METHOD AND SYSTEM FOR THE PURIFICATION OF EXHAUST GAS FROM AN INTERNAL COMBUSTION ENGINE

Abstract: The invention provides a method and system for the purification of exhaust gas from an internal combustion engine, comprising a filter and a SCR catalyst. The filter is periodically regenerated increasing the temperature of the exhaust gas up to 850°C and the water vapour content up to 100% by volume. The SCR catalyst comprises a hydrothermally microporous stable zeolite and/or zeotype having the AEI type framework and being promoted with copper.

Published:
— with international search report (Art. 21(3))
Title: Method and system for the purification of exhaust gas from an internal combustion engine

The present invention relates to after treatment of exhaust gas from an internal combustion engine in terms of removal or reduction of harmful compounds. More particularly, the invention focuses on removal of particulate matter and reduction of nitrogen oxides in engine exhaust from lean burn internal combustion engines, and in particular diesel engines.

Lean burn engines are known to be energy efficient, but have the disadvantage of forming particulate matter and nitrogen oxides, which must be removed or at least reduced in the engine exhaust.

To prevent environmental pollution and to fulfill several governmental requirements, modern diesel engines are provided with an exhaust gas cleaning system comprising in series an oxidation catalyst for the removal of volatile organic compounds, a particulate filter for the removal of particulate matter and a catalyst being active in the selective reduction of nitrogen oxides (NOx).

It is also known to integrate the SCR catalyst into the particulate filter.

Selective catalytic reduction of NOx in exhaust gas is usually accomplished by reaction with ammonia introduced as such or as a precursor thereof, which is injected into the exhaust gas upstream of the SCR catalyst for the selective
reduction of nitrogen oxides, mainly nitrogen dioxide and nitrogen monoxide (NOx), to nitrogen.

For this purpose numerous catalyst compositions are disclosed in the literature.

Lately, zeolites promoted with copper or iron, have found great interest, particularly for use in automotive application.

Copper containing zeolite catalysts for NH\textsubscript{3}-SCR applications have shown high activity at low temperature. However, in certain applications the catalyst can be exposed to high temperature excursions in exhaust gases. Furthermore the exhaust gas contains high concentrations of water vapour from the combustion engine, which can deteriorate the zeolite catalyst performance. The hydrothermal stability is often an issue for Cu-based zeolites catalysts as one possible catalyst deactivation mechanism is the degradation of the zeolite framework due to its instability towards hydrothermal conditions, which is furthermore enhanced by the presence of copper.

Deactivation of copper containing zeolite catalysts in NH\textsubscript{3}-SCR applications is typically caused by degradation of the zeolite framework due to its instability towards hydrothermal conditions, which is furthermore enhanced by the presence of copper. However the stability is especially important for automotive applications in which the catalyst will experience high temperature excursions in an exhaust stream containing water.
Deactivation of the catalyst is in particular a problem in exhaust gas cleaning systems provided with a particulate filter, which must periodically be actively regenerated in order to prevent build up of pressure over the soot laden filter.

Active regeneration is performed by burning of captured soot. The regeneration can be initiated by injection of fuel into the exhaust gas upstream the oxidation catalyst or by electrical heating of the particulate filter.

During the active regeneration exhaust gas temperature at outlet of the filter can reach more than 850°C and a content of water vapour more than 15% and up to 100% for periods of time between 10 and 15 minutes depending on the amount of soot captured in the filter.

It is the general object of the invention to provide a method for the removal of harmful compounds lean burn internal combustion engines, such as particulate matter by means of a particulate filter and nitrogen oxides by selective catalytic reduction of nitrogen oxides in contact with catalyst being hydrothermally stable when exposed to high temperatures and water vapour concentration during active regeneration of the particulate filter.

We have found that the object of the invention can be achieved by using a zeolite or zeotype having hydrothermally stable AEI type framework, in which the structure is preserved under hydrothermal aging conditions even when copper is present in the zeolite or zeotype.
Pursuant to the above finding, this invention provides a method for the purification of exhaust gas from an internal combustion engine, comprising

reducing the content of soot in the exhaust gas by passing the gas through a particulate filter;

subsequently reducing the content of nitrogen oxides in presence of ammonia or a precursor thereof by contact with a catalyst being active in NH3-SCR;

periodically regenerating the filter by burning of soot captured in the filter and thereby increasing temperature of the exhaust gas up to 850°C and water vapour content up to 100% by volume; and

passing the exhaust gas from the filter through the catalyst during the regeneration of the filter, wherein the catalyst comprises a hydrothermally stable zeolite and/or zeotype having an AEI type framework and copper incorporated in the framework.

