

Office de la Propriété
Intellectuelle
du Canada

Un organisme
d'Industrie Canada

Canadian
Intellectual Property
Office

An agency of
Industry Canada

CA 2751201 C 2016/01/12

(11)(21) **2 751 201**

(12) **BREVET CANADIEN**
CANADIAN PATENT

(13) **C**

(86) **Date de dépôt PCT/PCT Filing Date:** 2010/01/23
(87) **Date publication PCT/PCT Publication Date:** 2010/08/12
(45) **Date de délivrance/Issue Date:** 2016/01/12
(85) **Entrée phase nationale/National Entry:** 2011/07/29
(86) **N° demande PCT/PCT Application No.:** EP 2010/000409
(87) **N° publication PCT/PCT Publication No.:** 2010/089035
(30) **Priorités/Priorities:** 2009/02/04 (EP09001477.0);
2009/09/19 (EP09011959.5)

(51) **Cl.Int./Int.Cl. B32B 27/18** (2006.01),
B32B 27/20 (2006.01), **B32B 27/36** (2006.01)

(72) **Inventeurs/Inventors:**
PUDLEINER, HEINZ, DE;
YESILDAG, MEHMET-CENGIZ, DE;
TZIOVARAS, GEORGIOS, DE;
NICKEL, JOERG, DE;
MEYER, KLAUS, DE

(73) **Propriétaire/Owner:**
BAYER MATERIALSCIENCE AG, DE

(74) **Agent:** FETHERSTONHAUGH & CO.

(54) **Titre : STRUCTURE STRATIFIEE ET FEUILLES POUR DOCUMENTS D'IDENTITE OFFRANT DES POSSIBILITES DE GRAVURE AU LASER AMELIOREES**
(54) **Title: LAYER STRUCTURE AND FILMS FOR ID DOCUMENTS HAVING IMPROVED PROPERTIES FOR LASER ENGRAVING**

(57) Abrégé/Abstract:

The present invention relates to a layer structure having improved properties for laser engraving, to particular embodiments of said layer structures in the form of co-extrusion films, and to security documents, preferably identification documents comprising said layer structures.

Abstract

The present invention relates to a layer structure having improved properties for laser engraving, to particular embodiments of said layer structures in the form of co-extrusion films, and to security documents, preferably identification documents comprising said layer structures.

Layer structure and films for ID documents having improved properties for laser engraving

The present invention relates to a layered structure having improved laser engravability, to particular embodiments of such layered structures in the form of coextruded films, and to security documents, preferably identification documents, comprising such layered
5 structures.

Inscribing plastics films by means of laser engraving is an important step in the production of film composites. Such film composites play a large part, for example, for security documents, in particular identification documents such as passports, passes, ID cards or credit cards. The black-and-white personalisation of cards by means of laser engraving, that
10 is to say the application of lettering or images such as black-and-white photographs, is generally known. Personalisation by means of laser engraving is generally distinguished in particular by its high security against forgery. The (text) image is formed on the inside of the card, so that it is not possible to remove the (text) image and produce a new (text) image. Separation of the cards into their individual layers in order to reach the laser layer is
15 not possible, for example, in the case of cards made completely of polycarbonate.

In the personalisation of security documents, in particular identification documents, there is an increasing need for improved sharpness and resolution.

EP 190 997 A2 describes various inorganic or organic pigments for laser engraving, which are used in amounts of from 0.001 to 10 wt.% (from 10 to 100,000 wt.ppm), preferably
20 from 0.01 to 3 wt.% (from 100 to 30,000 wt.ppm). In the embodiments described by way of example, the pigments are used in an amount of 1.8 wt.% (18,000 wt.ppm). When such high concentrations of laser-sensitive pigments are used for laser engraving, there is the problem that agglomerates in the laser-inscribable layer lead to so-called "burners", that is to say thick black points, during the laser inscription and thus impair considerably the quality of
25 the lettering or image to be produced. In addition, in particular when black pigments are used, such high concentrations lead to marked greying of the base material, as a result of which the contrast with respect to the lettering or image to be produced, and hence also its sharpness and resolution, is diminished.

EP 232 502 A2 describes the use of carbon black as a black pigment for the laser engraving
30 of PVC-based identification cards. The carbon black is used in amounts of from 0.1 to 20 g per 100 kg of PVC powder (from 1 to 200 wt.ppm), preferably in an amount of 0.6 g per 100 kg of PVC powder (6 wt.ppm). The above-mentioned problem exists here too with high carbon black concentrations. However, with low carbon black concentrations, which are

30725-1294

preferred, the sharpness and resolution of the lettering or image to be produced are not optimal and could therefore be improved.

In EP 1 056 041 A2, it is described that the sharpness and resolution of the laser inscription in a multilayer identification card can be improved if the layer containing the laser-sensitive additive is made as thin as possible, that is to say thinner than 50 µm. EP 1 056 041 A2 gives no indication of a possible influence of the concentration of the additive used. In the single example, an amount of 200 ppm of carbon black, based on a lacquer composition, is used, which after drying results in a markedly higher concentration in the dried layer. The embodiment described in EP 1 056 041 A2 again has the disadvantage of agglomerate formation and increased greying of the base material, as a result of which the sharpness and resolution of the lettering or image to be produced are not optimal and could therefore be improved.

JP 2007-210166 describes a three-layer, laser-inscribable coextruded film of polycarbonate, wherein all three layers must necessarily contain a laser-sensitive additive. However, the presence of laser-sensitive additives in all three layers causes the contrast to be impaired and accordingly, as a result, the sharpness and resolution of the lettering or image to be produced are likewise not optimal and could be improved.

Accordingly, there was a continued need for an improvement in the sharpness and resolution of lettering or images which are to be incorporated by means of laser engraving in order to personalise security documents, in particular identification documents, without having to accept the disadvantage of a poor colour effect because of increased greying of the base material.

30725-1294

2a

The invention relates to a layered structure which is suitable for the personalised laser inscription of security documents, in particular identification documents, by means of laser engraving and in which lettering or images can be incorporated by means of laser engraving with improved sharpness and resolution as compared with known systems, without having to

5 accept the disadvantage of a poor colour effect because of increased graying of the base material.

Surprisingly, it has been found that, in the laser engraving of a layered structure comprising at least one layer having a layer thickness of from 5 to 30 μm containing at least one thermoplastic and at least one laser-sensitive additive in an amount of from 40 to 180 ppm,

10 such improved sharpness and resolution can be achieved without a poorer colour effect being formed because of increased graying of the base material. A suitable carrier for such a layer is a further layer containing at least one thermoplastic plastic.

The present invention accordingly provides a layered structure comprising

- at least one layer containing at least one thermoplastic plastic and
- at least one layer containing at least one thermoplastic plastic and at least one black pigment as laser-sensitive additive,

5 characterised in that the layer containing at least one thermoplastic plastic is free of laser-sensitive additives, and the layer containing at least one thermoplastic plastic and at least one black pigment as laser-sensitive additive has a layer thickness of from 5 to 30 μm , and the black pigment as laser-sensitive additive is present in that layer in an amount of from 40 to 180 ppm.

10 Within the scope of the invention, ppm is to be understood as meaning wt.ppm, unless indicated otherwise.

The choice according to the invention of layer thickness and amount of laser-sensitive additive results on the one hand in sufficient transparency and on the other hand, however, in sufficient absorption centres for the laser energy and accordingly provides the possibility 15 of inscription by means of laser engraving with improved quality, that is to say sharpness and resolution.

The inscription of plastics films by means of laser engraving is referred to among experts and also hereinbelow as laser inscription for short. Accordingly, the expression "laser-inscribed" hereinbelow is to be understood as meaning inscribed by means of laser 20 engraving. The process of laser engraving is known to the person skilled in the art and is not to be confused with printing by means of laser printing.

Suitable laser-sensitive additives are, for example, so-called laser marking additives, that is to say additives comprising an absorber in the wavelength range of the laser to be used, preferably in the wavelength range of ND:YAG lasers (neodymium-doped yttrium-aluminium-garnet lasers). Such laser marking additives and their use in moulding compositions are described, for example, in WO-A 2004/50766 and WO-A 2004/50767 and are sold commercially by DSM under the trade name Micabs[®]. Further absorbers suitable as laser-sensitive additives are carbon black, and phosphorus-containing tin/copper mixed oxides as described, for example, in WO-A 2006/042714.

30 Preference is given to laser-sensitive additives for inscription by laser engraving of dark on a light background. Particularly preferred laser-sensitive additives within the scope of the

invention are black pigments. A most particularly preferred laser-sensitive additive is carbon black.

It is preferable for the particle size of the laser-sensitive additive to be in the range from 100 nm to 10 μm , and particularly advantageous for it to be in the range from 50 nm to 5 2 μm .

The thermoplastic plastic both of the layer(s) containing at least one thermoplastic plastic and of the layer(s) containing at least one thermoplastic plastic and at least one laser-sensitive additive can preferably be at least one thermoplastic plastic selected from polymers of ethylenically unsaturated monomers and/or polycondensation products of 10 bifunctional reactive compounds and/or polyaddition products of bifunctional reactive compounds. For some applications it can be advantageous, and accordingly preferred, to use a transparent thermoplastic plastic. The thermoplastic plastic of the layer(s) containing at least one thermoplastic plastic and of the layer(s) containing at least one thermoplastic plastic and at least one laser-sensitive additive can be the same or different.

- 15 Particularly suitable thermoplastic plastics are polycarbonates or copolycarbonates based on diphenols, poly- or copoly-acrylates and poly- or copoly-methacrylates, such as, for example and preferably, polymethyl methacrylate (PMMA), polymers or copolymers with styrene, such as, for example and preferably, polystyrene (PS) or polystyrene acrylonitrile (SAN), thermoplastic polyurethanes, as well as polyolefins, such as, for example and preferably, polypropylene types or polyolefins based on cyclic olefins (e.g. TOPAS[®], Hoechst), poly- or copoly-condensation products of terephthalic acid, such as, for example and preferably, poly- or copoly-ethylene terephthalate (PET or CoPET), glycol-modified PET (PETG), glycol-modified poly- or copoly-cyclohexanedimethylene terephthalate (PCTG) or poly- or copoly-butylene terephthalate (PBT or CoPBT), poly- or copoly-25 condensation products of naphthalenedicarboxylic acid, such as, for example and preferably, polyethylene glycol naphthalate (PEN), poly- or copoly-condensation product(s) of at least one cycloalkyldicarboxylic acid, such as, for example and preferably, polycyclohexanedimethanolcyclohexanedicarboxylic acid (PCCD), polysulfones (PSU), or mixtures of the above-mentioned thermoplastic plastics.
- 30 Preferred thermoplastic plastics are polycarbonates or copolycarbonates or blends containing at least one polycarbonate or copolycarbonate. Particular preference is given to blends containing at least one polycarbonate or copolycarbonate and at least one poly- or copoly-condensation product of terephthalic acid, naphthalenedicarboxylic acid or of a cycloalkyldicarboxylic acid, preferably of cyclohexanedicarboxylic acid. Most particular

preference is given to polycarbonates or copolycarbonates, in particular having mean molecular weights M_w of from 500 to 100,000, preferably from 10,000 to 80,000, particularly preferably from 15,000 to 40,000, or blends thereof with at least one poly- or copoly-condensation product of terephthalic acid having mean molecular weights M_w of 5 from 10,000 to 200,000, preferably from 26,000 to 120,000.

