks are implemented in parallel with a fixed

10 overhead for each parallel operation.

9. The method of Claim 8, wherein the fixed overhead is calculated as OV
=1 + A + L. where I is an average time required to invoke the application specific
integrated circuit as a coprocessor instruction; A is an average time required to issue an

15 activate configuration instructions plus an average stall time for activation; and L 1s an

average time required to issue a load configuration instruction plus an average stall time

for loading.

10. The method of Claim 7, wherein grouping is performed such that a

70 difference between the latest and earliest finish times within a group 1s minimized.

11. The method of Claim 7, wherein grouping is performed such that for

each group, circuitry for performing the functions of that group does not exceed a

specified capacity of a block of an application integrated circuit.

25
12 The method of Claim 7, wherein grouping further comprises:

opening a new group with a total assigned area of zero;
sorting and traversing the code blocks in a predetermined order;

for each code block, if the area of the block plus the group’s assigned area does

30 not exceed a specified maximum area for a single group, adding the code block to the

-14-

10

IS

20

25

30

- WO 99/00731

CA 02290649 1999-11-18

PCT/US98/13563

group and adding the area of the code block to the group’s assigned area; otherwise,

opening a new group, adding the code block to the new group and adding the area of

the code block to the new group’s assigned area.

13. The method of Claim 12, wherein said predetermined order 1S In
increasing order of finish times as a primary key, and increasing order of start times as

a secondary key.

14. The method of Claim 13, wherein grouping comprises the further steps
of:

traversing the code blocks in decreasing order of finish times;
for each code block, determining a start spread and finish spread of a group to

which the code block belongs, wherein the start spread is the difference between the

latest and earliest start times of all of the code blocks belonging to the same group, and
the finish spread is the difference between the latest and earliest finish times of all of

the code blocks belonging to the same group; and

reassigning the code block to a different group if the code block’s area plus the
different group’s assigned area does not exceed the specified maximum area for a single
group, and if reassigning the code block results in a net improvement in at least one of

start spread and finish spread for the group to which the code block belongs and the

different group.

15. The method of Claim 2, wherein selecting comprises sampling the

percentage of time spent in each block of code when the computer program 1s executed

on a single miCroprocessor.

16. The method of Claim 15, wherein selecting further comprises:

parsing the high level programming language into an intermediate data structure

representing control and data dependencies of the computer program; and

analyzing the amount of implicit parallelism in the intermediate data structure.

-15-

[] Spipirmy —vres -, D L

CA 02290649 1999-11-18

WO 99/00731 PCT/US98/13563

17. The method of Claim 16, wherein selecting further comprises, for at

least some of the code blocks of the computer program, estimating the cost and benefit

of implementing a code block using circuitry within an application specific integrated

circuit.
J
18. The method of Claim 17, wherein estimating the cost and benefit of
implementing a code block comprises:
estimating a reduction in execution time if the code block is implemented as an
application specific integrated circuit; and
10 estimating a layout area required if the code block is impiemented as an

application specific integrated circuit.

19. The method of Claim 18, wherein selecting further comprises:
accepting a first runtime parameter representing a maximum area of a single
15 block of an application specific integrated circuit and a second runtime parameter

representing a maximum total area for all blocks to be considered for implementation as

application specific integrated circuits; and

selecting a set of code blocks which satisfies the first and second runtime

parameters and which maximizes a total estimated reduction in execution time.

20
20. The method of Claim 19, wherein selecting a set of code blocks which

satisfies the first and second runtime parameters and which maximizes a total estimated

reduction in execution time comprises:
sorting and traversing the code blocks in decreasing order ot reduction In
25 execution time; and

for each code block:

if the reduction equals zero, terminate;

estimate the required layout area;

if the area exceeds the specified maximum area for a single block of an

30 application specific integrated circuit, skip this code block;

-16-

AR ST S ot e

10

15

20

25

30

- WO 99/00731

CA 02290649 1999-11-18

PCT/US98/13563

multiplying the specified maximum total area for all blocks by a constant

greater than one;

if a total area of previously selected code blocks plus an estimated
required layout area for a current code block exceeds the specified maximum total

multiplied by the constant, terminate;
otherwise, select the code block; and

using a knapsack algorithm and the maximum total area to perform a

further selection on the selected code blocks.

21. The method of Claim 18, wherein the reduction in execution time 1S

estimated in accordance with the formula R = T(1 - 1/P) where T is a percentage of

execution time spent in the code block and P is a number of paths which can be

executed in parallel 1n the code block.

22. The method of Claim 18, wherein the intermediate data structure 1s a
tree structure containing nodes, and estimating the layout area comprises:

performing bottom-up traversal of the tree structure;

mapping each node in the tree to a cell from a library of circuit primitives;

calculating a total area of the mapped cells; and

calculating an additional area required for cell interconnections.

23. The method of Claim 22, wherein mapping is performed in accordance

with multiple predetermined mappings including at least one of the following: scalar
variables map to registers; arrays map to register files; addition and subtraction

operators map to adders; increment and decrement operators map to adders;
multiplications and division operators map to multipliers; equality and inequality
operators map to comparators; + =, - = operators map to accumulators; *= [=
operators map to multiply-accumulators, < <, > > operators map to shift registers;

&, |, =, "~ operators map to boolean gates, branches map to a state machine, and loops

map to a state machine.