"Hydrothermally stable" means that the zeolite and zeotype catalyst have the ability to retain at least 80 to 90% of initial surface area and 80 to 90% microporous volume after exposure to temperatures of at least 600°C and a water vapour content up to 100 volume % for 13 hours, and at least 30 to 40% of initial surface area and micropore volume after exposure to temperatures of at least 750°C and a water vapour content up to 100 volume % for 13 hours.
Preferably, the hydrothermally stable zeolite or zeotype with an AEI type framework has an atomic ratio of silicon to aluminium between 5 and 50 for the zeolite or between 0.02 and 0.5 for the zeotype.

The most preferred zeolite or zeotype catalysts for use in the invention are zeolite SSZ-39 and zeotype SAPO-18 both having the "AEI" framework structures, in which copper is introduced by impregnation, liquid ion exchange or solid ion exchange.

The atomic copper to aluminium ratio is preferred to be between about 0.01 and about 1 for the zeolite. For the zeotype the preferred atomic copper to silicon ratio is correspondingly between 0.01 and about 1.

By means of the above catalysts employed in the invention, 80% of the initial NOx reduction is maintained at 250°C after aging at 750°C as compared to 20% for a Cu-CHA catalyst.

Thus, in an embodiment of the invention, 80% of the initial reduction of nitrogen oxides at 250°C is maintained after the catalyst has been exposed to a temperature of 750°C and a water vapour content of 100% in the exhaust gas for 13 hours.

The invention provides in addition an exhaust gas cleaning system, comprising an active regenerable particulate filter and an SCR catalyst comprising a hydrothermally microporous stable zeolite and/or zeotype having the AEI type framework and being promoted with copper.
In an embodiment of the exhaust gas cleaning system according to the invention, the SCR catalyst is integrated into the particulate filter.

In further an embodiment, the atomic copper to aluminium ratio is between about 0.01 and about 1 for the zeolite and the atomic copper to silicon ratio is between 0.01 and about 1 for the zeotype.

In still an embodiment, the atomic ratio of silicon to aluminium in the SCR catalyst is between 5 and 50 for the zeolite and between 0.02 and 0.5 for the zeotype.

In a further embodiment, the SCR catalyst retains 80% of the initial reduction of nitrogen oxides at 250°C after the catalyst has been exposed to a temperature of 750°C and a water vapour content of 100% in the exhaust gas for 13 hours.

In a further embodiment, the SCR catalyst retains 80 to 90% of the initial microporosity after aging at 600°C, and 30 to 40% of the initial microporosity after aging at 750°C.

In still an embodiment, the SCR catalyst is an aluminosilicate zeolite SSZ-39 and/or silicoaluminum phosphate SAPO-18.

In the above embodiments, the SCR catalyst can be deposited on a monolithic support structure.
The Cu-SSZ-39 catalyst system has shown an improved performance compared to the typical "state-of-the-art" Cu-SSZ-13 when similar Si/Al ratios are compared.

Example 1: Cu-SSZ-39 Catalyst preparation

The zeolite SSZ-39 with the framework type code AEI was synthesized in a similar way as given in US Patent 5.958.370 using 1,1,3,5-tetramethylpiperidinium as the organic template. A gel with the following composition: 30 Si : 1.0 Al : 0.51 NaOH : 5.1 OSDA : 600 H_2O, was autoclaved at 135 °C for 7 days, the product filtered, washed with water, dried and calcined in air. The final SSZ-39 had a Si/Al = 9.1 measured by ICP-AES.

To obtain the Cu-SSZ-39 the calcined zeolite was ion exchanged with Cu(CH3COO)2 to obtain the final catalyst with a Cu/Al = 0.52 after calcination.

The powder X-ray diffraction (PXRD) pattern of Cu-SSZ-39 after calcination is shown in Fig. 1.

Example 2: Catalytic testing

The activity of the samples for the selective catalytic reduction of NO$_x$ was tested in a fixed bed reactor to simulate an engine exhaust stream using a total flow rate of 300 mL/min consisting of 500 ppm NO, 533 ppm NH$_3$, 7% O$_2$, 5% N_2 in which 40 mg catalyst was tested.
The NOx present in the outlet gases from the reactor were analyzed continuously and the conversion is shown in Fig. 2.

Example 3: Test of hydrothermal durability

In order to test the hydrothermal stability of the zeolites, steaming treatments were done to the samples. They were exposed to a water feed (2.2 mL/min) at 600 or 750°C during 13 hours in a conventional oven and afterwards tested similarly to Example 2.