In preferred embodiments of the invention, polyalkylene terephthalates are suitable as poly- or copoly-condensation products of terephthalic acid. Suitable polyalkylene terephthalates are, for example, reaction products of aromatic dicarboxylic acids or reactive derivatives thereof (e.g. dimethyl esters or anhydrides) and aliphatic, cycloaliphatic or araliphatic diols 10 and mixtures of these reaction products.

Preferred polyalkylene terephthalates can be prepared from terephthalic acid (or reactive derivatives thereof) and aliphatic or cycloaliphatic diols having from 2 to 10 carbon atoms by known methods (Kunststoff-Handbuch, Vol. VIII, p. 695 ff, Karl-Hanser-Verlag, Munich 1973).

15 Preferred polyalkylene terephthalates contain at least 80 mol%, preferably 90 mol%, terephthalic acid radicals, based on the dicarboxylic acid component, and at least 80 mol%, preferably at least 90 mol%, ethylene glycol and/or 1,4-butanediol and/or 1,4-cyclohexanedimethanol radicals, based on the diol component.

The preferred polyalkylene terephthalates can contain, in addition to terephthalic acid 20 radicals, up to 20 mol% of radicals of other aromatic dicarboxylic acids having from 8 to 14 carbon atoms or aliphatic dicarboxylic acids having from 4 to 12 carbon atoms, for example radicals of phthalic acid, isophthalic acid, naphthalene-2,6-dicarboxylic acid, 4,4'-diphenyldicarboxylic acid, succinic, adipic, sebacic acid, azelaic acid, cyclohexanediacetic acid.

25 In addition to ethylene and 1,4-butanediol glycol radicals, the preferred polyalkylene terephthalates can contain up to 80 mol% of other aliphatic diols having from 3 to 12 carbon atoms or cycloaliphatic diols having from 6 to 21 carbon atoms, for example radicals of 1,3-propanediol, 2-ethyl-1,3-propanediol, neopentyl glycol, 1,5-pentanediol, 1,6-hexanediol, cyclohexane-1,4-dimethanol, 3-methyl-2,4-pentanediol, 2-methyl-2,4-pentanediol, 2,2,4-trimethyl-1,3-pentanediol and 2-ethyl-1,6-hexanediol, 2,2-diethyl-1,3-propanediol, 2,5-hexanediol, 1,4-di-([beta]-hydroxyethoxy)-benzene, 2,2-bis-(4-hydroxycyclohexyl)-propane, 2,4-dihydroxy-1,1,3,3-tetramethyl-cyclobutane, 2,2-bis-(3-[beta]-hydroxyethoxyphenyl)-propane and 2,2-bis-(4-hydroxypropoxyphenyl)-propane (see 30 DE-OS 24 07 674, 24 07 776, 27 15 932).

The polyalkylene terephthalates can be branched by incorporating relatively small amounts of tri- or tetra-hydric alcohols or tri- or tetra-basic carboxylic acids, as are described, for example, in DE-OS 19 00 270 and US-PS 3 692 744. Examples of preferred branching agents are trimesic acid, trimellitic acid, trimethylol-ethane and -propane and 5 pentaerythritol.

Preferably, not more than 1 mol% of the branching agent, based on the acid component, is used.

Particular preference is given to polyalkylene terephthalates which have been prepared solely from terephthalic acid and reactive derivatives thereof (e.g. dialkyl esters thereof) 10 and ethylene glycol and/or 1,4-butanediol and/or 1,4-cyclohexanedimethanol radicals, and mixtures of these polyalkylene terephthalates.

Preferred polyalkylene terephthalates are also copolymers, which are prepared from at least two of the above-mentioned acid components and/or from at least two of the above-mentioned alcohol components; particularly preferred copolymers are poly(ethylene 15 glycol/1,4-butanediol) terephthalates.

The polyalkylene terephthalates preferably used as a component preferably have an intrinsic viscosity of approximately from 0.4 to 1.5 dl/g, preferably from 0.5 to 1.3 dl/g, in each case measured in phenol/o-dichlorobenzene (1:1 parts by weight) at 25°C.

In particularly preferred embodiments of the invention, the blend of at least one 20 polycarbonate or copolycarbonate with at least one poly- or copoly-condensation product of terephthalic acid is a blend of at least one polycarbonate or copolycarbonate with poly- or copoly-butylene terephthalate or glycol-modified poly- or copoly-cyclohexanedimethylene terephthalate. Such a blend of polycarbonate or copolycarbonate with poly- or copoly-butylene terephthalate or glycol-modified poly- or copoly-cyclohexanedimethylene 25 terephthalate can preferably be a blend containing from 1 to 90 wt.% polycarbonate or copolycarbonate and from 99 to 10 wt.% poly- or copoly-butylene terephthalate or glycol-modified poly- or copoly-cyclohexanedimethylene terephthalate, preferably containing from 1 to 90 wt.% polycarbonate and from 99 to 10 wt.% polybutylene terephthalate or 30 glycol-modified polycyclohexanedimethylene terephthalate, the sum of the amounts being 100 wt.%. Such a blend of polycarbonate or copolycarbonate with poly- or copoly-butylene terephthalate or glycol-modified poly- or copoly-cyclohexanedimethylene terephthalate can particularly preferably be a blend containing from 20 to 85 wt.% polycarbonate or copolycarbonate and from 80 to 15 wt.% poly- or copoly-butylene terephthalate or glycol-modified poly- or copoly-cyclohexanedimethylene terephthalate, preferably containing

from 20 to 85 wt.% polycarbonate and from 80 to 15 wt.% polybutylene terephthalate or glycol-modified polycyclohexanedimethylene terephthalate, the sum of the amounts being 100 wt.%. Such a blend of polycarbonate or copolycarbonate with poly- or copoly-butylene terephthalate or glycol-modified poly- or copoly-cyclohexanedimethylene terephthalate can 5 most particularly preferably be a blend containing from 35 to 80 wt.% polycarbonate or copolycarbonate and from 65 to 20 wt.% poly- or copoly-butylene terephthalate or glycol-modified poly- or copoly-cyclohexanedimethylene terephthalate, preferably containing from 35 to 80 wt.% polycarbonate and from 65 to 20 wt.% polybutylene terephthalate or glycol-modified polycyclohexanedimethylene terephthalate, the sum of the amounts being 10 100 wt.%. In most particularly preferred embodiments, the blends can be blends of polycarbonate and glycol-modified polycyclohexanedimethylene terephthalate in the above-mentioned compositions.

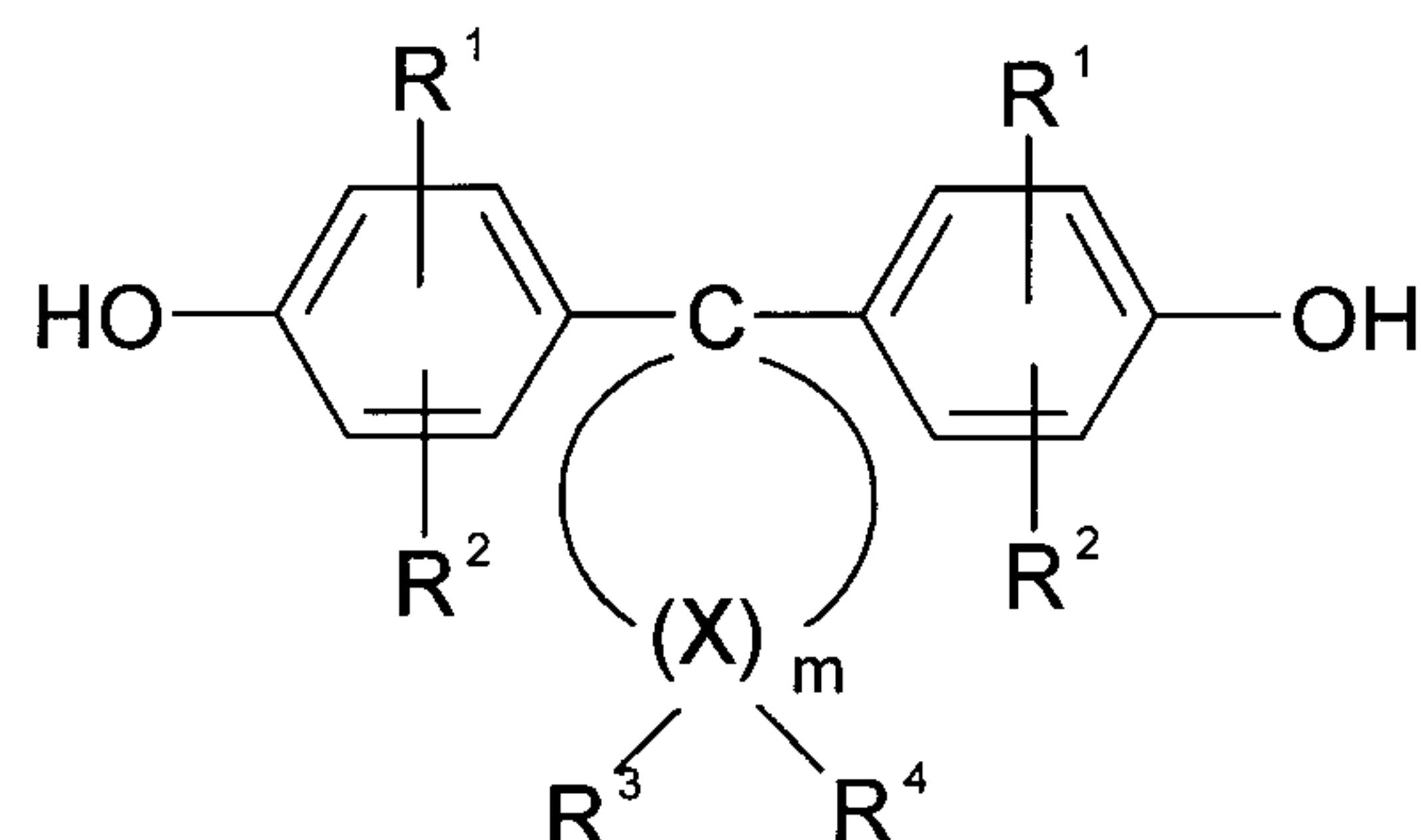
In preferred embodiments, suitable polycarbonates or copolycarbonates are especially aromatic polycarbonates or copolycarbonates.

