(19) (19 DE 697 31 936 T2 2005.06.23

Bundesrepublik Deutschland
Deutsches Patent- und Markenamt

(12) Ubersetzung der europiischen Patentschrift
(97) EP 0 854 611 B1 1) intcl”: HO4L 12/44
(21) Deutsches Aktenzeichen: 697 31 936.9 HO4L 12/40, HO4L 12/56

(96) Europaisches Aktenzeichen: 97 310 656.0
(96) Europaischer Anmeldetag: 30.12.1997
(97) Erstverdffentlichung durch das EPA: 22.07.1998
(97) Veroffentlichungstag
der Patenterteilung beim EPA: 15.12.2004
(47) Veroffentlichungstag im Patentblatt: 23.06.2005

(30) Unionsprioritéat: (84) Benannte Vertragsstaaten:
774605 30.12.1996 us DE, FR, GB
(73) Patentinhaber: (72) Erfinder:
Compaq Computer Corp., Houston, Tex., US Walker, William J., Houston, Texas 77070, US;
Kotzur, Gary B., Spring, Texas 77388, US; Hareski,
(74) Vertreter: Patricia E., Houston, Texas 77070, US; Mayer, Dale
Griinecker, Kinkeldey, Stockmair & J., Houston, Texas 77070, US; Witkowski, Michael
Schwanhausser, 80538 Miinchen L., Tomball, Texas 77375, US

(54) Bezeichnung: Netzwerkkoppelfeld mit Mehrfachbusarchitektur

Anmerkung: Innerhalb von neun Monaten nach der Bekanntmachung des Hinweises auf die Erteilung des europa-
ischen Patents kann jedermann beim Europaischen Patentamt gegen das erteilte europédische Patent Einspruch
einlegen. Der Einspruch ist schriftlich einzureichen und zu begriinden. Er gilt erst als eingelegt, wenn die Ein-
spruchsgebihr entrichtet worden ist (Art. 99 (1) Europaisches Patentliibereinkommen).

Die Ubersetzung ist gemaR Artikel Il § 3 Abs. 1 IntPatUG 1991 vom Patentinhaber eingereicht worden. Sie wurde
vom Deutschen Patent- und Markenamt inhaltlich nicht gepruft.

DE 697 31936 T2 2005.06.23

Beschreibung

[0001] Die vorliegende Erfindung betrifft das Gebiet von Netzwerk-Vorrichtungen und insbesondere einen
Netzwerkschalter mit einer Mehrfachbus-Architektur.

[0002] Es gibt viele verschiedene Arten von Netzwerken und Netzwerksystemen, die sich in Dateien und Res-
sourcen teilen oder anderweitig eine Kommunikation zwischen zwei oder mehr Computern ermdglichen. Netz-
werke kénnen auf der Basis verschiedener Merkmale und Funktionen kategorisiert werden, z. B. Nachrichten-
kapazitat, Bereich, Uber den die Knoten verteilt sind, Knoten- oder Computertypen, Knotenbeziehungen, Ar-
chitektur oder Struktur basierend auf Kabeltyp und Datenpaketformat, Zugriffsmdglichkeiten usw. Zum Beispiel
bezieht sich der Bereich eines Netzwerks auf die Entfernung, tber die die Knoten verteilt sind, z. B. Lokale
Netzwerke (LANs) in einem Buro oder einer Etage eines Gebaudes, Weitbereichs-Netzwerke (WANSs), die eine
Hochschulanlage, eine Stadt oder einen Staat Uberspannen, Globale Netzwerke (GANs), die nationale Gren-
zen Uberspannen, usw.

[0003] Die Struktur eines Netzwerks bezieht sich im Allgemeinen auf die verwendete Verkabelung oder Me-
dien und Medienzugang sowie die Paketstruktur der Uber die Medien zu sendenden Daten. Verschiedene
Strukturen sind ublich, einschliellich Ethernet, das Koaxialkabel, verdrillte Kabelpaare oder faseroptische Ka-
bel zum Betrieb bei 10 Megabit pro Sekunde (Mbps) (z. B. 10Base-T, 10Base-F) verwendet, oder schnelles
Ethernet, das bei 100 Mbps (100Base-T, 100Base-FX) arbeitet. ARCnet (Attached Resource Computer Net-
work) ist eine relativ billige Netzwerkstruktur, die Koaxialkabel, verdrillte Kabelpaare oder faseroptische Kabel
zum Betrieb bei 2.5 Mbps verwendet. Tokenring-Topologien verwenden spezielles IBM-Kabel oder faseropti-
sches Kabel zum Betrieb bei 1-16 Mbps. Natirlich sind viele andere Arten von Netzwerken bekannt und ver-
fugbar.

[0004] Jedes Netzwerk enthalt im Allgemeinen zwei oder mehr Computer, oft als Knoten oder Stationen be-
zeichnet, die durch ausgewahlte Medien oder verschiedene andere Netzwerk-Vorrichtungen miteinander ver-
bunden sind, um die Daten zwischen den Knoten weiterzuleiten, zu ibertragen, zu wiederholen, zu Uberset-
zen, zu filtern usw. Der Begriff "Netzwerk Vorrichtung" betrifft gewohnlich die Computer und ihre Netz-
werk-Schnittstellenkarten (NICs) sowie verschiedene andere Vorrichtungen auf dem Netzwerk, z. B. Repeater,
Briicken, Schalter, Router, Brouter, um einige Beispiele zu nennen. Ein Netzwerk, das entsprechend einem ge-
gebenen Kommunikationsprotokoll arbeitet, kann unter Verwendung von einem oder mehreren Repeatern,
Briicken oder Schaltern erweitert werden. Ein Repeater ist eine Hardware-Vorrichtung, die auf der physikali-
schen Schicht arbeitet und jedes empfangene Paket an jeden anderen Port weitersendet. Eine Briicke arbeitet
auf der Datenverbindungsschicht des OSI-Referenzmodells und erhdht die Effizienz durch Filtern von Paketen,
um die Menge an unnétiger Paketausbreitung auf jedem Netzwerksegment zu verringern.

[0005] Ein Netzwerkschalter funktioniert ahnlich, doch effizienter, wie eine Multiport-Briicke, die eine Vielzahl
von Ports zum Verbinden mit mehreren ahnlichen Netzwerken zum Dirigieren des Netzwerkverkehrs unter den
Netzwerken enthalt. Ein Netzwerkschalter umfasst gewohnlich eine mit den Ports Uiber einen Bus verbundene
Schaltmatrix und einen Speicher, um Netzwerkdaten, z. B. Ethernet-Pakete oder dergleichen, voribergehend
zu speichern. Gewohnlich ist ein erhebliches Verarbeitungsvermogen erforderlich, um den Verkehr zu dirigie-
ren und andere Aufgaben durchzufiihren, z. B. Initialisierung, Konfigurierung, statistische Uberwachung und
Netzwerk-Verwaltung, um einige Beispiele zu nennen. Die Netzwerk-Verwaltung umfasst die Speicherverwal-
tung, Ausfiihrung des Spannbaum-Algorithmusses nach dem IEEE (Institute of Electrical and Electronics En-
gineers) 802.1 Standard, Unterhaltung und Verwaltung der Verwaltungs-Informationsbasis-(MIB) oder MIB Il
Struktur usw.

[0006] Typische Schalter-Architekturen weisen einen Primarbus fir allen Netzwerk- und Prozessorverkehr
auf. Solche Overhead-Funktionen bendétigen wenigstens einen mit dem Bus verbundenen Prozessor oder der-
gleichen, um die Ports, die Schalterstruktur und den Speicher zu Uberwachen und zu verwalten. Die Over-
head-Funktionen bendtigen erhebliche Prozessorzeit und Busbandbreite, die mit dem normalen Netzwerkver-
kehr in Konflikt geraten, wodurch die Leistung des Schalters verlangsamt und verschlechtert wird. Eine solche
Leistungsverschlechterung fihrt oft zu einer bedeutsamen Zahl von fallen gelassenen Paketen, besonders bei
starker Belastung.

[0007] Es besteht der Wunsch, einen Netzwerkschalter mit verbesserter Kapazitat bereitzustellen, um den
Netzwerkverkehr auch bei starker Belastung zu handhaben. Es ist daher erwiinscht, einen Netzwerkschalter
bereitzustellen, der den Netzwerkverkehr handhaben kann, wahrend er auch Netzwerk-Overhead-Funktionen,
z. B. Initialisierung, Konfigurierung, Uberwachung und Netzwerk-Verwaltung, durchfiihrt.

2/132

DE 697 31936 T2 2005.06.23

[0008] WO 9613922 A offenbart ein Computernetzwerk-Schaltsystem mit einem Schaltstruktur-Schaltkreis,
der eine Vielzahl von Ports umfasst, die mit einem entsprechenden einer Vielzahl von LAN-Segmenten ver-
bunden sind. Der Schaltstruktur-Schaltkreis dient zum Empfangen von Anforderungen fir Datentibertragungs-
operationen von der Vielzahl von Ports und zum Priorisieren der Anforderungen wahrend einer Synchronisati-
onsperiode. Es wird offenbart, dass jedes LAN-Segment nach einem unterschiedlichen LAN-Kommunikations-
protokoll arbeiten kann.

[0009] Gemal US-A-5546385 wird ein Netzwerkschalter bereitgestellt, der umfasst: eine Vielzahl von Netz-
werkports zum Empfangen und Senden von Daten, wobei jeder umfasst: eine Netzwerk-Schnittstelle, eine Da-
tenbus-Schnittstelle und eine Prozessorport-Schnittstelle, wobei der Netzwerkschalter weiter einen Datenbus,
der mit der Datenbus-Schnittstelle jedes der Vielzahl von Netzwerk-Ports verbunden ist, einen Prozessor, der
mit einem Prozessorbus verbunden ist, der mit der Prozessorport-Schnittstelle jedes der Vielzahl von Netz-
werkports verbunden ist, und einen Speicher umfasst, der mit einem Speicherbus verbunden ist.

[0010] Die vorliegende Erfindung ist gekennzeichnet durch einen Schalter-Manager, der mit dem Datenbus,
dem Prozessorbus und einem weiteren Prozessorbus verbunden ist, der mit jedem der Vielzahl von Netzwerk-
ports verbunden ist, und mit dem Speicherbus verbunden ist, um den Datenfluss zwischen der Vielzahl von
Netzwerkports und dem Speicher zu steuern und dem Prozessor zu ermdglichen, auf jeden der Vielzahl von
Netzwerk-Ports und den Speicher zuzugreifen, wobei der Speicher-Manager umfasst:

eine Datenbus-Schnittstelle, die mit dem Datenbus verbunden ist und umfasst:

eine Abfragelogik, die periodisch abfragt, um den Status jedes der Vielzahl von Netzwerk ports zu bestimmen,
und

eine Steuerlogik, die mit der Abfragelogik verbunden ist, wobei die Steuerlogik den Datenfluss zwischen der
Vielzahl von Netzwerkports, dem Prozessor und einer Speicherbus-Schnittstelle steuert,

wobei die Speicherbus-Schnittstelle mit dem Speicherbus und der Datenbus-Schnittstelle verbunden ist, und
eine Prozessorbus-Schnittstelle, die mit dem Prozessorbus, der Datenbus-Schnittstelle und der Speicher-
bus-Schnittstelle verbunden ist.

[0011] Aufdiese Weise hat der Prozessor direkten und unabhangigen Zugriff auf die Netzwerk ports zur Uber-
wachung, Bestimmung des Status, Konfiguration und Verwaltung, ohne wertvolle Bandbreite des Datenbusses
zu verbrauchen.

[0012] Die Datenbus-Schnittstelle enthélt vorzugsweise Empfangs- und Sendepuffer zum Ubertragen von
Daten, wenigstens eine Zustandsmaschine zum periodischen Abfragen der Ports, um ihren Status zu bestim-
men, und Steuerlogik zum Steuern des Datenflusses zwischen den Ports und zwischen den Ports und dem
Speicher. Die Speicherbus-Schnittstelle kann eine Speichersteuerung zum Steuern von Speicherzyklen des
Speichers und einen Arbiter umfassen, um den Zugriff auf den Speicher durch die Speichersteuerung zu steu-
ern. Die Speicherbus-Schnittstelle kann auch eine Empfangssteuerung zum Steuern des Datenflusses von der
Datenbus-Schnittstelle zum Speicher und eine Sendesteuerung zum Steuern des Datenflusses vom Speicher
zu der Datenbus-Schnittstelle enthalten. Die Speicherbus-Schnittstelle kann werter eine Auffrischungssteue-
rung zum Aufrechterhalten des Zustands des Speichers tiber den Speicherbus enthalten, um so den Prozessor
von Auffrischungsfunktionen zu befreien.

[0013] Der Prozessorbus kann einen zwischen den Schalter-Manager und den Prozessor geschalteten Pro-
zessorabschnitt und einen zwischen den Schalter-Manager und jeden der Ports geschalteten Portabschnitt
enthalten. Die Prozessorbus-Schnittstelle des Schalter-Managers kann eine Prozessor-Schnittstelle, die mit
dem Prozessor durch den Prozessorabschnitt des Prozessorbusses verbunden ist, und eine Port-Schnittstelle
enthaften, die mit der Prozessor-Schnittstelle und mit jedem der Netzwerkports durch den Portabschnitt des
Prozessorbusses verbunden ist. Die Prozessor- und Portbusabschnitte kdnnen die gleiche Grof3e haben. In
der gezeigten und hierin beschriebenen Ausfiihrung weisen jedoch die Prozessor und Portabschnitte des Pro-
zessorbusses verschiedene Breiten auf, wo die Prozessor-Schnittstelle eine Zustandsmaschine enthalt, die
Zyklen zwischen den Prozessor- und Portabschnitten des Prozessorbusses lbersetzt. Jeder der Netzwerk-
ports kann einen oder mehr Statistik-Zahler zum Verfolgen des Status und Betriebs seines entsprechenden
Ports enthalten, wobei die Zahler verbunden und daher fiir den Portabschnitt des Prozessorbusses ohne wer-
teres verfligbar sind. Auf diese Weise hat der Prozessor unabhangigen und vollstandigen Zugriff auf jeden der
Ports zum Durchfihren von Overhead-Funktionen wahrend des Betriebs, ohne Aktivitaten auf dem Datenbus
zu stoéren.

[0014] Die Prozessorbus-Schnittstelle kann ferner dem Prozessor gestatten, auf den Datenbus und den Spei-
cher durch die Speicherbus-Schnittstelle zuzugreifen. Das heif’t, die Prozessorbus-Schnittstelle enthélt geeig-

3/132

DE 697 31936 T2 2005.06.23

nete Sende- und Empfangspuffer und eine erste Steuerung zum Steuern des Datenflusses zwischen der Pro-
zessorbus-Schnittstelle und der Datenbus-Schnittstelle und eine zweite Steuerung zum Steuern des Daten-
flusses zwischen der Prozessorbus-Schnittstelle und der Speicherbus-Schnittstelle.

[0015] Bei der hierin beschriebenen einzelnen Ausfihrung eines erfindungsgemafen Netzwerkschalters um-
fasst die Vielzahl von Netzwerkports eine Gruppe von Ports, die entsprechend einem ersten mit dem ersten
Datenbus verbundenen Protokoll arbeiten, und eine zweite Gruppe von Ports, die entsprechend einem zweiten
Protokoll arbeiten. Ein zweiter Datenbus wird zum schnittstellenmaRigen Verbinden der zweiten Gruppe von
Ports bereitgestellt, und eine Briickenvorrichtung ist zwischen den ersten und den zweiten Datenbus geschal-
tet. In der gezeigten Ausflihrung arbeitet die erste Gruppe von Ports entsprechend dem Ethernet-Standard bei
10 Mbps, wahrend die zweite Gruppe entsprechend dem Ethernet-Standard bei 100 Mbps arbeitet, obwohl ein-
zusehen ist, dass die vorliegende Erfindung nicht auf ein bestimmtes Protokoll oder Datenlibertragungsge-
schwindigkeit begrenzt ist.

[0016] Ein erfindungsgemales Netzwerksystem umfasst eine Vielzahl von Netzwerken, wobei jedes wenigs-
tens eine Datenvorrichtung zum Senden und Empfangen von Datenpaketen und einen Netzwerkschalter, wie
oben beschrieben, enthalt, der mit den Netzwerken zum Ubertragen der Datenpakete verbunden ist.

[0017] Die vorliegende Erfindung kann besser verstanden werden, wenn die folgende ausflihrliche Beschrei-
bung der bevorzugten Ausfihrung in Verbindung mit den folgenden Zeichnungen in Betracht gezogen wird.
Inhalt der Zeichnungen:

[0018] Fig. 1 ist ein vereinfachtes Schaltbild eines Netzwerksystems, das einen erfindungsgemalfen Netz-
werkschalter enthalt.

[0019] Fig. 2 ist ein genaueres Blockschaltbild des Netzwerkschalters von Fig. 1.

[0020] Fig. 3A ist ein Blockschaltbild einer exemplarischen Vierfach-Kaskaden-Vorrichtung von Fig. 2 zur Im-
plementierung der Ports des Netzwerkschalters.

[0021] Eig. 3B ist ein Diagramm, das die Signale der in Eig. 3A gezeigten einzelnen Vierfach-Kaskaden-Vor-
richtung veranschaulicht.

[0022] Fig. 3C ist ein exemplarisches Timing-Diagramm, das das Prozessor-Lesetiming der Vierfach-Kaska-
den-Vorrichtung von Fig. 3A veranschaulicht.

[0023] Fig. 3D ist ein exemplarisches Timing-Diagramm, das das Prozessor-Schreibtiming der Vierfach-Kas-
kaden-Vorrichtung von Fig. 3A veranschaulicht.

[0024] Fig. 3E ist ein exemplarisches Timing-Diagramm, das das Prozessor-Burst-Lesezugriffstiming der
Vierfach-Kaskaden-Vorrichtung von Fig. 3A veranschaulicht.

[0025] Fig. 3F ist ein exemplarisches Timing-Diagramm, das eine Pufferstatusabfrage jedes der Ports von
Fig. 3A veranschaulicht.

[0026] Fig. 3G ist ein exemplarisches Timing-Diagramm, das einen gleichlaufenden Lese- und Schreibzyklus
auf dem HSB von Fig. 2 veranschaulicht.

[0027] Fig. 3H ist ein Flussdiagramm, das eine Prozedur zum Ausfiihren eines gleichlaufenden Lese- und
Schreibzyklusses auf dem HSB von Fig. 2 veranschaulicht.

[0028] Fig. 4 ist ein Blockschaltbild des Schalter-Managers von Fig. 2.
[0029] Fig. 5A ist ausfihrlicheres Blockschaltbild des Bussteuerungsblocks von Fig. 4.

[0030] Fig. 5B ist ein Diagramm, das Puffer in dem Speicher des Bussteuerungsblocks von Fig. 5A veran-
schaulicht.

[0031] FEig. 5C ist ein Zustandsdiagramm, das die Arbeitsweise der Empfangsabfrage-Zustandsmaschine in
dem Bussteuerungsblock von Fig. 5A veranschaulicht.

4/132

DE 697 31936 T2 2005.06.23

[0032] Fig. 5D ist ein Zustandsdiagramm, das die Arbeitsweise der Sendeabfrage-Zustandsmaschine in dem
Bussteuerungsblock von Fig. 5A veranschaulicht.

[0033] Fig. 6 ist ein ausfiihrlicheres Blockschaltbild des Speichersteuerungsblocks von Fig. 4.

[0034] Fig. 7A-Fiqg. 7E sind ausfihrlichere Blockschaltbilder des Prozessorsteuerungsblocks von Fig. 4.
[0035] Fig. 8A ist ein vereinfachtes Blockschaltbild der Thunder-LAN-Portschnittstelle (TPI) von Fig. 2.
[0036] Fig. 8B ist ein ausflihrlicheres Blockschaltbild der TPI.

[0037] Fig. 8C ist ein Blockschaltbild, das die Konfiguration und Funktionalitdt jedes der Thunder-LANs
(TLANS) von Fig. 2 veranschaulicht.

[0038] Fig. 8D ist ein Diagramm, das das allgemeine Format einer Steuerliste zum Ausfihren durch jedes der
TLANSs veranschaulicht.

[0039] Fig.8E st ein Diagramm, das eine Definition von TPI-Peripheriekomponenten-Verbin-
dungs-(PCl)Konfigurationsregistern veranschaulicht, die von der mit dem PCI-Bus von Fig. 2 verbundenen TPI
verwendet werden.

[0040] Fig. 8F ist ein Diagramm, das die Definition der von der TPI verwendeten TPI-Steuerregister veran-
schaulicht.

[0041] Fig. 8G ist ein Flussdiagramm, das PCl-Initialisierungsoperationen der CPU von Fig. 2 veranschau-
licht.

[0042] Fig. 8H ist ein Flussdiagramm, das eine Empfangsoperation fir jedes der TLANs veranschaulicht.

[0043] Fig. 8l ist ein Flussdiagramm, das einen Empfangsdaten-Ubertragungsvorgang (iber den Hochge-
schwindigkeitsbus (HSB) von Fig. 2 veranschaulicht.

[0044] Fig. 8J ist ein Flussdiagramm, das einen Sendedaten-Ubertragungsvorgang liber den HSB veran-
schaulicht.

[0045] Fig. 8K ist ein Flussdiagramm, das einen Sendevorgang fiir jedes der TLANs veranschaulicht.

[0046] Fig. 9A-Fig. 9H sind Blockschaltbilder, die die Organisation des Speichers von Fig. 2 veranschauli-
chen.

[0047] Fig. 10 ist ein exemplarisches Blockschaltbild, das mehrere Sendepaketstrecken, die ein Rundsende-
paket einschlielen, veranschaulicht.

[0048] Fig. 11A und Fig. 11B sind Blockschaltbilder, die die Organisation des statischen Speichers von Fig. 6
veranschaulichen.

[0049] Fig. 12A ist ein Flussdiagramm, das die allgemeine Arbeitsweise des Netzwerkschalters von Fig. 2
zum Empfangen von Datenpaketen im Speicher und zum Senden von Datenpaketen in einer Durchschalt-Be-
triebsart veranschaulicht.

[0050] Fig. 12B ist ein Flussdiagramm, das die allgemeine Arbeitsweise des Netzwerkschalters von Fig. 2
zum Senden von Datenpaketen aus dem Speicher veranschaulicht.

[0051] Fig. 13 ist ein Flussdiagramm, das eine Hash-Lookup-Operation des Schalter-Managers von Fig. 2
veranschaulicht.

[0052] Fig. 14 ist ein Flussdiagramm, das eine Hash-Lookup-Operation zum Suchen von Hash-Tabellenein-
tragen im Speicher von Fig. 2 veranschaulicht.

[0053] Fig. 1 zeigt ein vereinfachtes Netzwerkdiagramm eines Netzwerks 100, das einen nach der vorliegen-

5/132

DE 697 31936 T2 2005.06.23

den Erfindung implementierten Netzwerkschalter 102 enthalt. Der Netzwerkschalter 102 umfasst einen oder
mehr "A" Ports 104, jeweils zum Verbinden und Kommunizieren mit einem von mehreren "A" Netzwerken 106
durch ein geeignetes Mediensegment 108. Jedes Mediensegment 108 ist irgendeine Art von Medium, z. B. ein
verdrilltes Kabel oder faseroptisches Kabel usw. Die Ports 104 ermdglichen bidirektionale Kommunikation oder
Datenfluss zwischen dem Netzwerkschalter 102 und jedem der Netzwerke 106. Ein solcher bidirektionaler Da-
tenfluss ist entsprechend einer von mehreren Betriebsarten, z. B. Halbduplex oder Vollduplex. Wie in Fig. 1
gezeigt, gibt es "|" + 1 Netzwerke 106, die einzeln mit A-NetzwerkO, A-Netzwerk1, ..., A-Netzwerkj bezeichnet
sind, wo jedes Netzwerk 106 mit dem Netzwerk schalter 102 durch einen entsprechenden der j + 1 Ports 104,
einzeln bezeichnet mit A-Port0, A-Port1, ..., A-Portj, verbunden ist. Der Netzwerkschalter 102 kann jede ge-
wiinschte Zahl von Ports 104 zum Verbinden mit bis zu einer zugehdérigen Zahl von Netzwerken 106 enthalten.
Bei der hier beschriebenen Ausflhrung ist j eine Ganzzahl gleich 23 fir insgesamt 24 Ports zum Verbinden
von bis zu Netzwerken 106, wobei diese Ports kollektiv als Ports 104 oder einzeln als Ports Port0, Port1, Port2,
..., Port23 bezeichnet werden.

[0054] In dhnlicher Weise umfasst der Netzwerkschalter 102 weiter einen oder mehr "B" Ports 110, jeder zum
Koppeln an ein und Verbinden mit einem "B" Netzwerk 112 durch ein geeignetes Mediensegment 114. Jedes
Mediensegment kann wieder jede Art von Medium zum Verbinden von Netzwerk-Vorrichtungen sein, z. B. ein
verdrilltes Kabelpaar ein faseroptisches Kabel usw. Die Ports 110 sind ebenfalls bidirektional, um einen Daten-
fluss zwischen dem Netzwerkschalter 102 und den Netzwerken 112 in einer dhnlichen Weise wie flr die Ports
104 beschrieben zu ermdglichen. In der gezeigten Ausfihrung gibt es "k" + 1 Ports 110, einzeln bezeichnet mit
B-Port0, B-Port1, ..., B-Portk, zum Verbinden von bis zu k + 1 Netzwerken, bezeichnet mit B-NetzwerkO,
B-Netzwerk1, ..., B-Netzwerkk. Der Netzwerkschalter 102 kann jede gewtinschte Zahl von Ports 110 zum Ver-
binden mit bis zu einer zugehérigen Zahl von Netzwerken 112 enthalten. In der gezeigten spezifischen Aus-
fuhrung ist k eine Ganzzahl gleich 3 fiir insgesamt 4 Ports 110 zum Verbinden von bis zu vier Netzwerken 112.
Die "A" Typ Ports und Netzwerke arbeiten bei einem unterschiedlichen Netzwerkprotokoll und/oder Geschwin-
digkeit als die "B" Typ Ports und Netzwerke. In der gezeigten spezifischen Ausfiihrung arbeiten die Ports 104
und Netzwerke 106 entsprechend dem Ethernet-Protokoll bei 10 Megabit pro Sekunde (Mbps), wahrend die
Ports 110 und Netzwerke 112 entsprechend dem Ethernet-Protokoll bei 100 Mbps arbeiten. Die Ports B-Port0,
B-Port1, ..., B-Port3 werden hier kollektiv als die Ports 104 und einzeln als Port24, Port25, ..., Port27 bezeich-
net.

