发明名称
开关电源 EMI 噪声源内阻抗测试系统及测定方法

摘要
本发明公开了一种开关电源 EMI 噪声源内阻抗测试系统，由线阻抗稳定网络、单电流探头法阻抗测试模块和频谱分析仪构成。电源线直接输入到线阻抗稳定网络中，通过单电流探头法阻抗测试模块，而后输入到开关电源及负载中，构成一整条电源回路；而后由频谱分析仪对该模块中的响应信号进行检测。同时还公开了内阻抗测定方法。本发明系统和方法，既可以针对各类噪声源进行通用内阻抗测试，也可以对各种未知阻抗进行测试，精度较高，且操作简单。通过该测试方法，可以对内阻抗的性质进行判断，进一步为 EMI 滤波器的设计提供前提，即在滤波器设计时满足滤波器的阻抗匹配特性。
1. 一种开关电源 EMI 噪声源内阻抗测试系统，由线阻抗稳定网络、单电流探头阻抗测试模块和频谱分析仪构成；其特征是：电源线直接输入到线阻抗稳定网络中，通过单电流探头阻抗测试模块，而后再输入到开关电源及负载中，构成一整条电源回路；而后由频谱分析仪对模块中电流探头的响应信号进行检测。

2. 根据权利要求 1 所述的开关电源 EMI 噪声源内阻抗测试系统，其特征是：采用共模阻抗测试模块，所述共模阻抗测试模块由一对共模扼流圈、两个电容一个检测式电流探头以及一信号发生器组成；两个电容分别接在 L－E、N－E 之间；线阻抗稳定网络输出的 L、N 线通过一对共模扼流圈输入到开关电源，而线阻抗稳定网络的输出 E 线直接输入到开关电源；两电容与 E 线相连的两根导线穿透电流探头，信号发生器的输出信号直接输入到电容回路中，检测式电流探头接频谱分析仪，开关电源的直流侧输出接负载。

3. 根据权利要求 2 所述的开关电源 EMI 噪声源内阻抗测试系统，其特征是：所述两电容固定在印刷电路板上，同时所述检测式电流探头在电路板上也固定其位置；印刷电路板 PCB 与测试设备间为短线连接。

4. 根据权利要求 1 所述的开关电源 EMI 噪声源内阻抗测试系统，其特征是：采用差模阻抗测试模块，所述差模阻抗测试模块，由两个差模扼流圈、两个电容、一个检测式电流探头组成和一信号发生器组成；线阻抗稳定网络输出的 L、N 线分别通过 1 个差模扼流圈输入到开关电源，而线阻抗稳定网络的输出 E 线直接输入到开关电源，两个电容并联接在 L－N 之间；两电容与 E 线相连的两根导线穿透电流探头，信号发生器的输出信号直接输入到电容回路中，检测式电流探头接频谱分析仪，开关电源的直流侧输出接负载。

5. 开关电源 EMI 噪声源内阻抗测试方法，其测定步骤如下：

步骤 1：首先将 SMPS 从主电路移走，将 L 与 N 线短接，接入一固定阻抗 R_{std}。
该阻抗一端接 L 与 N 线的短接点，另一端接 E 线；主电路中线阻抗稳定网络不通电，调节信号发生器的输出频率，在传导电容不完全等同的范围取若干个点，分别读取相应的频谱仪上的读数，记录频谱仪读数 A1；

步骤 2：将 Rnu 移走，并将 L 与 N 线的短接点与 E 线短路，主电路中线阻抗稳定网络不通电，调节信号发生器的输出频率，与上述 1 中的频率点对应，记录频谱仪读数 A2；

步骤 3：将 SMPS 接入线路中，开启主电路电源，调节信号发生器的输出频率，与上述 1 中的频率点对应，记录频谱仪读数 A3；

步骤 4：开关电源噪声源内阻抗的计算。
开关电源 EMI 噪声源内阻抗测试系统及测定方法

技术领域

本发明涉及的是开关电源传导性电磁干扰（EMI）噪声源的内阻抗测试系统及进行建模的方法，为传导性 EMI 噪声的抑制即 EMI 滤波器的设计提供前提基础，属于电磁兼容设计的技术领域。