15 The polycarbonates or copolycarbonates can be linear or branched in known manner.

The preparation of these polycarbonates can take place in known manner from diphenols, carbonic acid derivatives, optionally chain terminators and optionally branching agents. Details regarding the preparation of polycarbonates have been recorded in many patent specifications for about 40 years. By way of example, reference is made here only to 20 Schnell, "Chemistry and Physics of Polycarbonates", Polymer Reviews, Volume 9, Interscience Publishers, New York, London, Sydney 1964, to D. Freitag, U. Grigo, P. R. Müller, H. Nouvertne', BAYER AG, "Polycarbonates" in Encyclopedia of Polymer Science and Engineering, Volume 11, Second Edition, 1988, pages 648-718 and finally to Dres. U. Grigo, K. Kirchner and P. R. Müller "Polycarbonate" in Becker/Braun, Kunststoff-25 Handbuch, Volume 3/1, Polycarbonate, Polyacetale, Polyester, Celluloseester, Carl Hanser Verlag Munich, Vienna 1992, pages 117-299.

Suitable diphenols can be, for example, dihydroxyaryl compounds of the general formula (I)

30


wherein Z is an aromatic radical having from 6 to 34 carbon atoms which can contain one or more optionally substituted aromatic nuclei and aliphatic or cycloaliphatic radicals or alkylaryls or heteroatoms as bridge members.

Examples of suitable dihydroxyaryl compounds are: dihydroxybenzenes, dihydroxydiphenyls, bis-(hydroxyphenyl)-alkanes, bis-(hydroxyphenyl)-cycloalkanes, bis-(hydroxyphenyl)-aryls, bis-(hydroxyphenyl) ethers, bis-(hydroxyphenyl) ketones, bis-(hydroxyphenyl) sulfides, bis-(hydroxyphenyl)-sulfones, bis-(hydroxyphenyl) sulfoxides, 5 1,1'-bis-(hydroxyphenyl)-diisopropylbenzenes, and the compounds thereof alkylated and halogenated on the ring.

These and further suitable dihydroxyaryl compounds are described, for example, in DE-A 3 832 396, FR-A 1 561 518, in H. Schnell, Chemistry and Physics of Polycarbonates, Interscience Publishers, New York 1964, p. 28 ff; p.102 ff and in D.G. Legrand, J.T. 10 Bendler, Handbook of Polycarbonate Science and Technology, Marcel Dekker New York 2000, p. 72 ff.

Preferred dihydroxyaryl compounds are, for example, resorcinol, 4,4'-dihydroxydiphenyl, bis-(4-hydroxyphenyl)-methane, bis-(3,5-dimethyl-4-hydroxyphenyl)-methane, bis-(4-hydroxyphenyl)-diphenyl-methane, 1,1-bis-(4-hydroxyphenyl)-1-phenyl-ethane, 1,1-bis-(4-hydroxyphenyl)-1-(1-naphthyl)-ethane, 1,1-bis-(4-hydroxyphenyl)-1-(2-naphthyl)-ethane, 15 2,2-bis-(4-hydroxyphenyl)-propane, 2,2-bis-(3-methyl-4-hydroxyphenyl)-propane, 2,2-bis-(3,5-dimethyl-4-hydroxyphenyl)-propane, 2,2-bis-(4-hydroxyphenyl)-1-phenyl-propane, 2,2-bis-(4-hydroxyphenyl)-hexafluoro-propane, 2,4-bis-(4-hydroxyphenyl)-2-methyl-butane, 2,4-bis-(3,5-dimethyl-4-hydroxyphenyl)-2-methylbutane, 1,1-bis-(4-hydroxyphenyl)-cyclohexane, 1,1-bis-(3,5-dimethyl-4-hydroxyphenyl)-cyclohexane, 1,1-20 bis-(4-hydroxyphenyl)-4-methyl-cyclohexane, 1,3-bis-[2-(4-hydroxyphenyl)-2-propyl]-benzene, 1,1'-bis-(4-hydroxyphenyl)-3-diisopropyl-benzene, 1,1'-bis-(4-hydroxyphenyl)-4-diisopropyl-benzene, 1,3-bis-[2-(3,5-dimethyl-4-hydroxyphenyl)-2-propyl]-benzene, bis-(4-hydroxyphenyl) ether, bis-(4-hydroxyphenyl) sulfide, bis-(4-hydroxyphenyl)-sulfone, bis-(3,5-dimethyl-4-hydroxyphenyl)-sulfone and 2,2',3,3'-tetrahydro-3,3,3',3'-tetramethyl-1,1'-25 spirobi-[1H-indene]-5,5'-diol or

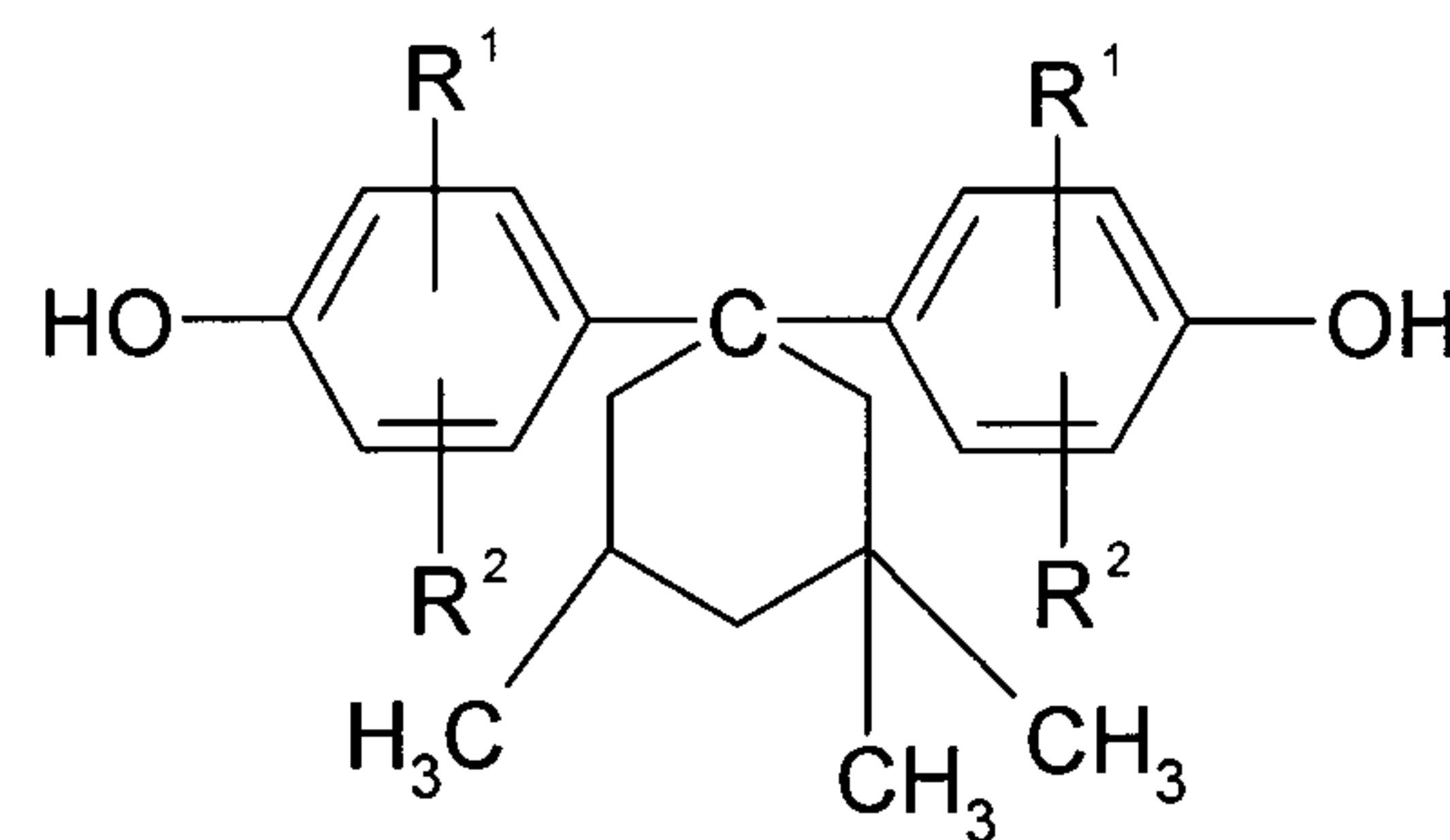
dihydroxydiphenylcycloalkanes of formula (Ia)

(Ia)

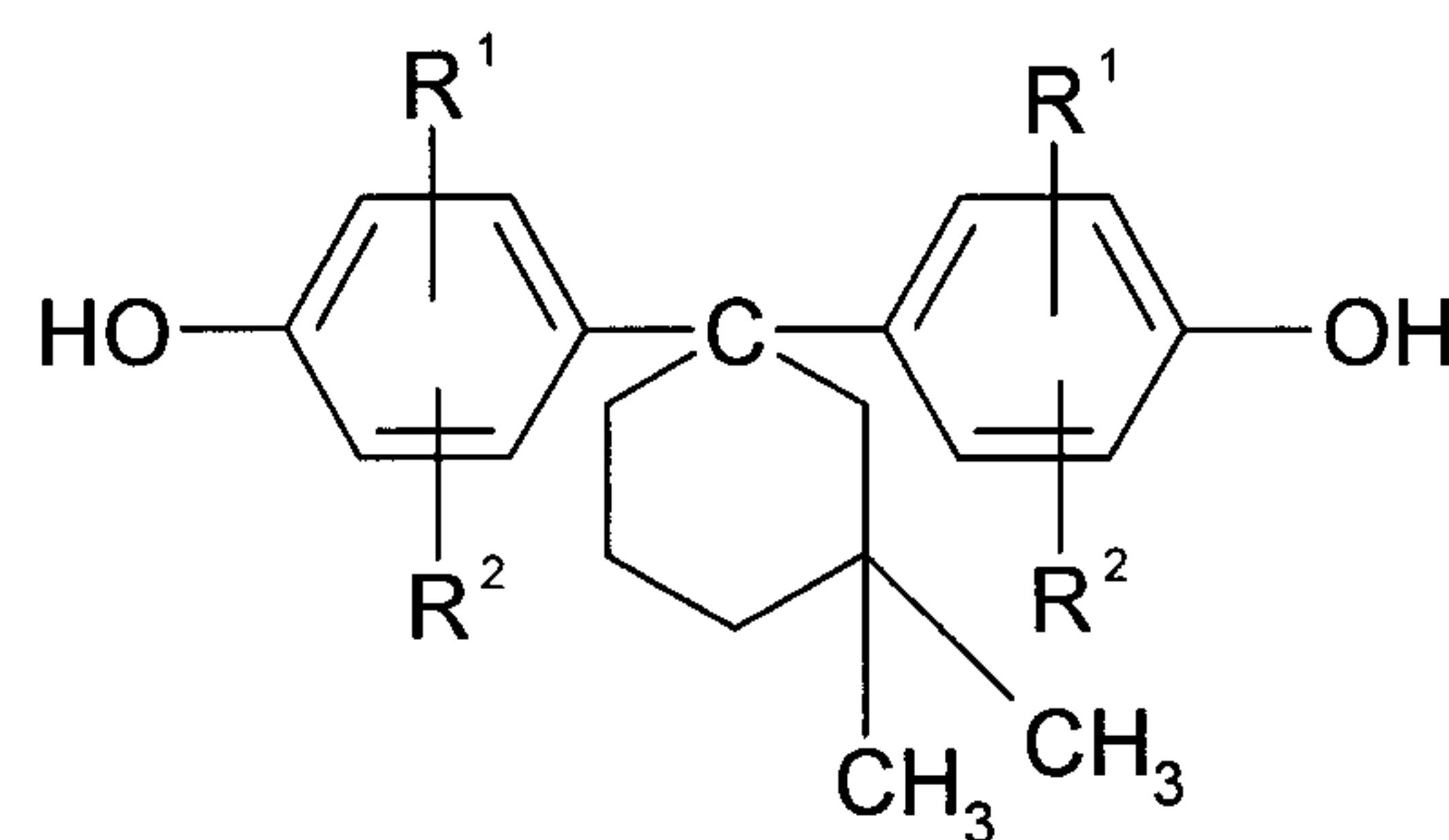
wherein

5 R^1 and R^2 independently of one another represent hydrogen, halogen, preferably chlorine or bromine, C_1 - C_8 -alkyl, C_5 - C_6 -cycloalkyl, C_6 - C_{10} -aryl, preferably phenyl, and C_7 - C_{12} -aralkyl, preferably phenyl- C_1 - C_4 -alkyl, in particular benzyl,