The catalytic results can also be seen in Fig. 2. The samples that underwent a hydrothermal treatment have been marked with 600 or 700°C, depending on the temperature used during the hydrothermal treatment.

Additional characterization has also been performed to all treated samples. PXRD patterns after hydrothermal treatments are shown in Fig. 1, and BET surface areas, micropore areas, and micropore volumes of treated samples are summarized in Table 1 below.

Example 4: Comparative example with Cu-CHA (Cu-SSZ-13)

A Cu-CHA zeolite was prepared from a gel with the molar composition: SiO₂ : 0.033 Al₂O₃ : 0.50 OSDA : 0.50 HF : 3 %O, where the OSDA is N,N,N-trimethyl-l-adamantamonium hydroxide.
The gel was autoclaved at 150°C for 3 days under tumbling to give a final zeolite product with a Si/Al = 12.7 after washing, drying and calcination.

To obtain the Cu-CHA the calcined zeolite was ion exchanged with Cu(CH3COO)2 to obtain the final catalyst with a Cu/Al = 0.54.

The powder X-ray diffraction (PXRD) pattern of Cu-CHA after calcination is shown in Fig. 1.

This catalyst was also tested according to example 2, and the hydrothermal durability evaluated similarly to example 3. The catalytic results are summarized in Fig. 2 of the drawings. PXRD patterns of treated-CHA samples are shown in Fig. 1, and textural properties (BET surface area, micropore volume, and micropore area) are summarized on Table 1.

<table>
<thead>
<tr>
<th>Sample</th>
<th>BET surface area (m²/g)</th>
<th>Micropore area (m²/g)</th>
<th>Volume micropore (cm³/g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SSZ-39_Calc</td>
<td>571</td>
<td>568</td>
<td>0.28</td>
</tr>
<tr>
<td>SSZ-39_600°C</td>
<td>554</td>
<td>551</td>
<td>0.28</td>
</tr>
<tr>
<td>SSZ-39_750°C</td>
<td>565</td>
<td>563</td>
<td>0.28</td>
</tr>
<tr>
<td>Cu-SSZ-39_600°C</td>
<td>465</td>
<td>463</td>
<td>0.24</td>
</tr>
</tbody>
</table>
Example 5: Cu-SAPO-18

Silicoaluminophosphate SAPO-18 with the framework type code AEI was synthesized according to [J. Chen, J. M. Thomas, P. A. Wright, R. P. Townsend, Catal. Lett. 28 (1994) [241-248] and impregnated with 2 wt. % Cu. The final Cu-SAPO-18 catalyst was hydrothermally treated in 10% \(\frac{3}{4} \) 0 and 10% \(\frac{3}{4} \) 2 at 750°C and tested under the same conditions as given in Example 2. The results are shown in Fig. 2 of the drawings.
Claims

1. Method for the purification of exhaust gas from an internal combustion engine, comprising
reducing the content of soot in the exhaust gas by passing the gas through a filter;
subsequently reducing the content of nitrogen oxides in presence of ammonia or a precursor thereof in contact with a catalyst being active in NH3-SCR;
periodically regenerating the filter by burning of soot captured in the filter and thereby increasing temperature of the exhaust gas up to 850°C and water vapour content up to 100% by volume; and
passing the exhaust gas from the filter through the catalyst during the regeneration of the filter, wherein the catalyst comprises a hydrothermally microporous stable zeolite and/or zeotype having the AEI type framework and being promoted with copper.

2. The method of claim 1, wherein the atomic copper to aluminium ratio is between about 0.01 and about 1 for the zeolite and the atomic copper to silicon ratio is between 0.01 and about 1 for the zeotype.

3. The method of claim 1 or 2, wherein the atomic ratio of silicon to aluminium is between 5 and 50 for the zeolite and between 0.02 and 0.5 for the zeotype.
4. The method of anyone of claim 1 to 3, wherein 80% of the initial reduction of nitrogen oxides at 250°C is maintained after the catalyst has been exposed to a temperature of 750°C and a water vapour content of 100% in the exhaust gas for 13 hours.

5. The method of anyone of claims 1 to 4, wherein at least 80 to 90% of the initial microporosity is maintained after aging at 600°C, and at least 30 to 40% is maintained after aging at 750°C.

6. The method of anyone of claims 1 to 5, wherein the catalyst is an aluminosilicate zeolite SSZ-39 and/or silicoalumininum phosphate SAPO-18.

7. An exhaust gas cleaning system, comprising an active regenerable particulate filter and an SCR catalyst comprising a hydrothermally microporous stable zeolite and/or zeotype having the AEI type framework and being promoted with copper.