[0055] Die Netzwerke 106 und 112 enthalten eine oder mehr Datenvorrichtungen oder Datenendgerate
(DTE), die die Eingabe oder Ausgabe von Daten erlauben, oder jede Art von Netzwerk-Vorrichtung, um eine
oder mehr Datenvorrichtungen miteinander zu verbinden. Jedes der Netzwerke, z. B. A-NetzwerkO oder
B-Netzwerk1, usw, kann daher einen oder mehr Computer, Netzwerk-Schnittstellenkarten (NICs), Worksta-
tions, Datei-Server, Modems, Drucker oder jede andere Vorrichtung enthalten, die Daten in einem Netzwerk
empfangt oder sendet, z. B. Repeater, Schalter, Router, Hubs, Konzentratoren usw. Zum Beispiel sind, wie in
Eig. 1 gezeigt, mehrere Computersysteme oder Workstations 120, 122 und 124 mit dem entsprechenden Seg-
ment 108 von A-Netzwerkj verbunden. Die Computersysteme 120, 122 und 124 kénnen miteinander oder mit
anderen Vorrichtungen von anderen Netzwerken durch den Netzwerkschalter 102 kommunizieren. Jedes
Netzwerk 106 und 112 stellt daher eine oder mehrere durch ein oder mehrere Segmente verbundene Daten-
vorrichtungen dar, wobei der Netzwerkschalter 102 Daten zwischen irgendwelchen zwei oder mehr Datenvor-
richtungen in jedem der Netzwerke 106 und 112 Gbertragt.

[0056] Der Netzwerkschalter 102 empfangt gewdhnlich Information von Datenvorrichtungen, die mit jedem
der Ports 104 und 110 verbunden sind, und leitet die Information an einen oder mehr der anderen Ports 104
und 110. Der Netzwerkschalter 102 filtert auch die Information durch Wegwerfen oder sonstwie Ignorieren von
Information, die von einer Datenvorrichtung in einem Netzwerk 106 oder 112 empfangen wird und nur fir Da-
tenvorrichtungen in diesem gleichen Netzwerk bestimmt ist. Die Daten oder Information sind in der Form von
Paketen, wo die einzelne Form jedes Pakets von dem durch ein gegebenes Netzwerk unterstiitzten Protokoll
abhangt. Ein Paket ist ein vordefinierter Block von Bytes, der gewohnlich aus Vorspann, Daten und Nachspann
besteht, wobei das Format eines gegebenen Pakets von dem Protokoll abhangt, das das Paket erzeugte. Der
Vorspann enthalt gewdhnlich eine Zieladresse, die die Zieldatenvorrichtung identifiziert, und Quellenadresse,
die eine Datenvorrichtung identifiziert, die das Paket hervorbringt, wobei die Adressen typisch Medienzugangs-
steuer-(MAC)Adressen sind, um die Einmaligkeit in der Industrie zu sichern. Ein fir eine Zielvorrichtung be-
stimmtes Paket wird hierin als ein Unicast-Paket bezeichnet. Der Vorspann enthalt weiter ein Gruppenbit, das
angibt, ob das Paket ein fur mehrfache Zielvorrichtungen bestimmtes Multicast- oder Broadcast-(BC)Paket ist.
Wenn das Gruppenbit auf logisch eins (1) gesetzt wird, wird es als ein Multicast-Paket betrachtet, und wenn
alle Zieladressenbits auch auf logisch 1 gesetzt sind, ist das Paket ein BC-Paket. Zu Zwecken der vorliegenden
Erfindung werden jedoch Multicast- und BC-Pakete gleich behandelt und werden im Folgenden als BC-Pakete

6/132

DE 697 31936 T2 2005.06.23

bezeichnet.

[0057] Fig. 2 zeigt ein genaueres Blockschaltbild des Netzwerkschalters 102. In der gezeigten Ausfiihrung
enthalt der Netzwerkschalter 102 sechs ahnliche Vierfach-Steuerungs- oder Vierfach-Kaskaden-(QC)Vorrich-
tungen 202, wobei jede vier der Ports 104 einschlie3t. Die QC-Vorrichtungen 202 kdnnen in jeder gewlinschten
Weise implementiert werden, z. B. als in ein einziges ASIC-(anwendungsspezifische integrierte Schaltung) Ge-
hause integriert oder als getrennte integrierte Schaltungs-(IC)Chips, wie gezeigt. In der gezeigten Ausfiihrung
arbeitet jeder Port 104 bei 10 Mbps bei Halbduplex fir einen Gesamtdurchsatz von 20 Mbps pro Port bei Voll-
duplex. Dies ergibt insgesamt 480 Mbps fiir alle sechs der QC-Vorrichtungen 202 bei Vollduplexbetrieb. Jede
der QC-Vorrichtungen 202 enthalt vorzugsweise eine mit einem QC/CPU-Bus 204 verbundene Prozes-
sor-Schnittstelle und eine mit einem Hochgeschwindigkeitsbus (HSB) 206 verbundene Bus-Schnittstelle. Der
HSB 206 enthalt einen Datenabschnitt 206a und verschiedene Steuer- und Statussignale 206b. Der HSB 206
ist ein 32-Bit 33 MHz Bus zum Ubertragen von (iber ein Gigabit von Daten pro Sekunde.

[0058] Der HSB 206 und der QC/CPU-Bus 204 sind weiter mit einem Ethernet-Paketschalter-Manager (EP-
SM) 210 verbunden, der in der gezeigten Ausfiihrung als ASIC implementiert ist, obwohl die vorliegende Erfin-
dung nicht auf eine bestimmte physikalische oder logische Implementierung begrenzt ist. Der EPSM 210 ist
weiter mit einem Speicher 212 durch einen 32-Bit Speicherbus 214 verbunden, der einen Daten- und Adres-
senabschnitt 214a und Steuersignale 214b enthalt. Der Speicher 212 enthalt vorzugsweise 4 bis 16 Megabyte
(MB) an dynamischem Direktzugriffspeicher (DRAM), obwohl, wenn gewtnscht, mehr Speicher abhangig von
den Bedurfnissen der einzelnen Anwendung hinzugefligt wird. Der EPSM 210 unterstiitzt jede von wenigstens
drei verschiedenen Arten von DRAMs zur Implementierung des Speichers 212, einschlieflich schneller Sei-
tenmodus-(FPM)Einzel-Inline-Speichermodule (SIMMs), die mit etwa 60 Nanosekunden (NS) arbeiten, Erwei-
terte Datenausgabe-(EDO)Modus DRAM SIMMs oder Synchronmodus- DRAM SIMMS. Synchrone DRAMs
bendtigen gewdhnlich einen 66 MHz Takt zum Erreichen einer Stol3datenrate von 66 MHz oder 266 MB pro
Sekunde. EDO DRAMSs kénnen mit entweder einem 33 oder 66 MHz Takt arbeiten, erreichen aber eine maxi-
male Stol3datenrate von 33 MHz oder 133 MB pro mit jeder Taktrate. FPM DRAMs kénnen auch mit einem 33
oder 66 MHZ Takt arbeiten und erreichen eine maximale Stof3rate von 16 MHZ oder 64 MB pro Sekunde mit
einem 33 MHz Takt und eine Stof3rate von 22 MHz oder 88 MB pro Sekunde mit einem 66 MHz Takt.

[0059] Der Speicherbus 214 umfasst einen Speicherdatenbus MD[31:0], Datenparitatssignale MD_PAR[3:0],
Reihen- und Spaltenadresssignale MA[11:0], ein Schreibfreigabesignal MWE*, Bankauswahlsignale
RAS[3:0]*/SD_CS*[3:0], die entweder Reihensignale fur FPM DRAM und EDO DRAM oder Chipauswahlen fir
synchrone DRAM sind, Speicherbyte-Steuersignale CAS[3:0]*/SD_DQM]3:0], die Spaltensignale fir FPM und
EDO oder DQM fur synchrone DRAM sind, ein Reihensignal SD_RAS* nur fur synchrone DRAM, ein Spalten-
signal SD_CAS* nur fur synchrone DRAM, ein Serial-Eingang-SIMM/DIMM-Anwesenheits-Erfassungssignal
PD_SERIAL_IN und ein Parallel-Eingang-SIMM/DIMM-Anwesenheits-Erfassungssignal PD_LOAD*.

[0060] Der HSB 206 ist mit einer Thunder LAN (TLAN) Portschnittstelle (TPI) 220 verbunden, die weiter mit
einem Peripheriekomponenten-Verbindungs-(PCl) Bus 222 verbunden ist, der Daten und Adresssignale 222a
und zugehorige Statussignale 222b umfasst. Der PCI-Bus 222 ist mit vier TLANs 226 verbunden, die in jeder
gewinschten Weise implementiert werden kénnen. Die TLANs 226 sind vorzugsweise die TNETE100 Thun-
derLAN™ PCI Ethernet™ Controller, hergestellt von Texas Instruments, Inc, (T1), wo jedes einen der Ports 110
einschlielt. Fur den EPSM 210 arbeitet die TPI 220 in einer ahnlichen Weise auf dem HSB 206 als eine andere
QC-Vorrichtung 202 zum AnschlieRen von vier Ports. Der EPSM 210 "sieht" daher effektiv sieben (7) Vier-
fach-Portvorrichtungen. In Bezug auf den PCI-Bus 220 emuliert die TPl 220 einen Standard-PCI-Bus in dem
erforderlichen Ausmal zum richtigen Betrieb der TLANs 226, die normalerweise mit PCI-Speichervorrichtun-
gen verbunden sind. Der PCI-Bus 222 muss daher nicht voll PCl-kompatibel sein. Der PCI-Bus 222 ist mit ei-
nem Prozessor oder zentralen Verarbeitungseinheit (CPU) 230 verbunden, die mit einem lokalen Prozessor-
bus 232 zum Verbinden der CPU 230 mit dem lokalen RAM 234, einem lokalen Flash-RAM 236 und, wenn
gewunscht, mit einer seriellen Portschnittstelle 238 verbunden ist. Die serielle Portschnittstelle 238 ist vorzugs-
weise ein UART oder dergleichen. In der gezeigten Ausfihrung ist die CPU eine 32-Bit, 33 MHz i960RP CPU
von Intel, obwohl die CPU 230 jeder andere geeignete Prozessor sein kann.

[0061] Die CPU 230 handhabt gewdhnlich die Initialisierung und Konfigurierung der TPI1 220 und des EPSM
210 beim Einschalten des Netzwerkschalters 102. Die CPU 230 Uiberwacht und gewinnt auch Statistiken und
verwaltet und steuert die Funktionen der verschiedenen Vorrichtungen des Netzwerkschalters 102 wahrend
des Betriebs. Die CPU 230 aktualisiert ferner die Hash-Tabellendaten im Speicher 212 durch den EPSM 210.
Der EPSM 210 steuert jedoch den Zugriff auf den Speicher 212 und fihrt die DRAM-Auffrischungszyklen
durch, um dadurch Auffrischungsoperationen von der CPU 230 zu entfernen. Andernfalls wiirde die CPU 230

7/132

DE 697 31936 T2 2005.06.23

6-8 Buszyklen bendtigen, um jeden Auffrischungszyklus durchzufiihren, was wertvolle Prozessor-Ressourcen
verbrauchen wirde. Die CPU 230 agiert auch als ein zusatzlicher Netzwerkport fur verschiedene Zwecke und
wird hierin oft als Port28 bezeichnet. Die Ports 104, 110 und die CPU 230 schlieRen daher kollektiv die Ports
Port0—Port28 ein.

[0062] Die CPU 230 ist werter mit dem EPSM 210 durch einen CPU-Bus 218 verbunden, der einen Adress-
und Datenabschnitt 218a und zugehorige Steuer- und Statussignale 218b umfasst. Der Adress- und Datenab-
schnitt 218a wird vorzugsweise zwischen Adress- und Datensignale gemultiplext. Insbesondere umfasst der
CPU-Bus 218 einen Adress/Daten-Bus CPU_AD[31:0], einen Adress-Strobe CPU_ADS* von der CPU 230,
Datenbyte-Freigaben CPU_BE[3:0], ein Lese/Schreib-Auswahisignal CPU_WR?*, einen Burst-Letzte-Da-
ten-Strobe CPU_BLAST*, ein Daten-Bereit-Signal CPU_RDY* und wenigstens ein CPU-Unterbrechungssig-
nal CPU_INT*. In dieser Offenbarung bezeichnen normale Signalnamen anders als Daten- und Adresssignale
positive Logik, wo das Signal als geltend gemacht betrachtet wird, wenn es hoch ist oder auf logisch eins (1)
ist, und Signalnamen gefolgt von einem Stern (*) bezeichnen negative Logik, wo das Signal als geltend ge-
macht betrachtet wird, wenn es tief ist oder auf logisch null (0) ist: Die Funktions-Definition ist im Allgemeinen
einfach und gewdhnlich durch den Signalnamen bestimmbar.

[0063] Fig. 3A ist ein Blockschaltbild einer exemplarischen QC-Vorrichtung 202 zur Implementierung von vier
der Ports 104, wobei die Vorrichtung sechsmal dupliziert ist, um die 24 Ports Port0-Port23 zu implementieren.
Eine bestimmte Vorrichtung ist der L64381 Quad Cascade Ethernet Controller von LSI Logic Corporation (LSI).
Eine verbesserte Vorrichtung ist der QE110 Quad Cascade Ethernet Controller, auch von LS, der zusatzliche
Merkmale und Fahigkeiten enthalt, wie hierin beschrieben. Es wird jedoch angemerkt, dass die vorliegende
Erfindung nicht auf eine bestimmte Vorrichtung zum Implementieren der Ports 104 begrenzt ist. In der gezeig-
ten Ausfiihrung enthalt jede QC-Vorrichtung 202 einen Ethernet-Kern 300 fir jeden der Ports 104, wo der
Ethernet-Kern 300 voll synchron ist und eine Medien-Zugriffssteuerung, einen Manchester-Coder/Decoder und
verdrillte Paar/AUI (Attachment Unit Interface) Transceiver enthalt. Jeder Ethernet-Kern 300 ermdglicht bidi-
rektionale Kommunikation mit einem verbundenen Netzwerk 106 auf einem entsprechenden Segment 108,
und jeder ist mit einem entsprechenden 128-Bit Empfangs-FIFO (First-in-First-out) 302 und einem 128-Bit Sen-
de-FOFO 304 verbunden. Jeder Ethernet-Kern 300 ist auch mit einem Block von Statistik-Zahlern 306 verbun-
den, wo jeder Block von Statistik Zahlern 306 25 Zahler zum Bereitstellen von On-Chip-Wartung enthalt. Die
Zahler in jedem Block von Statistik-Zahlern 306 erfiillen vorzugsweise die Forderungen des einfachen Netz-
werk Verwaltungsprotokolls (SNMP). Jeder der FIFOs 302, 304 ist weiter mit Busschnittstellenlogik 308 ver-
bunden, die mit dem HSB 206 verbunden ist, um bidirektionalen Datenfluss zwischen jeder QG-Vorrichtung
202 und dem EPSM 210 zu ermdglichen. Jede QC-Vorrichtung 202 enthalt Konfigurations- und Steuerlogik
310, die programmierbares Konfigurieren ermdglicht, wie z. B. Einfugen von Quellenadressen, Einfligen einer
Rahmenprifsequenz (FCS), sofortiges Neusenden bei Kollision, Busibertragungsgréfe und Sendepuf-
fer-SchwellengroRe.

[0064] Die Konfigurations- und Steuerlogik 310 und alle Blécke von Statistik-Zahlern 306 und die FOFOs 302,
304 sind mit dem QC/CPU-Bus 204 verbunden. Der EPSM 210 stellt eine getrennte Schnittstelle zwischen
dem CPU-Bus 218 und dem QC/CPU-Bus 204 bereit. Auf diese Weise hat die CPU 230 vollen Zugang, um die
Aktivitaten jeder der QC-Vorrichtungen 202 und somit jedes der Ports 104 zu initialisieren, zu Gberwachen und
zu modifizieren. Der QE110 Quad Cascade Ethernet Controller enthalt eine zusatzliche Verbindung 320 zwi-
schen der Konfigurations- und Steuerlogik 310 zum Erfassen eines Rickstau-Anzeichens, um eine Hem-
mungssequenz geltend zu machen, um ein grade gesendetes Paket zu beenden, wenn das Riickstau-Anzei-
chen rechtzeitig empfangen wird. Das Riickstau-Anzeichen ist vorzugsweise ein auf dem HSB 206 ausgefihr-
ter Ruckstau-Zyklus, obwohl jedes von mehreren Verfahren benutzt werden kann, um einen Ruickstau anzu-
zeigen, z. B. ein getrenntes Signal oder dergleichen.

[0065] Es wird angemerkt, dass die Hemmungssequenz wahrend der ersten 64 Bytes des Datenpakets ge-
sendet werden sollte, das an einem Port empfangen wird, als "friih" oder rechtzeitig zu betrachten ist. Die ers-
ten 16 Byte (4 DWORDSs) sind nétig, bevor eine spater beschriebene Hash-Lookup-Prozedur durch den EPSM
210 durchgefuhrt wird. Jedes Datenbit wird in etwa 100 ns Uber Ethernet 10Base-T Ubertragen; sodass die ers-
ten 16 Byte in etwa 13 ys Ubertragen werden. 64 Byte werden in etwa 51 ys empfangen, sodas der Netzwerk-
schalter 102 etwa 38 ps hat, um die ersten 16 empfangenen Bytes zu tibertragen, die Hashing-Prozedur durch-
zufiihren, den Ruckstau-Zyklus auszuflihren und schlief3lich die Hemmungssequenz geltend zu machen. Da
ein Hash-Lookup etwa 1-2 ps braucht, um zu vollenden, ist fast immer genug Zeit vorhanden, um die Hem-
mungssequenz rechtzeitig zu senden. Das rechtzeitige Geltendmachen der Hemmungssequenz ist jedoch
nicht garantiert, sodass die Moglichkeit besteht, dass Pakete infolge einer Schwellenverletzungsbedingung fal-
len gelassen werden. Wenn der Riickstau-Zyklus spat ausgefihrt wird, weist der Port den Riickstau-Zyklus zu-

8/132

DE 697 31936 T2 2005.06.23

rick, und der Netzwerkschalter 102 Iasst das Paket fallen, wenn er auRerstande ist, das Paket anzunehmen.
Der Netzwerkschalter kann dieses Paket annehmen, da eine Schwellenbedingung ein friihes Anzeichen ist
und daher Speicher vorhanden sein kann, um das Paket zu speichern.

[0066] Wenn der Riickstau-Zyklus in einer rechtzeitigen Weise ausgefiihrt wird, und wenn der Port in Halb-
duplex arbeitet, macht die Konfigurations- und Steuerlogik 310 als Reaktion einen Kollisionsbefehl an einem
der Ethernet-Kerne 300 eines angegebenen Ports 104 geltend. Der Ethernet-Kern 300, der den Kollisionsbe-
fehl empfangt, macht dann die Hemmungssequenz geltend, um ein Paket zu beenden, das durch diesen Port
104 empfangen wird. Wenn der Rickstau-Zyklus in dem 64-Byte Fenster ausgefiihrt wird, zeigt der Port dem
EPSM 210 an, dass der Riickstau-Zyklus fir diesen Port ausgefiihrt wird, durch Geltendmachen eines Ab-
ort-Signals ABORT_OUT* auf dem HSB 206. Wenn der Riickstau-Zyklus auf3erhalb des 64-Byte Fensters liegt
und daher nicht rechtzeitig geltend gemacht wird, wird das ABORT_OUT* Signal nicht geltend gemacht, und
der EPSM 210 Iasst das Paket fallen. EPSM 210 |asst das Paket meistens fallen, wenn ein Versuch, Ruckstau
geltend zu machen, fehlschlagt. Obwohl erwiinscht ist, so wenig Pakete wie mdglich zur maximalen Effizienz
fallen zu lassen, wird ein fallen gelassenes Paket schlie3lich auf héheren Netzwerkstufen in der hervorbringen-
den Datenvorrichtung erfasst und ist daher fir den Gesamtbetrieb des Netzwerksystems 100 nicht fatal. Die
hervorbringende Vorrichtung erkennt, dass das Paket fallen gelassen wurde und sendet ein oder mehr Pakete
einschlieBlich des fallen gelassenen Pakets neu.

[0067] Die Busschnittstellenlogik 308 enthalt vorzugsweise Lese-Latches 324 und Schreib-Latches 326 zur
Implementierung eines gleichlaufenden Lese- und Schreibzyklusses auf dem HSB 206, wie weiter unten be-
schrieben. Diese Latches speichern PORT_NO[1:0] Signale, die auf dem HSB 206 bei bestimmten Zyklen ei-
nes ersten Taktsignals (CLK_1) geltend gemacht werden. Das Signal CLK_1 ist der Haupttakt fur den HSB 206
und arbeitet in der gezeigten Ausfiihrung typisch bei etwa 30-33 MHz. Da das Signal CLK_1 der Haupttakt ist,
wird es im Folgenden einfach als CLK-Signal bezeichnet. Ein zweites Taktsignal CLK_2 wird auch fur die
Schnittstelle zum Speicher 212 verwendet und arbeitet bei der doppelten Frequenz des CLK-Signals oder bei
etwa 60-66 MHz.

[0068] Fig. 3B ist ein Diagramm, das die Signale der in Fig. 3A gezeigten einzelnen Vierfach-Kaskaden-Vor-
richtung 202 veranschaulicht. Die Signale sind in mehrere Funktions- und Busabschnitte geteilt, die mit dem
QC-Bus 204 verbundene Prozessor-Schnittstellensignale, mit den vier Ports 104 verbundene Netz-
werk-Schnittstellensignale, Statussignale, Takt- und Prifsignale, mit dem HSB-Bus 206 verbundene Bus-
schnittstellensignale und gemischte Signale umfassen.

[0069] Den QC-Bus 204 betreffend schreibt der EPSM 210 Daten in die Register und Zahler 306, 310 der
QC-Vorrichtung 202 durch Datensignale PDATA[15:0] und liest Daten daraus aus. Das Signal READ* wird fur
einen Schreibvorgang hoch und fiir einen Lesevorgang tief gesetzt. Das einzelne Register in der QC-Vorrich-
tung 202 durch eine auf ADR[5:0] Signalen geltend gemachte Adresse bestimmt. Geltendmachen eines
Adress-Strobesignals ADRS_STROBE* zusammen mit dem entsprechenden der mehreren Chipauswahlsig-
nale CHIP_SELECTm* veranlasst die QC-Vorrichtung 202, die ADRS-Signale zu speichern. Ein an den Sig-
nalnamen angehangtes "m" bezeichnet gewodhnlich mehrfache Signale eines einzelnen Typs. Zum Beispiel
gibt es sechs getrennte CHIP_SELCT[5:0]* Signale, jedes zum Adressieren einer betreffenden der sechs
QC-Vorrichtungen 202. Ein Signal PREADY* wird durch die QC-Vorrichtung 202 fir einen Zyklus eines CLK-Si-
gnals wahrend eines Schreibzyklusses nach der steigenden CLK-Flanke, auf der die verlangten Daten gespei-
chert werden, tief geltend gemacht. Fir einen Schreibzyklus macht die QC-Vorrichtung 202 PREADY™ fir ei-
nen CLK-Zyklus tief geltend, nachdem sie Daten auf den PDATA-Bus gelegt hat.

[0070] Fig. 3C ist ein exemplarisches Timing-Diagramm, das einen Prozessor-Lesezyklus fur eine QC-Vor-
richtung 202 veranschaulicht, und Fig. 3D ist ein exemplarisches Timing-Diagramm, das einen Prozes-
sor-Schreibzyklus veranschaulicht. Fig. 3D ist ein exemplarisches Timing-Diagramm, das einen Prozes-
sor-StoRlesezugriffszyklus fir eine QC-Vorrichtung 202 veranschaulicht. Diese Timing-Diagramme sind nur
exemplarisch und werden gezeigt, um eine allgemeine Funktionalitat und nicht ein bestimmtes Timing oder be-
stimmte Signaleigenschaften zu veranschaulichen.

[0071] Zurick auf Fig. 3B verweisend umfassen die Netzwerk-Schnittstellensignale die negativen und posi-
tiven Kollisionsschwellensignale, das Kollisionsbezugssignal, das serielle Daten-Ein-Signal, die negativen und
positiven Manchester-codierten Datensignale, die positiven und negativen Datenschwellensignale, das Daten-
schwellenbezugssignal, die positiven und negativen Prdemphasesignale und die Verdrillte-Paar/AUl-Modus-
auswahlsignale fir jeden der mit [3:0] bezeichneten vier Ports der QC-Vorrichtung 202. Jede QC-Vorrichtung
empfangt das CKL-Signal und hat einen CLOCK_20 MHz Eingang, der ein 20 MHz Taktsignal empfangt, um

9/132

DE 697 31936 T2 2005.06.23

80, 20 und 10 MHz interne Taktsignale zur Verwendung durch die Ports 104 zu erzeugen. Jeder Ethernet-Kern
300 erfasst eine auf dem entsprechenden Segment 108 auftretende Kollision und sendet eine Hemmungsse-
quenz entprechend dem Ethernet CSMA/CD-(Carrier Sense Multiple Access/Collision Detect) Verfahren.

[0072] Die mit dem HSB 206 verbundenen Busschnittstellensignale betreffend beendet eine QC-Vorrichtung
vorzeitig ein ganzes Paket durch Geltendmachen des Signals ABORT_OUT*. Der EPSM 210 beendet vorzeitig
den laufenden Buszyklus durch Geltendamchen eines Abortsignals ABORT_IN*. In einer Ausflhrung sind die
QC-Vorrichtungen 202 QE110 Vorrichtungen, die ersonnen sind, dem EPSM 210 zu ermdéglichen, ein Paket,
das empfangen wird, vorzeitig zu beenden, durch Ausfiihren eines Rickstau-Zyklusses auf dem HSB 206. Die-
ser einzelne Typ von Rickstau-Fahigkeit ist ein "Paket fur Paket" oder dynamischer "pro Port" Riickstau, der
das Riickweisen eines Pakets erlaubt, das an einem Port empfangen wird. L64381-Vorrichtungen umfassen
ein Selbseinfigungs-Rahmenprifsequenzsignal (Al_FCS_IN*), das werter unten beschrieben wird.
QE110-Vorrichtungen ersetzen das Al_FCS_IN* Signal mit einem Signal FBPN*, das benutzt wird, um die glei-
chen Funktionen wie das Siggnal Al_FCS_IN* auszufiihren, aber auch benutzt wird, um einen Riickstau-Zy-
klus und eine erhdéhte Paketflut anzuzeigen. Natirlich kénnen alternative Verfahren verwendet werden, um den
hierin beschriebenen dynamischen Rickstau zu implementieren. Das heif’t, der EPSM 210 macht das Signal
FBPN* wahrend eines Lesezyklusses geltend, um einen Ruckstau-Anforderungszyklus auszufihren. Wenn
das Signal ABORT_OUT* durch die entsprehende QC-Vorrichtung 202 wahrend der Datenphase des Lese-
zyklusses geltend gemacht wird, dann wurde die Ruckstau-"Anforderung" durch die QC-Vorrichtung 202 ge-
wahrt, die dann eine Hemmungssequenz geltend macht, um das Paket vorzeitig zu beenden. Wenn das Signal
ABORT_OUT™ nicht geltend gemacht wird, lasst der EPSM 210 das Paket fallen.