10 m represents an integer from 4 to 7, preferably 4 or 5,

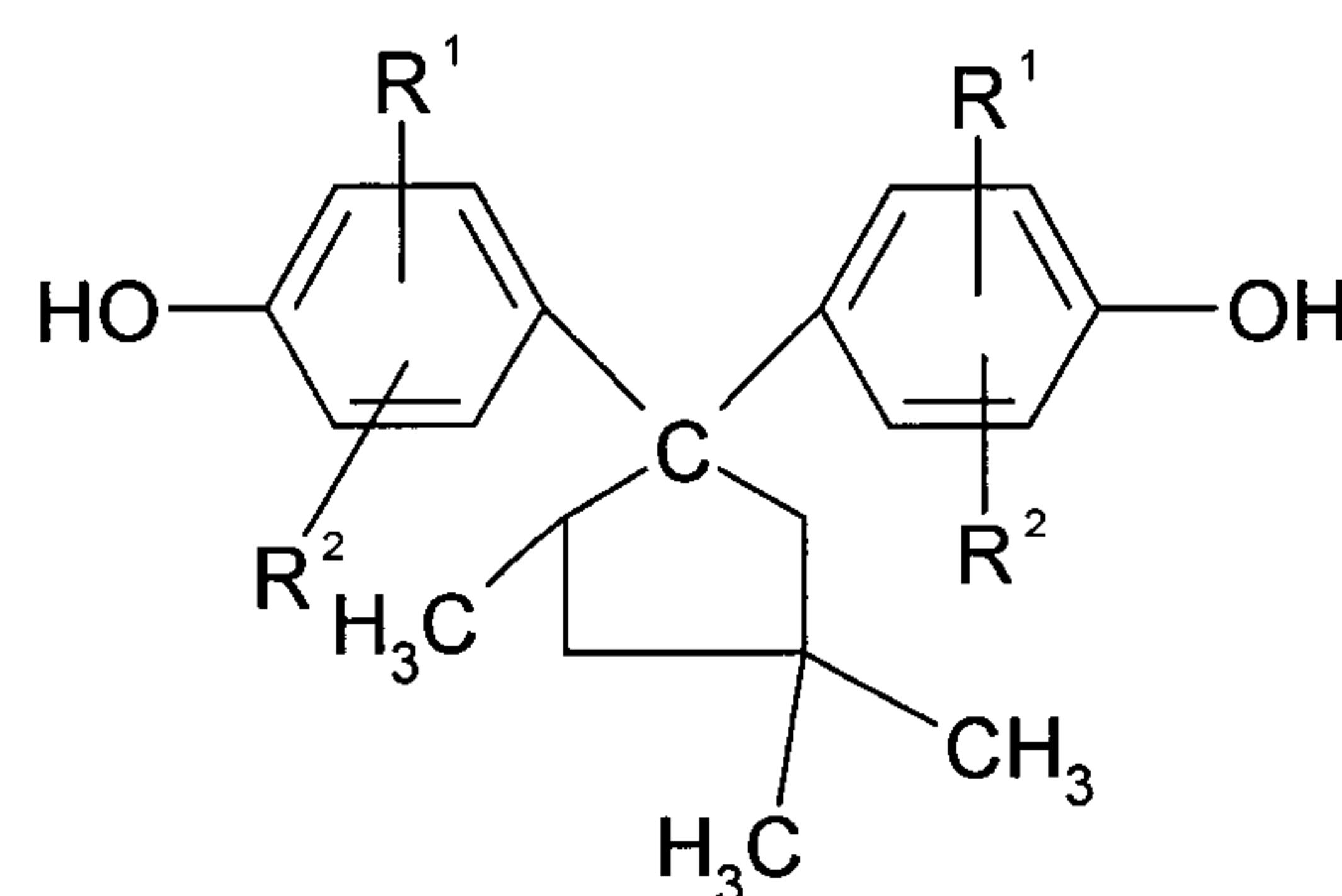

R^3 and R^4 , which can be chosen individually for each X , independently of one another represent hydrogen or C_1 - C_6 -alkyl and

15 X represents carbon,


with the proviso that, on at least one atom X , R^3 and R^4 simultaneously represent alkyl. In formula (Ia), R^3 and R^4 are preferably simultaneously alkyl on one or two atom(s) X , in particular on only one atom X .

15 The preferred alkyl radical for the radicals R^3 and R^4 in formula (Ia) is methyl. The X atoms in the alpha-position relative to the diphenyl-substituted carbon atom (C-1) are preferably not dialkyl-substituted; alkyl disubstitution in the beta-position relative to C-1 is preferred, however.

20 Particularly preferred dihydroxydiphenylcycloalkanes of formula (Ia) are those having 5 and 6 ring carbon atoms X in the cycloaliphatic radical ($m = 4$ or 5 in formula (Ia)), for example the diphenols of formulae (Ia-1) to (Ia-3)



(Ia-1)

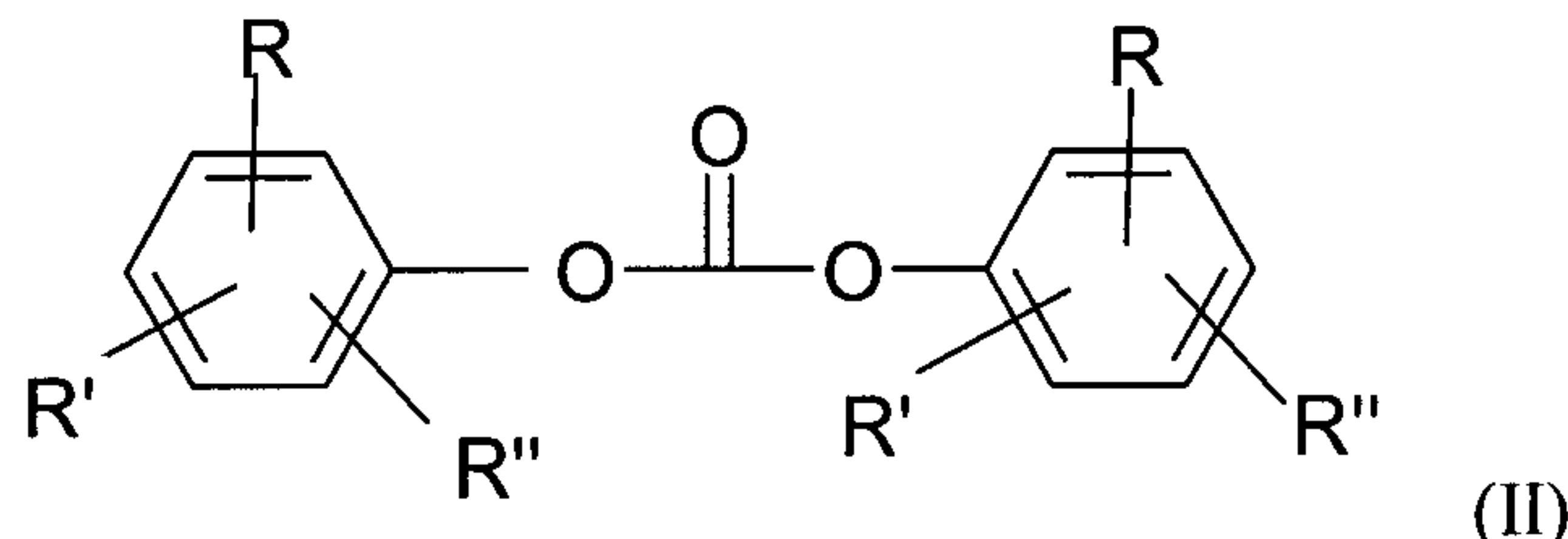
5

(Ia-2)

(Ia-3)

A most particularly preferred dihydroxydiphenylcycloalkane of formula (Ia) is 1,1-bis-(4-hydroxyphenyl)-3,3,5-trimethyl-cyclohexane (formula (Ia-1) wherein R¹ and R² are H).

10 Such polycarbonates can be prepared from dihydroxydiphenylcycloalkanes of formula (Ia) according to EP-A 359 953.


Particularly preferred dihydroxyaryl compounds are resorcinol, 4,4'-dihydroxydiphenyl, bis-(4-hydroxyphenyl)-diphenyl-methane, 1,1-bis-(4-hydroxyphenyl)-1-phenyl-ethane, bis-(4-hydroxyphenyl)-1-(1-naphthyl)-ethane, bis-(4-hydroxyphenyl)-1-(2-naphthyl)-ethane, 2,2-bis-(4-hydroxyphenyl)-propane, 2,2-bis(3,5-dimethyl-4-hydroxyphenyl)-propane, 1,1-bis-(4-hydroxyphenyl)-cyclohexane, 1,1-bis-(3,5-dimethyl-4-hydroxyphenyl)-cyclohexane, 1,1-bis-(4-hydroxyphenyl)-3,3,5-trimethyl-cyclohexane, 1,1'-bis-(4-hydroxyphenyl)-3-diisopropyl-benzene and 1,1'-bis-(4-hydroxyphenyl)-4-diisopropyl-benzene.

Most particularly preferred dihydroxyaryl compounds are 4,4'-dihydroxydiphenyl and 2,2-bis-(4-hydroxyphenyl)-propane.

