Abstract

Substituted 3-phenylpyrazoles of formula (I), where R1 is H, or a substituent; R2 is CN, CF3, halogen; R3 is H, alkyl, halogenalkyl; R4 is C1-C4 alkyl, C1-C4 halogenalkyl; R5 is H, NO2, halogen, -COOR, optionally substituted aminocarbonyl (where R is H, a substituent); and Z is -O-, -S-, -SO-, -SO2-; and agriculturally usable salts thereof, for use as herbicides.

(57) Zusammenfassung

Substituierte 3-Phenylpyrazole der Formel (I), wobei R1 = H, oder einem Substituent; R2 = CN, CF3, Halogen; R3 = H, Alkyl, Halogenalkyl; R4 = C1-C4-Alkyl, C1-C4-Halogenalkyl; R5 = H, NO2, Halogen, -COOR, gegen. subst. Aminocarbonyl (wobei R: H, Substituent); Z = -O-, -S-, -SO-, -SO2-; sowie die landwirtschaftlich brauchbaren Salze von I. Verwendung: Herbizide.
<table>
<thead>
<tr>
<th>Code</th>
<th>Landesbezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>AT</td>
<td>Österreich</td>
</tr>
<tr>
<td>AU</td>
<td>Australien</td>
</tr>
<tr>
<td>BB</td>
<td>Barbados</td>
</tr>
<tr>
<td>BE</td>
<td>Belgien</td>
</tr>
<tr>
<td>BF</td>
<td>Burkina Faso</td>
</tr>
<tr>
<td>BG</td>
<td>Bulgarien</td>
</tr>
<tr>
<td>BJ</td>
<td>Benin</td>
</tr>
<tr>
<td>BR</td>
<td>Brasilien</td>
</tr>
<tr>
<td>BY</td>
<td>Belarus</td>
</tr>
<tr>
<td>CA</td>
<td>Kanada</td>
</tr>
<tr>
<td>CF</td>
<td>Zentrale Afrikanische Republik</td>
</tr>
<tr>
<td>CG</td>
<td>Kongo</td>
</tr>
<tr>
<td>CH</td>
<td>Schweiz</td>
</tr>
<tr>
<td>CI</td>
<td>Côte d’Ivoire</td>
</tr>
<tr>
<td>CM</td>
<td>Kamerun</td>
</tr>
<tr>
<td>CN</td>
<td>China</td>
</tr>
<tr>
<td>CS</td>
<td>Tschechoslowakei</td>
</tr>
<tr>
<td>CZ</td>
<td>Tschechische Republik</td>
</tr>
<tr>
<td>DE</td>
<td>Deutschland</td>
</tr>
<tr>
<td>DK</td>
<td>Dänemark</td>
</tr>
<tr>
<td>ES</td>
<td>Spanien</td>
</tr>
<tr>
<td>FI</td>
<td>Finnland</td>
</tr>
<tr>
<td>FR</td>
<td>Frankreich</td>
</tr>
<tr>
<td>GA</td>
<td>Gabon</td>
</tr>
<tr>
<td>GB</td>
<td>Vereinigtes Königreich</td>
</tr>
<tr>
<td>GE</td>
<td>Georgien</td>
</tr>
<tr>
<td>GN</td>
<td>Guinea</td>
</tr>
<tr>
<td>GR</td>
<td>Griechenland</td>
</tr>
<tr>
<td>HU</td>
<td>Ungarn</td>
</tr>
<tr>
<td>IE</td>
<td>Irland</td>
</tr>
<tr>
<td>IT</td>
<td>Italien</td>
</tr>
<tr>
<td>JP</td>
<td>Japan</td>
</tr>
<tr>
<td>KE</td>
<td>Kenia</td>
</tr>
<tr>
<td>KG</td>
<td>Kirgisistan</td>
</tr>
<tr>
<td>KP</td>
<td>Demokratische Volksrepublik Korea</td>
</tr>
<tr>
<td>KR</td>
<td>Republik Korea</td>
</tr>
<tr>
<td>KZ</td>
<td>Kasachstan</td>
</tr>
<tr>
<td>LI</td>
<td>Liechtenstein</td>
</tr>
<tr>
<td>LK</td>
<td>Sri Lanka</td>
</tr>
<tr>
<td>LU</td>
<td>Luxemburg</td>
</tr>
<tr>
<td>LV</td>
<td>Lettland</td>
</tr>
<tr>
<td>MC</td>
<td>Monaco</td>
</tr>
<tr>
<td>MD</td>
<td>Moldawien</td>
</tr>
<tr>
<td>MG</td>
<td>Madagaskar</td>
</tr>
<tr>
<td>ML</td>
<td>Mali</td>
</tr>
<tr>
<td>MN</td>
<td>Mongolei</td>
</tr>
<tr>
<td>MR</td>
<td>Mauritania</td>
</tr>
<tr>
<td>MW</td>
<td>Malawi</td>
</tr>
<tr>
<td>NE</td>
<td>Niger</td>
</tr>
<tr>
<td>NL</td>
<td>Niederlande</td>
</tr>
<tr>
<td>NO</td>
<td>Norwegen</td>
</tr>
<tr>
<td>NZ</td>
<td>Neuseeland</td>
</tr>
<tr>
<td>PL</td>
<td>Polen</td>
</tr>
<tr>
<td>PT</td>
<td>Portugal</td>
</tr>
<tr>
<td>RO</td>
<td>Rumänien</td>
</tr>
<tr>
<td>RU</td>
<td>Russische Föderation</td>
</tr>
<tr>
<td>SD</td>
<td>Sudan</td>
</tr>
<tr>
<td>SE</td>
<td>Schweden</td>
</tr>
<tr>
<td>SI</td>
<td>Slowenien</td>
</tr>
<tr>
<td>SK</td>
<td>Slowakei</td>
</tr>
<tr>
<td>SN</td>
<td>Senegal</td>
</tr>
<tr>
<td>TD</td>
<td>Tschad</td>
</tr>
<tr>
<td>TG</td>
<td>Togo</td>
</tr>
<tr>
<td>TJ</td>
<td>Tadschikistan</td>
</tr>
<tr>
<td>TT</td>
<td>Trinidad und Tobago</td>
</tr>
<tr>
<td>UA</td>
<td>Ukraine</td>
</tr>
<tr>
<td>US</td>
<td>Vereinigte Staaten von Amerika</td>
</tr>
<tr>
<td>UZ</td>
<td>Usbekistan</td>
</tr>
<tr>
<td>VN</td>
<td>Vietnam</td>
</tr>
</tbody>
</table>
SUBSTITUIERTE 3-PHENYLPYRAZOLE ALS HERBIZIDE

Beschreibung

Die vorliegende Erfindung betrifft neue substituierte 3-Phenylpyrazole der Formel I

\[\text{I} \]

in der die Variablen folgende Bedeutung haben:

\(R^1 \)
Wasserstoff, Cyano, Nitro, Halogen, C\(_1\)-C\(_8\)-Alkyl, C\(_2\)-C\(_8\)-Alkenyl,

\(R^2 \)
C\(_2\)-C\(_8\)-Alkyl, C\(_3\)-C\(_8\)-Halogenalkyl, C\(_2\)-C\(_8\)-Halogenalkenyl,

\(R^3 \)
C\(_2\)-C\(_8\)-Halogenalkynyl, Cyanoc-C\(_1\)-C\(_4\)-alkyl, C\(_1\)-C\(_8\)-Alkyl-O-R\(_6\),

\(R^4 \)
C\(_1\)-C\(_8\)-Alkyl-O-CO-R\(_6\), C\(_2\)-C\(_8\)-Alkenyl-O-R\(_6\), C\(_2\)-C\(_8\)-Alkynyl-O-R\(_6\),

\(R^5 \)
C\(_1\)-C\(_8\)-Alkyl-S-R\(_6\), C\(_2\)-C\(_8\)-Alkenyl-S-R\(_6\), C\(_2\)-C\(_8\)-Alkynyl-S-R\(_6\), C\(_1\)-C\(_8\)-Alkynyl-SO-R\(_6\), C\(_2\)-C\(_8\)-Alkenyl-SO-R\(_6\), C\(_2\)-C\(_8\)-Alkynyl-SO-R\(_6\), C\(_1\)-C\(_8\)-Alkynyl-

\(R^6 \)
SO\(_2\)-R\(_6\), C\(_2\)-C\(_8\)-Alkenyl-SO\(_2\)-R\(_6\); C\(_2\)-C\(_8\)-Alkenyl-SO\(_2\)-R\(_6\), O-O-R\(_6\),

\(R^7 \)
-S-R\(_6\), -SO-R\(_6\), -SO\(_2\)-R\(_6\), -SO\(_2\)-Cl, -SO\(_2\)-O-R\(_6\), -SO\(_2\)-N(R\(_7\),R\(_8\)),

\(R^8 \)
-SO\(_2\)-N(R\(_7\))-CO-R\(_9\), -N(R\(_7\),R\(_8\)), -N(R\(_7\))-N(R\(_8\),R\(_3\)), -N=N-CO-R\(_9\),

\(R^9 \)
-N(R\(_7\))-N(R\(_8\))-CO-R\(_9\), -N(R\(_10\))-CO-R\(_9\), -N(R\(_10\))-SO\(_2\)-R\(_11\),

\(R^{11} \)
-N(SO\(_2\)-R\(_{11}\))-(SO\(_2\)-R\(_{12}\)), -N(SO\(_2\)-R\(_{11}\))(CO-R\(_8\)), -NH-CO-O-R\(_6\), -O-CO-NH-R\(_7\),

\(R^{13} \)
-O-CO-R\(_9\), -NH-CO-NH-R\(_{13}\), -O-CS-N(C\(_1\)-C\(_4\)-Alkyl\(_1\))\(_2\), -O-CS-NH\(_2\),

\(R^{14} \)
-A-CO-O-R\(_8\), -A-P(O)(OR\(_6\))\(_2\), -O-(C\(_1\)-C\(_4\)-Alkyl)-COOR\(_6\),

\(R^{15} \)
-A-CO-O=N=C(R\(_14\),R\(_15\)), -A-CO-O-CH\(_2\)-O=N=C(R\(_16\),R\(_17\)),

\(R^{18} \)
-A-CO-O-C(R\(_18\),R\(_19\))-CH\(_2\)-O=N=C(R\(_16\),R\(_17\)), -A-CO-N(R\(_7\),R\(_8\)),

\(R^{19} \)

\(R^{20} \)
-A-CH=N-O-R\(_6\), -A-CH(XR\(_{21}\),XR\(_{22}\)), -A-C(R\(_{20}\))=N-O-R\(_6\),

\(R^{21} \)
-(C\(_1\)-C\(_4\)-Alkyl)-O-(C\(_1\)-C\(_4\)-alkyl)-C(R\(_{19}\))=N-O-(C\(_1\)-C\(_4\)-alkyl),

\(R^{22} \)
Isoxazolidinycarbonyl, -A-CO-N(R\(_7\))-C(R\(_8\),R\(_18\))-COOR\(_6\),

\(R^{23} \)
-SO\(_2\)-N(R\(_7\))-C(R\(_8\),R\(_18\))-COOR\(_6\), -SO\(_2\)-N(R\(_7\))-C(R\(_8\),R\(_18\))-CO-N(R\(_{32}\),R\(_{33}\)),

\(X \)
oder

\(Y \)
R² Cyan, Trifluormethyl oder Halogen;
R³ Wasserstoff, C₁-C₄-Alkyl oder C₁-C₄-Halogenalkyl;
5 R⁴ C₂-C₄-Alkyl oder C₁-C₄-Halogenalkyl;
R⁵ Wasserstoff, Nitro, Halogen, -COOR²⁻ oder -CO-N(R³⁰,R³¹);
Z Sauerstoff, Schwefel, -SO⁻ oder -SO₂⁻;
10 X,Y unabhängig voneinander Sauerstoff oder Schwefel;
A eine chemische Bindung, Methylen, Ethylen, 1,3-Propylen, 1,4-Butylen, Vinylen oder 1,4-Butadienyl;
15 R⁶, R²⁹ unabhängig voneinander
Wasserstoff, C₁-C₆-Alkyl, C₁-C₈-Halogenalkyl, C₃-C₇-Cycloalkyl, das seinerseits ein bis drei C₁-C₃-Alkylreste tragen kann, C₃-C₄-Alkenyl, C₅-C₇-Cycloalkenyl, das seinerseits ein bis drei
-₉(R¹⁹)=N-O-(C₁-C₄-Alkyl), -₉(R¹⁹)=N-O-(C₁-C₄-Halogenalkyl),
-₉(R¹⁹)=N-O-(C₁-C₆-Alkenyl), -₉(R¹⁹)=N-O-(C₁-C₅-Halogenalkenyl)
oder -₉(R¹⁹)=N-O-(C₁-C₄-Alkyl)-R³⁴ substituiert ist,
30 Phenyl, Phenyl-C₁-C₆-alkyl, Phenyl-C₂-C₆-alkeny1, Phenyl-C₂-C₆-alkiny1 oder Phenoxy-C₁-C₆-alkyl, wobei der Phenylring jeweils unsubstituiert sein oder seinerseits ein bis drei Reste tragen kann, ausgewählt aus der Gruppe bestehend aus Halogen, Nitro, Cyan, C₁-C₄-Alkyl, C₁-C₄-Alkoxy, C₁-C₄-Alkylthio,
35 C₁-C₇-Halogenalkyl und C₂-C₈-Alkenyl, 5- oder 6-gliedriges Heteroaryl, Heteroaeryl-C₁-C₇-alkyl, Heteroaeryl-C₂-C₇-alkeny1, Heteroaeryl-C₁-C₆-alkiny1 oder Heteroaerylxy-C₁-C₆-alkyl, wobei der Heteroaomat jeweils ein bis drei Heteroatome enthält, ausgewählt aus einer Gruppe bestehend aus ein oder zwei Stickstoffatomen und
40 einem Sauerstoff- oder Schwefelatom, und wobei der Heteroaomat gewünschensfalls noch an jedem substituierbaren Ringglied einen Rest tragen kann, jeweils ausgewählt aus der Gruppe bestehend aus Hydroxyl, Halogen, C₁-C₄-Halogenalkyl, C₁-C₄-Alkoxy, C₁-C₄-Alkylthio und C₁-C₄-Alkyl;
45 R⁷, R⁸, R¹², R²⁰, R³¹, R³₂, R³³ unabhängig voneinander
Wasserstoff, C₁₋C₈-Alkyl, C₁₋C₈-Halogenalkyl, C₂₋C₈-Alkenyl,
C₂₋C₈-Alkynyl, C₁₋C₄-Alkoxy-C₁₋C₄-alkyl, C₁₋C₄-Alkyl-thio-C₁₋C₄-alkyl, Cyano-C₁₋C₈-alkyl, Carboxyl-C₁₋C₄-alkyl,
(C₁₋C₄-Alkoxy)carbonyl-C₁₋C₄-alkyl, C₁₋C₄-Alkylsulfo-
nyl-C₁₋C₄-alkyl, C₁₋C₈-Cycloalkyl, C₁₋C₈-Alkoxy, (C₁₋C₈-Cyclo-
alkoxy)carbonyl-C₁₋C₄-alkyl, C₁₋C₄-Alkoxy-(C₁₋C₄-alkoxy)carbo-
nyl-C₁₋C₄-alkyl, (C₁₋C₄-Alkyl)carbonyl, (C₁₋C₄-Halogen-
alkyl)carbonyl, Tetrahydrofuran-2-on-3-yl, Phenyl, Phen-
yl-C₁₋C₄-alkyl, wobei der Phenylring jeweils unsubstituiert sein
10 oder ein bis drei Reste tragen kann, ausgewählt aus der Gruppe
bestehend aus Halogen, Nitro, Cyano, C₁₋C₄-Alkyl, C₁₋C₄-Alkoxy,
C₁₋C₄-Alkylthio, C₁₋C₄-Halogenalkyl und C₂₋C₆-Alkenyl,
5- oder 6-gliedriges Heteroaryl oder Heteroaryl-C₁₋C₈-alkyl, wobei
der Heteroaromaten ein bis drei Heteroatome enthält, ausgewählt aus
15 einer Gruppe bestehend aus ein oder zwei Stickstoffatomen und
einem Sauerstoff- oder Schwefelatom, und wobei der Heteroaromaten
gewünschtenfalls noch an jedem substituierbaren Ring-Atom einen
Rest tragen kann, ausgewählt aus der Gruppe bestehend aus
Hydroxyl, Halogen, C₁₋C₄-Alkyl, C₁₋C₄-Alkoxy, C₁₋C₄-Alkylthio und
20 C₁₋C₄-Halogenalkyl;

oder

R⁷ und R⁸ und/oder R³⁰ und R³¹

25 zusammen eine Tetramethylen-, Pentamethylen- oder Ethylenoxyethy-
lenkette, die gewünschtenfalls ein bis drei C₁₋C₄-Alkylreste und/
oder einen Rest -COOR⁶ tragen kann;

R³

30 Wasserstoff, C₁₋C₆-Alkyl, C₁₋C₆-Halogenalkyl, C₁₋C₄-Alkoxy-C₁₋C₄-
alkyl, C₃₋C₇-Cycloalkyl, das seinerseits ein bis drei
Reste tragen kann, ausgewählt aus der Gruppe bestehend aus Halogo-
gen, C₁₋C₄-Alkyl, C₁₋C₄-Alkoxy und C₁₋C₄-Alkylthio, Phenyl oder
Phenyl-C₁₋C₆-alkyl, wobei der Phenylring jeweils unsubstituiert
35 sein oder ein bis drei Reste tragen kann, ausgewählt aus der
Gruppe bestehend aus Halogen, Nitro, C₁₋C₄-Alkyl, C₁₋C₄-Alkoxy,
C₁₋C₄-Alkylthio und C₁₋C₄-Halogenalkyl;

R¹⁰

40 Wasserstoff, C₁₋C₄-Alkyl, C₃₋C₆-Alkenyl, C₃₋C₆-Alkynyl, C₁₋C₄-Alko-
oxo-C₁₋C₄-alkyl oder das Äquivalent eines landwirtschaftlich
brauchbaren Rations;
R11, R12 unabhängig voneinander
C\textsubscript{1}-C\textsubscript{6}-Alkyl, C\textsubscript{1}-C\textsubscript{4}-Halogenalkyl, Phenyl, das unsubstituiert sein
oder ein bis drei Substituenten tragen kann, jeweils ausgewählt
aus der Gruppe bestehend aus Halogen, Nitro, C\textsubscript{1}-C\textsubscript{4}-Alkyl,
C\textsubscript{1}-C\textsubscript{4}-Alkoxy, C\textsubscript{1}-C\textsubscript{4}-Alkylthio und C\textsubscript{1}-C\textsubscript{4}-Halogenalkyl,
od er 5- oder 6-gliedriges Heteroaryl mit ein bis drei Hetero-
atomaten, ausgewählt aus der Gruppe bestehend aus 2 Stickstoff-
atomaten und einem Sauerstoff- oder Schwefelatom, wobei der Hetero-
aromat unsubstituiert sein oder an jedem substituierbaren Ring-
glied gewünschtenfalls einen Substituenten tragen kann, jeweils
ausgewählt aus der Gruppe bestehend aus Hydroxy, Halogen,
C\textsubscript{1}-C\textsubscript{4}-Alkyl, C\textsubscript{1}-C\textsubscript{4}-Halogenalkyl, C\textsubscript{1}-C\textsubscript{4}-Alkoxy und C\textsubscript{1}-C\textsubscript{4}-Alkylthio;
\begin{align*}
\text{R}14 \\
\text{C}\textsubscript{1}-C\textsubscript{6}-Alkyl, C\textsubscript{1}-C\textsubscript{6}-Alkylthio, (C\textsubscript{1}-C\textsubscript{6}-Alkoxy)carbonyl oder \\
(C\textsubscript{1}-C\textsubscript{6}-Alkoxy)carbonyl-C\textsubscript{1}-C\textsubscript{4}-alkyl;
\end{align*}
\begin{align*}
\text{R}15 \\
C\textsubscript{1}-C\textsubscript{6}-Alkyl, Trifluormethy, C\textsubscript{1}-C\textsubscript{6}-Alkoxy-C\textsubscript{1}-C\textsubscript{4}-alkyl,
\end{align*}
\begin{align*}
\text{R}14 und R15 \\
zusammen mit dem Kohlenstoffatom, an das sie gebunden sind, einen
Cyclopentan- oder Cyclohexanring, der gewünschtenfalls seiner-
seits ein bis drei C\textsubscript{1}-C\textsubscript{4}-Alkylreste tragen kann;
\end{align*}
\begin{align*}
\text{R}16 Wasserstoff oder C\textsubscript{1}-C\textsubscript{6}-Alkyl; \\
\text{R}17 C\textsubscript{1}-C\textsubscript{6}-Alkyl, C\textsubscript{3}-C\textsubscript{6}-Cycloalkyl oder Phenyl; \\
\text{R}18 Wasserstoff oder C\textsubscript{1}-C\textsubscript{4}-Alkyl; \\
\text{R}19 Wasserstoff, C\textsubscript{1}-C\textsubscript{4}-Alkyl, Phenyl oder Benzyl; \\
\text{R}20 Wasserstoff, Cyano, Halogen, C\textsubscript{1}-C\textsubscript{4}-Alkyl, C\textsubscript{1}-C\textsubscript{4}-Alkylthio,
C\textsubscript{2}-C\textsubscript{4}-Alkenyl, C\textsubscript{1}-C\textsubscript{4}-Halogenalkyl, C\textsubscript{1}-C\textsubscript{4}-Alkoxy-C\textsubscript{1}-C\textsubscript{4}-alkyl,
\text{Di-}(C\textsubscript{1}-C\textsubscript{4}-alkoxy)-C\textsubscript{1}-C\textsubscript{4}-alkyl, C\textsubscript{1}-C\textsubscript{4}-Alkylthio-C\textsubscript{1}-C\textsubscript{4}-alkyl,
(1,3-Dioxolan-2-y1)-C\textsubscript{1}-C\textsubscript{4}-alkyl oder \\
(1,3-Dioxan-2-y1)-C\textsubscript{1}-C\textsubscript{4}-alkyl; \\
\end{align*}
R21, R22 unabhängig voneinander C\textsubscript{1}-C\textsubscript{8}-Alkyl, C\textsubscript{1}-C\textsubscript{8}-Halogenalkyl oder C\textsubscript{1}-C\textsubscript{4}-Alkoxy-C\textsubscript{1}-C\textsubscript{4}-alkyl;

R23, R24, R25, R26, R27, R28 unabhängig voneinander Wasserstoff, Cyano, C\textsubscript{1}-C\textsubscript{8}-Alkyl, C\textsubscript{1}-C\textsubscript{8}-Halogenalkyl, C\textsubscript{1}-C\textsubscript{4}-Alkoxy-C\textsubscript{1}-C\textsubscript{4}-alkyl, C\textsubscript{1}-C\textsubscript{8}-Alkoxy, C\textsubscript{1}-C\textsubscript{4}-Alkoxy-C\textsubscript{1}-C\textsubscript{4}-alkoxy, -CO-O-R6, -CO-N(R7, R8), -CO-R20, -S-R6,
-2SO\textsubscript{2}-R6, -O-CO-R9 oder C\textsubscript{3}-C\textsubscript{7}-Cycloalkyl, das seinerseits ein bis drei Reste tragen kann, ausgewählt aus der Gruppe bestehend aus Halogen, C\textsubscript{1}-C\textsubscript{4}-Alkyl, C\textsubscript{1}-C\textsubscript{4}-Alkoxy und C\textsubscript{1}-C\textsubscript{4}-Alkylthio;

R34
Phenyl oder 5- oder 6-gliedriges Heteroaryl mit ein bis drei Heteroatomen, ausgewählt aus der Gruppe bestehend aus 2 Stickstoffatomen und einem Sauerstoff- oder Schwefelatom, wobei jeder Phenyl- oder Heteroarylring unsubstituiert sein oder an jedem substituierbaren Ringglied gewünschtenfalls einen Substituenten tragen kann, jeweils ausgewählt aus der Gruppe bestehend aus
Hydroxy, Nitro, Cyano, Halogen, C\textsubscript{1}-C\textsubscript{4}-Alkyl, C\textsubscript{1}-C\textsubscript{4}-Halogenalkyl, C\textsubscript{1}-C\textsubscript{4}-Alkoxy und C\textsubscript{1}-C\textsubscript{4}-Alkylthio,

sowie die landwirtschaftlich brauchbaren Salze von I.

Außerdem betrifft die Erfindung die Verwendung dieser Verbindungen als Herbicide, herbizide Mittel, welche die Verbindungen I als wirksame Substanzen enthalten, Verfahren zur Herstellung dieser herbiziden Mittel sowie Verfahren zur Bekämpfung von unerwünschtem Pflanzenwuchs mit den Verbindungen I.

In der JP 03/151 367 werden herbizid wirksame 1-[(1-Alkyl-4-halogen-5-halogenalkoxy-1H-pyrazol-3-yl)-4,6-dihalogenphenyl-Derivate mit verschiedenen Substituenten in 3-Position des Phenylrings beschrieben, insbesondere Verbindungen mit dem folgenden Substitutionsmuster II\textsubscript{a}:

\[
\text{IIa}
\]

*) je eine Verbindung
Außerdem wird in der EP-A 443 059 gelehrt, daß sich 1-Alkyl- und 1-Halogenalkyl-3-(4-chlor-6-halogenphenyl)-pyrazole bzw. -4-halogenpyrazole, die in 3-Position des Phenylringes bestimmte Substituenten tragen und die in 5-Position des Pyrazolringes durch Hydroxyl, Mercapto, niederes Alkoxy, Alkylthio, Halogenalkoxy oder Halogenalkythio substituiert sind, zur Bekämpfung unerwünschter Pflanzen eignen.

Ferner ist der JP-A 03/072 460 zu entnehmen, daß 3-substituierte Phenylpyrazole der Formel IIb

\[
\text{Halogen} \quad \begin{array}{c}
\text{N} \\
\text{Niederalkyl}
\end{array} \\
\text{Halogen}
\begin{array}{c}
\text{H/Niederalkyl}
\end{array}
\]

\[\text{in der } R^a \text{ für Wasserstoff, Halogen oder Cyano und } R^b \text{ für niederes Alkoxy, Halogenalkoxy, Alkylthio, Halogenalkylthio, Alkylsulfinyl, Halogenalkylsulfinyl, Alkylsulfonyl oder Halogenalkylsulfonyl stehen, herbizid wirksam sind.}

Aus der EP-A 447 055 ist bekannt, daß 1-(Niederalkyl)-3-(4-Chlor-6-halogenphenyl)-4-Halogen-5-difluormethoxypyrazole, die in 3-Position des Phenylringes eine Alkylthiocarbonyl-, Alkenylthiocarbonyl- oder Benzylthiocarbonyl-methoxycarbonyl-gruppe tragen, herbizide Wirkung zeigen.

Gemäß den Lehren der JP-A 03/047 180 und der JP-A 03/081 275 sind u. a. Pyrazol-Derivate der Formeln IIc und IId
wobei

\(\text{R}^c \) Wasserstoff, Methyl oder Allyl und
\(\text{R}^d \) Wasserstoff, Ethyl, Allyl oder Propargyl bedeuten,
als Herbicide geeignet.

Gemäß der JP-A 02/300 173 und der JP-A 03/093 774 weisen be-stimmte 1-Alkyl-3-phenylpyrazole, die am Phenylring ein bis vier Halogenatome tragen können, ebenfalls herbizide Aktivität auf. Besonders genannt sind 1-Methyl-3-(2,4-dichlorphenyl)-pyrazole und drei 1-Methyl-5-chlor-3-(2-fluor-4-chlorphenyl)-pyrazole.

Schließlich werden in der WO 92/06962 herbizide 4-Halo-gen-5-halogenalkyl-3-phenylpyrazole mit verschiedenen Substituen-ten am Phenylring beschrieben.

Die herbiziden Eigenschaften der bekannten Herbizide bezüglich der Schadpflanzen vermögen jedoch nur bedingt zu befriedigen.

Aufgabe der vorliegenden Erfindung war es deshalb, neue herbizid wirksame Verbindungen bereitzustellen, mit denen sich uner-wünschte Pflanzen besser als bisher gezielt bekämpfen lassen.

Demgemäß wurden die vorliegenden substituierten 3-Phenylpyrazole der Formel I gefunden. Ferner wurden herbizide Mittel gefunden, die die Verbindungen I enthalten und eine sehr gute herbizide Wirkung besitzen. Außerdem wurden Verfahren zur Herstellung dieser Mittel und Verfahren zur Bekämpfung von unerwünschen Pflanzenwuchs mit den Verbindungen I gefunden.

Im Hinblick auf die Verwendung der substituierten 3-Phenylpyra-zole I als Herbizide sind Verbindungen I bevorzugt, in denen die Variablen folgende Bedeutungen haben, und zwar jeweils für sich allein oder in Kombination:
R¹ Wasserstoff, Nitro, Halogen, C₁-C₈-Alkyl, C₁-C₈-Halogenalkyl, C₁-C₈-Alkyl-O-R¹, C₁-C₈-Alkyl-O-CO-R⁶, C₁-C₈-Alkyl-S-R⁶, C₁-C₈-Alkyl-SO-R⁶, -SO₂-R⁶, -SO₂-O-R⁶, -SO₂-N(R⁷,R⁸), -N(R⁷,R⁸), -N(R⁷)-N(R⁸,R³²),
5 -N=N-CO-R⁹, -N(R⁷)-N(R⁸)-CO-R⁹, -N(R¹⁰)-CO-R⁹, -N(R¹⁰)-SO₂-R¹¹, -N(SO₂-R¹¹)(SO₂-R¹¹), -A-CO-O-R⁶,
-A-CO-O-C(R¹⁸,R¹⁹)-CH₂-O-N=C(R¹⁶,R¹⁷), -A-CO-N(R⁷,R⁸),
10 -SO₂-N(R⁷)-C(R⁸,R¹⁸)-COOR⁶, -SO₂-N(R⁷)-C(R⁸,R¹⁸)-CO-N(R³²,R³³),

-A-CH(XR²¹, YR²²),
-A-CO-N(R⁷)-C(R⁸,R¹⁸)-COOR⁶, -SO₂-N(R⁷)-C(R⁸,R¹⁸)-COOR⁶,
30 -SO₂-N(R⁷)-C(R⁸,R¹⁸)-CO-N(R³²,R³³),

40 R² Cyano, Trifluormethyl oder Halogen;
R³ C₁-C₄-Alkyl oder C₁-C₄-Halogenalkyl;
R⁴ C₁-C₄-Alkyl oder C₁-C₄-Halogenalkyl;
R⁵ Nitro, Halogen, -COOR²⁹ oder -CO-N(R²⁰, R²¹); besonders bevorzugt ist Halogen;

Z Sauerstoff oder Schwefel;

X, Y Sauerstoff oder Schwefel;

A eine chemische Bindung, Methylen, Ethylen oder Vinylen;

10 R⁶, R²⁹ unabhängig voneinander
Wasserstoff, C₁-C₆-Alkyl, C₁-C₆-Halogenalkyl, C₃-C₆-Cycloalkyl, das seinerseits ein oder zwei C₁-C₃-Alkylreste tragen kann,
C₃-C₆-Alkenyl, C₃-C₆-Halogenalkenyl, Cyano-C₁-C₄-alkyl,
C₂-C₆-Alkiny1, C₁-C₂-Alkoxy-C₁-C₂-alkyl, Carboxyl-C₁-C₆-alkyl,
(C₁-C₄-Alkoxy) carbonyl-C₁-C₄-alkyl, Cyclopropylmethy1, C₁-C₄-Alkyl,
das durch -C(R¹⁹)=N-O-(C₁-C₄-Alkyl), -C(R¹⁹)=N-O-(C₁-C₆-Halogenalkyl), -C(R¹⁹)=N-O-(C₁-C₆-Alkenyl), -C(R¹⁹)=N-O-(C₁-C₆-Halogenalkenyl) oder -C(R¹⁹)=N-O-(C₁-C₄-Alkyl)-phenyl substituiert ist,
Phenyl, Phenyl-C₁-C₄-alkyl, Phenyl-C₂-C₄-alkeny1 oder Phen-
20 oxy-C₁-C₄-alkyl, wobei der Phenylring jeweils unsubstituiert sein oder seinerseits ein bis drei Reste tragen kann, ausgewählt aus der Gruppe bestehend aus Halogen, Nitro, Cyano, C₁-C₄-Alkyl,
C₁-C₄-Alkoxy, C₁-C₄-Alkylthio, C₁-C₄-Halogenalkyl und
C₂-C₆-Alkenyl, 5- oder 6-gliedriges Heteroaryl oder Hetero-
25 ary1-C₁-C₆-alkyl, wobei der Heteroaromat jeweils ein bis drei Heteroatome enthält, ausgewählt aus einer Gruppe bestehend aus ein oder zwei Stickstoffatomen und einem Sauerstoff- oder Schwefelatom, und wobei der Heteroaromat gewünschtenfalls noch an jedem substituierbaren Ring-Atom einen Rest tragen kann, ausge-
30 wählt aus der Gruppe bestehend aus Hydroxy1, Halogen,
C₁-C₄-Halogenalkyl, C₁-C₄-Alkoxy, C₁-C₄-Alkylthio und C₁-C₄-Alkyl;

R⁷, R⁸, R¹³, R³⁰, R³¹, R³², R³³ unabhängig voneinander
Wasserstoff, C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, C₂-C₄-Alkenyl,
35 C₂-C₄-Alkiny1, C₁-C₄-Alkoxy-C₁-C₄-alkyl, Cyano-C₁-C₄-alkyl, Carbo-
xy1-C₁-C₄-alkyl, (C₁-C₄-Alkoxy) carbonyl-C₁-C₄-alkyl, C₃-C₆-Cyclo-
alkyl, C₁-C₄-Alkoxy, (C₁-C₆-Cycloalkoxy) carbonyl-C₁-C₄-alkyl,
Tetrahydrofuran-2-on-3-yl, Phenyl, Phenyl-C₁-C₄-alkyl, wobei der Phenylring jeweils unsubstituiert sein oder ein bis drei Reste
40 tragen kann, ausgewählt aus der Gruppe bestehend aus Halogen,
Nitro, Cyano, C₁-C₄-Alkyl, C₁-C₄-Alkoxy und C₁-C₄-Halogenalkyl, 5-
or 6-gliedriges Heteroaryl oder Heteroaryl1-C₁-C₄-alkyl, wobei
der Heteroaromat ein bis drei Heteroatome enthält, ausgewählt aus
einer Gruppe bestehend aus ein oder zwei Stickstoffatomen und
45 einem Sauerstoff- oder Schwefelatom, und wobei der Heteroaromat
gewünschtenfalls noch an jedem substituierbaren Ring-Atom einen
Rest tragen kann, ausgewählt aus der Gruppe bestehend aus Hydroxy, Halogen, C₁-C₄-Alkyl, C₁-C₄-Alkoxy und C₁-C₄-Halogenalkyl;

oder

R⁷ und R⁸ und/oder R³⁰ und R³¹ zusammen eine Tetramethylen-, Pentamethylen- oder Ethylenoxyethylenkette, die gewünschtenfalls ein bis drei C₁-C₄-Alkyreste und/oder einen Rest -COOR⁶ tragen kann;

Wasserstoff, C₁-C₄-Alkyl, C₁-C₆-Alkenyl, C₃-C₆-Alkinyl, C₁-C₄-Alkoxy-C₁-C₄-alkyl oder das Äquivalent eines landwirtschaftlich brauchbaren Kations;

unabhängig voneinander

Wasserstoff oder C₁-C₄-Alkyl;

C₁-C₄-Alkyl, C₃-C₆-Cycloalkyl oder Phenyl;

Wasserstoff oder C₁-C₄-Alkyl;

Wasserstoff oder C₁-C₄-Alkyl;
11

R²⁰ Wasserstoff, C₁–C₄-Alkyl, C₂–C₄-Alkenyl, C₁–C₄-Halogenalkyl, C₁–C₄-Alkoxycarbonylalkyl oder Di-(C₁–C₄-alkoxyl)-C₁–C₄-alkyl;

R²¹, R²² unabhängig voneinander C₁–C₄-Alkyl, C₁–C₄-Halogenalkyl oder C₁–C₄-Alkoxycarbonylalkyl;

R²³, R²⁴, R²⁵, R²⁶, R²⁷, R²⁸ unabhängig voneinander Wasserstoff, Cyan, C₁–C₄-Alkyl, C₁–C₄-Alkoxycarbonyl oder COO-R²⁰.

Die für die Substituenten R¹ bis R³⁵ oder als Reste an
(Hetero)aromaten genannten organischen Moleküle stellen - wie
die Bedeutung Halogen - Sammelbegriffe für individuelle Auf-
zählungen der einzelnen Gruppenmitglieder dar. Sämtliche Kohlen-
stoffketten, also alle Alkyl-, Alkylcarbonyl-, Halogenalkyl-
carbonyl-, Alkenyl-, Alkinyl-, Halogenalkynyl-, Halogenalkylenyl-
, Halogenalkylenyl-, Cyanoalkyl-, Phenylalkyl, Carboxylalkyl-
, Alkoxy-, Alkylthio-, Alkylcarbonyl-, Alkoxyalkyl- und Alkyl-
sulfonyle-Teile sowie der α-Alkylalkylen-Teil können geradkettig
oder verzweigt sein. Halogenierte Substituenten tragen vorzugs-
weise ein bis fünf gleiche oder verschiedene Halogenatome.