[0073] Der EPSM 210 macht ein Status-Strobesignal STROBE* an allen QC-Vorrichtungen 202 und der TPI
220 geltend, die alle mit dem Status ihrer vier Ports 104 oder 110 (im Fall der TPl 220) in gemultiplexter Weise
auf Signale PKT_AVAILm* und BUF_AVAILm* antworten, wenn das Signal STROBE* auf der steigenden Flan-
ke des CLK-Signals geltend gemacht wird. Es gibt ein getrenntes Signal fur jede QC-Vorrichtung 202, einen
Satz fir die TPI 220 und einen ahnlichen Satz fiir die CPU 230, die flr einige Operation als ein weiterer Port
agiert. Das heil’t, die Signale PKT_AVAILm* und BUF_AVAILm* enthalten Signale PKT_AVAIL[5:0]* und
BUF_AVAIL[5:0]* fir die QC-Vorrichtungen, Signale TPI_PKT_AVAIL* und TPI_BUF_AVAIL*, andernfalls als
PKT_AVAIL[6]* und BUF_AVAIL[6]* bezeichnet, fir die TPl 220 und Signale PCB_PKT_AVAIL* und
PCB_BUF_AVAIL*, andernfalls als PKT_AVAIL[7]* und BUF_AVAIL[7]* bezeichnet, die der CPU 230 entspre-
chen, flr insgesamt 8 Signale pro Signaltyp.

[0074] Auf diese Weise umfasst der HSB 206 Signale PKT_AVAIL[0]* und BUF_AVAIL[0]* fur die erste
QC-Vorrichtung 202, um auf die vier Ports Port0O-Port3 zuzugreifen, der HSB 206 umfasst Signale
PKT_AVAIL[1]* und BUF_AVAIL[1]* fur die nachste QC-Vorrichtung 202, um auf die nachsten vier Ports
Port0—Port7 zuzugreifen, usw., die TPl 220 umfasst Signale PKT_AVAIL[6]* und BUF_AVAIL[6]*, um auf die
Ports Port24-Port27 zuzugreifen, und der EPSM 210 enthalt interne Signale PKT_AVAIL[7]* und
BUF_AVAIL[7]* fur die CPU 230. Bis zu vier Bits werden auf jedem der Signale entsprechend den vier Ports,
getrennt durch jeweilige Zyklen des CLK-Signals, gemultiplext.

[0075] Als Reaktion auf das STROBE* Signal enthalt die Busschnittstellenlogik 308 Portstatuslogik 303 zum
Multiplexen von vier Statusbits auf einem betreffenden der BUF_AVAIL[5:0]* Signale, um anzuzeigen, ob jeder
von ihren entsprechenden Sende-FIFOs 304 fir den betreffenden Port genug freien Raum zur Verfiigung hat,
um Daten zu speichern. Die Portstatuslogik 303 ist entweder fiir alle vier Ports, wie gezeigt, zentralisiert oder
ist unter den Ports verteilt. Die Bestimmung von freiem Raum erfolgt entsprechend einem Konfigurationsregis-
ter in der Busschnittstellenlogik 308, das eine BusibertragungsfeldgroRe (TBUS) speichert, die vorzugsweise
durch die CPU 230 zu 16, 32 oder Bytes konfiguriert wird. In dhnlicher Weise enthalt als Reaktion auf das
STROBE* Signal die TPl 220 ahnliche Portstatuslogik 820 (Fig. 8B), die mit dem HSB 206 zum Multiplexen
von vier Statusbits auf dem BUF_AVAIL[6]* Signal, um anzuzeigen, ob jeder ihrer internen Sende-FIFOs, unten
beschrieben, genug freien Raum hat, um Daten fiir die entsprechenden der TLANs 226 fir die jeweiligen Ports
Port24—-Port27 zu speichern. Fur die CPU 230 oder Port28 macht ein PCB 406 (Fig. 4) in dem EPSM 210 ein
einzelnes Statusbit auf dem BUF_AVAIL[7]* Signal geltend, um anzuzeigen, ob ein interner PCB-Sende-FIFO
in dem EPSM 210 verfligbaren Raum hat, um Daten fiir die CPU 230 zu speichern.

[0076] In einer &hnlichen Weise multiplext als Reaktion auf das STROBE* Signal die Portstatuslogik 303 der
Busschnittstellenlogik 308 in jeder QC-Vorrichtung 202 vier Statusbits auf einem entsprechenden der
PKT_AVAIL[5:0]* Signale, die anzeigen, ob jeder ihrer Empfangs-FIFOs 302 fir den betreffenden Port genug
Daten entsprechend dem TBUS-Wert hat, um empfangene Daten fir eine Busibertragung auf dem HSB 206
zu Ubertragen. Desgleichen multiplext die TPI 220 vier Statusbits auf dem PKT_AVAIL[6]* Signal, das anzeigt,

10/132

DE 697 31936 T2 2005.06.23

ob ihre internen Empfangs-FIFOs genug Daten von den betreffenden Ports Port23—-Port27 empfangen haben,
um sie auf dem HSB 206 zu Ubertragen. Fir die CPU 230 macht der PCB 406 im EPSM 210 ein einzelnes
Statusbit auf dem PKT_AVAIL[7]* Signal geltend, um anzuzeigen, ob ein interner PCB-Empfangs-FIFO im
EPSM 210 genug Daten von von der CPU 230 fir eine HSB 206 Busiibertragung empfangen hat.

[0077] Fig. 3F ist ein exemplarisches Timing-Diagramm, das eine Pufferstatusabfrage der QC-Vorrichtung
202 und der TPI 220, einsclieBlich Geltendmachung des STROBE* Signals durch den EPSM 210 und Antwort
durch jede der QC-Vorrichtungen 202 auf das Geltendmachen jeweiliger PKT_AVAILm* und BUF_AVAILm* Si-
gnale durch die TPl 220 veranschaulicht. Die Verweise auf Port0, Port1, Port2 und Port3 in Fig. 3F sind die
vier betreffenden Ports einer bestimmten QC-Vorrichtung 202 oder der TPI 220. Der PCB 406 antwortet in ei-
ner ahnlischen Weise, auller dass sein Port fur alle vier Phasen aktiv ist. Das STROBE™ Signal ist pegelget-
riggert und daher auf der ersten steigenden Flanke des CLK-Signals tief gesamplet. Es wird angemerkt, dass
das Timing-Diagramm von Fig. 3F nur exemplarisch ist und gezeigt wird, um die allgemeine Funktionalitat und
nicht ein bestimmtes Timing oder bestimmte Signaleigenschaften zu veranschaulichen. Zum Beispiel ist das
STROBE* Signal periodisch und wird typischerweise fir mehr als einen CLK-Zyklus im Betrieb der gezeigten
Ausfihrung tief geltend gemacht.

[0078] Wieder auf Fig. 3B verweisend wird das PORT_BUSY* Signal benutzt, um anzuzeigen, ob der jewei-
lige Port im Halbduplexmodus sendet oder empfangt, oder wenn der Port im Vollduplexmudus sendet. Lese-
datensignale READ_OUT_PKTI[5:0]* werden von dem EPSM 210 geltend gemacht, um eine betreffende
QC-Vorrichtung 202 zu informieren, Daten von einem betreffenden Empfangs-FIFO 302 auf die Datensignale
DATA[31:0] zu legen. In einer ahnlichen Weise werden Schreibdatensignale WRITE_IN_PKT[5:0] durch den
EPSM 210 geltend gemacht, um eine betreffende QC-Vorrichtung 202 zu informieren, Daten von den Daten-
signalen DATA[31:0] in einen betreffenden Sende-FIFO 304 zuriickzugewinnen. Auch werden ahnliche Signale
PCG_RD_OUT_PKT*, PVB_WR_IN_PKT* und TPI_RFAD_OUT_PKT*, TPI_WRITE_IN_PKT* flr die TPI 220
bzw. die CPU 230 eingeschlossen. Alle Lese- und Schreibsignale werden kollektiv als READ_OUT_PKTm*
bzw. WRITE_IN_PKTm* bezeichnet. Die PORT_NO[1:0] Bits geben an, welcher einzelne Port 104 fir einen
auf dem HSB 206 ausgeflihrten Zyklus adressiert wird.

[0079] Ein Signal SOP* gibt den Start des Pakets an, wenn der Anfang oder Vorspann eines Pakets auf dem
HSB 206 ubertragen wird. Das Al_FCS_IN* Signal wird typischerweise mit dem SOP* und einem der
WRITE_IN_PKTm* Signale geltend gemacht, um eine L64381-Vorrichtung (fir eine Implementierung der
QC-Vorrichtungen 202) zu veranlassen, automatisch einen CRC-(zyklische Redundanzprifung)Wert aus den
Daten in dem Paket zu berechnen und den CRC in das FCS-Feld des Pakets einzufligen. Eine QE110 Vorrich-
tung ersetzt das Al_FCS_IN* Signal mit dem FBPN* Signal, wie friher beschrieben, flir zusatzliche Funktio-
nen. Ein Signal EOP* bezeichnet das Ende des Pakets, wenn die letzte Datenibertragung eines Datenpakets
auf dem HSB 206 (bertragen wird. BYTE_VALID[3:0]* Signale geben an, welche Bytes in dem gegenwartigen
Wort auf den DATA-Signalen giiltig sind. Es wird angemerkt, dass ein Datenpaket fiir ein einzelne Ubertragung
auf dem HSB 206 gewohnlich zulang ist, sodass jeder Buszyklus eine Datenmenge kleiner als oder gleich dem
TBUS-Wert Ubertragt.

[0080] Man wird erkennen, dass jede QC-Vorrichtung 202 jeden ihrer vier Port als 10Base-T Ethernet-Ports
betreibt. Man wird weiter erkennen, dass der EPSM 210 Zugang hat, um alle Register der QC-Vorrichtungen
202 durch den QC-Bus 204 zu lesen und zu beschreiben. Ferner liest der EPSM 210 Daten aus allen Emp-
fangs-FIFOs 320 und schreibt Daten in alle Sende-FIFOs 304 durch den HSB 206.

[0081] Fig. 3G ist ein exemplarisches Timing-Diagramm, das einen gleichzeitigen Lese- und Schreibzyklus
auf dem HSB 206 veranschaulicht. Der obere Teil des Timing-Diagramms bezeichnet den Zyklustyp, wo zwei
gleichlaufende Lese- und Schreibzyklen einer nach dem anderen ausgefihrt werden. Die Signale CLK,
CLK_2, STROBE*, READ_OUT_PKTm*, WRITE_IN_PKTm*, PORT_NOJ[1:0], DATA[31:0] und ABORT_OUT*
sind auf einer Y Achse (oder Vertikalachse) Uber Zeit geplottet, die auf einer X-Achse (oder Horizontalachse)
des Timing-Diagramms geplottet ist. Es gibt zwei verschiedene Typen von gleichzeitigen Lese- und Schreib-
zyklen, die abhangig von der einzelnen Ausfiihrung durchgefihrt werden. Fiir den ersten, allgemeinen Typ von
gleichzeitigen Zyklen werden, wenn die QC-Vorrichtungen 202 mit den QE110 Vorrichtungen, die die Latches
324, 326 enthalten, implementiert sind, gleichzeitige Lese- und Schreibzyklen ohne weitere Verbesserung
durchgefihrt. Alternativ, wenn die QC-Vorrichtungen 202 mit den L64381 Vorrichtungen implementiert sind,
werden externe Latches und Auswabhllogik (nicht gezeigt) hinzugefiigt, um die PORT_NO Signale zu spei-
chern, wenn auf dem HSB 206 geltend gemacht. Ein zweiter, spezieller Typ von gleichzeitigen Lese- und
Schreibzyklen wird mit den L64381 Vorrichtungen ohne wertere Verbesserung durchgefiihrt, aber nur, wenn
die PORT_NO Signale gleich sind und nur, wenn die QC-Vorrichtungen 202 verschieden sind.

11/132

DE 697 31936 T2 2005.06.23

[0082] Der EPSM 210 bestimmt den Typ des auszufiihrenden Zyklusses, z. B. Lesen, Schreiben, gleichzeiti-
ges Lesen und Schreiben, Rickstau usw. Ein Lesezyklus wird gewoéhnlich durch Geltendmachung eines der
READ_OUT_PKTm* Signale angegeben, und ein Schreibzyklus wird gewdhnlich durch Geltendmachung ei-
nes der WRITE_IN_PKTm* Signale angegeben. Ein gleichzeitiger Lese- und Schreibzyklus wird durch gleich-
zeitige Geltendmachung eines READ_OUT_PKTm* Signals und eines WRITE_IN_PKTm* Signals angege-
ben. Der EPSM 210 fihrt einen gleichzeitigen Lese- und Schreibzyklus zwischen Ports unter bestimmten Be-
dingungen durch, z. B. nur wenn beide Ports konfiguriert sind, um im Durchschalt-(CT)Modus, unten ausfihr-
licher beschrieben, zu arbeiten.

[0083] Wahrend des gleichzeitigen Zyklusses macht der EPSM 210 eines der READ_OUT_PKTm* Signale
am Anfang des dritten CLK-Zyklusses tief geltend, um eine der QC-Vorrichtungen oder die TP 220 anzugeben,
und macht die geeignete Portnummer auf den PORT_NOJ[1:0] Signalen wahrend des dritten CLK-Zyklusses
geltend, um einen der vier Ports der durch das geltend gemachte READ_OUT_PKTm* Signal identifizierten
QC-Vorrichtung 202 anzugeben. Die durch das bestimmte READ_OUT_PKTm* Signal identifizierte QC-Vor-
richtung 202 speichert die PORT_NO[1:0] Signale im dritten CLK-Zyklus, um den einzelnen Port, der gelesen
wird, zu bestimmen. Zum Beispiel sind die QE110 Vorrichtungen, die die QC-Vorrichtungen 202 implementie-
ren, mit den Lese-Latches 324 konfiguriert, um die Signale PORT_NOI[1:0] zu speichern. Auf3erdem enthalt die
TPI 220 ahnliche Lese-Latches 819b (Fig. 8B), um die PORT_NO[1:0] Signale im dritten CLK-Zyklus zu spei-
chern, wenn durch das READ_OUT_PKTI[6]* Signal angegeben. Alternativ werden externe Latches fiir diesen
Zweck verwendet, wenn die QC-Vorrichtungen 202 mit den L64381 Vorrichtungen implememtiert sind. An die-
sem Punkt ist der identifizierte einzelne Port PORTO-PORT27 als der Quellenport fir einen Lesezyklus auf
dem HSB 206 bezeichnet worden.

[0084] Der EPSM 210 macht eines der WRITE_IN_PKTm* Signale am Anfang des vierten CLK-Zyklusses tief
geltend, um die gleiche oder irgendeine andere der QC-Vorrichtungen 202 oder die TPl 220 zu bezeichnen,
und macht die geeignete Portnummer auf den PORT_NO[1:0] Signalen wahrend des vierten CLK-Zyklusses
geltend, um einen der vier Ports der Vorrichtung zu bezeichnen, die durch das geltend gemachte
WRITE_IN_PKTm* Signal bezeichnet wird. Die durch das einzelne WRITE_IN_PKTm* Signal identifizierte
QC-Vorrichtung speichert die PORT_NO[1:0] Signale im vierten CLK-Zyklus, um den einzelnen Port, in den
geschrieben wird, zu bestimmen. Zum Beispiel sind die QE110 Vorrichtungen, die die QC-Vorrichtungen 202
implementieren, mit den Schreib-Latches 326 konfiguriert, um die Signale PORT_NOJ[1:0] im viertenCLK-Zy-
klus zu speichern. Aulerdem enthalt die TPl 220 &hnliche Schreib-Latches 819b, (Eig.8B), um die
PORT_NO[1:0] Signale im vierten CLK-Zyklus zu speichern, wenn durch das WRITE_IN_PKT[6]* Signal an-
gegeben. In dieser Weise wird irgendein anderer der Ports Port0-Port27 als der Zielport fir einen Schreibzy-
klus auf dem HSB 206 bezeichnet, wobei der Schreibzyklus zur der gleichen Zeit wie der gerade angegebene
Lesezyklus stattfindet. Die Quellen- und Zielports kénnen auf der gleichen QC-Vorrichtung oder zwei Ports der
TP1220 sein, oder kdnnen zwischen verschiedenen QC-Vorrichtungen 202 liegen. Ein gleichzeitiger Lese- und
Schreibzyklus wird jedoch zwischen einem der Ports 104 der QC-Vorrichtungen 202 und einem der Ports 110
der TPI 220 in der gezeigten Ausfuihrung wegen der Unterschiede in der Datenubertragungsgeschwindigkeit
nicht durchgefihrt.

[0085] In den folgenden Zyklen des CLK-Signals werden Paketdaten gleichzeitig tibertragen oder aus dem
Quellenport gelesen und tiber den HSB 206 direkt in den Zielport geschrieben, ohne in dem EPSM 210 oder
dem Speicher 212 gespeichert zu werden. Die Dateniibertragung erfolgt in Zyklen 5, 6, 7 und 8 zum Ubertra-
gen mehrerer Bytes abhangig von der Ausfiihrung. Zum Beispiel werden bis zu 64 Bytes fiir L64381 Vorrich-
tungen ubertragen, und bis zu 256 Bytes werden fur QE110 Vorrichtungen tbertragen. Obwohl vier CLK-Zy-
klen fur die Datenlibertragung gezeigt werden, kann die Datentbertragung mit einem, zwei oder vier CLK-Zy-
klen abhangig davon stattfinden, wie viele Daten Ubertragen werden. Fir neue Pakete wird zuerst ein normaler
Lesezyklus durchgeflhrt, um die Quellen- und Ziel-MAC-Adressen in den EPSM 210 zu bringen, der dann eine
werter unten beschriebene Hashig-Prozedur durchfiihrt, um die Zielportnummer, wenn bekannt, zu bestim-
men. Sobald die Zielportnummer bekannt ist, und wenn es nur einen Zielport gibt, kann eine gleichzeitige Lese-
und Schreib-Operation fir jeden Abschnitt oder den ganzen Rest des Pakets, wie gewulnscht, durchgeflihrt
werden.

[0086] Der spezielle Typ des gleichzeitigen Lese- und Schreibzyklusses wird durchgefihrt, wenn die
PORT_NO Signale gleich sind, aber zwischen zwei verschiedenen Ports und daher zwischen zwei verschie-
denen QC-Vorrichtungen 202. Fig. 3G zeigt auch diesen Fall, aulRer dass die PORT_NO Signale wahrend des
ganzen Zyklusses unverandert bleiben. Die Latches 324, 326 sind nicht erforderlich, da die PORT_NO Signale
unverandert bleiben, sodass dieser Typ von Bleizeitigem Zyklus zwischen zwei verschiedenen L64391 Vorrich-
tungen ohne externe Latches oder Auswahllogik durchgefiihrt werden kann. Der EPSM 210 bestimmt, dass

12/132

DE 697 31936 T2 2005.06.23

die PORT_NO Signale zwischen den Quellen- und Zielports gleich sind, und dass zwei verschiedene QC-Vor-
richtungen 202 involviert sind, und lasst dann den gleichzeitigen Zyklus, wie gezeigt, laufen.

[0087] Wein Fig. 3G gezeigt, findet eine zweite, gleichzeitige Lese- und Schreibubertragung im sechsten
CLK-Zyklus statt, wo die PORT_NO[1:0] Signale dann im siebten, achten und neunten Zyklus mit dem Lese-
modus, der Leseportnummer und der Schreibportnummer geltend gemacht werden. Als Reaktion wird ein
READ_OUT_PKTm* Signal fur den siebten Zyklus deaktiviert. Desgleichen wird ein WRITE_IN_PKTm* Signal
fur den achten Zyklus deaktiviert. Dieser zweite, gleichzeitige Zyklus ist entweder eine Fortsetzung des ersten
gleichzeitigen Zyklusses zum Bereitstellen von fortlaufenden und aufeinanderfolgenden Daten des gleichen
Pakets, oder kann der Beginn eines ganzlich verschiedenen Pakets sein. Die Quellen- und Zielports sind flr
fortgesetzte Daten flir das gleiche Paket die gleichen. Entweder der Quellenport, der Zielport oder beide kon-
nen jedoch im zweiten, gleichzeitigen Zyklus zum Ubertragen von Daten fiir ein unterschiedliches Paket ver-
schieden sein.

[0088] Fig. 3H ist ein Flussdiagramm, das eine Prozedur zum Ausfiihren eines gleichzeitigen Lese- und
Schreibzyklusses auf dem HSB 206 veranschaulicht. In einem ersten Schritt 330 stellt der EPSM 210 fest, ob
ein gleichzeitiger Lese- und Schreibzyklus auf dem HSB 206 zwischen einem Quellenport und einem Zielport
ausgefiihrt werden kann. Im nachsten Schritt 332 macht dann der EPSN 210 die geeigneten Signale geltend,
um den Quellenport zu identifizieren. Dies wird durch Geltendmachung der Quellen- oder "Lese"-Portnummer
mittels der PORT_NO Signale auf dem HSB 206 und durch Geltendmachung des geeigneten
READ_OUT_PKTm* Signals durchgefihrt. Im nachsten Schritt 334 erfasst oder speichert die identifizierte
Quellenport-Vorrichtung die Identifikationssignale. In dem speziellen gleichzeitigen Zyklus ohne Latches er-
fasst die QC-Vorrichtung 202 das READ_OUT_PKTm* Signal und dann die PORT_NO Signale auf dem HSB
206 und beginnt, sich auf einen Lesezyklus vorzubereiten. In den allgemeinen gleichzeitigen Zyklen, die Lat-
ches verwenden, speichert die angegebene QC-Vorrichtung 202 oder die TPI 220 in Schritt 334 die Leseport-
nummer und beginnt, sich auf einen Lesezyklus vorzubereiten.

[0089] Im nachsten Schritt 336 macht der EPSM 210 die geeigneten Signale geltend, um den Zielport zu iden-
tifizieren. FUr den speziellen gleichzeitigen Zyklus macht der EPSM 210 das geeignete WRITE_IN_PKTm* Si-
gnal geltend und bewahrt die gleichen PORT_NO Signale. Fur den allgemeinen Fall macht der EPSM 210
auch die Ziel- oder "Schreib"-Portnummer auf dem HSB 206 zusammen mit dem geeigneten
WRITE_IN_PKTm* Signal im nachsten Schritt 336 geltend. Im nachsten Schritt 338 erfasst oder speichert die
identifizierte Zielport-Vorrichtung die Identifikationssignale. In dem speziellen Zyklus ohne Latches erfasst die
angegebene QC-Vorrichtung 202 das WRITE_IN_PKTm* Signal und dann die PORT_NO Signale auf dem
HSB 206 und beginnt, sich auf einen Schreibzyklus vorzubereiten. Fur den allgemeinen Fall speichert die an-
gegebene QC-Vorrichtung 202 oder die TPI 220 die Ziel- oder Schreibportnummer im nachsten Schritt 338.
Schliel3lich stellt im nachsten Schritt 340 der angegebene Quellenport die Daten auf dem HSB 206 bereit, wah-
rend der angegebene Zielport die Daten aus dem HSB 206 in einem gleichzeitigen Lese- und Schreibzyklus
liest.

[0090] Die gleichzeitige Lese- und Schreib-Operation ist der schnellste Typ von Datenlbertragungszyklus, da
nur ein einziger Buszyklus fiir jede Ubertragung von Paketdaten benétigt wird. Wie weiter unten beschrieben,
benétigt eine normale CT-Betriebsart wenigstens zwei Ubertragungen, eine von dem Quellenport zu dem
EPSM 210 und eine andere von dem EPSM 210 zu dem Zielport, was zwei getrennte Zyklen auf dem HSB 206
fur die gleichen Daten benétigt. Ein gleichzeitiger Lese- und Schreibzyklus benétigt eine einzige direkte Uber-
tragung auf dem HSB 206 fiir die gleichen Daten, wodurch die Bandbreite des HSB 206 erhéht wird. Andere,
langsamere Modi werden bereitgestellt, einschlieRlich mehrerer Interim-CT- und Speichern-und-Weiterlei-
ten-(SnF)Modi, wo Paketdaten in den Speicher 212 geschrieben werden, bevor sie zu dem Zielport Ubertragen
werden.

[0091] Fig. 4 zeigt ein vereinfachtes Blockschaltbild des EPSM 211, das den Datenfluss und Konfigurations-
register veranschaulicht. Der EPSM 210 enthalt drei Hauptabschnitte, einschlief3lich eines HSB-Steuerungs-
blocks (HCB) 402, eines Speicher-Steuerungsblocks (MCB) 404 und eines Prozessor-Steuerungsblocks
(PCB) 406. Eine QC-Schnittstelle 410 verbindet den HSB 206 und den HCB 402 des EPSM 210. Ein Satz von
Puffern oder FIFOs 412 ist mit der anderen Seite der QC-Schnittstelle 410 verbunden, wo die FIFOs 412 weiter
unten beschriebene Empfangs-, Sende- und Durchschalt-FIFOs umfassen. Die andere Seite der FIFOs (aus-
schlieBlich eines CT-Puffers, Eig. 5A) ist mit dem MCB 404 durch eine MCB-Schnittstelle 414 verbunden, die
mit einer HCB-Schnittstelle 418 in dem MCB 404 durch einen geeigneten Bus 420 verbunden ist. Die
HCB-Schnittstelle 418 ist weiter mit einer Speicherschnittstelle 422 verbunden, die mit dem Speicher 212 durch
den Speicherbus 214 verbunden ist. Die Speicherschnittstelle 422 ist weiter mit einer Seite einer PCB-Schnitt-

13/132

DE 697 31936 T2 2005.06.23

stelle 424 verbunden, deren andere Seite mit einer Seite einer MCB-Schnittstelle 426 in dem PCB 406 durch
einen geeigneten MCB-Bus 428 verbunden ist. Die andere Seite der MCB-Schnittstelle 426 ist mit einer Seite
eines Satzes von FIFOs 430 verbunden, die weiter mit einer CPU-Schnittstelle 432 in dem PCB 406 verbunden
sind. Die CPU-Schnittstelle 432 ist mit dem QC/CPU-Bus 204 und mit dem CPU-Bus 218 verbunden. Die
CPU-Schnittstelle 432 ist weiter mit einer Seite eines zweiten Satzes FIFOs 434 in dem PCB 406 verbunden,
deren andere Seite mit einer QC/HCB-Schnittstelle 436 verbunden ist. Die andere Seite der QC/HCB-Schnitt-
stelle 436 ist mit der QC-Schnittstelle 410 Giber einen geeigneten HCB-Bus 438 verbunden.

[0092] Es wird angemerkt, dass die Signale PCB_BUF_AVAIL*, PCG_PKT_AVAIL*, PCB_RD_OUT_PKT*
und PCB_WR_IN_PKT* des HCB-Busses 438, die mit dem PCB 406 und der CPU 230 verbunden sind, in den
Signalen BUF_AVAILm*, PKT_AVAILm*, READ_OUT_PKTm* und WRITE_IN_PKTm* enthalten sind. In der
gezeigten Ausfliihrung ist der HCB-Bus 438 ahnlich dem HSB 206 und ist im Wesentlichen eine interne Version
des HSB 206 im EPSM 210. Der PCB 406 verhalt sich in dhnlicher Weise wie jeder der Ports 104 und die TPI
220 zu dem HCB 402. Auf diese Weise arbeitet die CPU 230, durch die Funktion des PCB 406, als ein zusatz-
licher Port (Port28) zu dem HCB 402.