It is possible to use both one dihydroxyaryl compound, with the formation of homopolycarbonates, and various dihydroxyaryl compounds, with the formation of copolycarbonates. It is possible to use both one dihydroxyaryl compound of formula (I) or (Ia), with the formation of homopolycarbonates, and a plurality of dihydroxyaryl compounds of formula (I) and/or (Ia), with the formation of copolycarbonates. The various dihydroxyaryl compounds can be linked together both randomly and block-wise. In the case of copolycarbonates of dihydroxyaryl compounds of formula (I) and (Ia), the molar ratio of dihydroxyaryl compounds of formula (Ia) to the other dihydroxyaryl compounds of formula (I) which are optionally to be used is preferably between 99 mol% of (Ia) to 1 mol% of (I) and 2 mol% of (Ia) to 98 mol% of (I), preferably between 99 mol% of (Ia) to 1 mol% of (I) and 10 mol% of (Ia) to 90 mol% of (I), and in particular between 99 mol% of (Ia) to 1 mol% of (I) and 30 mol% of (Ia) to 70 mol% of (I).

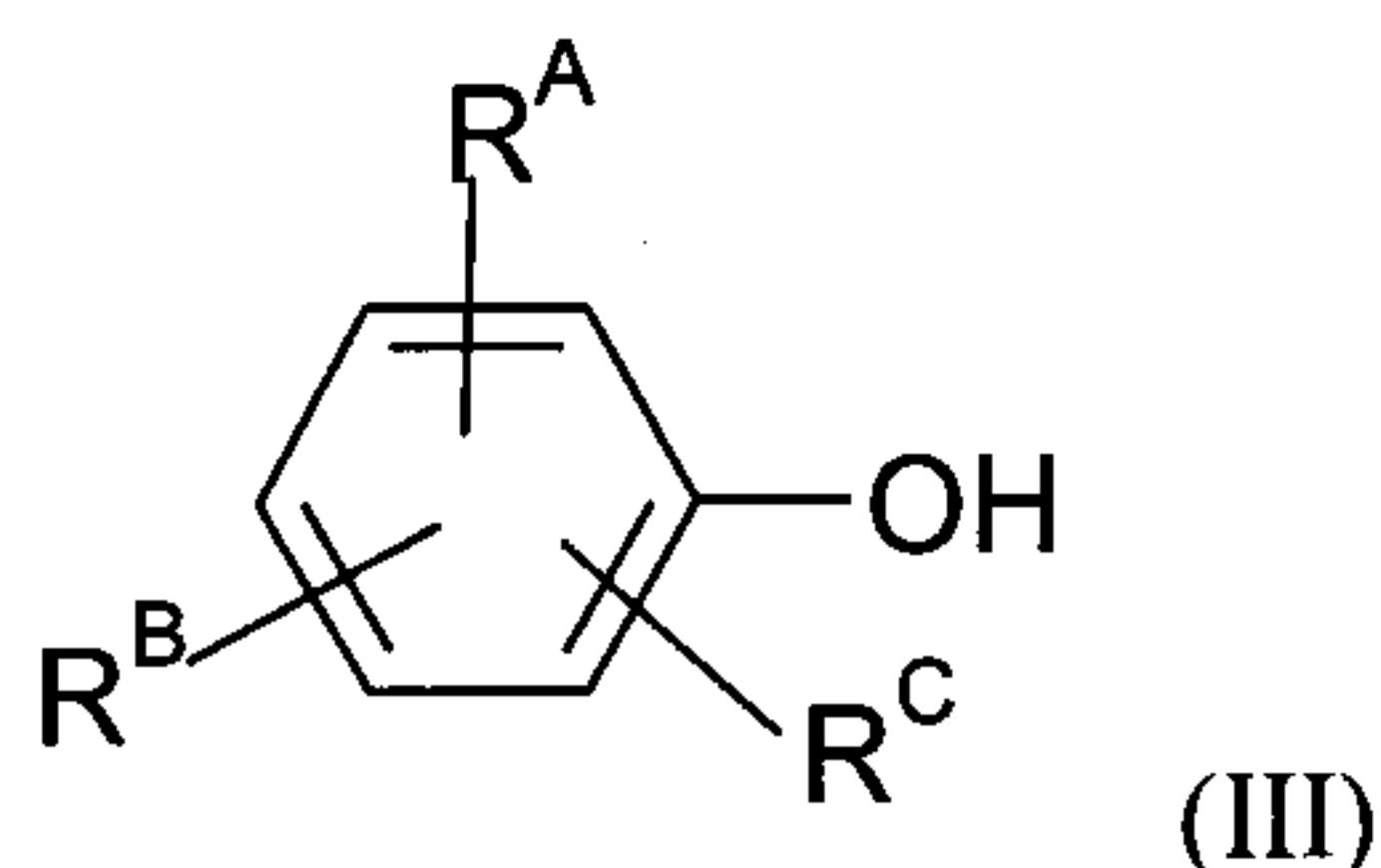
A most particularly preferred copolymer can be prepared using 1,1-bis-(4-hydroxyphenyl)-3,3,5-trimethyl-cyclohexane and 2,2-bis-(4-hydroxyphenyl)-propane dihydroxyaryl compounds of formulae (Ia) and (I).

Suitable carbonic acid derivatives can be, for example, diaryl carbonates of the general formula (II)

wherein

R, R' and R", which are the same or different, independently of one another represent hydrogen, linear or branched C₁-C₃₄-alkyl, C₇-C₃₄-alkylaryl or C₆-C₃₄-aryl, R can further also represent -COO-R", wherein R" represents hydrogen, linear or branched C₁-C₃₄-alkyl, C₇-C₃₄-alkylaryl or C₆-C₃₄-aryl.

5 Preferred diaryl carbonates are, for example, diphenyl carbonate, methylphenyl-phenyl carbonate and di-(methylphenyl) carbonate, 4-ethylphenyl-phenyl carbonate, di-(4-ethylphenyl) carbonate, 4-n-propylphenyl-phenyl carbonate, di-(4-n-propylphenyl) carbonate, 4-isopropylphenyl-phenyl carbonate, di-(4-isopropylphenyl) carbonate, 4-n-butylphenyl-phenyl carbonate, di-(4-n-butylphenyl) carbonate, 4-isobutylphenyl-phenyl carbonate, di-(4-iso-butylphenyl) carbonate, 4-tert-butylphenyl-phenyl carbonate, di-(4-tert-butylphenyl) carbonate, 4-n-pentylphenyl-phenyl carbonate, di-(4-n-pentylphenyl) carbonate, 4-n-hexylphenyl-phenyl carbonate, di-(4-n-hexylphenyl) carbonate, 4-isoctylphenyl-phenyl carbonate, di-(4-isoctylphenyl) carbonate, 4-n-nonylphenyl-phenyl carbonate, di-(4-n-nonylphenyl) carbonate, 4-cyclohexylphenyl-phenyl carbonate, di-(4-cyclohexylphenyl) carbonate, 4-(1-methyl-1-phenylethyl)-phenyl-phenyl carbonate, di-[4-(1-methyl-1-phenylethyl)-phenyl] carbonate, biphenyl-4-yl-phenyl carbonate, di-(biphenyl-4-yl) carbonate, 4-(1-naphthyl)-phenyl-phenyl carbonate, 4-(2-naphthyl)-phenyl-phenyl carbonate, di-[4-(1-naphthyl)-phenyl] carbonate, di-[4-(2-naphthyl)phenyl] carbonate, 4-phenoxyphenyl-phenyl carbonate, di-(4-phenoxyphenyl) carbonate, 3-pentadecylphenyl-phenyl carbonate, di-(3-pentadecylphenyl) carbonate, 4-tritylphenyl-phenyl carbonate, di-(4-tritylphenyl) carbonate, methylsalicylate-phenyl carbonate, di-(methylsalicylate) carbonate, ethylsalicylate-phenyl carbonate, di-(ethylsalicylate) carbonate, n-propylsalicylate-phenyl carbonate, di-(n-propylsalicylate) carbonate, isopropylsalicylate-phenyl carbonate, di-(isopropylsalicylate) carbonate, n-butylsalicylate-phenyl carbonate, di-(n-butylsalicylate) carbonate, isobutylsalicylate-phenyl carbonate, di-(iso-butylsalicylate) carbonate, tert-butylsalicylate-phenyl carbonate, di-(tert-butylsalicylate) carbonate, di-(phenylsalicylate) carbonate and di-(benzylsalicylate) carbonate.


Particularly preferred diaryl compounds are diphenyl carbonate, 4-tert-butylphenyl-phenyl carbonate, di-(4-tert-butylphenyl) carbonate, biphenyl-4-yl-phenyl carbonate, di-(biphenyl-4-yl) carbonate, 4-(1-methyl-1-phenylethyl)-phenyl-phenyl carbonate, di-[4-(1-methyl-1-phenylethyl)-phenyl] carbonate and di-(methylsalicylate) carbonate.

Diphenyl carbonate is most particularly preferred.

It is possible to use both one diaryl carbonate and various diaryl carbonates.

In order to control or modify the end groups, it is additionally possible to use as chain terminators, for example, one or more monohydroxyaryl compound(s) that have not been employed in the preparation of the diaryl carbonate(s) used. Such compounds can be those of the general formula (III)

5

wherein

R^A represents linear or branched C_1-C_{34} -alkyl, C_7-C_{34} -alkylaryl, C_6-C_{34} -aryl or $-COO-R^D$, wherein R^D represents hydrogen, linear or branched C_1-C_{34} -alkyl, C_7-C_{34} -alkylaryl or C_6-C_{34} -aryl, and

10 R^B, R^C , which are the same or different, independently of one another represent hydrogen, linear or branched C_1-C_{34} -alkyl, C_7-C_{34} -alkylaryl or C_6-C_{34} -aryl.

Such monohydroxyaryl compounds are, for example, 1-, 2- or 3-methylphenol, 2,4-dimethylphenol, 4-ethylphenol, 4-n-propylphenol, 4-isopropylphenol, 4-n-butylphenol, 4-isobutylphenol, 4-tert-butylphenol, 4-n-pentylphenol, 4-n-hexylphenol, 4-isoctylphenol, 4-n-nonylphenol, 3-pentadecylphenol, 4-cyclohexylphenol, 4-(1-methyl-1-phenylethyl)-phenol, 4-phenylphenol, 4-phenoxyphenol, 4-(1-naphthyl)-phenol, 4-(2-naphthyl)-phenol, 4-tritylphenol, methyl salicylate, ethyl salicylate, n-propyl salicylate, isopropyl salicylate, n-butyl salicylate, isobutyl salicylate, tert-butyl salicylate, phenyl salicylate and benzyl salicylate.

15 20 4-tert-Butylphenol, 4-isoctylphenol and 3-pentadecylphenol are preferred.

Suitable branching agents can be compounds having three or more functional groups, preferably those having three or more hydroxyl groups.

Suitable compounds having three or more phenolic hydroxyl groups are, for example, phloroglucinol, 4,6-dimethyl-2,4,6-tri-(4-hydroxyphenyl)-hept-2-ene, 4,6-dimethyl-2,4,6-tri-(4-hydroxyphenyl)-heptane, 1,3,5-tri-(4-hydroxyphenyl)-benzene, 1,1,1-tri-(4-hydroxyphenyl)-ethane, tri-(4-hydroxyphenyl)-phenylmethane, 2,2-bis-(4,4-bis-(4-hydroxyphenyl)-cyclohexyl]-propane, 2,4-bis-(4-hydroxyphenyl-isopropyl)-phenol and tetra-(4-hydroxyphenyl)-methane.