Im einzelnen stehen beispielsweise:

- Halogen für: Fluor, Chlor, Brom und Jod, vorzugsweise für
 Fluor und Chlor;

- C₁–C₆-Alkyl und die C₁–C₆-Alkyl-Teile von Carb-
oxyl-C₁–C₆-alkyl, (C₁–C₆-Alkoxycarbonyl-C₁–C₆-alkyl,
 C₁–C₄-Alkoxycarbonyl-C₁–C₆-alkyl,
 (C₁–C₆-Alkoxycarbonylalkyl-C₁–C₆-alkyl, C₃–C₅-(α-Alkylalkylen-
den)iminooxy-C₁–C₆-alkyl, Phenyl-C₁–C₆-alkyl, Phen-
oxycarbonylalkyl, Heteroaryl-C₁–C₆-alkyl, Phenyl-alkyl
 und Heteroaryloxy-C₁–C₆-alkyl für: Methyl, Ethyl, n-Propyl,
 1-Methylethyl, n-Butyl, 1-Methylpropyl, 2-Methylpropyl,
 1,1-Dimethylethyl, n-Pentyl, 1-Methylbutyl, 2-Methylbutyl,
 3-Methylbutyl, 2,2-Dimethylpropyl, 1-Ethylpropyl, n-Hexyl,
 1,1-Dimethylpropyl, 1,2-Dimethylpropyl, 1-Methylpentyl,
 2-Methylpentyl, 3-Methylpentyl, 4-Methylpentyl, 1,1-Dimethyl-
buty1, 1,2-Dimethylbutyl, 1,3-Dimethylbutyl, 2,2-Dimethyl-
buty1, 2,3-Dimethylbutyl, 3,3-Dimethylbutyl, 1-Ethylbutyl,
 2-Ethylbutyl, 1,1,2-Trimethylpropyl, 1,2,2-Trimethylpropyl,
 1-Ethyl-1-methylpropyl und 1-Ethyl-2-methylpropyl, vorzugs-
 weise für C₁–C₄-Alkyl, insbesondere für Methyl und Ethyl;
C₁-C₈-Alkyl und der Alkylteil von Cyano-C₁-C₈-alkyl für:
C₁-C₈-Alkyl wie vorstehend genannt, sowie z.B. für n-Heptyl, und n-Octyl, vorzugsweise für C₁-C₆-Alkyl, insbesondere für Methyl und Ethyl;

C₁-C₆-Alkylreste für: Methyl, Ethyl, n-Propyl und 1-Methyl-ethyl, vorzugsweise für Methyl;

13
1-Ethyl-2-methyl-prop-2-en-1-yl, sowie z.B. für n-
Hept-2-en-1-yl, Hept-3-en-1-yl, n-Oct-2-en-1-yl und
Oct-3-en-1-yl, vorzugsweise für C₂-C₆-Alkenyl;

10
C₃-C₆-Alkenyl und der Alkenyl-Teil von Hetero-
aryl-C₃-C₆-alkenyl für: Prop-1-en-1-yl, Prop-2-en-1-yl,
1-Methylethenyl, n-Buten-1-yl, n-Buten-2-yl, n-Buten-3-yl,
1-Methyl-prop-1-en-1-yl, 2-Methyl-prop-1-en-1-yl, 1-Methyl-
prop-2-en-1-yl, 2-Methyl-prop-2-en-1-yl, n-Penten-1-yl, n-
Penten-2-yl, n-Penten-3-yl, n-Penten-4-yl, 1-Methyl-
but-1-en-1-yl, 2-Methyl-but-1-en-1-yl, 3-Methyl-
but-1-en-1-yl, 1-Methyl-but-2-en-1-yl, 2-Methyl-
but-2-en-1-yl, 3-Methyl-but-2-en-1-yl, 1-Methyl-
but-3-en-1-yl, 2-Methyl-but-3-en-1-yl, 3-Methyl-
but-3-en-1-yl, 1,1-Dimethyl-prop-2-en-1-yl, 1,2-Dimethyl-
prop-1-en-1-yl, 1,2-Dimethyl-prop-2-en-1-yl, 1-Ethyl-
prop-1-en-2-yl, 1-Ethyl-prop-2-en-1-yl, n-Hex-1-en-1-yl, n-
Hex-2-en-1-yl, n-Hex-3-en-1-yl, n-Hex-4-en-1-yl, n-
Hex-5-en-1-yl, 1-Methyl-pent-1-en-1-yl, 2-Methyl-
pent-1-en-1-yl, 3-Methyl-pent-1-en-1-yl, 4-Methyl-
pent-1-en-1-yl, 1-Methyl-pent-2-en-1-yl, 2-Methyl-
pent-2-en-1-yl, 3-Methyl-pent-2-en-1-yl, 4-Methyl-
pent-2-en-1-yl, 1-Methyl-pent-3-en-1-yl, 2-Methyl-
pent-3-en-1-yl, 3-Methyl-pent-3-en-1-yl, 4-Methyl-
pent-3-en-1-yl, 1-Methyl-pent-4-en-1-yl, 2-Methyl-
pent-4-en-1-yl, 3-Methyl-pent-4-en-1-yl, 4-Methyl-
pent-4-en-1-yl, 1,1-Dimethyl-but-2-en-1-yl, 1,1-Dimethyl-
but-3-en-1-yl, 1,2-Dimethyl-but-1-en-1-yl, 1,2-Dimethyl-
but-2-en-1-yl, 1,2-Dimethyl-but-3-en-1-yl, 1,3-Dimethyl-
but-1-en-1-yl, 1,3-Dimethyl-but-2-en-1-yl, 1,3-Dimethyl-
but-3-en-1-yl, 2,2-Dimethyl-but-3-en-1-yl, 2,3-Dimethyl-
but-1-en-1-yl, 2,3-Dimethyl-but-2-en-1-yl, 2,3-Dimethyl-
but-3-en-1-yl, 3,3-Dimethyl-but-1-en-1-yl, 3,3-Dimethyl-
but-2-en-1-yl, 1-Ethyl-but-1-en-1-yl, 1-Ethyl-but-2-en-1-yl,
1-Ethyl-but-3-en-1-yl, 2-Ethyl-but-1-en-1-yl, 2-Ethyl-
but-2-en-1-yl, 2-Ethyl-but-3-en-1-yl, 1,1,2-Trimethyl-
prop-2-en-1-yl, 1-Ethyl-1-methyl-prop-2-en-1-yl,
1-Ethyl-2-methyl-prop-1-en-1-yl und 1-Ethyl-2-methyl-
prop-2-en-1-yl, vorzugsweise für C₃- oder C₄-Alkenyl;

- \(\text{C}_3-\text{C}_6-\text{Alkiny}l \) und der Alkinyl-Teil von Heteroaeryl-\(\text{C}_1-\text{C}_6-\text{alkiny}l \) für: Prop-1-in-1-yl, Prop-2-in-3-yl, n-But-1-in-1-yl, n-But-1-in-4-yl, n-But-2-in-1-yl, n-Pent-1-in-1-yl, n-Pent-1-in-3-yl, n-Pent-1-in-4-yl, n-Pent-1-in-5-yl, n-Pent-2-in-1-yl, n-Pent-2-in-4-yl, n-Pent-2-in-5-yl, 3-Methyl-buty-1-in-1-yl, 3-Methyl-buty-1-in-3-yl, 3-Methyl-buty-1-in-4-yl, n-Hex-1-in-1-yl, n-Hex-1-in-3-yl, n-Hex-1-in-4-yl, n-Hex-1-in-5-yl, n-Hex-1-in-6-yl, n-Hex-2-in-1-yl, n-Hex-2-in-4-yl, n-Hex-2-in-5-yl, n-Hex-3-in-1-yl, n-Hex-3-in-2-yl, 3-Methyl-pent-1-in-1-yl, 3-Methyl-pent-1-in-3-yl, 3-Methyl-pent-1-in-4-yl, 3-Methyl-pent-1-in-5-yl, 4-Methyl-pent-1-in-1-yl, 4-Methyl-pent-2-in-4-yl und 4-Methyl-pent-2-in-5-yl, vorzugsweise für \(\text{C}_3- \) oder \(\text{C}_4-\text{Alkiny}l \), insbesondere für Ethinyl und Prop-2-in-3-yl;

- \(\text{C}_1-\text{C}_8-\text{Halogenenalky}l \) für: \(\text{C}_1-\text{C}_8-\text{Alkyl} \) wie vorstehend genannt, das partiell oder vollständig durch Fluor, Chlor und/oder Brom substituiert ist, also z.B. Chlormethyl, Dichlormethyl, Trichlormethyl, Fluormethyl, Difluormethyl, Trifluormethyl, Chlorfluormethyl, Dichlorfluormethyl, Chlordifluormethyl, 1-Fluorethyl, 2-Fluorethyl, 2,2-Difluorethyl, 2,2,2-Trifluorethyl, 2-Chlor-2-fluorethyl, 2-Chlor-2,2-difluorethyl, 2,2-Dichlor-2-fluorethyl, 2,2,2-Trichlorethyl, Pentafluorethyl, 3-Chlorpropyl und Heptafluorpropyl, vorzugsweise für \(\text{C}_1-\text{C}_6-\text{Halogenenalky}l \);

- \(\text{C}_1-\text{C}_6-\text{Halogenenalky}l \) für: \(\text{C}_1-\text{C}_6-\text{Alkyl} \) wie vorstehend genannt, das partiell oder vollständig durch Fluor, Chlor und/oder Brom substituiert ist, also z.B. Chlormethyl, Dichlormethyl, Trichlormethyl, Fluormethyl, Difluormethyl, Trifluormethyl,
Chlorfluormethyl, Dichlorfluormethyl, Chlordifluormethyl,
1-Fluorethyl, 2-Fluorethyl, 2,2-Difluorethyl, 2,2,2-Trifluorethyl, 2-Chlor-2-fluorethyl, 2-Chlor-2,2-difluorethyl,
2,2-Dichlor-2-fluorethyl, 2,2,2-Trichlorethyl, Pentafluorethyl, 3-Chlorpropyl und Heptafluorpropyl,
vorzugsweise für C₁-C₄-Halogenalkyl, insbesondere für Trifluormethyl und
1,2-Dichlorethyl;

C₁-C₄-Halogenalkyl für: C₁-C₄-Alkyl wie vorstehend genannt,
das partiell oder vollständig durch Fluor, Chlor und/oder
Brom substituiert ist, also z.B. Chlormethyl, Dichlormethyl,
Trichlormethyl, Fluormethyl, Difluormethyl, Trifluormethyl,
Chlorfluormethyl, Dichlorfluormethyl, Chlordifluormethyl,
1-Fluorethyl, 2-Fluorethyl, 2,2-Difluorethyl, 2,2,2-Trifluorethyl,
2-Chlor-2-fluorethyl, 2-Chlor-2,2-difluorethyl,
2,2-Dichlor-2-fluorethyl, 2,2,2-Trichlorethyl, Pentafluorethyl, 3-Chlorpropyl und Heptafluorpropyl,
vorzugsweise für Trifluormethyl und 1,2-Dichlorethyl;

C₂-C₈-Halogenalkenyln für: C₂-C₈-Alkenyl wie vorstehend ge-
nannt, das partiell oder vollständig durch Fluor, Chlor und/
oder Brom substituiert ist, also z.B. für 2-Chlorallyl,
3-Chlorallyl und 3,3-Dichlorallyl, vorzugsweise für
C₂-C₆-Halogenalkenyln;

C₃-C₆-Halogenalkenyln für: C₃-C₆-Alkenyl wie vorstehend genannt
das partiell oder vollständig durch Fluor, Chlor und/oder
Brom substituiert ist, also z.B. für 2-Chlorallyl, 3-Chlor-
allyl und 3,3-Dichlorallyl;

C₂-C₈-Halogenalkinyln für: C₂-C₈-Alkinyln wie vorstehend ge-
nannt, das partiell oder vollständig durch Fluor, Chlor und/
oder Brom substituiert ist, vorzugsweise für C₂-C₆-Halogen-
alkinyln;

Cyano-C₁-C₄-alkyl für: Cyanomethyl, 1-Cyanoeth-1-yl, 2-Cyano-
eth-1-yl, 1-Cyanoprop-1-yl, 2-Cyanoprop-1-yl, 3-Cyano-
prop-1-yl, 1-Cyanoprop-2-yl, 2-Cyanoprop-2-yl, 1-Cyanobut-1-yl, 2-Cyanobut-1-yl, 3-Cyanobut-1-yl, 4-Cyanobut-1-yl,
1-Cyanobut-2-yl, 2-Cyanobut-2-yl, 1-Cyanobut-3-yl, 2-Cyanobut-3-yl, 1-Cyano-2-methyl-prop-3-yl, 2-Cyano-2-methyl-
prop-3-yl, 3-Cyano-2-methyl-prop-3-yl und 2-Cyanomethyl-
prop-2-yl, vorzugsweise für 2-Cyanoeth-1-yl;

Cyano-C₁-C₈-alkyl für: Cyano-C₁-C₄-alkyl wie vorstehend ge-
nannt, vorzugsweise für 2-Cyanoeth-1-yl;
Phenyl-C_1-C_4-alkyl für: Benzyl, 1-Phenyleth-1-yl, 2-Phenyleth-1-yl, 1-Phenylprop-1-yl, 2-Phenylprop-1-yl, 3-Phenylprop-1-yl, 1-Phenylprop-2-yl, 2-Phenylprop-2-yl, 1-Phenylbut-1-yl, 2-Phenylbut-1-yl, 3-Phenylbut-1-yl, 4-Phenylbut-1-yl, 1-Phenylbut-2-yl, 2-Phenylbut-2-yl, 3-Phenylbut-3-yl, 2-Phenylbut-3-yl, 1-Phenyl-2-methyl-prop-3-yl, 2-Phenyl-2-methyl-prop-3-yl, 3-Phenyl-2-methyl-prop-3-yl und 2-Benzyl-prop-2-yl;

Carboxyl-C_1-C_4-alkyl für: Carboxylmethyl, 1-Carboxylethyl, 2-Carboxylethyl, 1-Carboxylprop-1-yl, 2-Carboxylprop-1-yl, 3-Carboxylprop-1-yl, 1-Carboxylbut-1-yl, 2-Carboxylbut-1-yl, 3-Carboxylbut-1-yl, 4-Carboxylbut-1-yl, 1-Carboxylbut-2-yl, 2-Carboxylbut-2-yl, 3-Carboxylbut-2-yl, 4-Carboxylbut-2-yl, 1-(Carboxylmethyl)-eth-1-yl, 1-(Carboxylmethyl)-1-(methyl)-eth-1-yl und 1-(Carboxylmethyl)-prop-1-yl, vorzugsweise für Carboxylmethyl und 2-Carboxylethyl;

Carboxyl-C_1-C_6-alkyl für: Carboxyl-C_1-C_4-alkyl wie vorstehend genannt, sowie für 5-Carboxylpent-1-yl, vorzugsweise für Carboxyl-C_1-C_4-alkyl;

C_1-C_4-Alkoxy und die Alkoxy-Teile von C_1-C_4-Alkoxy-C_1-C_4-alkyl, Di-(C_1-C_4-alkoxy)-C_1-C_4-alkyl, (C_1-C_4-Alkoxy)carbonyl-C_1-C_4-alkyl, C_1-C_4-Alkoxy-(C_1-C_4-alkoxy)carbonyl-C_1-C_6-alkyl, C_1-C_4-Alkoxy-(C_1-C_4-alkoxy)carbonyl-C_1-C_4-alkyl und C_1-C_4-Alkoxy-C_1-C_4-alkoxy für: Methoxy, Ethoxy, n-Propoxy, 1-Methylethoxy, n-Butoxy, 1-Methyl-propoxy, 2-Methylpropoxy und 1,1-Dimethylethoxy, vorzugsweise für Methoxy, Ethoxy und 1-Methylethoxy;

C_1-C_6-Alkoxy und der Alkoxy-Teil von C_1-C_6-Alkoxy-C_1-C_4-alkyl für: C_1-C_4-Alkoxy wie vorstehend genannt, sowie für n-Pentoxy, 1-Methybutoxy, 2-Methybutoxy, 3-Methybutoxy, 1,1-Dimethypropoxy, 1,2-Dimethypropoxy, 2,2-Dimethypropoxy, 1-Ethylpropoxy, n-Hexoxy, 1-Methylpentoxy, 2-Methylpentoxy, 3-Methylpentoxy, 4-Methylpentoxy, 1,1-Dimethylbutoxy, 1,2-Dimethylbutoxy, 1,3-Dimethylbutoxy, 2,2-Dimethylbutoxy, 2,3-Dimethylbutoxy, 3,3-Dimethylbutoxy, 1-Ethylbutoxy, 2-Ethylbutoxy, 1,1,2-Trimethylpropoxy, 1,2,2-Trimethylpropoxy, 1-Ethyl-1-methylpropoxy und 1-Ethyl-2-methylpropoxy, vorzugsweise für Methoxy, Ethoxy und 1-Methylethoxy;
C₁-C₈-Alkoxy für: C₁-C₆-Alkoxy wie vorstehend genannt, sowie z.B. für n-Heptoxy und n-Octoxy, vorzugsweise für C₁-C₆-Alkoxy, insbesondere für Methoxy, Ethoxy und 1-Methyl-ethoxy;

C₁-C₆-Alkylthio für: C₁-C₄-Alkylthio wie vorstehend genannt, sowie für n-Pentylthio, 1-Methylbutylthio, 2-Methylbutylthio, 3-Methylbutylthio, 1,1-Dimethylpropylthio, 1,2-Dimethylpropylthio, 2,2-Dimethylpropylthio, 1-Ethylpropylthio, n-Hexylthio, 1-Methylpentylthio, 2-Methylpentylthio, 3-Methylpentylthio, 4-Methylpentylthio, 1,1-Dimethylbutylthio, 1,2-Dimethylbutylthio, 1,3-Dimethylbutylthio, 2,2-Dimethylbutylthio, 2,3-Dimethylbutylthio, 3,3-Dimethylbutylthio, 1-Ethylbutylthio, 2-Ethylbutylthio, 1,1,2-Trimethylpropylthio, 1,2,2-Trimethylpropylthio, 1-Ethyl-1-methylpropylthio und 1-Ethyl-2-methylpropylthio, vorzugsweise für Methylthio, Ethylthio und 1-Methylethylthio;

(C₁-C₄-Alkyl)carbonyl für: Methylcarbonyl, Ethylcarbonyl, n-Propylcarbonyl, 1-Methylethylcarbonyl, n-Butylcarbonyl, 1-Methylpropylcarbonyl, 2-Methylpropylcarbonyl und 1,1-Dimethylethylcarbonyl, vorzugsweise für Methylcarbonyl, Ethylcarbonyl und n-Propylcarbonyl;

(C₁-C₄-Halogenalkyl)carbonyl für: C₁-C₄-Alkyl wie vorstehend genannt, das partiell oder vollständig durch Fluor, Chlor und/oder Brom substituiert ist, also z.B. Chlormethylcarbonyl, Dichlormethylcarbonyl, Trichlormethylcarbonyl, Fluormethylcarbonyl, Difluormethylcarbonyl, Trifluormethylcarbonyl, Chlorfluormethylcarbonyl, Dichlorfluormethylcarbonyl, Chlordifluormethylcarbonyl, 1-Fluorethylcarbonyl, 2-Fluorethylcarbonyl, 2,2-Difluorethylcarbonyl, 2,2,2-Trifluorethylcarbonyl, 2-Chlor-2-fluorethylcarbonyl, 2-Chlor-2,2-difluorethylcarbonyl, 2,2-Dichlor-2-fluorethylcarbonyl, 2,2,2-Trichlorethylcarbonyl, Pentafluorethylcarbonyl, 3-Chlorpropylcarbonyl und Heptafluorpropylcarbonyl, vorzugsweise für Trifluormethylcarbonyl und 1,2-Dichlorethylcarbonyl;
18
- (C1-C8-Alkoxy)carbonyl und die Alkoxy carbonyl-Teile von
(C1-C6-Alkoxy)carbonyl-C1-C4-alkyl und
Di-[(C1-C8-Alkoxy)carbonyl]-C1-C4-alkyl für: Methoxycarbonyl,
Ethoxycarbonyl, n-Propanoyl, 1-Methyl-ethoxycarbonyl,
n-Butyryl, 1-Methylpropiony carbonyl, 2-Methylpropionycarbonyl,
1,1-Dimethylethoxycarbonyl, n-Pentoxycarbonyl,
1-Methylbutyryl, 2-Methylbutyryl, 3-Methylbutyryl, 2,2-Dimethylpropiony carbonyl,
1-Ethylpropionyl, n-Hexoxycarbonyl, 1,1-Dimethylpropionylcarbonyl,
1,2-Dimethylpropionylcarbonyl, 1-Methylpentoxycarbonyl, 2-Methy lpentoxycarbonyl, 3-Methylpentoxycarbonyl, 4-Methylpentoxycarbonyl, 1,1-Dimethylbutyrylcarbonyl, 1,2-Dimethylbutyrylc arbonyl, 1,3-Dimethylbutyrylcarbonyl, 2,2-Dimethylbutyrylcarbonyl,
2,3-Dimethylbutyrylcarbonyl, 3,3-Dimethylbutyrylcarbonyl, 1,1,2-Trimethylpropionylcarbonyl, 1,2,2-Trimethylpropionylcarbonyl,
1-Ethyl-1-methyl-propionylcarbonyl und 1-Ethyl-2-methyl-propionylcarbonyl, vorzugsweise für (C1-C4-Alkoxy)carbonyl, insbesondere für Methoxycarbonyl, Ethoxycarbonyl und 1-Methyl ethoxycarbonyl;

der Alkoxy carbonyl-Teil von (C1-C8-Alkoxy)carbonyl-C1-C6-alkyl für: (C1-C6-Alkoxy)carbonyl wie vorstehend genannt, sowie z.B. für n-Heptoxycarbonyl und n-Octoxycarbonyl, vorzugsweise für
(C1-C6-Alkoxy)carbonyl, insbesondere für Methoxycarbonyl,
Ethoxycarbonyl und 1-Methylethoxycarbonyl;

der Alkylsulfonyleteil von C1-C4-Alkylsulfonyle-C1-C4-alkyl für:
Methylsulfonyle, Ethylsulfonyle, n-Propylsulfonyle, 1-Methyle thylsulfonyle, n-Butylsulfonyle, 1-Methyl-propylsulfonyle,
2-Methylpropylsulfonyle und 1,1-Dimethylethylsulfonyle, vorzugsweise für Methylsulfonyle und Ethylsulfonyle;

der C3-C9-(α-Alkylalkyldien)-Teil von C3-C9-(α-Alkylalkyldi en) iminoxy-C3-C4-alkyl z.B. für: α-Methylalkyldien, α-M ethylalkyldien und α-Ethylalkyldien, insbesondere für α-M ethylalkyldien;

c3-c6-Cycloalkyl für: Cyclopropyl, Cyclobutyl, Cyclopentyl und
Cyclohexyl, vorzugsweise für Cyclopropyl und Cyclopentyl;

c3-c7-Cycloalkyl für: C3-C6-Cycloalkyl wie vorstehend genannt, sowie für Cycloheptyl, vorzugsweise für Cyclopropyl und
Cyclopentyl;
- C₃-C₈-Cycloalkyl für: C₃-C₆-Cycloalkyl wie vorstehend genannt, sowie für Cycloheptyl und Cyclooctyl, vorzugsweise für Cyclopentyl, Cyclopentyl und Cyclohexyl;

- C₅-C₇-Cycloalkenyln für: Cyclopent-1-enyl, Cyclopent-2-enyl, Cyclopent-3-enyl, Cyclohex-1-enyl, Cyclohex-2-enyl, Cyclohex-3-enyl, Cyclohept-1-enyl, Cyclohept-2-enyl, Cyclohept-3-enyl und Cyclohept-4-enyl, vorzugsweise für Cyclopent-1-enyl;

- der Cycloalkoxycarbonyl-Teil von (C₁-C₆-Cycloalkoxy)carbonyl-C₁-C₄-alkyl für: Cyclopropoxycarbonyl, Cyclobutoxycarbonyl. Cyclopentoxycarbonyl und Cyclohexoxycarbonyl, vorzugsweise für Cyclopropoxycarbonyl und Cyclopentoxycarbonyl;

- 5- oder 6-gliedriges Heteroaryl und der Heteroaryl-Teil von Heteroaryl-C₁-C₄-alkyl für: z.B. 2-Furyl, 3-Furyl, 2-Thiényl, 3-Thiényl, 2-Pyrroyl, 3-Pyrryl, 3-Isoxazolyl, 4-Isoxazolyl, 5-Isoxazolyl, 3-Isothiazolyl, 4-Isothiazolyl, 5-Isothiazolyl, 3-Pyrazolyl, 4-Pyrazolyl, 5-Pyrazolyl, 2-Oxazolyl, 4-Oxazolyl, 5-Oxazolyl, 2-Thiazolyl, 4-Thiazolyl, 5-Thiazolyl, 2-Imidazolyl, 4-Imidazolyl, 1,2,4-Oxadiazol-3-yl, 1,2,4-Oxadiazol-5-yl, 1,2,4-Thiadiazol-3-yl, 1,2,4-Thiadiazol-5-yl, 1,2,4-Triazol-3-yl, 1,3,4-Oxadiazol-2-yl, 1,3,4-Thiadiazol-2-yl, 1,3,4-Triazol-2-yl, 2-Pyridinyl, 3-Pyridinyl, 4-Pyridinyl, 3-Pyridazinyl, 4-Pyridazinyl, 2-Pyrimidinyl, 4-Pyrimidinyl, 5-Pyrimidinyl, 2-Pyrazinyl, 1,3,5-Triazin-2-yl und 1,2,4-Triazin-3-yl, vorzugsweise für 3-Pyrazolyl, 2-Pyridinyl und 2-Thiényl.

Die 3-Phenylpyrazol-Derivate der Formel I sind auf verschiedene Weise erhältlich, vorzugsweise nach einem der folgenden Verfahren:

\[
\begin{align*}
III & \quad (Z = Z' = -O- oder -S-) \\
IV & \quad \text{IV} + L-R^4 \rightarrow I \quad (Z = -O- oder -S-)
\end{align*}
\]

L steht für eine geeignete Abgangsgruppe wie Halogen, -O-SO₂CH₃, -O-SO₂CF₃, -O-SO₂C₄F₉ oder -O-SO₂(p-CH₃-C₆H₄);

R³⁵ steht vorzugsweise für C₁-C₄-Alkoxycarbonyloxy oder Halogen.

Die Reaktionstemperatur wird hauptsächlich vom Schmelzpunkt der Verbindung III und dem Siedepunkt des Reaktionsgemisches vorgegeben. Bevorzugt arbeitet man bei etwa 60 bis 120 °C.

Im allgemeinen setzt man etwa die 0,95- bis 5-fache molare Menge, zweckmaßigerweise die 1- bis 1,4-fache Menge, an Hydrazin oder Hydrazin-Derivat, bezogen auf den β-Ketocarbonsäuerederivats III, ein.

Die Menge an Alkylierungsmittel L-R⁴ liegt üblicherweise ebenfalls bei der 0,95- bis zur 5-fachen molaren Menge, bezogen auf das Zwischenprodukt IV.
Mit Blick auf die bevorzugten Reste R^3 an den 3-Phenylpyrazolen I sind unter den Hydrazin-Derivaten diejenigen besonders bevorzugt, die eine Alkylgruppe tragen.

Zweckmäßigerweise wir die Alkylierung in einem inerten organischen Lösungsmittel vorgenommen, z.B. in einem aliphatischen oder cyclischen Ether wie 1,2-Dimethoxyethan, Tetrahydrofuran und Dioxan, in einem aliphatischen Keton wie Aceton, in einem Amid wie Dimethylformamid, in einem Sulfoxid wie Dimethylsulfoxid oder in einer Mischung aus einem dieser Lösungsmittel und Wasser.

Die Reaktion ist im allgemeinen bei einer Temperatur von 0 °C bis zur Siedetemperatur des Reaktionsgemisches ausführbar. Vorzugsweise arbeitet man bei etwa 20 bis 80 °C.

B) Halogenierung von Verbindungen I mit R^5 = Wasserstoff:

Die Umsetzung kann in einem inerten Lösungs- oder Verdünnungsmittel oder lösungsmittelfrei vorgenommen werden.

Beispiele für geeignete Lösungsmittel sind organische Säuren, anorganische Säuren, Kohlenwasserstoffe, halogenierte Kohlenwasserstoffe, aromatische Kohlenwasserstoffe, Ether, Sulfide, Sulfoxide und Sulfone.

Als Halogenierungsmittel kommen beispielsweise Chlor, Brom, N-Bromsuccinimid, N-Chlorsuccinimid oder Sulfurylchlorid in Betracht. Je nach Ausgangsverbindung und Halogenierungsmittel kann der Zusatz eines Radikalstarters, beispielsweise eines organischen Peroxides wie Dibenzoylperoxid oder einer Azo-Verbindung wie Azobisisobutyronitril, oder Bestrahlung mit Licht vorteilhaft auf den Reaktionsverlauf wirken.

Die Menge an Halogenierungsmittel ist nicht kritisch. Sowohl unterstöchiometrische Mengen als auch große Überschüsse an Halogenierungsmittel, bezogen auf die zu halogenierende Verbindung I mit R^5 = Wasserstoff, sind möglich.

Bei Verwendung eines Radikalstarters ist in der Regel eine katalytische Menge ausreichend.

Die Reaktionstemperatur liegt normalerweise bei (-100) bis 200°C, vornehmlich bei 10 bis 100°C oder dem Siedepunkt des Reaktionsgemisches.
C) Nitrierung von Verbindungen I mit $R^1 = \text{Wasserstoff}$:

Die Ausgangsverbindung I mit $R^1 = \text{H}$ und das Nitrierungs-Reagenz werden zweckmäßigerverweise in etwa äquimolaren Mengen eingesetzt; zur Optimierung des Umsatzes an zu nitrierender Verbindung kann es jedoch vorteilhaft sein, das Nitrierungs-Reagenz im Überschuß zu verwenden, bis etwa zur 10-fachen molaren Menge. Bei der Reaktionsführung ohne Lösungsmittel im Nitrierungs-Reagenz liegt die Reaktionstemperatur normalerweise bei (-100) bis 200 °C, bevorzugt bei (-30) bis 50 °C.

Die Aufarbeitung des Reaktionsgemisches kann auf bekannte Weise erfolgen, beispielsweise durch Verdünnen der Reaktionslösung mit Wasser und anschließender Isolierung des Produktes mittels Filtration, Kristallisation oder Lösungsmittelextraktion.
D) Reduktion von Verbindungen I mit \(R^1 = \text{Nitro} \):

\[
\begin{align*}
\text{I} & \quad (R^1 = \text{Nitro}) \\
\text{II} & \quad (R^1 = -N(R^7, R^8); \ R^7, R^8 = H)
\end{align*}
\]

D1) Reduktion mit einem Metall wie Eisen, Zink oder Zinn unter sauren Reaktionsbedingungen oder mittels komplexen Hydriden wie Lithiumaluminiumhydrid und Natriumborylid:

Das Lösungsmittel, z.B. Wasser, ein Alkohol wie Methanol, Ethanol und Isopropanol oder ein Ether wie Diethylether, Methyl-tert.-butylether, Dioxan, Tetrahydrofuran und Ethylen glykoldimethylether, ist abhängig vom gewählten Reduktionsmittel.

Bei der Reduktion mit einem Metall arbeitet man vorzugsweise lösungsmittelfrei in einer anorganische Säure, insbesondere konzentrierter oder verdünnter Salzsäure, oder einer organischen Säure wie Essigsäure. Es ist aber auch möglich, der Säure ein intermediäres Lösungsmittel wie vorstehend genannt zuzumischen.

Die Ausgangsverbindung I \((R^1 = \text{NO}_2) \) und das Reduktionsmittel werden zweckmäßigerweise in etwa äquimolaren Mengen eingesetzt; zur Optimierung des Reaktionsverlaufs kann es jedoch vorteilhaft sein, eine der beiden Komponenten im Überschuß zu verwenden, bis etwa zur 10-fachen molaren Menge.

Die Menge an Säure ist nicht kritisch. Um die Ausgangsverbindung möglichst vollständig zu reduzieren verwendet man zweckmäßigerweise mindestens eine äquivalente Menge an Säure.

Die Reaktionstemperatur liegt im allgemeinen bei \((-30)\) bis \(200 \; ^\circ\text{C}\), bevorzugt bei \(0\) bis \(80 \; ^\circ\text{C}\).

25

D2) Katalytische Hydrierung mit Wasserstoff:

Geeignete Katalysatoren sind beispielsweise Raney-Nickel, Palladium auf Kohle, Palladiumoxid, Platin und Platinoxide, wobei im allgemeinen eine Katalysatormenge von 0,05 bis 10,0 mol-% bezogen auf die zu reduzierende Verbindung, ausreichend ist.

Nach Abtrennen des Katalysators kann die Reaktionslösung wie üblich auf das Produkt hin aufgearbeitet werden.

15

Die Hydrierung kann bei Normaldruck oder unter erhöhtem Druck durchgeführt werden.

30

\[
\begin{array}{c}
\text{R⁴} \\
\text{N} \\
\text{R⁶} \\
\text{NH₂} \\
\text{R²} \\
\end{array}
\quad \rightarrow
\begin{array}{c}
\text{R⁴} \\
\text{N} \\
\text{R⁶} \\
\text{R²} \\
\text{R³} \\
\end{array}
\]

I (R₁ = -N(R⁷,R⁸); R⁷,R⁸ = H)

I (R⁷ und/oder R⁸ ≠ H)

35

F) Halogenierung von Verbindungen I, bei denen \(R^1 \) für Methyl steht:

\[
\begin{align*}
R^5 & \quad ZR^4 \\
R^2 & \\
\text{CH}_3 & \\
\text{N} & \\
\text{R}^3 & \\
\text{N} & \\
\end{align*}
\]

\(I \) \((R^1 = \text{CH}_3) \)

\[
\begin{align*}
R^5 & \quad ZR^4 \\
R^2 & \\
\text{CH}_2\text{Hal} & \\
\text{N} & \\
\text{R}^3 & \\
\end{align*}
\]

\(CH(\text{Hal})_2 \)

Hal = Halogen, vorzugsweise Chlor oder Brom.

Bezüglich der Lösungsmittel, Mengenverhältnisse und der Reaktionsstemperatur sei auf die Angaben unter Methode B) verwiesen.

G) Nukleophile Substitution eines Halogenatoms an Verbindungen I mit \(R^1 = \text{CH}_2\text{Hal} \):

\[
\begin{align*}
R^5 & \quad ZR^4 \\
R^2 & \\
\text{CH}_2 & \\
\text{Hal} & \\
\text{N} & \\
\text{R}^3 & \\
\end{align*}
\]

\(I \) \((R^1 = -\text{CH}_2\text{OR}^6, -\text{CH}_2\text{SR}^6, -\text{CH}_2\text{SO}^6, -\text{CH}_2\text{SO}_2^6, -\text{CH}_2\text{P(O)(OR}^6)_2) \)

\(I \) \((R^1 = -\text{CH}_2\text{Hal}) \)

Je nach Ausgangsverbindung und Nucleophil kann der Zusatz einer Base vorteilhaft sein, wobei beispielsweise organische Basen, z.B. Trialkylamine oder Diazabicycloundecen oder anorganische Basen wie Kalium- oder Natriumcarbonat oder die Alkalimetallhydroxide geeignet sind.

Die Menge an Base beträgt vorzugsweise 0,95 bis 10 mol, insbesondere etwa 1 bis 3 mol, pro mol Ausgangsverbindung.

Bevorzugte Lösungsmittel sind insbesondere Dimethylformamid, Dimethyleacetamid, Aceton, Dimethylsulfoxid, Dioxan, Wasser und eine Mischung dieser Solventien.

Im allgemeinen ist eine katalytische Menge an Phasentransferkatalysator, etwa zwischen 1 und 10 Mol%, bezogen auf die Ausgangsverbindung, ausreichend.

Die Reaktionstemperatur ist abhängig von der Wahl des Nukleophils. Bei der Verwendung von Aryl- oder Alkyl-Anionen liegt sie bei etwa (- 150) bis 0°C, bevorzugt bei (- 78) bis (- 20) °C. Für die übrigen o.g. Nukleophile ist normalerweise eine höhere Reaktionstemperatur notwendig, etwa von 0 bis 100 °C.

Diejenigen Endprodukte I, bei denen R¹ -CH₂-OR⁶ bedeutet, mit R⁶ = (C₁₋C₄-Alkyl)carbonyl, können anschließend auf an sich bekannte Weise zu Verbindungen I mit R¹ = -CH₂OH verseift werden. Die verseiften Produkte können dann gewünschtenfalls alkyliert, acyliert oder sulfoniert werden, wobei weitere definitioensgenaße Verbindungen I mit R¹ = -CH₂OR⁶ (R⁶ ≠ H) erhalten werden (siehe z.B. Houben-Weyl, Methoden der Organischen Chemie, Georg Thieme Verlag, Stuttgart: Bd. 6/1a, 4. Aufl. 1979, S. 262ff.; Bd. 8,
H) Saure Hydrolyse von Verbindungen I, bei denen R¹ Dihalogenmethy1 bedeutet:

\[
\begin{align*}
\text{I (R¹ = -CH(Hal)₂)} & \quad \rightarrow \\
\text{I (R¹ = -CHO)}
\end{align*}
\]

Die Reaktionstemperatur liegt normalerweise bei 0 bis 120°C.

Die Aufarbeitung des Reaktionsproduktes kann in der Regel auf an sich bekannte Weise erfolgen.

\[
\begin{align*}
\text{I (R¹ = -CH₂Hal)} & \quad \rightarrow \\
\text{I (R¹ = -CHO)}
\end{align*}
\]

Als Lösungsmittel ist z.B. Dimethylsulfoxid geeignet.
K) Oxidation von Verbindungen I, bei denen R^1 für Formyl steht:

\[
\begin{align*}
5 & \quad \text{CHO} \quad I \ (R^1 = \text{-CHO}) \\
10 & \quad \text{COOH} \quad I \ (R^1 = \text{-COOH})
\end{align*}
\]

Als inertes Lösungsmittel kommen z.B. Wasser, Kohlenwasserstoffe, aromatische Kohlenwasserstoffe oder Pyridin und seine Derivate in Betracht.

Geeignete Oxidationsmittel sind beispielsweise Kaliumpermanganat, Kaliumdichromat, Natriumperborat, Natriumchlorit, Wasserstoffperoxid und Sauerstoff.

Die Reaktionstemperatur ist vor allem abhängig vom Reaktionsmedium. Sie liegt vorzugsweise bei 0 bis 120° C.

Die Aufarbeitung auf das Produkt hin erfolgt wie üblich.

L) Halosulfonierung von Verbindungen I, bei denen R^1 für -SO_2-Cl steht:

\[
\begin{align*}
35 & \quad \text{Halosulfonierung} \\
40 & \quad \text{SO}_2\text{Cl} \quad I \ (R^1 = \text{SO}_2\text{Cl})
\end{align*}
\]

Die Halosulfonierung kann ohne Lösungsmittel in einem Überschuß an Sulfonierungsreagenz oder in einem inerten Lösungsmittel, z.B. in einem halogenierten Kohlenwasserstoff, einem Ether, einem Alkylamin oder einer Mineralsäure durchgeführt werden.
30

Chlorsulfonsäure stellt sowohl das bevorzugte Reagenz wie auch Lösungsmittel dar.

Das Sulfonierungsreagenz wird normalerweise in einem leichten Unterschuß (bis etwa 95 mol-%) oder in einem Überschuß von der 1- bis 5-fachen molaren Menge, bezogen auch die Ausgangsverbindung I \((R^1 = H)\) eingesetzt. Arbeitet man ohne inertes Lösungsmittel, so kann auch ein noch größeren Überschuß zweckmäßig sein.

10 Die Reaktionstemperatur liegt normalerweise zwischen 0° C und dem Siedepunkt des Reaktionsgemisches.

Zur Aufarbeitung wird die Reaktionsmischung z.B. mit Wasser versetzt, wonach sich das Produkt wie üblich isolieren läßt.

\[
\begin{align*}
\text{SO}_2\text{Cl} & \quad \text{I (} R^1 = \text{-SO}_2\text{-R}^6, -\text{SO}_2\text{-OR}^6, \\
& \quad \text{-SO}_2\text{-N(R}^7,\text{R}^8\text{)} \text{ oder -SO}_2\text{-N(R}^7\text{-CO-R}^3\text{)}, \\
& \quad \text{-SO}_2\text{-N(R}^7\text{-C(R}^8,\text{R}^{10}\text{)}\text{-COOR}^6\text{)}
\end{align*}
\]

I (\(R^1 = \text{SO}_2\text{Cl})

45

I (R \(^1\) = \(-\text{CHO}\))

Wittig-Reaktion

I (R \(^1\) = \(-\text{CH}=\text{N}-\text{OR}^6, \ -\text{CH}(\text{X}R_{21}, \text{Y}R_{22})\),

- \(-\text{CO}-\text{OR}^6, \ -\text{P(O)}(\text{OR}^6)_2, \ -\text{CO}-\text{O}-\text{N}=\text{C}(\text{R}_{14}, \text{R}_{15})\),
- \(-\text{CO}-\text{O}-\text{CH}_2-\text{O}-\text{N}=\text{C}(\text{R}_{16}, \text{R}_{17})\),
- \(-\text{CO}-\text{O}-\text{C}(\text{R}_{18}, \text{R}_{19})\) - \(-\text{CH}_2-\text{O}-\text{N}=\text{C}(\text{R}_{16}, \text{R}_{17})\),
- \(-\text{CO}-\text{N}(\text{R}^7, \text{R}^8)\),
- \(-\text{CS}-\text{N}(\text{R}^7, \text{R}^8)\),
- \(-\text{CO}-\text{NH}-\text{SO}_2-(\text{C}_1-\text{C}_4-\text{Alkyl})\),
- \(-\text{CO}-\text{R}^{20}\),
- \(-\text{CH}=\text{N}-\text{OR}^6, \ -\text{CH}(\text{XR}^{21}, \text{YR}^{22})\),
- \(-\text{C}(\text{R}^{28})\) = \(-\text{N}-\text{O}-\text{R}^6\),
- \(-\text{CO}-\text{N}(\text{R}^7)\) - \(-\text{C}(\text{R}^6, \text{R}^{15})\) - \(-\text{COOR}^6\),
P) Nucleophile Cyanid-Substitution von Verbindungen I mit $R^1 = \text{NO}_2$ und $R^2 = \text{F}$:

M steht für ein metallisches oder organisches Kation, vorzugsweise für ein Alkalimetall- oder Tetraalkylammoniumion.

Die Reaktion wird üblicherweise in einem polaren aprotischen Lösungsmittel wie Dimethylsulfoxid, N,N-Dimethylformamid und Sulfolan vorgenommen, wobei die Reaktionstemperatur zwischen diesen Schmelz- und Siedepunkt, insbesondere bei 0 bis 100°C liegt.

Vorzugsweise kommt ein geringfügiger molarer Überschuss des Cyanids MCN zur Anwendung. Zur Optimierung des Umsatzes kann es jedoch vorteilhaft sein, einen großen Überschuss an MCN zu verwenden, bis etwa zur fünffachen molaren Menge, bezogen auf die Menge an Ausgangsverbindung I mit $R^2 = \text{F}$.

Die Aufarbeitung des Reaktionsgemisches kann auf bekannte Weise erfolgen, etwa durch Verdünnen des Reaktionsgemisches mit Wasser und nachfolgender Isolierung des Produkts mittels Filtration, Kristallisation oder Lösungsmittelextraktion.

Q) Nucleophile Alkoholatsubstitution von Verbindungen I mit $R^1 = \text{NO}_2$ und $R^2 = \text{CN}$ auf an sich bekannte Weise (siehe z.B. Houben-Weyl, Methoden der Organischen Chemie, Bd. 6/3, Georg Thieme Verlag, Stuttgart, 4. Auflage 1965, S. 75ff.); auf diese Weise sind bevorzugt Verbindungen I mit $R^1 = \text{OR}^5$, $R^2 = \text{CN}$ und $R^6 = \text{Niederalkyl}$ herstellbar:
Die Verfahrensprodukte I (R¹ = OR⁶, R² = CN) können gewünschtenfalls auf an sich bekannte Weise zu Verbindungen I mit R¹ = OH (R² = CN) gespalten werden (vgl. z.B. Houben-Weyl, Methoden der Organischen Chemie, Bd. 6/1c, Georg Thieme Verlag Stuttgart, 4. Auflage 1976, S. 313ff.).

Die auf diese Weise oder durch die unter E) beschriebene Phenolverkokchung zugänglichen Verbindungen I mit R¹ = Hydroxyl können gewünschtenfalls auf an sich bekannte Weise acyliert oder sulfoniert werden, wie dies unter G) für Verbindungen I mit R¹ = -CH₂OH dargelegt wurde.

Sofern nicht anders angegeben werden die vorstehend beschriebenen Reaktionen zweckmäßigerverweise bei Atmosphäreendruck oder unter dem Eigendruck des jeweiligen Reaktionssgemisches vorgenommen.

Die substituierten 3-Phenylpyrazole I können bei der Herstellung als Isomerengemische anfallen, die jedoch gewünschtenfalls nach den hierfür üblichen Methoden wie Kristallisation oder Chromatographie, auch an einem optisch aktiven Adsorbat, in die reinen Isomeren getrennt werden können. Reine optisch aktive Isomere lassen sich vorteilhaft aus entsprechenden optisch aktiven Ausgangsprodukten herstellen.

Substituierte 3-Phenylpyrazole I, bei denen R¹⁰ für ein Alkalimetall steht, können durch Behandeln von Verbindungen I mit R¹⁰ = Wasserstoff z.B. mit Natrium- oder Kaliumhydroxid in wässriger Lösung oder in einem organischen Lösungsmittel wie Methanol, Ethanol, Aceton und Toluol oder

mit Natriumhydrid in einem organischen Lösungsmittel wie Dimethylformamid erhalten werden.
Substituierte 3-Phenylpyrazole I, bei denen R10 ein landwirtschaflich brauchbares Kation ist, das nicht zu der Gruppe der Alkalimetalle gehört, können üblicherweise durch Umsalzen der entsprechenden Verbindung I mit R10 = Alkalimetallion hergestellt werden.

Verbindungen I, bei denen R10 z.B. ein Mangan-, Kupfer-, Zink-, Eisen-, Calcium-, Magnesium- und Bariumion ist, können aus den

Verbindungen I mit R10 = Natrium in üblicher Weise hergestellt werden, ebenso Verbindungen I mit R10 = Ammonium- oder Phosphonium mittels Ammoniak, Phosphonium-, Sulfonium- oder Sulfoxoniumhydroxiden.

Mittels des beschriebenen Verfahrens können auch alle anderen Salze landwirtschaftlich brauchbarer Kationen der Verbindungen I erhalten werden, beispielsweise solche, die sich von Verbindungen I (R1 = -SO\textsubscript{2}-OR6; R6 = H), (R1 = -SO\textsubscript{2}-N(R7)=CO-R3; R7 = H), (R1 = -N(R10)=SO\textsubscript{2}R11; R10 = H), (R1 = -A-CO-

NH-SO\textsubscript{2}-(C\textsubscript{1}-C\textsubscript{4}-alkyl)) oder (R1 = -A-P(O)(OR6)\textsubscript{2}, R6 = H) ableiten.