背景技术

EMI 滤波器是抑制电磁干扰的有效措施，但目前国内外在进行 EMI 滤波器设计时，事先并不知道噪声源的内部干扰源和阻抗，往往进行一种通用的 EMI 滤波器设计。由于干扰源阻抗和滤波器阻抗之间的匹配关系直接影响到滤波器的滤波效果，准确估计开关电源内部阻抗对于电磁干扰的有效抑制有着重要意义。

发明内容

本发明的目的是针对上述电磁兼容中 EMI 滤波器的阻抗匹配问题而提出的开关电源 EMI 噪声源内阻抗测试系统及内阻抗建模方法，它可以为企业和产品研发设计工程师提供完善而经济实用的噪声源测试解决方案，本发明既可以满足噪声源建模的一般性要求，经济成本较低，同时又可以为下一步 EMI 滤波器的设计、EMI 噪声的有效抑制提供良好的前提条件。

开关电源 EMI 噪声源内阻抗测试系统，由线阻抗稳定网络、单电流探头阻抗测试模块和频谱分析仪构成；其特征是：电源线直接输入到线阻抗稳定网络中，通过单电流探头阻抗测定模块，而后再输入到开关电源及负载中，构成一整条电源回路；而后由频谱分析仪对模块中电流探头的响应信号进行检测。

所述单电流探头阻抗测试模块采用共模阻抗测试模块，由一对共模扼流圈、
两个电容一个检测式电流探头以及一信号发生器组成；两个电容分别接在 L—E、N—E 之间；线阻抗稳定网络输出的 L、N 线通过一对共模扼流圈输入到开关电源，而线阻抗稳定网络的输出 E 线直接输入到开关电源；两电容与 E 线相连的两根导线穿透电流探头，信号发生器的输出信号直接输入到电容回路中，检测式电流探头接频谱分析仪，开关电源的直流侧输出接负载。

所述两电容固定在印刷电路板上，同时所述检测式电流探头在电路板上也固定其位置；印刷电路板 PCB 与测试设备间为短线连接。

所述单电流探头阻抗测试模块还可以采用差模阻抗测试模块，由两个差模扼流圈、两个电容、一个检测式电流探头组成和一信号发生器组成；线阻抗稳定网络输出的 L、N 线分别通过 1 个差模扼流圈输入到开关电源，而线阻抗稳定网络的输出 E 线直接输入到开关电源，两个电容并联接在 L—N 之间；两电容与 E 线相连的两根导线穿透电流探头，信号发生器的输出信号直接输入到电容回路中，检测式电流探头接频谱分析仪，开关电源的直流侧输出接负载。

本发明开关电源 EMI 噪声源内阻抗测试系统，通过线阻抗稳定网络（LISN）、单电流探头测试模块和频谱分析仪进行；从电网过来的电源线直接输入到线阻抗稳定网络（LISN）中，通过单电流探头测试模块，而后输入到开关电源（SMPS）及负载中，构成一整条电源回路；由频谱分析仪对该模块中的响应信号进行检测。

在电源回路中，线阻抗稳定网络（LISN）的作用是为开关电源提供电源，同时隔离电源侧的噪声进入测试回路，也隔离开关电源产生的噪声，防止污染电网，并且为测试回路提供一个 50Ω的稳定阻抗。单电流探头测试模块用于测量开关电源的内阻抗，开关电源是待测设备。

上述单电流探头测试模块，又分为共模测试模块和差模测试模块两个部分。
共模测试模块由一对共模扼流圈、两个电容、一个检测式电流探头和一信号发生器组成。从电网过来的电源线 L、N、E 直接输入到线阻抗稳定网络中，
线阻抗稳定网络输出的 L、N 线通过一对共模扼流圈输入到开关电源，而线阻抗稳定网络的输出 E 线直接输入到开关电源，两个电容分别接在 L—E、N—E 之间。两电容与 E 线相连的两根导线穿透电流探头，信号发生器的输出信号直接输入到电容所在回路中，电流探头接频谱分析仪，开关电源的直流侧输出接负载。通过电路中接入固定阻抗、短路、开关电源正常工作三种状态读取检测电流探头上的读数，并根据相应的算法对开关电源的内阻抗进行计算。