8. The exhaust gas cleaning system, wherein the SCR catalyst is integrated into the particulate filter.

9. The exhaust gas cleaning system of claim 7 or 8, wherein the atomic copper to aluminium ratio is between about 0.01 and about 1 for the zeolite and the atomic copper to silicon ratio is between 0.01 and about 1 for the zeotype.

10. The exhaust gas cleaning system of anyone of claims 7 to 9, wherein the atomic ratio of silicon to aluminium in
the SCR catalyst is between 5 and 50 for the zeolite and between 0.02 and 0.5 for the zeotype.

11. The exhaust gas cleaning system of anyone of claims 7 to 10, wherein the SCR catalyst retains 80% of the initial reduction of nitrogen oxides at 250°C after the catalyst has been exposed to a temperature of 750°C and a water vapour content of 100% in the exhaust gas for 13 hours.

12. The exhaust gas cleaning system of anyone of claims 7 to 11, wherein the SCR catalyst retains at least 80 to 90% of the initial microporosity after aging at 600°C, and at least 30 to 40% of the initial microporosity after aging at 750°C.

13. The exhaust gas cleaning system of anyone of claims 7 to 12, wherein the catalyst is an aluminosilicate zeolite SSZ-39 and/or silicoaluminum phosphate SAPO-18.

14. The exhaust gas cleaning system of anyone of claims 7 to 13, wherein the SCR catalyst is deposited on a monolithic support structure.
FIG. 1A
FIG. 3

2 wt.% Cu-SAPO-18 after HT@750°C

NOx conversion (%) vs. Temperature (°C)
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER
INV. F01N3/20 F01N3/035 B01J29/00 B01D53/94

ADD.

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
F01N B01J B01D

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
EPO-Internal, WPI Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>wo 2008/118434 AI (PQ CORP US); LI HONG-XIN [US]; MODEN BJORN [US]; CORMI ER W LLIAM E [U] 2 October 2008 (2008-10-02) paragraphs [0009], [0013], [0033], [0037], [0044], [0045], [0061], [0062], [0066] claims 1-25 -----</td>
<td>1-14</td>
</tr>
<tr>
<td>X</td>
<td>wo 2011/112949 AI (JOHNSON MATTHEY PLC [GB]; ANDERSEN PAUL J [US]; CASCIO JOHN LEONELLO [G] 15 September 2011 (2011-09-15) page 19, line 33 - page 20, line 13 claims 1-20 table 1 figures 1, 2 -----</td>
<td>1-14</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of Box C. See patent family annex.

* Special categories of cited documents:
 A document defining the general state of the art which is not considered to be of particular relevance
 E earlier application or patent but published on or after the international filing date
 L document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
 O document referring to an oral disclosure, use, exhibition or other means
 P document published prior to the international filing date but later than the priority date claimed
 T later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
 X document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
 Y document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
 Z document member of the same patent family

Date of the actual completion of the international search: 15 January 2013
Date of mailing of the international search report: 30/01/2013

Name and mailing address of the ISA:

European Patent Office, P.B. 5818 Patentlaan 2
NL-2280 HV Rijswijk
Tel. (+31-70) 340-2040
Fax. (+31-70) 340-3016

Authorized officer: Gerhard Kas
<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td>WO 2008118434 Al</td>
<td>02-10-2008</td>
<td>CA 2681135 Al</td>
<td>02-10-2008</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 101674885 A</td>
<td>17-03-2010</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 102319584 A</td>
<td>18-01-2012</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 2136916 Al</td>
<td>30-12-2009</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 2246111 A2</td>
<td>03-11-2010</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2517790 A2</td>
<td>31-10-2012</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 4889807 B2</td>
<td>07-03-2012</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2010522688 A</td>
<td>08-07-2010</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2011167690 A</td>
<td>01-09-2011</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KR 20090123978 A</td>
<td>02-12-2009</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RU 2009139228 A</td>
<td>10-05-2011</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2008241060 Al</td>
<td>02-10-2008</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2010092361 Al</td>
<td>15-04-2010</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2008118434 Al</td>
<td>02-10-2008</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ZA 200906488 A</td>
<td>26-05-2010</td>
</tr>
<tr>
<td>WO 2011112949 Al</td>
<td>15-09-2011</td>
<td>CN 102869427 A</td>
<td>09-01-2013</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 2555853 Al</td>
<td>13-02-2013</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2012184429 Al</td>
<td>19-07-2012</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2012189518 Al</td>
<td>26-07-2012</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2011112949 Al</td>
<td>15-09-2011</td>
</tr>
</tbody>
</table>