发明名称
电力线巡检用的多旋翼飞行器以及基于它的系统

摘要
本发明公开了一种电力线巡检用的多旋翼飞行器。飞行并携带在电力线路上来对电力线路进行巡检。具有：携带滑轮，通过与所述电力线路接触，来让所述多旋翼飞行器在所述电力线路上；携带导向板，形成在所述多旋翼飞行器向所述电力线路上携带时，能引导所述多旋翼飞行器向电力线路移动完成携带；以及，携带支架，用于支撑所述携带滑轮和所述携带导向板。本发明的电力线巡检用的多旋翼飞行器，能够以较高的精度，安全，可靠地在较大的巡检范围内进行电力线巡检。
1. 一种电力线巡检用的多旋翼飞行器，飞行并挂载在电力线路上来对电力线路进行巡检，具有：

 挂载滑轮，通过与所述电力线路接触，来让所述多旋翼飞行器挂载在所述电力线路上；

 挂载导向板，形成为在所述多旋翼飞行器向所述电力线路上挂载时，能引导所述多旋翼飞行器向电力线路移动完成挂载；以及，

 挂载支架，用于支撑所述挂载滑轮和所述挂载导向板。

2. 根据权利要求 1 所述的多旋翼飞行器，其特征在于，

 在挂载滑轮上形成有凹形槽。

3. 根据权利要求 1 所述的多旋翼飞行器，其特征在于，

 所述挂载支架，还安装有：刹车器铰链，刹车器杠杆和刹车器电磁铁，

 所述刹车器电磁铁，得电时对所述刹车器杠杆产生吸引力，

 所述刹车器铰链，作为所述刹车器杠杆的支点，

 所述刹车器杠杆，当所述刹车器电磁铁得电时，吸所述引刹车器杠杆绕所述刹车器铰链转动并压在所述挂载滑轮上，产生摩擦力并控制所述挂载滑轮的转动速度，当所述刹车器电磁铁不得电时，由其自身的弹簧拉离所述挂载滑轮。

4. 根据权利要求 1 所述的多旋翼飞行器，其特征在于，

 还具有：起落架，用于在起降时产生缓冲和保护作用；以及，

 起落架横杆，用于保持所述多旋翼飞行器在地面时的稳定。

5. 根据权利要求 1 所述的多旋翼飞行器，其特征在于，

 还具有：摄像机，用于采集所述电力线路的图像、视频信息；

 GPS 天线，用于接收 GPS 信号，以完成所述多旋翼飞行器的实时定位；以及，

 多个螺旋桨和与之对应的无刷电机，由所述无刷电机带动所述螺旋桨旋转并产生升力。

6. 根据权利要求 5 所述的多旋翼飞行器，其特征在于，

 还具有：电控子系统，用于控制所述多旋翼飞行器的飞行、挂载、行进、绕杆避障和对电力线路的巡检。

 所述电控子系统具有：飞控图传电台、飞控数传电台、GPS 模块、遥控接收机、飞控中央处理器、图像采集器、多路电调、气压高度计、三轴加速度计及三轴陀螺仪、三轴地磁计、飞控电源，