[0093] Die CPU-Schnittstelle 432 ist mit einer Registerschnittstelle 440 durch einen Bus 442 verbunden, wo
die Registerschittstelle 440 werter mit einem Registerbus 444 verbunden ist. Der Registerbus 444 ist mit einem
Satz von HCB-Konfigurationsregistern 446 in dem HCB 401 und einem Satz von MCB-Konfigurationsregistern
448 in dem MCB 404 verbunden. In dieser Weise initialisiert und programmiert die CPU 230 die Register in
den HCB- und MCB-Konfigurationsregistern 446 und 448 durch die CPU-Schnittstelle 432 und die Register-
schnittstelle 440.

[0094] Die MCB-Konfigurationsregister 448 werden benutzt, eine wesentliche Menge mit den Ports und dem
Speicher 212 verbundener Konfigurationsinformation zu speichern. Zum Beispiel enthalten die MCB-Konfigu-
rationsregister 448 Port-Statusinformation, die angibt, ob jeder in einem lernenden (LRN), weiterleitenden
(FWD), blockierten (BLK), zuhérenden (LST) oder abgeschalteten (DIS) Zustand ist, Speichersektorinformati-
on, Busbenutzungsinformation des Speicherbusses 214, Zahl fallen gelassener Pakete, Hash-Tabelleninfor-
mation, Speicherschwellen, BC-Schwellen, Identifikation von sicheren Ports, wenn vorhanden, Speichersteu-
erinformation, MCB-Unterbrechungsquellenbits, Unterbrechungsmaskierungsbits und Abfragequellenbits usw.

[0095] Die Beschreibung des EPSM 210 veranschaulicht, dass die CPU 230 Zugriff auf die QC-Vorrichtungen
und den Speicher 212 fir Konfigurations- und Steuerzwecke hat. Obwohl der Hauptdatenfluss mit dem HSB
206 mit dem EPSM 210 durch die FIFOs 412 und den Speicher 212 ist, findet ein Datenfluss auch zwischen
dem HSB 206 und der CPU 230 durch den HCB-Bus 438 und zugehdérige FIFOs und Schnittstellen des EPSM
210 statt.

[0096] Fig. 5A zeigt ein ausflihrlicheres Blockschaltbild des HCB 402. Der HCB-Bus 438 ist eine interne Ver-
sion des HSB 206 zum Verbinden des PCB 406, wo beide Busse 206, 438 kollektiv als der HSB 206 bezeichnet
werden. Eine Abfragelogik 501 ist mit dem HSB 206, mit einem Satz von lokalen Registern 506 und mit
HCB-Konfigurationsregistern 446 verbunden. Die Abfragelogik 501 empfangt das CLK-Signal und macht peri-
odisch das STROBE* Signal an den QC-Vorrichtungen 202 und der TPI1 220 zum Abfragen der Ports 104, 110
und des PCB 406 geltend. Die Abfragelogik 501 Uberwacht dann die gemultiplexten PKT_AVAIL_m* und
BUF_AVAILm* Signale von den QC-Vorrichtungen und der TPl 220, wobei die jede QC-Vorrichtung 202 und
die TPI 220 den Status ihrer vier Ports 104 bzw. 110 liefert, wie vorher beschrieben. Die TPl 220 antwortet mit
den Signalen PKT_AVAIL[6]* und BUF_AVAIL[6]*, und der PCB 406 antwortet mit den Signalen PKT_AVAIL[7]*
und BUF_AVAIL[7]".

[0097] Die Abfragelogik 501 enthdlt eine Empfangs-(RX)Abfragezustandsmaschine 502, die die
PKT_AVAILm* Signale durchsieht und eine Empfangsliste 509 in den Registern 506 aktualisiert. In einer ahn-
lichen Weise enthdlt die Abfragelogik 501 eine Sende-(TX)Abfragezustandsmaschine 503, die die
BUF_AVAILm* Signale durchsieht und eine Sendeliste 510 in den Registern 506 aktualisiert. Wenn ein WT-
PRIORITY-Flag in den HCB-Konfigurationsregistern 446 durch die CPU 230 gesetzt wird, verwenden die
RX-Abfagezustandsmaschine 502 und die TX-Abfragezustandsmaschine 503 einen Satz von Gewichtsfakto-
ren 508 in den HCB-Konfigurationsregistern 446 zum Programmieren der Empfangsliste 509 bzw. der Sende-
liste 510, wie weiter unten beschrieben. Die HCB-Konfigurationsregister 446 enthalten auch einen Satz von
CT_SnF-Registern 507, die von der CPU 230 programmiert werden, um die gewiinschte Betriebsart zwischen
CT und SnF zu bestimmen, wenn der entsprechende Port entweder ein Quellen- oder ein Zielport ist.

[0098] Die Register 506 werden in jeder gewlinschten Weise abhangig von der Implementierung des EPSM

14/132

DE 697 31936 T2 2005.06.23

210 implementiert, z. B. als Latches, Flipflops, statische RAMs (SRAM), DRAMs usw., und umfassen eine Viel-
zahl von Status- und Steuerregistern oder Puffern. Die Empfangsliste 509 enthalt eine Vielzahl von Register-
werten, die den relativen Empfangsstatus und die Prioritat jedes Ports anzeigen. Desgleichen enthalt die Sen-
deliste 510 ein Vielzahl von Registerwerten, die den relativen Sendestatus und die Prioritat jedes Ports anzei-
gen. Ein PRCOUNT-Register 511a speichert eine PRCOUNT-Nummer, die von der RX-Abfragezustandsma-
schine 502 verwendet wird, um jedem Port eine relative Empfangsprioritat zuweisen, wenn Paketdaten durch
diesen Port von einer externen Netzwerk-Vorrichtung empfangen werden. Alternativ verwendet die RX-Abfra-
gezustandsmaschine 502 einen entsprechenden Gewichtsfaktor von den Gewichtsfaktoren 508. Desgleichen
speichert ein TP-COUNT-Register 511b eine TPCOUNT-Nummern die von der TX-Abfragezustandsmaschine
503 verwendet wird, um jedem Port eine relative Sendeprioritat zuzuweisen, wenn Paketdaten zum Senden
durch diesen Port an eine externe Netzwerk-Vorrichtung vorhanden sind und der Fort Raum hat, um Daten
zum Senden zu empfangen. Alternativ verwendet die TX-Abfragezustandsmaschine 502 einen entsprechen-
den Gewichtsfaktor von den Gewichtsfaktoren 508. Relative Arbitrations-Zahlwerte RXNEWCNT, RXACTCNT,
TXNEWCNT und TXCTCNT werden in Registern RXNEWCNT 511c, RXACTCNT 511d, TXNEWCNT 511e
und TXCTCNT 511f gespeichert.

[0099] Der HCB 402 enthalt Arbitrationslogik 504, die die Daten in den Registern 506 und 446 durchsieht, um
die Typen der auf dem HSB 206 ausgefuhrten Zyklen zu bestimmen. Eine HSB-Steuerung 505 steuert jeden
auf dem HSB 206 ausgefiihrten Zyklus zum Steuern des Datenflusses zwischen dem EPSM 210 und dem HSB
206. Die HSB-Steuerung 505 ist mit den Registern 506 zum Modifizieren von Statusbits verbunden. Die
HSB-Steuerung 505 empfangt eine Angabe des Typs jedes Zyklusses von der Arbitrationslogik 504. Die Arbi-
trationslogik 504 enthalt eine Haupt-Arbiter 512, der mit vier Arbitern verbunden ist, die einen Neupaketemp-
fangs-(RX NW)Arbiter 513, einen Empfangaktiv-(RX ACT)Arbiter 514, einen Neupaketsende-(TX NW)Arbiter
515 und einen Sende-Durchschall-(TX CT)Arbiter 516 umfassen. Der Hauptarbiter 512 wahlt gewdhnlich zwi-
schen dem RX NW-Arbiter 513, dem RX ACT-Arbiter 514, dem TX NW-Arbiter 515 und dem TX CT-Arbiter 516
aus, wo jeder Arbiter schlichtet, um den nachsten Zyklus zu definieren. Der Hauptarbiter 512 verwendet nach
Wunsch jedes annehmbare Prioritdtsschema. In der gezeigten Ausfiihrung verwendet der Hauptarbiter 512 z.
B. ein Umlauf-Prioritatsschema.

[0100] Die FIFOs 412 werden in jeder gewinschten Weise implementiert. In der gezeigten Ausfihrung imp-
lementieren zwei Empfangspuffer RX BUFs 529, 522 einen RXFIFO, wo Daten aus einem Puffer gelesen wer-
den, wahrend sie in den anderen geschrieben werden, und umgekehrt. Auch werden zwei Sendepuffer TX-
BUFs 524, 526 bereitgestellt und arbeiten in einer ahnlichen Weise wie die RXBUFs 510, 522. Die FIFOs 412
enthalten auch wenigstens einen Durchschalt-Puffer CTBUF 528. Die RXBUFs 520 und 522 sind beide
64-Byte Puffer, die je eine bidirektionale Datenschnittstelle mit dem HSB 206 zum Datenfluss in jeder Richtung
und eine unidirektionale Schnittstelle zum Liefern von Daten an den MCB 404 durch eine RXMCB-Schnittstelle
530 enthalten. Die TXBUFs 524, 526 sind beide 64-Byte Puffer, die zwischen den HSB 206 und eine TXM-
CB-Schnittstelle 531 geschaltet sind. Die TXBUFs 524, 526 empfangen Daten von dem MCG 404 durch die
TXMCB-Schnittstelle 531 und liefern Daten an den HSB 206. Der CTBUF 528 ist ein 64-Byte Puffer mit einer
bidirektionalen Schnittstelle mit dem HSB 206. Ein FIFO-Steuerblock 529 ist mit den Registern 506, der
HSB-Steuerung 505, den RXBUFs 520m 522, den TXBUFs 524, 526, dem CTBUF 528, der RXMCB-Schnitt-
stelle 530 und der TXMCB-Schnittstelle 513 zum Steuern des Datenflusses durch die FIFOs 520, 522, 524,
526 verbunden, um bestimmte durch die RX, TXMCB-Schnittstellen 530 und 531 geltend gemachte Statussi-
gnale zu erfassen und bestimmte Bits in den Registern 506 zu setzen, wie unten weiter beschrieben.

[0101] Der Bus 420 enthalt eine Vielzahl von Daten- und Steuersignalen zum Verbinden des HSB 402 mit
dem MCB 404 durch die RX, TXMCB-Schnittstellen 530, 531, Hash-Anforderungslogik und MCB-Schnittstelle
(bezeichnet als HASH REQ LOGIC) 532 und Sende-Arbiter-Anforderungslogik und MCB-Schnittstelle (be-
zeichnet als TX ARB REQ LOGIC) 533. Die HSB-Steuerung 505 kopiert den Vorspann jedes neuen Pakets
von einem der Ports Port0—Port28 in einen der RXBUFs 520, 522 und auch in die HASH REG LOGIC 532. Der
Vorspann betragt wenigstens drei DWORDs (je 32 Bit), die sowohl die Quellen- als auch Ziel-MAC-Adressen
enthalten. Die HASH REQ LOGIC 532 verlangt, dass die Hashing-Prozedur durch den MCB 404 ausgefihrt
wird, und setzt geeignete Bits in den Registern 506. Die Hashing-Prozedur wird durchgefiihrt, um die geeignete
Aktion zu bestimmen, die fir das Paket zu ergreifen ist.

[0102] In der gezeigten Ausfihrung macht nach Empfangen des Vorspanns eines neuen Pakets die HASH
REG LOGIC 532 ein Signal HASH_REQ* am MCB 404 geltend und multiplext die 48-Bit MAC-Ziel- und Quel-
lenadressen und eine 8-Bit Quellenportnummer auf HASH_DA_SA[15:9] Signale. Der MCB 404 erfasst das
HASH_REQ* Signal, fuhrt die Hashing-Prozedur durch und macht ein Signal HASH_DONE an der HASH REQ
LOGIC 532 geltend. Der MCB 404 macht auch Signale HASH_DSTPRT[4:0], HASH_STATUS[1:9] und ein Si-

15/132

DE 697 31936 T2 2005.06.23

gnal HASH_BP*, wenn angebracht, geltend. Die HASH_STATUS[1:0] Signale bezeichnen eines von vier Er-
gebnissen, die 00b (b bezeichnet eine Binarzahl) = DROP_PKT, um das Paket fallen zu lassen, 01b =
GROUP_BC fiir ein Rundsende-(BC)Paket, 10b = MISS_BC fir einen unbekannten Zielport und daher ein
BC-Paket, und 11b = FORWARD_PKT, das ein Unicast-Paket an einen einzelnen Zielport bezeichnet, umfas-
sen. Wenn HASH_STATUS[1:0] = FORWARD_PKTn werden die HASH_DSTPRT[4:0] Signale geltend ge-
macht, wobei eine binare Portnummer den Zielport fir das Paket bezeichnet. Das HASH_BP* Signal wird gel-
tend gemacht, um Rickstau anzuzeigen, wenn Rickstau freigegeben und anwendbar ist, infolge einer Schwel-
lentberlaufbedingung im Speicher 212, wie durch den MCB 404 festgestellt.

[0103] Bestimmte Schwellenwerte werden fir den ganzen Speicher 212, fur einzelne Typen von Paketen (z.
B. BC-Pakete) und auf einer Port-fiir-Port-Basis festgelegt. Wenn ein Schwellenwert erreicht wird, sodass ein
anderes an den Speicher 212 geliefertes Paket eine Schwellenbegingung verletzen wirde, entscheidet der
Netzwerkschalter 102, ob das Paket fallen zu lassen ist. Die sendende Vorrichtung erkennt schlieBlich, dass
das Paket fallen gelassen wird, und sendet das Paket neu. Wenn bestimmte Schwellenbedingungen verletzt
werden, wird Rickstau freigegeben, und wenn der Quellenport im Halbduplexmodus arbeitet, wird das
HASH_BP* Signal geltend gemacht.

[0104] Die HASH_REQ_LOGIC 532 erfasst das HASH_BP* SIGNAL und stellt fest, ob HASH_STATUS[1:0]
= DROP_PKT, z. B. die Quellen- und Zielports sind die gleichen. Wenn HASH_STATUS[1:0] = DROP_PKT, ist
keine weitere Aktion nétig, da das Paket fallen zu lassen ist. Wenn HASH_STATUS[1:0] nicht gleich
DROP_PKT ist, stellt die HASH REQ LOGIC 532 fest, ob HASH_STATUS[1:0] = FORWARD_PKT und das Pa-
ket im CT-Modus durch den CT BUF 528 zu Ubertragen ist, um dadurch moéglicherweise den Speicher 212 zu
umgehen. Wenn der Zielport beschaftigt ist, oder wenn HASH_STATUS[1:0] nicht angibt, das Paket fallen zu
lassen oder das Paket weiterzuleiten, weist die HASH REQ LOGIC 532 die HSB-Steuerung an, einen Rick-
stau-Zyhlus auf dem Port, der Daten empfangt, auszufiihren.

[0105] Wahrend des SnF-Betriebs empfangt der EPSM 210 das ganze Paket und speichert es im Speicher
212, bevor jeder Teil des Pakets an einen Zielport gesendet wird. Nachdem das Paket gesendet ist, und wenn
der Zielport bekannt ist, wird das Paket an den Zielport, wenn vorhanden, entsprechend dem einzelnen be-
nutzten Arbitrationsschema gesendet. Um CT-Betrieb anzuwenden, werden beide Ports fur den CT-Modus in
den CT_SNF-Registern 507 voreingestellt, beide Ports arbeiten bei der gleichen Geschwindigkeit, und die
TBUS-Einstellung fir den Zielport ist gréRer als die oder gleich der TBUS-Einstellung fiir den Quellenport. Fir
die einzelne gezeigte Ausfiuhrung, die die TLANs 226 verwendet, um die 100 Mbps Ethernet-Ports
Port24-Port27 zu implementieren, wird der CT-Modus flr die Ports Port24-Port27 nicht durchgefihrt, da die
TLANs vor dem Senden die Grofde des ganzen Pakets bendtigen. Aulterdem verlangt die gezeigte Ausfiih-
rung, dass die TBUS-Werte gleich sind. Die vorliegende Erfindung wird durch diese verschiedenen Erwurfser-
wagungen nicht begrenzt. Wahrend der CT-Betriebsart liefert der EPSM 210 die Daten an die geeignete
QC-Vorrichtung 202 zum Senden auf dem angegebenen Zielport, wenn er nicht beschaftigt ist. Die Paketdaten
werden durch die FIFOs 412 zwischen den Quellen- und Zielports gepuffert, ohne in den Speicher 212 iiber-
tragen zu werden.

[0106] Wenn der Zielport am Anfang eines empfangenen Pakets beschaftigt ist, werden die Daten im Spei-
cher 212 zwischen den Quellen- und Zielports entsprechend der Interim-CT-Betriebsart gepuffert. Der Paket-
abschnitt steht jedoch sofort zum Senden an einen Zielport zur Verfligung, sodass der Zielport nicht auf das
ganze zu empfangende Paket warten muss. Als ein Sicherheitsmechanismus kann die Interim-CT-Betriebsart
aufgehoben und der Betrieb fur dieses einzelne Paket in den SnF-Modus fur das nachste Paket umgeschaltet
werden.

[0107] Wenn aus irgendeinem Grund der Zielport auRerstande ist, mehr Daten wahrend der Ubertragung ei-
nes Pakets im CT-Modus anzunehmen, z. B. wenn der Zielport stehen bleibt, wird der Betrieb auf den Mittel-
paket-Interim-CT-Modus umgeschaltet. Wahrend des Mittelpaket-Interim-CT-Modus werden die Paketdaten in
den FIFOs 412 an den Speicher 212 gesendet und dann an die Zielport gesendet, wenn er verfligbar ist, um
mehr Daten zu empfangen. Es wird angemerkt, dass, da andere nachfolgend empfangene Pakete durch an-
dere Ports zum Senden an den gleichen stehen gebliebenen Port empfangen werden kénnen, wobei diese
nachfolgenden Pakete in eine entsprechende Sendekette flir den Port gestellt werden, der restliche Paketab-
schnitt des auf den Mittelpaket-Interim-CT-Modus umgeschalteten Pakets zuerst in die Sendekette gestellt
wird, um die richtige Reihenfolge zu sichern.

[0108] Ein anderer Modus wird als der adaptive SnF-Modus bezeichnet. Wahrend ein Paket entsprechend
dem CT-Betrieb tUbertragen wird, berwacht und verfolgt die CPU 230 die Aktivitat der Ports 104, 110 und des

16/132

DE 697 31936 T2 2005.06.23

PCB 406, um festzustellen, ob einer oder mehrere der Ports eine bedeutsame Zahl von Fehlern erfahrt, z. B.
"Runts", "Overruns", "Jabbers", Spatkollision, FCS-Fehler usw. Ein Runt ist ein Paket kleiner als eine bestimm-
te Mindestdatenmenge, wobei das Minimum in der gezeigten Ausflihrung 64 Byte betragt. Ein Overrun ist ein
Paket, das groRer ist als eine bestimmte Maximaldatenmenge, die in der gezeigten Ausfihrung 1,518 Byte ent-
sprechend dem Ethernet-Standard betragt. Ein Jabber ist ein Paket gréRer als die MaximalgréRRe (1,518 Bytes
fur Ethernet) und enthalt einen ungiltigen CRC-Wert. Gewdhnlich werden Pakete mit solchen Fehlern fallen
gelassen und durch das System nicht verbreitet. Entsprechend dem adaptiven SnF-Modus schaltet, wenn ein
Port 104 im CT-Betrieb arbeitet und eine bedeutsame Zahl solcher Fehler erfahren werden, wie durch die CPU
230 bestimmt, die CPU 230 den voreingestellten Modus fiir den gewtinschten Port von CT- auf SnF-Betrieb
um, bis alle Fehler korrigiert oder sonstwie beseitigt sind.

[0109] Die Arbeitsweise der Ports 110 jedes TLAN 226 ist ahnlich, aulRer dass Paketdaten durch die TPI 220
Uber den HSB 206 zu dem EPSM 210 laufen und vor dem Senden im Speicher 212 gespeichert werden. Die
TPI 220 arbeitet effektiv als eine Briicke zwischen dem PCI-Bus 222 und dem HSB 206. Die TLANs 226 be-
noétigen die Lange des ganzen Pakets, bevor das Pa-ket an ein externes Netzwerk gesendet wird, sodass jedes
Paket in seiner Gesamtheit empfangen und im Speicher 212 gespeichert wird, bevor es an eines der TLANs
226 neu gesendet wird. AuRerdem, Daten, die durch ein TLAN 226 zum Senden durch eine QC-Vorrichtung
202 empfangen werden, und Daten die durch eine QC-Vorrichtung 202 zum Senden durch ein TLAN 226 emp-
fangen werden, werden infolge des groften Geschwindigkeitsunterschieds zwischen den Vorrichtungen 202,
226 in der gezeigten Ausfihrung im SnF-Modus betrieben und im Speicher 212 gespeichert.

[0110] Die RXMCB-Schnittstelle 530 macht ein Signal RX_PKT_AVAIL* an dem MCB 404 geltend, wenn Pa-
ketdaten in einem der RXBUFs 520, 522 liegen und zum Ubertragen in den Speicher 212 bereit sind. Paket-
daten werden von dem HCB 402 an den MCB 404 auf einem Speicherdaten-Ausgangsbus MemDataOut oder
MDO[31:0] tbertragen. Ein statisches Signal MEM_EDO wird geltend gemacht, wenn der Typ des Speichers
212 entweder EDO oder Synchron-DRAM ist, und wird fir FPM-DRAM nicht geltend gemacht. Die RXMCB
Schnittstelle 530 macht auch, wenn angebracht, mehrere andere Signale geltend, wahrend das Signal
RX_PKT_AVAIL* geltend gemacht wird. Das heif3t, die RXMCB-Schnittstelle 530 multiplext die Quellenport-
nummer auf RX_SRC_DST[4:0] Signale fir einen CLK-Zyklus gefolgt von der Zielporthummer, wenn bekannt,
wahrend des nachsten CLK-Zyklusses, wahrend das RX_PKT_AVAIL* Signal geltend gemacht wird. Ferner
macht die RXMCB-Schnittstelle 530 die Zahl von DWORDs (minus einem DWORD) auf RX_CNT[5:0] geltend,
die sich in dem ausgewahlten RXBUF 520 oder 522 befinden.

[0111] Die RXMCB-Schnittstelle 530 macht ein Signal RX_SOP* mit dem RX_PKT_AVAIL* Signal geltend,
wenn die Daten der Beginn eines Pakets sind, oder macht ein Signal RX_EOP* mit dem RX_PKT_AVAIL* Si-
gnal geltend, wenn die Daten das Ende des Pakets sind. Die RX-MCB-Schnittstelle 530 macht ein Signal
RX_CUT_THRU_SOP* mit den RX_PKT_AVAIL* und RX_SOP* Signalen geltend, wenn das Paketim CT-Mo-
dus Ubertragen, aber durch den Speicher 212 gepuffert wird, z. B. fir Interim-CT- oder Mittelpaket-CT-Modi.
Das heilt, Interim-CT (volles Paket) wird angegeben, wenn (IRX_CUT_THRU_SOP* & IRX_PKT_AVAIL* &
IRX_SOP*), und Interim-CT-Mittelpaket wird angegeben, wenn (IRX_CUT_THRU_SOP* & IRX_PKT_AVAIL*
& RX_SOP*). Die RXMCB-Schnittstelle 530 macht ein Signal RX_MISS_BC* mit den RX_PKT_AVAIL* und
RX_SOP* Signalen geltend, wenn die Zieladresse unbekannt war, und daher das Paket ein BC-Paket ist. Die
RXMCB-Schnittstelle 530 macht ein Signal RX_GROUP_BC* mit den Signalen RX_PKT_AVAIL* und
RX_SOP* geltend, wenn das GROUP-Bit in dem Paketvorspann gesetzt ist, sodass das Paket wiederum ein
BC-Paket ist. Die RXMCB-Schnittstelle 530 macht ein Signal RX_END_BYTE[1:0] mit den RX_PKT_AVAIL*
und RX_EOP* Signalen geltende, um den Bytepfad des letzten Bytes in dem Paket anzuzeigen.

[0112] Die RXMCB-Schnittstelle 530 macht ein Signal RX_ERROR* mit den Signalen RX_PKT_AVAIL* und
RX_EOP* geltend, wenn der Quellenport wahrend des Ubertragens in dem Paket einen Fehler erfasst und
durch Geltendmachung des Signals ABORT_OUT* anzeigt. Verschiedene Fehlerbedingungen werden durch
die Ports 104, 110 geprift, z. B. Erfassen eines FIFO-Overrun, eines Runt-Pakets, eines Ubergroflen Pakets,
eines Rahmenprifsequenz-(FCS)Fehlers oder eines Phasenverriegelungsschleifen-(PLL)Fehlers. Wenn das
Signal RX_ERROR* geltend gemacht wird, Iasst der Netzwerkschalter 102 das Paket fallen, wenn es im
SnF-Modus Ubertragen wird.

[0113] Der MCB 404 macht ein Signal RX_ACK* an dem HCB 401 nach Erfassen des geltend gemachten
Signals RX_PKT_AVAIL* geltend und nach Speichern der mit dem RX_PKT_AVAIL* Signal geltend gemachten
zugehorigen Signale, wie oben beschrieben. Der MCB 404 macht ein Signal RX_STB* geltend, wenn er bereit
ist, das nachste DWORD von Daten anzunehmen. Der MCB 404 macht ein Signal RX_PKT_COMPLETE* gel-
tend, wenn er bestimmt, dass der HCB 402 die Daten anfordern kann. Das heif3t, der MCB 404 macht das Si-

17/132

DE 697 31936 T2 2005.06.23

gnal RX_PKT_COMPLETE* geltend nach Erfassen des durch den HCB 402 fiir CT-Mo-duspakete geltend ge-
machten Signals RX_SOP*. AuRerdem macht der MCB 404 das RX_PKT_COMPLTE* Signal geltend nach Er-
fassen des durch den HCB 402 fiir SnF-Moduspakete geltend gemachten Signals RX_EOP*. Der MCB 404
macht das Signal RX_PKT_COMPLETE* nicht geltend, wenn das Signal RX_ERROR* fir ein SnF-Paket gel-
tend gemacht war (dadurch angezeigt, dass das Signal RX_CUT_THRU* nicht mit dem RX_SOP* geltend ge-
macht wird). Der MCB 404 macht ein Signal RX_PKT_ABORTED* an dem HCB 402 anstelle des Signals
RX_PKT_COMPLETE* geltend, wenn das Paket infolge einer Uberlaufbedingung des Speichers 212, wie
durch den MCB 404 festgestellt, fallen gelassen wird.