Diejenigen Verbindungen I, die eine basische funktionelle Gruppe tragen, z.B. wenn R1 für -N(R7,R8), -N(R7)-N(R8,R32), -N=N-COR9

oder -N(R7)-N(R8)=CO-R9 steht, sowie solche Verbindungen I, die die funktionelle Gruppe >C=N- enthalten, können durch Reaktion mit der entsprechenden Säure in ihre Säureadditionssalze übergeführt werden.

Die Salzbildungen verlaufen normalerweise bereits bei etwa 20 °C mit ausreichender Geschwindigkeit.

Die Isolierung der Salze kann z.B. durch Fällen mit einem geeigneten inerten Lösungsmittel oder durch Abdampfen des Lösungsmittels erfolgen.

Die substituierten 3-Phenylpyrazole I und deren Salze eignen sich, sowohl als Isomerengemische als auch in Form der reinen Isomeren, als Herbizide. Sie können in Kulturen wie Weizen, Reis, Mais, Soja und Baumwolle Unkräuter und Schadgräser sehr gut be-
kämpfen, ohne die Kulturpflanzen nennenswert zu schädigen. Dieser Effekt tritt vor allem bei niedrigen Aufwandmengen auf.

In Abhängigkeit von der jeweiligen Applikationsmethode können die Verbindungen I bzw. sie enthaltenden herbiziden Mittel noch in einer weiteren Zahl von Kulturpflanzen zur Beseitigung unerwünschter Pflanzen eingesetzt werden. In Betracht kommen beispielsweise folgende Kulturen:

Darüber hinaus können die Verbindungen I in Kulturen, die durch Züchtung und/oder gentechnische Methoden gegen die Wirkung von I weitgehend resistent sind, eingesetzt werden.

Die Verbindungen I bzw. die sie enthaltenden herbiziden Mittel können beispielsweise in Form von direkt versprühbaren wässrigen Lösungen, Pulvern, Suspensionen, auch hochprozentigen wässrigen, öligen oder sonstigen Suspensionen oder Dispersionen, Emulsionen, Öldispersionen, Pasten, Stäubemitteln, Streumitteln oder Granulaten durch Versprühen, Vernebeln, Verstauben, Verstreuen oder Gießen angewendet werden. Die Anwendungsformen richten sich nach den Verwendungszwecken; sie sollten in jedem Fall möglichst die feinste Verteilung der erfindungsgemäßen Wirkstoffe gewährleisten.

Als inerte Hilfsstoffe für die Herstellung von direkt versprühbaren Lösungen, Emulsionen, Pasten oder Öldispersionen kommen im wesentlichen in Betracht: Mineralölfraktionen von mittlerem bis

Pulver-, Streu- und Stäubemittel können durch Mischen oder gemeinsames Vermahlen der wirksamen Substanzen mit einem festen Trägerstoff hergestellt werden.

Granulate, z.B. Umhüllungs-, Impregnierungs- und Homogengranulate können durch Bindung der Wirkstoffe an feste Trägerstoffe hergestellt werden. Feste Trägerstoffe sind Mineralerden wie Kiesel-, Säuren, Kieselgele, Silikate, Talkum, Kaolin, Kalkstein, Kalk, Kreide, Bolus, Löß, Ton, Dolomit, Diatomeererde, Calcium- und Magnesiumsulfat, Magnesiumoxid, gemahlene Kunststoffe, Düngemit-
38
tel, wie Ammoniumsulfat, Ammoniumphosphat, Ammoniumnitrat, Harn-
stoffe und pflanzliche Produkte wie Getreidemehl, Baumrinde-, Holz- und Nußschalenmehl, Cellulosepulver oder andere feste Trägerstoffe.

5
Die Konzentrationen der Wirkstoffe I in den anwendungsfertigen
Zubereitungen können in weiten Bereichen variiert werden, etwa
zwischen 0,01 und 95 Gew. %, vorzugsweise zwischen 0,5 und 90
Gew.% Die Wirkstoffe werden dabei in einer Reinheit von 90% bis
10
100%, vorzugsweise 95% bis 100% (nach NMR-Spektrum) eingesetzt.

Die folgenden Formulierungsbeispiele verdeutlichen die Herstel-
lung solcher Zubereitungen:

15 I. 20 Gewichtsteile der Verbindung Nr. Ia.071 werden in
einer Mischung gelöst, die aus 80 Gewichtsteilen alky-
lisiertem Benzol, 10 Gewichtsteilen des Anlagerungsproduk-
tes von 8 bis 10 Mol Ethylenoxid an 1 Mol Ölsäure-N-mono-
ethanolamid, 5 Gewichtsteilen Calciumsalz der Dodecyl-
benzolsulfonsäure und 5 Gewichtsteilen des Anlagerungs-
produktes von 40 Mol Ethylenoxid an 1 Mol Ricinusöl be-
est. Durch Ausgießen und feines Verteilen der Lösung in
100 000 Gewichtsteilen Wasser erhält man eine wäßrige
Dispersion, die 0,02 Gew.% des Wirkstoffs enthält.

20

25 II. 20 Gewichtsteile der Verbindung Nr. Ia.047 werden in
einer Mischung gelöst, die aus 40 Gewichtsteilen Cyclo-
hexanon, 30 Gewichtsteilen Isobutanol, 20 Gewichtsteilen
des Anlagerungsproduktes von 7 Mol Ethylenoxid an 1 Mol
Isooctylyphenol und 10 Gewichtsteilen des Anlagerungspro-
duktstes von 40 Mol Ethylenoxid an 1 Mol Ricinusöl besteht.
Durch Eingießen und feines Verteilen der Lösung in 100
000 Gewichtsteilen Wasser erhält man eine wäßrige Disper-
sion, die 0,02 Gew.% des Wirkstoffs enthält.

30

35 III. 20 Gewichtsteile des Wirkstoffes Nr. Ia.066 werden in
einer Mischung gelöst, die aus 25 Gewichtsteilen Cyclo-
hexanon, 65 Gewichtsteilen einer Mineralölfraktion vom
Siedepunkt 210 bis 280 °C und 10 Gewichtsteilen des Anla-
gerungsproduktes von 40 Mol Ethylenoxid an 1 Mol
Ricinusöl besteht. Durch Eingießen und feines Verteilen
der Lösung in 100 000 Gewichtsteilen Wasser erhält man
eine wäßrige Dispersion, die 0,02 Gew.% des Wirkstoffs
enthält.

40

45

Die Applikation der Wirkstoffe I bzw. der herbiziden Mittel kann im Vorauflauf- oder im Nachauflaufverfahren erfolgen. Sind die Wirkstoffe für gewisse Kulturpflanzen weniger verträglich, so können Ausbringungstechniken angewandt werden, bei welchen die herbiziden Mittel mit Hilfe der Spritzgeräte so gespritzt werden, daß die Blätter der empfindlichen Kulturpflanzen nach Möglichkeit nicht getroffen werden, während die Wirkstoffe auf die Blätter darunter wachsender unerwünschter Pflanzen oder die unbedeckte Bodenfläche gelangen (post-directed, lay-by).

Die Aufwandmengen an Wirkstoff betragen je nach Bekämpfungsziel, Jahreszeit, Zielpflanzen und Wachstumsstadium 0,001 bis 3,0, vorzugsweise 0,01 bis 1 kg/ha aktive Substanz (a.S.).

Zur Verbreiterung des Wirkungsspektrums und zur Erzielung synergistischer Effekte können die substituierten 3-Phenylpyrazole I mit zahlreichen Vertretern anderer herbizider oder wachstumsregulierender Wirkstoffgruppen gemischt und gemeinsam ausgebracht werden. Beispielsweise kommen als Mischungspartner Diazine, 4H-3,1-Benzoxazinderivate, Benzothiadiazinone, 2,6-Dinitroaniline, N-Phenylcarbamate, Thiolcarbamate, Halogencarbonsäuren, Triazine, Amide, Harnstoffe, Diphenylether, Triazinone, Uracile, Benzoferanderivate, Cyclohexan-1,3-dionerivate, die in 2-Stellung z.B. eine Carboxy- oder Carbimino-Gruppe tragen, Chinolin-

15 Herstellungsexempiele

Beispiel 1
3-(4-Chlorphenyl)-5-difluormethoxy-1-methyl-1H-pyrazol

Zu einer Lösung von 169,1 g (0,811 mol) 3-(4-Chlorphenyl)-1-methyl-2-pyrazolin-5-on in 2,5 l Dioxan wurden 162 g (4,0 mol) Natriumhydroxid, gelöst in 1 l Wasser, gegeben. In diese Mischung leitete man bei 60 - 65 °C 5 Std. lang Chlordifluormethan ein, wonach die Reaktionslösung in 1,5 l Wasser eingerührt wurde. Zur Aufarbeitung extrahierte man dreimal (je weils ca. 1000 ml) Methyl-tert-butylether. Die vereinigten organischen Phasen wurden getrocknet und unter reduziertem Druck eingeengt. Die Reinigung des Rohproduktes erfolgte mittels Chromatographie an Kieselgel (Laufmittel: Hexan/Essigester = 7:3). Ausbeute: 142,9 g;

30 ^{1}H-NMR (400 MHz, in CDCl$_3$): δ [ppm] = 7,60 (d, 2H), 7,28 (d, 2H), 6,54 (t, 1H), 6,08 (s, 1H), 3,69 (s, 3H).

Vorstufe α): 4-Chlorbenzoyl-essigsäureethylester

35 Zu einer Mischung aus 296,4 g (2,59 mol) Kalium-tert-butylat und 2,25 l Diethylcarbonat wurden bei 60°C 200 g (1,29 mol) 4-Chloracetophenon (gelöst in 500 ml Diethylcarbonat) zuge tropft. Die schwer rührbare Suspension wurde 3 Std. bei 60°C gerührt und dann in 2,7 l 10 gew.-%ige Schwefelsäure eingeträgt. Anschließend extrahierte man das Produkt mit Essigester, wonach dieser über Magnesiumsulfat getrocknet und dann unter reduziertem Druck eingeengt wurde. Die Reinigung des erhaltenen Rohproduktes erfolgte destillativ. Ausbeute: 268 g; Sdp.: 130°C bei 0,4 mbar.
Vorstufe β): 3-(4-Chlorphenyl)-1-methyl-2-pyrazolin-5-on

Zu einer Suspension von 267 g (1,19 mol) 4-Chlorbenzoylessigsäuremethylester in 1,5 l Essigsäure wurden innerhalb von 40 Minuten 71,2 g (1,55 mol) Methylhydrazin getropft, wobei die Reaktions- temperatur auf 50°C anstieg. Nach beenderter Zugabe rührte man 2 Std. bei 100°C, ließ dann die Reaktionsmischung abkühlen und versetzte sie schließlich mit ca. 1,5 l Ether und ca. 1,5 l Wasser. Das gebildete feste Produkt (ca. 66,5 g) wurde abgetrennt und mit einem Gemisch aus Petrolether und Diethylether (1:1) gewaschen. Die organische Phase, die noch gelöstes Produkt enthielt, wurde 4 mal mit je 500 ml gesättigter wässriger Natriumhydrogencarbonat-Lösung gewaschen und danach aufkonzentriert (Restmenge ca. 200 ml). Mittels Zugabe von etwa 1000 ml Wasser wurde eine weitere Menge an Produkt ausgefällt. Auch dieses Produkt wurde nach Abdampfung eines Gemisch aus Petrolether und Diethylether (1:1) gewaschen. Gesamtproduktmenge: 171 g.; Sm. 189°C.

Beispiel 2
4-Chlor-3-(4-Chlorphenyl)-5-difuoromethoxy-1-methyl-1H-pyrazol (Nr. Ia.162)

74,0 g (0,549) Sulfurylchlorid, gelöst in 200 ml Tetrachlorkohlenstoff, wurden langsam zu einer Lösung von 128,9 g (0,5 mol) 3-(4-Chlorphenyl)-5-difuoromethoxy-1-methyl-1H-pyrazol in 500 ml Tetrachlorkohlenstoff getropft, wobei die Reaktionspartner in einer exothermen Reaktion unter Gasentwicklung abreaktierten. Nach Beendigung der Reaktion rührte man das Gemisch noch 2 Std. bei ca. 20°C. Anschließend wurde die Reaktionslösung mit jeweils ca. 300 ml Wasser, gesättigter Natriumhydrogencarbonat-Lösung und gesättigter Natriumchlorid-Lösung gewaschen, dann getrocknet und eingengt. Ausbeute: 139,3 g;

^1H-NMR (270 MHz, in CDCl₃): δ [ppm] = 7,79 (d,2H), 7,43 (d,2H), 6,70 (t,1H), 3,85 (s,3H).

Beispiel 3
3-(3-Brommethyl-4-chlorphenyl)-4-chlor-5-difluormethoxy-1-methyl-1H-pyrazol (Nr. Ia.74)

Eine Mischung aus 20,0 g (65 mmol) 4-Chlor-5-difluormethoxy-3-(4-chlor-3-methylphenyl)-1-methyl-1H-pyrazol (hergestellt analog Beispiel 2), 17,4 g (98 mmol) N-Bromsuccinimid und 200 ml Tetrachlorkohlenstoff wurde drei Std. auf Rückflußtemperatur erhitzt und dabei mit einer UV-Lampe bestrahlt. Anschließend filtrierte man die feste Bestandteile ab und wusch sie mit wenig Methylchlorid. Nach Entfernen des Lösungsmittels bei reduziertem Druck wurde der Rückstand mittels Chromatographie an Kiesel-
gel (Laufmittel: Methylenechlorid/Hexan = 8:2) gereinigt. Ausbeute: 11,0 g.

\[^1\text{H}-\text{NMR}\ (270 \text{ MHz}, \text{ in } \text{CDCl}_3): \delta [\text{ppm}] = 7,98 \ (s, 1\text{H}), 7,80 \ (d, 1\text{H}),
7,46 \ (d, 1\text{H}), 6,70 \ (t, 1\text{H}), 4,64 \ (s, 2\text{H}), 3,87 \ (s, 3\text{H}).\]

Beispiel 4

3-(3-Dibrommethyl-4-chlorphenyl)-4-chlor-5-difluormethoxy-1-methyl-1H-pyrazol (Nr. Ia.161)

Zu einer Lösung von 3,0 g (9,8 mmol) 4-Chlor-5-difluormethoxy-3-(4-chlor-3-methylphenyl)-1-methyl-1H-pyrazol, gelöst in 100 ml Tetrachlorkohlenstoff wurden 10,5 g (58,8 mmol) N-Bromsuccinimid gegeben. Diese Mischung erwärmte man unter Bestrahlung mit einer 150 Watt Quecksilber-Hochdrucklampe 1 Stunde lang auf Rückflußtemperatur. Danach wurde das Reaktionsgemisch filtriert. Eingengen des Filtrates unter reduziertem Druck ergab 3,9 g Rohprodukt, das ohne weitere Reinigung für die folgenden Umsetzungen verwendet wurde.

\[^1\text{H}-\text{NMR}\ (400 \text{ MHz}, \text{ in } \text{CDCl}_3): \delta [\text{ppm}] = 8,56 \ (s, 1\text{H}), 7,79 \ (d, 1\text{H}),
7,46 \ (d, 1\text{H}), 7,15 \ (d, 1\text{H}), 6,70 \ (t, 1\text{H}), 3,85 \ (s, 3\text{H}).\]

Beispiel 5

4-Chlor-3-(4-chlor-3-formylphenyl)-5-difluormethoxy-1-methyl-1H-pyrazol (Nr. Ia.106)

4,65 g (10 mmol) 3-(3-Dibrommethyl-4-chlorphenyl)-4-chlor-5-difluormethoxy-1-methyl-1H-pyrazol wurden bei 85 °C portionsweise in 7 ml konzentrierte Schwefelsäure eingetragen. Anschließend rührte man noch 5 Minuten bei 100 °C, wonach die Reaktionslösung in 40 ml Eiswasser eingerührt wurde. Das gebildete feste Produkt wurde abgetrennt und getrocknet. Ausbeute 3,0 g:

\[^1\text{H}-\text{NMR}\ (270 \text{ MHz}, \text{ in } \text{CDCl}_3): \delta [\text{ppm}] = 10,50 \ (s, 1\text{H}), 8,45 \ (s, 1\text{H}),
8,06 \ (d, 1\text{H}), 7,52 \ (d, 1\text{H}), 6,71 \ (t, 1\text{H}), 3,82 \ (s, 3\text{H}).\]

Beispiel 6

3-(3-Carboxy-4-chlorphenyl)-4-chlor-5-difluormethoxy-1-methyl-1H-pyrazol (Nr. Ia.095)

Zu einer Lösung von 40 g (125 mmol) 4-Chlor-3-(4-chlor-3-formylphenyl)-5-difluormethoxy-1-methyl-1H-pyrazol in 125 ml Acetonitril wurden bei 10-15°C eine Lösung von 4 g (34 mmol) Natriumdihydrogenphosphat in 40 ml Wasser und dann 12,5 ml einer 35%igen Wasserstoffperoxid-Lösung gegeben. Anschließend versetzte man die Mischung bei 10°C tropfenweise mit einer Lösung von 18,1 g (200 mmol) Natriumchlorit in 158 ml Wasser. Nach einer Stunde Rühren wurde mit 3N Salzsäure bis pH = 1 angesäuert. Das im Reak-
tionsgemisch nun suspendierte Produkt wurde abgetrennt und aus Methanol/Wasser umkristallisiert. Ausbeute: 24,5 g.

Beispiel 7

4-Chlor-3-(4-chlor-3-[N-(methoxycarbonylmethyl)-methylamino-
carbonyl]-phenyl)-5-difuormethoxy-1-methyl-1H-pyrazol (Nr. Ta.208)

Zu einer Lösung von 3 g (8,4 mmol) 4-Chlor-3-(4-chlor-3-chlor-

Vorstufe α): 4-Chlor-3-(4-chlor-3-chlorcarbonylphenyl)-5-difuormethoxy-1-methyl-1H-pyrazol

Zu einer Lösung von 11 g (29 mmol) 3-(3-Carboxy-4-chlor-
phenyl)-4-chlor-5-difuormethoxy-1-methyl-1H-pyrazol in 100 ml Toluol wurden nacheinander tropfenweise 11,2 g (88 mmol) Oxalyl-

Beispiel 8

4-Chlor-3-(4-chlor-3-[(2-methoxyimino)ethoxycarbonyl]-phenyl)-5-difuormethoxy-1-methyl-1H-pyrazol (Nr. Ta.149)

Zu einer Lösung von 3 g (8,9 mmol) 3-(3-Carboxy-4-chlor-
phenyl)-4-chlor-5-difuormethoxy-1-methyl-1H-pyrazol in 60 ml Dimethylformamid wurden 1,7 g (12 mmol) gemahlenes Kaliumcarbonat gegeben. Nach Zutropfen von 1,0 g (8,9 mmol) 1-Chlor-2-methoxy-
Beispiel 9
4-Chlor-3-[4-chlor-3-(ethoxyiminomethyl)-phenyl]-5-difluormethoxy-1-methyl-1H-pyrazol (Nr. Ia.122)

5 2,6 g (8 mmol) 4-Chlor-3-(4-chlor-3-formylphenyl)-5-difluormethoxy-1-methyl-1H-pyrazol und 1,3 g (10 mmol) einer 45 gew.-%igen wässrigen Ethoxyamin-Lösung wurden für 3 Stunden auf 50°C erwärmt. Anschließend wurden noch weitere 2 g derselben Lösung zugesetzt, wonach man erneut 3 Stunden auf 50°C erwärmte. Die Lösung wurde über Nacht bei Raumtemperatur gerührt und dann eingeengt. Die Reinigung des Rohproduktes erfolgte mittels Säulenchromatographie an Kieselgel (Eluent: Cyclohexan/Ethylacetat = 50:1). Ausbeute: 1,7 g.

15 Beispiel 10
4-Chlor-3-[4-chlor-3-(4,4-diethoxy-3-oxo-but-1-en-1-yl)-phenyl]-5-difluormethoxy-1-methyl-1H-pyrazol (Nr. Ia.222)

20 Zu einer Lösung von 2 g (6,2 mmol) 4-Chlor-3-(4-chlor-3-formylphenyl)-5-difluormethoxy-1-methyl-1H-pyrazol in 20 ml Dimethylformamid wurden 5,1 g (3,3-Diethoxy-2-oxopropyliden)(triphenylphosphoran gegeben, wonach man für 5 Stunden auf 80-90°C erwärmte. Anschließend wurde das Gemisch eingeengt. Die Reinigung des so erhaltenen Rohproduktes erfolgte mittels Chromatographie an Kieselgel (Eluent: Hexan/Ethylacetat = 4:1). Ausbeute: 2,1 g.

Beispiel 11
4-Chlor-3-[4-chlor-3-(dimethoxymethyl)-phenyl]-5-difluormethoxy-1-methyl-1H-pyrazol (Nr. Ia.107)

Zu einer Lösung von 16 ml Trimethylorthoformiat in 80 ml Dichlormethan wurden 15 g Montmorillonit K10 gegeben. Zu dieser Mischung tropfte man bei 5°C eine Lösung von 6,4 g (20 mmol)

35 4-Chlor-3-(4-chlor-3-formylphenyl)-5-difluormethoxy-1-methyl-1H-pyrazol in 20 ml Dichlormethan. Anschließend wurde das Gemisch über Nacht bei Raumtemperatur gerührt. Dann trennte man den Feststoffanteil ab, wonach die nun klare Reaktionslösung eingeengt wurde. Ausbeute: 6,7 g.

40 Beispiel 12
4-Chlor-3-[4-chlor-3-(1,3-dithian-2-yl)-phenyl]-5-difluormethoxy-1-methyl-1H-pyrazol (Nr. Ia.119)

45 Zu einer Lösung von 1,7 g (4,6 mmol) 4-Chlor-3-[4-chlor-3-(dimethoxymethyl)-phenyl]-5-difluormethoxy-1-methyl-1H-pyrazol in 50 ml Toluol wurden 0,5 g (4,6 mmol) 1,3-Propanthioldiol gegeben.

Beispiel 13
3-(3-Acetoxymethyl-4-chlorphenyl)-4-chlor-5-difluormethoxy-1-methyl-1H-pyrazol (Nr. 1a.148)

Eine Lösung von 6,8 g (18 mmol) 3-(3-Brommethyl-4-chlorphenyl)-4-chlor-5-difluormethoxy-1-methyl-1H-pyrazol und 1,5 g (18 mmol) Natriumacetat in 20 ml Dimethylformamid wurde über Nacht gerührt und dann in 100 ml kaltes Wasser eingerührt. Aus der wässrigen Phase extrahierte man das Produkt mittels Ethylacetat. Die Ethylacetatphase wurde über Magnesiumsulfat getrocknet und eingeengt. Die Reinigung des so erhaltenen Rohprodukts erfolgte mittels Kieselgelchromatographie (Eluent: Hexan/Ethylacetat = 9:1). Ausbeute: 4,7 g.

Beispiel 14
4-Chlor-3-(4-chlor-3-hydroxymethylphenyl)-5-difluormethoxy-1-methyl-1H-pyrazol (Nr. 1a.143)

Zu einer Lösung von 3,2 g (8,8 mmol) 3-(3-Acetoxymethyl-4-chlorphenyl)-4-chlor-5-difluormethoxy-1-methyl-1H-pyrazol in 10 ml Dioxan und 10 ml Wasser wurden 6,3 ml (16 mmol) einer 10%igen Natriumlauge getropft. Nach einer Stunde Rühren neutralisierte man mit 3N Salzsäure. Aus der wässrigen Phase wurde das Produkt mit Ethylacetat extrahiert, wonach die organische Phase über Magnesiumsulfat getrocknet und dann eingeengt wurde. Die Reinigung des so erhaltenen Rohprodukts erfolgte mittels Säulenchromatographie an Kieselgel (Eluent: Hexan/Ethylacetat = 4:1). Ausbeute: 1,3 g.

Beispiel 15
4-Chlor-3-(4-chlor-3-methoxymethylphenyl)-5-difluormethoxy-1-methyl-1H-pyrazol (Nr. 1a.075)

Zu einer Lösung von 2,3 g (6,0 mmol) 3-(3-Brommethyl-4-chlorphenyl)-4-chlor-5-difluormethoxy-1-methyl-1H-pyrazol in 60 ml Methanol wurden 1,6 g (9,0 mmol) einer 30 gew.-%igen Lösung von NatriummethyIat in Methanol getropft. Nach 3 Stunden Rühren bei
40°C engte man das Reaktionsgemisch ein. Der Rückstand wurde in Wasser und Dichlormethan aufgenommen, wonach man konzentrierte Salzsäure bis zur sauren Reaktion zugab. In der wäßrigen Phase verbliebene Produktmengen wurden mit Dichlormethan extrahiert.

5 Die vereinigten Dichlormethan-Phasen wurden über Magnesiumsulfat getrocknet und eingeengt. Ausbeute: 1,8 g.

Beispiel 16
4-Chlor-3-[4-chlor-3-(ethylthiomethyl)-phenyl]-5-difluormethoxy-1-methyl-1H-pyrazol (Nr. Ia.090)

Beispiel 17
4-Chlor-3-[4-chlor-3-(ethylsulfanyl methyl)-phenyl]-5-difluormethoxy-1-methyl-1H-pyrazol (Nr. Ia.167)

Zu einer Lösung von 1,5 g (4 mmol) 4-Chlor-3-[4-chlor-3-(ethylthiomethyl)-phenyl]-5-difluormethoxy-1-methyl-1H-pyrazol in 40 ml Dichlormethan wurden bei 0°C portionsweise 1,4 g (4 mmol) m-Chlorperbenzoësäure gegeben. Nach 30 Minuten Rühren bei 0°C versetzte man die Mischung mit 0,5 g Calciumhydroxid. Dann wurde noch 4 Stunden bei Raumtemperatur nachgerührt. Schließlich filtrierte man den Feststoffanteil ab. Das Filtrat wurde eingeengt. Das so erhaltene Rohprodukt wurde chromatographisch an Kieselgel (Eluent: Hexan/Ethylacetat = 1:1) gereinigt. Ausbeute: 0,2 g.

Beispiel 18
4-Chlor-3-[4-chlor-3-(ethylsulfonylmethyl)-phenyl]-5-difluormethoxy-1-methyl-1H-pyrazol (Nr. Ia.168)

Zu einer Lösung von 1,6 g (4,4 mmol) 4-Chlor-3-[4-chlor-3-(ethylthiomethyl)-phenyl]-5-difluormethoxy-1-methyl-1H-pyrazol in 12 ml Essigsäure wurden 0,2 g Dinatriumwolframat(VI) gegeben. In diese Mischung tropfte man anschließend 2 ml einer 30%igen Wasserstoffperoxid-Lösung. Nach 1 Stunde Rühren versetzte man das Reaktionsgemisch mit 100 ml Wasser. Das Produkt wurde aus der abgetrennten wäßrigen Phase mit Ethylacetat extrahiert. Danach trocknete man die Ethylacetat-Phase über Magnesiumsulfat und engte sie an-
schließend ein. Das so erhaltene Rohprodukt wurde mittels Säulen-
chromatographie an Kieselgel (Eluent: Hexan/Ethylacetat = 4:1)
gereinigt. Ausbeute: 1,4 g.

Beispiel 19
4-Chlor-3-(4-chlor-3-chlorsulfonylphenyl)-5-difuormeth-
oxy-1-methyl-1H-pyrazol (Nr. Ia.047)

47,9 g (0,16 mol) 4-Chlor-3-(4-chlorphenyl)-5-difuormeth-
oxy-1-methyl-1H-pyrazol wurden bei 0°C portionsweise zu 91 ml
Chlorsulfonsäure gegeben. Nach 4 Stunden Rühren bei 130°C kühlte
man ab und goß die Lösung vorsichtig auf Eiswasser. In der wäßri-
gen Phase gelöstes Produkt wurde zweimal mit Dichlormethan extrah-
iert. Die vereinigten organischen Phasen wurden anschließend mit
gesättigten Natriumhydrogencarbonat- und mit Natriumchlorid-Lö-
sungen gewaschen, dann über Magnesiumsulfat getrocknet und
schließlich eingeengt. Ausbeute: 47,9 g.

Beispiel 20
4-Chlor-3-[4-chlor-3-(cyclopropylaminosulfo-
nyl)-phenyl]-5-difuormethoxy-1-methyl-1H-pyrazol (Nr. Ia.171)

Zu einer Lösung von 3 g (7,6 mmol) 4-Chlor-3-(4-chlor-3-chlorsul-
fonylphenyl)-5-difuormethoxy-1-methyl-1H-pyrazol in 25 ml Tetra-
hydrofuran wurden 0,9 g (16 mmol) Cyclopropylamin gegeben. Nach
4 Stunden Rühren bei Raumtemperatur egte man bis zur Trockene
ein. Der feste Rückstand wurde mit wenig Diisopropylether gewa-
schen. Ausbeute: 3 g.

Beispiel 21
4-Chlor-3-(4-chlor-3-[N-(methylaminocarbonylmethyl)-methylamino-
sulfonyl]-phenyl)-5-difuormethoxy-1-methyl-1H-pyrazol
(Nr. Ia.184)

Zu einer Lösung von 1,5 g (3,3 mmol)
4-Chlor-3-(4-chlor-3-[N-(methoxycarbonylmethyl)-methylaminosulfo-
nyl]-phenyl)-5-difuormethoxy-1-methyl-1H-pyrazol in 40 ml Tetra-
hydrofuran wurden 2,5 g einer 40%igen wäßrigen Methyaminlösung
gegeben. Nach 2 Stunden Rühren bei 50°C versetzte man das Reakti-
onsgemisch mit weiteren 3 ml der Methyaminlösung. Dann erwärmte
man die Mischung noch 6 Stunden lang auf 50°C. Anschließend wurde
eingeengt, wonach man den Rückstand in Ethylacetat aufnahm. Die
Ethylacetat-Phase wurde mit Wasser, verdünnter Salzsäure und ge-
sättigter Natriumchlorid-Lösung gewaschen, dann über Magnesium-
sulfat getrocknet und schließlich eingeengt. Nach Waschen mit we-
nig Hexan/Ethylacetat (9:1) erhielt man 1,1 g Wertprodukt.
Beispiel 22
4-Chlor-3-(4-chlor-3-nitrophenyl)-5-difluormethoxy-1-methyl-1H-pyrazol (Nr. Ia.059)

Bei (-40)°C wurden zu 600 ml 98%iger Salpetersäure portionsweise 113,4 g (0,387 mol) 4-Chlor-3-(4-chlorphenyl)-5-difluormethoxy-1-methyl-1H-pyrazol gegeben. Nach 2 Stunden Rühren bei dieser Temperatur wurde die Lösung in Eis eingerührt. Das Produkt extrahierte man aus der wafrigen Phase mit Dichlormethan. Die Dichlormethan-Phase wurde anschließend mehrmals mit Wasser, dann mit gesättigter Natriumchlorid-Lösung gewaschen. Nach Trocknen über Magnesiumsulfat und Entfernen des Dichlormethans erhielt man 119,6 g Wertprodukt.

Beispiel 23
3-(3-Amino-4-chlorphenyl)-4-chlor-5-difluormethoxy-1-methyl-1H-pyrazol (Nr. Ia.060)

Eine Aufschlammung von 32,1 g (0,576 mol) Eisenpulver in 305 ml Ethanol wurde mit 155 ml Essigsäure versetzt. Zu dieser Mischung gab man bei 70-75°C portionsweise 64,9 g (0,192 mol) 4-Chlor-3-(4-chlor-3-nitrophenyl)-5-difluormethoxy-1-methyl-1H-pyrazol. Nach 1 Stunde wurden 0,5 l Ethylacetat zugesetzt, wonach man die Lösung über ein Kieselgelbett filtrierte und dann einengte. Der Rückstand wurde in Ethylacetat aufgenommen. Die Ethylacetat-Phase wurde mit Wasser, gesättigter Natriumhydrogentartrat-Lösung und gesättigter Natriumchlorid-Lösung gewaschen, dann über Magnesiumsulfat getrocknet und schließlich eingeengt. Ausbeute: 56,4 g.

Beispiel 24
4-Chlor-3-[4-Chlor-3-(cyclopropylcarbonylamino)-phenyl]-5-difluormethoxy-1-methyl-1H-pyrazol (Nr. Ia.142)

Zu einer Lösung von 2,0 g (6,5 mmol) 3-(3-Amino-4-chlorphenyl)-4-chlor-5-difluormethoxy-1-methyl-1H-pyrazol in 30 ml Tetrahydrofuran wurden 1,0 g (13 mmol) Pyridin und 0,7 g (6,5 mmol) Cyclopropancarbonsäurechlorid gegeben. Die Lösung wurde über Nacht bei Raumtemperatur und für 2 Stunden bei 50°C gerührt, wonach man sie einengte. Den Rückstand nahm man in Ethylacetat auf. Die Ethylacetat-Phase wurde nacheinander mit kalter 1N Salzsäure, Wasser und gesättigter Natriumchlorid-Lösung gewaschen, dann über Magnesiumsulfat getrocknet und schließlich eingeengt. Ausbeute: 2,2 g.
Beispiel 25
4-Chlor-3-(4-chlor-3-[di(methylsulfonyl)amino]-phenyl)-5-difluoromethoxy-1-methyl-1H-pyrazol (Nr. Ia.062)

Zu einer Lösung von 3 g (10 mmol) 3-(3-Amino-4-chlorphenyl)-4-chlor-5-difluoromethoxy-1-methyl-1H-pyrazol in 50 ml Dichlormethan wurden 2,3 g (22 mmol) Triethylamin gegeben. Zu dieser Mischung tropfte man bei 0°C 2,5 g (21 mmol) Methansulfonsäurechlorid. Nach 2 Stunden Rühren bei Raumtemperatur wurde das Reaktionsgemisch mit Wasser gewaschen. Dann trocknete man die organische Phase über Magnesiumsulfat und engte sie ein. Das feste Produkt wurde mit wenig Diethylether gewaschen. Ausbeute: 3,1 g.

Beispiel 26
4-Chlor-3-[4-chlor-3-(methylsulfonylamino)-phenyl]-5-difluormethoxy-1-methyl-1H-pyrazol (Nr. Ia.061)

Zu einer Lösung von 0,9 g (2,3 mmol) 4-Chlor-3-(4-chlor-3-[di(methylsulfonyl)amino]-phenyl)-5-difluormethoxy-1-methyl-1H-pyrazol in 30 ml Methanol wurden 0,3 g (4,7 mmol) Kaliumhydroxid (gelöst in wenig Wasser) gegeben. Nach 18 Stunden Rühren bei Raumtemperatur engte man ein. Der Rückstand wurde in 1N Salzsäure aufgenommen, wonach man mit Ethylacetat extrahierte. Nach Trocknen der organischen Phase über Magnesiumsulfat und einengen erhielt man 0,7 g Wertprodukt.

Beispiel 27
4-Chlor-3-[4-chlor-3-hydrazinophenyl]-5-difluormethoxy-1-methyl-1H-pyrazol-Hydrochlorid (Nr. Ia.189)

4,45 g (14,5 mmol) 3-(3-Amino-4-chlorphenyl)-4-chlor-5-difluormethoxy-1-methyl-1H-pyrazol wurden durch kurzes Erwärmen auf 80°C in 26 ml konzentrierter Salzsäure gelöst. Dann kühlte man auf 0°C und tropfte bei dieser Temperatur eine Lösung von 1,0 g (14,5 mmol) Natriumnitrit in 4 ml Wasser zu. Anschließend wurde noch 30 Minuten bei 0°C nachgerührt (Diazoniumsalzlösung).

Die Diazoniumsalzlösung wurde in eine auf 0 - 5°C gekühlte Lösung von 8,1 g (3,6 mmol) Zinn(II)chlorid-Dihydrat in 5 ml konzentrierter Salzsäure getropft. Anschließend rührte man noch zwei Stunden bei Raumtemperatur, wonach die Reaktionsmischung auf 200 ml Wasser gegossen wurde. Aus der erhaltenen Suspension trennte man das feste Wertprodukt ab. Ausbeute: 3,7 g.
Beispiel 28
4-Chlor-3-[(4-chlor-3-(2-ethoxycarbonylhydrazino)-phenyl]-5-difluoromethoxy-1-methyl-1H-pyrazol (Nr. Ia.190)

5 Zu einer Lösung von 17,6 g (49 mmol) 4-Chlor-3-(4-chlor-3-hydrazino-phenyl]-5-difluoromethoxy-1-methyl-1H-pyrazol-Hydrochlorid in 400 ml Tetrahydrofuran wurden 13,3 g (103 mmol) Ethyldiisopropylamin gegeben. Zu dieser Mischung tropfte man bei 0°C 5,8 g (54 mmol) Ethylchlorformiat, wonach 30 Stunden bei Raumtemperatur gerührt wurde. Anschließend filtrierte man die erhaltene Suspension. Das Filtrat wurde eingeengt. Der Rückstand nahm man in Ethylacetat auf. Die Ethylacetat-Phase wurde mit Wasser und gesättigter Natriumsulfat-Lösung gewaschen, dann über Magnesiumsulfat getrocknet und schließlich eingeengt. Ausbeute: 15,6 g.

Beispiel 29
4-Chlor-3-[(4-chlor-3-(2-ethoxycarbonylazo)-phenyl]-5-difluormethoxy-1-methyl-1H-pyrazol (Nr. Ia.191)

20 Zu einer Lösung von 2,1 g (5,3 mmol) 4-Chlor-3-[(4-chlor-3-(2-ethoxycarbonylhydrazino)-phenyl]-5-difluoromethoxy-1-methyl-1H-pyrazol in 15 ml Dichlormethan wurde eine Lösung von 2,1 g (6,6 mmol) m-Chlorperbenzoësäure in 10 ml Dichlormethan getropft. Nach 30 Minuten Rühren bei 35°C goss man auf 50 ml Wasser. Die organische Phase wurde abgetrennt und mit 10 gew.-%iger Natriumhydrogencarbonat-Lösung gewaschen, danach über Magnesiumsulfat getrocknet und schließlich eingeengt. Die Reinigung des Rohprodukts erfolgte mittels Säulenchromatographie an Kieselgel (Eluent: Hexan/Essigester = 4:1). Ausbeute: 0,5 g.

Beispiel 30
4-Chlor-3-(4-chlor-3-iodphenyl]-5-difluoromethoxy-1-methyl-1H-pyrazol (Nr. Ia.219)

35 Unter Verwendung von 4,5 g (14,7 mmol) 3-(3-Amino-4-chlorphenyl]-4-chlor-5-difluoromethoxy-1-methyl-1H-pyrazol, 7 ml konzentrierter Salzsäure, 1,1 g (16,2 mmol) Natriumnitrit und 15 ml Wasser wurde eine Diazoniumsalzlösung bereitet, wie in Beispiel 27 beschrieben. Diese Diazoniumsalzlösung wurde tropfenweise zu 24,4 g (14,6 mmol) Kaliumjodid in 30 ml Wasser gegeben. Nach Rühren über Nacht extrahierte man mit Dichlormethan. Die Dichlormethan-Phase wurde mit Natronlauge und gesättigter Natriumchlorid-Lösung gewaschen, dann über Magnesiumsulfat getrocknet und schließlich eingeengt. Die Reinigung des Rohproduktes erfolgte mittels Kieselgelchromatographie (Eluent: Hexan/Ethylacetat = 6:1). Ausbeute: 2,9 g.
Beispiel 31
4-Chlor-3-(4-cyano-3-nitrophenyl)-5-difluormethoxy-1-methyl-1H-pyrazol (Nr. If.059)

Zu einer Lösung von 5,0 g (15,6 mmol) 4-Chlor-3-(4-fluor-3-nitrophenyl)-5-difluormethoxy-1-methyl-1H-pyrazol in 70 ml Dimethylsulfoxid wurden 1,1 g (17 mmol) Kaliumcyanid gegeben. Anschließend rührte man 5 Stunden bei 50°C und 3 Tage bei Raumtemperatur. Nach Gießen der Reaktionsmischung auf Eiswasser wurde das Produkt mit Methyl-tert.-butylether extrahiert. Die Etherphase wurde über Magnesiumsulfat getrocknet und eingeeignet. Die Reinigung des Rohproduktes erfolgte mittels Säulenchromatographie an Kieselgel (Eluent: Hexan/Essigester = 3:1). Ausbeute: 2,7 g.

Beispiel 32
4-Chlor-3-(4-cyano-3-methoxyphenyl)-5-difluor-methoxy-1-methyl-1H-pyrazol (Nr. If.001))

Zu einer Lösung von 1,4 g (4,3 mmol) 4-Chlor-3-(4-cyano-3-nitrophenyl)-5-difluormethoxy-1-methyl-1H-pyrazol in 30 ml Methanol wurden 0,9 ml einer 30 gew.-%igen Lösung von Natriummethylat in Methanol gegeben. Nach 6 Stunden Rühren bei Raumtemperatur kühlte man ca. 16 Std. auf 0°C. Danach wurde das feste Reaktionsprodukt abgetrennt. Ausbeute: 0,6 g.