 所述飞控图传电台，将所述图像采集器采集的图像通过无线方式传给所述多旋翼飞行器进行控制的控制端，

 所述飞控数传电台，将所述多旋翼飞行器的包括位置、检测时间在内的状态信息，以无线方式传给所述控制端，

 所述 GPS 模块，接收所述 GPS 天线传过来的 GPS 信号并计算出多旋翼飞行器的经度、纬度、高度等定位信息，

 遥控接收机，从所述控制端接收手动遥控信号，以手动控制多旋翼飞行器，

 所述飞控中央处理器对所述电控子系统中的各个部分间的通信进行控制，得到必须的姿态、位置、遥控等信号，以完成所述多旋翼飞行器的手动或自动控制。
所述图像采集器，采集由所述摄像机传来的图像或视频信息，
多路电源，控制多路无刷电机的旋转并调节其转速，
气压高度计，通过测量大气压和环境温度来以较高的精度计算多旋翼飞行器的海拔高度，
三轴加速度计及三轴陀螺仪，测量多旋翼飞行器的三轴加速度、三轴旋转速率，
三轴地磁计，测量地磁在多旋翼飞行器上的三轴分量，并和三轴加速度计及三轴陀螺仪测量到的三轴加速度、三轴旋转速率一起传送给飞控中央处理器，计算多旋翼飞行器的姿态，
飞控电源给整个电控子系统供电。
7. 一种电力线巡检系统，包括权利要求 1 ～ 6 的任一项所述的多旋翼飞行器和作为所述控制端的地面工作站。
8. 根据权利要求 7 所述的电力线巡检系统，其特征在于，
所述地面工作站包括：数传电台，用于接收由多旋翼飞行器发送过来的状态信息；
图传电台，用于接收由多旋翼飞行器发送过来的图像、视频信息；
遥控器，用于手动控制多旋翼飞行器；
地面计算机，与数传电台、图传电台、遥控器通信，以完成控制、记录、检测、分析等功能，
地面工作站电源，给整个地面工作站供电。
9. 一种电力巡检方法，用于权利要求 7 或 8 所述的电力巡检系统，包括：
步骤 S1：实施上升挂线，通过手动或自动的方式让多旋翼飞行器飞起来并挂载到待检电力线路上；
步骤 S2：实施滑行巡线，通过重力或多旋翼飞行器的推进作用在待检电力线路上行进并巡检；
步骤 S3：实施绕杆避障，当遇到电线杆、变压器等障碍物时，重新飞起并重新挂线；
步骤 S4：返回步骤 S2，继续进行滑行巡线；
步骤 S5：实施脱线降落，当电池电量接近安全下限时，通过手动或自动的方式将多旋翼飞行器脱线并降落。
电力线巡检用的多旋翼飞行器以及基于它的系统

技术领域
【0001】本发明涉及电力线巡检用的多旋翼飞行器，以及基于该多旋翼飞行器的电力线巡检系统。

背景技术
【0002】为了确保电力系统的正常运转，需要对电力系统中架设的电力线路进行巡检。目前，电力线路的巡检工作主要由人工完成，其主要有两种方式：①采用肉眼或望远镜对辖区内的电力线路进行检测。由于电力线路布置的复杂性，这种方式的主要缺陷在于其工作效率低，安全性差；②攀爬电力线路铁塔或乘坐悬挂在架空电力线路上的吊篮进行检测，由于电力线路上有高压且需要高空作业，这种方式存在严重安全隐患。
【0003】另一方面，随着航空技术的发展，特别是近年来无人机技术的发展和完善，以无人机为载体的电力线巡检系统因其高效率、广覆盖、低成本的技术优势，受到了越来越多的关注。由于电力线路架设环境的限制及无人机本身的特点，目前应用的无人机载体主要有两种：传统直升机和多旋翼飞行器。由于传统直升机机型结构复杂、操控难度大、控制精度低、成本相对较高，在实际应用受到了很大的限制，而多旋翼无人机飞行器凭借其机动性好、易操控、易维护、精度高、成本低及易运输等显著优势，已逐渐取代传统直升机的趋势。
【0004】尽管有关多旋翼飞行器用于电力线路巡检已有报道，但就其具体工作方式而言，基本上都是用多旋翼飞行器搭载图像检测设备沿线路飞行，采集图像存储或传输，再通过地面站接收图像并由人工发现问题。
【0005】在使用这种多旋翼飞行器进行电力线路巡检时，存在如下的问题：
【0006】①安全性，众所周知，几乎所有飞行器的安全手册都会有“远离高压线”的相关规定，而电力线巡查却要求飞行器与高压线保持近距离平行飞行，这种低空快速飞行的工作方式无论是对飞行器本身，还是对电网，甚至对地面人员都有严重的人身安全隐患，一旦失控，后果不堪设想；
【0007】②巡查范围小。由于多旋翼飞行器自身携带的能源有限，因此其在空时间有限，飞行范围较小，使用起来不方便。