[0114] Die TX ARB REQ LOGIC 533 empfangt eine Anforderung von der Arbitrationslogik 504, um Paketda-
ten aus dem Speicher 212 zum Senden durch einen verfiigbaren Zielport zuriickzugewinnen, wobei die Anfor-
derung typischerweise durch den TXNW Arbiter 515 hervorgebracht wird. Die TX ARB REQ LOGIC 533 macht
folglich ein Sendeanforderungssignal TX_ARB_REQ* an dem MCB 404 geltend, wahrend auch die Zielport-
nummer auf Signalen TX_ARB_PORT[4:0] und eine maximale Ubertragungslange fiir jeden Datenabschnitt
auf Signalen TX_ARB_XSIZE[2:0] geltend gemacht werden. Die maximale Ubertragungslénge ist fiir die TX-
BUFs 524, 526 als 000b = 16 Byte, 001b = 32 Byte, 010b = 64 Byte, 011 = 128 Byte und 100 = 256 Byte defi-
niert. Der MCB 404 speichert diese Werte und macht ein Bestatigungssignal TX_ARB_ACK* an der TX ARB
REQ LOGIC 533 geltend. Der MCB 404 gewinnt dann die verlangten Daten aus dem Speicher 212 zuriick und
schreibt die Daten in einen der TXBUFs 524, 526.

[0115] Daten werden an die TXBUFs 524, 526 in den HCB 402 lber einen Speicherdateneingangsbus Mem-
Dataln oder MDI[31:0] Ubertragen. Die TXMCB-Schnittstelle 531 gibt ein Signal TX_BUF_AVAIL* aus, wenn
der FIFO-Steuerblock 529 feststellt, dass einer der TXBUFs 524, 526 verfiigbar ist, um Daten von dem MCB
404 zu empfangen. Der MCB 404 gibt ein Strobesignal TX_STB* aus, wenn Daten verflugbar sind, um durch
die TXMCB-Schnittstelle 531 des HCB 402 zur Speicherung in dem verfiigbaren TXBUF 524 oder 526 abge-
tastet zu werden. Der MCB 404 gibt mehrere Signale gleichzeitig mit dem TX_STB* Signal zum Identifizieren
von Eigenschaften der Daten aus. Das heif3t, der MCB 404 macht ein Signal TX_SOP* mit dem TX_STB* Si-
gnal fir den Beginn oder Start eines Pakets von dem Speicher 212 geltend. Der MCB 404 macht ein Signal
TX_AIFCS* mit dem TX_STB* Signal geltend, wenn der Quellenport der PCB 406 ist, der die CPU 230 angibt.
Der MCB 404 macht eine Binarzahl auf Signalen TX_CNT[5:0] mit dem TX_STB* Signal geltend, wo die
TX_CNT[5:0] Signale die Zahl von DWORDS (minus ein DWORD) angeben, um in den ausgewahlten TX FIFO
zu schreiben. Der MCB 404 macht ein Signal TX_EOP* mit dem TX_STB* Signal fir das Ende des Pakets von
dem Speicher 212 geltend. Der MCB 404 macht auch ein Pufferkettenendesignal TX_EOBC* mit den Signalen
TX_EOP* und TX_STB* geltend, wenn es fir den einzelnen Zielport im Speicher 212 keine Daten mehr gibt.
Der MCB 404 macht auch Byteendesignale TX_END_BYTE[1:0] mit den Signalen TX_EOP* und TX_STB*
geltend, um den Bytepfad des letzten Bytes in dem Paket anzuzeigen.

[0116] Fur BC-Pakete macht der MCB 404 ein Signal BC_PORT_STB* geltend, wahrend eine BC-Bitmap auf
den MDI[31:0] Signalen geltend gemacht wird. Der FIFO-Steuerblock 529 erfasst die Geltendmachung des
BC_PORT_STB* Signals, verriegelt die MDI[31:0] Signale und speichert das Ergebnis in einem internen BC-
BITMAP[28:0] Register. Der FIFO-Steuerblock benutzt die Werte in dem BCBITMAP-Register, wenn Bits in ein
Feld von Speicherbits TXMEMCYC[28:0] in der Sendeliste 510 gestellt werden.

[0117] Eig. 5B ist ein Diagramm, das mehrere der Register in den Registern 506 veranschaulicht. Die
CT_SNF-Register 507 enthalten eine Anordnung von programmierbaren Quellenportmodusbits SRC
CT_SNF[28:0], wobei jedes einem der Ports Port28—Port0 entspricht und durch die CPU 230 programmiert
wird, um die gewlinschte Betriebsart zwischen CT und SnF zu identifizieren, wenn der entsprechende Port ein
Quellenport ist. Das heift, wenn das SRC CT_SNF Bit fuir einen gegebenen Port gesetzt wird, wird gewlinscht,
diesen Port im CT-Modus zu betreiben, wenn der Port als ein Quellenport agiert. Wenn das SRC CT_SNF Bit
geldscht wird, wird gewinscht, diesen Port im SnF-Modus zu betreiben, wenn der Port als ein Quellenport
agiert. Desgleichen enthalten die CT_SNF-Register 507 eine Anordnung von programmierbaren Zielportmo-
dusbits DEST CT_SNF[28:0], wobei jedes einem der Ports Port28 bis Port0 entspricht und durch die CPU 230
programmiert wird, um die gewunschte Betriebsart zwischen CT und SnF zu identifizieren, wenn der entspre-
chende Port als ein Zielport fiir ein Unicast-Paket agiert. Der CT-Modus wird nur gewtinscht, wenn sowohl der
Quellen- als auch der Zielport flir den CT-Modus in den CT_SNF-Registern 507 bezeichnet sind.

[0118] Die Empfangsliste 509 umfasst eine Vielzahl von Registern zum Speichern von entsprechenden Emp-
fangsprioritatszahlwerten, bezeichet als RXPORTBUFx[4:0] Zahlwerte, wo "x" die Portnummer widerspiegelt.
Jeder RXPORTBUFx Zahlwert ist in der gezeigten Ausflihrung funf Bits zum Priorisieren von bis zu 32 Ports.
Die Empfangsliste 509 enthalt eine entsprechende Anordnung von Portmaskenbits RXPRTMSK][28:0], wo je-

18/132

DE 697 31936 T2 2005.06.23

des RXPRTMSK-Bit durch die RX-Abfragezustandsmaschine 502 gesetzt wird, wenn dieses RXPRTMSK-Bit
anfangs auf logisch 0 ist, um anzuzeigen, dass momentan keine Prioritédt zugewiesen ist, und wenn das betref-
fende PKT_AVAILm* Signal dann geltend gemacht wird. Zu dieser Zeit weist die RX-Abfragezustandsmaschi-
ne 502 eine Prioritdtsnummer in dem entsprechenden RXPORT-BUFx Register zu. Die Prioritdtsnummer
bleibt gultig, bis der Port bedient wird. Wahrend das RXPRTMSK-Bit gesetzt ist, ignoriert die RX-Abfragezu-
standsmaschine 502 wertere Anforderungen durch Maskieren nachfolgender Geltendmachungen des entspre-
chenden PKT_AVAILm* Signals. Die HSB-Steuerung 505 I6scht das RXPRTMSK-Bit wahrend jeder Lesezyk-
lustibertragung von dem betreffenden Port fiir dieses Paket auRer fiir die erste Ubertragung fiir ein neues Pa-
ket. Die HASH REQ LOGIC 532 I16scht das RXPRTMSK-Bit wahrend der ersten Lesezyklusibertragung, wenn
das Paket entsprechend der SnF-Betriebsart zu Ubertragen ist. Die HSB-Steuerung 505 l6scht das RX-
PRTMSK-Bit wahrend der ersten Schreibzyklustibertragung an den Zielport, wenn das Paket im CT-Modus
Ubertragen wird.

[0119] Die Empfangsliste 509 enthalt eine Anordnung von In-Queue-Bit RXINQUE[28:0], die jeweils gesetzt
werden, wenn das entsprechende RXPRTMSK-Bit gesetzt wird. Jedes RX-INQUE-Bit zeigt an, ob der Priori-
tatswert giltig ist, und, wenn ja, dass der entsprechende Port durch die Arbitrationslogik 504 in die Arbitration
einzuschlief3en ist. Das RXINQUE-BiIt wird durch einen Arbiter in der Arbitrationslogik 504 geléscht, wenn der
befreffende Port an den Haupt-Arbiter 512 iibergeben wird, um als der nachste Port zum Ubertragen von Daten
fur ein neues Paket oder fir ein sich fortsetzendes SnF-Paket bedient zu werden.

[0120] Die Empfangsliste 509 enthalt eine Anordnung von Speicherbits RXMEMCYC[28:0], die anzeigen, ob
der befreffende Port Daten im Speicher 212 empfangen soll. Dies kommt fur die SnF-, Interim-CT- und die In-
terim-Mittelpaket-CT-Betriebsart vor. Die HASH REQ LOGIC 532 setzt ein entsprechendes RXMEMCY C-Bit,
wenn der SnF- oder Interim-CT-Modus bestimmt wird. Der Haupt-Arbiter 512 setzt das RXMEMCY C-Bit fur Mit-
telpaket-Interim-CT-Moduspakete, wenn der Zielport nicht anzeigt, dass wahrend des normalen CT-Modus
Pufferplatz verfugbar ist. Die HSB-Steuerung 505 l16scht das RXMEMCYC-Bit bei der letzten Lesezyklusuber-
tragung von Daten fur den betreffenden Port.

[0121] Die Empfangsliste 509 enthalt eine Anordnung von aktiven oder CT-Bits RXACTCYC[28:0], die ange-
ben, ob der betreffende Port ein Datenpaket entsprechend der normalen CT-Betriebsart tGbertragt. Die HASH
REQ LOGIC 532 setzt ein entsprechendes RXACTCYC-Bit fir CT-Moduspakete. Die HSB-Steuerung 505
I6scht das RXACTCYC-Bit bei einem Lesezyklus der letzten Datentibertragung eines Pakets fiir den entspre-
chenden Port. Der Haupt-Arbiter 512 16scht das RXACTCYC-Bit, wenn das Bit fur den CT-Modus gesetzt ist,
und wandelt das Paket in ein Mittelpaket-CT-Paket um.

[0122] Die Sendeliste 510 enthalt eine Vielzahl von Registern zum Speichern von entsprechenden Sendepri-
oritatszahlwerten, bezeichnet als die TXPORTBUFx[4:0] Zahlwerte, wo "x" die Portnummer widerspiegelt. TX-
PORTBUFx Zahlwert ist in der gezeigten Ausflihrung fiinf Bits zum Priorisieren von bis zu 32 Ports. Die Sen-
deliste 510 enthalt eine entsprechende Anordnung von Portmaskenbits TXPRTMSK[28:0], wo jedes TX-
PRTMSK-Bit durch die TX-Abfragezutandsmaschine 503 gesetzt wird, wenn dieses TXPRTMSK-Bit anfangs
auf logisch 0 ist, um anzuzeigen, dass momentan keine Prioritdt zugewiesen ist, und wenn das betreffende
BUF_AVAILm* Signal dann geltend gemacht wird. Zu dieser Zeit weist die TX-Abfragezustandsmaschine 503
eine Prioritdtsnummer in dem entsprechenden TXPORTBUFx Register zu. Die Prioritdtsnummer bleibt giiltig,
bis der Port bedient wird. Wahrend das TXPRTMSK-Bit gesetzt ist, ignoriert die TX-Abfragezustandsmaschine
503 wertere Anforderungen durch Maskieren nachfolgender Geltendmachungen des entsprechenden
BUF_AVAILm* Signals. Die HSB-Steuerung 505 l16scht das TXPRTMSK-Bit wahrend jeder Lesezyklusibertra-
gung von dem betreffenden Port fiir dieses Paket auRer fiir die erste Ubertragung fiir ein neues Paket. Die
HSB-Steuerung 505 16scht das TXPRTMSK-Bit wahrend jeder Schreibzyklusibertragung von Paketdaten an
den Zielport.

[0123] Die Sendeliste 510 enthalt eine Anordnung von In-Queue-Bit TXINQUE[28:0], die jeweils gesetzt wer-
den, wenn das entsprechende TXPRTMSK-Bit gesetzt wird. Jedes TXINQUE-Bit zeigt an, ob der Prioritatswert
glltig ist, und, wenn ja, dass der entsprechende Port durch die Arbitrationslogik 504 in die Arbitration einzu-
schlielRen ist. Das TXINQUE-Bit wird durch einen Arbiter in der Arbitrationslogik 504 geléscht, wenn der befref-
fende Port an den Haupt-Arbiter 512 (ibergeben wird, um als der niachste Port zum Ubertragen von Daten fiir
ein neues Paket oder fiir ein sich fortsetzendes SnF-Paket bedient zu werden.

[0124] Die Sendeliste 510 enthalt die Anordnung von Speicherbits TXMEMCYC[28:0], die angeben, ob der

befreffende Port von dem Speicher 212 empfangene Daten senden soll. Dies kommt fiir die SnF-, Interim-CT-
und die Interim-Mittelpaket-CT-Betriebsart vor. Der FIFO-Steuerblock 529 setzt ein oder mehr TXMEM-

19/132

DE 697 31936 T2 2005.06.23

CYC-Bits als Reaktion auf die Geltendmachung des RX_PKT_COMPLETE* Signals durch den MCB 404 nach
Empfangen von Daten von dem HCB-402. Fir Unicast-Pakete wird nur eines der TXMEMCYC-Bits gesetzt.
Fir BC-Pakete verwendet der FIFO-Steuerblock 529 sein BCBITMAP-Register, um zu bestimmen, welches Bit
zu setzen ist. Fir SnF-Moduspakete werden die TXMEMCYC-Bits gesetzt, nachdem das ganze Paket an den
MCB 404 zur Speicherung im Speicher 212 Gbertragen ist. Fur Interim-CT-Moduspakete, einschlieRlich Mittel-
paket-Interim-Modus-CT-Paketen wird ein TXMEM-CYC-Bit wahrend der ersten Ubertragung von Daten an
den MCB 404 gesetzt. Die HSB-Steuerung 505 I6scht ein TXMEMCY C-Bit bei der letzten Schreibzyklusiiber-
tragung von Daten an einen betreffenden Port. Dies kommt vor, wenn der MCB 404 auch das Signal
TX_EOBC* geltend macht, um anzuzeigen, dass fur diesen Port im Speicher 212 keine Daten mehr vorhanden
sind.

[0125] Die Sendeliste 510 enthalt eine Anordnung von Sende-CT-Bits TXCTCYC[28:0], die angeben, ob es
Daten in einem der RXBUFs 520, 522 zum direkten Senden an den betreffenden Zielport entsprechend der
normalen CT-Betriebsart gibt. Die HASH REQ LOGIC 532 setzt ein entsprechendes TXCTCYC-Bit bei der ers-
ten Datenubertragung des Pakets. Die HSB-Steuerung 505 I6scht das TXCTCYC-Bit bei der ersten Schreib-
zyklusibertragung von Daten an den entsprechenden Zielport.

[0126] Die Sendeliste 510 enthalt eine Anordnung von aktiven CT-Bits TXACTCTCYC[28:0], die angeben, ob
der betreffende Port beim Ubertragen eines Pakets entsprechend der CT-Betriebsart involviert ist. Die HASH
REQ LOGIC 532 setzt ein entsprechendes TXACTCYC-Bit, wenn sie feststellt, dass das Paket entsprechend
dem CT-Modus zu Ubertragen ist. Der FIFO-Steuerblock 529 I6scht das TXACTCYC-Bit wahrend der ersten
Ubertragung von Daten an den MCB 404 zur Speicherung im Speicher 212, wenn das Paket vom CT-Modus
in den Mittelpaket-Interim-CT-Modus umgewandelt wird. Die HSB-Steuerung 505 |I6scht auch das TXACT-
CYC-Bit wahrend der letzten Datenlibertragung eines Pakets.

[0127] Die Gewichtsfaktoren 508 umfassen eine Anordnung von Port-Gewichtsfaktoren PORTWTx [4:0] fir
jeden der Ports Port0O-Port28, wo "x" die einzelne Portnummer angibt. Die PORTWT-Gewichtsfaktoren sind
bevorzugt einmalig und vom Benutzer vorprogrammiert, um benutzerprogrammierbare Prioritat der Ports be-
reitzustellen. In der gezeigten Ausflihrung wird der gleiche Gewichtsfaktor jedem Port fliir den Empfangs- und
den Sendefall zugewiesen, obwohl verschiedene Gewichtsfaktoren fur den Sende- und den Empfangsvorgang
definiert werden kénnten.

[0128] Fig. 5C ist ein Zustandsdiagramm, das die Empfangsabfrageoperation der RX-Abfragezustandsma-
schine 502 veranschaulicht. Die Hauptfunktion der RX-Abfragezustandsmaschine 502 ist das Uberwachen der
PKT_AVAILm* Signale, Zuweisen von Prioritadtszahlungen RXPORTBUFx und Setzen der RXPRTMSK-Bits in
der Empfangsliste 509. Ubergénge zwischen Zustanden basieren auf Ubergangen oder Zyklen des CLK-Sig-
nals und dem Status des STROBE* Signals. Zu Anfang nach Einschalten und Konfiguration wird die Emp-
fangsprioritats-Zahlzahl RPCOUNT auf null gesetzt, und die RX-Abfragezustandsmaschine 502 wird in einen
anfanglichen Leerlaufzustand 550 gebracht. Ferner werden RXINCCNTBY[7:0] Logikbits, die PKT_AVAILm*
Signalen entsprechen, geldscht. Die RX-Abfragezustandsmaschine 502 bleibt im Zustand 550, wahrend das
Signal STROBE* nicht geltend gemacht ist, was der Fall ist, wenn das STROBE* Signal hoch oder auf logisch
1 ist. Wenn das STROBE* Signal tief geltend gemacht wird, geht die Operation in einen CLK-Wartezustand
(RxPoll-Wait) 552 (ber.

[0129] Als Reaktion auf das Abtasten des geltend gemachten STROBE* Signals entworten die QC-Vorrich-
tungen 202, die TPl 220 und der PCB 406 jeweils durch Geltendmachen eines entsprechenden der
PKT_AVAILm* Signale, sonst als PKT_AVAIL[7:0]* Signale bezeichnet, nach einem CLK-Zyklus. Der Vorgang
geht daher nach einem CLK-Zyklus zu Zustand 554, um das Abfragen aller PKT_AVAIL[7:0]* Signale zu be-
ginnen. Der Vorgang geht bei aufeinanderfolgenden Zyklen des CLK-Signals vom Zustand 554 zum Zustand
556, dann zum Zustand 558 und dann zum Zustand 560 Uber. Der Vorgang kehrt vom Zustand 560 zum Zu-
stand 554 zurlck und fahrt in einer Schleife fort, wahrend das STROBE* Signal geltend gemacht bleibt. Das
STROBE* Signal ist jedoch vorzugsweise periodisch und wird fur einen CLK-Tyklus negiert und dann fir die
nachsten drei CLK-Zyklen erneut geltend gemacht. Der Vorgang kehrt daher zum Zustand 550 zuriick, wenn
das STROBE* Signal in Schritt 560 ungeltend gemacht wird. In jedem der Zustande 554, 556, 558 und 560
wird eine anfangliche Arbitrations-Zahllogik-Operation basierend auf einen Zuwachs der RXNEWCNT- und
RXA-CTCNT-Zahlen verglichen mit der RPCOUNT-Zahl durchgeflihrt, um festzustellen, ob irgendwelche der
Ubrigen Logikoperationen durchgefiihrt werden.

[0130] Wenn die anfangliche Arbitrations-Zahllogik-Operation in Schritt 554 wahr ist, werden neun logische
Operationen, bezeichnet 1-9, durchgefihrt, wo die ersten acht Operationen den Ports Port0, Port4, Port8,

20/132

DE 697 31936 T2 2005.06.23

Port16, Port20, Port24 bzw. Port28 fiir den ersten Port jeder der QC-Vorrichtungen 202, der TPI 220 und des
PCB 406 entsprechen. Fur jede der acht logischen Portoperationen, 1-8, wird ein entsprechendes der
PKT_AVAILm* Signale mit einem entsprechenden RXPRTMSK-Bit verglichen, um festzustellen, ob die Anfor-
derung anzunehmen ist. Wenn die Anforderung fir einen Port angenommen wird, was vorkommt, wenn das
RXPRTMSK-Bit nicht vorher gesetzt wurde, wird diesem Port eine RXPORTBUFXx Prioritdtsnummer zugewi-
sen. Ferner wird das entsprechende RXPRTMSK-Bit auf logisch 1 gesetzt, um wertere Anforderungen durch
diesen Port zu maskieren, und ein entsprechendes RXINCCNTBY-Bit wird auf logisch 1 gesetzt. Die neunte
logische Operation wird durchgefiihrt, um RPCOUNT zu inkrementieren.

[0131] Wenn fir Port0 PKT_AVAIL[0]* nicht geltend gemacht ist oder wenn RXPRTMSK logisch 1 ist, ist die
Prioritéat bereits errichtet worden und wird erst geandert, wenn Port0 bedient wird. Wenn jedoch das
PKT_AVAIL[O]* Signal tief geltend gemacht ist und wenn RXPRTMSK]O0] logisch 0 ist, wird die entsprechende
Prioritatsnummer RXPORTBUDO gleich dem entsprechenden Gewichtsfaktor RXPORTWTO gesetzt, wenn ein
WTPRIORITY-Flag Prioritdt entsprechend den Gewichtsfaktoren anzeigt. Wenn jedoch das WTPRIORI-
TY-Flag unwahr ist, wird die Prioritatsnummer RXPORTBUFO gleich RPCOUNT gesetzt. Dann werden die RX-
PRTMSK]IO0]- und RXINCCNTBY[0]-Bits beide auf logisch 1 gesetzt. Das Setzen von RXPRTMSK|0] maskiert
weitere Empfangsabfrage-Anforderungen fur Port0. Das RXINCCNTBY[0]-Bit entspricht dem PKT_AVAIL[0]*
Signal und wird in den Ubrigen logischen Operationen im Zustand 554 benutzt, um anzuzeigen, dass der Pri-
oritatswert fir PortO gesetzt wurde.

[0132] Wenn in der zweiten logischen Operation, die Port4 entspricht, PKT_AVAIL[1]* nicht tief geltend ge-
macht ist oder wenn RXPRTMSK(J4] logisch 1 ist, ist die Prioritat bereits festgelegt worden und wird erst gean-
dert, wenn Port4 bedient wird. Wenn jedoch das PKT_AVAIL[1]* Signal tief geltend gemacht ist und wenn RX-
PRTMSK][4] logisch 0 ist, wird die entsprechende Prioritdtsnummer RXPORTBUF4 gleich dem entsprechen-
den Gewichtsfaktor RXPORTWT4 gesetzt, wenn ein WTPRIORITY-Flag Prioritat entsprechend den Gewichts-
faktoren anzeigt. Wenn jedoch das WTPRIORITY-Flag unwabhr ist, wird die Prioritdtsnummer RXPORTBUF4
gleich RPCOUNT plus RXINCCNTBY[0] gesetzt. Auf diese Weise wird, wenn WTPRIORITY unwabhr ist,
RXPORTBUF4 eine Prioritatsnummer von RPCOUNT erteilt, wenn Port0 keine Prioritdtsnummer erteilt wurde,
oder eine Prioritdtsnummer RPCOUNT + 1 erteilt, wenn PortO eine Prioritat erteilt wurde. Dies stellt sicher,
dass Port0 und Port4 nicht die gleiche Prioritdtsnummer erhalten. Das RXPORTMSKJ4]-Bit wird dann auf lo-
gisch 1 gesetzt, um wertere Abfrageanforderungen zu maskieren. Auf diese Weise ist die jedem Port erteilte
Prioritatsnummer entweder der vorbestimmte Gewichtsfaktor fir diesen Port, oder die Prioritatsnummer ist
gleich RPCOUNT plus der Zahl von Ports, die eine niedrigere Portnummer haben und eine Prioritdtsnummer
zur gleichen Zeit erhalten haben.

[0133] Die nachsten sechs logischen Operation sind ahnlich der zweiten logischen Operation. Wenn in der
achten logischen Operation, die dem PCB 406 entspricht, PKT_AVAIL[7]* nicht tief gesetzt ist, oder wenn RX-
PRTMSK][28] gleich logisch1 ist, ist die Prioritat bereits festgelegt worden und wird erst gedndert, wenn der
PCB 406 bedient wird. Wenn jedoch das PKT_AVAIL[7]* Signal tief geltend gemacht ist und wenn RX-
PRTMSK][28] logisch 0 ist, wird die entsprechende Prioritdtsnummer RXPORTBUF28 fiir den PCB 406 gleich
dem entsprechenden Gewichtsfaktor RXPORTWT28 gesetzt, wenn ein WTPRIORITY Flag Prioritat entspre-
chend den Gewichtsfaktoren anzeigt. Wenn jedoch das WTPRIORITY-Flag unwahr ist, wird die Prioritatsnum-
mer RXPORTBUF28 gleich RPCOUNT plus die "Bitsumme" von RXINCCNTBY|[6:0] gesetzt. Die Bitsumme
von RXINCCNTBY[6:0] ist gleich der Zahl von Prioritdtswerten, die in den vorherigen sieben logischen Opera-
tionen zugewiesen wurden. Dem PCB 406 wird daher eine Prioritatsnummer gleich dem vorbestimmten Ge-
wichtsfaktor erteilt, oder die Prioritatsnummer ist RPCOUNT plus die Zahl von Ports, die eine niedrigere Port-
nummer haben und gleichzeitig eine Prioritdtsnummer erhalten haben. Eine neunte logische Operation wird im
Zustand 554 durchgefiihrt, um RPCOUNT um die Bitsumme von RXINCCNTBY[7:0] zu erhéhen, die gleich der
Zahl von Ports ist, denen im Zustand 554 eine Prioritat zugewiesen wurde. Diese Operation stellt sicher, dass
RPCOUNT fir den nachsten Satz von logischen Operationen im Zustand 556 inkrementiert wird.

[0134] Wenn z. B. alle mit dem ersten gemultiplexten Bit der PKT_AVAIL[7:0]* Signalen verbundenen Ports
oder Ports Port0, Port4, Port8, Port12, Port16, Port20, Port24 und Port28 im Zustand 554 gleichzeitig anfor-
dern und RPCOUNT anfangs null ist und keines der entsprechenden RXPTRMSK-Bits vorher gesetzt wurde,
und wenn WTPRIORITY unwahr ist, werden den entsprechenden Prioritatswerten RXPORTBUFx (X =0, 4, 8,
12, 16, 20, 24 und 28) Prioritatsnummern von 0, 1, 2, 3, 4, 5, 6, und 7 im Zustand 554 zugewiesen. Dann wird
RPCOUNT gleich 8 gesetzt. Wenn als anderes Beispiel die Ports Port4, Port12 und Port20 die einzigen Ports
sind, die Service anfordern, werden den Prioritditsnummern RXPORTBUFx (x = 4, 12, 20) Prioritatsnummern
von 0, 1 bzw. 2 zugewiesen, wenn WTPRIORITY unwahr ist, und dann wird RPCOUNT gleich 4 gesetzt. Die
Bitsummenoperation stellt sicher, dass jedem Port eine einmalige Prioritdtsnummer gegeben wird, wenn meh-

21/132

DE 697 31936 T2 2005.06.23

rere Ports gleichzeitig Service anfordern. Auf diese Weise sind die Prioritdtsnummern entsprechend einem
'wer zuerst kommt, mahlt zuerst' (FCFS) Prioritdtsschema, aber eine bestimmte Reihenfolge ist vorbestimmt,
um Prioritat festzulegen, um gleichzeitige Zuweisungen zu handhaben.