为使该测试电路的内部阻抗 \(Z_{in} \) 可重复进行测量并尽量保持恒定，这两电容固定在印刷电路板上，同时电流探头在电路板上也固定其位置；印刷电路板 PCB 与测试设备间的连线为短线连接，以减小导线布局引起的寄生效应，所述短线连接是指现有连接工艺能够做到的最短连接。这种位置固定的测试，其优点是一旦电路校准后，测得的测试电路内部阻抗 \(Z_{in} \) 不但适用于共模测试，同样也适用于差模测试，可大大提高测试的速度。

所述差模阻抗测试模块，由两个差模扼流圈、两个电容、一个检测式电流探头和一信号发生器组成；从电网过来的电源线 L、N、E 直接输入到线阻抗稳定网络中，线阻抗稳定网络输出的 L、N 线分别通过 1 个差模扼流圈输入到开关电源，而线阻抗稳定网络的输出 E 线直接输入到开关电源，两个电容并联接在 L—N 之间；两电容与 E 线相连的两根导线穿透电流探头，信号发生器的输出信号直接输入到电容所在回路中，电流探头接频谱分析仪，开关电源的直流侧输出接负载。

本发明开关电源 EMI 噪声源内阻抗测定方法，其测定步骤如下：

步骤 1：首先将 SMPS 从主电路移走，将 L 与 N 线短接，接入一固定阻抗 \(R_{in} \)，该阻抗一端接 L 与 N 线的短接点，另一端接 E 线；主电路中线阻抗稳定网络不通电，调节信号发生器的输出频次，在传导电磁兼容测试标准 10K—30MHz 范围内取若干个点，分别读取相应的频谱仪上的读数，记录频谱仪读数 \(A_1 \)；
步骤 2：将 R_{xd} 移走，并将 L 与 N 线的短接点与 E 线短路，主电路中线阻抗稳定网络不通电，调节信号发生器的输出频率，与上述 1 中的频率点对应，记录频谱仪读数 A2；

步骤 3：将 SMPS 接入线路中，开启主电路电源，调节信号发生器的输出频率，与上述 1 中的频率点对应，记录频谱仪读数 A3；

步骤 4：开关电源噪声源内阻抗的计算。

本发明装置和方法，既可以针对各类噪声源进行通用内阻抗测试，也可以对各种未知阻抗进行测试，精度较高，且操作简单，仅通过电路在标准阻抗、短路和正常工作三种情况下获取的检测电流通导数，就可以计算出待测噪声源阻抗的值。通过该测试方法，不但可以确定噪声源的内阻抗值，还可以通过计算得到内阻抗的幅值和相位信息，从而可以对内阻抗的性质进行判断，得出内阻抗是容性的还是感性的，进一步为 EMI 滤波器的设计提供前提，即在滤波器设计时满足滤波器的阻抗匹配特性，从而有效的对电磁干扰进行抑制，使之满足 EMC 标准。

附图说明

图 1 是本发明开关电源 EMI 噪声源内阻抗测试系统框图；
图 2 是本发明开关电源 EMI 噪声源内阻抗测试系统（共模内阻抗）电路图；
图 3 是本发明开关电源 EMI 噪声源内阻抗测试系统（差模内阻抗）电路图；
图 4 是噪声源共模内阻抗测试曲线；
图 5 是噪声源差模内阻抗测试曲线。

具体实施方式

下面结合具体实施例和附图，对本发明作进一步详细说明。
实施例 1. 如图 1 和图 2 所示，开关电源 EMI 噪声源内阻抗测试系统，由线
阻抗稳定网络、单电流探头阻抗测试模块和频谱分析仪构成；电源线直接输入
到线阻抗稳定网络中，通过单电流探头阻抗测定模块，而后输入到开关电源及
负载中，构成一整条电源回路；而后由频谱分析仪对模块中电流探头的响应信
号进行检测。单电流探头阻抗测试模块采用共模阻抗测试模块，所述共模阻抗
test 模块由一对共模扼流圈、两个电容一个检测式电流探头以及一信号发生器
组成；两个电容分别接在 L—E、N—E 之间；线阻抗稳定网络输出的 L、N 线通
过一对共模扼流圈输入到开关电源，而线阻抗稳定网络的输出 E 线直接输入到
开关电源；两电容与 E 线相连的两根导线穿透电流探头，信号发生器的输出信
号直接输入到电容回路中，检测式电流探头接频谱分析仪，开关电源的直流侧
输出接负载。所述两电容固定在印刷电路板上，同时所述检测式电流探头在电
路板上也固定其位置；印刷电路板 PCB 与测试设备间为短线连接。