发明内容
【0008】本发明的目的在于提供一种电力线巡检用的多旋翼飞行器，以及基于该多旋翼飞行器的电力线巡检系统，能够以较高的精度，安全、可靠地在较大的巡检范围内进行电力线巡检。
【0009】本发明的一个方面的电力线巡检用的多旋翼飞行器，飞行并挂载在电力线路上来对电力线路进行巡检，具有：挂载滑轮，通过与所述电力线路接触，来让所述多旋翼飞行器挂载在所述电力线路上；挂载导向板，形成在所述多旋翼飞行器向所述电力线路上挂载时，能引导所述多旋翼飞行器向电力线路移动完成挂载；以及，挂载支架，用于支撑所述挂载滑轮和所述挂载导向板。
[0010] 本发明的另一个方面的电力线巡检系统，包括上述的多旋翼飞行器和作为所述控制端的地面工作站。
[0011] 本发明的再另一个方面的电力巡检方法，用于上述的电力巡检系统，包括：
[0012] 步骤 S1：上升挂线，通过手动或自动的方式让多旋翼飞行器飞起来并挂载到待检电力线路上；
[0013] 步骤 S2：滑行巡线，通过重力或多旋翼飞行器的推进作用在待检电力线路上行进并巡检；
[0014] 步骤 S3：绕杆避障，当遇到电线杆、变压器等障碍物时，重新飞起并重新挂线；
[0015] 步骤 S4：返回步骤 S2，继续进行滑行巡线；
[0016] 步骤 S5：脱线降落，当电池电量接近安全下限时，通过手动或自动的方式将多旋翼飞行器脱线并降落。
[0017] 根据本发明的电力线巡检用的多旋翼飞行器，以及基于该多旋翼飞行器的电力线巡检系统和方法，具有下列有益效果：
[0018] ①安全性高，利用多旋翼飞行器的垂直升降功能挂载或飞离待检线路上，保证人员的安全性；
[0019] ②巡检范围广，利用重力和多旋翼飞行器自身的推进作用推动巡检系统在待检线路上移动，最大限度地节约能量，扩大巡检范围；
[0020] ③机械结构简单，利用多旋翼飞行器的飞行功能方便地跨越电线杆（塔）、变压器等障碍物；
[0021] ④精度高；由于本发明的特有结构和工作方式，图像采集设备与待检电力线路的位置是相对固定的，从而保证采集到的图像的质量，提高巡检的准确性。

附图说明
[0022] 图 1 是本发明的使用了多旋翼飞行器的电力线巡检系统 100 的总体结构图。
[0023] 图 2 是本发明的多旋翼飞行器 1 的正视结构示意图。
[0024] 图 3 是本发明实施例中的多旋翼飞行器 1 的俯视结构示意图。
[0025] 图 4 是本发明的多旋翼飞行器 1 的电控子系统 1F 的框图。
[0026] 图 5 是本发明实施例中的地面工作站 2 的框图。
[0027] 图 6 是本发明的基于多旋翼飞行器 1 的电力线巡检系统 100 的控制方法的流程示意图。

具体实施方式
[0028] 为使本发明的目的、技术方案和优点更加清楚明白，以下结合具体实施例，参照附图，对本发明进一步详细说明。
[0029] 图 1 是本发明的使用了多旋翼飞行器的电力线巡检系统 100 的总体结构图。如图 1 所示，该系统包括两个部分：多旋翼飞行器 1、地面工作站 2。
[0030] 多旋翼飞行器 1 的主要功能是飞行并挂载在电力线路上，然后控制其自身在电力线路上行进，并利用携带的设备来完成对电力线路的检测。
[0031] 地面工作站 2 的主要功能是遥控、遥测，并对多旋翼飞行器 1 传回来的图像视频信
息进行处理，产生准确的巡检结果。

[0032] 电力线巡检系统 100 的工作原理可简述为：由地面工作站 2 通过手动或基于遥控信号的遥控方式，控制多旋翼飞行器 1 飞行并搭载在电力线路上，然后通过多旋翼飞行器 1 在电力线路上行进，利用其所携带的图像设备或其它专用设备来检查电力线路。并将采集到的位置、图像、视频等相关信息以无线的方式作为数据信号 / 图传信号传回给地面工作站 2，由地面工作站 2 通过人工或机器视觉的方式来完成对电力线路的检测，并且对多旋翼飞行器 1 发送数据信号。