[0135] Die logischen Operationen in den Zustanden 556, 558 und 560 sind ahnlich den im Zustand 554 durch-
gefihrten. Im Zustand 556 werden, wenn die anfangliche logische Arbitrationszahloperation wahr ist, acht lo-
gische Operationen durchgefuhrt, einschlieBlich sieben Operationen, die mit dem zweiten Port jeder der
QC-Vorrichtungen 202 und der TPI 220 verbunden sind, basierend auf den PKT_AVAIL[6:0]* Signalen, was die
Ports Port1, Port5, Port9, Port13, Port17, Port21 und Port25 einschliel3t, und die achte logische Operation von
Zustand 554 wird fir den Port Port28 fiir die CPU 230 wiederholt. Im Zustand 558 werden sieben mit dem drit-
ten Port jeder der QC-Vorrichtungen 202 und der TPI 220 verbundene logische Operationen basierend auf den
PKT_AVAIL[6:0]* Signalen durchgeftihrt, die die Ports Port2, Port6, Port10, Port14, Port18, Port22 und Port26
einschlielRen, und die achte logische Operation von Zustand 554 wird fur den Port Port28 fiir die CPU 230 wie-
derholt. Im Zustand 560 werden sieben mit dem vierten Port jeder der QC-Vorrichtungen 202 und der TPI 220
verbundene logische Operationen basierend auf den PKT_AVAIL[6:0]* Signalen durchgefihrt, die die Ports
Port3, Port7, Port11, Port13, Port15, Port19, Port23 und Port27 einschlielRen, und die achte logische Operation
von Zustand 554 wird fir den Port Port28 fiir die CPU 230 wiederholt. In jedem der Zustande 556, 558 und 560
wird eine letzte logische Operation durchgefuhrt, um RPCOUNT mit die Bitsumme der RXINCCNTBY-Bits in
einer ahnlichen Weise wie vorher beschrieben zu aktualisieren.

[0136] Fig. 5D ist ein Zustandsdiagramm, das die Sendeabfrage-Operation der TX Abfragezustandsmaschi-
ne 503 veranschaulicht. Die TX-Abfragezustandsmaschine 503 arbeitet in einer ahnlichen Weise wie die
RX-Abfragezustandsmaschine 502 und umfasst Zustande 561, 562, 564, 566, 568 und 570, die analog zu den
Zustanden 550, 552, 554, 556, 558 und 560 sind. RPCOUNT ist jedoch durch TPCOUNT ersetzt, und die
anfangliche logische Arbitrationszahloperation wird basierend auf einem Zuwachs der TXNEWCNT- und
TXTACTCNT-Nummern verglichen mit der TPCOUNT-Nummer durchgefiihrt, um festzustellen, ob irgendwel-
che der restlichen logischen Operation durchgefiihrt werden. Die BUF_AVAILm* Signale ersetzen die
PKT_AVAILm* Signale, und TXPRTMSK-Bits ersetzen die RXPRTMSK Bits. Ferner wird fir jede Portglei-
chung jedes TXPRTMSAK-Bit mit einem logischen Ausdruck UND-verknUpft, der auf entsprechenden Bits der
TXMEMCYC-, TXCTACTCYC- und TXCTCYC-Bitanordnungen basiert. Das heil}t, die entsprechenden Bits
der TXMEMCYC-, TXCTACTCYC- und TXCTCYC-Bitanordnungen werden miteinander ODER-verkniipft, so-
dass die Prioritat einem Zielport nur zugewiesen wird, wenn Daten in dem EPSM 210 oder dem Speicher 212
zum Senden durch diesen Port vorhanden sind. Ferner ersetzen TXPORTBUFx Prioritditsnummern die RX-
PORTBUFx Prioritatsnummern. TXPORTWT-Gewichtsfaktoren ersetzen die RXPORTWT-Gewichtsfaktoren,
und TXINCCNTBY-Bits ersetzen die RXINCCNTBY-Bits. Auf diese Weise bezeichnet jeder Port und der PCB
406 ein betreffendes der BUF_AVAIL* Signale als Reaktion auf das STROBE* Signal, und die TX-Abfragezu-
standsmaschine 503 weist eine Prioritdtsnummer basierend auf den Gewichtsfaktoren oder FCFS mittels TP-
COUNT zu und legt die Prioritat entsprechend fest.

[0137] Man wird einsehen, dass die Abfragelogik 501 das STROBE* Signal periodisch oder kontinuierlich um-
schaltet und die PKT_AVAILmM* und BUF_AVAILm* Signale fir jeden der Ports 104, 110 und den PCB 406
Uberwacht, um jedem der anfordernden Ports Prioritdt zuzuweisen und die entsprechenden Abfragemasken-
bits zu setzen. Die zugewiesene Prioritat basiert auf den vorprogrammierten Gewichstfaktoren, wenn WTPRI-
ORITY wahr ist, oder auf FCFS, wenn WTPRIORITY unwabhr ist. Die Prioritat bleibt statisch, bis der Port be-
dient wird. SchlieRlich wird der Port bedient, und das Maskenbit wird geléscht, wie unten beschrieben.

[0138] Die Arbiter 513-516 wahlen zwischen den Ports 104, 110, und dem PCB 406 basierend auf mehreren
Arbitrationsschemas aus, wo das einzelne Arbitrationsschema benutzerprogrammierbar ist. Das erste ist ein
Umlauf-Schema, wo die Ports in jeder beliebigen Reihenfolge, z. B. Port0, Port1, ..., Port28 oder dergleichen
Uberprift werden, oder die Reihenfolge wird durch die in den PORTWTx Registern vorprogrammierten Ge-
wichtsfaktoren 508 ausgewahlt. In der gezeigten Ausfiihrung werden die Gewichtsfaktoren 508 benutzt, um
die umlaufende Reihenfolge zuzuweisen, und werden in die betreffenden RXPORTBUFx und TXPORTBUFx
Zahlungen programmiert. Der RX NW Arbiter 513 benutzt und inkrementiert die RXNEWCNT-Prioritatsnum-
mer, der RX ACT Arbiter 514 benutzt und inkrementiert die RXACTCNT-Prioritadtsnummer, der TX NW Arbiter
515 benutzt und inkrementiert die TXNEWCNT-Prioritatsnummer, und der TX CT Arbiter 516 benutzt und in-
krementiert TXCTCNT-Prioritatsnummer. Fir das Umlauf-Schema Gberprifen die Arbiter 513, 514 jeweils die
RXINQUED Werte, um die aktiven Empfangsports, die Servive anfordern, zu bestimmen, und vergleichen ihre
jeweilige Prioritatsnummer (RXNEWCNT, RXACTNT) mit den Werten in den RXPORTBUFx Zahlungen der ak-
tiven Ports, um den nachsten zu bedienenden Port zu bestimmen. Ferner Uberprufen die Arbiter 515, 516 je-
weils die TXINQUED Werte, um die aktiven Empfangsports, die Servive anfordern, zu bestimmen, und verglei-

22/132

DE 697 31936 T2 2005.06.23

chen dann ihre jeweilige Prioritdtsnummer (TXNEWCNT, TXACTNT) mit den Werten in den TXPORT_BUFx
Zahlungen der aktiven Ports, um den nachsten zu bedienenden Port zu bestimmen. Da die Gewichtsfaktoren
eine bestimmte Reihenfolge bestimmen, werden die Ports in einer umlaufenden Weise geordnet.

[0139] Das zweite Arbitrationsschema ist FCFS, wo WTPRIORITY unwahr ist und die Ports basierend auf der
Reihenfolge, in der sie Service angefordert haben, bedient werden, wie durch RXPORTBUFx unf TXPORT-
BUFx Prioritatsnummern angegeben. Das FCFS-Schema arbeitet in ahnlicher Weise wie das Umlauf-Verfah-
ren, aulBer dass die RXPORTBUFx und TXPORTBUFx Zahlungen entsprechend den RPCOUNT- und TP-
COUNT-Werten programmiert werden, wie vorher beschrieben. Dann Gberpriifen die RX-Arbiter 513, 514 je-
weils die RXINQUED Werte, um die aktiven Empfangsports, die Service anfordern, zu bestimmen, und verglei-
chen dann ihre jeweilige Prioritatsnummer (RXNEWCNT, RXACTCNT) mit den Werten in den RXPORTBUFx
Zahlungen der aktiven Ports, um den nachsten zu bedienenden Port zu bestimmen. Ferner Uberprifen die
TX-Arbiter 515, 516 jeweils die TXINQUED Werte, um die aktiven Empfangsports, die Service anfordern, zu
bestimmen, und vergleichen dann ihre jeweilige Prioritatsnummer (TXNEWCNT, TXACTCNT) mit den Werten
in den TXPORTBUFx Zahlungen der aktiven Ports, um den nachsten zu bedienenden Port zu bestimmen. Da
die RPCOUNT- und TPCOUNT-Werte die Reihenfolge bestimmen, werden die Ports in der FCFS-Weise ge-
ordnet.

[0140] Ein anderes Schema ist das gewichtete Prioritdtsschema, wo WTPRIORITY wabhr ist und die RX-
PORTWTx- und TXPORTWTx-Nummern in entsprechende der RXPORTBUFx- und TXPORTBUFx_Register
kopiert und zum Bestimmen der Prioritat benutzt werden. Jedoch bestimmen die RX-Arbiter 513, 514 die Pri-
oritat aus einer RX HIGH PRIORITY Nummer, und die TX-Arbiter bestimmen die Prioritat aus einer TX HIGH
PRIORITY Nummer. Die RX HIGH PRIORITY Nummer wird durch Identifizieren der héchsten Prioritdtsnum-
mer (oder der niedrigsten Nummer) in den RXPORTBUFx-Zahlungen der aktiven Empfangsports bestimmt, wo
die aktiven Empfangsports aus den RXINQUE-Werten bestimmt werden. Desgleichen wird die TX HIGH PRI-
ORITY Nummer durch Identifizieren der hochsten Prioritdtsnummer (oder der niedrigsten Nummer) in den TX-
PORTBUFx-Zahlungen der aktiven Sendeports bestimmt, wo die aktiven Sendeports aus den TXINQUE-Wer-
ten bestimmt werden. In dieser Weise wird ein aktiver (Service anfordernder) Port mit dem hdchsten Gewichts-
faktor jedes Mal ausgewahlt, um so das gewichtete Prioritadtsschema zu implementieren.

[0141] Der RX NW Arbiter 513 behandelt alle an den Ports Port0-Port28 empfangenen neuen Paketvor-
spanndaten und sich fortsetzende SnF-Moduspaketdaten, die an einen der RX BUFs 520, 522 (ibertragen wer-
den. Der RX NW Arbiter 513 aktualisiert die RXNEWCNT-Nummer und Uberprift die Empfangsliste 509, um
festzustellen, welche der Ports Port0—Port28 sein Empfangskriterium erfillen. Das Empfangskriterium fir den
RX NW Arbiter 513 wird durch die Ports erfillt, deren jeweiliges RXINQUE-Bit gesetzt und deren RXACT-
CYC-Bit nicht gesetzt ist. Das Empfangskriterium fir den RX NW Arbiter 513 schliet auch Ports ein, deren
jeweilige RXINQUE- und RXMEMCY C-Bits beide gestzt sind. Der RX NW Arbiter 513 schlichtet dann zwischen
den Ports, die sein Empfangskriterium erfiillen, und entsprechend einem gewahlten Arbitrationsschema, wie
vorher beschrieben. Nach Wahlen eines Ports und Definieren eines Zyklusses fordert der RX NW Arbiter 513
den Haupt-Arbiter 512 auf, einen Lesezyklus auszufiihren. Wenn der RX NW Arbiter 513 das nachste Mal
durch den Haupt-Arbiter 512 ausgewahlt wird, I6scht er das RXINQUE-Bit des zu bedienenden ausgewahlten
Ports. Der RX NW Arbiter 513 wiederholt fortlaufend diesen Prozess.

[0142] Der TX CT Arbiter 516 tUbertragt Daten in den RX BUFs 520, 522 an einen Zielport im normalen CT-Be-
trieb. Der TX CT Arbiter 516 aktualisiert die TXCTNT-Nummer und Uberprtft die Sendeliste 510, um festzustel-
len, welche der Ports PortO—Port28 sein Sendekriterium erflllen. Das Sendekriterium fir den TX CT Arbiter 516
wird von den Ports erfllt, deren jeweilige TXINQUE- und TXCTCY C-Bits beide gesetzt sind. Der TX CT Arbiter
516 schlichtet dann zwischen den Ports die sein Sendekriterium erfillen, und entsprechend dem gewahlten
Sendekriterium, wie oben beschrieben. Nach Wahlen eines Ports und Definieren eines Zyklusses fordert der
TX NW Arbiter 516 den Haupt-Arbiter 512 auf, einen Schreibzyklus von dem ausgewahlten RX BUF 520 oder
522 an den gewinnenden Zielport auszufuhren. Wenn der TX NW Arbiter 516 das nachste Mal durch den
Haupt-Arbiter 512 ausgewahlt wird, 16scht er das TXINQUE-BIt des zu bedienenden ausgewahlten Ports. Der
TX NW Arbiter 516 wiederholt fortlaufend diesen Prozess.

[0143] Der RX ACT Arbiter 514 Ubertragt aufeinanderfolgende Paketdaten an den CT BUF 528 von einem
Quellenport, der in der normalen CT-Betriebsart arbeitet, aul’er dem ersten Lesezyklus (der durch den RX NW
Arbiter 513 gehandhabt wird). Der RX ACT Arbiter 514 aktualisiert die RXACTCNT-Nummer und Uberpruft die
Empfangsliste 509, um festzustellen, welche der Ports PortO-Port28 sein Empfangskriterium erflllen. Das
Empfangskriterium fur den RX ACT Arbiter 514 wird von den Ports erfullt, deren jeweilige RXINQUE- und
RXACTCYC-Bits gesetzt sind und deren jeweiliges RXMEMCY C-Bit nicht gesetzt ist. Der RX ACT Arbiter 514

23/132

DE 697 31936 T2 2005.06.23

schlichtet dann zwischen den Ports, die sein Empfangskriterium erfillen, und entsprechend dem gewahlten
Arbitrationsschema, wie oben beschrieben. Nach Wahlen eines Ports und Definieren eines Zyklusses fordert
der RX ACT Arbiter 514 den Haupt-Arbiter 512 auf, einen Lesezyklus auszufiihren, um Daten von dem ausge-
wahlten Quellenport an den CT BUF 528 zu ubertragen. Wenn der RX ACT Arbiter 514 das nachste Mal durch
den Haupt-Arbiter 512 ausgewahlt wird, Idscht er das RXINQUE-BIt des zu bedienenden ausgewahlten Ports.
Der RX ACT Arbiter 514 wiederholt fortlaufend diesen Prozess.

[0144] Der Haupt-Arbiter 512 folgt jedem CT-Modus-Lesezyklus in den CT BUF 528 mit einem Schreibzyklus,
um Daten in dem CT BUF 528 an den durch die HASH REQ LOGIC 532 angegebenen Zielport zu libertragen.
Der Haupt-Arbiter 512 stellt fest, ob der Zielport beschaftigt ist, bevor er dem RX ACT Arbiter 514 erlaubt,
CT-Daten an den CT BUF 528 zu tibertragen. Wenn der Haupt-Arbiter 512 feststellt, dass der Zielport beschaf-
tigt ist, wandelt er die Quellen- und Zielports in den Mittelpaket-Interim-CT-Modus um, indem er das betreffen-
de RX-MEMCYC-Bit setzt und das betreffende RXACTCYC-Bit fuir den Quellenport |6scht.

[0145] Der TX NW Arbiter 515 Ubertragt Daten von jedem der TX BUFs 524, 526 an den HSB 206 entspre-
chend der SnF-Betriebsart. Der TX NW Arbiter 515 aktualisiert die TXNEWCNT-Nummer und Uberprift die
Sendeliste 510, um festzustellen, welche der Ports Port0O—Port28 sein Sendekriterium erfiillen. Das Sendekri-
terium fir den TX NW Arbiter 515 wird von den Ports erfillt, deren jeweilige TXINQUE- und TXMEMCY C-Bits
gesetzt sind und deren jeweiliges TXACTCTCYC-Bit nicht gesetzt ist. Der TX NW Arbiter 515 schlichtet dann
zwischen den Ports, die sein Sendekriterium erflllen entsprechend dem gewahlten Arbitrationsschema. Nach
Wahlen eines Ports und Definieren eines Schreibzyklusses von einem der TX BUFs 524, 526 zu dem ausge-
wahlten Zielport fordert der TX NW Arbiter 515 den Haupt-Arbiter 512 auf, den Schreibzyklus auszufihren.
Wenn der TX NW Arbiter 151 das nachste Mal durch den Haupt-Arbiter 512 ausgewahlt wird, |6scht er das
TXINQUE-BIt des zu bedienenden ausgewahlten Ports. Der TX NW Arbiter 515 wiederholt fortlaufend diesen
Prozess.

[0146] Fig. 6 zeigt ein ausflhrlicheres Blockschaltbild des MCB 404 in dem EPSM 210. Die MCB-Konfigura-
tionsregister 448 sind in Fig. 6 nicht gezeigt, obwohl sie vorhanden sind und bei Bedarf fir viele der Funktions-
blécke, die nun beschrieben werden, zuganglich sind. Der MCB 404 enthalt eine Hash-Steuerung 602, die mit
der MCB-Schnittstelle 414 durch einen Bus 420 verbunden ist. Die Hash-Steuerung 602 enthalt optional eine
Hash-Speichertabelle 603, die aus dem Speicher 212 zurlickgewonnene Daten speichert. Der Hash-Speicher
603 bietet schnelleren Zugriff auf kiirzlich aus dem Speicher 212 gezogene Daten, anstatt einen weiteren Spei-
cherzyklus zu benétigen, um kurzlich erlangte Information zurlickzugewinnen. Die Hash-Steuerung 602 um-
fasst Adresse/Lange/Status-(AD/LN/ST) Ausgange, die mit einem Mehrleitungs-Eingang eines Vierein-
gang-Adress-Multiplexers (Mux) 630 Gber einen Bus 610 verbunden sind. Die AD/LN/ST-Ausgange definieren
eine Lange fiir den Speicher 212, eine Lange der Ubertragung zum Bestimmen, ob ein Burst-Zyklus durchzu-
fuhren ist oder nicht, und verschiedene Statussignale, z. B. ein Lese/Schreib-(R/W)Signal, Bytefreigaben, ein
Seitentreffersignal, eine Spensignal usw. DRAM-Anforderung/Gewahrung/Strobe/Steuer-(DRAM
RQ/GT/STB/CTL) Signale 628 sind mit einem DRAM-Speicherarbiter 638 und mit DRAM
RQ/GT/STB/CTL-Eingangen der Hash-Steuerung 602 verbunden. Der Ausgang des Mux 630 wird an
AD/LN/ST-Eingange einer DRAM-Speichersteuerung 636 geliefert, die weiter mit dem Speicher 212 durch den
Speicherbus 214 verbunden ist. Die Hash-Steuerung 602 hat einen Dateneingang (DIN) zum Empfangen von
Daten von einem Mem-Dataln-Ausgang der DRAM-Steuerung 636 Uber einen Datenbus 618.

[0147] Eine RX HCB-Schnittstelle 601 ist dem Bus 420 verbunden, die die MDO[31:0]-Signale einschlief3t,
und enthalt einen Datenausgang zum Liefern von Daten an einen ersten Mehrleitungs-Eingang eines Vierein-
gang-Daten-Mux 632 Uber einen Bus 620, wo der Mux 632 seinen Ausgang an MemDataOut-Ausgange der
DRAM-Steuerung 636 liefert. Die RX HCB-Schnittstelle 601 enthalt STB/CTL-Eingdnge zum Empfangen der
Strobe- und Steuersignale der DRAM RQ/GT/STB/CTL-Signale 628. Eine RX-Steuerung 604 ist mit dem Bus
420 verbunden und hat AD/LN/ST-Ausgange, die Uber einen Bus 612 mit dem zweiten Eingang des Mux 630
verbunden sind. Die RX-Steuerung 604 hat einen Datenausgang DOUT, der mit dem zweiten Eingang des Mux
632 Uber einen Bus 622 verbunden ist, einen Dateneingang DIN, der mit dem Bus 618 verbunden ist, SRAM
RQ/GT/STB/CTL-Eingadnge zum Empfangen von SRAM RQ/GT/STB/CTL-Signalen, die mit einem statischen
RAM/DRAM) verbunden sind, und DRAM RQ/GT/STB/CTL-Eingdnge zum Empfangen der DRAM
RQ/GT/STB/CTL-Eingadnge zum Empfangen der RAM RQ/GT/STB/CTL-Signale 628.

[0148] Eine TX HCB-Schnittstelle 605 ist mit dem Bus 420 verbunden, der die MDI[31:0]-Signale umfasst, und
hat einen Dateningang DIN, der mit dem Bus 618 verbunden ist, und STB/CTL-Eingange, die Strobe- und
Steuersignale der DRAM RQ/GT/STB/CTL-Signale 628 empfangen. Eine TX-Steuerung 606 ist mit dem Bus
420 verbunden und hat AD/LN/ST-Ausgéange, die Uber einen Bus 614 an den dritten Eingang des Mux 630 ge-

24/132

DE 697 31936 T2 2005.06.23

liefert werden, einen Datenausgang DOUT, der mit dem dritten Eingang des Mux 632 (iber einen Bus 624 ver-
bunden ist, einen Dateneingang DIN, der mit dem Bus 618 verbunden ist, SRAM RQ/GT/STB/CTL-Eingange
zum Empfangen der SRAM RQ/GT/STB/CTL-Signale 654 und DRAM RQ/GT/STB/CTL-Eingdnge zum Emp-
fangen der DRAM RQ/GT/STB/CTL-Signale 628. Die PCB-Schnittstelle 424 hat AD/LN/ST-Ausgange, die mit
dem vierten Eingang des Mux 630 Uber einen Bus 616 verbunden sind, einen Datenausgang DOUT, der mit
dem vierten Eingang des Mux 626 Uber einen Bus 626 verbunden ist, einen Dateneingang, der mit dem Bus
618 verbunden ist, SRAM RQ/GT/STB/CTL-Eingange zum Empfangen der SRAM RQ/GT/STB/CTL-Signale
654 und DRAM RQ/GT/STB/CTL-Eingdnge zum Empfangen der DRAM RQ/GT/STB/CTL-Signale 628.

[0149] Die Hash-Steuerung 602, die RX-Steuerung 604, die TX-Steuerung 606, die PCB-Schnittstelle 424,
die RX HCB-Schnittstelle 601 und die TX HCB-Schnittstelle 605 verwenden jeweils das STB-Signal zum Syn-
chronisieren des Datenflusses, wo die Geltendmachung des Strobe-Signals bestimmt, wenn Daten fiir einen
Lesezyklus gultig sind, oder wenn Daten fir einen Schreibzyklus zuriickgewonnen werden. Die CTL-Signale
sind verschiedenartige Steuersignale, wie z. B. ein Signal, das anzeigt, wenn ein Datenzyklus vollendet ist.

[0150] Der DRAM-Arbiter 638 ist weiter mit der DRAM-Steuerung 636 durch Speichersteuersignale
(MEMCTL) verbunden und liefert Mux-Steuersignale (MUXCTL) an die Auswahleingange der Multiplexer 630,
632. Die MEMCTL-Signale geben gewdhnlich den Anfang und das Ende jedes Speicherzyklusses an. Auf die-
se Weise schlichten die Hash-Steuerung 602, die RX-Steuerung 604, die TX-Steuerung 606 und die
PCB-Schittstelle 424 den Zugriff auf die DRAM-Steuerung 636, um einen Speicherzyklus in dem Speicher 212
auszufuhren, indem betreffende Anforderungssignale geltend gemacht werden. Der DRAM-Arbiter 638 emp-
fangt die Anforderungssignale und macht ein entsprechendes Gewahrungs-(GT)Signal an einer der anfordern-
den Vorrichtungen 602, 604, 606 oder 424 giltig, um so Zugriff auf diese Vorrichtung zu gewahren. Sobald
Zugriff gewahrt ist, macht der DRAM-Arbiter 638 die MUXCTL-Signale an den Multiplexern 630, 632 geltend
und ermoglicht Zugriff der DRAM-Steuerung 636 durch die ausgewahlte der Vorrichtungen 602, 604, 606 oder
424, um, wenn gewunscht, Speicherzyklen durchzufihren, und eines der MEMCTL-Signale wird geltend ge-
macht, um der DRAM-Steuerung 636 den Beginn des Zyklusses anzuzeigen. Die DRAM-Steuerung 636 setzt
oder negiert eines der MEMCTL-Signale, um die Vollendung eines Speicherzyklusses anzuzeigen.

[0151] Die Hash-Steuerung 602 kommuniziert mit der HASH REQ LOGIC 532, um die Hashing-Prozedur
durchzuflihren, um zu bestimmen, wie ein in der HASH REQ LOGIC 532 gespeicherer neuer Paketvorspann
zu behandeln ist. Die Hash-Steuerung 602 erfasst das gesetzte HASH_REQ* Signal, gewinnt die Quellen- und
Ziel-Medienzugangssteuer-(MAC)Adressen aus den HASH_DA_SA[15:0] Signalen zurtick und fihrt die Has-
hing-Prozedur zum Bestimmen der HASH_STATUS[1:0] Signale und zum Bereitstellen der Zielporthummer
auf den HASH_DSTPRTI[4:0] Signalen durch, wenn vorher im Speicher 212 gespeichert. Die RX-Steuerung
604 und die RX HCB-Schnittstelle 601 steuern und Ubertragen Daten von den RX BUFs 520, 522 in den Spei-
cher 212. Die TX-Steuerung 606 und die TX HCB-Schnittstelle 605 steuern und Gbertragen hauptsachlich Da-
ten von dem Speicher 212 an die TX BUFs 524, 526. Die PCB-Schnittstelle 424 ermdglicht der CPU 230 einen
direkteren Zugriff auf Daten im Speicher, einschlielich des Speichers 212 und des SRAM 650.

[0152] Das SRAM 650 ist mit einer SRAM-Steuerung 652 verbunden, die werter mit der RX-Steuerung 604,
der TX-Steuerung 606 und der PCB-Schnittstelle 424 Gber einen Bus 653 verbunden ist. Ein SRAM-Arbiter
651 ist mit der SRAM-Steuerung 652 durch Steuersignale SCTL verbunden ist auch mit den SRAM
RQ/GT/STB/CTL-Signalen 654 zum Steuern des Zugriffs auf das SRAM 650 durch die PCB-Schnittstelle 424
verbunden. Die TX-Steuerung 606 und die RX-Steuerung 604 steuern Gber den Bus 653 den Zugriff auf die
DRAM-Steuerung 636 in ahnlicher Weise wie der DRAM-Arbiter 638.