Other suitable compounds having three or more functional groups are, for example, 2,4-dihydroxybenzoic acid, trimesic acid (trichloride), cyanuric acid trichloride and 3,3-bis-(3-methyl-4-hydroxyphenyl)-2-oxo-2,3-dihydroindole.

5 Preferred branching agents are 3,3-bis-(3-methyl-4-hydroxyphenyl)-2-oxo-2,3-dihydroindole and 1,1,1-tri-(4-hydroxyphenyl)-ethane.

At least one layer containing at least one thermoplastic plastic can additionally comprise at least one filler. The filler is preferably at least one colouring pigment and/or at least one other filler for producing translucency of the filled layers, particularly preferably a white 10 pigment, most particularly preferably titanium dioxide, zirconium dioxide or barium sulfate, in a preferred embodiment titanium dioxide.

The filling of a layer containing at least one thermoplastic plastic with at least one such filler improves the visibility of the incorporated inscription or image(s), as a result of which the perception of the improved sharpness and resolution is also increased further.

15 The mentioned fillers are preferably added to the thermoplastic plastics in amounts of from 2 to 45 wt.%, particularly preferably from 5 to 30 wt.%, based on the total weight of filler and thermoplastic plastic, before the plastics film is shaped, which can take place, for example, by extrusion or coextrusion.

In addition to a first layer containing at least one thermoplastic plastic and at least one 20 laser-sensitive additive, the layered structure according to the invention comprises at least one further, preferably a second, layer containing at least one thermoplastic plastic and at least one laser-sensitive additive, which has a layer thickness of from 5 to 30 μm and contains the laser-sensitive additive in an amount of from 40 to 180 ppm, the layer containing at least one thermoplastic plastic and optionally at least one filler being arranged 25 between the two layers containing at least one thermoplastic plastic and at least one laser-sensitive additive.

The layer(s) containing at least one thermoplastic plastic and at least one laser-sensitive additive preferably has (have) a layer thickness of from 8 to 25 μm .

The laser-sensitive additive is present in the layer(s) containing at least one thermoplastic 30 plastic and at least one laser-sensitive additive preferably in an amount of from 50 to 160 ppm, particularly preferably in an amount of from 60 to 150 ppm, most particularly preferably in an amount of from 60 to 100 ppm.

The layer containing at least one thermoplastic plastic and optionally at least one filler can preferably have a layer thickness of from 30 µm to 375 µm, particularly preferably from 50 µm to 250 µm and most particularly preferably from 75 µm to 200 µm.

The layered structure according to the invention can be produced, for example and 5 preferably, by means of coextrusion of the layers that are present, lamination of the layers that are present or extrusion lamination, that is to say extrusion coating of the layer(s) containing at least one thermoplastic plastic and at least one laser-sensitive additive onto a prefabricated layer containing at least one thermoplastic plastic and optionally at least one filler. The variants coextrusion and extrusion coating are preferred. Production by means of 10 coextrusion is most particularly preferred.

Such a film produced by means of coextrusion represents a particularly preferred embodiment of the layered structure according to the invention and is likewise provided by the invention.

Accordingly, the present invention provides a coextruded film comprising

15 - at least one layer containing at least one thermoplastic plastic and
- at least one layer containing at least one thermoplastic plastic and at least one laser-sensitive additive,

characterised in that the layer containing at least one thermoplastic plastic and at least one laser-sensitive additive has a layer thickness of from 5 to 30 µm and the laser-sensitive 20 additive is present in that layer in an amount of from 40 to 180 ppm.

A preferred embodiment is an at least three-layered, preferably three-layered coextruded film which comprises two layers containing at least one thermoplastic plastic and at least one laser-sensitive additive, which layers have a layer thickness of from 5 to 30 µm and contain the laser-sensitive additive in an amount of from 40 to 180 ppm, and at least one, 25 preferably one layer containing at least one thermoplastic plastic, wherein the layer(s) containing at least one thermoplastic plastic is (are) arranged between the two layers containing at least one thermoplastic plastic and at least one laser-sensitive additive.

In a most particularly preferred embodiment of the coextruded film according to the invention, the laser-sensitive additive is present in an amount of from 40 to 100 ppm in the 30 layer containing at least one thermoplastic plastic and at least one laser-sensitive additive.

Such an at least three-layered, preferably three-layered coextruded film has the advantage that, when it is incorporated into a security document, it is not necessary to ensure that the layer that is inscribable by means of laser inscription is oriented outwards relative to the thermoplastic plastics layer optionally filled with at least one filler. The symmetrical 5 structure of the particularly preferred coextruded film according to the invention permits laser inscription irrespective of the direction in which the film was incorporated into the security document.

The layer(s) containing at least one thermoplastic plastic preferably contains or contain at least one of the above-mentioned fillers.

10 The statements made above in respect of the layered structure according to the invention, including the mentioned layer thicknesses, constituents and preferred ranges, apply analogously to the coextruded film according to the invention.

The layered structure according to the invention and the coextruded film according to the invention can comprise further, preferably transparent layers containing at least one of the 15 above-mentioned thermoplastic plastics.

The layered structure according to the invention, and accordingly also the coextruded film according to the invention, is outstandingly suitable as a component of security documents, preferably identification documents, which are to be inscribed by means of laser engraving.

20 The layered structure according to the invention is suitable preferably for improving the sharpness and quality of lettering and/or images, preferably personalising lettering and/or images, which are to be incorporated by means of laser engraving into security documents, particularly preferably identification documents. The layered structure according to the invention is most particularly preferably suitable for identification documents in the form of bonded or laminated composites in the form of plastics cards, for example identity cards, 25 passports, driving licences, credit cards, bank cards, cards for controlling access or other identity documents, etc. Preferred identification documents within the scope of the present invention are multilayered sheet-like documents having security features such as chips, photographs, biometric data, etc. These security features can be visible or at least scannable from the outside. Such an identification document preferably has a size between that of a 30 bank card and that of a passport. Such an identification document can also be part of a document having several parts, such as, for example, an identification document of plastics material in a passport which also contains parts made of paper or card.

Accordingly, the invention further provides a security document, preferably an identification document, comprising at least one layered structure according to the invention.

The security document, preferably identification document, according to the invention can
5 comprise further additional layers *via* which further information, for example, can be incorporated into the security document, preferably identification document.

Such further information can be, for example, personalising portraits or non-personalising general information which, for example, is contained in the same form in any generic security document, preferably identification document.

10 Such layers can be incorporated into the security document, preferably identification document, from, for example, films previously provided with the information by means of conventional printing processes, preferably ink-jet or laser printing, particularly preferably ink-jet printing.

Films which can be printed by means of ink-jet printing processes are known to the person
15 skilled in the art and can be, for example, films comprising at least one of the above-described thermoplastic plastics optionally containing at least one of the above-described fillers. In particularly preferred embodiments, plastics films coloured white or translucent by means of fillers such as, for example, titanium dioxide, zirconium dioxide, barium sulfate, etc. are used for the purpose of better visibility of the printed information.

20 For films to be printed by means of laser printing, in particular by means of colour laser printing, there are suitable in particular plastics films of one of the above-mentioned thermoplastic plastics having a specific surface resistance of from 10^7 to 10^{13} Ω , preferably from 10^8 to 10^{12} Ω . The specific surface resistance in Ω is determined in accordance with DIN IEC 93.

25 The films can preferably be films in which there has been added to the thermoplastic plastic, in order to achieve the specific surface resistance, for example an additive selected from tertiary or quaternary, preferably quaternary, ammonium or phosphonium salts of a partially fluorinated or perfluorinated organic acid or quaternary ammonium or phosphonium hexafluorophosphates, preferably of a partially fluorinated or perfluorinated
30 alkylsulfonic acid, preferably of a perfluoroalkylsulfonic acid.

Preferred suitable quaternary ammonium or phosphonium salts are:

- perfluoroctanesulfonic acid tetrapropylammonium salt,

- perfluorobutanesulfonic acid tetrapropylammonium salt,
- perfluorooctanesulfonic acid tetrabutylammonium salt,
- perfluorobutanesulfonic acid tetrabutylammonium salt,
- perfluorooctanesulfonic acid tetrapentylammonium salt,
- 5 - perfluorobutanesulfonic acid tetrapentylammonium salt,
- perfluorooctanesulfonic acid tetrahexylammonium salt,
- perfluorobutanesulfonic acid tetrahexylammonium salt,
- perfluorobutanesulfonic acid trimethylneopentylammonium salt,
- perfluorooctanesulfonic acid trimethylneopentylammonium salt,
- 10 - perfluorobutanesulfonic acid dimethyldineopentylammonium salt,
- perfluorooctanesulfonic acid dimethyldineopentylammonium salt,
- N-methyl-tripropylammonium perfluorobutylsulfonate,
- N-ethyl-tripropylammonium perfluorobutylsulfonate,
- tetrapropylammonium perfluorobutylsulfonate,
- 15 - diisopropyldimethylammonium perfluorobutylsulfonate,
- diisopropyldimethylammonium perfluoroctylsulfonate,
- N-methyl-tributylammonium perfluoroctylsulfonate,
- cyclohexyldiethylmethylammonium perfluoroctylsulfonate,
- cyclohexyltrimethylammonium perfluoroctylsulfonate,

20 and the corresponding phosphonium salts. The ammonium salts are preferred.

Preferably, it is also possible to use one or more of the above-mentioned quaternary ammonium or phosphonium salts, that is to say also mixtures.

The perfluorooctanesulfonic acid tetrapropylammonium salt, perfluorooctanesulfonic acid tetrabutylammonium salt, perfluorooctanesulfonic acid tetrapentylammonium salt, 25 perfluorooctanesulfonic acid tetrahexylammonium salt and perfluorooctanesulfonic acid dimethyldiisopropylammonium salt, and the corresponding perfluorobutanesulfonic acid salts, are most particularly suitable.

In a most particularly preferred embodiment, perfluorobutanesulfonic acid dimethyldiisopropylammonium salt (diisopropyldimethylammonium perfluorobutane-30 sulfonate) can be used as additive.

The mentioned salts are known or can be prepared by known methods. The salts of the sulfonic acids can be prepared, for example, by combining equimolar amounts of the free sulfonic acid with the hydroxy form of the corresponding cation in water at room

30725-1294

19

temperature and concentrating the solution. Other preparation processes are described, for example, in DE-A 1 966 931 and NL-A 7 802 830.

The mentioned salts are preferably added to the thermoplastic plastics in amounts of from 0.001 to 2 wt.%, preferably from 0.1 to 1 wt.%, before shaping of the plastics film, which 5 can be carried out, for example, by extrusion or coextrusion.

The security document, preferably identification document, according to the invention can also comprise further additional layers which provide protection against UV radiation, protection against mechanical damage – for example scratch-resistant coatings – etc.