实施例 2. 如图 1 和图 3 所示，与实施例 1 基本相同，所不同的是单电流探
头阻抗测试模块采用差模阻抗测试模块，所述差模阻抗测试模块，由两个差模
扼流圈、两个电容、一个检测式电流探头组成和一信号发生器组成；线阻抗稳
定网络输出的 L、N 线分别通过 1 个差模扼流圈输入到开关电源，而线阻抗稳定
网络的输出 E 线直接输入到开关电源，两个电容并联接在 L—N 之间；两电容与
E 线相连的两根导线穿透电流探头，信号发生器的输出信号直接输入到电容回路
中，检测式电流探头接频谱分析仪，开关电源的直流侧输出接负载。

实施例 3. 以某商用开关电源为例，进行测试，实验装置如图 1 所示，分别
在电路处于接标准阻抗、短路和开关电源正常工作的情况下进行测试，对于开
关电源噪声源内阻抗的测试，主要分共模、差模两种情况进行测试，这两种情
况除阻抗测试模块有区别，测试方法及步骤都是一致的。

由于 V_M 是信号源的输出电压，V_p 为电流探头两端的电压，I_w 是检测式电

流探头在回路中感生的电流，Zin 为线路内阻抗，Zs 为待测噪声源阻抗。则：

$$V_M = (Z_m + Z_s)I_W$$ \(\text{(1)}\)

于是可以得到

$$Z_s = \frac{V_M}{I_W} - Z_m = \frac{V_p}{V_p} \cdot \frac{V_M}{V_p} - Z_m = Z_T \cdot \frac{V_M}{V_p} - Z_m$$ \(\text{(2)}\)

Z_T 为电流探头内部阻抗。保持信号源输出不变，则对于给定频率来说 Z_T V_M 是一个固定值。将 SMPS 用一个已知的标准电阻 R_std 来替代，且 R_std >> Z_in，则

$$Z_T V_M = R_{std} \cdot V_p \bigg|_{Z_T = R_{std}}$$ \(\text{(3)}\)

短路测阻抗 Z_in

$$Z_m = Z_T \cdot \frac{V_M}{V_p} \bigg|_{Z_T = R_{std}} = \frac{R_{std} \cdot V_p}{V_p} \bigg|_{Z_T = R_{std}}$$ \(\text{(4)}\)

最后给开关电源通电

$$Z_s = Z_T \cdot \frac{V_M}{V_p} - Z_m = \frac{R_{std} \cdot V_p}{V_p} \bigg|_{Z_T = R_{std}} - Z_m$$ \(\text{(5)}\)

得出结果如图 4, 5 所示。从图中可以看出噪声源的共模内阻抗随着频率的增高而减小，呈容性，经过拟和，可以得到共模内阻抗由一个 1.4Ω 的电阻和一个 430pF 的电容串联构成。差模内阻抗随着频率的增高而增大，呈感性，经过拟和，可以得到差模内阻抗由一个 16Ω 的电阻和一个 1.7uH 的电感串联构成。

当得知开关电源的共模/差模内阻抗后，就可以进行相应的滤波器设计。根据噪声源内阻抗、负载阻抗（已知）和滤波器结构写出滤波器的传递函数，其次确定滤波器的截止频率点、插入损耗、通带允许的最大衰减，最后计算得出滤波器各元器件的值。

由于噪声源阻抗的大小是滤波器设计的重要依据，设计时只有当阻抗匹配，滤波器才能最大效率地发挥其滤波特性。反之，若噪声源的内阻抗未知，进行 EMI 滤波器设计时，就会将噪声源的内阻抗设为一个通用值（例如 50Ω），而进行一种通用滤波器的设计。由于各噪声源的类型是多种多样的，当采用通用的
EMI 滤波器时，必然会出现阻抗失配的问题，轻则使滤波器插入损耗减小，频率发生漂移；重则会使滤波器将噪声信号放大。所以，对各种不同类型的噪声源内阻抗进行测试，作为相应的滤波器设计基础，可以极大地提高滤波器的滤波特性，节约经济成本。