[0153] Der MCB 404 umfasst das SRAM 650 zum Speichern von Paketsteuerregistern und anderen Daten,
wie unter weiter beschrieben. Die Paketsteuerregister enthalten einen Satz von Zeigern auf eine RECEIVE
SECTOR CHAIN pro Port, eine TRANSMIT PACKET CHAIN pro Port und eine FREEPOOL CHAIN von freien
Speichersektoren im Speicher 212. Die Paketsteuerregister enthalten weiter Steuerinformation und Parameter
zum Ermoglichen der Steuerung des Flusses von Paketdaten in dem Netzwerkschalter 102. Der Speicher 212
enthalt einen Paketspeicherabschnitt, der als eine Vielzahl von zusammenhangenden und gleich groRen Sek-
toren organisiert ist. Die Sektoren werden anfangs mit Adresszeigern und dergleichen miteinander verbunden,
um die FREEPOOL CHAIN zu bilden. Sobald Paketdaten von einem Port empfangen werden, werden die Sek-
toren aus der FREEPOOL CHAIN gezogen und der RECEIVE SECTOR CHAIN fiir diesen Port hinzugefigt.
Feiner werden die Paketdaten zu einer oder mehr TRANSMIT PACKET CHAINSs fir einen oder mehr Zielports
verbunden, an die das Paket zum Ubertragen zu senden ist. Der Bus 653 ermdglicht der RX-Steuerung 604,
der TX-Steuerung 606 und der CPU-Schnittselle 436, auf die Paketsteuerregister zuzugreifen, die die Zeiger
auf die Paketketten von Daten im Speicher 212 enthalten.

25/132

DE 697 31936 T2 2005.06.23

[0154] Die DRAM-Steuerung 636 enthalt werter eine Speicher-Auffrischungslogik 660 zum Bewahren der Da-
ten im Speicher 212. Die Auffrischungslogik 660 kann entsprechend dem mit dem Speicherbus 214 verbunde-
nen Speichertyp arbeiten, einschlieSlich FPM DRAM, EDO DRAM oder Synchron-DRAM. Auf diese Weise
werden Auffrischungsfunktionen von der CPU 230 zum effizienteren Betrieb und zur verbesserten Leistung
entfernt. Ein 10-Bit Speicher-Auffrischungszahler (MRC), der sich in den MCB-Konfigurationsregistern 448 be-
findet, definiert die Zahl von Taktzyklen zwischen Auffrischungsanforderungen. Es ist erwlinscht, dass die Pe-
riode kleiner als oder gleich 15.625 ps ist. Die Vorgabe ist 208h, wo "h" einen Hexadezimalwert bezeichnet,
der eine Auffrischungsperiode von etwa 15.60 ps fir einen 30 ns CLK-Zyklus liefert. Bei Timeout macht der
MRC-Zahler ein Signal REFREQ an dem DRAM-Arbiter 638 gehend, der eines der MEMCTL-Signale an der
DRAM-Steuerung 636 geltend macht, das der Speicher-Auffrischungslogik 660 anzeigt, die Auffrischungszyk-
len durchzufiihren. Die MCB-Konfigurationsregister 448 umfassen ein Speichersteuerregister (MRC), das den
Speichertyp, die Geschwindigkeit und Konfiguration des Speichers 212 definiert. Zum Beispiel definieren 2 Bits
des MRC, ob der Speichertyp FPM, EDO oder Synchron-DRAM ist. Ein werteres Bit definiert die Speicherge-
schwindigkeit als entweder 50 oder 60 ns. Andere Bits definieren bestimmte Betriebsarten des gewahlten
DRAM-Typs und zeigen auch Fehler, z. B. Paritatsfehler, an.

[0155] Fig. 7A zeigt ein ausfihrlicheres Blockschaltbild des PCB 406. Der CPU-Bus 218 ist mit CPU-Schnitt-
stellenlogik 700 in der CPU-Schnittstelle 432 verbunden, wo die CPU-Schnittstellenlogik 700 werter durch den
Bus 701 mit einer QC/CPU-Schnittstelle 702 zum AnschlieRen des QC/CPU-Busses 204 verbunden ist. Die
CPU-Schnittstellenlogik 700 liefert Daten an einen 16-Byte Empfangspuffer RX BUF 706 in den FIFOs 430,
der Daten auf dem MCB-Bus 428 geltend macht. Der MCB-Bus 428 liefert Daten an einen 16-Byte Sendepuffer
TX BUF 708, ebenfalls in den FIFOs 430, zum Liefern von Daten an die CPU-Schnittstellenlogik 700. Die
MCB-Schnittstelle 426 steuert den Datenfluss zwischen der CPU-Schnittstellenlogik 700 und dem MCB-Bus
428. Die CPU-Schnittstellenlogik 700 ist dem RX BUF 706, dem TX BUF 708 und der MCB-Schnittstelle 426
durch Bussignale 703 verbunden.

[0156] Die CPU-Schnittstellenlogik 700 ist mit der Register-Schnittstelle 440 durch den Bus 442 verbunden,
wo die Register-Schnittstelle 440 den Zugriff auf andere Konfigurationsregister in dem EPSM 210 ermoglicht.
Die CPU-Schnittstellenlogik 700 ist auch mit einem Satz von PCB-Registern 704 durch den Bus 442 verbun-
den, zum Definieren des Eingabe/Ausgabe-(E/A)Raumes der CPU 230, z. B. Unterbrechungsregister, Konfi-
gurationsregister, Paketinformationsregister, speicherbezogene Register, Setup- und Statusregister, Schnitt-
stellen- und Uberwachungsregister, Statistikregister, Modusregister, Arbitrationsregister usw.

[0157] Wahrend des Einschaltens und Konfigurierens programmiert die CPU 230 Anfangs- oder Vorgabewer-
te in den PCB-Registern 704. Zum Beispiel programmiert die CPU 230 ein PORT SPEED REGISTER in den
PCB-Registern 705, das eine Bitmap ist, die die Geschwindigkeit jedes Ports definiert, die in der gezeigten
Ausfuhrung entweder 10 oder 100 MHz betragt. Ferner wird ein PORT TYP REGISTER programmiert, das
eine Bitmap ist, die den Typ von Port zwischen QC und TLAN definiert. Diese Register werden typischerweise
wahrend des Betriebs nicht gedndert, kbnnen aber, wenn gewiinscht, umprogrammiert werden.

[0158] Andere Register in den PCB-Registern 704 werden wahrend des Betriebs verwendet. Zum Beispiel
enthalten die PCB-Register 704 ein INTERRUPT SOURCE Register und ein POLLING SOURCE Register.
Das INTERRUPT SOURCE Register enhalt einen Satz von Unterbrechungsbits MCB_INT, MEM_RDY,
PKT_AVAIL, BUF_AVAIL, ABORT_PKT und STAT_RDY. Die PKT_AVAIL- und BUF_AVAIL-Unterbrechungs-
bits entsprechen den PCB_PKT_AVAIL- und PCB_BUF_AVAIL*-Signalen. Wenigstens ein Unterbrechungssi-
gnal CPU_INR* wird an die CPU 230 geliefert, die das INTERRUPT SOURCE Register liest, um die Quelle der
Unterbrechung zu bestimmen, wenn das CPU_INT* Signal geltend gemacht wird. Das MCB_INT-Unterbre-
chungsbit zeigt der CPU 230 an, dass in dem MCB 404 eine Unterbrechung aufgetreten ist. Das
MEM_RDY-Unterbrechungsbit informiert die CPU 230, dass die verlangten Daten im Speicher 212 in den
FIFOs 430 verfigbar sind. Das PKT_AVAIL-Unterbrechungsbit informiert die CPU 230, dass Paketdaten fir
die CPU 230 vorhanden sind. Das BUF_AVAIL-Unterbrechungsbit informiert die CPU 230, dass Pufferplatz fur
die CPU 230 vorhanden ist, um Paketdaten zu senden. Das ABORT_PKT-Unterbrechungsbit informiert die
CPU 230, dass das ABORT_IN*-Signal geltend gemacht wurde. Das STAT _RDY-Unterbrechungssignal infor-
miert die CPU 230, dass die verlangte statistische Information von den QC-Vorrichtungen 202 sich in den
FIFOs 430 befindet. Das POLLING SOURCE Register enthalt eine Kopie jedes Unterbrechungsbits, falls die
Unterbrechungen maskiert werden und der Abfragemodus verwendet wird.

[0159] Die CPU-Schnittstellenlogik 700 liefert Daten an einen 64-Byte Empfangspuffer RX BUF 710 in den

FIFOs 434, die Daten auf dem HCB-Bus 438 geltend machen. Ein Sendepuffer TX BUF 712 in den FIFOs 434
empfangt von dem HCB-Bus 438 zum Liefern der Daten an die CPU-Schnittstellenlogik 700. Die CPU-Schnitt-

26/132

DE 697 31936 T2 2005.06.23

stellenlogik 700 ist mit dem RX BUF 710, dem TX BUF 712 und der QC/HCB-Schnittstelle 436 durch Bussig-
nale 705 verbunden. Die QC/HCB-Schnittstelle 436 ist mit der CPU-Schnittstellenlogik 700, den RX und TX
BUFs 710, 712 und dem HCB-Bus 438 zum Steuern von Datenlibertragungen zwischen dem HCB 402 und
dem PCB 406 verbunden.

[0160] Fig. 7B ist ein ausflhrlicheres Blockschaltbild der CPU-Schnittstelle 700. Die CPU-Steuer- und Sta-
tussignale 218B werden durch eine Steuerlogik 713 geltend gemacht, die mit einer CPU-Tracker-Zustandsma-
schine 717 und einer Alternativspeichersteuer-Zustandsmaschine 718 verbunden ist. Der Adress- und Daten-
abschnitt 218a des CPU-Busses 218 ist ein gemultiplexter Bus, wo Daten von anderen Abschnitten des PCB
406 an eine Datenbus-Freigabelogik 716 zur Geltendmachung auf dem CPU-Adress- und Datenabschnitt
218a geliefert werden. Dir CPU 230 macht Adressen an einer Adressendecodier/Anforderungs-Erzeugungslo-
gik 714 geltend, die eine Vielzahl von Anforderungssignalen an andere Abschnitte des PCB 406 liefert, ein-
schlieRlich der CPU-Tracker-Zustandsmaschine 717 und der Alternativspeichersteuer-Zustandsmaschine
718. Ein Satz von Informations-Latches 715 emuigangt Adressen und Daten von der CPU 230 und macht ver-
riegelte Adressen und verriegelte Daten an anderen Abschnitten des PCB 406 geltend, wie unten werter be-
schrieben. CPU-Steuersignale werden zwischen der Adressendecodier/Anforderungs-Erzeugungslogik 714,
der CPU-Tracker-Zustandsmaschine 717 und der Alternativspeichersteuer-Zustandsmaschine 718 zum Uber-
wachen und Steuern von CPU-Zyklen bereitgestellt.

[0161] Fig.7C st ein ausflhrlicheres Blockschaltbild der QC/CPU-Schnittstellenlogik 702. Die
QC/CPU-Schnittstellenlogik 702 arbeitet allgemein, um eine relativ transparente Schnittstelle zwischen der
CPU 230 und den QC-Vorrichtungen 202 herzustellen, z. B. Umwandlung zwischen dem 32-Bit Format der
CPU 230 und dem 16-Bit Format der QC-Vorrichtungen 202. Ein QC REGISTER REQUEST Signal wird von
der Adressendecodier/Anforderungs-Erzeugungslogik 714 an eine CPU-Tracker-Zustandsmaschine 720 ge-
liefert, die mit einer Zerlegungs/Zusammensetzungs-Zustandsmaschine 722 zum Umwandeln zwischen 16-Bit
und 32-Bit Formaten verbunden ist. Die Zerlegungs/Zusammensetzungs-Zustandsmaschine 722 ist mit einem
Satz von Daten, Adressen- und Steuersignaltreibern und Empfangern 724 zum Verbinden mit der
CPU-Schnittstelle 700 tiber den Bus 701 und mit den QC-Vorrichtungen 202 durch den QC/CPU-Bus 204 ver-
bunden. Ein Statistikpuffer 726 empfangt Statistikdaten und andere Information von dem QC/CPU-Bus 204
zum Liefern der Daten an die CPU-Schnittstelle 700 Gber den Bus 701. Ein STATISTICS REQUEST Signal
wird von der Adressendecodier/Anforderungd-Erzeugungslogik 714 an eine Statistikanforderungs-Zustands-
machine geliefert, die mit der Zerlegungs/Zusammensetzungs-Zustandsmachine 722 und einer CPU-Bus-Zu-
standsmaschine 730 verbunden ist. Die CPU-Bus-Zustandsmachine 730 ist werter mit der Zerlegungs/Zusam-
mensetzungs-Zustandsmachine 722 und dem Satz von Daten-, Adressen- und Steuersignaltreibem und Emp-
fangern 724 verbunden. Auf diese Weise hat die CPU 230 eine relativ vollstandigen und unabhangigen Zugriff
auf die QC-Vorrichtungen 202 zum zu Gewinnen von Statistik und anderer Information der Ports 105 und auch
zum Modifizieren der Konfiguration der Ports 104, ohne den Datenfluss und den Betrieb des HSB 206 zu st6-
ren.

[0162] Die CPU 230 fordert den EPSM 210 auf, Statistik- und Statusinformation von den QC-Vorrichtungen
202 durch Schreiben in ein QC STATISTICS INFORMATION Register in den PCB-Registern 704 zu empfan-
gen. Die CPU 230 fordert Statistik-Information an, durch Bereitstellen einer Nummer, die einer der QC-Vorrich-
tungen 202 entspricht, einer Portnummer, der Nummer des Anfangsregisters fiir den angegebenen Port und
der Zahl fur den angegebenen Port zu lesender Register. Wie Fig. 7C gezeigt, bewirkt das Schreiben in das
QC STATISTICS INFORMATION Register, dass das QC STATISTICS REQUEST Signal geltend gemacht wird,
wo die Statistikanforderungs-Zustandsmachine 728 die angegebenen Anforderungen auf dem QC/CPU-Bus
204 durch den Satz von Daten-, Adressen- und Steuersignaltreibern und Empféangern 724 vornimmt. Die
CPU-Schnittstelle 700 fihrt die gewiinschten Lesezyklen auf der geeigneten QC-Vorrichtung(en) 202 unter
Verwendung der geeigneten CHIP_SELECTm* Signale durch und schreibt dann die Information in den Statis-
tikpuffer 726.

[0163] Sobald alle angeforderten Daten zuriickgewonnen und im Statistikpuffer 726 gespeichert sind, aktua-
lisiert die CPU 230 das STAT_RDY-Bit in dem POLLING SOURCE Register in den PCB-Registern 704 und
setzt das STAT_RDY-Unterbrechungsbit im INTRERUPT SOURCE Register. Der EPSM 210 macht das
CPU_INT™* Signal an der CPU 230 geltend, die durch Lesen des INTERRUPT SOURCE Registers 720 reagiert,
um die Quelle der Unterbrechung zu bestimmen. Wenn Unterbrechungen maskiert werden, erfasst die CPU
230 das STAT_RDY-Bitim POLLING SOURCE Register wahrend einer Abfrage-Routine. Auf diese Weise stellt
die CPU 230 fest, dass die Anforderung durch entweder eine Unterbrechung oder einen Abfragemechanismus,
wenn die Unterbrechungen maskiert werden, vollendet ist. Die STA_RDY-Unterbrechung wird, wenn ge-
winscht, programmatisch unterbrochen, wenn der Abfragemechanismus zu verwenden ist. Die CPU 230 ge-

27/132

DE 697 31936 T2 2005.06.23

winnt als Reaktion die ganze Statistikinformation aus dem Statistikpuffer in einem oder mehr aufeinanderfol-
genden Prozessorzyklen zuriick. Die Prozessorzyklen tber den CPU-Bus 218 kdnnen regulare Prozessorzy-
klen sein, sind aber vorzugsweise Burst-Zyklen zum Ubertragen groierer Datenmengen.

[0164] Naturlich kbnnen mehrere alternative Ausflihrungen erwogen werden. In einer ersten alternativen Aus-
fuhrung gibt die CPU 230 einfach eine Nummer aus, die einer der QC-Vorrichtungen 202 entspricht, und der
EPSM 210 sammelt entsprechend alle Daten aller Register 306 aller Ports der QC-Vorrichtungen 202. In einer
zweiten alternativen Ausfiihrung gibt die CPU 230 einfach eine globale Statistikanforderung aus, und die Daten
aller Register 306 aller QC-Vorrichtungen 202 werden gesammelt. Es ist jedoch anzumerken, dass die CPU
230 typischerweise Statistikinformation fur einen der Ports 104 zu einer Zeit bendtigt.

[0165] Man wird einsehen, dass die CPU 230 nur eine einzige Anforderung an den EPSM 210 richten muss,
um die ganze Statistikinformation fir jeden der Ports zuriickzugewinnen. Das heif3t, das QC STATISTICS IN-
FORMATION Register wird durch die CPU 230 in einem einzigen Befehl beschrieben, um die Anforderung vor-
zunehmen. Die CPU 230 ist daher frei fiir andere Aufgaben, antstatt auf Antworten von den QC-Vorrichtungen
202 zu warten. Stattdessen fuhrt der EPSM 210 alle einzelnen Statistik-Leseanforderungen uber den
QC/CPU-Bus 204 aus und gewinnt alle Daten. Die CPU 230 wird durch ein Unterbrechungssignal oder einen
Abfragemechanismus informiert und ist in der Lage, alle angeforderte Information zuriickzugewinnen. Dies re-
sultiert in einer effizienteren Nutzung der Prozessorzeit der CPU 230.

[0166] Fig. 7D ist ein ausfuhrlicheres Blockschaltbild der Schnittstelle zwischen der CPU-Schnittstelle 700
und dem MCB 404. Ein Speicheranforderungssignal von der Adressendecodier/Anforderungs-Erzeugungslo-
gik 714 wird einer Speicher-FIFO-Zugriffs-Zustandsmachine 740 zugefihrt, die mit Adressenerzeugungslogik
746 und FIFO-Status- und Unterbrechungs-Erzeugungslogik 742 verbunden ist. Ein FIFO-Block 748, der den
RX BUF 706 und den TX BUF 708 enthalt, ist mit der Adressenerzeugungslogik 746 und der FIFO-Status- und
Unterbrechungs-Erzeugungslogik 742 verbunden. Die Adressenerzeugungslogik 746 und die FIFO-Status-
und Unterbrechungs-Erzeugungslogik 742 sind beide mit einem Satz von Daten-, Adressen- und Steuersignal-
treibem und Empfangern 744 zum Verbinden mit der CPU-Schnittstelle 700 Gber den Bus 703 und mit dem
MCB 404 durch den MCB-Bus 428 verbunden.

[0167] Eiq.7E ist ein ausfuhrlicheres Blockschaltbild der Schnittstelle zwischen der CPU-Schnittstelle 700
und dem HCB 402. Ein Paketlese-Anforderungssignal von der Adressendecodier/Anforderungs-Erzeugungs-
logik 714 wird einer Sendepaket-Zustandsmaschine 760 zugefihrt, die mit einem Sendepuffer 762 verbunden
ist, der den TX BUF 712 enthalt. Ein Paketschreib-Anforderungssignal von der Adressendecodier/Anforde-
rungs-Erzeugungslogik 714 wird einer Empfangspaket-Zustandsmachine 770 zugefuhrt, die den RX BUF 710
enthalt. Der Sendepuffer 762 und der Empfangspuffer 770 sind beide mit einem Satz von Daten-, Adressen-
und Steuersignaltreibern und Empfangern 764 zum Verbinden mit der CPU-Schnittstelle 700 Uber den Bus 705
und mit dem HCB 402 durch den HCB-Bus 438 verbunden.

[0168] Fig. 8A zeigt ein vereinfachtes Blockschaltbild, das die TPI 220 ausfihrlicher veranschaulicht. Die TPI
220 Ubertragt Daten zwischen dem HSB 206 und dem PCI-Bus 222, um Netzwerkdaten zwischen den TLANs
226 und dem EPSM 210 zu Gbermitteln. Die TPl 220 arbeitet als ein Slave auf dem HSB 206, antwortet auf
Abfragen des EPSM 210 und Ubertragt Daten an den und von dem EPSM 210 in einer ahnlichen Weise wie
die QC-Vorrichtungen 202. Auf der Seite des PCI-Busses 222 (bertragt die TPI 220 Netzwerkdaten an jedes
der vier TLANs 226 (Port24, Port25, Port26 und Port27) tiber den PCI-Bus 222 und empfangt Netzwerkdaten
von denselben.

[0169] Die TPI 220 umfasst eine HSB-Steuerung 804, eine PCI-Bussteuerung 802 und einen Speicher 806.
Die PCI-Bussteuerung 802 verbindet den PCI-Bus 222 entsprechend den PCI-Standards und erméglicht Da-
tentbertragungen zwischen der TPl 220 und dem PCI-Bus 222. Die PCI-Standards sind von dem 'Inter Ar-
chitecture Lab' zusammen mit seinen Industriepartnem definiert. Die HSB-Steuerung 804 verbindet den HSB
206 entsprechend der definierten Operation des HSB 206 und ermdglicht Datenlibertragungen zwischen der
TPI 220 und dem EPSM 210. Der Speicher 806 kann zentralisiert oder verteilt sein und umfasst eine Vielzahl
von Datenpuffern 807 und einen Steuerlistenspeicher 808. Die Datenpuffer 807 liefern voriibergehende Spei-
cherung, um die Datenlbertragung zwischen dem PCI-Bus 222 und dem HSB 206 zu erleichtern. Der Steuer-
listenspeicher 808 ermdglicht den Busmasterbetrieb der TLANs auf dem PCI-Bus 222.

[0170] Eia.8B =zeigt ein ausfuhrlicheres Bockschaltbild der TPl 220. Die TPl 220 enthalt eine

PCI-Bus-Schnittstellenlogik 810, die weiter Puffer, Treiber und verwandte Schaltungen enthalt, um den
PCI-Bus 222 schnittstellenmaRig zu verbinden. Der PCI-Bus 222 der vorliegenden Ausflihrung hat eine Daten-

28/132

DE 697 31936 T2 2005.06.23

breite von 32 Bits und arbeitet bei einer Takfrequenz von 33 MHz. Es versteht sich jedoch, dass der PCI-Bus
eine andere Datenbreite haben kann und bei jeder gewlinschten oder verfiigbaren Taktfrequenz, wie z. B. 66
MHz, arbeiten kann. Die TPl 220 enthalt einen PCI-Arbiter 811, der zwischen jedem der TLANs 226, der TPI
220 und der CPU 230 fir Zugriff und Steuerung des PCI-Busses 222 schlichtet. Das heif3t, jedes der TLANs
226, die TPI 220 und die CPU 230 machen ein betreffendes von mehreren Anforderungssignalen REQm gel-
tend, um die Steuerung des PCI-Busses 222 zu verlangen, wo die REQm Signale durch den PCI-Arbiter 811
empfangen werden. Als Reaktion gewahrt der PCI-Arbiter 811 einer der anfordernden Vorrichtungen die Steu-
erung, indem er ein betreffendes Gewahrungssignal GNTm geltend macht. Der PCI-Arbiter 811 fihrt in der ge-
zeigten Ausfiihrung eine Umlauf-Schlichtung durch, obwohl der PCI-Arbiter 811 jedes andere gewiinschte Ar-
bitrationsschema verwenden kann. Der PCl-Arbiter 811 macht TLAN-Auswahlisignale (TSELm) geltend, um ein
bestimmtes TLAN 226 zu identifizieren, nachdem ihm die Steuerung des PCl-Busses 222 gewahrt wurde.

[0171] Die TPI 220 enthalt eine HSB-Datenlbertragungs-Schnittstellenlogik 819, die Puffer, Treiber und zu-
gehdrige Schaltungen enthélt, um die TPl 220 schnittstellenmaflig mit dem HSB 206 zu verbinden. Die
HSB-Datenubertragungs-Schnittstellenlogik 819 enthalt Lese-Latches 819a und Schreib-Latches 819b zum
Durchfihren von gleichzeitigen Lese- und Schreibzyklen auf dem HSB 206. Die HSB-Datenilbertra-
gungs-Schnittstellenlogik 819 enthalt eine Portstatuslogik 820 zum Antworten auf EPSM 210 Abfragen und
zum Uberwachen der auf dem HSB 206 ausgefiinrten Zyklen. Das heilt, die Portstatuslogik 820 empfangt und
erfasst Gelmachungen des STROBE* Signals durch den EPSM 210 und antwortet durch Geltendmachen der
PKT_AVAIL[6]* und BUF_AVAIL[6]* Signale in einer gemultiplexten Weise basierend auf dem Datenstatus der
TPI 220. Die Portstatuslogik 820 erfasst auch Lese- und Schreibzyklen auf dem HSB 2086, die fir die TP 220
bestimmt sind, durch Erfassen der READ_OUT_PKTI[6]* und WRITE_IN_PKTI[6]* Signale. Wahrend Ubertra-
gungen von Paketdaten von der TPI1 220 an den EPSM 210 Uber den HSB 206 macht die Portstatuslogik 820
die SOP* und EOP* Signale wahrend des HSB 206 Buszyklusses geltend, wenn der Anfang oder das Ende
eines Pakets (ibertragen wird. Wahrend Ubertragungen von Paketdaten von dem EPSM 210 an die TPI 220
Uber den HSB 206 liest die Portstatuslogik 820 die Signale SOP* und EOP*, um festzustellen, ob die empfan-
genen Daten der Anfang eines Pakets oder das Ende eines Pakets sind.

[0172] Die Datenpuffer 807 umfassen mehrere bidirektionale FIFO-Datenpuffer 807a, 807b, 807¢ und 807d
(807a—d), die jeweils sowohl einen 32 Bit breiten Sendepuffer (TPl TX FOFO) als auch einen 32 Bit breiten
Empfangspuffer (TPl RX FIFO) enthalten. In der gezeigten Ausfihrung entsprechen die Datenpuffer 807a,
807b, 807c und 807d den Ports Port24, Port25, Port26 bzw. Port27. Jeder TPl RX FIFO empfangt Daten von
einem betreffenden TLAN 226 Gber den PCI-Bus 222, wo die Daten von der TPI 220 an den EPSM 210 Uber
den HSB 206 gesendet werden. Jeder TPl TX FIFO empfangt Daten von dem EPSM 210 tiber den HSB 206,
wobei die Daten von der TPI 220 an ein betreffendes TLAN 226 Gber den PCI-Bus 222 gesendet werden.

[0173] Empfangslisten-Decodierlogik 812 ist mit der PCI-Bus-Schnittstellenlogik 810 verbunden und spei-
chert wenigstens eine Empfangssteuerliste in einem Empfangssteuelistenspeicher (RX CNTL LIST) 808a, der
Teil des Steuerlistenspeichers 808 ist. Die Empfangslisten-Decodierlogik 812 reagiert auf die Geltendmachung
einer RECEIVE LIST MEMORY ADDRESS, die als eine Adresse auf dem PCI-Bus 222 geltend gemacht ist,
durch Schreiben einer Empfangssteuerliste aus der RX CNTL LIST 808a als Daten in den PCI-Bus 222. In der
gezeigten Ausfiihrung halt die RX CNTL LIST 808a eine Empfangssteuerliste zu einer Zeit. Das heif3t, jeder
TLAN 226 erlangt die Steuerung des PCI-Busses 222 und macht die RECEIVE LIST MEMORY ADDRESS auf
dem PCI-Bus 222 geltend und empfangt eine entsprechende Empfangssteuerliste von der RX CNTL LIST
808a. Die Empfangssteuerliste enthalt eine PACKET DATA MEMORY BASE ADDRESS zur Verwendung
durch das TLAN 226, die eine Adresse ist, die angibt, wo die empfangenen Daten zu speichern sind. Als Re-
aktion auf den Empfang eines Datenpakets von seinem betreffenden Port 110 erlangt das TLAN 226 die Steu-
erung des PCI-Busses 222 zurlick, um Daten aus dem empfangenen Datenpaket unter Verwendung der ge-
speicherten Adresse in der vorher geholten Empfangssteuerliste an die TPI 220 zu tbertragen. Wie weiter un-
ten beschrieben, schlichtet das TLAN 226 und erhalt die Steuerung des PCI-Busses 222 und macht die PA-
CKET DATA MEMORY ADDRESS wahrend eines Schreibzyklusses auf dem PCI-Bus 222 geltend.