In den folgenden Tabellen 1 - 7 sind weitere Verbindungen angegeben, die auf die gleiche Weise hergestellt wurden oder entweder nach den vorstehend beschriebenen Verfahren oder nach an sich bekannten Methoden herstellbar sind.
Tabelle 1

<table>
<thead>
<tr>
<th>Nr.</th>
<th>R^1</th>
<th>Schmp./ MS [mz^1] / (^1)H-NMR [ppm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ia.001</td>
<td>-OCH₃</td>
<td></td>
</tr>
<tr>
<td>Ia.002</td>
<td>-OC₂H₅</td>
<td></td>
</tr>
<tr>
<td>Ia.003</td>
<td>-OCH₂-C₂H₅</td>
<td></td>
</tr>
<tr>
<td>Ia.004</td>
<td>-OCH(CH₃)₂</td>
<td></td>
</tr>
<tr>
<td>Ia.005</td>
<td>-OCH₂-CH₂-C₂H₅</td>
<td></td>
</tr>
<tr>
<td>Ia.006</td>
<td>-OCH(CH₃)-C₂H₅</td>
<td></td>
</tr>
<tr>
<td>Ia.007</td>
<td>-OCH₂-CH(CH₃)₂</td>
<td></td>
</tr>
<tr>
<td>Ia.008</td>
<td>-OCH₂-CH₂-CH₂-C₂H₅</td>
<td></td>
</tr>
<tr>
<td>Ia.009</td>
<td>-OCH₂-CH=CH₂</td>
<td></td>
</tr>
<tr>
<td>Ia.010</td>
<td>-OCH₂-CH=CHCl</td>
<td></td>
</tr>
<tr>
<td>Ia.011</td>
<td>-OCH₂-C≡CH</td>
<td></td>
</tr>
<tr>
<td>Ia.012</td>
<td>-OCH(CH₃)-C≡CH</td>
<td></td>
</tr>
<tr>
<td>Ia.013</td>
<td>-OCH₂-CO-OCH₃</td>
<td></td>
</tr>
<tr>
<td>Ia.014</td>
<td>-OCH₂-CO-OC₂H₅</td>
<td></td>
</tr>
<tr>
<td>Ia.015</td>
<td>-OCH(CH₃)-CO-OCH₃</td>
<td></td>
</tr>
<tr>
<td>Ia.016</td>
<td>-OCH(CH₃)-CO-OC₂H₅</td>
<td></td>
</tr>
<tr>
<td>Ia.017</td>
<td>-O-cyclopent enyl</td>
<td></td>
</tr>
<tr>
<td>Ia.018</td>
<td>-OCH₂-CN</td>
<td></td>
</tr>
<tr>
<td>Ia.019</td>
<td>-OCH(CH₃)-CN</td>
<td></td>
</tr>
<tr>
<td>Ia.020</td>
<td>-OH</td>
<td></td>
</tr>
<tr>
<td>Ia.021</td>
<td>-OCH₂-CO-O-(CH₂)₄-CH₃</td>
<td></td>
</tr>
<tr>
<td>Ia.022</td>
<td>-OCH(CH₃)-CO-O-(CH₂)₄-CH₃</td>
<td></td>
</tr>
<tr>
<td>Ia.023</td>
<td>-OCH₂-phenyl</td>
<td></td>
</tr>
<tr>
<td>Ia.024</td>
<td>-SCH₃</td>
<td></td>
</tr>
<tr>
<td>Ia.025</td>
<td>-SC₂H₅</td>
<td></td>
</tr>
<tr>
<td>Ia.026</td>
<td>-SCH₂-C₂H₅</td>
<td></td>
</tr>
<tr>
<td>Ia.027</td>
<td>-SCH(CH₃)₂</td>
<td></td>
</tr>
<tr>
<td>Ia.028</td>
<td>-SCH₂-CH₂-C₂H₅</td>
<td></td>
</tr>
</tbody>
</table>

(R², R⁵ = Cl; R³ = CH₃; Z-R⁴ = OCH₂F₂)
<table>
<thead>
<tr>
<th>Nr.</th>
<th>R<sup>i</sup></th>
<th>Schmp. / MS [m/z<sup>-1</sup>] /
1H-NMR [ppm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ia.029</td>
<td>-SCH(CH<sub>3</sub>)<sub>-</sub>C<sub>2</sub>H<sub>5</sub></td>
<td></td>
</tr>
<tr>
<td>Ia.030</td>
<td>-SCH<sub>2</sub>-CH(CH<sub>3</sub>)<sub>2</sub></td>
<td></td>
</tr>
<tr>
<td>Ia.031</td>
<td>-SCH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-C<sub>2</sub>H<sub>5</sub></td>
<td></td>
</tr>
<tr>
<td>Ia.032</td>
<td>-SCH<sub>2</sub>-CH=CH<sub>2</sub></td>
<td></td>
</tr>
<tr>
<td>Ia.033</td>
<td>-SCH<sub>2</sub>-CH=CH-C<sub>2</sub>H<sub>5</sub></td>
<td></td>
</tr>
<tr>
<td>Ia.034</td>
<td>-SCH<sub>2</sub>-C≡CH</td>
<td></td>
</tr>
<tr>
<td>Ia.035</td>
<td>-SCH(CH<sub>3</sub>)<sub>-</sub>C≡CH</td>
<td></td>
</tr>
<tr>
<td>Ia.036</td>
<td>-SCH<sub>2</sub>-CO-OC<sub>2</sub>H<sub>5</sub></td>
<td></td>
</tr>
<tr>
<td>Ia.037</td>
<td>-SCH<sub>2</sub>-CO-OC<sub>2</sub>H<sub>5</sub></td>
<td></td>
</tr>
<tr>
<td>Ia.038</td>
<td>-SCH(CH<sub>3</sub>)<sub>-</sub>CO-OC<sub>2</sub>H<sub>5</sub></td>
<td></td>
</tr>
<tr>
<td>Ia.039</td>
<td>-SCH(CH<sub>3</sub>)<sub>-</sub>CO-OC<sub>2</sub>H<sub>5</sub></td>
<td></td>
</tr>
<tr>
<td>Ia.040</td>
<td>-S-cyclopentyl</td>
<td></td>
</tr>
<tr>
<td>Ia.041</td>
<td>-SCH<sub>2</sub>-CN</td>
<td></td>
</tr>
<tr>
<td>Ia.042</td>
<td>-SCH(CH<sub>3</sub>)<sub>-</sub>CN</td>
<td></td>
</tr>
<tr>
<td>Ia.043</td>
<td>-SCH<sub>2</sub>-CO-O-(CH<sub>2</sub>)<sub>4</sub>-CH<sub>3</sub></td>
<td></td>
</tr>
<tr>
<td>Ia.044</td>
<td>-SCH(CH<sub>3</sub>)<sub>-</sub>CO-O-(CH<sub>2</sub>)<sub>4</sub>-CH<sub>3</sub></td>
<td></td>
</tr>
<tr>
<td>Ia.045</td>
<td>-SCH<sub>2</sub>-phenyl</td>
<td></td>
</tr>
<tr>
<td>Ia.046</td>
<td>-SCH<sub>2</sub>-<sub>-</sub>(4-Cl-phenyl)</td>
<td></td>
</tr>
<tr>
<td>Ia.047</td>
<td>-SO<sub>2</sub>-Cl</td>
<td>102-105°C</td>
</tr>
<tr>
<td>Ia.048</td>
<td>-SO<sub>2</sub>-NH<sub>2</sub></td>
<td>8.65(s,1H), 8.05(d,1H), 7.58(d,1H), 6.70(t,1H), 5.21(s,2H), 3.84(s,3H)</td>
</tr>
<tr>
<td>Ia.049</td>
<td>-SO<sub>2</sub>-NH·CH<sub>3</sub></td>
<td>8.67(s,1H), 8.07(d,1H), 7.60(d,1H), 6.71(t,1H), 4.95(d,1H), 3.84(s,3H), 2.69(d,3H)</td>
</tr>
<tr>
<td>Ia.050</td>
<td>-SO<sub>2</sub>-N(CH<sub>3</sub>)<sub>2</sub></td>
<td>8.60(s,1H), 8.03(d,1H), 7.60(d,1H), 6.71(t,1H), 3.85(s,3H), 2.94(s,6H)</td>
</tr>
<tr>
<td>Ia.051</td>
<td>-SO<sub>2</sub>-NH·C<sub>2</sub>H<sub>5</sub></td>
<td></td>
</tr>
<tr>
<td>Ia.052</td>
<td>-SO<sub>2</sub>-N(CH<sub>3</sub>)<sub>-</sub>C<sub>2</sub>H<sub>5</sub></td>
<td></td>
</tr>
<tr>
<td>Ia.053</td>
<td>-SO<sub>2</sub>-N(C<sub>2</sub>H<sub>5</sub>)<sub>2</sub></td>
<td></td>
</tr>
<tr>
<td>Ia.054</td>
<td>-SO<sub>2</sub>-(pyrrolidin-1-yl)</td>
<td>8.63(s,1H), 8.02(d,1H), 7.60(d,1H), 6.71(t,1H), 3.86(s,3H), 3.50-3.40(m,4H), 2.00-1.87(m,4H)</td>
</tr>
<tr>
<td>Ia.055</td>
<td>-SO<sub>2</sub>-(morpholin-4-yl)</td>
<td></td>
</tr>
<tr>
<td>Ia.056</td>
<td>-SO<sub>2</sub>-NH-phenyl</td>
<td></td>
</tr>
<tr>
<td>Ia.057</td>
<td>-SO<sub>2</sub>-N(CH<sub>3</sub>)-phenyl</td>
<td></td>
</tr>
<tr>
<td>Ia.058</td>
<td>-SO<sub>2</sub>-NH·CH<sub>2</sub>-phenyl</td>
<td></td>
</tr>
<tr>
<td>Ia.059</td>
<td>-NO<sub>2</sub></td>
<td>92-93°C</td>
</tr>
<tr>
<td>Nr.</td>
<td>R<sup>1</sup></td>
<td>Schmp. / MS [m/z<sup>-1</sup>] /
¹H-NMR [ppm]</td>
</tr>
<tr>
<td>-----</td>
<td>----------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Ia.060</td>
<td>-NH<sub>2</sub></td>
<td>7.28 (s,1H), 7.27 (d,1H),
7.21 (d,1H),
6.67 (t,1H),
4.11 (s,2H),
3.80 (s,3H)</td>
</tr>
<tr>
<td>Ia.061</td>
<td>-NH-SO<sub>2</sub>-CH<sub>3</sub></td>
<td>8.22 (s,1H), 7.68 (d,1H),
7.48 (d,1H),
6.86 (s,1H),
6.70 (t,1H),
3.84 (s,3H),
3.10 (s,3H)</td>
</tr>
<tr>
<td>Ia.062</td>
<td>-N(SO<sub>2</sub>-CH<sub>3</sub>)<sub>2</sub></td>
<td>153-154°C</td>
</tr>
<tr>
<td>Ia.063</td>
<td>-NH-SO<sub>2</sub>-C<sub>2</sub>H<sub>5</sub></td>
<td>83°C</td>
</tr>
<tr>
<td>Ia.064</td>
<td>-N(SO<sub>2</sub>-C<sub>2</sub>H<sub>5</sub>)<sub>2</sub></td>
<td>96°C</td>
</tr>
<tr>
<td>Ia.065</td>
<td>-NH-SO<sub>2</sub>-CH<sub>2</sub>-C<sub>2</sub>H<sub>5</sub></td>
<td>146°C</td>
</tr>
<tr>
<td>Ia.066</td>
<td>-NH-CHO</td>
<td></td>
</tr>
<tr>
<td>Ia.067</td>
<td>-NH-CO-CH<sub>3</sub></td>
<td></td>
</tr>
<tr>
<td>Ia.068</td>
<td>-NH-CO-C<sub>2</sub>H<sub>5</sub></td>
<td></td>
</tr>
<tr>
<td>Ia.069</td>
<td>-N(CO-CH<sub>3</sub>)<sub>-</sub>S=O<sub>-</sub>CH<sub>3</sub></td>
<td></td>
</tr>
<tr>
<td>Ia.070</td>
<td>-N(CO-CH<sub>3</sub>)<sub>-</sub>S=O<sub>-</sub>C<sub>2</sub>H<sub>5</sub></td>
<td></td>
</tr>
<tr>
<td>Ia.071</td>
<td>-CH<sub>3</sub></td>
<td>7.74 (s,1H), 7.65 (d,1H),
7.39 (d,1H),
6.70 (t,1H),
3.85 (s,3H),
2.45 (s,3H)</td>
</tr>
<tr>
<td>Ia.072</td>
<td>-CH=CH-CH=CH<sub>2</sub></td>
<td></td>
</tr>
<tr>
<td>Ia.073</td>
<td>-CH=CH-CH=CH<sub>2</sub></td>
<td>8.12 (s,1H), 7.72 (d,1H),
7.41 (d,1H),
7.21 (d,1H),
6.70 (t,1H),
6.29 (d,1H),
5.21 (d,1H),
4.28-4.14 (m,2H),
3.84-3.88 (m,2H),
3.84 (s,3H),
2.30-2.13 (m,1H),
1.48-1.34 (m,1H)</td>
</tr>
<tr>
<td>Ia.074</td>
<td>-CH<sub>2</sub>-Br</td>
<td>7.98 (s,1H), 7.80 (d,1H),
7.46 (d,1H),
6.70 (t,1H),
4.64 (s,2H),
3.87 (s,3H)</td>
</tr>
<tr>
<td>Ia.075</td>
<td>-CH<sub>2</sub>-OCH<sub>3</sub></td>
<td>54-55°C</td>
</tr>
<tr>
<td>Ia.076</td>
<td>-CH<sub>2</sub>-OC<sub>2</sub>H<sub>5</sub></td>
<td>8.02 (s,1H), 7.73 (d,1H),
7.41 (d,1H),
6.69 (t,1H),
4.67 (s,2H),
3.87 (s,3H),
3.63 (q,2H),
1.30 (t,3H)</td>
</tr>
<tr>
<td>Ia.077</td>
<td>-CH<sub>2</sub>-OCH<sub>2</sub>-C<sub>2</sub>H<sub>5</sub></td>
<td></td>
</tr>
<tr>
<td>Ia.078</td>
<td>-CH<sub>2</sub>-O(CH<sub>3</sub>)<sub>2</sub></td>
<td>8.04 (s,1H), 7.73 (d,1H),
7.42 (d,1H),
6.70 (t,1H),
4.65 (s,2H),
3.84 (s,3H),
3.75 (m,1H),
1.25 (d,6H)</td>
</tr>
<tr>
<td>Ia.079</td>
<td>-CH<sub>2</sub>-O-(CH<sub>2</sub>)<sub>3</sub>-CH<sub>3</sub></td>
<td>8.00 (s,1H), 7.72 (d,1H),
7.39 (d,1H),
6.68 (t,1H),
4.62 (s,2H),
3.79 (s,3H),
3.57 (t,2H),
1.65 (m,2H),
1.44 (m,2H),
0.95 (t,3H)</td>
</tr>
<tr>
<td>Ia.080</td>
<td>-CH<sub>2</sub>-OCH(CH<sub>3</sub>)<sub>-</sub>C<sub>2</sub>H<sub>5</sub></td>
<td></td>
</tr>
<tr>
<td>Nr.</td>
<td>R²</td>
<td>Schmp. / MS [m/z⁻¹] / ¹H-NMR [ppm]</td>
</tr>
<tr>
<td>-----</td>
<td>----</td>
<td>---------------------------------</td>
</tr>
<tr>
<td>Ia.081</td>
<td>-CH₂-OCH₂-CH(CH₃)₂</td>
<td></td>
</tr>
<tr>
<td>Ia.082</td>
<td>-CH₂-OCH₂-CH=CH₂</td>
<td></td>
</tr>
<tr>
<td>Ia.083</td>
<td>-CH₂-OCH₂-C≡C-H</td>
<td></td>
</tr>
<tr>
<td>Ia.084</td>
<td>-CH₂-OCH₂-CO-OCH₃</td>
<td></td>
</tr>
<tr>
<td>Ia.085</td>
<td>-CH₂-OCH₂-CO-OC₂H₅</td>
<td></td>
</tr>
<tr>
<td>Ia.086</td>
<td>-CH₂-OCH(CH₃)-CO-OCH₃</td>
<td></td>
</tr>
<tr>
<td>Ia.087</td>
<td>-CH₂-OCH(CH₃)-CO-OC₂H₅</td>
<td></td>
</tr>
<tr>
<td>Ia.088</td>
<td>-CH₂-O-cyclopentyl</td>
<td></td>
</tr>
<tr>
<td>Ia.089</td>
<td>-CH₂-SCH₃</td>
<td>7.88 (s, 1H), 7.73 (d, 1H), 7.44 (d, 1H), 6.71 (t, 1H), 3.86 (s, 2H), 3.83 (s, 3H), 2.10 (s, 3H)</td>
</tr>
<tr>
<td>Ia.090</td>
<td>-CH₂-SC₂H₅</td>
<td>7.88 (s, 1H), 7.72 (d, 1H), 7.44 (d, 1H), 6.70 (t, 1H), 3.88 (s, 2H), 3.82 (s, 3H), 2.46 (q, 2H), 1.25 (t, 3H)</td>
</tr>
<tr>
<td>Ia.091</td>
<td>-CH₂-SCH₂-C₂H₅</td>
<td></td>
</tr>
<tr>
<td>Ia.092</td>
<td>-CH₂-SCH₂-CO-OCH₃</td>
<td>7.89 (s, 1H), 7.75 (d, 1H), 7.46 (d, 1H), 6.69 (t, 1H), 4.00 (s, 2H), 3.84 (s, 3H), 3.75 (s, 3H), 3.22 (s, 2H)</td>
</tr>
<tr>
<td>Ia.093</td>
<td>-CH₂-SCH₂-CO-OC₂H₅</td>
<td>7.89 (s, 1H), 7.75 (d, 1H), 7.46 (d, 1H), 6.69 (t, 1H), 4.20 (q, 2H), 4.00 (s, 2H), 3.82 (s, 3H), 3.19 (s, 2H), 1.30 (t, 3H)</td>
</tr>
<tr>
<td>Ia.094</td>
<td>-CH₂-N(CH₃)₂</td>
<td></td>
</tr>
<tr>
<td>Ia.095</td>
<td>-COOH</td>
<td>178-180°C</td>
</tr>
<tr>
<td>Ia.096</td>
<td>-CO-OCH₃</td>
<td>84-85°C</td>
</tr>
<tr>
<td>Ia.097</td>
<td>-CO-OC₂H₅</td>
<td></td>
</tr>
<tr>
<td>Ia.098</td>
<td>-CO-OCH₂-C₂H₅</td>
<td>8.31 (s, 1H), 7.94 (d, 1H), 7.51 (d, 1H), 6.71 (t, 1H), 5.31 (m, 1H), 3.89 (s, 3H), 1.42 (d, 6H)</td>
</tr>
<tr>
<td>Ia.099</td>
<td>-CO-OCH(CH₃)₂</td>
<td></td>
</tr>
<tr>
<td>Ia.100</td>
<td>-CO-(CH₃)₃-CH₃</td>
<td></td>
</tr>
<tr>
<td>Ia.101</td>
<td>-CO-OCH(CH₃)-C₂H₅</td>
<td></td>
</tr>
<tr>
<td>Ia.102</td>
<td>-CO-OCH₂-CH(CH₃)₂</td>
<td></td>
</tr>
<tr>
<td>Ia.103</td>
<td>-CO-(CH₃)₄-CH₃</td>
<td></td>
</tr>
<tr>
<td>Ia.104</td>
<td>-CO-OCH₂-CH₃-OCH₃</td>
<td></td>
</tr>
<tr>
<td>Ia.105</td>
<td>-CO-OCH₂-CH₃-OC₂H₅</td>
<td></td>
</tr>
<tr>
<td>Ia.106</td>
<td>-CHO</td>
<td>102-104°C</td>
</tr>
<tr>
<td>Nr.</td>
<td>R¹</td>
<td>Schmp. / MS [m/z⁻¹] / (^1)H-NMR [ppm]</td>
</tr>
<tr>
<td>-------</td>
<td>---------</td>
<td>---</td>
</tr>
<tr>
<td>Ia.107</td>
<td>-CH(OCH₃)₂</td>
<td>8.16 (s, 1H), 7.80 (d, 1H), 7.44 (d, 1H), 6.70 (t, 1H), 5.68 (s, 1H), 3.85 (s, 3H), 3.39 (s, 6H)</td>
</tr>
<tr>
<td>Ia.108</td>
<td>-CH(OCC₃H₅)₂</td>
<td></td>
</tr>
<tr>
<td>Ia.109</td>
<td>-CH(OCH₂-C₃H₅)₂</td>
<td></td>
</tr>
<tr>
<td>Ia.110</td>
<td>-(1,3-Dioxolan-2-yl)</td>
<td></td>
</tr>
<tr>
<td>Ia.111</td>
<td>-(4-Methyl-1,3-dioxolan-2-yl)</td>
<td>8.23-8.16 (m, 1H), 7.83 (d, 1H), 7.43 (d, 1H), 6.70 (t, 1H), 6.38-6.22 (m, 1H), 4.44-4.28 (m, 2H), 3.81 (s, 3H), 3.68-3.56 (m, 1H), 1.43-1.35 (m, 3H)</td>
</tr>
<tr>
<td>Ia.112</td>
<td>-(4-Methyl-1,3-dithiolan-2-yl)</td>
<td>8.58 (d, 1H), 7.79 (d, 1H), 7.51 (d, 1H), 7.20 (t, 1H), 6.12 (s, 1H), 4.20-4.01 (m, 1H), 3.90 (s, 3H), 3.65-3.46 (m, 1H), 3.23-3.12 (m, 1H), 1.59-1.48 (m, 3H)</td>
</tr>
<tr>
<td>Ia.113</td>
<td>-(4-Vinyl-1,3-dioxolan-2-yl)</td>
<td></td>
</tr>
<tr>
<td>Ia.114</td>
<td>-(4,5-Dimethyl-1,3-dioxolan-2-yl)</td>
<td></td>
</tr>
<tr>
<td>Ia.115</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ia.116</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ia.117</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ia.118</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nr.</td>
<td>R¹</td>
<td>Schmp. / MS [m/z⁻¹] / (^1)H-NMR [ppm]</td>
</tr>
<tr>
<td>-----</td>
<td>----</td>
<td>---</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>8,24 (s, 1H), 7,76 (d, 1H), 7,44 (d, 1H), 6,70 (t, 1H), 5,68 (s, 1H), 3,84 (s, 3H), 3,22-2,90 (m, 4H), 2,25-1,95 (m, 2H)</td>
</tr>
<tr>
<td>10</td>
<td>-CH=N-OH</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>-CH=N-OCH₃</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>-CH=N-OC₂H₅</td>
<td>67-70°C</td>
</tr>
<tr>
<td>13</td>
<td>-CH=N-OCH₂-C₂H₅</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>-CH=N-OC(CH₃)₂</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>-CH=N-OCH₂-C₂H₅</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>-CH=N-OC₂H₅</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>-CH=N-OCH₂-CO-OCH₃</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>-CH=N-OCH₂-CO-OC₂H₅</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>-CH=N-OCH₂-CO-OCH₃</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>-CH=N-OC(CH₃)₂-CO-OCH₃</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>-NH-SO₂-(thiophen-2-yl)</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>-NH-SO₂-(thiophen-3-yl)</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>-NH-SO₂-(3-trifluormethylphenyl)</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>-NH-SO₂-(2,6-dichlorphenyl)</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>-NH-SO₂-(4-chlorophenyl)</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>-NH-SO₂-(4-nitrophenyl)</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>-NH-SO₂-(5-chlorothiophen-2-yl)</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>-NH-CO-CH(Cl)-CH₂-Cl</td>
<td>8,94 (s, 1H), 7,68 (d, 1H), 7,50 (d, 1H), 7,28 (s, 1H), 6,70 (t, 1H), 4,81 (t, 1H), 4,16-4,10 (m, 2H), 3,82 (s, 3H)</td>
</tr>
<tr>
<td>40</td>
<td>-NH-CO-CH₂-CH(CH₃)₂</td>
<td>8,90 (s, 1H), 7,64 (d, 1H), 7,55 (d, 1H), 7,49 (s, 1H), 6,70 (t, 1H), 3,81 (s, 3H), 2,32 (d, 2H), 2,25 (m, 1H), 1,05 (d, 6H)</td>
</tr>
<tr>
<td>45</td>
<td>-NH-CO-cyclopropyl</td>
<td>142°C</td>
</tr>
<tr>
<td>50</td>
<td>-CH₂-OH</td>
<td>8,02 (s, 1H), 7,78 (d, 1H), 7,43 (d, 1H), 6,71 (t, 1H), 4,86 (s, 2H), 3,83 (s, 3H)</td>
</tr>
<tr>
<td>Nr.</td>
<td>R^1</td>
<td>Schmp. / MS [m/z -1] / 1H-NMR [ppm]</td>
</tr>
<tr>
<td>------</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>5</td>
<td>$-\text{CH}_2\text{-OCH}_2\text{-CH=NOCH}_3$</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>$\text{-CH}_2\text{-O-CO-CH}_3$</td>
<td>7.93 (s, 1H), 7.80 (d, 1H), 7.46 (d, 1H), 6.69 (t, 1H), 5.27 (s, 2H), 3.82 (s, 3H), 2.18 (s, 3H)</td>
</tr>
<tr>
<td>15</td>
<td>$\text{CO-OCH}_2\text{-CH=NOCH}_3$</td>
<td>8.39 (s, 1H), 7.94 (d, 1H), 7.59-6.89 (m, 1H), 7.51 (d, 1H), 6.70 (t, 1H), 5.12-4.91 (m, 2H), 3.96-3.91 (m, 3H), 3.82 (s, 3H)</td>
</tr>
<tr>
<td>20</td>
<td>$\text{CO-OCH}_2\text{-C(CH}_3\text{)_2}=\text{NOCH}_3$</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>$\text{CO-OCH}_2\text{-COOC}_2\text{H}_5$</td>
<td>435 [M]+, 362 [M-COOC\textsubscript{2}H\textsubscript{5}]</td>
</tr>
<tr>
<td>30</td>
<td>$\text{CH}=\text{CH}=\text{CH}=\text{COOC}_2\text{H}_5$</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>$\text{CH}=\text{CH}=\text{CO}=\text{NH}=\text{CH}_3$</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>$\text{CH}=\text{CH}=\text{CO}=\text{N(CH}_3\text{)_2}$</td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>$\text{CH}=\text{CH}=\text{CO}=\text{NH}_2$</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>$\text{CH}=\text{CH}=\text{CO}=\text{NH}_2$</td>
<td></td>
</tr>
<tr>
<td>55</td>
<td>$\text{CH}=\text{CH}=\text{CO}=\text{NH}_2$</td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>$\text{CH}=\text{CH}=\text{CO}=\text{NH}_2$</td>
<td></td>
</tr>
<tr>
<td>65</td>
<td>$\text{CH}=\text{CH}=\text{CO}=\text{NH}_2$</td>
<td></td>
</tr>
<tr>
<td>70</td>
<td>$\text{CH}=\text{CH}=\text{CO}=\text{NH}_2$</td>
<td></td>
</tr>
<tr>
<td>Nr.</td>
<td>R<sup>1</sup></td>
<td>Schmp. / MS [m/z<sup>-1</sup>] /<sup>1</sup>H-NMR [ppm]</td>
</tr>
<tr>
<td>-----</td>
<td>-----------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>5</td>
<td>Ia.166 -CH₂-SCH₂-CO-OCH(CH₃)<sub>2</sub></td>
<td>7.90 (s, 1H), 7.73 (d, 1H), 7.43 (d, 1H), 6.68 (t, 1H), 5.07 (m, 1H), 4.02 (s, 2H), 3.82 (s, 3H), 3.15 (s, 2H), 1.17 (d, 6H)</td>
</tr>
<tr>
<td></td>
<td>Ia.167 -CH₂-SO₂-C₅H₅</td>
<td>110-112°C</td>
</tr>
<tr>
<td></td>
<td>Ia.168 -CH₂-SO₂-C₅H₅</td>
<td>108-110°C</td>
</tr>
<tr>
<td>10</td>
<td>Ia.169 -SO<sub>3</sub>⁻ Na⁺</td>
<td>8.48 (s, 1H), 7.83 (d, 1H), 7.54 (d, 1H), 7.41 (t, 1H), 3.80 (s, 3H)</td>
</tr>
<tr>
<td></td>
<td>Ia.170 -SO₂-(1-piperidiny1)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ia.171 -SO₂-NH-cyclopropyl</td>
<td>120-123°C</td>
</tr>
<tr>
<td>15</td>
<td>Ia.172 -SO₂-NH-CH₂-CO-OCH₃</td>
<td>8.64 (s, 1H), 8.08 (d, 1H), 7.61 (d, 1H), 6.71 (t, 1H), 5.67 (s, 1H), 3.89 (s, 2H), 3.84 (s, 3H), 3.67 (s, 3H)</td>
</tr>
<tr>
<td></td>
<td>Ia.173 -SO₂-NH-CH₂-CO-O₂H₅</td>
<td>8.61 (s, 1H), 8.09 (d, 1H), 7.61 (d, 1H), 6.72 (t, 1H), 5.68 (s, 1H), 4.11 (q, 2H), 3.86 (s, 2H), 3.80 (s, 3H), 1.20 (t, 3H)</td>
</tr>
<tr>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ia.174 -SO₂-NH-CH(CH(CH₃)<sub>2</sub>)<sub>-</sub>CO-O₂H₅</td>
<td>8.61 (d, 1H), 8.44 (s, 1H), 8.05 (d, 1H), 7.78 (d, 1H), 7.49 (t, 1H), 3.84 (s, 3H), 3.79 (q, 2H), 3.54 (m, 1H), 1.98 (m, 1H), 1.00 (t, 3H), 0.90 (d, 3H), 0.80 (d, 3H)</td>
</tr>
<tr>
<td></td>
<td>Ia.175 -SO₂-NH-CH(CH(CH₃)<sub>2</sub>)<sub>-</sub>CO-O₂H₅</td>
<td>82-84°C</td>
</tr>
<tr>
<td>25</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ia.176 -SO₂-NH-CH(CH₃<sub>)</sub>-CO-O₂H₅</td>
<td>93°C</td>
</tr>
<tr>
<td></td>
<td>Ia.177 -SO₂-NH-CH₂CH(CH(CH₃)<sub>)</sub>-CO-O₂H₅</td>
<td>499[M]<sup>+</sup>, 440[M-COOC₂H₅]<sup>-</sup></td>
</tr>
<tr>
<td></td>
<td>Ia.178 -SO₂-NH-(4-chlorophenyl-methyl)<sub>-</sub>CO-O₂H₅</td>
<td>8.30 (s, 1H), 8.01 (d, 1H), 7.53 (d, 1H), 7.40 (t, 1H), 7.20 (s, 4H), 4.10 (m, 1H), 3.88 (q, 2H), 3.80 (s, 3H), 3.05-2.88 (m, 2H), 1.01 (t, 3H)</td>
</tr>
<tr>
<td>35</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ia.179 -SO₂-NH-(tetrahydrofuran-2-on-3-yl)</td>
<td>72-74°C</td>
</tr>
<tr>
<td></td>
<td>Ia.180 -SO₂-N(CH₃)<sub>-</sub>-CH₂-CO-O₂H₅</td>
<td>471[M]<sup>+</sup>, 398[M-COOC₂H₅]<sup>-</sup></td>
</tr>
<tr>
<td>40</td>
<td>Ia.181 -SO₂-N(CH₃)<sub>-</sub>-CH₂-CO-O₂H₅</td>
<td>8.66 (s, 1H), 8.02 (d, 1H), 7.58 (d, 1H), 6.71 (t, 1H), 4.19 (s, 3H), 3.82 (s, 2H), 3.70 (s, 3H), 3.02 (s, 3H)</td>
</tr>
<tr>
<td></td>
<td>Ia.182 -SO₂-(2-methoxycarbonyl-pyrrolidin-1-yl)</td>
<td>8.65 (s, 1H), 8.01 (d, 1H), 7.59 (d, 1H), 6.70 (t, 1H), 4.63 (m, 1H), 3.84 (s, 3H), 3.71 (m, 2H), 3.62 (s, 3H), 3.47 (m, 2H), 2.75 (m, 2H)</td>
</tr>
<tr>
<td>Nr.</td>
<td>R¹</td>
<td>Schmp. / MS [m/z⁻¹] / ¹H-NMR [ppm]</td>
</tr>
<tr>
<td>-----</td>
<td>---------------------</td>
<td>-----------------------------------</td>
</tr>
<tr>
<td>5</td>
<td>-SO₂-(2-ethoxycarbonyl-piperidin-1-yl)</td>
<td>8.68 (s,1H), 8.00 (d,1H), 7.55 (d,1H), 6.80 (t,1H), 4.80-3.76 (m,2H), 4.10 (q,2H), 3.84 (s,3H), 3.40 (t,1H), 2.25-1.81 (m,2H), 1.68 (m,2H), 1.45-1.30 (m,2H), 1.21 (t,3H)</td>
</tr>
<tr>
<td>10</td>
<td>-SO₂-N(CH₃)₂-CH₂-CO-NH(CH₃)</td>
<td>77-79°C</td>
</tr>
<tr>
<td>15</td>
<td>-SO₂-N(CH₃)₂-CH₂-CO-N(CH₃)₂</td>
<td>142°C</td>
</tr>
<tr>
<td>20</td>
<td>-NH-SO₂-C(CH₃)₂-Cl</td>
<td>8.38 (s,1H), 7.62 (d,1H), 7.40 (d,1H), 7.05 (s,1H), 6.69 (t,1H), 3.81 (s,3H), 1.94 (s,6H)</td>
</tr>
<tr>
<td>25</td>
<td>-N(SO₂-C(CH₃)₂-Cl)₂</td>
<td>144-146°C</td>
</tr>
<tr>
<td>30</td>
<td>-N(SO₂-(3,5-dimethyl-isoxazol-4-yl))₂</td>
<td>7.43 (s,1H), 7.31 (d,1H), 7.29 (d,1H), 7.06 (s,1H), 6.67 (t,3H), 6.32 (s,1H), 4.18 (q,2H), 3.80 (s,3H), 1.25 (t,3H)</td>
</tr>
<tr>
<td>35</td>
<td>-NH-NH₂⁺ Cl⁻</td>
<td>8.18 (s,1H), 8.07 (d,1H), 7.66 (d,1H), 6.70 (t,1H), 4.53 (q,2H), 3.82 (s,3H), 1.50 (t,3H)</td>
</tr>
<tr>
<td>40</td>
<td>-NH-NH-CO-OC₂H₅</td>
<td>8.31 (s,1H), 7.77 (d,1H), 7.42 (d,1H), 6.68 (t,1H), 6.52 (s,1H), 5.03 (s,1H), 4.88 (s,1H), 4.38 (q,2H), 4.25 (q,2H), 3.81 (s,3H), 1.48 (t,3H), 1.24 (t,3H)</td>
</tr>
<tr>
<td>45</td>
<td>-CH₂=CH-CO-(2-methoxycarbonyl-pyrrolidin-1-yl)</td>
<td>8.25 (s,1H), 7.83 (d,1H), 7.80 (m,1H), 7.68 (m,1H), 7.40 (t,1H), 7.08 (d,1H), 4.43 (m,1H), 3.81 (s,3H), 3.80-3.45 (m,4H), 3.65 (s,3H), 2.30-2.15 (m,2H)</td>
</tr>
<tr>
<td>50</td>
<td>-CH=CH-P(O)(OH)₂</td>
<td></td>
</tr>
<tr>
<td>Nr.</td>
<td>R<sup>1</sup></td>
<td>Schmp. / MS [m/z<sup>−1</sup>] / ¹H-NMR [ppm]</td>
</tr>
<tr>
<td>------</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>5</td>
<td>Ia.196 -CH=CH-P(O)(OC<sub>2</sub>H<sub>5</sub>)<sub>2</sub></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ia.197 -CH<sub>2</sub>-P(O)(OH)<sub>2</sub></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ia.198 -CH<sub>2</sub>-P(O)(OC<sub>2</sub>H<sub>5</sub>)<sub>2</sub></td>
<td>7.93 (m, 1H), 7.75 (m, 1H), 7.58 (d, 1H), 7.37 (t, 1H), 4.05-3.90 (m, 4H), 3.80 (s, 3H), 3.45 (d, 2H), 1.30-1.15 (m, 6H)</td>
</tr>
<tr>
<td>10</td>
<td>Ia.199 -P(O)(OH)<sub>2</sub></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ia.200 -P(O)(OC<sub>2</sub>H<sub>5</sub>)<sub>2</sub></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ia.201 -OCH<sub>2</sub>-CO-OCH<sub>2</sub>-CH=CH=OCH<sub>3</sub></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ia.202 -CO-OCH<sub>2</sub>-CH=N-OCH<sub>2</sub>-CH=CH<sub>2</sub></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ia.203 -CO-OCH<sub>2</sub>-CH=N-OCH<sub>2</sub>-CH=CHCl</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ia.204 -CO-OCH<sub>2</sub>-CH=N-OCH<sub>2</sub>-CH<sub>2</sub>-C<sub>2</sub>H<sub>5</sub></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ia.205 -CO-OCH<sub>2</sub>-CH=N-OCH<sub>2</sub>-phenyl</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ia.206 -CO-NH-CH<sub>2</sub>-CO-OCH<sub>3</sub></td>
<td>8.22 (s, 1H), 7.90 (d, 1H), 7.48 (d, 1H), 6.82 (s, 1H), 6.70 (t, 1H), 4.31 (s, 2H), 3.89 (s, 3H), 3.88 (s, 3H)</td>
</tr>
<tr>
<td></td>
<td>Ia.207 -CO-NH-(CH(CH<sub>3</sub>)<sub>2</sub>) -CO-OC<sub>2</sub>H<sub>5</sub></td>
<td>8.20 (s, 1H), 7.89 (d, 1H), 7.49 (d, 1H), 6.78 (s, 1H), 6.69 (t, 1H), 4.80 (d, 1H), 4.26 (q, 2H), 3.83 (s, 3H), 2.35 (m, 1H), 1.31 (t, 3H), 1.08 (d, 3H), 1.02 (d, 3H)</td>
</tr>
<tr>
<td></td>
<td>Ia.208 -CO-N(CH<sub>3</sub>) -CH<sub>2</sub>-CO-OCH<sub>3</sub></td>
<td>421 [M]<sup>+</sup></td>
</tr>
<tr>
<td></td>
<td>Ia.209 -CO-N(CH<sub>3</sub>) -CH<sub>2</sub>-CO-OC<sub>2</sub>H<sub>5</sub></td>
<td>435 [M]<sup>+</sup>*, 362 [M-OCOCC<sub>2</sub>H<sub>5</sub>]<sup>+</sup>,</td>
</tr>
<tr>
<td></td>
<td>Ia.210 -C(SCH<sub>3</sub>) =N-OH</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ia.211 -C(SCH<sub>3</sub>) =N-OCH<sub>2</sub>-CO-OC<sub>2</sub>H<sub>5</sub></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ia.212 -C(SCH<sub>3</sub>) =N-O-CO-CH<sub>3</sub></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ia.213 -C(CN) =N-OH</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ia.214 -C(CN) =N-OCH<sub>2</sub>-CO-OC<sub>2</sub>H<sub>5</sub></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ia.215 -C(CN) =N-O-CO-CH<sub>3</sub></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ia.216 -CO-NH-(tetrahydrofuran-2-on-3-yl)</td>
<td>8.25 (s, 1H), 7.94 (d, 1H), 7.50 (d, 1H), 6.88 (s, 1H), 6.70 (t, 1H), 4.77 (m, 1H), 4.58 (t, 1H), 4.38 (m, 1H), 3.84 (s, 3H), 3.32 (m, 1H), 3.06 (m, 1H)</td>
</tr>
<tr>
<td></td>
<td>Ia.217 -Cl</td>
<td>8.00 (m, 1H), 7.73 (m, 1H), 7.50 (d, 1H), 6.68 (t, 1H), 3.81 (s, 3H)</td>
</tr>
<tr>
<td></td>
<td>Ia.218 -Br</td>
<td>8.16 (m, 1H), 7.80 (m, 1H), 7.50 (d, 1H), 6.69 (t, 1H), 3.82 (s, 3H)</td>
</tr>
<tr>
<td>Nr.</td>
<td>R<sup>1</sup></td>
<td>Schmp. / MS [m/z<sup>-1</sup>] /
¹H-NMR [ppm]</td>
</tr>
<tr>
<td>-----</td>
<td>---------------</td>
<td>---</td>
</tr>
<tr>
<td>5</td>
<td>-I</td>
<td>93–95°C; 8.37 (s, 1H), 7.83 (d, 1H), 7.48 (d, 1H), 6.68 (t, 1H), 3.83 (s, 3H)</td>
</tr>
<tr>
<td>10</td>
<td>-CN</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>CH=CH-CO-CH(OC<sub>2</sub>H<sub>5</sub>)<sub>2</sub></td>
<td>8.29–8.21 (m, 2H), 7.84 (m, 1H), 7.48 (d, 1H), 7.20 (m, 1H), 6.68 (t, 1H), 4.88 (s, 1H), 3.86 (s, 3H), 3.80–3.61 (m, 4H), 1.30–1.20 (m, 6H)</td>
</tr>
<tr>
<td>20</td>
<td>CH=CH-CO-CH</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>-O-CO-CH<sub>3</sub></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>-O-CO-C<sub>2</sub>H<sub>5</sub></td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>-O-CO-CH<sub>2</sub>-OCH<sub>3</sub></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>-O-CO-NH-CH<sub>3</sub></td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>-CO-N</td>
<td></td>
</tr>
<tr>
<td>Nr.</td>
<td>R<sup>1</sup></td>
<td>Schmp./ MS [m/z]<sup>-1</sup> /
¹H-NMR [ppm]</td>
</tr>
<tr>
<td>------</td>
<td>---------------</td>
<td>--------------------------------------</td>
</tr>
<tr>
<td>Ia.247</td>
<td>-CO-N</td>
<td></td>
</tr>
<tr>
<td>Ia.248</td>
<td>-CO-NO</td>
<td></td>
</tr>
</tbody>
</table>
Tabelle 2

![Chemical Structure]

\(R^2 = \text{CF}_3; \ R^3 = \text{CH}_3; \ Z-R^4 = \text{OCHF}_2; \ R^5 = \text{Cl} \)