The security document, preferably identification document, according to the invention can 10 be produced, for example, as follows: a stack of films is formed from the various films for constructing the security document and is laminated to give a composite and then cut into the suitable form of the security document, preferably identification document. Further layers can optionally subsequently be applied to the composite laminate, for example by adhesive bonding and/or lamination of further films or by coating by means of lacquer 15 compositions.

30725-1294

19a

Figure 1 shows a laser-inscribed ID card to be digitized.

Figure 2 shows a histogram (digitized form of the card in Fig. 1) indicating the statistical frequency of the color values in an image, over- and under-exposure of colors is avoided in that no curve of a maximum projects below 0 or over 255.

5 Figure 3 shows the laser-inscribed ID card of Fig. 1 overlayed with an intensity curve for each color channel in the RGB (red/green/blue) color model as measure for the grayscale gradient with the intensity I averaged over $(R+G+B)/3 = I$.

Figure 4 shows a diagram of the greyscale gradient in which only the line points in the region of the grey wedge were evaluated. Image points which are before and after the grey wedge are
10 not taken into consideration in the evaluation.

The following examples serve to explain the invention by way of example and are not to be interpreted as limiting.

Examples**Preparation of the masterbatches (compositions) for the production of the layered structures according to the invention****Example 1: Compounding of a masterbatch for the production of the layer(s) containing a laser-sensitive additive**

5 The preparation of the masterbatch for the production of the layer containing a laser-sensitive additive was carried out by means of a conventional twin-screw compounding extruder (ZSK 32) at conventional polycarbonate processing temperatures of from 250 to 330°C.

10 A masterbatch having the following composition was compounded and then granulated:

- Makrolon® 3108 polycarbonate from Bayer MaterialScience AG in an amount of 99.994 wt.%
- Flammruß 101 (carbon black from Degussa) having a mean particle size of 95 nm in an amount of 0.006 wt.% (60 ppm).

15 **Example 2: Compounding of a masterbatch for the production of the layer containing a thermoplastic plastic and a white pigment as filler**

20 The preparation of the masterbatch for the production of the layer containing a thermoplastic plastic and a white pigment as filler was carried out by means of a conventional twin-screw compounding extruder (ZSK 32) at conventional polycarbonate processing temperatures of from 250 to 330°C.

A masterbatch having the following composition was compounded and then granulated:

25

- Makrolon® 3108 polycarbonate from Bayer MaterialScience AG in an amount of 85 wt.%
- titanium dioxide (Kronos® 2230 from Kronos Titan) as the white pigment filler in an amount of 15 wt.%.

Production of the layered structures according to the invention in the form of coextruded films:

Examples 3 to 5: Two-layered coextruded films with a thermoplastic plastic layer containing white pigment as filler and a thermoplastic plastic layer containing laser-sensitive additive

5

The following two-layered coextruded films were produced from the masterbatches of Examples 1 and 2. The amount of laser-sensitive additive carbon black was varied by diluting the masterbatch of Example 1 with Makrolon 3108[®] polycarbonate from Bayer MaterialScience AG. The layer containing the laser-sensitive additive and the thermoplastic plastic was denoted the laser-sensitive layer; the layer containing the thermoplastic plastic and the white pigment as filler was denoted the substrate layer.

10

100 µm thick, laser-inscribable, two-layered films having the following composition were produced:

	Laser-sensitive layer Thickness: 15 µm	Substrate layer Thickness: 85 µm	Carbon black content in the laser-sensitive layer [ppm]
Example 3 (comparison example)	30 wt.% masterbatch of Example 1 and + 70 wt.% Makrolon [®] 3108	100 wt.% masterbatch of Example 2	18
Example 4 (according to the invention)	70 wt.% masterbatch of Example 1 and + 30 wt.% Makrolon [®] 3108	100 wt.% masterbatch of Example 2	42
Example 5 (according to the invention)	100 wt.% masterbatch of Example 1	100 wt.% masterbatch of Example 2	60

15

Examples 6 and 7: Two-layered coextruded films with a thermoplastic plastic layer without filler and a thermoplastic plastic layer containing laser-sensitive additive

20

The following two-layered coextruded films were produced from the masterbatch of Example 1 and Makrolon[®] 3108 polycarbonate from Bayer MaterialScience AG. The amount of laser-sensitive additive carbon black was varied by diluting the masterbatch of Example 1 with Makrolon[®] 3108 polycarbonate from Bayer MaterialScience AG. The layer containing the laser-sensitive additive and the thermoplastic plastic was denoted the laser-sensitive layer; the layer containing the thermoplastic plastic without filler was denoted the substrate layer.

25

100 µm thick, laser-inscribable, two-layered films having the following composition were produced:

	Laser-sensitive layer Thickness: 15 µm	Substrate layer Thickness: 85 µm	Carbon black content in the laser- sensitive layer [ppm]
Example 6 (comparison example)	30 wt.% masterbatch of Example 1 and + 70 wt.% Makrolon® 3108	100 wt.% Makrolon® 3108	18
Example 7 (according to the invention)	70 wt.% masterbatch of Example 1 and + 30 wt.% Makrolon® 3108	100 wt.% Makrolon® 3108	42

Examples 8 and 9: Two-layered coextruded films with a thermoplastic plastic layer without filler and a thermoplastic plastic layer containing laser-sensitive additive

The following two-layered coextruded films were produced from the masterbatch of Example 1 and Makrolon® 3108 polycarbonate from Bayer MaterialScience AG. The amount of laser-sensitive additive carbon black was varied by diluting the masterbatch of Example 1 with Makrolon® 3108 polycarbonate from Bayer MaterialScience AG. The layer containing the laser-sensitive additive and the thermoplastic plastic was denoted the laser-sensitive layer; the layer containing the thermoplastic plastic without filler was denoted the substrate layer.

200 µm thick, laser-inscribable, two-layered films having the following composition were produced:

	Laser-sensitive layer Thickness: 15 µm	Substrate layer Thickness: 185 µm	Carbon black content in the laser- sensitive layer [ppm]
Example 8 (comparison example)	30 wt.% masterbatch of Example 1 and + 70 wt.% Makrolon® 3108	100 wt.% Makrolon® 3108	18
Example 9 (according to the invention)	70 wt.% masterbatch of Example 1 and + 30 wt.% Makrolon® 3108	100 wt.% Makrolon® 3108	42

A chrome roller and a matt steel roller were inserted in the calender, and a 200 µm thick laser-inscribable film with a so-called 1-4 surface was produced.

Examples 10 to 12: Three-layered coextruded films with a thermoplastic plastic layer containing white pigment as filler and two thermoplastic plastic layers containing laser-sensitive additive

The following three-layered coextruded films were produced from the masterbatches of Examples 1 and 2. The amount of laser-sensitive additive carbon black was varied by diluting the masterbatch of Example 1 with Makrolon® 3108 polycarbonate from Bayer MaterialScience AG. The layers containing the laser-sensitive additive and the thermoplastic plastic were denoted the laser-sensitive layer; the layer containing the thermoplastic plastic and the white pigment as filler was denoted the substrate layer.

10 100 µm thick, laser-inscribable, three-layered films having the following composition were produced:

	Laser-sensitive layer 1 Thickness: 15 µm	Substrate layer Thickness: 70 µm	Laser-sensitive layer 2 Thickness: 15 µm	Carbon black content of the laser-sensitive layers ppm
Example 10 (comparison example)	30 wt.% masterbatch of Example 1 and + 70 wt.% Makrolon® 3108	100 wt.% masterbatch of Example 2	30 wt.% masterbatch of Example 1 and + 70 wt.% Makrolon® 3108	18
Example 11 (according to the invention)	70 wt.% masterbatch of Example 1 and + 30 wt.% Makrolon® 3108	100 wt.% masterbatch of Example 2	70 wt.% masterbatch of Example 1 and + 30 wt.% Makrolon® 3108	42
Example 12 (according to the invention)	100 wt.% masterbatch of Example 1	100 wt.% masterbatch of Example 2	100 wt.% masterbatch of Example 1	60

Example 13: Compounding of a highly concentrated masterbatch for the production of the layer(s) containing a laser-sensitive additive

15 The preparation of the masterbatch for the production of the layer containing a laser-sensitive additive was carried out by means of a conventional twin-screw compounding extruder (ZSK 32) at conventional polycarbonate processing temperatures of from 250 to 330°C.

A masterbatch having the following composition was compounded and then granulated:

20 • Makrolon® 3108 polycarbonate from Bayer MaterialScience AG in an amount of 99.8 wt.%

• Flammruf 101 (carbon black from Degussa) having a mean particle size of 95 nm in an amount of 0.2 wt.% (2000 ppm).

Examples 14 to 20: Two-layered coextruded films with a thermoplastic plastic layer containing white pigment as filler and a thermoplastic plastic layer containing laser-sensitive additive

The following two-layered coextruded films were produced from the masterbatches of Examples 13 and 2. The amount of laser-sensitive additive carbon black was varied by diluting the masterbatch of Example 13 with Makrolon® 3108 polycarbonate from Bayer MaterialScience AG. The layer containing the laser-sensitive additive and the thermoplastic plastic was denoted the laser-sensitive layer; the layer containing the thermoplastic plastic and the white pigment as filler was denoted the substrate layer.

10 100 µm thick, laser-inscribable, two-layered films having the following composition were produced:

	Laser-sensitive layer Thickness: 15 µm	Substrate layer Thickness: 85 µm	Carbon black content of the laser-sensitive layer [ppm]
Example 14 (not according to the invention)	0.9 wt.% masterbatch of Example 13 and + 99.1 wt.% Makrolon® 3108	100 wt.% masterbatch of Example 2	18
Example 15 (according to the invention)	3 wt.% masterbatch of Example 13 and + 97 wt.% Makrolon® 3108	100 wt.% masterbatch of Example 2	60
Example 16 (according to the invention)	5 wt.% masterbatch of Example 13 and + 95 wt.% Makrolon® 3108	100 wt.% masterbatch of Example 2	100
Example 17 (not according to the invention)	10 wt.% masterbatch of Example 13 and + 90 wt.% Makrolon® 3108	100 wt.% masterbatch of Example 2	200
Example 18 (not according to the invention)	15 wt.% masterbatch of Example 13 and + 85 wt.% Makrolon® 3108	100 wt.% masterbatch of Example 2	300
Example 19 (not according to the invention)	20 wt.% masterbatch of Example 13 and + 80 wt.% Makrolon® 3108	100 wt.% masterbatch of Example 2	400
Example 20 (not according to the invention)	25 wt.% masterbatch of Example 13 and + 75 wt.% Makrolon® 3108	100 wt.% masterbatch of Example 2	500

Example 21: Production of laser-inscribable identification documents (ID card)

Films used for the ID card layered structure according to the invention:

Film 1-1: white-filled film

5 A 100 µm thick polycarbonate film based on Makrolon 3108® polycarbonate from Bayer MaterialScience AG and titanium dioxide (Kronos® 2230 from Kronos Titan) as white pigment filler having a composition of 85 wt.% Makrolon 3108® and 15 wt.% titanium dioxide was produced by means of extrusion at a melt temperature of about 280°C.