[0033] 图 2 是本发明的多旋翼飞行器 1 的正视结构示意图，图 3 是本发明实施例中的多旋翼飞行器 1 的俯视结构示意图。

[0034] 如图 2 和图 3 所示，多旋翼飞行器 1 包括以下几个部分：

[0035] 1. 摄像机 11，用于采集待检电力线路的图像、视频信息。

[0036] 2. 挂载导向板 12，用于提高挂载电力线路的简易性。本发明的挂载导向板，形成为一个将电力线路导向挂载滚轮 13 的倾斜板状构造，但并非限定于此。只要是在多旋翼飞行器 1 向电力线路上挂载时，能引导多旋翼飞行器向电力线路移动完成挂载的构造即可，可以采用任何形式的结构。

[0037] 3. 挂载滑轮 13，将多旋翼飞行器挂在待检电力线路上，在挂载滑轮 13 上有凹形槽，以保证电线与滑轮有足够的摩擦力和相对固定的位置，多旋翼飞行器 1 通过挂载滑轮 13 滚动则可以行进。但本发明的挂载滑轮 13 并不限定于此，只要是通过与所述电力线路接触，来让所述多旋翼飞行器搭载在所述电力线路上的构造即可，可以采用任何形式的结构。

[0038] 4. GPS 天线 14，用于接收 GPS（全球定位系统）信号，以完成多旋翼飞行器 1 的实时定位。

[0039] 5. 挂载支架 15，用于支撑 / 安装挂载导向板 12、挂载滑轮 13、挂载滑轮轴 16、刹车器铰链 17、刹车器杆 18、刹车器电磁铁 19。

[0040] 6. 挂载滑轮轴 16，是挂载滑轮 13 的转动轴。

[0041] 7. 刹车器铰链 17，作为刹车器杆 18 的支点。

[0042] 8. 刹车器杆 18，当刹车器电磁铁 19 得电时，吸引刹车器杆 18 绕刹车器铰链 17 转动并压在挂载滑轮 13 上，产生摩擦力并控制挂载滑轮 13 的转动速度，当刹车器电磁铁 19 未得电时，由其自身的弹簧拉离挂载滑轮 13。