<table>
<thead>
<tr>
<th>Nr.</th>
<th>(R^1)</th>
<th>Schmp./ MS [m/z-1] / (^1\text{H}-\text{NMR}) [ppm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>Ib.001</td>
<td>-OCH(_3)</td>
</tr>
<tr>
<td></td>
<td>Ib.002</td>
<td>-OC(_2)H(_5)</td>
</tr>
<tr>
<td></td>
<td>Ib.003</td>
<td>-OCH(_2)-C(_2)H(_6)</td>
</tr>
<tr>
<td></td>
<td>Ib.004</td>
<td>-OCH((\text{CH}_3))(_2)</td>
</tr>
<tr>
<td>20</td>
<td>Ib.005</td>
<td>-OCH(_2)-CH(_2)-C(_2)H(_6)</td>
</tr>
<tr>
<td></td>
<td>Ib.006</td>
<td>-OCH((\text{CH}_3))(_2)-C(_2)H(_6)</td>
</tr>
<tr>
<td></td>
<td>Ib.007</td>
<td>-OCH(_2)-CH((\text{CH}_3))(_2)</td>
</tr>
<tr>
<td></td>
<td>Ib.008</td>
<td>-OCH(_2)-CH(_2)-CH(_2)-C(_2)H(_6)</td>
</tr>
<tr>
<td></td>
<td>Ib.009</td>
<td>-OCH(_2)-CH=CH(_2)</td>
</tr>
<tr>
<td>25</td>
<td>Ib.010</td>
<td>-OCH(_2)-CH=CHCl</td>
</tr>
<tr>
<td></td>
<td>Ib.011</td>
<td>-OCH(_2)-C≡CH</td>
</tr>
<tr>
<td></td>
<td>Ib.012</td>
<td>-OCH((\text{CH}_3))C≡CH</td>
</tr>
<tr>
<td></td>
<td>Ib.013</td>
<td>-OCH(_2)-CO-OCH(_3)</td>
</tr>
<tr>
<td>30</td>
<td>Ib.014</td>
<td>-OCH(_2)-CO-OCH(_3)</td>
</tr>
<tr>
<td></td>
<td>Ib.015</td>
<td>-OCH((\text{CH}_3))(_2)-CO-OCH(_3)</td>
</tr>
<tr>
<td></td>
<td>Ib.016</td>
<td>-OCH((\text{CH}_3))(_2)-CO-OCH(_2)H(_5)</td>
</tr>
<tr>
<td></td>
<td>Ib.017</td>
<td>-O-cyclopentenyl</td>
</tr>
<tr>
<td>35</td>
<td>Ib.018</td>
<td>-OCH(_2)-CN</td>
</tr>
<tr>
<td></td>
<td>Ib.019</td>
<td>-OCH((\text{CH}_3))(_2)-CN</td>
</tr>
<tr>
<td></td>
<td>Ib.020</td>
<td>-OH</td>
</tr>
<tr>
<td></td>
<td>Ib.021</td>
<td>-OCH(2)-CO-({(\text{CH}_2)_4})-CH(_3)</td>
</tr>
<tr>
<td></td>
<td>Ib.022</td>
<td>-OCH((\text{CH}_3))(2)-CO-O-({(\text{CH}_2)_4})-CH(_3)</td>
</tr>
<tr>
<td>40</td>
<td>Ib.023</td>
<td>-OCH(_2)-phenyl</td>
</tr>
<tr>
<td></td>
<td>Ib.024</td>
<td>-SCH(_3)</td>
</tr>
<tr>
<td></td>
<td>Ib.025</td>
<td>-SC(_2)H(_5)</td>
</tr>
<tr>
<td></td>
<td>Ib.026</td>
<td>-SCH(_2)-C(_2)H(_5)</td>
</tr>
<tr>
<td>45</td>
<td>Ib.027</td>
<td>-SCH((\text{CH}_3))(_2)</td>
</tr>
<tr>
<td></td>
<td>Ib.028</td>
<td>-SCH(_2)-CH(_2)-C(_2)H(_5)</td>
</tr>
<tr>
<td></td>
<td>Ib.029</td>
<td>-SCH((\text{CH}_3))(_2)-C(_2)H(_5)</td>
</tr>
<tr>
<td>Nr.</td>
<td>R¹</td>
<td>Schmp., MS [m/z]</td>
</tr>
<tr>
<td>------</td>
<td>--------------</td>
<td>------------------</td>
</tr>
<tr>
<td>Ib.030</td>
<td>-SCH₂-CH(CH₃)₂</td>
<td></td>
</tr>
<tr>
<td>Ib.031</td>
<td>-SCH₂-CH₂-CH₃-C₂H₅</td>
<td></td>
</tr>
<tr>
<td>Ib.032</td>
<td>-SCH₂-CH=CH₂</td>
<td></td>
</tr>
<tr>
<td>Ib.033</td>
<td>-SCH₂-CH=CH-Cl</td>
<td></td>
</tr>
<tr>
<td>Ib.034</td>
<td>-SCH₂-C≡CH</td>
<td></td>
</tr>
<tr>
<td>Ib.035</td>
<td>-SCH(CH₃)₂-C≡CH</td>
<td></td>
</tr>
<tr>
<td>Ib.036</td>
<td>-SCH₂-CO-OCH₃</td>
<td></td>
</tr>
<tr>
<td>Ib.037</td>
<td>-SCH₂-CO-OC₂H₅</td>
<td></td>
</tr>
<tr>
<td>Ib.038</td>
<td>-SCH(CH₃)₂-CO-OCH₃</td>
<td></td>
</tr>
<tr>
<td>Ib.039</td>
<td>-SCH(CH₃)₂-CO-OC₂H₅</td>
<td></td>
</tr>
<tr>
<td>Ib.040</td>
<td>-S-cyclopentyl</td>
<td></td>
</tr>
<tr>
<td>Ib.041</td>
<td>-SCH₂-CN</td>
<td></td>
</tr>
<tr>
<td>Ib.042</td>
<td>-SCH(CH₃)₂-CN</td>
<td></td>
</tr>
<tr>
<td>Ib.043</td>
<td>-SCH₂-CO-O-(CH₂)₄-CH₃</td>
<td></td>
</tr>
<tr>
<td>Ib.044</td>
<td>-SCH(CH₃)₂-CO-O-(CH₂)₄-CH₃</td>
<td></td>
</tr>
<tr>
<td>Ib.045</td>
<td>-SCH₂-phenyl</td>
<td></td>
</tr>
<tr>
<td>Ib.046</td>
<td>-SCH₂-(4-Cl-phenyl)</td>
<td></td>
</tr>
<tr>
<td>Ib.047</td>
<td>-SO₂-Cl</td>
<td></td>
</tr>
<tr>
<td>Ib.048</td>
<td>-SO₂-NH₂</td>
<td></td>
</tr>
<tr>
<td>Ib.049</td>
<td>-SO₂-NH-CH₃</td>
<td></td>
</tr>
<tr>
<td>Ib.050</td>
<td>-SO₂-N(CH₃)₂</td>
<td></td>
</tr>
<tr>
<td>Ib.051</td>
<td>-SO₂-NH-C₂H₅</td>
<td></td>
</tr>
<tr>
<td>Ib.052</td>
<td>-SO₂-N(CH₃)₂-C₂H₅</td>
<td></td>
</tr>
<tr>
<td>Ib.053</td>
<td>-SO₂-N(C₂H₅)₂</td>
<td></td>
</tr>
<tr>
<td>Ib.054</td>
<td>-SO₂-(pyrrolidin-1-yl)</td>
<td></td>
</tr>
<tr>
<td>Ib.055</td>
<td>-SO₂-(morpholin-4-yl)</td>
<td></td>
</tr>
<tr>
<td>Ib.056</td>
<td>-SO₂-NH-phenyl</td>
<td></td>
</tr>
<tr>
<td>Ib.057</td>
<td>-SO₂-N(CH₃)₂-phenyl</td>
<td></td>
</tr>
<tr>
<td>Ib.058</td>
<td>-SO₂-NH-CH₂-phenyl</td>
<td></td>
</tr>
<tr>
<td>Ib.059</td>
<td>-NO₂</td>
<td></td>
</tr>
<tr>
<td>Ib.060</td>
<td>-NH₂</td>
<td></td>
</tr>
<tr>
<td>Ib.061</td>
<td>-NH-SO₂-CH₃</td>
<td></td>
</tr>
<tr>
<td>Ib.062</td>
<td>-N(SO₂-CH₃)₂</td>
<td></td>
</tr>
<tr>
<td>Ib.063</td>
<td>-NH-SO₂-C₂H₅</td>
<td></td>
</tr>
<tr>
<td>Ib.064</td>
<td>-N(SO₂-C₂H₅)₂</td>
<td></td>
</tr>
<tr>
<td>Ib.065</td>
<td>-NH-SO₂-CH₂-C₂H₅</td>
<td></td>
</tr>
<tr>
<td>Ib.066</td>
<td>-NH-CHO</td>
<td></td>
</tr>
<tr>
<td>Ib.067</td>
<td>-NH-CO-CH₃</td>
<td></td>
</tr>
<tr>
<td>Nr.</td>
<td>R<sup>1</sup></td>
<td>Schmp./ MS [m/z<sup>-1</sup>]</td>
</tr>
<tr>
<td>-----</td>
<td>---------------</td>
<td>-------------------------------</td>
</tr>
<tr>
<td>Ib. 068</td>
<td>-NH-CO-C<sub>2</sub>H<sub>5</sub></td>
<td></td>
</tr>
<tr>
<td>Ib. 069</td>
<td>-(CO-CH<sub>3</sub>)<sub>-</sub>SO<sub>2</sub>-CH<sub>3</sub></td>
<td></td>
</tr>
<tr>
<td>Ib. 070</td>
<td>-(CO-CH<sub>3</sub>)<sub>-</sub>SO<sub>2</sub>-C<sub>2</sub>H<sub>5</sub></td>
<td></td>
</tr>
<tr>
<td>Ib. 071</td>
<td>-CH<sub>3</sub></td>
<td></td>
</tr>
<tr>
<td>Ib. 072</td>
<td>-CH=CH-CH<sub>3</sub></td>
<td></td>
</tr>
<tr>
<td>Ib. 073</td>
<td>-CH<sub>2</sub>-Br</td>
<td></td>
</tr>
<tr>
<td>Ib. 074</td>
<td>-CH<sub>2</sub>-OCH<sub>3</sub></td>
<td></td>
</tr>
<tr>
<td>Ib. 075</td>
<td>-CH<sub>2</sub>-OC<sub>2</sub>H<sub>5</sub></td>
<td></td>
</tr>
<tr>
<td>Ib. 076</td>
<td>-CH<sub>2</sub>-OCH<sub>2</sub>-C<sub>2</sub>H<sub>5</sub></td>
<td></td>
</tr>
<tr>
<td>Ib. 077</td>
<td>-CH<sub>2</sub>-OCH (CH<sub>3</sub>)<sub>2</sub></td>
<td></td>
</tr>
<tr>
<td>Ib. 078</td>
<td>-CH<sub>2</sub>-O-(CH<sub>2</sub>)<sub>3</sub>-CH<sub>3</sub></td>
<td></td>
</tr>
<tr>
<td>Ib. 079</td>
<td>-CH<sub>2</sub>-OCH (CH<sub>3</sub>)<sub>-</sub>C<sub>2</sub>H<sub>5</sub></td>
<td></td>
</tr>
<tr>
<td>Ib. 080</td>
<td>-CH<sub>2</sub>-OCH<sub>2</sub>-CH (CH<sub>3</sub>)<sub>2</sub></td>
<td></td>
</tr>
<tr>
<td>Ib. 081</td>
<td>-CH<sub>2</sub>-OCH<sub>2</sub>-CH=CH<sub>2</sub></td>
<td></td>
</tr>
<tr>
<td>Ib. 082</td>
<td>-CH<sub>2</sub>-OCH<sub>2</sub>-C==CH</td>
<td></td>
</tr>
<tr>
<td>Ib. 083</td>
<td>-CH<sub>2</sub>-OCH<sub>2</sub>-CO-OCH<sub>3</sub></td>
<td></td>
</tr>
<tr>
<td>Ib. 084</td>
<td>-CH<sub>2</sub>-OCH<sub>2</sub>-CO-OC<sub>2</sub>H<sub>5</sub></td>
<td></td>
</tr>
<tr>
<td>Ib. 085</td>
<td>-CH<sub>2</sub>-OCH (CH<sub>3</sub>)<sub>-</sub>CO-OCH<sub>3</sub></td>
<td></td>
</tr>
<tr>
<td>Ib. 086</td>
<td>-CH<sub>2</sub>-OCH (CH<sub>3</sub>)<sub>-</sub>CO-OC<sub>2</sub>H<sub>5</sub></td>
<td></td>
</tr>
<tr>
<td>Ib. 087</td>
<td>-CH<sub>2</sub>-O-cyclopentyl</td>
<td></td>
</tr>
<tr>
<td>Ib. 088</td>
<td>-CH<sub>2</sub>-SCH<sub>3</sub></td>
<td></td>
</tr>
<tr>
<td>Ib. 089</td>
<td>-CH<sub>2</sub>-SC<sub>2</sub>H<sub>5</sub></td>
<td></td>
</tr>
<tr>
<td>Ib. 090</td>
<td>-CH<sub>2</sub>-SCH<sub>2</sub>-C<sub>2</sub>H<sub>5</sub></td>
<td></td>
</tr>
<tr>
<td>Ib. 091</td>
<td>-CH<sub>2</sub>-SCH<sub>2</sub>-CO-OCH<sub>3</sub></td>
<td></td>
</tr>
<tr>
<td>Ib. 092</td>
<td>-CH<sub>2</sub>-SCH<sub>2</sub>-CO-OC<sub>2</sub>H<sub>5</sub></td>
<td></td>
</tr>
<tr>
<td>Ib. 093</td>
<td>-CH<sub>2</sub>-N (CH<sub>3</sub>)<sub>2</sub></td>
<td></td>
</tr>
<tr>
<td>Ib. 094</td>
<td>-COOH</td>
<td></td>
</tr>
<tr>
<td>Ib. 095</td>
<td>-CO-OCH<sub>3</sub></td>
<td></td>
</tr>
<tr>
<td>Ib. 096</td>
<td>-CO-OC<sub>2</sub>H<sub>5</sub></td>
<td></td>
</tr>
<tr>
<td>Ib. 097</td>
<td>-CO-OCH<sub>2</sub>-C<sub>2</sub>H<sub>5</sub></td>
<td></td>
</tr>
<tr>
<td>Ib. 098</td>
<td>-CO-OCH (CH<sub>3</sub>)<sub>2</sub></td>
<td></td>
</tr>
<tr>
<td>Ib. 099</td>
<td>-CO-O-(CH<sub>2</sub>)<sub>3</sub>-CH<sub>3</sub></td>
<td></td>
</tr>
<tr>
<td>Ib. 100</td>
<td>-CO-OCH (CH<sub>3</sub>)<sub>-</sub>C<sub>2</sub>H<sub>5</sub></td>
<td></td>
</tr>
<tr>
<td>Ib. 101</td>
<td>-CO-OCH<sub>2</sub>-CH (CH<sub>3</sub>)<sub>2</sub></td>
<td></td>
</tr>
<tr>
<td>Ib. 102</td>
<td>-CO-O-(CH<sub>2</sub>)<sub>4</sub>-CH<sub>3</sub></td>
<td></td>
</tr>
<tr>
<td>Ib. 103</td>
<td>-CO-OCH<sub>2</sub>-CH<sub>2</sub>-OCH<sub>3</sub></td>
<td></td>
</tr>
<tr>
<td>Ib. 104</td>
<td>-CO-OCH<sub>2</sub>-CH<sub>2</sub>-OC<sub>2</sub>H<sub>5</sub></td>
<td></td>
</tr>
<tr>
<td>Ib. 105</td>
<td>-CHO</td>
<td></td>
</tr>
<tr>
<td>Nr.</td>
<td>R1</td>
<td>Schmp. / MS (m/z$^{-1}$) / 1H-NMR [ppm]</td>
</tr>
<tr>
<td>------</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Ib.106</td>
<td>$-\text{CH(OCH}_3\text{)}_2$</td>
<td></td>
</tr>
<tr>
<td>Ib.107</td>
<td>$-\text{CH(OCC}_2\text{H}_5\text{)}_2$</td>
<td></td>
</tr>
<tr>
<td>Ib.108</td>
<td>$-\text{CH(OCH}_2\text{-C}_2\text{H}_5\text{)}_2$</td>
<td></td>
</tr>
<tr>
<td>Ib.109</td>
<td>$-(1,3\text{-Dioxolan-2-yl})$</td>
<td></td>
</tr>
<tr>
<td>Ib.110</td>
<td>$-(4\text{-Methyl-1,3-dioxolan-2-yl})$</td>
<td></td>
</tr>
<tr>
<td>Ib.111</td>
<td>$-(4\text{-Vinyl-1,3-dioxolan-2-yl})$</td>
<td></td>
</tr>
<tr>
<td>Ib.112</td>
<td>$-(4,5\text{-Dimethyl-1,3-dioxolan-2-yl})$</td>
<td></td>
</tr>
<tr>
<td>Ib.113</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ib.114</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ib.115</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ib.116</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ib.117</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ib.118</td>
<td>$-\text{CH=NH}_2$</td>
<td></td>
</tr>
<tr>
<td>Ib.119</td>
<td>$-\text{CH=NOCH}_3$</td>
<td></td>
</tr>
<tr>
<td>Ib.120</td>
<td>$-\text{CH=NOC}_2\text{H}_5$</td>
<td></td>
</tr>
<tr>
<td>Ib.121</td>
<td>$-\text{CH=NOCH}_2\text{-C}_2\text{H}_5$</td>
<td></td>
</tr>
<tr>
<td>Ib.122</td>
<td>$-\text{CH=NOCH(CH}_3\text{)}_2$</td>
<td></td>
</tr>
<tr>
<td>Ib.123</td>
<td>$-\text{CH=NOCH}_2\text{-CH}_2\text{-C}_2\text{H}_5$</td>
<td></td>
</tr>
<tr>
<td>Ib.124</td>
<td>$-\text{CH=NOCH}_2\text{-COOH}$</td>
<td></td>
</tr>
<tr>
<td>Nr.</td>
<td>R<sup>1</sup></td>
<td>Schmp. / MS [m/z] / <sup>1</sup>H-NMR [ppm]</td>
</tr>
<tr>
<td>-----</td>
<td>--------------</td>
<td>--</td>
</tr>
<tr>
<td>5</td>
<td>Ib.125 -CH=N-OCH<sub>2</sub>-CO-OCH<sub>3</sub></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ib.126 -CH=N-OCH<sub>2</sub>-CO-OC<sub>2</sub>H<sub>5</sub></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ib.127 -CH=N-OCH(CH<sub>3</sub>)<sub>2</sub>-CO-OH</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ib.128 -CH=N-OCH(CH<sub>3</sub>)<sub>2</sub>-CO-OCH<sub>3</sub></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ib.129 -CH=N-OCH(CH<sub>3</sub>)<sub>2</sub>-OC<sub>2</sub>H<sub>5</sub></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ib.130 -NH-SO<sub>2</sub>-(thiophen-2-yl)</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Ib.131 -NH-SO<sub>2</sub>-(thiophen-3-yl)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ib.132 -NH-SO<sub>2</sub>-(3-trifluormethyl-phenyl)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ib.133 -NH-SO<sub>2</sub>-(2,6-dichlor-phenyl)</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Ib.134 -NH-SO<sub>2</sub>-(4-chlorphenyl)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ib.135 -NH-SO<sub>2</sub>-(4-nitrophenyl)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ib.136 -NH-SO<sub>2</sub>-(5-chlorthiophen-2-yl)</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>Ib.137 -CH<sub>2</sub>-OCH<sub>2</sub>-CH=N-OCH<sub>3</sub></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ib.138 -CH<sub>2</sub>-OCH<sub>2</sub>-C(CH<sub>3</sub>)=N-OCH<sub>3</sub></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ib.139 -CH<sub>2</sub>-OCH(CH<sub>3</sub>)<sub>2</sub>-CH=N-OCH<sub>3</sub></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ib.140 -CH<sub>2</sub>-OCH<sub>2</sub>-C(C<sub>6</sub>H<sub>5</sub>)=N-OCH<sub>3</sub></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ib.141 -CO-OCH<sub>2</sub>-CH=N-OCH<sub>3</sub></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ib.142 -CO-OCH<sub>2</sub>-C(CH<sub>3</sub>)=N-OCH<sub>3</sub></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ib.143 -CO-OCH(CH<sub>3</sub>)<sub>2</sub>-CH=N-OCH<sub>3</sub></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ib.144 -CH=CH-CH=CH-CO-OC<sub>2</sub>H<sub>5</sub></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ib.145 -CH=CH-CH=CH-CO-NH-CH<sub>3</sub></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>Ib.146 -CH=CH-COOH</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ib.147 -CH=CH-CO-OCH<sub>3</sub></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ib.148 -CH=CH-CO-OC<sub>2</sub>H<sub>5</sub></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ib.149 -CH=CH-CO-CH<sub>3</sub></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>Ib.150 -CH=CH-CO-NH-CH<sub>3</sub></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ib.151 -CH=CH-CO-N(CH<sub>3</sub>)<sub>2</sub></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ib.152 -CH=CH-CO-NH<sub>2</sub></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ib.153 -CHBr<sub>2</sub></td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>Ib.154 -H</td>
<td>8.03 (d, 2H), 7.70 (d, 2H), 6.71 (t, 1H), 3.85 (s, 3H)</td>
</tr>
<tr>
<td></td>
<td>Ib.155 -P(O)(OH)<sub>2</sub></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ib.156 -P(O)(OC<sub>2</sub>H<sub>5</sub>)<sub>2</sub></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ib.157 -CH<sub>2</sub>-P(O)(OH)<sub>2</sub></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>Ib.158 -CH<sub>2</sub>-P(O)(OC<sub>2</sub>H<sub>5</sub>)<sub>2</sub></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ib.159 -CH=CH-P(O)(OH)<sub>2</sub></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ib.160 -CH=CH-P(O)(OC<sub>2</sub>H<sub>5</sub>)<sub>2</sub></td>
<td></td>
</tr>
<tr>
<td>Nr.</td>
<td>R¹</td>
<td>Schmp./MS [m/z⁻¹] / 1H-NMR [ppm]</td>
</tr>
<tr>
<td>-----</td>
<td>-----</td>
<td>---</td>
</tr>
<tr>
<td>Ib.161</td>
<td>-Cl</td>
<td></td>
</tr>
<tr>
<td>Ib.162</td>
<td>-Br</td>
<td></td>
</tr>
<tr>
<td>Ib.163</td>
<td>-J</td>
<td></td>
</tr>
<tr>
<td>Ib.164</td>
<td>-CN</td>
<td></td>
</tr>
<tr>
<td>Ib.165</td>
<td>-O-CO-CH₃</td>
<td></td>
</tr>
<tr>
<td>Ib.166</td>
<td>-CO-N(CH₃)₂</td>
<td></td>
</tr>
<tr>
<td>Nr.</td>
<td>R¹</td>
<td>Schmp. / MS [m/z⁻¹] / ^1H-NMR [ppm]</td>
</tr>
<tr>
<td>-----</td>
<td>---------------------</td>
<td>-------------------------------------</td>
</tr>
<tr>
<td>15</td>
<td>Ic.001 -OCH₃</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ic.002 -OCH₂-C≡CH</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ic.003 -SCH(CH₃)₂</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ic.004 -SCH₂-C≡CH</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ic.005 -SO₂-Cl</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ic.006 -SO₂-NH-CH₃</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ic.007 -NH-SO₂-CH₃</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ic.008 -CH₃</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ic.009 -CH₂Br</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>Ic.010 -CHBr₂</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ic.011 -CH₂-OCH₃</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ic.012 -CH₂-OCH₂-C≡CH</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ic.013 -CHO</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>Ic.014 -(1,3-Dioxolan-2-y1)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ic.015 -CH=N-OC₂H₅</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ic.016 -CH=CH-CO-OC₂H₅</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ic.017 -NO₂</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ic.018 -NH₂</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ic.019 -H</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ic.020 -SO₂-CH₃</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ic.021 -COOH</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ic.022 -CO-OC₂H₅</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ic.023 -OCH₂-CO-OC₂H₅</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ic.024 -P(O)(OH)₂</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ic.025 -Cl</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ic.026 -Br</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ic.027 -CN</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ic.028 -O-CO-CH₃</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ic.029 -CO-N(CH₃)₂</td>
<td></td>
</tr>
</tbody>
</table>
Tabelle 4

<table>
<thead>
<tr>
<th>Nr.</th>
<th>R^1</th>
<th>Schmp./ MS [m/z] / 1H-NMR [ppm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>-OCH$_3$</td>
<td></td>
</tr>
<tr>
<td>Id.002</td>
<td>-OCH$_2$-C≡CH</td>
<td></td>
</tr>
<tr>
<td>Id.003</td>
<td>-SCH(CH$_3$)$_2$</td>
<td></td>
</tr>
<tr>
<td>Id.004</td>
<td>-SCH$_2$-C≡CH</td>
<td></td>
</tr>
<tr>
<td>Id.005</td>
<td>-SO$_2$-Cl</td>
<td></td>
</tr>
<tr>
<td>Id.006</td>
<td>-SO$_2$-NH-CH$_3$</td>
<td></td>
</tr>
<tr>
<td>Id.007</td>
<td>-NH-SO$_2$-CH$_3$</td>
<td></td>
</tr>
<tr>
<td>Id.008</td>
<td>-CH$_3$</td>
<td></td>
</tr>
<tr>
<td>Id.009</td>
<td>-CH$_2$Br</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>-CHBr$_2$</td>
<td></td>
</tr>
<tr>
<td>Id.011</td>
<td>-CH$_2$-OCH$_3$</td>
<td></td>
</tr>
<tr>
<td>Id.012</td>
<td>-CH$_2$-OCH$_2$-C≡CH</td>
<td></td>
</tr>
<tr>
<td>Id.013</td>
<td>-CHO</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>-(1,3-Dioxolan-2-yl)</td>
<td></td>
</tr>
<tr>
<td>Id.014</td>
<td>-CH≡N-OC$_2$H$_5$</td>
<td></td>
</tr>
<tr>
<td>Id.015</td>
<td>-CH=CH-CO-OC$_2$H$_5$</td>
<td></td>
</tr>
<tr>
<td>Id.016</td>
<td>-NO$_2$</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>-NH$_2$</td>
<td></td>
</tr>
<tr>
<td>Id.018</td>
<td>-H</td>
<td></td>
</tr>
<tr>
<td>Id.019</td>
<td>-SO$_2$-CH$_3$</td>
<td></td>
</tr>
<tr>
<td>Id.020</td>
<td>-COOH</td>
<td></td>
</tr>
<tr>
<td>Id.021</td>
<td>-CO-OC$_2$H$_5$</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>-OC$_2$H$_5$</td>
<td></td>
</tr>
<tr>
<td>Id.022</td>
<td>-OCH$_2$-CO-OC$_2$H$_5$</td>
<td></td>
</tr>
<tr>
<td>Id.023</td>
<td>-P(O)(OH)$_2$</td>
<td></td>
</tr>
<tr>
<td>Id.024</td>
<td>-Cl</td>
<td></td>
</tr>
<tr>
<td>Id.025</td>
<td>-Br</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>-CN</td>
<td></td>
</tr>
<tr>
<td>Id.027</td>
<td>-O-CO-CH$_3$</td>
<td></td>
</tr>
<tr>
<td>Id.028</td>
<td>-CO-N(CH$_3$)$_2$</td>
<td></td>
</tr>
</tbody>
</table>

(R$_2$ = Cl; R$_3$ = CH$_3$; Z-R$_4$ = SCH$_2$; R$_5$ = Br)
Tabelle 5

![Chemical structure](image)

\(I \quad (R^2 = F; \quad R^3 = CH_3; \quad Z-R^4 = OCHF_2; \quad R^5 = Cl) \)

<table>
<thead>
<tr>
<th>Nr.</th>
<th>(R^1)</th>
<th>Schmp. / MS [m/z] / (^1)H-NMR [ppm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>Ie.001 -OCH₃</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ie.002 -OC₂H₅</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ie.003 -OCH₂-C₂H₅</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ie.004 -OCH(CH₃)₂</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ie.005 -OCH₂-CH₂-C₂H₅</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ie.006 -OCH(CH₃)-C₂H₅</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ie.007 -OCH₂-CH(CH₃)₂</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ie.008 -OCH₂-CH₂-CH₂-C₂H₅</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ie.009 -OCH₂-CH=CH₂</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ie.010 -OCH₂-CH=CHCl</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ie.011 -OCH₂-C≡CH</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ie.012 -OCH(CH₃)-C≡CH</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ie.013 -OCH₂-CO-OCH₃</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ie.014 -OCH₂-CO-OCS₂H₅</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ie.015 -OCH(CH₃)-CO-OCH₃</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ie.016 -OCH(CH₃)-CO-OCS₃H₆</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ie.017 -O-cyclopentenyl</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ie.018 -OCH₂-CN</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ie.019 -OCH(CH₃)-CN</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ie.020 -OH</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ie.021 -OCH₂-CO-O-(CH₂)₄-CH₃</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ie.022 -OCH(CH₃)-CO-O-(CH₂)₄-CH₃</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ie.023 -OCH₂-phenyl</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ie.024 -SCH₃</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ie.025 -SC₂H₅</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ie.026 -SCH₂-C₂H₅</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ie.027 -SCH(CH₃)₂</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ie.028 -SCH₂-CH₂-C₂H₅</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ie.029 -SCH(CH₃)-C₂H₅</td>
<td></td>
</tr>
<tr>
<td>Nr.</td>
<td>R^1</td>
<td>Schmp. / MS [m/z^{-1}] / 1H-NMR [ppm]</td>
</tr>
<tr>
<td>-----</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>5</td>
<td>Ie.030 -SCH_2-CH(CH_3)_2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ie.031 -SCH_2-CH_2-CH_2-C_2H_5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ie.032 -SCH_2-CH=CH_2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ie.033 -SCH_2-CH=CH-Cl</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ie.034 -SCH_2-C≡CH</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ie.035 -SCH(CH_3)=-C≡CH</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Ie.036 -SCH_2-CO-OCH_3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ie.037 -SCH_2-CO-OC_2H_5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ie.038 -SCH(CH_3)-CO-OC_3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ie.039 -SCH(CH_3)-CO-OC_2H_5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ie.040 -S-cyclopentyl</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ie.041 -SCH_2-CN</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ie.042 -SCH(CH_3)-CN</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ie.043 -SCH_2-CO-O-(CH_2)_4-CH_3</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>Ie.044 -SCH(CH_3)-CO-O-(CH_2)_4-CH_3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ie.045 -SCH_2-phenyl</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ie.046 -SCH_2-(4-Cl-phenyl)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ie.047 -SO_2-Cl</td>
<td>8.53 (m,1H), 8.30 (m,1H), 7.40 (t,1H), 6.71 (t,1H), 3.84 (s,3H)</td>
</tr>
<tr>
<td>25</td>
<td>Ie.048 -SO_2-NH_2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ie.049 -SO_2-NH-CH_3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ie.050 -SO_2-N(CH_3)_2</td>
<td>8.40 (m,1H), 8.10 (m,1H), 7.28 (m,1H), 6.70 (t,1H), 3.82 (s,3H), 2.87 (s,6H)</td>
</tr>
<tr>
<td>30</td>
<td>Ie.051 -SO_2-NH-C_2H_5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ie.052 -SO_2-N(CH_3)-C_2H_5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ie.053 -SO_2-N(C_2H_5)_2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ie.054 -SO_2-(pyrrolidin-1-yl)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ie.055 -SO_2-(morpholin-4-yl)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ie.056 -SO_2-NH-phenyl</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ie.057 -SO_2-N(CH_3)-phenyl</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ie.058 -SO_2-NH-CH_2-phenyl</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>Ie.059 -NO_2</td>
<td>8.65 (m,1H), 8.19 (m,1H), 7.35 (m,1H), 6.71 (t,1H), 3.85 (s,3H)</td>
</tr>
<tr>
<td></td>
<td>Ie.060 -NH_2</td>
<td>7.30-6.95 (m,3H), 6.65 (t,1H), 3.90-3.70 (m,5H)</td>
</tr>
<tr>
<td>45</td>
<td>Ie.061 -NH-SO_2-CH_3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ie.062 -N(SO_2-CH_3)_2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ie.063 -NH-SO_2-C_2H_5</td>
<td></td>
</tr>
<tr>
<td>Nr.</td>
<td>R<sup>1</sup></td>
<td>Schmp. / MS [m/z] / ¹H-NMR [ppm]</td>
</tr>
<tr>
<td>-----</td>
<td>--</td>
<td>----------------------------------</td>
</tr>
<tr>
<td>5</td>
<td>Ie.064 -N(SO₂-C₂H₅)<sub>2</sub></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ie.065 -NH-SO₂-CH₂-C₂H₅</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ie.066 -NH-CHO</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ie.067 -NH-CO-CH₃</td>
<td>333[M]<sup>+</sup>, 291[M-C₂H₂O]<sup>+</sup></td>
</tr>
<tr>
<td></td>
<td>Ie.068 -NH-CO-C₂H₅</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ie.069 -N(CO-CH₃)-SO₂-CH₃</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ie.070 -N(CO-CH₃)-SO₂-C₂H₅</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ie.071 -CH₃</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ie.072 -CH=CH-CH₃</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ie.073</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ie.074 -CH₂-Br</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ie.075 -CH₂-OCH₃</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ie.076 -CH₂-OCH₂H</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ie.077 -CH₂-OCH₂C₂H₅</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ie.078 -CH₂-OCH(CH₃)<sub>2</sub></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ie.079 -CH₂-O-(CH₂)<sub>1</sub>-CH₃</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ie.080 -CH₂-OCH(CH₃)-C₂H₅</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ie.081 -CH₂-OCH₂-CH(CH₃)<sub>2</sub></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ie.082 -CH₂-OCH₂-CH=CH₂</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ie.083 -CH₃-OCH₂-C-CH-H</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ie.084 -CH₂-OCH₂-CO-OCH₃</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ie.085 -CH₂-OCH₂-CO-OCH₂H₅</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ie.086 -CH₂-OCH(CH₃)-CO-OCH₃</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ie.087 -CH₂-OCH(CH₃)-CO-OCH₂H₅</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ie.088 -CH₂-O-cyclopentyl</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ie.089 -CH₂-SCH₃</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ie.090 -CH₂-SC₂H₅</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ie.091 -CH₂-SCH₂-C₂H₅</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ie.092 -CH₂-SCH₂-CO-OCH₃</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ie.093 -CH₂-SCH₂-CO-OCH₂H₅</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ie.094 -CH₂-N(CH₃)<sub>2</sub></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ie.095 -COOH</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ie.096 -CO-OCH₃</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ie.097 -CO-OCH₂H₅</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ie.098 -CO-OCH₂-C₂H₅</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ie.099 -CO-OCH(CH₃)<sub>2</sub></td>
<td></td>
</tr>
<tr>
<td>Nr.</td>
<td>R¹</td>
<td>Schmp. / MS [m/z]¹ / [^1H-NMR] [ppm]</td>
</tr>
<tr>
<td>-----</td>
<td>-----</td>
<td>-------------------------------------</td>
</tr>
<tr>
<td>5</td>
<td>-CO-OC-(CH₂)₃-CH₃</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-CO-OCH(CH₃)-C₂H₅</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-CO-OCH₂-CH(CH₃)₂</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-CO-O(CH₂)₄-CH₃</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-CO-OCH₂-CH₂-OCH₃</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-CO-OCH₂-CH₂-OC₂H₅</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>-CHO</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-CH(OCH₃)₂</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-CH(OCC₂H₅)₂</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-CH(OCH₂-C₂H₅)₂</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-(1,3-Dioxolan-2-yl)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-(4-Methyl-1,3-dioxolan-2-yl)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-(4-Methyl-1,3-dithiolan-2-yl)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-(4-Vinyl-1,3-dioxolan-2-yl)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-(4,5-Dimethyl-1,3-dioxolan-2-yl)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nr.</td>
<td>R<sup>1</sup></td>
<td>Schmp. / MS [m/z<sup>-1</sup>] / <sup>1</sup>H-NMR [ppm]</td>
</tr>
<tr>
<td>-----</td>
<td>--------------</td>
<td>---</td>
</tr>
<tr>
<td>Ie.120</td>
<td>-CH=N-OH</td>
<td></td>
</tr>
<tr>
<td>Ie.121</td>
<td>-CH=N-OCH₃</td>
<td></td>
</tr>
<tr>
<td>Ie.122</td>
<td>-CH=N-OC<sub>2</sub>H₅</td>
<td></td>
</tr>
<tr>
<td>Ie.123</td>
<td>-CH=N-OCH₂-C₂H₅</td>
<td></td>
</tr>
<tr>
<td>Ie.124</td>
<td>-CH=N-OCH(CH₃)<sub>2</sub></td>
<td></td>
</tr>
<tr>
<td>Ie.125</td>
<td>-CH=N-OCH₂-CH₂-C₂H₅</td>
<td></td>
</tr>
<tr>
<td>Ie.126</td>
<td>-CH=N-OCH₂-COOH</td>
<td></td>
</tr>
<tr>
<td>Ie.127</td>
<td>-CH=N-OCH₂-CO-OCH₃</td>
<td></td>
</tr>
<tr>
<td>Ie.128</td>
<td>-CH=N-OCH₂-CO-OC<sub>2</sub>H₅</td>
<td></td>
</tr>
<tr>
<td>Ie.129</td>
<td>-CH=N-OCH(CH₃)-COOH</td>
<td></td>
</tr>
<tr>
<td>Ie.130</td>
<td>-CH=N-OCH(CH₃)-CO-OCH₃</td>
<td></td>
</tr>
<tr>
<td>Ie.131</td>
<td>-CH=N-OCH(CH₃)-OC<sub>2</sub>H₅</td>
<td></td>
</tr>
<tr>
<td>Ie.132</td>
<td>-NH-SO₂-(thiophen-2-yl)</td>
<td></td>
</tr>
<tr>
<td>Ie.133</td>
<td>-NH-SO₂-(thiophen-3-yl)</td>
<td></td>
</tr>
<tr>
<td>Ie.134</td>
<td>-NH-SO₂-(3-trifluormethyl-phenyl)</td>
<td></td>
</tr>
<tr>
<td>Ie.135</td>
<td>-NH-SO₂-(2,6-dichlor-phenyl)</td>
<td></td>
</tr>
<tr>
<td>Ie.136</td>
<td>-NH-SO₂-(4-chlorphenyl)</td>
<td></td>
</tr>
<tr>
<td>Ie.137</td>
<td>-NH-SO₂-(4-nitrophenyl)</td>
<td></td>
</tr>
<tr>
<td>Ie.138</td>
<td>-NH-SO₂-(5-chlorthiophen-2-yl)</td>
<td></td>
</tr>
<tr>
<td>Ie.139</td>
<td>-NH-CO-CH(CH₃)-CH₂-C1</td>
<td></td>
</tr>
<tr>
<td>Ie.140</td>
<td>-NH-CO-CH₂-CH(CH₃)<sub>2</sub></td>
<td></td>
</tr>
<tr>
<td>Ie.141</td>
<td>-NH-CO-CH(CH₃)<sub>2</sub></td>
<td></td>
</tr>
<tr>
<td>Ie.142</td>
<td>-NH-CO-cyclopropyl</td>
<td></td>
</tr>
<tr>
<td>Ie.143</td>
<td>-CH₂-OH</td>
<td></td>
</tr>
<tr>
<td>Ie.144</td>
<td>-CH₂-OCH₂-CH=N-OCH₃</td>
<td></td>
</tr>
<tr>
<td>Ie.145</td>
<td>-CH₂-OCH₂-C(CH₃)=N-OCH₃</td>
<td></td>
</tr>
<tr>
<td>Ie.146</td>
<td>-CH₂-OCH(CH₃)-CH=N-OCH₃</td>
<td></td>
</tr>
<tr>
<td>Ie.147</td>
<td>-CH₂-OCH₂-C(C₆H₅)=N-OCH₃</td>
<td></td>
</tr>
<tr>
<td>Ie.148</td>
<td>-CH₂-O-CO-CH₃</td>
<td></td>
</tr>
<tr>
<td>Ie.149</td>
<td>-CO-OCH₂-CH=N-OCH₃</td>
<td></td>
</tr>
<tr>
<td>Ie.150</td>
<td>-CO-OCH₂-C(CH₃)=N-OCH₃</td>
<td></td>
</tr>
<tr>
<td>Ie.151</td>
<td>-CO-OCH(CH₃)-CH=N-OCH₃</td>
<td></td>
</tr>
<tr>
<td>Ie.152</td>
<td>-CH=CH-CH=CH-CO-OC<sub>2</sub>H₅</td>
<td></td>
</tr>
<tr>
<td>Ie.153</td>
<td>-CH=CH-CH=CH-CO-NH-CH₃</td>
<td></td>
</tr>
<tr>
<td>Ie.154</td>
<td>-CH=CH-COOH</td>
<td></td>
</tr>
<tr>
<td>Ie.155</td>
<td>-CH=CH-CO-OCH₃</td>
<td></td>
</tr>
<tr>
<td>Nr.</td>
<td>R<sup>1</sup></td>
<td>Schmp. / MS [m/z<sup>-1</sup>] /
1H-NMR [ppm]</td>
</tr>
<tr>
<td>-----</td>
<td>----------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Ie.156</td>
<td>-CH=CH-CO-OC<sub>2</sub>H<sub>5</sub></td>
<td></td>
</tr>
<tr>
<td>Ie.157</td>
<td>-CH=CH-CO-CH<sub>3</sub></td>
<td></td>
</tr>
<tr>
<td>Ie.158</td>
<td>-CH=CH-CO-NH-CH<sub>3</sub></td>
<td></td>
</tr>
<tr>
<td>Ie.159</td>
<td>-CH=CH-CO-N(CH<sub>3</sub>)<sub>2</sub></td>
<td></td>
</tr>
<tr>
<td>Ie.160</td>
<td>-CH=CH-CO-NH<sub>2</sub></td>
<td></td>
</tr>
<tr>
<td>Ie.161</td>
<td>-CHBr<sub>2</sub></td>
<td></td>
</tr>
<tr>
<td>Ie.162</td>
<td>-H</td>
<td>7,90-7,80 (m, 2H), 7,16-7,06 (m, 2H), 6,69 (t, 1H), 3,81 (s, 3H)</td>
</tr>
<tr>
<td>Ie.163</td>
<td>-CH<sub>2</sub>-SCH(CH<sub>3</sub>)<sub>2</sub></td>
<td></td>
</tr>
<tr>
<td>Ie.164</td>
<td>-CH<sub>2</sub>-SCH(CH<sub>3</sub>)-CH(CH<sub>3</sub>)<sub>2</sub></td>
<td></td>
</tr>
<tr>
<td>Ie.165</td>
<td>-CH<sub>2</sub>-SCH<sub>2</sub>-CH<sub>2</sub>-OCH<sub>3</sub></td>
<td></td>
</tr>
<tr>
<td>Ie.166</td>
<td>-CH<sub>2</sub>-SCH<sub>2</sub>-CO-OCH(CH<sub>3</sub>)<sub>2</sub></td>
<td></td>
</tr>
<tr>
<td>Ie.167</td>
<td>-CH<sub>2</sub>-SO-C<sub>2</sub>H<sub>5</sub></td>
<td></td>
</tr>
<tr>
<td>Ie.168</td>
<td>-CH<sub>2</sub>-SO<sub>2</sub>-C<sub>2</sub>H<sub>5</sub></td>
<td></td>
</tr>
<tr>
<td>Ie.169</td>
<td>-SO<sub>3</sub>-Na<sup>+</sup></td>
<td></td>
</tr>
<tr>
<td>Ie.170</td>
<td>-SO<sub>2</sub>-(1-piperidinyl)</td>
<td></td>
</tr>
<tr>
<td>Ie.171</td>
<td>-SO<sub>2</sub>-NH-cyclopropyl</td>
<td></td>
</tr>
<tr>
<td>Ie.172</td>
<td>-SO<sub>2</sub>-NH-CH<sub>2</sub>-CO-OCH<sub>3</sub></td>
<td>8,41 (m, 1H), 8,10 (m, 1H), 7,28 (m, 1H), 6,69 (t, 1H), 5,50 (s, 1H), 3,95 (s, 2H), 3,83 (s, 3H), 3,70 (s, 3H)</td>
</tr>
<tr>
<td>Ie.173</td>
<td>-SO<sub>2</sub>-NH-CH<sub>2</sub>-CO-OC<sub>2</sub>H<sub>5</sub></td>
<td></td>
</tr>
<tr>
<td>Ie.174</td>
<td>-SO<sub>2</sub>-NH-(CH(CH<sub>3</sub>)<sub>2</sub>) CO-OCH<sub>3</sub></td>
<td></td>
</tr>
<tr>
<td>Ie.175</td>
<td>-SO<sub>2</sub>-NH-(CH(CH<sub>3</sub>)<sub>2</sub>) CO-OC<sub>2</sub>H<sub>5</sub></td>
<td>8,40 (m, 1H), 8,07 (m, 1H), 7,25 (m, 1H), 6,69 (t, 1H), 5,42 (d, 1H), 4,26 (m, 1H), 3,96-3,86 (m, 2H), 3,81 (s, 3H), 2,12 (m, 1H), 1,04 (t, 3H), 1,00 (t, 3H), 0,89 (t, 3H)</td>
</tr>
<tr>
<td>Ie.176</td>
<td>-SO<sub>2</sub>-NH-(CH(CH<sub>3</sub>)<sub>2</sub>) -CO-OC<sub>2</sub>H<sub>5</sub></td>
<td></td>
</tr>
<tr>
<td>Ie.177</td>
<td>-SO<sub>2</sub>-NH-(CH<sub>2</sub>CH(CH<sub>3</sub>)<sub>2</sub>) -CO-OCH<sub>3</sub></td>
<td></td>
</tr>
<tr>
<td>Ie.178</td>
<td>-SO<sub>2</sub>-NH-(4-chlorphenyl-methyl) -CO-OC<sub>2</sub>H<sub>5</sub></td>
<td></td>
</tr>
<tr>
<td>Ie.179</td>
<td>-SO<sub>2</sub>-NH-(tetrahydrofuran-2-on-3-yl)</td>
<td></td>
</tr>
<tr>
<td>Ie.180</td>
<td>-SO<sub>2</sub>-N(CH<sub>3</sub>) -CH<sub>2</sub>-CO-OC<sub>2</sub>H<sub>5</sub></td>
<td>8,44 (m, 1H), 8,09 (m, 1H), 7,25 (m, 1H), 6,70 (t, 1H), 4,14 (q, 2H), 3,84 (s, 3H), 3,05 (s, 3H), 1,22 (t, 3H)</td>
</tr>
<tr>
<td>Nr.</td>
<td>R<sup>1</sup></td>
<td>Schmp. / MS [m/z<sup>-1</sup>] /
 <sup>1</sup>H-NMR [ppm]</td>
</tr>
<tr>
<td>-----</td>
<td>----------------</td>
<td>---</td>
</tr>
<tr>
<td>Ie.181</td>
<td>-SO<sub>2</sub>-N(CH<sub>3</sub>)<sub>2</sub>-CH<sub>2</sub>-CO-OCH<sub>3</sub></td>
<td>8.26-8.10 (m, 2H), 7.62 (m, 1H), 7.38 (t, 1H), 4.17 (s, 2H), 3.82 (s, 3H), 3.58 (s, 3H), 2.94 (s, 3H)</td>
</tr>
<tr>
<td>Ie.182</td>
<td>-SO<sub>2</sub>- (2-methoxycarbonyl-pyrrolidin-1-yl)</td>
<td></td>
</tr>
<tr>
<td>Ie.183</td>
<td>-SO<sub>2</sub>- (2-ethoxycarbonyl-piperidin-1-yl)</td>
<td></td>
</tr>
<tr>
<td>Ie.184</td>
<td>-SO<sub>2</sub>-N(CH<sub>3</sub>)<sub>2</sub>-CH<sub>2</sub>-CO-NH(CH<sub>3</sub>)<sub>2</sub></td>
<td></td>
</tr>
<tr>
<td>Ie.185</td>
<td>-SO<sub>2</sub>-N(CH<sub>3</sub>)<sub>2</sub>-CH<sub>2</sub>-CO-N(CH<sub>3</sub>)<sub>2</sub></td>
<td></td>
</tr>
<tr>
<td>Ie.186</td>
<td>-NH-SO<sub>2</sub>-C(CH<sub>3</sub>)<sub>2</sub>-Cl</td>
<td></td>
</tr>
<tr>
<td>Ie.187</td>
<td>-N(SO<sub>2</sub>-C(CH<sub>3</sub>)<sub>2</sub>-Cl)<sub>2</sub></td>
<td></td>
</tr>
<tr>
<td>Ie.188</td>
<td>-N(SO<sub>2</sub>- (3,5-dimethylisoxazol-4-yl)<sub>2</sub></td>
<td></td>
</tr>
<tr>
<td>Ie.189</td>
<td>-NH-NH<sub>3</sub>· Cl<sup>-</sup></td>
<td></td>
</tr>
<tr>
<td>Ie.190</td>
<td>-NH-NH-CO-OCH<sub>2</sub>H<sub>5</sub></td>
<td></td>
</tr>
<tr>
<td>Ie.191</td>
<td>-N=N-CO-OCH<sub>2</sub>H<sub>5</sub></td>
<td></td>
</tr>
<tr>
<td>Ie.192</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ie.193</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ie.194</td>
<td>-CH=CH-CO- (2-methoxycarbonyl-piperidin-1-yl)</td>
<td></td>
</tr>
<tr>
<td>Ie.185</td>
<td>-CH=CH-P(O)(OH)<sub>2</sub></td>
<td></td>
</tr>
<tr>
<td>Ie.196</td>
<td>-CH=CH-P(O)(OC<sub>2</sub>H<sub>5</sub>)<sub>2</sub></td>
<td></td>
</tr>
<tr>
<td>Ie.197</td>
<td>-CH<sub>2</sub>-P(O)(OH)<sub>2</sub></td>
<td></td>
</tr>
<tr>
<td>Ie.198</td>
<td>-CH<sub>2</sub>-P(O)(OC<sub>2</sub>H<sub>5</sub>)<sub>2</sub></td>
<td></td>
</tr>
<tr>
<td>Ie.199</td>
<td>-P(O)(OH)<sub>2</sub></td>
<td></td>
</tr>
<tr>
<td>Ie.200</td>
<td>-P(O)(OC<sub>2</sub>H<sub>5</sub>)<sub>2</sub></td>
<td></td>
</tr>
<tr>
<td>Ie.201</td>
<td>-OCH<sub>2</sub>-CO-OCH<sub>2</sub>-CH=N-OCH<sub>3</sub></td>
<td></td>
</tr>
<tr>
<td>Ie.202</td>
<td>-CO-OCH<sub>2</sub>-CH=N-OCH<sub>2</sub>-CH=CH<sub>2</sub></td>
<td></td>
</tr>
<tr>
<td>Ie.203</td>
<td>-CO-OCH<sub>2</sub>-CH=N-OCH<sub>2</sub>-CH=CHCl</td>
<td></td>
</tr>
<tr>
<td>Ie.204</td>
<td>-CO-OCH<sub>2</sub>-CH=N-N-OCH<sub>2</sub>-CH=CH<sub>2</sub>C<sub>2</sub>H<sub>5</sub></td>
<td></td>
</tr>
<tr>
<td>Ie.205</td>
<td>-CO-OCH<sub>2</sub>-CH=N-OCH<sub>2</sub>-phenyl</td>
<td></td>
</tr>
<tr>
<td>Ie.206</td>
<td>-CO-NH-CH<sub>2</sub>-CO-OCH<sub>3</sub></td>
<td></td>
</tr>
<tr>
<td>Ie.207</td>
<td>-CO-NH-CH(CH(CH<sub>3</sub>)<sub>2</sub>-CO-OCH<sub>2</sub>H<sub>5</sub></td>
<td></td>
</tr>
<tr>
<td>Nr.</td>
<td>R¹</td>
<td>Schmp. / MS [m/z] / ¹H-NMR [ppm]</td>
</tr>
<tr>
<td>-----</td>
<td>----</td>
<td>---------------------------------</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ie.208</td>
<td>-CO-N(CH₃) -CH₂-CO-OCH₃</td>
<td></td>
</tr>
<tr>
<td>Ie.209</td>
<td>-CO-N(CH₃) -CH₂-CO-C₂H₅</td>
<td></td>
</tr>
<tr>
<td>Ie.210</td>
<td>-C(SCH₃) =N-OH</td>
<td></td>
</tr>
<tr>
<td>Ie.211</td>
<td>-C(SCH₃) =N-OCH₂-CO-C₂H₅</td>
<td></td>
</tr>
<tr>
<td>Ie.212</td>
<td>-C(SCH₃) =N-O-CO-CH₃</td>
<td></td>
</tr>
<tr>
<td>Ie.213</td>
<td>-C(CN) =N-CH</td>
<td></td>
</tr>
<tr>
<td>Ie.214</td>
<td>-C(CN) =N-OCH₂-CO-C₂H₅</td>
<td></td>
</tr>
<tr>
<td>Ie.215</td>
<td>-C(CN) =N-O-CO-CH₃</td>
<td></td>
</tr>
<tr>
<td>Ie.216</td>
<td>-CO-NH-(tetrahydrofuran-2-on-3-yl)</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ie.217</td>
<td>-Cl</td>
<td></td>
</tr>
<tr>
<td>Ie.218</td>
<td>-Br</td>
<td></td>
</tr>
<tr>
<td>Ie.219</td>
<td>-J</td>
<td></td>
</tr>
<tr>
<td>Ie.220</td>
<td>-CN</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ie.221</td>
<td>-CH=CH-CO-CH(OCH₃)₂</td>
<td></td>
</tr>
<tr>
<td>Ie.222</td>
<td>-CH=CH-CO-CH(C₂H₅)₂</td>
<td></td>
</tr>
<tr>
<td>Ie.223</td>
<td>-CH=CH-CO-CH</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ie.224</td>
<td>-CH=CH-CO-CH</td>
<td></td>
</tr>
<tr>
<td>Ie.225</td>
<td>-O-CO-CH₃</td>
<td></td>
</tr>
<tr>
<td>Ie.226</td>
<td>-O-CO-C₂H₅</td>
<td></td>
</tr>
<tr>
<td>Ie.227</td>
<td>-O-CO-CH₂-phenyl</td>
<td></td>
</tr>
<tr>
<td>Ie.228</td>
<td>-O-CO-cyclohexyl</td>
<td></td>
</tr>
<tr>
<td>Ie.229</td>
<td>-O-CO-CH₂-OCH₃</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ie.230</td>
<td>-O-CO-NH-CH₃</td>
<td></td>
</tr>
<tr>
<td>Ie.231</td>
<td>-O-CO-N(CH₃)₂</td>
<td></td>
</tr>
<tr>
<td>Ie.232</td>
<td>-O-CO-NH-phenyl</td>
<td></td>
</tr>
<tr>
<td>Ie.233</td>
<td>-O-CO-N-C₂H₅</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ie.234</td>
<td>-O-CO-N(C₂H₅)₂</td>
<td></td>
</tr>
<tr>
<td>Ie.235</td>
<td>-O-CO-NH₂</td>
<td></td>
</tr>
<tr>
<td>Ie.236</td>
<td>-O-CS-N(CH₃)₂</td>
<td></td>
</tr>
<tr>
<td>Ie.237</td>
<td>-O-CS-N(C₂H₅)₂</td>
<td></td>
</tr>
<tr>
<td>Ie.238</td>
<td>-O-CS-NH₂</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ie.239</td>
<td>-CO-NH-CH₃</td>
<td></td>
</tr>
<tr>
<td>Ie.240</td>
<td>-CO-NH-C₂H₅</td>
<td></td>
</tr>
<tr>
<td>Nr.</td>
<td>R<sup>1</sup></td>
<td>Schmp. / MS [m/z]<sup>1</sup></td>
</tr>
<tr>
<td>-----</td>
<td>----------------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>5</td>
<td>Ie.241 -CO-NH-CH<sub>2</sub>-C<sub>2</sub>H<sub>5</sub></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ie.242 -CO-NH-CH(CH<sub>3</sub>)<sub>2</sub></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ie.243 -CO-NH-CH<sub>2</sub>-CH<sub>2</sub>-C<sub>2</sub>H<sub>5</sub></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ie.244 -CO-N(CH<sub>3</sub>)<sub>2</sub></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ie.245 -CO-N(C<sub>2</sub>H<sub>5</sub>)<sub>2</sub></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Ie.246 -CO-N</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ie.247 -CO-N</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Ie.248 -CO-N</td>
<td></td>
</tr>
</tbody>
</table>
Tabelle 6