Film 1-2: white-filled film

A film having the same composition as film 1-1 and a thickness of 400 µm was produced.

10 Film 2: transparent film

A 50 µm thick polycarbonate film based on Makrolon 3108® polycarbonate from Bayer MaterialScience AG was produced by means of extrusion at a melt temperature of about 280°C.

15 From the films described above, the laser-inscribable layered structures described hereinbelow were laminated in the form of ID cards:

Layer (1) film 2; 50 µm

Layer (2) coextruded films according to Examples 3 to 12

20 Layer (3) film 1-1; 100 µm (optional; dependent on the thickness of the film according to the invention)

Layer (4) film 1-2; 400 µm

Layer (5) film 1-1; 100 µm (optional; dependent on the thickness of the film according to the invention)

Layer (6) coextruded films according to Examples 3 to 12

25 Layer (7) film 2; 50 µm

In the above test structure, layers (3) and (5) were used when coextruded films each having layer thicknesses of 100 µm were used for layers (2) and (6), in order to ensure a comparable total layer thickness of the laminated card (see ISO IEC 7810:2003). A symmetrical layered structure of the card was chosen in order to avoid warping of the card.

To this end, a stack was formed from the films in the above-mentioned sequence, and lamination was carried out on a laminating press from Bürkle with the following parameters:

- preheating of the press to 170-180°C
- 5 - pressing for 8 minutes at a pressure of 15 N/cm²
- pressing for 2 minutes at a pressure of 200 N/cm²
- cooling of the press to 38°C and opening of the press.

Example 22: Laser engraving of the laser-inscribable identification documents

Laser engraving was carried out on the ID cards of Example 21 in a laser installation from 10 Foba with the following parameters:

laser medium:	Nd:YAG
wavelength:	1064 nm
power:	40 watts
current:	30 A
15 pulse frequency:	14 KHz.
feed rate:	200 mm/sec.

In the laser engraving, the information was inscribed on only one of the laser-inscribable film layers (layer (2)) of the ID card. The information inscribed into the laser-inscribable layer by means of laser engraving was the complete black-and-white portrait of a woman 20 and a grey step wedge.

Example 23: Determination of the contrast

Determination of the greyscale gradient on a grey wedge

In order to determine the greyscale gradient of a grey wedge, the laser-inscribed ID card was digitised by means of a flat-bed scanner with a resolution of 200 dpi. In the histogram 25 (digitised form of the card), which indicates the statistical frequency of the colour values in an image, it was to be ensured that the light areas of the image were not overexposed and

the dark areas of the image were not underexposed. Such over- and under-exposure was avoided in that, in the histogram, no curve of a maximum projects below 0 or over 255, but the curves of all the maxima were imaged completely between 0 and 255. An example of such a laser-inscribed ID card to be digitised is shown in Figure 1. An example of an 5 optimally exposed histogram is shown in Figure 2.

The resulting 24-bit image (3 base colours (red/green/blue) x 8 bit(256 gradations) was stored without loss in tiff format

In order to measure the greyscale gradient, a horizontal intensity profile was measured over the grey wedge using the image analysis program AnalySIS. This gave an intensity curve 10 for each colour channel in the RGB (red/green/blue) colour model. By way of example, these intensity curves for the three colour channels red, green and blue for the exemplary ID card in Figure 1 are shown in Figure 3. The intensity I was averaged over $(R+G+B)/3 = I$.

In order to show the data as a diagram of the greyscale gradient, only the line points in the region of the grey wedge were evaluated. Image points which are before and after the grey 15 wedge are not taken into consideration in the evaluation. Such a diagram of the greyscale gradient is shown by way of example in Figure 4.

The data so determined allow samples of a flat-bed scan to be compared or samples of several flat-bed scans to be compared, in the preparation of which in the scanner software the same values in respect of brightness and contrast remain set.

20 For the data relating to the ID cards according to Example 21, the contrast of the image engraved by means of laser engraving was determined. This contrast was defined by the ratio, that is to say the quotient, of the intensity of the greyscale value at the largest coordinate of the greyscale gradient and the intensity of the greyscale value at the smallest coordinate of the greyscale gradient, the intensity of the greyscale value at the largest 25 coordinate of the greyscale gradient being 255 for all sets of data. The higher this value (quotient), the better the contrast.

The results of the contrast determination are given in Table 1:

Example	Intensity		Quotient	Note
	x-coordinate	Intensity	(white : grey)	
Reference	0 280	236 (grey) 255 (white)	1,1	film without laser additive
Example 3	7 314	133 255	1.9	18 ppm carbon black
Example 4	3 304	104 255	2.5	42 ppm carbon black
Example 5	2 307	80 255	3.2	60 ppm carbon black
Example 6	6 310	125 255	2.0	18 ppm carbon black
Example 7	4 307	104 255	2.5	42 ppm carbon black
Example 8	1 305	132 255	1.9	18 ppm carbon black
Example 9	6 309	104 255	2.5	42 ppm carbon black
Example 10	2 305	134 255	1.9	18 ppm carbon black
Example 11	2 306	101 255	2.5	42 ppm carbon black
Example 12	4 304	85 255	3.0	60 ppm carbon black
Example 14	16 425	128 245	1.914	18 ppm carbon black
Example 15	25 425	83 229	2.95	60 ppm carbon black
Example 16	27 425	65 216	3.323	100 ppm carbon black

The mentioned reference film was film 2 described hereinbefore. The reference measurement served to determine the quotient of a film without laser-sensitive additive, in order to rule out the influence of such films without laser-sensitive additive on the 5 measurement.

The results showed that the contrast of the black-and-white portrait incorporated by means of laser engraving into the ID cards containing the layered structures according to the invention was markedly higher than in Comparison Examples 3, 6, 8, 10 and 14 with a

lower content of laser-sensitive additive. In Comparison Examples 17 to 20 with a higher content of laser-sensitive additive, a perceptible greying of the background, accompanied by a perceptible darkening of the engraved portrait, could be observed even on visual inspection of the ID cards. The layered structures according to the invention consequently 5 yielded improved sharpness and resolution and an optimum colour effect of the engraved portrait. The chosen range for the content of laser-sensitive additive accordingly shows an optimum for sharpness and resolution of the engraved portrait in combination with an optimum colour effect for the observer. In addition, when assessing the quality and homogeneity of the laser-produced portrait, it became clear that, when the layered 10 structures according to the invention having a carbon black content and a layer thickness each within the range according to the invention were used, agglomerate-free distribution of the carbon black in the laser-inscribable layer (thermoplastic plastic layer containing the laser-sensitive additive) was achieved. No agglomerates were to be found which, after laser inscription, would lead to a thick black point, a so-called burner, in the laser-produced 15 portrait. The layer thickness of the substrate layer or the presence of fillers in the substrate layer had no objective influence on the quality of the portrait engraved by laser engraving.

30725-1294

30

CLAIMS:

1. A layer structure, comprising:

at least one layer comprising at least one thermoplastic; and

at least one layer comprising at least one thermoplastic and at least one black pigment as a
5 laser-sensitive additive,

wherein:

the layer comprising the at least one thermoplastic is free from a laser-sensitive additive, and

the thickness of the layer comprising the at least one thermoplastic and the at least one black
pigment as the laser-sensitive additive is from 5 to 30 μm and the amount of the black pigment
10 in the layer is from 40 to 180 ppm.

2. The layer structure according to claim 1, wherein the laser-sensitive additive is
carbon black.

3. The layer structure according to claim 1 or 2, wherein the at least one layer
comprising the at least one thermoplastic further comprises at least one white pigment as a
15 filler.

4. The layer structure according to claim 3, wherein the white pigment is titanium
dioxide, zirconium dioxide or barium sulphate.

5. The layer structure according to claim 4, wherein the white pigment is titanium
dioxide.

20 6. The layer structure according to any one of claims 1 to 5, wherein the
thermoplastic in the individual layers independently of one another is at least one
thermoplastic polymer of an ethylenically unsaturated monomer or a polycondensate of a
bifunctional reactive compound.

30725-1294

7. The layer structure according to claim 6, wherein the polymer is: one or more polycarbonates or copolycarbonates based on diphenols; poly- or copolyacrylates, or poly- or copolymethacrylates; poly- or copolymers with styrene; polyurethanes; polyolefins; poly- or copolycondensates of terephthalic acid; poly- or copolycondensates of naphthalene dicarboxylic acid; poly- or copolycondensates of at least one cycloalkyl dicarboxylic acid; polysulphones; or mixtures thereof.

5

8. The layer according to claim 7, wherein the polymer is: one or more polycarbonates or copolycarbonates based on diphenols; or a blend comprising at least one polycarbonate or copolycarbonate.

10 9. The layer structure according to any one of claims 1 to 8, further comprising a layer of thickness from 5 to 30 μm which comprises at least one thermoplastic and from 40 to 180 ppm of at least one laser-sensitive additive, wherein the layer comprising the at least one thermoplastic is arranged between the two layers comprising the at least one thermoplastic and the least one laser sensitive additive.

15 10. The layer structure according to any one of claims 1 to 9, wherein all the layers are produced by means of coextrusion.

11. The layer structure according to any one of claims 1 to 10, wherein the amount of each laser-sensitive additive in the layers comprising the at least one thermoplastic and the at least one laser-sensitive additive is from 50 to 160 ppm.

20 12. A security document comprising at least one layer structure according to any one of claims 1 to 11.

13. The security document according to claim 12, which is an identification document.

14. A coextruded foil, comprising:

25 at least one layer comprising at least one thermoplastic; and

30725-1294

32

at least one layer comprising at least one thermoplastic and at least one black pigment as a laser-sensitive additive,

wherein the thickness of the layer comprising the at least one thermoplastic and the at least one black pigment as the laser-sensitive additive is from 5 to 30 μm and the amount of the

5 black pigment in the layer is from 40 to 180 ppm.

15. The coextruded foil according to claim 14, wherein the foil has two of the layers which comprise the at least one thermoplastic and the at least one laser-sensitive additive wherein the layer comprising the at least one thermoplastic is arranged between the two layers comprising the at least one thermoplastic and the at least one laser-sensitive

10 additive.

16. The coextruded foil according to claim 14 or 15, wherein the layer comprising the at least one thermoplastic further comprises at least one white pigment as a filler.

17. The coextruded foil according to any one of claims 14 to 16, wherein the thickness of the layers comprising the at least one thermoplastic and the at least one black

15 pigment as the laser-sensitive additive is from 8 to 25 μm .

Application number / numéro de demande: EP 2010 000409

Figures: 1 - 4

Pages: 11

Unscannable items
received with this application
(Request original documents in File Prep. Section on the 10th floor)

Documents reçu avec cette demande ne pouvant être balayés
(Commander les documents originaux dans la section de préparation des dossiers au
10ème étage)