[0043] 9. 刹车器电磁铁 19，得电时对刹车器杆 18 产生吸引力。多旋翼飞行器 1A，由无刷电机 1B 带动其旋转并产生升力。

[0044] 10. 电机支架 1C，用于安装无刷电机 1B 和其它设备。

[0045] 11. 起落架 1D，用于在起降时产生缓冲和保护作用。

[0046] 12. 起落架横杆 1E，用于保持多旋翼飞行器 1 在地面时的稳定。

[0047] 13. 电控子系统 IF，用于控制多旋翼飞行器 1 的飞行、挂载、飞行、绕杆等和对电力线路的巡检。

[0048] 图 4 是本发明的多旋翼飞行器 1 的电控子系统 IF 的框架图。如图 4 所示，电控子系统 IF 包括以下十一个部分：飞控图传电台 1F1、飞控数传电台 1F2、GPS 模块 1F3、遥控接收机 1F4、飞控中央处理器 1F5、图像采集器 1F6、多路调电 1F7、气压高度计 1F8、三轴加速度计
及三轴陀螺仪 1F9，三轴地磁计 1F10，飞控电源 1F11。
[0051] 飞控图传电台 1F1，将图像采集器 1F6 采集的图像通过无线方式传给地面工作站
2。
[0052] 飞控数传电台 1F2，将多旋翼飞行器 1 的状态信息，包括位置、检测时间等信息通
过无线方式传给地面工作站 2。
[0053] GPS 模块 1F3，接收 GPS 天线 14 传过来的 GPS 信号并计算出多旋翼飞行器 1 的经
度、纬度、高度等定位信息。
[0054] 遥控接收机 1F4，接收由地面工作站 2 的遥控器 24 传过来的手动遥控信号，以备手
动控制多旋翼飞行器 1。
[0055] 飞控中央处理器 1F5 是整个电控子系统 1F 的核心，其与飞控图传电台 1F1、飞控
数传电台 1F2、GPS 模块 1F3、遥控接收机 1F4、图像采集器 1F6、多路电调 1F7、气压高度计
1F8、三轴加速度计及三轴陀螺仪 1F9，三轴地磁计 1F10 各个部分通信，得到必须的姿
态、位置、遥控等信号，以完成多旋翼飞行器 1 的手动或自动控制。
[0056] 图像采集器 1F6，采集由摄像机 11 传来的图像或视频信息。
[0057] 多路电调 1F7，控制多路无刷电机 1B 的旋转并调节其转速。
[0058] 气压高度计 1F8，通过测量大气压力和环境温度来以较高的精度计算多旋翼飞行
器 1 的海拔高度。
[0059] 三轴加速度计及三轴陀螺仪 1F9，测量多旋翼飞行器 1 的三轴加速度、三轴旋转速
率。
[0060] 三轴地磁计 1F10，测量地磁在多旋翼飞行器 1 上的三轴分量，并和三轴加速度计
及三轴陀螺仪 1F9 测量到的三轴加速度，三轴旋转速率一起传送给飞控中央处理器 1F5，通
过卡尔曼滤波法来计算多旋翼飞行器 1 的姿态。
[0061] 飞控电源 1F11 的给整个电控子系统 1F 供电，含电池、电压变换模块等组件，无需
专门说明，专业人士可根据实际系统的需要自行选择电压等级、功率大小，或者可以理解为
根据需要作相应的修改。
[0062] 图 5 是本发明实施例中的地面工作站 2 的框图。如图 5 所示，地面工作站 2 由五
个部分组成：数传电台 21，图传电台 22，地面计算机 23，遥控器 24，地面工作站电源 25。
[0063] 数传电台 21，用于接收由多旋翼飞行器 1 的飞控数传电台 1F2 发送过来的状态信
息。
[0064] 图传电台 22，用于接收由多旋翼飞行器 1 的飞控图传电台 1F1 发送过来的图像、视
频等信息。
[0065] 地面计算机 23 是地面工作站的核心，其与数传电台 21，图传电台 22，遥控器 24 通
信，以完成控制、记录、检测、分析等功能。
[0066] 遥控器 24 用于手动控制多旋翼飞行器 1。
[0067] 地面工作站电源 25 给整个地面工作站 2 供电，无需专门说明，专业人士可根据实
际系统的需要自行选择电压等级、功率大小，或者可以理解为根据需要作相应的修改。
[0068] 图 6 是本发明的本发明的基于多旋翼飞行器 1 的电力线巡检系统 100 的控制方法的流程示
意图，如图 6 所示，本发明实施例主要包括五个步骤：
[0069] 步骤 S1：上升挂线，通过手动或自动的方式让多旋翼飞行器 1 飞起来并挂载到待
检电力线路上；
[0070] 步骤 S2：滑行巡线：通过重力或多旋翼飞行器 1 的推进作用在待检电力线路上行进并巡检；
[0071] 步骤 S3：绕杆避障：当遇到电线杆、变压器等障碍物时，重新飞起并重新挂线；
[0072] 步骤 S4：再一次滑行巡线（与步骤 S2 相同）；
[0073] 步骤 S5：脱线降落：当电池电量接近安全下限时，通过手动或自动的方式将多旋翼飞行器 1 脱线并降落，以备更换电池重新巡线。
[0074] 值得说明的是，依据多旋翼飞行器 1 携带电池的容量，步骤 S2、S3、S4 可以多次重
复，并不限于图 5 所示的情况。
[0075] 以上对本发明的电力线巡检用的多旋翼飞行器 1，以及基于该多旋翼飞行器的电力
线巡检系统进行了详细说明。作为本发明，具有下列有益效果：
[0076] ①安全性高：利用多旋翼飞行器的垂直升降功能挂载或飞离待检线路上，保证人
员的安全性；
[0077] ②巡检范围广：利用重力和多旋翼飞行器自身的推进作用推动巡检系统在待检线
路上移动，最大限度地节约能量，扩大巡检范围；
[0078] ③机械结构简单：利用多旋翼飞行器的飞行功能方便地跨越电线杆（塔）、变压器
等障碍物；
[0079] ④精度高：由于本发明的特有结构和工作方式，图像采集设备与待检电力线路的
位置是相对固定的，从而保证采集到的图像的质量，提高巡检的准确性。
[0080] 以上所述的具体实施例，对本发明的目的、技术方案和有益效果进行了进一步详
细说明，所应理解的是，以上所述仅为本发明的具体实施例而已，并不用于限制本发明，凡
在本发明的精神和原则之内，所做的任何修改、等同替换、改进等，均应包含在本发明的保
护范围之内。
图 3