![Chemical Structure](image)

(R² = CN; R³ = CH₃; Z-R⁴ = OCHF₂; R⁵ = Cl)

<table>
<thead>
<tr>
<th>Nr.</th>
<th>R¹</th>
<th>Schmp. / MS [m/z⁻¹] / ¹H-NMR [ppm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>OCH₃</td>
<td>7.60 (s, 1H), 7.59 (s, 1H), 7.53 (s, 1H), 6.69 (t, 1H), 4.01 (s, 3H), 3.86 (s, 3H)</td>
</tr>
<tr>
<td>20</td>
<td>OC₂H₅</td>
<td></td>
</tr>
<tr>
<td>003</td>
<td>OCH₂-C₂H₅</td>
<td></td>
</tr>
<tr>
<td>004</td>
<td>OCH(CH₃)₂</td>
<td></td>
</tr>
<tr>
<td>005</td>
<td>OCH₂-Ch₂-C₂H₅</td>
<td></td>
</tr>
<tr>
<td>006</td>
<td>OCH(CH₃)-C₂H₅</td>
<td></td>
</tr>
<tr>
<td>007</td>
<td>OCH₂-Ch(CH₃)₂</td>
<td></td>
</tr>
<tr>
<td>008</td>
<td>OCH₂-Ch₂-Ch₂-C₂H₅</td>
<td></td>
</tr>
<tr>
<td>009</td>
<td>OCH₂-Ch=CH₂</td>
<td></td>
</tr>
<tr>
<td>010</td>
<td>OCH₂-Ch=CHCl</td>
<td></td>
</tr>
<tr>
<td>011</td>
<td>OCH₂-C≡CH</td>
<td>116-118°C</td>
</tr>
<tr>
<td>012</td>
<td>OCH(CH₃)-C≡CH</td>
<td></td>
</tr>
<tr>
<td>013</td>
<td>OCH₂-CO-OCH₃</td>
<td></td>
</tr>
<tr>
<td>014</td>
<td>OCH₂-CO-OC₂H₅</td>
<td>104-107°C</td>
</tr>
<tr>
<td>015</td>
<td>OCH(CH₃)-CO-OCH₃</td>
<td></td>
</tr>
<tr>
<td>016</td>
<td>OCH(CH₃)-CO-OC₂H₅</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>O-cyclopentenyl</td>
<td></td>
</tr>
<tr>
<td>018</td>
<td>OCH₂-CN</td>
<td></td>
</tr>
<tr>
<td>019</td>
<td>OCH(CH₃)-CN</td>
<td></td>
</tr>
<tr>
<td>020</td>
<td>OH</td>
<td>163-166°C</td>
</tr>
<tr>
<td>40</td>
<td>OCH₂-CO-O-(CH₂)₄-C₃H₃</td>
<td></td>
</tr>
<tr>
<td>022</td>
<td>OCH(CH₃)-CO-O-(CH₂)₄-C₃H₃</td>
<td></td>
</tr>
<tr>
<td>023</td>
<td>OCH₂-phenyl</td>
<td></td>
</tr>
<tr>
<td>024</td>
<td>SCH₃</td>
<td></td>
</tr>
<tr>
<td>025</td>
<td>SC₂H₅</td>
<td></td>
</tr>
<tr>
<td>026</td>
<td>SCH₂-C₂H₅</td>
<td></td>
</tr>
<tr>
<td>027</td>
<td>SCH(CH₃)₂</td>
<td></td>
</tr>
<tr>
<td>Nr.</td>
<td>R<sup>1</sup></td>
<td>Schmp. / MS [m/z]<sup>1</sup> / <sup>1</sup>H-NMR [ppm]</td>
</tr>
<tr>
<td>-----</td>
<td>-------------------------------</td>
<td>--</td>
</tr>
<tr>
<td>0.028</td>
<td>-SCH<sub>2</sub>-CH<sub>2</sub>-C<sub>2</sub>H<sub>5</sub></td>
<td></td>
</tr>
<tr>
<td>0.029</td>
<td>-SCH(CH<sub>3</sub>)<sub>-</sub>C<sub>2</sub>H<sub>5</sub></td>
<td></td>
</tr>
<tr>
<td>0.030</td>
<td>-SCH<sub>2</sub>-CH(CH<sub>3</sub>)<sub>2</sub></td>
<td></td>
</tr>
<tr>
<td>0.031</td>
<td>-SCH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-C<sub>2</sub>H<sub>5</sub></td>
<td></td>
</tr>
<tr>
<td>0.032</td>
<td>-SCH<sub>2</sub>-CH<sup>=</sup>CH<sub>2</sub></td>
<td></td>
</tr>
<tr>
<td>0.033</td>
<td>-SCH<sub>2</sub>-CH<sup>=</sup>CH-Cl</td>
<td></td>
</tr>
<tr>
<td>0.034</td>
<td>-SCH<sub>2</sub>-C<sup>=</sup>CH</td>
<td></td>
</tr>
<tr>
<td>0.035</td>
<td>-SCH(CH<sub>3</sub>)<sub>-</sub>C<sup>=</sup>CH</td>
<td></td>
</tr>
<tr>
<td>0.036</td>
<td>-SCH<sub>2</sub>-CO-OC<sub>2</sub>H<sub>5</sub></td>
<td></td>
</tr>
<tr>
<td>0.037</td>
<td>-SCH<sub>2</sub>-CO-AC<sub>2</sub>H<sub>5</sub></td>
<td></td>
</tr>
<tr>
<td>0.038</td>
<td>-SCH(CH<sub>3</sub>)<sub>-</sub>CO-OC<sub>2</sub>H<sub>5</sub></td>
<td></td>
</tr>
<tr>
<td>0.039</td>
<td>-SCH(CH<sub>3</sub>)<sub>-</sub>CO-OC<sub>2</sub>H<sub>5</sub></td>
<td></td>
</tr>
<tr>
<td>0.040</td>
<td>-S-cyclopentyl</td>
<td></td>
</tr>
<tr>
<td>0.041</td>
<td>-SCH<sub>2</sub>-CN</td>
<td></td>
</tr>
<tr>
<td>0.042</td>
<td>-SCH(CH<sub>3</sub>)<sub>-</sub>CN</td>
<td></td>
</tr>
<tr>
<td>0.043</td>
<td>-SCH<sub>2</sub>-CO-O-(CH<sub>2</sub>)<sub>4</sub>-CH<sub>3</sub></td>
<td></td>
</tr>
<tr>
<td>0.044</td>
<td>-SCH(CH<sub>3</sub>)<sub>-</sub>CO-O-(CH<sub>2</sub>)<sub>4</sub>-CH<sub>3</sub></td>
<td></td>
</tr>
<tr>
<td>0.045</td>
<td>-SCH<sub>2</sub>-phenyl</td>
<td></td>
</tr>
<tr>
<td>0.046</td>
<td>-SCH<sub>2</sub>-(4-Cl-phenyl)</td>
<td></td>
</tr>
<tr>
<td>0.047</td>
<td>-SO<sub>2</sub>-Cl</td>
<td></td>
</tr>
<tr>
<td>0.048</td>
<td>-SO<sub>2</sub>-NH<sub>2</sub></td>
<td></td>
</tr>
<tr>
<td>0.049</td>
<td>-SO<sub>2</sub>-NH-CH<sub>3</sub></td>
<td></td>
</tr>
<tr>
<td>0.050</td>
<td>-SO<sub>2</sub>-N(CH<sub>3</sub>)<sub>2</sub></td>
<td></td>
</tr>
<tr>
<td>0.051</td>
<td>-SO<sub>2</sub>-NH-C<sub>2</sub>H<sub>5</sub></td>
<td></td>
</tr>
<tr>
<td>0.052</td>
<td>-SO<sub>2</sub>-N(CH<sub>3</sub>)<sub>-</sub>C<sub>2</sub>H<sub>5</sub></td>
<td></td>
</tr>
<tr>
<td>0.053</td>
<td>-SO<sub>2</sub>-N(C<sub>2</sub>H<sub>5</sub>)<sub>2</sub></td>
<td></td>
</tr>
<tr>
<td>0.054</td>
<td>-SO<sub>2</sub>-[pyrrolidin-1-yl]</td>
<td></td>
</tr>
<tr>
<td>0.055</td>
<td>-SO<sub>2</sub>-[morpholin-4-yl]</td>
<td></td>
</tr>
<tr>
<td>0.056</td>
<td>-SO<sub>2</sub>-NH-phenyl</td>
<td></td>
</tr>
<tr>
<td>0.057</td>
<td>-SO<sub>2</sub>-N(CH<sub>3</sub>)<sub>-</sub>phenyl</td>
<td></td>
</tr>
<tr>
<td>0.058</td>
<td>-SO<sub>2</sub>-NH-CH<sub>2</sub>-phenyl</td>
<td></td>
</tr>
<tr>
<td>0.059</td>
<td>-NO<sub>2</sub></td>
<td>8.93 (m, 1H), 8.41 (m, 1H), 7.95 (d, 1H), 6.71 (t, 1H), 3.88 (s, 3H)</td>
</tr>
<tr>
<td>0.060</td>
<td>-NH<sub>2</sub></td>
<td>82-89°C</td>
</tr>
<tr>
<td>0.061</td>
<td>-NH-SO<sub>2</sub>-CH<sub>3</sub></td>
<td></td>
</tr>
<tr>
<td>0.062</td>
<td>-N(SO<sub>2</sub>-CH<sub>3</sub>)<sub>2</sub></td>
<td></td>
</tr>
<tr>
<td>0.063</td>
<td>-NH-SO<sub>2</sub>-C<sub>2</sub>H<sub>5</sub></td>
<td></td>
</tr>
<tr>
<td>0.064</td>
<td>-N(SO<sub>2</sub>-C<sub>2</sub>H<sub>5</sub>)<sub>2</sub></td>
<td></td>
</tr>
<tr>
<td>Nr.</td>
<td>R<sup>1</sup></td>
<td>Schmp. / MS [m/z<sup>-1</sup>] / <sup>1</sup>H-NMR [ppm]</td>
</tr>
<tr>
<td>-----</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>5</td>
<td>If. 065 -NH-SO<sub>2</sub>-CH<sub>2</sub>-C<sub>2</sub>H<sub>5</sub></td>
<td></td>
</tr>
<tr>
<td></td>
<td>If. 066 -NH-CHO</td>
<td></td>
</tr>
<tr>
<td></td>
<td>If. 067 -NH-CO-CH<sub>3</sub></td>
<td></td>
</tr>
<tr>
<td></td>
<td>If. 068 -NH-CO-C<sub>2</sub>H<sub>5</sub></td>
<td></td>
</tr>
<tr>
<td></td>
<td>If. 069 -N(CO-CH<sub>3</sub>)-SO<sub>2</sub>-CH<sub>3</sub></td>
<td></td>
</tr>
<tr>
<td></td>
<td>If. 070 -N(CO-CH<sub>3</sub>)-SO<sub>2</sub>-C<sub>2</sub>H<sub>5</sub></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>If. 071 -CH<sub>3</sub></td>
<td></td>
</tr>
<tr>
<td></td>
<td>If. 072 -CH=CH-CH<sub>3</sub></td>
<td></td>
</tr>
<tr>
<td></td>
<td>If. 073 -CH=CH-CH<sub>3</sub></td>
<td></td>
</tr>
<tr>
<td></td>
<td>If. 074 -CH<sub>2</sub>-Br</td>
<td></td>
</tr>
<tr>
<td></td>
<td>If. 075 -CH<sub>2</sub>-OCH<sub>3</sub></td>
<td></td>
</tr>
<tr>
<td></td>
<td>If. 076 -CH<sub>2</sub>-OC<sub>2</sub>H<sub>5</sub></td>
<td></td>
</tr>
<tr>
<td></td>
<td>If. 077 -CH<sub>2</sub>-OCH<sub>2</sub>-C<sub>2</sub>H<sub>5</sub></td>
<td></td>
</tr>
<tr>
<td></td>
<td>If. 078 -CH<sub>2</sub>-O(CH<sub>3</sub>)<sub>2</sub></td>
<td></td>
</tr>
<tr>
<td></td>
<td>If. 079 -CH<sub>2</sub>-O-(CH<sub>2</sub>)<sub>3</sub>-CH<sub>3</sub></td>
<td></td>
</tr>
<tr>
<td></td>
<td>If. 080 -CH<sub>2</sub>-OCH(CH<sub>3</sub>)-C<sub>2</sub>H<sub>5</sub></td>
<td></td>
</tr>
<tr>
<td></td>
<td>If. 081 -CH<sub>2</sub>-OCH<sub>2</sub>-CH(CH<sub>3</sub>)<sub>2</sub></td>
<td></td>
</tr>
<tr>
<td></td>
<td>If. 082 -CH<sub>2</sub>-OCH<sub>2</sub>-CH=CH<sub>2</sub></td>
<td></td>
</tr>
<tr>
<td></td>
<td>If. 083 -CH<sub>2</sub>-OCH<sub>2</sub>-C≡C-H</td>
<td></td>
</tr>
<tr>
<td></td>
<td>If. 084 -CH<sub>2</sub>-OCH<sub>2</sub>-CO-OCH<sub>3</sub></td>
<td></td>
</tr>
<tr>
<td></td>
<td>If. 085 -CH<sub>2</sub>-OCH<sub>2</sub>-CO-OC<sub>2</sub>H<sub>5</sub></td>
<td></td>
</tr>
<tr>
<td></td>
<td>If. 086 -CH<sub>2</sub>-OCH(CH<sub>3</sub>)-CO-OCH<sub>3</sub></td>
<td></td>
</tr>
<tr>
<td></td>
<td>If. 087 -CH<sub>2</sub>-OCH(CH<sub>3</sub>)-CO-OC<sub>2</sub>H<sub>5</sub></td>
<td></td>
</tr>
<tr>
<td></td>
<td>If. 088 -CH<sub>2</sub>-O-cyclopentyl</td>
<td></td>
</tr>
<tr>
<td></td>
<td>If. 089 -CH<sub>2</sub>-SCH<sub>3</sub></td>
<td></td>
</tr>
<tr>
<td></td>
<td>If. 090 -CH<sub>2</sub>-SC<sub>2</sub>H<sub>5</sub></td>
<td></td>
</tr>
<tr>
<td></td>
<td>If. 091 -CH<sub>2</sub>-SCH<sub>2</sub>-C<sub>2</sub>H<sub>5</sub></td>
<td></td>
</tr>
<tr>
<td></td>
<td>If. 092 -CH<sub>2</sub>-SCH<sub>2</sub>-CO-OCH<sub>3</sub></td>
<td></td>
</tr>
<tr>
<td></td>
<td>If. 093 -CH<sub>2</sub>-SCH<sub>2</sub>-CO-OC<sub>2</sub>H<sub>5</sub></td>
<td></td>
</tr>
<tr>
<td></td>
<td>If. 094 -CH<sub>2</sub>-N(CH<sub>3</sub>)<sub>2</sub></td>
<td></td>
</tr>
<tr>
<td></td>
<td>If. 095 -COOH</td>
<td></td>
</tr>
<tr>
<td></td>
<td>If. 096 -CO-OCH<sub>3</sub></td>
<td></td>
</tr>
<tr>
<td></td>
<td>If. 097 -CO-OC<sub>2</sub>H<sub>5</sub></td>
<td></td>
</tr>
<tr>
<td></td>
<td>If. 098 -CO-OCH<sub>2</sub>-C<sub>2</sub>H<sub>5</sub></td>
<td></td>
</tr>
<tr>
<td></td>
<td>If. 099 -CO-OCH(CH<sub>3</sub>)<sub>2</sub></td>
<td></td>
</tr>
<tr>
<td></td>
<td>If. 100 -CO-O-(CH<sub>2</sub>)<sub>3</sub>-CH<sub>3</sub></td>
<td></td>
</tr>
<tr>
<td>Nr.</td>
<td>R^1</td>
<td>Schmp. / MS [m/z] / (^1^H)-NMR [ppm]</td>
</tr>
<tr>
<td>------</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>5</td>
<td>If.101 CO-OC(CH(_3))(_2)C(_2)H(_5)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>If.102 CO-OCH(_2)CH(CH(_3))(_2)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>If.103 CO-O-(CH(_2))(_4)-CH(_3)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>If.104 CO-OCH(_2)-CH(_2)-OCH(_3)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>If.105 CO-OCH(_2)-CH(_2)-OC(_2)H(_5)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>If.106 CHO</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>If.107 CH(OCH(_3))(_2)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>If.108 CH(OCH(_2)H(_5))(_2)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>If.109 CH(OCH(_2)-C(_2)H(_5))(_2)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>If.110 (1,3-Dioxolan-2-yl)</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>If.111 (4-Methyl-1,3-dioxolan-2-yl)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>If.112 (4-Methyl-1,3-dithiolan-2-yl)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>If.113 (4-Vinyl-1,3-dioxolan-2-yl)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>If.114 (4,5-Dimethyl-1,3-dioxolan-2-yl)</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>If.115</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>If.116</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>If.117</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>If.118</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>If.119</td>
<td></td>
</tr>
<tr>
<td>Nr.</td>
<td>R¹</td>
<td>Schmp. / MS [m/z] / ¹H-NMR [ppm]</td>
</tr>
<tr>
<td>-----</td>
<td>---------------------</td>
<td>----------------------------------</td>
</tr>
<tr>
<td>If.120</td>
<td>CH=N-OH</td>
<td></td>
</tr>
<tr>
<td>If.121</td>
<td>CH=N-OCH₃</td>
<td></td>
</tr>
<tr>
<td>If.122</td>
<td>CH=N-OCH₂H₅</td>
<td></td>
</tr>
<tr>
<td>If.123</td>
<td>CH=N-OCH₂-C₂H₅</td>
<td></td>
</tr>
<tr>
<td>If.124</td>
<td>CH=N-OCH(CH₃)₂</td>
<td></td>
</tr>
<tr>
<td>If.125</td>
<td>CH=N-OCH₂-C₂H₅</td>
<td></td>
</tr>
<tr>
<td>If.126</td>
<td>CH=N-OCH₂-COOH</td>
<td></td>
</tr>
<tr>
<td>If.127</td>
<td>CH=N-OCH₂-CO-OCH₃</td>
<td></td>
</tr>
<tr>
<td>If.128</td>
<td>CH=N-OCH₂-CO-OCH₃</td>
<td></td>
</tr>
<tr>
<td>If.129</td>
<td>CH=N-OCH(CH₃)₂-COOH</td>
<td></td>
</tr>
<tr>
<td>If.130</td>
<td>CH=N-OCH(CH₃)-CO-OCH₃</td>
<td></td>
</tr>
<tr>
<td>If.131</td>
<td>CH=N-OCH(CH₃)₂-C₂H₅</td>
<td></td>
</tr>
<tr>
<td>If.132</td>
<td>NH-SO₂-(thiophen-2-yl)</td>
<td></td>
</tr>
<tr>
<td>If.133</td>
<td>NH-SO₂-(thiophen-3-yl)</td>
<td></td>
</tr>
<tr>
<td>If.134</td>
<td>NH-SO₂-(3-trifluormethyl-phenyl)</td>
<td></td>
</tr>
<tr>
<td>If.135</td>
<td>NH-SO₂-(2,6-dichlor-phenyl)</td>
<td></td>
</tr>
<tr>
<td>If.136</td>
<td>NH-SO₂-(4-chlorphenyl)</td>
<td></td>
</tr>
<tr>
<td>If.137</td>
<td>NH-SO₂-(4-nitrophenyl)</td>
<td></td>
</tr>
<tr>
<td>If.138</td>
<td>NH-SO₂-(5-chlorthio-phen-2-yl)</td>
<td></td>
</tr>
<tr>
<td>If.139</td>
<td>NH-CO-CH(CH₃)₂-CH₂-Cl</td>
<td></td>
</tr>
<tr>
<td>If.140</td>
<td>NH-CO-CH₂-CH₂-C₂H₅</td>
<td></td>
</tr>
<tr>
<td>If.141</td>
<td>NH-CO-CH₂-C₂H₅</td>
<td></td>
</tr>
<tr>
<td>If.142</td>
<td>NH-CO-cyclopropyl</td>
<td></td>
</tr>
<tr>
<td>If.143</td>
<td>CH₂-OH</td>
<td></td>
</tr>
<tr>
<td>If.144</td>
<td>CH₂-OCH₂-CH=N-OCH₃</td>
<td></td>
</tr>
<tr>
<td>If.145</td>
<td>CH₂-OCH₂-C(CH₃)=N-OCH₃</td>
<td></td>
</tr>
<tr>
<td>If.146</td>
<td>CH₂-OCH(CH₃)-CH=N-OCH₃</td>
<td></td>
</tr>
<tr>
<td>If.147</td>
<td>CH₂-OCH₂-C(CH₃)=N-OCH₃</td>
<td></td>
</tr>
<tr>
<td>If.148</td>
<td>CH₂-O-CH=CH₃</td>
<td></td>
</tr>
<tr>
<td>If.149</td>
<td>CO-OCH₂-CH=N-OCH₃</td>
<td></td>
</tr>
<tr>
<td>If.150</td>
<td>CO-OCH₂-C(CH₃)=N-OCH₃</td>
<td></td>
</tr>
<tr>
<td>If.151</td>
<td>CO-OCH(CH₃)-CH=N-OCH₃</td>
<td></td>
</tr>
<tr>
<td>If.152</td>
<td>CH=CH=CH=CH=CO-OCH₂</td>
<td></td>
</tr>
<tr>
<td>If.153</td>
<td>CH=CH=CH=CH=CO-NH-CH₃</td>
<td></td>
</tr>
<tr>
<td>If.154</td>
<td>CH=CH-COOH</td>
<td></td>
</tr>
<tr>
<td>If.155</td>
<td>CH=CH-CO-OCH₃</td>
<td></td>
</tr>
<tr>
<td>Nr.</td>
<td>R^1</td>
<td>Schmp. / MS [m/z^-1] / ^1H-NMR [ppm]</td>
</tr>
<tr>
<td>-----</td>
<td>--</td>
<td>-------------------------------------</td>
</tr>
<tr>
<td>5</td>
<td>-CH=CH-CO-OC_2H_5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>If.156</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-CH=CH-CO-CH_3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>If.157</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-CH=CH-CO-NH-CH_3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>If.158</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-CH=CH-CO-N(CH_3)_2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>If.159</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-CH=CH-CO-NH_2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>If.160</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-CHBr_2</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>H</td>
<td></td>
</tr>
<tr>
<td></td>
<td>If.162</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-SCH(CH_3)_2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>If.163</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-CH_2-SCH(CH_3)_2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>If.164</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-CH_2-SCH(CH_3)-CH(CH_3)_2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>If.165</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-CH_2-SCH_2-CH_2-OCH_3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>If.166</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-CH_2-SCH_2-CO-OCH(CH_3)_2</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>CH_2-SO-C_2H_5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>If.167</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-CH_2-SO_2-C_2H_5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>If.168</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-SO_4^- Na^+</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>SO_2-(1-piperidinyl)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>If.170</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SO_2-NH-cyclopropyl</td>
<td></td>
</tr>
<tr>
<td></td>
<td>If.171</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SO_2-NH-CH_2-CO-OCH_3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>If.172</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SO_2-NH-CH_2-CO-OCH_3</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>So_2-NH-CH(CH(CH_3)_2)CO-OCH_3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>If.175</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SO_2-NH-CH(CH(CH_3)_2)CO-OCH_3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>If.176</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SO_2-NH-CH(CH(CH_3)_2)CO-OCH_3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>If.177</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SO_2-NH-CH(CH(CH_3)_2)CO-OCH_3</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>SO_2-NH-CH(4-chlorophenyl-methyl)-CO-OCH_3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>If.178</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SO_2-NH-(tetrahydrofuran-2-on-3-yl)</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>SO_2-N(CH_3)-CH_2-CO-OCH_3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>If.180</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SO_2-N(CH_3)-CH_2-CO-OCH_3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>If.181</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SO_2-(2-methoxycarbonyl-pyrroldin-1-yl)</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>SO_2-(2-ethoxycarbonyl-piperidin-1-yl)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>If.183</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SO_2-N(CH_3)-CH_2-CO-NH(CH_3)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>If.184</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SO_2-N(CH_3)-CH_2-CO-N(CH_3)_2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>If.185</td>
<td></td>
</tr>
<tr>
<td></td>
<td>NH-SO_2-C(CH_3)_2-Cl</td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>N(SO_2-C(CH_3)_2-Cl)_2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>If.186</td>
<td></td>
</tr>
<tr>
<td></td>
<td>N(SO_2-(3,5-dimethyl-isoxazol-4-yl))_2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>If.187</td>
<td></td>
</tr>
<tr>
<td></td>
<td>NH-NH_4^+Cl^-</td>
<td></td>
</tr>
<tr>
<td>Nr.</td>
<td>R<sup>1</sup></td>
<td>Schmp. / MS [m/z<sup>1</sup>] /
 /
 <sup>1</sup>H-NMR [ppm]</td>
</tr>
<tr>
<td>------</td>
<td>--------------</td>
<td>--</td>
</tr>
<tr>
<td>If. 190</td>
<td>-NH-NH-CO-OC<sub>2</sub>H<sub>5</sub></td>
<td></td>
</tr>
<tr>
<td>If. 191</td>
<td>-N=N-CO-OC<sub>2</sub>H<sub>5</sub></td>
<td></td>
</tr>
<tr>
<td>If. 192</td>
<td></td>
<td></td>
</tr>
<tr>
<td>If. 193</td>
<td></td>
<td></td>
</tr>
<tr>
<td>If. 194</td>
<td>-CH=CH-CO-(2-methoxycarbonyl-pyrrolidin-1-yl)</td>
<td></td>
</tr>
<tr>
<td>If. 195</td>
<td>-CH=CH-P(O)(OH)<sub>2</sub></td>
<td></td>
</tr>
<tr>
<td>If. 196</td>
<td>-CH=CH-P(O)(OC<sub>2</sub>H<sub>5</sub>)<sub>2</sub></td>
<td></td>
</tr>
<tr>
<td>If. 197</td>
<td>-CH<sub>3</sub>-P(O)(OH)<sub>2</sub></td>
<td></td>
</tr>
<tr>
<td>If. 198</td>
<td>-CH<sub>2</sub>-P(O)(OC<sub>2</sub>H<sub>5</sub>)<sub>2</sub></td>
<td></td>
</tr>
<tr>
<td>If. 199</td>
<td>-P(O)(OH)<sub>2</sub></td>
<td></td>
</tr>
<tr>
<td>If. 200</td>
<td>-P(O)(OC<sub>2</sub>H<sub>5</sub>)<sub>2</sub></td>
<td></td>
</tr>
<tr>
<td>If. 201</td>
<td>-OCH<sub>2</sub>-CO-OCH<sub>2</sub>-CH=N-OCH<sub>3</sub></td>
<td></td>
</tr>
<tr>
<td>If. 202</td>
<td>-CO-OCH<sub>2</sub>-CH=N-OCH<sub>2</sub>-CH=CH<sub>2</sub></td>
<td></td>
</tr>
<tr>
<td>If. 203</td>
<td>-CO-OCH<sub>2</sub>-CH=N-OCH<sub>2</sub>-CH=CHCl</td>
<td></td>
</tr>
<tr>
<td>If. 204</td>
<td>-CO-OCH<sub>2</sub>-CH=N-N-OCH<sub>2</sub>-CH=CH<sub>2</sub></td>
<td></td>
</tr>
<tr>
<td>If. 205</td>
<td>-CO-OCH<sub>2</sub>-CH=N-OCH<sub>2</sub>-phenyl</td>
<td></td>
</tr>
<tr>
<td>If. 206</td>
<td>-CO-NH-CH<sub>2</sub>-CO-OCH<sub>3</sub></td>
<td></td>
</tr>
<tr>
<td>If. 207</td>
<td>-CO-NH-CH(CH<sub>3</sub>)<sub>2</sub>-CO-OC<sub>2</sub>H<sub>5</sub></td>
<td></td>
</tr>
<tr>
<td>If. 208</td>
<td>-CO-N(CH<sub>3</sub>)<sub>2</sub>-CH=CO-OCH<sub>3</sub></td>
<td></td>
</tr>
<tr>
<td>If. 209</td>
<td>-CO-N(CH<sub>3</sub>)<sub>2</sub>-CH=CO-OC<sub>2</sub>H<sub>5</sub></td>
<td></td>
</tr>
<tr>
<td>If. 210</td>
<td>-C(SCH<sub>3</sub>)=N-OH</td>
<td></td>
</tr>
<tr>
<td>If. 211</td>
<td>-C(SCH<sub>3</sub>)=N-OCH<sub>2</sub>-CO-OC<sub>2</sub>H<sub>5</sub></td>
<td></td>
</tr>
<tr>
<td>If. 212</td>
<td>-C(SCH<sub>3</sub>)=N-O-CO-CH<sub>3</sub></td>
<td></td>
</tr>
<tr>
<td>If. 213</td>
<td>-C(CN)=N-OH</td>
<td></td>
</tr>
<tr>
<td>If. 214</td>
<td>-C(CN)=N-O=CH<sub>2</sub>-CO-OC<sub>2</sub>H<sub>5</sub></td>
<td></td>
</tr>
<tr>
<td>If. 215</td>
<td>-C(CN)=N-O-CO-CH<sub>3</sub></td>
<td></td>
</tr>
<tr>
<td>If. 216</td>
<td>-CO-NH-((tetrahydrofuran-2-on-3-yl)</td>
<td></td>
</tr>
<tr>
<td>If. 217</td>
<td>Cl</td>
<td>149-152°C</td>
</tr>
<tr>
<td>If. 218</td>
<td>Br</td>
<td></td>
</tr>
<tr>
<td>If. 219</td>
<td>J</td>
<td></td>
</tr>
<tr>
<td>Nr.</td>
<td>R<sup>i</sup></td>
<td>Schmp. / MS [m/z<sup>-1</sup>] / ¹H-NMR [ppm]</td>
</tr>
<tr>
<td>------</td>
<td>-----------------------------</td>
<td>---</td>
</tr>
<tr>
<td>5</td>
<td>-CN</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>-CH=CH-CO-CH(OCH<sub>3</sub>)<sub>2</sub></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>-CH=CH-CO-CH<sub>(OC<sub>2</sub>H<sub>5</sub>)</sub><sub>2</sub></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>-O-CO-CH<sub>3</sub></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>-O-CO-C<sub>2</sub>H<sub>5</sub></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>-O-CO-CH<sub>2</sub>-phenyl</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>-O-CO-Cyclohexyl</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>-O-CO-CH<sub>2</sub>-OCH<sub>3</sub></td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>-O-CO-NH-CH<sub>3</sub></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-O-CO-N(CH<sub>3</sub>)<sub>2</sub></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-O-CO-NH-phenyl</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-O-CO-NH-C<sub>2</sub>H<sub>5</sub></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-O-CO-N(C<sub>2</sub>H<sub>5</sub>)<sub>2</sub></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-O-CO-NH<sub>2</sub></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-O-CS-N(CH<sub>3</sub>)<sub>2</sub></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-O-CS-N(C<sub>2</sub>H<sub>5</sub>)<sub>2</sub></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-O-CS-NH<sub>2</sub></td>
<td></td>
</tr>
</tbody>
</table>
Tabelle 7