-17-

CA 02290649 1999-11-18

WO 99/00731 PCT/US98/13563

74 The method of Claim 22, wherein mapping includes determining a

number of significant bits required to support a data precision expected by the computer

program.

5 235. The method of Claim 22, wherein calculating an additional area required

for interconnections is performed in accordance with the following formula: area =

max(0, (A - B)) where A is an estimate of total area required for interconnections and

B is an estimate of area available within the mapped cells for use by interconnections.

10 76. The method of Claim 25, wherein A is calculated as the product of a

runtime parameter for the width of an interconnection, an average length of an

interconnection calculated as a fraction times the square root of the number of mapped

cells, and the total number of interconnections.

15 77 The method of Claim 25, wherein B is calculated as the product of a

runtime parameter for the fraction of cell area for interconnections and the total area of

all of the mapped cells.

78 The method of Claim 16, comprising the further step of estimating a

20 reduction in execution time for each group.

29. The method of Claim 28, wherein scheduling activation is performed
such that overall execution time is minimized subject to at least one of an area

constraint and an execution time constraint.

25
30. The method of Claim 29, wherein scheduling activation is performed

such that data and control dependencies of all code blocks within a group are not

violated.

-]18-

P10 L 4 i AN T ST TIMIREEINNL P Lot M b 236 1 Vol idn bl AR | (b LANVEIN: = e 0 e ‘ ' I- -4 .t. .

CA 02290649 1999-11-18

- WO 99/00731 PCT/US98/13563

31. The method of Claim 29, wherein scheduling activation is performed

such that a specified number of simultaneous blocks of an application specific circuit 1s

not exceeded.

5 32. The method of Claim 29, wherein scheduling further comprises:
modeling each group as a separate task;
modeling as a processor each available block of reconfigurable logic on an
application specific integrated circuit; and
running a modified multiprocessor scheduling algorithm.
10
33. The method of Claim 32, wherein the intermediate data structure 1s a

graph in which arcs represent dependencies, and wheremn modeling each group as a

separate task comprises:
for each group, adding a node to the graph;
15 for each code block assigned to a group, modifying the graph such that arcs that
previously pointed to the code block point instead to a node representing the group;
determining a difference between a latest finish time and an earliest start time of
code blocks assigned to the group; and
setting a required time of the group equal to said difference.
20
34. The method of Claim 32, wherein running a modified multiprocessor
scheduling algorithm comprises:
running a standard list scheduling multiprocessor scheduling algorithm;
during running of the algorithm, in the event no processor is available when a
25 newly-ready task becomes ready:

calculating a stall time until a processor would become available;

create a list of contending tasks including the newly-ready task and tasks

scheduled to be executing at a time the newly-ready task becomes ready; and

finding a contending task with a minimum estimated reduction in execution

30 ume.

-19-

B I E e ns o R ———

CA 02290649 1999-11-18

- WO 99/00731 PCT/US98/13563

35 The method of Claim 34, wherein running the modified multiprocessor

scheduling algorithm further comprises:

if the stall time is less than or equal to the minimum reduction, scheduling the

newly-ready task to execute when a processor becomes available and continuing to run

5 the multiprocessor scheduling algorithm.

36. The method of Claim 35, wherein running the modified multiprocessor

scheduling algorithm further comprises, if the stall time 1s greater than the minimum

reduction, discarding the task with the minimum reduction and continuing to run the

10 multiprocessor scheduling algorithm.

37. The method of Claim 35, wherein running the modified multiprocessor

scheduling algorithm further comprises, if the stall time is greater than the minimum

reduction:

15 replacing the newly-ready task with two new tasks, a first new task containing

code blocks of the newly-ready task having start times later than when a processor

would become available, and a second new task containing other code blocks of the

newly-ready task;
replacing respective tasks scheduled to be executing at a time the newly-ready

20 task becomes ready with two new respective tasks, a first new task containing code
blocks of the newly-ready task having start times later than when a processor would

become available, and a second new task containing other code blocks of the

newly-ready task.

25 38. The method of Claim 37, wherein running the modified multiprocessor

scheduling algorithm further comprises:

of the new tasks, finding a task with a minimum reduction n execution time;

and

discarding the task with the minimum reduction.

30

-20-

’ B s Y BCMA, AR ety i e d eeiisba et Bhras e e e t ’ ' T

10

15

20

25

CA 02290649 1999-11-18

- WO 99/00731 PCT/US98/13563

39. The method of Claim 28, wherein scheduling loading 1s performed such

that overall execution time 1s minimized subject to at least one of an area constraint and

an execution time constraint.

40. The method of Claim 39, wherein scheduling loading i1s performed such

that each function activation 1s preceded by loading.

41. The method of Claim 39, wherein scheduling loading 1s performed such

that a specified capacity for coexisting groups loaded for a block of an application

specific circuit 1s not exceeded.

42 . The method of Claim 39, wherein the data structure includes a control

flow graph, and wherein scheduling loading comprises:

modeling each group as a task and each available block of an application
specific integrated circuit as a processor with a specified maximum number of

simultaneous tasks;
for each group activation of which has been successfully scheduled, creating a
new load group task having a finish time equal to<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>