![Chemical Structure](image)

\((R^2 = Br; R^3 = CH_3; Z-R^4 = OCHF_2; R^5 = Cl)\)

<table>
<thead>
<tr>
<th>Nr.</th>
<th>(R^1)</th>
<th>Schmp. / MS [m/z] / ¹H-NMR [ppm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>Ig.001</td>
<td>-OCH₃</td>
</tr>
<tr>
<td></td>
<td>Ig.002</td>
<td>-OC₂H₅</td>
</tr>
<tr>
<td></td>
<td>Ig.003</td>
<td>-OCH₂-C₂H₅</td>
</tr>
<tr>
<td></td>
<td>Ig.004</td>
<td>-OCH(CH₃)₂</td>
</tr>
<tr>
<td>20</td>
<td>Ig.005</td>
<td>-OCH₂-CH₂-C₂H₅</td>
</tr>
<tr>
<td></td>
<td>Ig.006</td>
<td>-OCH(CH₃)-C₂H₅</td>
</tr>
<tr>
<td></td>
<td>Ig.007</td>
<td>-OCH₂-CH(CH₃)₂</td>
</tr>
<tr>
<td></td>
<td>Ig.008</td>
<td>-OCH₂-CH₂-CH₂-C₂H₅</td>
</tr>
<tr>
<td></td>
<td>Ig.009</td>
<td>-OCH₂-CH=CH₂</td>
</tr>
<tr>
<td>25</td>
<td>Ig.010</td>
<td>-OCH₂-CH=CHCl</td>
</tr>
<tr>
<td></td>
<td>Ig.011</td>
<td>-OCH₂-C≡CH</td>
</tr>
<tr>
<td></td>
<td>Ig.012</td>
<td>-OCH(CH₃)C≡CH</td>
</tr>
<tr>
<td></td>
<td>Ig.013</td>
<td>-OCH₂-CO-OCH₃</td>
</tr>
<tr>
<td>30</td>
<td>Ig.014</td>
<td>-OCH₂-CO-OCH₂H₅</td>
</tr>
<tr>
<td></td>
<td>Ig.015</td>
<td>-OCH(CH₃)-CO-OCH₃</td>
</tr>
<tr>
<td></td>
<td>Ig.016</td>
<td>-OCH(CH₃)-CO-OCH₂H₅</td>
</tr>
<tr>
<td></td>
<td>Ig.017</td>
<td>-O-cyclopentenyl</td>
</tr>
<tr>
<td></td>
<td>Ig.018</td>
<td>-OCH₂-CN</td>
</tr>
<tr>
<td></td>
<td>Ig.019</td>
<td>-OCH(CH₃)-CN</td>
</tr>
<tr>
<td></td>
<td>Ig.020</td>
<td>-OH</td>
</tr>
<tr>
<td></td>
<td>Ig.021</td>
<td>-OCH₂-CO-O-(CH₂)₄-CH₃</td>
</tr>
<tr>
<td></td>
<td>Ig.022</td>
<td>-OCH(CH₃)-CO-O-(CH₂)₄-CH₃</td>
</tr>
<tr>
<td>40</td>
<td>Ig.023</td>
<td>-OCH₂-phenyl</td>
</tr>
<tr>
<td></td>
<td>Ig.024</td>
<td>-SCH₃</td>
</tr>
<tr>
<td></td>
<td>Ig.025</td>
<td>-SC₂H₅</td>
</tr>
<tr>
<td></td>
<td>Ig.026</td>
<td>-SCH₂-C₂H₅</td>
</tr>
<tr>
<td></td>
<td>Ig.027</td>
<td>-SCH(CH₃)₂</td>
</tr>
<tr>
<td></td>
<td>Ig.028</td>
<td>-SCH₂-CH₂-C₂H₅</td>
</tr>
<tr>
<td></td>
<td>Ig.029</td>
<td>-SCH(CH₃)-C₂H₅</td>
</tr>
<tr>
<td>Nr.</td>
<td>R<sup>1</sup></td>
<td>Schmp. / MS [m/z<sup>-1</sup>] / ¹H-NMR [ppm]</td>
</tr>
<tr>
<td>-----</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>90</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Ig. 030 -SCH<sub>2</sub>-CH(CH<sub>3</sub>)<sub>2</sub></td>
<td></td>
</tr>
<tr>
<td>031</td>
<td>Ig. 031 -SCH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-C<sub>2</sub>H<sub>5</sub></td>
<td></td>
</tr>
<tr>
<td>032</td>
<td>Ig. 032 -SCH<sub>2</sub>-CH=CH<sub>2</sub></td>
<td></td>
</tr>
<tr>
<td>033</td>
<td>Ig. 033 -SCH<sub>2</sub>-CH=CH-Cl</td>
<td></td>
</tr>
<tr>
<td>034</td>
<td>Ig. 034 -SCH<sub>2</sub>-C≡CH</td>
<td></td>
</tr>
<tr>
<td>035</td>
<td>Ig. 035 -SCH(CH<sub>3</sub>)-C≡CH</td>
<td></td>
</tr>
<tr>
<td>036</td>
<td>Ig. 036 -SCH<sub>2</sub>-CO-OCH<sub>3</sub></td>
<td></td>
</tr>
<tr>
<td>037</td>
<td>Ig. 037 -SCH<sub>2</sub>-CO-OC<sub>2</sub>H<sub>5</sub></td>
<td></td>
</tr>
<tr>
<td>038</td>
<td>Ig. 038 -SCH(CH<sub>3</sub>)-CO-OCH<sub>3</sub></td>
<td></td>
</tr>
<tr>
<td>039</td>
<td>Ig. 039 -SCH(CH<sub>3</sub>)-CO-OC<sub>2</sub>H<sub>5</sub></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Ig. 040 -S-cyclopentyl</td>
<td></td>
</tr>
<tr>
<td>041</td>
<td>Ig. 041 -SCH<sub>2</sub>-CN</td>
<td></td>
</tr>
<tr>
<td>042</td>
<td>Ig. 042 -SCH(CH<sub>3</sub>)-CN</td>
<td></td>
</tr>
<tr>
<td>043</td>
<td>Ig. 043 -SCH<sub>2</sub>-CO-O-(CH<sub>2</sub>)<sub>4</sub>-CH<sub>3</sub></td>
<td></td>
</tr>
<tr>
<td>044</td>
<td>Ig. 044 -SCH(CH<sub>3</sub>)-CO-O-(CH<sub>2</sub>)<sub>4</sub>-CH<sub>3</sub></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>Ig. 045 -SCH<sub>2</sub>-phenyl</td>
<td></td>
</tr>
<tr>
<td>046</td>
<td>Ig. 046 -SCH<sub>2</sub>-(4-C1-phenyl)</td>
<td></td>
</tr>
<tr>
<td>047</td>
<td>Ig. 047 -SO<sub>2</sub>-Cl</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>Ig. 048 -SO<sub>2</sub>-NH<sub>2</sub></td>
<td></td>
</tr>
<tr>
<td>049</td>
<td>Ig. 049 -SO<sub>2</sub>-NH-CH<sub>3</sub></td>
<td></td>
</tr>
<tr>
<td>050</td>
<td>Ig. 050 -SO<sub>2</sub>-N(CH<sub>3</sub>)<sub>2</sub></td>
<td></td>
</tr>
<tr>
<td>051</td>
<td>Ig. 051 -SO<sub>2</sub>-NH-C<sub>2</sub>H<sub>5</sub></td>
<td></td>
</tr>
<tr>
<td>052</td>
<td>Ig. 052 -SO<sub>2</sub>-N(CH<sub>3</sub>)-C<sub>2</sub>H<sub>5</sub></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>Ig. 053 -SO<sub>2</sub>-N(C<sub>2</sub>H<sub>5</sub>)<sub>2</sub></td>
<td></td>
</tr>
<tr>
<td>054</td>
<td>Ig. 054 -SO<sub>2</sub>-(pyrrolidin-1-yl)</td>
<td></td>
</tr>
<tr>
<td>055</td>
<td>Ig. 055 -SO<sub>2</sub>-(morpholin-4-yl)</td>
<td></td>
</tr>
<tr>
<td>056</td>
<td>Ig. 056 -SO<sub>2</sub>-NH-phenyl</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>Ig. 057 -SO<sub>2</sub>-N(CH<sub>3</sub>)-phenyl</td>
<td></td>
</tr>
<tr>
<td>058</td>
<td>Ig. 058 -SO<sub>2</sub>-NH-CH<sub>2</sub>-phenyl</td>
<td></td>
</tr>
<tr>
<td>059</td>
<td>Ig. 059 -NO<sub>2</sub></td>
<td></td>
</tr>
<tr>
<td>060</td>
<td>Ig. 060 -NH<sub>2</sub></td>
<td></td>
</tr>
<tr>
<td>061</td>
<td>Ig. 061 -NH-SO<sub>2</sub>-CH<sub>3</sub></td>
<td></td>
</tr>
<tr>
<td>062</td>
<td>Ig. 062 -N(SO<sub>2</sub>-CH<sub>3</sub>)<sub>2</sub></td>
<td></td>
</tr>
<tr>
<td>063</td>
<td>Ig. 063 -NH-SO<sub>2</sub>-C<sub>2</sub>H<sub>5</sub></td>
<td></td>
</tr>
<tr>
<td>064</td>
<td>Ig. 064 -N(SO<sub>2</sub>-C<sub>2</sub>H<sub>5</sub>)<sub>2</sub></td>
<td></td>
</tr>
<tr>
<td>065</td>
<td>Ig. 065 -NH-SO<sub>2</sub>-CH<sub>2</sub>-C<sub>2</sub>H<sub>5</sub></td>
<td></td>
</tr>
<tr>
<td>066</td>
<td>Ig. 066 -NH-CHO</td>
<td></td>
</tr>
<tr>
<td>067</td>
<td>Ig. 067 -NH-CO-CH<sub>3</sub></td>
<td></td>
</tr>
<tr>
<td>Nr.</td>
<td>R<sup>1</sup></td>
<td>Schmp. / MS [m/z<sup>-1</sup>] /
1<sup>1</sup>H-NMR [ppm]</td>
</tr>
<tr>
<td>-----</td>
<td>---------------</td>
<td>---</td>
</tr>
<tr>
<td>Ig.068</td>
<td>-NH-CO-C<sub>2</sub>H<sub>5</sub></td>
<td></td>
</tr>
<tr>
<td>Ig.069</td>
<td>-N(CO-CH<sub>3</sub>) -SO<sub>2</sub>-CH<sub>3</sub></td>
<td></td>
</tr>
<tr>
<td>Ig.070</td>
<td>-N(CO-CH<sub>3</sub>) -SO<sub>2</sub>-C<sub>2</sub>H<sub>5</sub></td>
<td></td>
</tr>
<tr>
<td>Ig.071</td>
<td>-CH<sub>3</sub></td>
<td></td>
</tr>
<tr>
<td>Ig.072</td>
<td>-CH=CH-CH<sub>3</sub></td>
<td></td>
</tr>
<tr>
<td>Ig.073</td>
<td>-CH=CH-</td>
<td></td>
</tr>
<tr>
<td>Ig.074</td>
<td>-CH<sub>2</sub>-Br</td>
<td></td>
</tr>
<tr>
<td>Ig.075</td>
<td>-CH<sub>2</sub>-OCH<sub>3</sub></td>
<td></td>
</tr>
<tr>
<td>Ig.076</td>
<td>-CH<sub>2</sub>-OCH<sub>2</sub>H<sub>5</sub></td>
<td></td>
</tr>
<tr>
<td>Ig.077</td>
<td>-CH<sub>2</sub>-OCH<sub>2</sub>-C<sub>2</sub>H<sub>5</sub></td>
<td></td>
</tr>
<tr>
<td>Ig.078</td>
<td>-CH<sub>2</sub>-OCH(CH<sub>3</sub>)<sub>2</sub></td>
<td></td>
</tr>
<tr>
<td>Ig.079</td>
<td>-CH<sub>2</sub>-O-(CH<sub>2</sub>)<sub>2</sub>-C<sub>2</sub>H<sub>5</sub></td>
<td></td>
</tr>
<tr>
<td>Ig.080</td>
<td>-CH<sub>2</sub>-OCH(CH<sub>3</sub>) -C<sub>2</sub>H<sub>5</sub></td>
<td></td>
</tr>
<tr>
<td>Ig.081</td>
<td>-CH<sub>2</sub>-OCH<sub>2</sub>-CH(CH<sub>3</sub>)<sub>2</sub></td>
<td></td>
</tr>
<tr>
<td>Ig.082</td>
<td>-CH<sub>2</sub>-OCH<sub>2</sub>-CH=CH<sub>2</sub></td>
<td></td>
</tr>
<tr>
<td>Ig.083</td>
<td>-CH<sub>2</sub>-OCH<sub>2</sub>-C≡CH</td>
<td></td>
</tr>
<tr>
<td>Ig.084</td>
<td>-CH<sub>2</sub>-OCH<sub>2</sub>-CO-OCH<sub>3</sub></td>
<td></td>
</tr>
<tr>
<td>Ig.085</td>
<td>-CH<sub>2</sub>-OCH<sub>2</sub>-CO-OC<sub>2</sub>H<sub>5</sub></td>
<td></td>
</tr>
<tr>
<td>Ig.086</td>
<td>-CH<sub>2</sub>-OCH(CH<sub>3</sub>) -CO-OCH<sub>3</sub></td>
<td></td>
</tr>
<tr>
<td>Ig.087</td>
<td>-CH<sub>2</sub>-OCH(CH<sub>3</sub>) -CO-OC<sub>2</sub>H<sub>5</sub></td>
<td></td>
</tr>
<tr>
<td>Ig.088</td>
<td>-CH<sub>2</sub>-O-cyclopentyl</td>
<td></td>
</tr>
<tr>
<td>Ig.089</td>
<td>-CH<sub>2</sub>-SCH<sub>3</sub></td>
<td></td>
</tr>
<tr>
<td>Ig.090</td>
<td>-CH<sub>2</sub>-SC<sub>2</sub>H<sub>5</sub></td>
<td></td>
</tr>
<tr>
<td>Ig.091</td>
<td>-CH<sub>2</sub>-SCH<sub>2</sub>-C<sub>2</sub>H<sub>5</sub></td>
<td></td>
</tr>
<tr>
<td>Ig.092</td>
<td>-CH<sub>2</sub>-SCH<sub>2</sub>-CO-OCH<sub>3</sub></td>
<td></td>
</tr>
<tr>
<td>Ig.093</td>
<td>-CH<sub>2</sub>-SCH<sub>2</sub>-CO-OC<sub>2</sub>H<sub>5</sub></td>
<td></td>
</tr>
<tr>
<td>Ig.094</td>
<td>-CH<sub>2</sub>-N(CH<sub>3</sub>)<sub>2</sub></td>
<td></td>
</tr>
<tr>
<td>Ig.095</td>
<td>-COOH</td>
<td></td>
</tr>
<tr>
<td>Ig.096</td>
<td>-CO-OCH<sub>3</sub></td>
<td></td>
</tr>
<tr>
<td>Ig.097</td>
<td>-CO-OC<sub>2</sub>H<sub>5</sub></td>
<td></td>
</tr>
<tr>
<td>Ig.098</td>
<td>-CO-OCH<sub>2</sub>-C<sub>2</sub>H<sub>5</sub></td>
<td></td>
</tr>
<tr>
<td>Ig.099</td>
<td>-CO-OCH(CH<sub>3</sub>)<sub>2</sub></td>
<td></td>
</tr>
<tr>
<td>Ig.100</td>
<td>-CO-O-(CH<sub>2</sub>)<sub>2</sub>-C<sub>2</sub>H<sub>5</sub></td>
<td></td>
</tr>
<tr>
<td>Ig.101</td>
<td>-CO-OCH(CH<sub>3</sub>) -C<sub>2</sub>H<sub>5</sub></td>
<td></td>
</tr>
<tr>
<td>Ig.102</td>
<td>-CO-OCH<sub>2</sub>-CH(CH<sub>3</sub>)<sub>2</sub></td>
<td></td>
</tr>
<tr>
<td>Ig.103</td>
<td>-CO-O-(CH<sub>2</sub>)<sub>4</sub>-CH<sub>3</sub></td>
<td></td>
</tr>
<tr>
<td>Nr.</td>
<td>R^1</td>
<td>Schmp. / MS [m/z$^{-1}$] / 1H-NMR [ppm]</td>
</tr>
<tr>
<td>-----</td>
<td>------</td>
<td>-------------------------------------</td>
</tr>
<tr>
<td>5</td>
<td>Ig.104 $\text{CO-OCH}_2\text{-CH}_2\text{-OCH}_3$</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Ig.105 $\text{CO-OCH}_2\text{-CH}_2\text{-OC}_2\text{H}_5$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ig.106 CHO</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ig.107 $\text{CH(OCH}_3)_2$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ig.108 $\text{CH(OCH}_2\text{H}_5)_2$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ig.109 $\text{CH(OCH}_2\text{-C}_2\text{H}_5)_2$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ig.110 $\text{(1,3-Dioxolan-2-yl)}$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ig.111 $\text{(4-Methyl-1,3-dioxolan-2-yl)}$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ig.112 $\text{(4-Methyl-1,3-dithiolan-2-yl)}$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ig.113 $\text{(4-Vinyl-1,3-dioxolan-2-yl)}$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ig.114 $\text{(4,5-Dimethyl-1,3-dioxolan-2-yl)}$</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>Ig.115</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>Ig.116</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>Ig.117</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>Ig.118</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>Ig.119</td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>Ig.120 -CH=NH_2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ig.121 -CH=NOCH_3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ig.122 $\text{-CH=NOC}_2\text{H}_5$</td>
<td></td>
</tr>
<tr>
<td>Nr.</td>
<td>R<sup>1</sup></td>
<td>Schmp./MS [m/z<sup>-1</sup>] /
1H-NMR [ppm]</td>
</tr>
<tr>
<td>-----</td>
<td>----------------</td>
<td>---</td>
</tr>
<tr>
<td>Ig.123</td>
<td>-CH=N-OCH<sub>2</sub>-C<sub>2</sub>H<sub>5</sub></td>
<td></td>
</tr>
<tr>
<td>Ig.124</td>
<td>-CH=N-OCH(CH<sub>3</sub>)<sub>2</sub></td>
<td></td>
</tr>
<tr>
<td>Ig.125</td>
<td>-CH=N-OCH<sub>2</sub>-CH<sub>2</sub>-C<sub>2</sub>H<sub>5</sub></td>
<td></td>
</tr>
<tr>
<td>Ig.126</td>
<td>-CH=N-OCH<sub>2</sub>-COOH</td>
<td></td>
</tr>
<tr>
<td>Ig.127</td>
<td>-CH=N-OCH<sub>2</sub>-CO-OCH<sub>3</sub></td>
<td></td>
</tr>
<tr>
<td>Ig.128</td>
<td>-CH=N-OCH<sub>2</sub>-CO-OC<sub>2</sub>H<sub>5</sub></td>
<td></td>
</tr>
<tr>
<td>Ig.129</td>
<td>-CH=N-OCH(CH<sub>3</sub>)-COOH</td>
<td></td>
</tr>
<tr>
<td>Ig.130</td>
<td>-CH=N-OCH(CH<sub>3</sub>)-CO-OCH<sub>3</sub></td>
<td></td>
</tr>
<tr>
<td>Ig.131</td>
<td>-CH=N-OCH(CH<sub>3</sub>)-OC<sub>2</sub>H<sub>5</sub></td>
<td></td>
</tr>
<tr>
<td>Ig.132</td>
<td>NH-SO<sub>2</sub>-(thiophen-2-yl)</td>
<td></td>
</tr>
<tr>
<td>Ig.133</td>
<td>NH-SO<sub>2</sub>-(thiophen-3-yl)</td>
<td></td>
</tr>
<tr>
<td>Ig.134</td>
<td>NH-SO<sub>2</sub>-(3-trifluormethyl-phenyl)</td>
<td></td>
</tr>
<tr>
<td>Ig.135</td>
<td>NH-SO<sub>2</sub>-(2,6-dichlor-phenyl)</td>
<td></td>
</tr>
<tr>
<td>Ig.136</td>
<td>NH-SO<sub>2</sub>-(4-chlorphenyl)</td>
<td></td>
</tr>
<tr>
<td>Ig.137</td>
<td>NH-SO<sub>2</sub>-(4-nitrophenyl)</td>
<td></td>
</tr>
<tr>
<td>Ig.138</td>
<td>NH-SO<sub>2</sub>-(5-chlorothio-phen-2-yl)</td>
<td></td>
</tr>
<tr>
<td>Ig.139</td>
<td>NH-CO-CH(Cl)-CH<sub>2</sub>-Cl</td>
<td></td>
</tr>
<tr>
<td>Ig.140</td>
<td>NH-CO-CH<sub>2</sub>-CH(CH<sub>3</sub>)<sub>2</sub></td>
<td></td>
</tr>
<tr>
<td>Ig.141</td>
<td>NH-CO-CH(CH<sub>3</sub>)<sub>2</sub></td>
<td></td>
</tr>
<tr>
<td>Ig.142</td>
<td>NH-CO-cyclopropyl</td>
<td></td>
</tr>
<tr>
<td>Ig.143</td>
<td>-CH<sub>2</sub>-OH</td>
<td></td>
</tr>
<tr>
<td>Ig.144</td>
<td>-CH<sub>2</sub>-OCH<sub>2</sub>-CH=N-OCH<sub>3</sub></td>
<td></td>
</tr>
<tr>
<td>Ig.145</td>
<td>-CH<sub>2</sub>-OCH<sub>2</sub>-C(CH<sub>3</sub>)=N-OCH<sub>3</sub></td>
<td></td>
</tr>
<tr>
<td>Ig.146</td>
<td>-CH<sub>2</sub>-OCH(CH<sub>3</sub>)=CH=N-OCH<sub>3</sub></td>
<td></td>
</tr>
<tr>
<td>Ig.147</td>
<td>-CH<sub>2</sub>-OCH<sub>2</sub>-C(CH<sub>3</sub>)=N-OCH<sub>3</sub></td>
<td></td>
</tr>
<tr>
<td>Ig.148</td>
<td>-CH<sub>2</sub>-O-CO-CH<sub>3</sub></td>
<td></td>
</tr>
<tr>
<td>Ig.149</td>
<td>-CO-OCH<sub>2</sub>-CH=N-OCH<sub>3</sub></td>
<td></td>
</tr>
<tr>
<td>Ig.150</td>
<td>-CO-OCH<sub>2</sub>-C(CH<sub>3</sub>)=N-OCH<sub>3</sub></td>
<td></td>
</tr>
<tr>
<td>Ig.151</td>
<td>-CO-OCH(CH<sub>3</sub>)=CH=N-OCH<sub>3</sub></td>
<td></td>
</tr>
<tr>
<td>Ig.152</td>
<td>CH=CH–CH=CH–CO-OC<sub>2</sub>H<sub>5</sub></td>
<td></td>
</tr>
<tr>
<td>Ig.153</td>
<td>CH=CH–CH=CH–CO-NH–CH<sub>3</sub></td>
<td></td>
</tr>
<tr>
<td>Ig.154</td>
<td>CH=CH–COOH</td>
<td></td>
</tr>
<tr>
<td>Ig.155</td>
<td>CH=CH–CO–OCH<sub>3</sub></td>
<td></td>
</tr>
<tr>
<td>Ig.156</td>
<td>CH=CH–CO–OC<sub>2</sub>H<sub>5</sub></td>
<td></td>
</tr>
<tr>
<td>Ig.157</td>
<td>CH=CH–CO–CH<sub>3</sub></td>
<td></td>
</tr>
<tr>
<td>Ig.158</td>
<td>CH=CH–CO–NH–CH<sub>3</sub></td>
<td></td>
</tr>
<tr>
<td>Nr.</td>
<td>R<sup>1</sup></td>
<td>Schmp. / MS [m/z<sup>-1</sup>] /
¹H-NMR [ppm]</td>
</tr>
<tr>
<td>-----</td>
<td>-------------</td>
<td>---------------------------------</td>
</tr>
<tr>
<td>Ig.159</td>
<td>-CH=CH-CO-N(CH<sub>3</sub>)<sub>2</sub></td>
<td></td>
</tr>
<tr>
<td>Ig.160</td>
<td>-CH=CH-CO-NH<sub>2</sub></td>
<td></td>
</tr>
<tr>
<td>Ig.161</td>
<td>-CHBr<sub>2</sub></td>
<td></td>
</tr>
<tr>
<td>Ig.162</td>
<td>-H</td>
<td></td>
</tr>
<tr>
<td>Ig.163</td>
<td>-CH<sub>2</sub>-SCH(CH<sub>3</sub>)<sub>2</sub></td>
<td></td>
</tr>
<tr>
<td>Ig.164</td>
<td>-CH<sub>2</sub>-SCH(CH<sub>3</sub>)<sub>2</sub>-CH(CH<sub>3</sub>)<sub>2</sub></td>
<td></td>
</tr>
<tr>
<td>Ig.165</td>
<td>-CH<sub>2</sub>-SCH<sub>2</sub>-CH<sub>2</sub>-OCH<sub>3</sub></td>
<td></td>
</tr>
<tr>
<td>Ig.166</td>
<td>-CH<sub>2</sub>-SCH<sub>2</sub>-CO-OCH(CH<sub>3</sub>)<sub>2</sub></td>
<td></td>
</tr>
<tr>
<td>Ig.167</td>
<td>-CH<sub>2</sub>-SO<sub>2</sub>-C<sub>2</sub>H<sub>5</sub></td>
<td></td>
</tr>
<tr>
<td>Ig.168</td>
<td>-CH<sub>2</sub>-SO<sub>2</sub>-C<sub>2</sub>H<sub>5</sub></td>
<td></td>
</tr>
<tr>
<td>Ig.169</td>
<td>-SO<sub>3</sub><sup>-</sup>-Na<sup>+</sup></td>
<td></td>
</tr>
<tr>
<td>Ig.170</td>
<td>-SO<sub>2</sub>-(1-piperidinyl)</td>
<td></td>
</tr>
<tr>
<td>Ig.171</td>
<td>-SO<sub>2</sub>-NH-cyclopropyl</td>
<td></td>
</tr>
<tr>
<td>Ig.172</td>
<td>-SO<sub>2</sub>-NH-CH<sub>2</sub>-CO-OCH<sub>3</sub></td>
<td></td>
</tr>
<tr>
<td>Ig.173</td>
<td>-SO<sub>2</sub>-NH-CH<sub>2</sub>-CO-OC<sub>2</sub>H<sub>5</sub></td>
<td></td>
</tr>
<tr>
<td>Ig.174</td>
<td>-SO<sub>2</sub>-NH-CH(CH(CH<sub>3</sub>)<sub>2</sub>)<sub>2</sub>-CO-OCH<sub>3</sub></td>
<td></td>
</tr>
<tr>
<td>Ig.175</td>
<td>-SO<sub>2</sub>-NH-CH(CH(CH<sub>3</sub>)<sub>2</sub>)<sub>2</sub>-CO-OC<sub>2</sub>H<sub>5</sub></td>
<td></td>
</tr>
<tr>
<td>Ig.176</td>
<td>-SO<sub>2</sub>-NH-CH(CH<sub>3</sub>)<sub>2</sub>-CO-OC<sub>2</sub>H<sub>5</sub></td>
<td></td>
</tr>
<tr>
<td>Ig.177</td>
<td>-SO<sub>2</sub>-NH-CH(CH<sub>2</sub>CH(CH<sub>3</sub>)<sub>2</sub>)<sub>2</sub>-CO-OCH<sub>3</sub></td>
<td></td>
</tr>
<tr>
<td>Ig.178</td>
<td>-SO<sub>2</sub>-NH-CH(4-chlorophenyl)-methy1<sub>-</sub>-CO-OC<sub>2</sub>H<sub>5</sub></td>
<td></td>
</tr>
<tr>
<td>Ig.179</td>
<td>-SO<sub>2</sub>-NH-(tetrahydrofuran-2-on-3-yl)</td>
<td></td>
</tr>
<tr>
<td>Ig.180</td>
<td>-SO<sub>2</sub>-N(CH<sub>3</sub>)<sub>2</sub>-CH<sub>2</sub>-CO-OC<sub>2</sub>H<sub>5</sub></td>
<td></td>
</tr>
<tr>
<td>Ig.181</td>
<td>-SO<sub>2</sub>-N(CH<sub>3</sub>)<sub>2</sub>-CH<sub>2</sub>-CO-OCH<sub>3</sub></td>
<td></td>
</tr>
<tr>
<td>Ig.182</td>
<td>-SO<sub>2</sub>-(2-methoxy carbonyl-pyrrolidin-1-yl)</td>
<td></td>
</tr>
<tr>
<td>Ig.183</td>
<td>-SO<sub>2</sub>-(2-ethoxycarbonyl-piperidin-1-yl)</td>
<td></td>
</tr>
<tr>
<td>Ig.184</td>
<td>-SO<sub>2</sub>-N(CH<sub>3</sub>)<sub>2</sub>-CH<sub>2</sub>-CO-NH(CH<sub>3</sub>)<sub>2</sub></td>
<td></td>
</tr>
<tr>
<td>Ig.185</td>
<td>-SO<sub>2</sub>-N(CH<sub>3</sub>)<sub>2</sub>-CH<sub>2</sub>-CO-N(CH<sub>3</sub>)<sub>2</sub></td>
<td></td>
</tr>
<tr>
<td>Ig.186</td>
<td>-NH-SO<sub>2</sub>-C(CH<sub>3</sub>)<sub>2</sub>-Cl</td>
<td></td>
</tr>
<tr>
<td>Ig.187</td>
<td>-N(SO<sub>2</sub>-C(CH<sub>3</sub>)<sub>2</sub>-Cl)<sub>2</sub></td>
<td></td>
</tr>
<tr>
<td>Ig.188</td>
<td>-N(SO<sub>2</sub>-(3,5-dimethyl-isoxazol-4-yl))<sub>2</sub></td>
<td></td>
</tr>
<tr>
<td>Ig.189</td>
<td>-NH-NH<sub>3</sub>+ Cl<sup>-</sup></td>
<td></td>
</tr>
<tr>
<td>Ig.190</td>
<td>-NH-NH-CO-OC<sub>2</sub>H<sub>5</sub></td>
<td></td>
</tr>
<tr>
<td>Ig.191</td>
<td>-N=NC-CO-OC<sub>2</sub>H<sub>5</sub></td>
<td></td>
</tr>
<tr>
<td>Nr.</td>
<td>R^1</td>
<td>Schmp. / MS [m/z] / ^1H-NMR [ppm]</td>
</tr>
<tr>
<td>-----</td>
<td>--</td>
<td>----------------------------------</td>
</tr>
<tr>
<td>5</td>
<td>Ig.192 <draw a molecule here></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Ig.193 <draw a molecule here></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Ig.194 -CH=CH-CO-(2-methoxycarbonyl-pyrrolidin-1-yl)</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>Ig.195 -CH=CH-P(O)(OH)_2</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>Ig.196 -CH=CH-P(O)(OC_2H_5)_2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ig.197 -CH_2-P(O)(OH)_2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ig.198 -CH_2-P(O)(OC_2H_5)_2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ig.199 -P(O)(OH)_2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ig.200 -P(O)(OC_2H_5)_2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ig.201 -OCH_2-CO-OCH_2-CH=N-OCH_3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ig.202 -CO-OCH_2-CH=N-OCH_2-CH=CH_2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ig.203 -CO-OCH_2-CH=N-OCH_2-CH=CHCl</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ig.204 -CO-OCH_2-CH=N-OCH_2-CH-C_2H_5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ig.205 -CO-OCH_2-CH=N-OCH_2-phenyl</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ig.206 -CO-NH-CH_2-CO-OCH_3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ig.207 -CO-NH-CH(CH(CH_3)_2)-CO-OC_2H_5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ig.208 -CO-N(CH_3)-CH_2-CO-OCH_3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ig.209 -CO-N(CH_3)-CH_2-CO-OC_2H_5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ig.210 -C(SCH_3)=N-OH</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ig.211 -C(SCH_3)=N-OCH_2-CO-OC_2H_5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ig.212 -C(SCH_3)=N-O-CO-CH_3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ig.213 -C(CN)=N-OH</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ig.214 -C(CN)=N-OCH_2-CO-OC_2H_5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ig.215 -C(CN)=N-O-CO-CH_3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ig.216 -CO-NH-(tetrahydrofuran-2-on-3-yl)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ig.217 -Cl</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ig.218 -Br</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ig.219 -J</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ig.220 -CN</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ig.221 -CH=CH-CO-CH(OCH_3)_2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ig.222 -CH=CH-CO-CH(OC_2H_5)_2</td>
<td></td>
</tr>
<tr>
<td>Nr.</td>
<td>R^1</td>
<td>Schmp. / MS [m/z$^{-1}$] / 1H-NMR [ppm]</td>
</tr>
<tr>
<td>-----</td>
<td>-------</td>
<td>---------------------------------</td>
</tr>
<tr>
<td>5</td>
<td>-CH=CH-CH</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Ig.225 -O-CO-CH$_3$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ig.226 -O-CO-C$_2$H$_5$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ig.227 -O-CO-CH$_2$-phenyl</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ig.228 -O-CO-cyclohexyl</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>Ig.229 -O-CO-CH$_2$-OCH$_3$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ig.230 -O-CO-NH-CH$_3$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ig.231 -O-CO-N(CH$_3$)$_2$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ig.232 -O-CO-NH-phenyl</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>Ig.233 -O-CO-NH-C$_2$H$_5$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ig.234 -O-CO-N(C$_2$H$_5$)$_2$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ig.235 -O-CO-NH$_2$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ig.236 -O-CS-N(CH$_3$)$_2$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ig.237 -O-CS-N(C$_2$H$_5$)$_2$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ig.238 -O-CS-NH$_2$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ig.239 -CO-NH-CH$_3$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ig.240 -CO-NH-C$_2$H$_5$</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>Ig.241 -CO-NH-CH$_2$-C$_2$H$_5$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ig.242 -CO-NH-CH$_2$-CH$_2$-C$_2$H$_5$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ig.243 -CO-NH-CH(CH$_3$)$_2$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ig.244 -CO-N(CH$_3$)$_2$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ig.245 -CO-N(C$_2$H$_5$)$_2$</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>Ig.246 -CO-N</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ig.247 -CO-N</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ig.248 -CO-N</td>
<td></td>
</tr>
</tbody>
</table>
Anwendungsbeispiele

Die herbizide Wirkung der substituierten 3-Phenylpyrazole der Formel I ließ sich durch Gewächshausversuche zeigen:

Als Kulturgefäße dienten Plastikblumentöpfe mit lehmigem Sand mit etwa 3,0% Humus als Substrat. Die Samen der Testpflanzen wurden nach Arten getrennt eingesät.

Bei Voraufbauvorbehandlung wurden die in Wasser suspendierten oder emulgierenden Wirkstoffe direkt nach Einsaat mittels fein verteilender Düsen aufgebracht. Die Gefäße wurden leicht beregnet, um Keimung und Wachstum zu fördern, und anschließend mit durchsichtigen Plastikhauben abgedeckt, bis die Pflanzen angewachsen waren. Diese Abdeckung bewirkte ein gleichmäßiges Keimen der Testpflanzen, sofern dies nicht durch die Wirkstoffe beeinträchtigt wurde.

Zum Zweck der Nachaufbauvorbehandlung wurden die Testpflanzen je nach Wuchsform erst bis zu einer Wuchshöhe von 3 bis 15 cm angezogen und erst dann mit den in Wasser suspendierten oder emulgierenden Wirkstoffen behandelt. Die Testpflanzen wurden dafür entweder direkt gesät und in den gleichen Gefäßen aufgezogen oder sie werden erst als Keimpflanzen getrennt angezogen und einige Tage vor der Behandlung in die Versuchsgefäße verpfanzt. Die Aufwandsmenge für die Nachaufbauvorbehandlung betrug 3,0 kg aktive Substanz pro Hektar.

Bewertet wurde nach einer Skala von 0 bis 100. Dabei bedeutet 100 kein Aufgang der Pflanzen bzw. völlige Zerstörung zumindest der oberirdischen Teile und 0 keine Schädigung oder normaler Wachstumsverlauf.
Die in den Gewächshausversuchen verwendeten Pflanzen setzten sich aus folgenden Arten zusammen:

<table>
<thead>
<tr>
<th>Lateinischer Name</th>
<th>Deutscher Name</th>
<th>Englischer Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Echinochloa crus-galli</td>
<td>Hühnerhirse</td>
<td>Barnyardgrass</td>
</tr>
<tr>
<td>Galium aparine</td>
<td>Klettenlabkraut</td>
<td>Catchweed bedstraw</td>
</tr>
<tr>
<td>Ipomoea subspecies</td>
<td>Prunkwindearten</td>
<td>Morningglory</td>
</tr>
<tr>
<td>Setaria italic</td>
<td>Kolbenhirse</td>
<td>Foxtail millet</td>
</tr>
</tbody>
</table>

Bei einer Aufwandmenge von 3,0 kg/ha a.S. ließen sich mit der Verbindung Nr. Ia.071 unerwünschte Pflanzen im Nachauflaufverfahren sehr gut bekämpfen.
Patentansprüche

1. Substituierte 3-Phenylpyrazole der Formel I

\[
\begin{align*}
R^1 & \text{ Wasserstoff, Cyano, Nitro, Halogen, } C_1-C_3-\text{Alkyl,} \\
C_2-C_8-\text{Alkenyl, } C_2-C_8-\text{Alkiny1, } C_1-C_8-\text{Halogenalkyl,} \\
C_2-C_8-\text{Halogenalkenyl, } C_2-C_8-\text{Halogenalkiny1, } \text{Cyano-} C_1-C_4-\text{alkyl,} \\
C_1-C_8-\text{Alkyl-} O-R^6, & C_1-C_8-\text{Alkyl-} O-CO-R^6, C_2-C_8-\text{Alkenyl-} O-R^6, \\
C_2-C_8-\text{Alkiny1-} O-R^6, & C_1-C_8-\text{Alkyl-} S-R^6, C_2-C_8-\text{Alkenyl-} S-R^6, \\
C_2-C_8-\text{Alkiny1-} S-R^6, & C_1-C_8-\text{Alkyl-} SO-R^6, C_2-C_8-\text{Alkenyl-} SO-R^6, \\
C_2-C_8-\text{Alkiny1-} SO-R^6, & C_1-C_8-\text{Alkyl-} SO_2-R^6, C_2-C_8-\text{Alkenyl-} SO_2-R^6, \\
C_2-C_8-\text{Alkiny1-} SO_2-R^6, & -O-R^6, -S-R^6, -SO-R^6, -SO_2-R^6, -SO_2-CI, \\
-SO_2-O-R^6, & -SO_2-N(R^7,R^8), -SO_2-N(N(R^7)-CO-R^9), -N(R^7,R^8), \\
-N(R^7)-N(R^8,R^{12}), & -N=N-CO-R^9, -N(N(R^7)-N(R^8)-CO-R^9, \\
-N(R^{10})-CO-R^9, & -N(R^{10})-SO_2-R^{11}, -N(SO_2-R^{11})(SO_2-R^{12}), \\
-N(SO_2-R^{11})(CO-R^9), & -NH-CO-O-R^6, -O-CO-NH-R^7, -O-CO-R^9, \\
-NH-CO-NH-R^{13}, & -O-CS-N(C_1-C_4-\text{Alkyl})_2, -O-CS-NH_2, -A-CO-O-R^6, \\
-A-P(O)(OR^6)_2, & -O-(C_1-C_4-\text{Alkyl})-COOR^6, -A-CO-O-N=C(R^{14},R^{15}), \\
-A-CO-O-CH_2-O-N=C(R^{16},R^{17}), & -A-CO-O-C(R^{18},R^{19})-CH_2-O-N=C(R^{16},R^{17}), -A-CO-N(R^7,R^8), \\
-A-CH=N-O-R^6, & -A-CH(XR^{21},YR^{22}), -A-C(R^{20})=N=O-R^6, \\
(A-C_1-C_4-\text{Alkyl})-O-(C_1-C_4-\text{alkyl})=C(R^{19})=N-O-(C_1-C_4-\text{alkyl}), & \text{Isoxazolidinylcarboxyl, } -A-CO-N(R^7)-C(R^8,R^{18})-COOR^6, \\
-SO_2-N(R^7)-C(R^8,R^{18})-COOR^6, & -SO_2-N(R^7)-C(R^8,R^{18})-CO-N(R^{32},R^{33}), \\
\end{align*}
\]

oder

\[
\begin{align*}
A-C & \text{ CH} \\
X & \text{ R}^{23} \\
Y & \text{ R}^{24} \\
Z & \text{ R}^{25} \\
A-C & \text{ CH} \\
X & \text{ R}^{23} \\
Y & \text{ R}^{24} \\
Z & \text{ R}^{26} \\
\end{align*}
\]
100

R² Cyano, Trifluormethyl oder Halogen;

R³ Wasserstoff, C₁-C₄-alkyl oder C₁-C₄-Halogenalkyl;

5 R⁴ C₁-C₄-Alkyl oder C₁-C₄-Halogenalkyl;

R⁵ Wasserstoff, Nitro, Halogen, -COOR₂⁹ oder -CO-N(R¹₀,R¹₁);

Z Sauerstoff, Schwefel, -SO⁻ oder -SO₂⁻;

10 X,Y unabhängig voneinander Sauerstoff oder Schwefel;

A eine chemische Bindung, Methylen, Ethylen, 1,3-Propylen,
1,4-Butylen, Vinylen oder 1,4-Butadienylen;

15 R⁶, R²⁹ unabhängig voneinander
Wasserstoff, C₁-C₆-Alkyl, C₁-C₆-Halogenalkyl, C₂-C₇-Cyclo-
alkyl, das seinerseits ein bis drei C₁-C₃-Alkylreste tragen
kann, C₃-C₆-Alkenyl, C₅-C₇-Cycloalkenyl, das seinerseits ein
bis drei C₁-C₃-Alkylreste tragen kann, C₃-C₆-Halogenalkenyl,
Cyano-C₁-C₆-alkyl, C₃-C₆-Alkiny1, C₁-C₄-Alkoxy-C₁-C₄-alkyl,
2-Tetrahydrofuran-1-C₁-C₆-alkyl, 3-Oxetany1, 3-Thietany1,
Carboxyl-C₁-C₆-alkyl, (C₁-C₆-Alkoxy)carbony1-C₁-C₆-alkyl,
C₁-C₄-Alkoxy-(C₁-C₄-alkoxy)carbony1-C₁-C₆-alkyl, Cyclopropyl-
methy1, (1-Methylthiocycloprop-1-yl)methyl, C₃-C₅-(α-Alkylal-
kyldien)iminoxy-C₁-C₆-alkyl, (C₁-C₄-Alkyl)carbony1,
C₁-C₄-Alkyl, das durch -C(R¹⁹)=N-O-(C₁-C₄-Alkyl),
-C(R¹⁹)=N-O-(C₁-C₄-Halogenalkyl), -C(R¹⁹)=N-O-(C₃-C₆-Alkenyl),
-C(R¹⁹)=N-O-(C₃-C₆-Halogenalkeny1) oder
-(-R¹⁹)=N-O-(C₁-C₄-Alky1)-R³⁴ substituiert ist,
Phenyl, Phenyl-C₁-C₆-alkyl, Phenyl-C₂-C₆-alkeny1, Phe-
nyl-C₃-C₆-alkiny1 oder Phenoxo-C₁-C₆-alky1, wobei der Pheny1-
ring jeweils unsubstituiert sein oder seinerseits ein bis
drei Reste tragen kann, ausgewählt aus der Gruppe bestehend
aus Halogen, Nitro, Cyano, C₁-C₄-Alkyl, C₁-C₄-Alkoxy,
C₁-C₄-Alkylthio, C₁-C₄-Halogenalkyl und C₂-C₆-Alkenyl, 5- oder
6-gliedriges Heteroaryl, Heteroaryl-C₁-C₆-alkyl, Hetero-
aryl-C₃-C₆-alkeny1, Heteroaryl-C₃-C₆-alkiny1 oder Heteroaryl-
loxo-C₁-C₆-alky1, wobei der Heteroaromat jeweils ein bis drei
Heteroatome enthält, ausgewählt aus einer Gruppe bestehend
aus ein oder zwei Stickstoffatomen und einem Sauerstoff- oder
Schwefelatom, und wobei der Heteroaromat gewünschtenfalls
noch an jedem substituierbaren Ringglied einen Rest tragen
kann, jeweils ausgewählt aus der Gruppe bestehend aus
Hydroxyl, Halogen, C₁-C₄-Halogenalkyl, C₁-C₄-Alkoxy,
C₁-C₄-Alkylthio und C₁-C₄-Alkyl;
R^7, R^8, R^{13}, R^{30}, R^{31}, R^{32}, R^{33} unabhängig voneinander
Wasserstoff, C_1-C_6-Alkyl, C_1-C_6-Halogenalkyl, C_2-C_6-Alkenyl,
C_2-C_6-Alkinyl, C_1-C_4-Alkoxy-C_1-C_4-alkyl, C_1-C_4-Alkyloxy-
C_1-C_4-alkyl, Cyanoc-C_1-C_6-alkyl, Carboxyl-C_1-C_4-alkyl,
(C_1-C_4-Alkoxy)carbonyl-C_1-C_4-alkyl, C_1-C_4-Alkylsulfon-
yl-C_1-C_4-alkyl, C_3-C_6-Cycloalkyl, C_1-C_6-Alkoxy, (C_3-C_6-
Cycloalkoxy)carbonyl-C_1-C_4-alkyl, C_1-C_4-Alkoxy-(C_1-C_4-alkoxy)carbo-
yl-C_1-C_4-alkyl, (C_1-C_4-Alkyl)carbonyl, (C_1-C_4-Halogen-
alkyl)carbonyl, Tetrahydrofuran-2-on-3-yl, Pheny1, Phe-
ny1-C_1-C_4-alkyl, wobei der Phenylring jeweils unsubstituiert
sein oder ein bis drei Reste tragen kann, ausgewählt aus der
Gruppe bestehend aus Halogen, Nitro, Cyano, C_1-C_4-Alkyl,
C_1-C_4-Alkoxy, C_1-C_4-Alkylthio, C_1-C_4-Halogenalkyl und
C_2-C_6-Alkenyl, 5- oder 6-gliedriges Heteroaryl oder Heteroa-
ryl-C_1-C_4-alkyl, wobei der Heteroaromat ein bis drei Hetero-
atome enthält, ausgewählt aus einer Gruppe bestehend aus ein
oder zwei Stickstoffatomen und einem Sauerstoff- oder
Schwefelatom, und wobei der Heteroaromat gewünschtenfalls
noch an jedem substituierbaren Ring-Atom einen Rest tragen
kann, ausgewählt aus der Gruppe bestehend aus Hydroxyl, Hal-
ogen, C_1-C_4-Alkyl, C_1-C_4-Alkoxy, C_1-C_4-Alkylthio und
C_1-C_4-Halogenalkyl;
oder
R^7 und R^8 und/oder R^{30} und R^{31}
zusammen eine Tetramethylen-, Pentamethylen- oder Ethylen-
oxystyrenenkette, die gewünschtenfalls ein bis drei
C_1-C_4-Alkylreste und/oder einen Rest -COOR^6 tragen kann;
R^9
Wasserstoff, C_1-C_6-Alkyl, C_1-C_6-Halogenalkyl, C_1-C_4-Alk-
oxyl-C_1-C_4-alkyl, C_1-C_4-Cycloalkyl, das seinerseits ein bis
drei Reste tragen kann, ausgewählt aus der Gruppe bestehend
aus Halogen, C_1-C_4-Alkyl, C_1-C_4-Alkoxy und C_1-C_4-Alkylthio,
Pheny1 oder Phenyl-C_1-C_6-alkyl, wobei der Phenylring jeweils
unsubstituiert sein oder ein bis drei Reste tragen kann, aus-
gewählt aus der Gruppe bestehend aus Halogen, Nitro,
C_1-C_4-Alkyl, C_1-C_4-Alkoxy, C_1-C_4-Alkylthio und C_1-C_4-Halogen-
alkyl;
R^{10}
Wasserstoff, C_1-C_4-Alkyl, C_3-C_6-Alkenyl, C_3-C_6-Alkinyl,
C_1-C_4-Alkoxy-C_1-C_4-alkyl oder das Äquivalent eines landwirt-
schaftlich brauchbaren Kations;
R11, R12 unabhängig voneinander
C\textsubscript{1}-C\textsubscript{4}-Alkyl, C\textsubscript{1}-C\textsubscript{4}-Halogenalkyl, Phenyl, das unsubsti-
tuiert sein oder ein bis drei Substituenten tragen kann, jeweils
ausgewählt aus der Gruppe bestehend aus Halogen, Nitro,
C\textsubscript{1}-C\textsubscript{4}-Alkyl, C\textsubscript{1}-C\textsubscript{4}-Alkoxy, C\textsubscript{1}-C\textsubscript{4}-Alkyl-
thio und C\textsubscript{1}-C\textsubscript{4}-Halogen-
alkyl,
oder 5- oder 6-gliedriges Heteroaryl mit ein bis drei Hetero-
atomen, ausgewählt aus der Gruppe bestehend aus 2 Stickstoff-
atomen und einem Sauerstoff- oder Schwefelatom, wobei der
Heteroaromat unsubstituiert sein oder an jedem substituierba-
ren Ringglied gewünschtes auch einen Substituenten tragen
can, jeweils ausgewählt aus der Gruppe bestehend aus
Hydroxy, Halogen, C\textsubscript{1}-C\textsubscript{4}-Alkyl, C\textsubscript{1}-C\textsubscript{4}-Halogenalkyl,
C\textsubscript{1}-C\textsubscript{4}-Alkoxy und C\textsubscript{1}-C\textsubscript{4}-Alkylthio;

R14
C\textsubscript{1}-C\textsubscript{6}-Alkyl, C\textsubscript{1}-C\textsubscript{6}-Alkylthio, (C\textsubscript{1}-C\textsubscript{6}-Alkoxy)carbonyl oder
(C\textsubscript{1}-C\textsubscript{6}-Alkoxy)carbonyl-C\textsubscript{1}-C\textsubscript{4}-alkyl;

R15
C\textsubscript{1}-C\textsubscript{6}-Alkyl, Trifluormethyl, C\textsubscript{1}-C\textsubscript{6}-Alkoxy-C\textsubscript{1}-C\textsubscript{4}-alkyl,
(C\textsubscript{1}-C\textsubscript{6}-Alkoxy)carbonyl-C\textsubscript{1}-C\textsubscript{4}-alkyl,
Di-[(C\textsubscript{1}-C\textsubscript{6}-alkoxy)carbonyl]-C\textsubscript{1}-C\textsubscript{4}-alkyl, C\textsubscript{1}-C\textsubscript{6}-Cycloalkyl,
C\textsubscript{1}-C\textsubscript{6}-Alkoxy, C\textsubscript{1}-C\textsubscript{6}-Alkylthio, (C\textsubscript{1}-C\textsubscript{6}-Alkoxy)carbonyl, 2-Furyl
oder Phenyl, die beide unsubstituiert sein oder gewünschtes
falls noch ein bis drei Reste tragen können, ausgewählt aus
der Gruppe bestehend aus Halogen, C\textsubscript{1}-C\textsubscript{4}-Alkyl und
C\textsubscript{1}-C\textsubscript{4}-Alkoxy;

oder

R14 und R15 zusammen mit dem Kohlenstoffatom, an das sie ge-
bunden sind, einen Cyclopentan- oder Cyclohexanring, der
gewünschtesfalls seinerseits ein bis drei C\textsubscript{1}-C\textsubscript{4}-Alkylreste
tragen kann;

R16 Wasserstoff oder C\textsubscript{1}-C\textsubscript{6}-Alkyl;

R17 C\textsubscript{1}-C\textsubscript{6}-Alkyl, C\textsubscript{1}-C\textsubscript{6}-Cycloalkyl oder Phenyl;

R18 Wasserstoff oder C\textsubscript{1}-C\textsubscript{4}-Alkyl;

R19 Wasserstoff, C\textsubscript{1}-C\textsubscript{4}-Alkyl, Phenyl oder Benzyl;

R20 ...

R²¹, R²² unabhängig voneinander C₁–C₈-Alkyl, C₁–C₈-Halogenalkyl oder C₁–C₄-Alkoxy-C₁–C₄-alkyl;

R³⁴ Phenyl oder 5- oder 6-gliedriges Heteroaryl mit ein bis drei Heteroatomen, ausgewählt aus der Gruppe bestehend aus 2 Stickstoffatomen und einem Sauerstoff- oder Schwefelatom, wobei jeder Phenyl- oder Heteroarylring unsubststituiert sein oder an jedem substituierbaren Ringglied gewünschtenfalls einen Substituenten tragen kann, jeweils ausgewählt aus der Gruppe bestehend aus Hydroxy, Nitro, Cyano, Halogen, C₁–C₄-Alkyl, C₁–C₄-Halogenalkyl, C₁–C₄-Alkoxy und C₁–C₄-Alkylthio,

sowie die landwirtschaftlich brauchbaren Salze von I.

2. Verwendung der substituierten 3-Phenylpyrazole I gemäß Anspruch 1 als Herbizide.

3. Herbizides Mittel, enthaltend flüssige und/oder feste Trägerstoffe und gewünschtenfalls mindestens ein Adjuvans sowie eine herbizid wirksame Menge mindestens eines substituierten 3-Phenylpyrazols der Formel I oder ein Salz von I, gemäß Anspruch 1.

4. Verfahren zur Herstellung von herbizid wirksamen Mitteln, dadurch gekennzeichnet, daß man eine herbizid wirksame Menge mindestens eines substituierten 3-Phenylpyrazols der Formel I oder ein Salz von I, gemäß Anspruch 1, mit flüssigen und/oder festen Trägerstoffen und gewünschtenfalls mindestens einem Adjuvans mischt.
5. Verfahren zur Bekämpfung von unerwünschtem Pflanzenwuchs, dadurch gekennzeichnet, daß man eine herbizid wirksame Menge mindestens eines substituierten 3-Phenylpyrazols der Formel I oder ein Salz von I, gemäß Anspruch 1, auf Pflanzen, deren Lebensraum oder auf Saatgut einwirken läßt.
GEÄNDERTER ANSPRÜCHE

[beim Internationalen Büro am 24. Oktober 1995 (24.10.95) eingegangen, ursprünglicher Anspruch 1 geändert; alle weiteren Ansprüche unverändert (5 Seiten)]

1. Substituierte 3-Phenylpyrazole der Formel I

\[\text{R}^1 \quad \text{R}^2 \quad \text{R}^3 \quad \text{R}^4 \]

in der die die Variablen folgende Bedeutung haben:

\[\text{R}^1, \ \text{R}^2, \ \text{R}^3, \ \text{R}^4 \]

Wasserstoff, Cyan, Nitro, Halogen, C\textsubscript{1}-C\textsubscript{8}-Alkyl, C\textsubscript{2}-C\textsubscript{8}-Alkenyl, C\textsubscript{2}-C\textsubscript{8}-Alkiny1, C\textsubscript{1}-C\textsubscript{8}-Halogenalkyl, C\textsubscript{2}-C\textsubscript{8}-Halogenalkenyl, C\textsubscript{2}-C\textsubscript{8}-Halogenalkiny1, Cyano-C\textsubscript{1}-C\textsubscript{4}-alkyl, C\textsubscript{1}-C\textsubscript{8}-Alkyl-O-R6, C\textsubscript{1}-C\textsubscript{8}-Alkyl-O-CO-R6, C\textsubscript{2}-C\textsubscript{8}-Alkenyl-O-R6, C\textsubscript{2}-C\textsubscript{8}-Alkiny1-O-R6, C\textsubscript{1}-C\textsubscript{8}-Alkyl-S-R6, C\textsubscript{2}-C\textsubscript{8}-Alkenyl-S-R6, C\textsubscript{2}-C\textsubscript{8}-Alkiny1-S-R6, C\textsubscript{1}-C\textsubscript{8}-Alkyl-SO-R6, C\textsubscript{2}-C\textsubscript{8}-Alkenyl-SO-R6, C\textsubscript{2}-C\textsubscript{8}-Alkiny1-SO-R6, C\textsubscript{1}-C\textsubscript{8}-Alkenyl-SO\textsubscript{2}-R6, C\textsubscript{2}-C\textsubscript{8}-Alkenyl-SO\textsubscript{2}-R6; C\textsubscript{2}-C\textsubscript{8}-Alkenyl-SO\textsubscript{2}-R6, -O-R6, -S-R6, -SO\textsubscript{2}-R6, -SO\textsubscript{2}-Cl,

- SO\textsubscript{2}-O-R6, -SO\textsubscript{2}-N(R7,R8), -SO\textsubscript{2}-N(R7)-CO-R3, -N(R7,R8), -N(R7)-N(R8,R32), -N=N-CO-R9, -N(R7)-N(R8)-CO-R9,

-N(R10)-CO-R9, -N(R10)-SO\textsubscript{2}-R11, -N(SO\textsubscript{2}-R11)(SO\textsubscript{2}-R12),

-N(SO\textsubscript{2}-R11)(CO-R9), -NH-CO-O-R6, -O-CO-NH-R7, -O-CO-R9,

-NH-CO-NH-R13, -O-CS-N(C\textsubscript{1}-C\textsubscript{4}-Alkyl)\textsubscript{2}, -O-CS-NH\textsubscript{2}, -A-CO-O-R6,

30 -A-P(O)(OR6)\textsubscript{2}, -O-(C\textsubscript{1}-C\textsubscript{4}-Alkyl)\textsubscript{2}COOR6, -A-CO-O-N-C(R14,R15),

-A-CO-O-CH\textsubscript{2}-O-N=C(R16,R17),

-A-CO-O-C(R18,R19)-CH\textsubscript{2}-O-N=C(R16,R17), -A-CO-N(R7,R8),

-A-CS-N(R7,R8), -A-CO-NH-SO\textsubscript{2}-(C\textsubscript{1}-C\textsubscript{4}-alkyl), -A-CO-R20,

-A-CH=N-O-R6, -A-CH(XR21, YR22), -A-C(R20)=N-O-R6,

35 -C\textsubscript{1}-C\textsubscript{4}-alkyl)-O-(C\textsubscript{1}-C\textsubscript{4}-alkyl)-C(R19)=N-O-(C\textsubscript{1}-C\textsubscript{4}-alkyl), Isoxazonolidinylcarbonyl, -A-CO-N(R7)-C(R8,R18)-COOR6,

-SO\textsubscript{2}-N(R7)=C(R8,R18)-COOR6, -SO\textsubscript{2}-N(R7)-C(R8,R18)-CO-N(R32,R33),

GEÄNDERTES BLATT (ARTIKEL 19)
R^2 Cyano, Trifluormethyl oder Halogen;
R^3 Wasserstoff, C_1-C_4-Alkyl oder C_1-C_4-Halogenalkyl;
R^4 C_1-C_4-Alkyl oder C_1-C_4-Halogenalkyl;
R^5 Wasserstoff, Nitro, Halogen, -COOR^{29} oder -CO-N(R^{30},R^{31});
X,Y unabhängig voneinander Sauerstoff oder Schwefel;
A eine chemische Bindung, Methylen, Ethylen, 1,3-Propylen,
1,4-Butylen, Vinylein oder 1,4-Butadienylen;
R^6, R^{29} unabhängig voneinander
Wasserstoff, C_1-C_8-Alkyl, C_1-C_8-Halogenalkyl, C_3-C_7-Cyclo-
alkyl, das seinerseits ein bis drei C_1-C_3-Aldylreste tragen
kann, C_1-C_4-Alkenyl, C_5-C_7-Cycloalkenyl, das seinerseits ein
bis drei C_1-C_3-Aldylreste tragen kann, C_1-C_7-Halogenalkenyl,
Cyano-C_1-C_6-alkyl, C_2-C_6-alkynyl, C_1-C_4-Alkoxy-C_1-C_4-alkyl,
2-Tetrahydrofuran-1-y-C_1-C_6-alkyl, 3-Oxetanyl, 3-Thietanyl,
Carboxyl-C_1-C_6-alkyl, (C_1-C_6-Alkoxy)carbonyl-C_1-C_6-alkyl,
C_1-C_6-Alkoxy-(C_1-C_4-alkoxy)carbonyl-C_1-C_6-alkyl, Cyclopropyl-
methyl, (1-Dimethylthiocycloprop-1-yl)methyl, C_3-C_9-(α-Alkylal-
kydien)iminoxy-C_1-C_6-alkyl, (C_1-C_4-Alkyl)carbonyl,
C_1-C_4-Alkyl, das durch -C(R^{19})=N-O-(C_1-C_4-Alkyl),
-C(R^{19})=N-O-(C_1-C_4-Halogenalkyl), -C(R^{19})=N-O-(C_3-C_6-Alkenyl),
-C(R^{19})=N-O-(C_3-C_6-Halogenalkenyl) oder
-C(R^{19})=N-O-(C_1-C_4-Alkyl)·R^{34} substituiert ist,
Phenyl, Phenyl-C_1-C_6-alkyl, Phenyl-C_2-C_6-alkeny1, Phenyl-
C_3-C_6-alkynyl oder Phenoxy-C_1-C_6-alkyl, wobei der Phenyl-
ring jeweils unsubstituiert sein oder seinerseits ein bis
drei Reste tragen kann, ausgewählt aus der Gruppe bestehend
aus Halogen, Nitro, Cyano, C_1-C_4-Alkyl, C_1-C_4-Alkoxy,
C_1-C_4-Alkylthio, C_1-C_4-Halogenalkyl und C_2-C_6-Alkenyl, 5- oder
6-gliedriges Heteroaryl, Heteroaryl-C_1-C_6-alkyl, Hetero-
aryl-C_1-C_6-alkeny1, Heteroaryl-C_2-C_6-alkyl oder Heteroaryl-
oxy-C_1-C_6-alkyl, wobei der Heteroaromat jeweils ein bis drei
Heteroatome enthält, ausgewählt aus einer Gruppe bestehend
aus einem oder zwei Stickstoffatomen und einem Sauerstoff- oder
Schwefelatom, und wobei der Heteroaromat gewünschtenfalls
noch an jedem substituierbaren Ringglied einen Rest tragen
kann, jeweils ausgewählt aus der Gruppe bestehend aus
Hydroxyl, Halogen, C_1-C_4-Halogenalkyl, C_1-C_4-Alkoxy,
C_1-C_4-Alkylthio und C_1-C_4-Alkyl;
R⁷, R⁸, R¹³, R³⁰, R³¹, R³², R³³ unabhängig voneinander
Wasserstoff, C₁-C₈-Alkyl, C₁-C₈-Halogenalkyl, C₂-C₆-Alkenyl, C₂-C₈-Alkynyl, C₁-C₄-Alkoxy-C₁-C₄-alkyl, C₁-C₄-ALKyl-
thio-C₁-C₄-alkyl, Cyano-C₁-C₈-alkyl, Carboxyl-C₁-C₄-alkyl, (C₁-C₄-Alkoxy)carbonyl-C₁-C₄-alkyl, C₁-C₄-Alkylsulfo-
nyl-C₁-C₄-Alkyl, C₃-C₆-Cycloalkyl, C₁-C₆-Alkoxy, (C₃-C₆-Cyclo-
alkyl)carbonyl-C₁-C₄-alkyl, C₁-C₄-Alkoxycarbonyl-C₁-C₄-alkyl, (C₁-C₄-Alkyl)carbonyl, (C₁-C₄-Halogen-
alkyl)carbonyl, Tetrahydrofuran-2-on-3-y1, Phenyl, Phe-
nyl-C₁-C₄-alkyl, wobei der Phenylring jeweils unsubstituiert sein oder ein bis drei Reste tragen kann, ausgewählt aus der Gruppe bestehend aus Halogen, Nitro, Cyano, C₁-C₄-Alkyl, C₁-C₄-Alkoxy, C₁-C₄-Alkylthio, C₁-C₄-Halogenalkyl und C₂-C₆-Alkenyl, 5- oder 6-gliedriges Heteroaryl oder Hetero-
aryl-C₁-C₄-alkyl, wobei der Heteroaromat ein bis drei Hetero-
atome enthält, ausgewählt aus einer Gruppe bestehend aus ein oder zwei Stickstoffatomen und einem Sauerstoff- oder Schwefelatom, und wobei der Heteroaromat gewünschtenfalls noch an jedem substituierbaren Ring-Atom einen Rest tragen kann, ausgewählt aus der Gruppe bestehend aus Hydroxyl, Halog-
en, C₁-C₄-Alkyl, C₁-C₄-Alkoxy, C₁-C₄-Alkylthio und C₁-C₄-Halogenalkyl;

oder

R⁷ und R⁸ und/oder R³⁰ und R³¹ zusammen eine Tetramethylen-, Pentamethylen- oder Ethylen-
oxymethylenkette, die gewünschtenfalls ein bis drei C₁-C₄-Alkylreste und/oder einen Rest -COOR⁶ tragen kann;

R⁹
Wasserstoff, C₁-C₆-Alkyl, C₁-C₆-Halogenalkyl, C₁-C₄-Alkoxy-C₁-C₄-alkyl, C₃-C₇-Cycloalkyl, das seinerseits ein bis drei Reste tragen kann, ausgewählt aus der Gruppe bestehend aus Halogen, C₁-C₄-Alkyl, C₁-C₄-Alkoxy und C₁-C₄-Alkylthio, Phenyl oder Phenyl-C₁-C₆-alkyl, wobei der Phenylring jeweils unsubstituiert sein oder ein bis drei Reste tragen kann, aus-
gewählt aus der Gruppe bestehend aus Halogen, Nitro, C₁-C₄-Alkyl, C₁-C₄-Alkoxy, C₁-C₄-Alkylthio und C₁-C₄-Halogen-
alkyl;

R¹⁰
Wasserstoff, C₁-C₄-Alkyl, C₃-C₆-Alkenyl, C₃-C₆-Alkynyl, C₁-C₄-Alkoxy-C₁-C₄-alkyl oder das Äquivalent eines landwirt-
schaftlich brauchbaren Kations;
R^{11}, R^{12} unabhängig voneinander
C_{1-4}-Alkyl, C_{1-4}-Halogenalkyl, Phenyl, das unsubstituiert
sein oder ein bis drei Substituenten tragen kann, jeweils
ausgewählt aus der Gruppe bestehend aus Halogen, Nitro,
C_{1-2}-Alkyl, C_{1-4}-Alkoxy, C_{1-4}-Alkylthio und C_{1-4}-Halogen-
alkyl, oder 5- oder 6-gliedriges Heteroaryl mit ein bis drei Hetero-
atomen, ausgewählt aus der Gruppe bestehend aus 2 Stickstoff-
atomen und einem Sauerstoff- oder Schwefelatom, wobei der
Heteroaromat unsubstituiert sein oder an jedem substitutierba-
ren Ringglied gewünschtenfalls einen Substituenten tragen
kann, jeweils ausgewählt aus der Gruppe bestehend aus
Hydroxy, Halogen, C_{1-4}-Alkyl, C_{1-4}-Halogenalkyl,
C_{1-4}-Alkoxy und C_{1-4}-Alkylthio;

R^{14}
C_{1-4}-Alkyl, C_{1-4}-Alkylthio, (C_{1-6}-Alkoxy)carbonyl oder
(C_{1-6}-Alkoxy)carbonyl-C_{1-4}-alkyl;

R^{15}
C_{1-4}-Alkyl, Trifluormethyl, C_{1-6}-Alkoxy-C_{1-4}-alkyl,
(C_{1-6}-Alkoxy)carbonyl-C_{1-4}-alkyl,
Di-[(C_{1-6}-alkoxy)carbonyl]C_{1-4}-alkyl, C_{3-6}-Cycloalkyl,
C_{1-6}-Alkoxy, C_{1-6}-Alkylthio, (C_{1-6}-Alkoxy)carbonyl, 2-Puryl
oder Phenyl, die beide unsubstituiert sein oder gewünschten-
falls noch ein bis drei Reste tragen können, ausgewählt aus
der Gruppe bestehend aus Halogen, C_{1-4}-Alkyl und
C_{1-4}-Alkoxy;

oder

R^{14} und R^{15} zusammen mit dem Kohlenstoffatom, an das sie ge-
bunden sind, einen Cyclopentan- oder Cyclohexanring, der
gewünschtenfalls seinerseits ein bis drei C_{1-4}-Alkylreste
tragen kann;

R^{16} Wasserstoff oder C_{1-6}-Alkyl;

R^{17} C_{1-6}-Alkyl, C_{3-6}-Cycloalkyl oder Phenyl;

R^{18} Wasserstoff oder C_{1-4}-Alkyl;

R^{19} Wasserstoff, C_{1-4}-Alkyl, Phenyl oder Benzyl;
R^{20} Wasserstoff, Cyano, Halogen, C_{1}-C_{4}-Alkyl, C_{1}-C_{4}-Alkylthio, C_{2}-C_{4}-Alkenyl, C_{1}-C_{4}-Halogenalkyl, C_{1}-C_{4}-Alkoxy-C_{1}-C_{4}-alkyl, Di-(C_{1}-C_{4}-alkoxy)·C_{1}-C_{4}-alkyl, C_{1}-C_{4}-Alkylthio-C_{1}-C_{4}-alkyl, (1,3-Dioxolan-2-yl)·C_{1}-C_{4}-alkyl oder (1,3-Dioxan-2-yl)·C_{1}-C_{4}-alkyl;

R^{21}, R^{22} unabhängig voneinander C_{1}-C_{8}-Alkyl, C_{1}-C_{8}-Halogenalkyl oder C_{1}-C_{4}-Alkoxy-C_{1}-C_{4}-alkyl;

R^{23}, R^{24}, R^{25}, R^{26}, R^{27}, R^{28} unabhängig voneinander Wasserstoff, Cyano, C_{1}-C_{8}-Alkyl, C_{1}-C_{8}-Halogenalkyl, C_{1}-C_{4}-Alkoxy-C_{1}-C_{4}-alkyl, C_{1}-C_{8}-Alkoxy, C_{1}-C_{4}-Alkoxy-C_{1}-C_{4}-alkoxy, -CO-O-R^6, -CO-N(R^7), R^8, -CO-R^{20}, -S-R^6, -SO_2-R^6, -O-CO-R^6 oder C_{3}-C_{7}-Cycloalkyl, das seinerseits ein bis drei Reste tragen kann, ausgewählt aus der Gruppe bestehend aus Halogen, C_{1}-C_{4}-Alkyl, C_{1}-C_{4}-Alkoxy und C_{1}-C_{4}-Alkylthio;

R^{34} Phenyl oder 5- oder 6-gliedriges Heteroaryl mit ein bis drei Heteroatomen, ausgewählt aus der Gruppe bestehend aus 2 Stickstoffatomen und einem Sauerstoff- oder Schwefelatom, wobei jeder Phenyl- oder Heteroaryltrin unsubstiihuiert sein oder an jedem substituierbaren Ringglied gewünschtenfalls einen Substituenten tragen kann, jeweils ausgewählt aus der Gruppe bestehend aus Hydroxy, Nitro, Cyano, Halogen, C_{1}-C_{4}-Alkyl, C_{1}-C_{4}-Halogenalkyl, C_{1}-C_{4}-Alkoxy und C_{1}-C_{4}-Alkylthio,

sowie die landwirtschaftlich brauchbaren Salze von I,

ausgenommen 3-(4-Bromphenyl)-5-methoxy-1-methyl-1H-pyrazol.
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

<table>
<thead>
<tr>
<th>IPC 6</th>
<th>C07D231/20</th>
<th>A01N43/50</th>
<th>C07D401/12</th>
<th>C07D403/12</th>
<th>C07D405/10</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>C07D405/12</td>
<td>C07D409/10</td>
<td>C07D413/12</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

<table>
<thead>
<tr>
<th>IPC 6</th>
<th>C07D</th>
</tr>
</thead>
</table>

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>WO,A,92 02509 (MONSANTO COMPANY) 20 February 1992</td>
<td>1-5</td>
</tr>
<tr>
<td></td>
<td>see page 95; claim 1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>see page 98 - page 99; claim 10</td>
<td></td>
</tr>
<tr>
<td></td>
<td>FR,A,2 262 663 (BASF AKTIENGESELLSCHAFT) 26 September 1975</td>
<td>1-5</td>
</tr>
<tr>
<td></td>
<td>see page 20; claim 1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>see page 1, line 1 - line 3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>WO,A,93 25535 (RHONE POULENC AGRICULTURE LTD.) 23 December 1993</td>
<td>1-5</td>
</tr>
<tr>
<td></td>
<td>see page 52 - page 54; claim 1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>see page 1, line 1 - line 3</td>
<td></td>
</tr>
</tbody>
</table>

X Further documents are listed in the continuation of box C. **X** Patent family members are listed in annex.

* Special categories of cited documents:

- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier document but published on or after the international filing date
- "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citable or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

"A" document member of the same patent family

Date of the actual completion of the international search

15 September 1995

Date of mailing of the international search report

22.09.95

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2
NI - 2280 IV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax (+31-70) 340-3016

Authorized officer

Fink, D
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>GB, A, 2 073 172 (SHELL INTERNATIONALE RESEARCH MAATSCHAPPIJ B.V.) 14 October 1981</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>See page 4 - page 9; example Nr. 2, 10, 11, 13, 15, 19, 24, 26, 27 and 29</td>
<td></td>
</tr>
<tr>
<td>P, X</td>
<td>CHEMICAL ABSTRACTS, vol. 122, no. 7, 13 February 1995, Columbus, Ohio, US; abstract no. 81124f, G.R. BROWN ET AL. 'Quinuclidine derivatives useful as squalene synthase inhibitors and their preparation.' page 1066; column 2; see abstract and the combination with the RN [160377-45-7]</td>
<td>1</td>
</tr>
<tr>
<td>X</td>
<td>& CA, A, 2 104 981 (ZENAECA LTD.) 1 March 1994</td>
<td>1</td>
</tr>
<tr>
<td>A</td>
<td>CHEMICAL ABSTRACTS, vol. 115, no. 5, 5 August 1991, Columbus, Ohio, US; abstract no. 49684h, J. MIURA ET AL. 'Preparation of 3-phenylpyrazole derivatives as herbicides.' page 849; column 1; cited in the application see abstract & JP, A, 03 072 460 (NIHON NOHYAKU CO., LTD.) 27 March 1991</td>
<td>1-5</td>
</tr>
<tr>
<td>P, X</td>
<td>CHEMICAL ABSTRACTS, vol. 121, no. 25, 19 December 1994, Columbus, Ohio, US; abstract no. 300886r, T. KODAIRA ET AL. 'Preparation of difluoromethoxypyrazoles as herbicides.' page 1014; column 2; see abstract & JP, A, 06 159 806 (NIHON NOHYAYAKU CO., LTD.) 19 July 1994</td>
<td>1-5</td>
</tr>
<tr>
<td>Patent document cited in search report</td>
<td>Publication date</td>
<td>Patent family member(s)</td>
</tr>
<tr>
<td>--------------------------------------</td>
<td>-----------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU-A- 8414691</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BG-A- 97409</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN-A-1061221</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP-T- 5509103</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NZ-A- 239269</td>
</tr>
<tr>
<td>FR-A-2262663</td>
<td>26-09-75</td>
<td>DE-A- 2409753</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AT-B- 340199</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BE-A- 826074</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA-A- 1047502</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CH-A- 593609</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GB-A- 1488285</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP-A- 50117936</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NL-A- 7502416</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SE-B- 413026</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SE-A- 7502300</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US-A- 4008249</td>
</tr>
<tr>
<td>WO-A-9325535</td>
<td>23-12-93</td>
<td>AU-B- 4324793</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA-A- 2137689</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CZ-A- 9403118</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP-A- 0644879</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FI-A- 945791</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SI-A- 9300317</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ZW-A- 7593</td>
</tr>
<tr>
<td>GB-A-2073172</td>
<td>14-10-81</td>
<td>CA-A- 1140556</td>
</tr>
<tr>
<td>CA-A-2104981</td>
<td>01-03-94</td>
<td>AU-B- 4969193</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA-A- 2143430</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP-A- 0656897</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FI-A- 950893</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO-A- 9405660</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NO-A- 950756</td>
</tr>
<tr>
<td>JPA-03072460</td>
<td>27-03-91</td>
<td>NONE</td>
</tr>
<tr>
<td>JPA-06199806</td>
<td>19-07-94</td>
<td>NONE</td>
</tr>
</tbody>
</table>
INTERNATIONALER RECHERCHENBERICHT

A. KLASSEIFIZIERUNG DES ANMELDUNGSGEGENSTANDES

<table>
<thead>
<tr>
<th>IPK 6</th>
<th>C07D231/20</th>
<th>A01N43/50</th>
<th>C07D401/12</th>
<th>C07D403/12</th>
<th>C07D405/10</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Nach der Internationalen Patentklassifikation (IPK) oder nach der nationalen Klassifikation und der IPK

B. RECHERCHIERTE GEBIETE

Recherchierter Mindestprüfstand (Klassifikationssystem und Klassifikationssymbole)

<table>
<thead>
<tr>
<th>IPK 6</th>
<th>C07D</th>
</tr>
</thead>
</table>

Recherchierte, aber nicht zum Mindestprüfstand gehörende Veröffentlichungen, soweit diese unter die recherchierten Gebiete fallen

Während der internationalen Recherche konnstruierte elektronische Datenbank (Name der Datenbank und evtl. verwendete Suchbegriffe)

C. ALS WESENTLICH ANGESEHENEN UNTERLAGEN

<table>
<thead>
<tr>
<th>Kategorie</th>
<th>Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile</th>
<th>Betr. Anspruch Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>WO,A,92 02509 (MONSANTO COMPANY) 20. Februar 1992; Anspruch 1; siehe Seite 95; Anspruch 10; siehe Seite 90 - Seite 99</td>
<td>1-5</td>
</tr>
<tr>
<td>X</td>
<td>FR,A,2 262 663 (BASF AKTIENGESELLSCHAFT) 26. September 1975; siehe Seite 20; Anspruch 1; siehe Seite 1, Zeile 1 - Zeile 3</td>
<td>1-5</td>
</tr>
<tr>
<td>X</td>
<td>WO,A,93 25535 (RHONE POULENC AGRICULTURE LTD.) 23. Dezember 1993; siehe Seite 52 - Seite 54; Anspruch 1; siehe Seite 1, Zeile 1 - Zeile 3</td>
<td>1-5</td>
</tr>
</tbody>
</table>

Weitere Veröffentlichungen sind in der Fortsetzung von Feld C zu entnehmen.

X Besondere Kategorien von angegebenen Veröffentlichungen:

"A" Veröffentlichung, die den allgemeinen Stand der Technik definiert, aber nicht als besonders bedeutend ansehen ist.

"E" älteres Document, das jedoch erst am oder nach dem internationalen Anmeldedatum veröffentlicht worden ist.

"X" Veröffentlichung, die geeignet ist, einen Prioritätsanspruch zweifelhaft erscheinen zu lassen, oder durch die das Veröffentlichungsdatum eines anderen im Recherchenbericht genannten Veröffentlichung beigetragen worden ist, so daß die von einem anderen besonders Grund angegeben ist (wie ausgelassen).

"O" Veröffentlichung, die sich auf eine mundliche Offenbarung, ohne Benützung, eine Ausstellung oder andere Maßnahmen bezieht.

"P" Veröffentlichung, die vor dem internationalen Anmeldedatum, aber nach dem beanspruchten Prioritätsdatum veröffentlicht worden ist.

"T" Spätere Veröffentlichung, die nach dem internationalen Anmeldedatum oder dem Prioritätsdatum veröffentlicht worden ist und mit der Anmeldung nicht kollidiert, sondern nur zum Verständnis des der Erfindung zugrundeliegenden Prinzips oder der ihr zugrundeliegenden Theorie angegeben ist.

"V" Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann allein aufgrund dieser Veröffentlichung nicht als neu oder auf erfinderischer Tätigkeit beruhend betrachtet werden.

"Y" Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann nicht als auf erfinderischer Tätigkeit beruhend betrachtet werden, wenn die Veröffentlichung mit einer oder mehreren anderen Veröffentlichungen dieser Kategorie in Verbindung gebracht wird.

"E" Veröffentlichung, die Mitglied derselben Patentfamilie ist.

Datum des Abschlusses der internationalen Recherche: 15. September 1995

Name und Postanschrift der Internationale Recherchenbehörde: Europäisches Patentamt, P.B. 3818 Patentannte 2 NL 2280 HU Rijswijk Tel. (+31-70) 340-2040, Fax. 31 651 epo nl, Fax (+31-70) 340-3016

Bevollmächtigter Uudienstleiter: Fink, D
<table>
<thead>
<tr>
<th>Kategorie</th>
<th>Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile</th>
<th>Betr. Anspruch Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>GB,A,2 073 172 (SHELL INTERNATIONALE RESEARCH MAATSCHAPPIJ B.V.) 14. Oktober 1981 siehe Seite 4 - Seite 9; Beispiele Nr. 2, 10, 11, 13, 15, 19, 24, 26, 27 und 29</td>
<td>1</td>
</tr>
<tr>
<td>Im Rechenbericht angeführtes Patentdokument</td>
<td>Datum der Veröffentlichung</td>
<td>Mitglieder der Patentfamilie</td>
</tr>
<tr>
<td>---</td>
<td>---------------------------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU-A- 8414691</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BG-A- 97409</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN-A- 1061221</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP-T- 5509103</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NZ-A- 239269</td>
</tr>
<tr>
<td>FR-A-2262663</td>
<td>26-09-75</td>
<td>DE-A- 2409753</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AT-B- 340199</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BE-A- 826074</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA-A- 1047502</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CH-A- 593609</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GB-A- 1488285</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP-A- 5011793</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NL-A- 7502416</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SE-B- 413026</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SE-A- 7502300</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US-A- 4008249</td>
</tr>
<tr>
<td>WO-A-9325535</td>
<td>23-12-93</td>
<td>AU-B- 4324793</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA-A- 2137689</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CZ-A- 9403118</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP-A- 0644879</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FI-A- 945791</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SI-A- 9300317</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ZW-A- 7593</td>
</tr>
<tr>
<td>GB-A-2073172</td>
<td>14-10-81</td>
<td>CA-A- 1140556</td>
</tr>
<tr>
<td>CA-A-2104981</td>
<td>01-03-94</td>
<td>AU-B- 4969193</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA-A- 2143430</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP-A- 0656897</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FI-A- 950893</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO-A- 9405660</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NO-A- 950756</td>
</tr>
<tr>
<td>JP-A-03072460</td>
<td>27-03-91</td>
<td>KEINE</td>
</tr>
</tbody>
</table>