[0174] Eine Empfangsdaten-Decodierlogik 813, eine PCl RX FIFO Steuerlogik 817, der PCl-Arbiter 811 und
eine FIFO-Synchronisationslogik 818 steuern den Fluss von empfangenen Daten von der PCI-Bus-Schnittstel-
lenlogik 810 in den entsprechenden TPl TX FIFO. Die PCI RX FIFO Steuerlogik 817 enthalt einen Eingang,
um Daten von der PCI-Bus-Schnittstellenlogik 810 zu empfangen, und mehrere wahlbare Ausgange, die je-
weils mit dem Eingang eines entsprechenden TPl RX FIFO verbunden sind. Der PCI-Arbiter 811 liefert die
TSELm Signale an die FIFO-Synchronisationslogik 818, die entsprechende PCI-Pufferauswahlsignale (PB-
SELm) an der PCI RX FIFO Steuerlogik 817 geltend macht, um den geeigneten TPI RX FIFO basierend auf
dem einzelnen TLAN 226, dem die Steuerung des PCIl-Busses 222 gewahrt wurde, auszuwahlen. Die Emp-

29/132

DE 697 31936 T2 2005.06.23

fangsdaten-Decodierlogik 813 empfangt und decodiert die PACKET DATA MEMORY ADDRESS, die durch
Ausfihren eines Schreibzyklusses auf dem PCI-Bus 222 durch das TLAN 226 geltend gemacht wurde, und
macht als Reaktion ein Empfangsfreigabesignal (REN) an der PCI RX FIFO Steuerlogik 817 geltend, um der
PCI RX FIFO Steuerlogik 817 zu ermdglichen, Daten zu dem ausgewahlten TPl RX FIFO zu leiten.

[0175] Es wird angemerkt, dass ein bidirektionaler Datenfluss zwischen dem PCI-Bus 222 und dem HSB 206
durch die Datenpuffer 807 stattfindet. Der PCI-Bus 222 und der HSB 206 arbeiten in einer Ausflihrung bei der
gleichen Geschwindigkeit, z. B. bei einem 33 MHz Takt, kénnen aber in alternativen Ausfihrungen bei ver-
schiedenen Taktfrequenzen arbeiten. Zum Beispiel arbeitet in einer anderen Ausfiihrung der HSB 206 bei 33
MHz, wahrend der PCI-Bus 222 bei 66 MHz arbeitet. Die TPI 220 ist so implementiert, dass sie den Datenfluss
trotz der unterschiedlichen Taktgeschwindigkeiten handhaben und synchronieren kann. Jeder TPI RX FIFO
und TPI TX FIFO der Datenpuffer 807a—d wird vorzugsweise als ein Ringpuffer implementiert, wobei Zeiger
auf beiten Seiten zum Schreiben und Lesen von Daten unterhalten werden. Die FIFO-Synchronisationslogik
818 abeitet allgemein, um die Zeiger auf beiden Seiten jedes FIFO zu synchronisieren, zu unterhalten und zu
aktualisieren, um sicherzustellen, dass Daten richtig in den geeigneten TPI FIFO geschrieben oder daraus ge-
lesen werden.

[0176] Wie oben erwahnt, ist jeder TPI RX FIFO als ein Ringpuffer implementiert. Die PCl RX FIFO Steuer-
logik 817 enthalt mehrere PCI-Empfangszeiger (PClI RX PTRs), einen Zeiger fur jeden TPl RX FIFO, um auf
die nachste Stelle zu zeigen oder sie zu adressieren, um ein DWORD (32 Bit) in dem ausgewahlten TPI RX
FIFO zu empfangen. In dhnlicher Weise enthalt die HSB RX FIFO Steuerlogik 821, die sich auf der anderen
Seite jedes TPl RX FIFO befindet, mehrere "synchronisierte" PCI Empfangszeiger (PCl RX SPTRs), von de-
nen jeder eine synchronisierte Kopie eines entsprechenden PCI RX PTR ist. Zusammen mit den PBSELm Si-
gnalen, um den geeigneten TPl RX FIFO auszuwahlen, macht die FIFO-Synchronisationslogik 818 auch ein
entsprechendes einer Vielzahl von PCI-Zahlsignalen (PCNTm) geltend, um den geeigneten PCI RX PTR in der
PCI RX FIFO Steuerlogik 817 synchron zu aktualisieren oder zu inkrementieren. Die FIFO-Synchronisations-
logik 818 macht werter ein entsprechendes einer Vielzahl von HSB-Zahlsignalen (HCNTm) geltend, um einen
entsprechenden PCl RX SPTR in der HSB RX FIFO-Steuerlogik 821 synchron zu aktualisieren oder zu inkre-
mentieren. Auf diese Weise wird ein Zeiger auf beiden Seiten jedes TPI RX FIFO bereitgestellt, um anzuzei-
gen, wo Daten einzufligen sind.

[0177] Ein PCI TX FIFO Steuerlogik 816 erfasst Daten in jedem der TPl TX FIFOs und veranlasst die TPI 220,
den PCI-Bus 222 aufzufordern und die Steuerung desselben zu erlangen, einen Befehl an ein TLAN 226 ent-
sprechend dem TPI TX FIFO, der Daten zum Senden hat, zu senden. Die PCI TX FIFO Steuerlogik 816 greift
auf die Adressen des geeigneten TLAN 226 aus einem Satz von TPI-Steuerregistern 846 zu. Die TPl 220
schreibt einen Befehl in das geeignete TLAN 226 und stellt eine TRANSMIT LIST MEMORY BASE ADDRESS
bereit, um das TLAN 226 zu veranlassen, anschlieend eine Sendesteuerliste von der TPT 220 unter Verwen-
dung der TRANSMIT LIST MEMORY BASE ADDRESS anzufordern.

[0178] Eine Sendelisten-Decodierlogik 814 ist mit der PCI-Bus-Schnittstellenlogik 810 verbunden und spei-
chert wenigstens eine Sendesteuerliste in einem Sendesteuerlistenspeicher (TX CNTL LIST) 808b, der Teil
des Steuerlistenspeichers 808 ist. Die Sendelisten-Decodierlogik 814 reagiert die auf Geltendmachung der als
eine Adresse auf dem PCI-Bus 222 geltend gemachten TRANSMIT LIST MEMORY BASE ADDRESS durch
Schreiben einer Sendesteuerliste aus der TX CNTL LIST 808b als Daten in den PCI-Bus 222. In der gezeigten
Ausfihrung halt die TX CNTL LIST 808b eine Sendesteuerliste zu einer Zeit. Auf diese Weise erlangt jedes
TLAN 226 die Steuerung des PCI-Busses 222 und macht die TRANSMIT LIST MEMORY BASE ADDRESS
auf dem PCI-Bus 222 geltend und empfangt eine entsprechende Sendesteuerliste von der TX CNTL LIST
808b. Nach Ruckgewinnung der Sendesteuerliste fihrt das TLAN 226 die Sendesteuerung durch, indem es
den PCI-Bus 222 auffordert und die Steuerung desselben erlangt, einen Lesezyklus durchzufihren, um die Da-
ten aus dem entsprechenden TPI TX FIFO der TPl 220 mittels der TRANSMIT LIST MEMORY BASE
ADDRESS zuriickzugewinnen.

[0179] Eine Sendedaten-Decodierlogik 815, die PCl TX FIFO Steuerlogik 816, der PCl-Arbiter 811 und die
FIFO-Synchronisationslogik 818 steuern den Fluss von Daten von jedem TPI TX FIFOs der Datenpuffer 807
auf den PCI-Bus 222. Die PClI TX FIFO Steuerlogik 816 enthalt einen Ausgang, um Daten an die
PCI-Bus-Schnittstellenlogik 810 zu liefern, und mehrere Eingange, die jeweils mit einem Ausgang eines ent-
sprechenden der TPl TX FIFOS verbunden sind. Wenn ein TLAN 226 einen Lesezyklus auf dem PCI-Bus 222
durchfihrt, um Daten zu lesen, liefert der PCI-Arbiter 811 die TESLm Signale an die FIFO-Synchronisations-
logik 818, die die PBSELm Signale an der PCI TX FIFO Steuerlogik 816 geltend macht, um den entsprechen-
den TPI TX FIFO basierend auf dem einzelnen TLAN 226, das die Steuerung des PCI-Busses 222 hat, aus-

30/132

DE 697 31936 T2 2005.06.23

zuwahlen. Die Sendedaten-Decodierlogik 815 empfangt und decodiert die durch das TLAN 226 geltend ge-
machte PACKET DATA MEMORY BASE ADDRESS und macht als Reaktion ein Freigabesignal TEN an der
PCI TX FIFO Steuerlogik 816 geltend, um die Ubertragung von Daten an den ausgewéahiten TPI TX FIFO zu
ermdglichen. Es wird angemerkt, dass die PBSELm Signale sowohl an die PCI RX FIFO Steuerlogik 817 als
auch an die PCI TX FIFO Steuerlogik 816 angelegt werden, und dass die Signale TEN und REN zwischen der
PCI RX FIFO Steuerlogik 817 und der PCI TX FIFO Steuerlogik 816 abhangig von dem Typ des Zyklusses und
der Richtung des Datenflusses auswahlen.

[0180] Jeder TPI TX FIFO ist in der gezeigten Ausfuhrung als ein Ringpuffer implementiert. Die PCI TX FIFO
Steuerlogik 816 enthalt mehrere PCI-Sendezeiger (PCl TX PTRs), einen Zeiger fur jeden TPI TX FIFO, um auf
die nachste Stelle zu zeigen oder sie zu adressieren, von der ein DWORD von Daten zu lesen ist. In ahnlicher
Weise enthalt die HSB TX FIFO Steuerlogik 822, weiter unten beschrieben, die sich auf der anderen Seite je-
des TPI TX FIFO befindet, mehrere "synchronisierte" PCl Sendezeiger (PCI TX SPTRs), von denen jeder eine
synchronisierte Kopie eines entsprechenden PCI TX PTR ist. Die FIFO-Synchronisationslogik 818 macht ein
entsprechendes der PCNTm Signale geltend, um den geeigneten PCI TX PTR zu inkrementieren, und ein ent-
sprechendes der HCNTm Signale, um den geeigneten PCI TX SPTR jedes Mal zu inkrementieren, wenn ein
DWORD von Daten von der PCI TX FIFO Steuerlogik 816 an den PCI-Bus 222 angelegt wird. Auf diese Weise
wird ein Zeiger auf beiden Seiten jedes TPI TX FIFO bereitgestellt, um anzuzeigen, wo Daten zu lesen sind.

[0181] Die HSB RX FIFO Steuerlogik 821 hat mehrere wahlbare Eingange, die jeweils mit einem Ausgang
eines entsprechenden der TPI RX FIFOs verbunden sind. Die HSB RX FIFO Steuerlogik 821 hat einen Aus-
gang zum Liefern der Daten an die HSB-Datenlibertragungs-Schnittstellenlogik 819 zur Geltendmachung auf
dem HSB 206. Die HSB TX FIFO Steuerlogik 822 hat mehrere wahlbare Ausgange, die jeweils mit einem Ein-
gang eines entsprechenden der TPl TX FIFOS verbunden sind. Die HSB TX FIFO Steuerlogik 822 hat einen
Eingang zum Empfangen von Daten der HSB-Datenubertragungs-Schnittstellenlogik 819 von dem HSB 206.

[0182] Die HSB RX FIFO Steuerlogik 821, die Portstatuslogik 820 und die FIFO-Synchronisationslogik 818
steuern den Datenfluss zwischen den TPI RX FIFOs und den Datenpuffern 807a—d und dem HSB 206 wahrend
der Datenlibertragungen von der TPI 220 an den EPSM 210. Die Portstatuslogik 820 erfasst die Geltendma-
chung des READ_OUT_PKTI[6]* Signals, das einen Lesezyklus auf dem HSB 206 anzeigt, und decodiert die
PORT_NO[1:0] Signale, um den entsprechenden TPI TX FIFO des gewahlten Ports zu identifizieren. Das
heifl3t, der EPSM 210 macht PORT_NOI1:0] Signale 00, 01, 10 oder 11 geltend, um den TPl RX FIFO eines
der Datenpuffer 807a, 807b, 807c oder 807d fur den Port Port24, PORT25, PORT26 oder PORT27 auszuwah-
len. Die Portstatuslogik 802 macht Portauswahlsignale (PSELm) an der FIFO-Synchronisationslogik 818 gel-
tend, die als Reaktion entsprechende HSB-Auswahlsignale (HBSELm) geltend macht, um einen Ausgang der
mit dem entsprechenden TPl RX FIFO verbundenen HSB RX FIFO Steuerlogik 821 auszuwahlen. Ferner
macht die Portstatuslogik 820 ein HSB-Freigabesignal (HREN) geltend, um der HSB RX FIFO Steuerlogik 821
zu ermoglichen, die Daten an die HSB-Datenubertragungs-Schnittstellenlogik 819 zur Geltendmachung auf
dem HSB 206 auszugeben.

[0183] Die HSB RX FIFO Steuerlogik 821 enthalt einen HSB-Empfangszeiger (HSB RX PTR) fur jeden TPI
RX FIFO, um die einzelnen Daten in dem TPI RX FIFO zu lokalisieren. Die FIFO-Synchronisationslogik 818
macht ein entsprechendes der HCNTm Signale geltend, um den entsprechenden HSB RX PTR des ausge-
wahlten TPI RX FIFO fur jedes aus dem TPI RX FIFO gelesene DWORD zu aktualisieren oder zu dekremen-
tieren. Die PCI RX FIFO Steuerlogik 817 enthalt auch einen entsprechenden "synchronisierten" HSB-Emp-
fangszeiger (HSB RX SPTR), der durch die FIFO-Synchronisationslogik 818 durch Geltendmachen eines ent-
sprechenden der PCNTm Signale dekrementiert wird. Auf diese Weise hat die HSB RX FIFO Steuerlogik 821
zwei Zeiger fur jeden TPI RX FIFO, einschlie3lich des PCI RX SPTR, der anzeigt, wo Daten zu schreiben sind,
und des HSB RX PTR, der anzeigt, wo Daten zu lesen sind. Die Portstatuslogik 820 greift auch auf diese Zeiger
zu, um die Menge an gultigen Daten oder die Zahl glltiger Datenbytes in jedem TPl RX FIFO zu gewinnen.
Diese Anzahl wird mit einer entsprechenden RBSIZE (entsprechend dem TBUS-Wert) fir dem HSB 206 ver-
glichen, um zu bestimmen, wie die PKT_AVAIL[6]* Signale als Reaktion auf das STROBE* Signal geltend zu
machen sind.

[0184] Die HSB TX FIFO Steuerlogik 822, die Portstatuslogik 820 und die FIFO-Synchronisationslogik 818
steuern den Datenfluss zwischen jedem TPl TX FIFO und dem HSB 206 wahrend Datenlbertragungen von
der EPSM 210 an die TPI 220. Die Portstatuslogik 820 erfasst die Geltendmachung des WRITE_IN_PKT[6]*
Signals und bestimmt die Portnummer aus den PORT_NO[0:1] Signalen wahrend eines von dem EPSM 210
auf dem HSB 206 ausgefiihrten Schreibzyklusses. Die Portstatuslogik 820 macht entsprechend die PSELm
Signale und ein HSB-Sendefreigabesignal (HTEN) geltend, um den geeigneten TPI TX FIFO zu bezeichnen.

31/132

DE 697 31936 T2 2005.06.23

Die FIFO-Synchronisationslogik 818 macht als Reaktion die HBSELm Signale geltend, um den entsprechen-
den Eingang der HSB TX FIFO Steuerlogik 822 zu dem geeigneten TPl TX FIFO auszuwahlen. Das HTEN-Si-
gnal ermoglicht der HSB TX FIFO Steuerlogik 822, die Daten von der HSB-Datenlbertragungs-Schnittstellen-
logik 819 zur Geltendmachung an dem ausgewahlten TPI TX FIFO zu empfangen.

[0185] Die HSB TX FIFO Steuerlogik 822 enthalt einen HSB-Sendezeiger (HSB TX PTR) fur jeden TPI TX
FIFO, um die einzelne Datenstelle in dem TPI TX FIFO aufzufinden, um Daten zu schreiben. Die FIFO-Syn-
chronisationslogik 818 macht ein entsprechendes der HCNTm Signale geltend, um den entsprechenden HSB
TX PTR des gewahlten TPI TX FIFO fir jedes in den gewahlten TPl TX FIFO geschriebene DWORD zu aktu-
alisieren oder zu inkrementieren. Ferner enthalt die PCI TX FIFO Steuerlogik 816 einen entsprechenden "syn-
chronisierten" HSB-Sendezeiger (HSB TX SPTR), der durch die FIFO-Synchronisationslogik 818 durch Gel-
tendmachen eines der PCNTm Signale inkrementiert wird. Auf diese Weise hat die HSB TX FIFO Steuerlogik
822 zwei Zeiger fur jeden TPl TX FIFO, einschlief3lich des PCI TX SPTR, der anzeigt, wo Daten zu lesen sind,
und des HSB TX PTR, der anzeigt, wo Daten zu schreiben sind. Die Portstatuslogik 820 greift auch auf diese
Zeiger zu, um die Menge an verfugbarem Platz oder die Zahl in jedem TPI TX FIFO vorhandener leerer Da-
tenbytes zu gewinnen. Dieser Wert wird mit einer entsprechenden XBSIZE (entsprechend den TBUS-Wert) fir
den HSB 206 verglichen, um zu bestimmen, wie die BUF_AVAIL[6]* Signale als Reaktion auf das STROBE*
Signal geltend zu machen sind.

[0186] Ein Satz von TPI PCl Konfigurationsregistern 835 ist in der TPl 220 bereitgestellt und mit der
PCI-Bus-Schnittstellenlogik 810 zum Zugriff Uber den PCI-Bus 222 verbunden. Ferner sind die TPI-Steuerre-
gister 846 bereitgestellt und mit verschiedenen Vorrichtungen in der TPI 220 und der PCI-Bus-Schnittstellen-
logik 810 zum Zugriff Gber den PCI-Bus 222 verbunden. Der Inhalt und die Struktur dieser Register 846 und
835 werden unten werter beschrieben. Die HSB-Datenubertragungs-Schnittstellenlogik 819 enthalt auch ein
PACKET SIZE Anhangerregister 819c¢. Die HSB-Datenubertragungs-Schnittstellelogik 819 erfasst und spei-
chert das erste DWORD jedes von dem EPSM 210 gesendeten Datenpakets in dem PACKET SIZE Anhan-
gerregister 819¢ und schreibt dann den Inhalt des PACKET SIZE Registers 819c¢ in die TX CNTL LIST 808b
der Sendelisten-Decodierlogik 814.

[0187] FEig. 8C ist ein Blockschaltbild, das die Konfiguration und Funktionalitat jedes der TLANs 226 veran-
schaulicht. Das TLAN 226 enthalt einen Ethernet-Port 110, eine PCI-Busschnittstelle 824 und einen zwischen
den Ethernet-Port 110 und die PCI-Busschnittstelle 824 geschalteten Speicher 825. Der Ethernet-Port 110 ent-
halt eine geeignete Buchse, um einen kompatiblen Stecker eines 100 Mb Ethernet-Segments 114 aufzuneh-
men, um Paketdaten von einem entsprechenden Netzwerk 112 zu empfangen und Paketdaten an dasselbe zu
senden. Der Ethernet-Port 110 liefert empfangene Paketdaten an Datenpuffer 826 im Speicher 825. Der Ether-
net-Port 110 gewinnt Paketdaten aus den Datenpuffern 826 zuriick und sendet die Paketdaten an ein Ether-
net-Segment 114.

[0188] Das TLAN 226 enthalt einen Satz von Registern 828 in dem Speicher 825 zum Steuern seines Be-
triebs. Die Register 828 umfassen ein Befehlsregister 828a zum Ermdglichen einer externen Vorrichtung, Be-
fehle durch den PCI-Bus 222 einzufiihren. Die Register 828 umfassen werter ein Kanalparameterregister 828b
zum Speichern einer Adresse, um auf eine Befehlsliste von einem externen Speicher durch den PCI-Bus 222
zuzugreifen. Das Befehlsregister 828a enthalt ein GO-Bit (nicht gezeigt), das das TLAN 226 anweist, eine Be-
fehlsliste zuriickzugewinnen und auszufiihren. Das Befehlsregister 828a enthalt auch ein RX/TX-Bit (nicht ge-
zeigt), das das TLAN 226 anweist, eine Empfangsbefehlsliste (fir den RX-Fall) oder eine Sendebefehlsliste
(fir den TX-Fall) zuriickzugewinnen und auszuflihren. Der Speicher 825 enthalt einen Listenpuffer 827 zum
Speichern gegenwartiger Steuerlisten, wo der Listenpuffer 827 weiter einen Empfangssteuerlistenpuffer 827a
zum Speichern der gegenwartigen Empfangssteuerliste und einen Sendesteuerlistenpuffer 827b zum Spei-
chern der gegenwartigen Sendesteuerliste enthalt.

[0189] Die PCI-Busschnittstelle 824 enthalt geeignete Logik zum Verbinden mit dem PCI-Bus 222, um Daten-
Ubertragungen zwischen der TPI 220 und dem TLAN 226 durch Arbeiten als ein Busmaster des PCIl-Busses
222 wahrend der Datenlbetragung zu steuern. Eine externe Vorrichtung, z. B. die TPI 220 oder die CPU 230,
schreibt eine Adresse in das Kanalparameterregister 828b und schreibt einen Befehl in das Befehlsregister
828a. Das TLAN 226 macht als Reaktion ein REQm Signal geltend, um fir den PCI-Bus 222 zu schlichten.
Wenn ein GNTm Signal empfangen wird, fihrt das TLAN 226 einen Zyklus auf dem PCI-Bus 222 aus, um eine
angegebene Befehlsliste zurlickzugewinnen und im Listenpuffer 827 zu speichern. Der Befehl wird als ein Sen-
debefehl angesehen, wenn das RX/TX-Bit flr TX gesetzt ist, und als Empfangsbefehl, wenn ds RX/TX-Bit fur
RX gesetzt ist.

32/132

DE 697 31936 T2 2005.06.23

[0190] Um Empfangsvorgange einzuleiten, schreibt die CPU 230 die RECEIVE LIST MEMORY BASE
ADDRESS in das Kanalparameterregister 828b und einen Empfangsbefehl in das Befehlsregister 828a jedes
TLAN 226. Das TLAN 226 fordert als Reaktion den PCI-Bus 222 auf, eine Empfangssteuerliste mittels der RE-
CEIVE LIST MEMORY BASE ADDRESS zuriickzugewinnen. Die TPI 220 liefert eine Empfangssteuerliste an
das TLAN 226, und das TLAN 226 wartet dann, um Daten zu empfangen, bevor die Empfangssteuerliste aus-
geflhrt wird. Die Empfangssteuerliste enthalt einen Vorwartszeiger als die nachste Adresse fir das TLAN 226,
die es benutzt, um die nachste Empfangssteuerliste zurlickzugewinnen, um eine Steuerlistenverkettung zu er-
richten. In der bevorzugten Ausfihrung Iadt jedoch die TPl 220 den Vorwartszeiger jeder Empfangssteuerliste
mit der gleichen RECEIVE LIST MEMORY BASE ADDRESS. Wenn Daten von dem Port 110 an die TPI 220
empfangen werden, schlichtet die PCI-Busschnittstelle 824 und erlangt die Steuerung des PCI Busses 222 und
fuhrt die Empfangssteuerliste in ihnrem Empfangssteuerlistenpuffer 827a aus, um Daten tiber den PCI-Bus 222
an die TPI 220 zu iibertragen. Sobald die Ubertragung eines ganzen Datenpakets vollendet ist, verwendet das
TLAN 226 die RECEIVE LIST MEMORY BASE ADDRESS in dem Vorwartszeigter der momentanen Emp-
fangssteuerliste, um eine wertere Empfangssteuerliste anzufordern.

[0191] Fur Sendevorgange erfasst die TPl 220 zu sendende Daten von einem ihrer TPI TX FIFOs und schlich-
tet und erlangt als Reaktion die Steuerung des PCI-Busses 222. Die TPl 220 schreibt dann die TRANSMIT
LIST MEMORY BASE ADDRESS in das Kanalparameterregister 828b und einen Sendebefehl in das Befehls-
register 828a jedes TLAN 226. Das TLAN 226 fordert als Reaktion den PCI-Bus 222 auf, eine Sendesteuerliste
mittels der TRANSMIT LIST MEMORY BASE ADDRESS zuriickzugewinnen. Sobald die Sendesteuerliste
empfangen ist, speichert das TLAN 226 die Sendesteuerliste in seinem Sendesteuerlistenpuffer 828b und fuhrt
dann die gespeicherte Sendesteuerliste aus, um Paketdaten zu empfangen. Die Sendesteuerliste enthalt auch
einen Vorwartszeiger, der normalerweise als die nachste Adresse fir das TLAN 226 benutzt wird, um die
nachste Sendesteuerliste zurlickzugewinnen, um eine Steuerlistenverkettung zu errichten. In der gezeigten
Ausfuhrung ladt jedoch die TPI 220 den Vorwartszeiger jeder Sendesteuerliste mit einem Nullwert. Nach Aus-
fuhren der Sendesteuerliste in seinem Sendesteuerlistenpuffer 827a wartet daher das TLAN 226, bis die TPI
220 einen werteren Sendebefehl schreibt.

[0192] Fiq. 8D zeigt ein Diagramm, das eine Steuersignalliste 830 veranschaulicht, die das Format fur Sen-
de- und Empfangssteuerlisten ist und auch das Format flir die RX CNTL LIST 808a und die TX CNTL LIST
808b ist. Die Steuerliste 830 enthalt ein FORWARD_POINTER Feld 831, ein PACKET_SIZE Feld 832a, ein
CSTAT Feld 832b, ein COUNT Feld 833 und ein DATA_POINTER Feld 834. Jedes Feld ist 32 Bits mit Ausnah-
me des PACKET_SIZE Feldes 832a und des CSTAT Feldes 832b, die 16-Bit Felder sind.

[0193] Das FORWARD_POINTER Feld 832 wird gewohnlich benutzt, um Steuerlisten miteinander zu verket-
ten. Fir Empfangsvorgange fiihrt das TLAN 226 durch die TP1220 von der RX CNTL LIST 808a bereitgestellte
Steuerlisten wieder und wieder aus, da das FORWARD_POINTER Feld 831 in jedem Fall die gleiche RECEI-
VE LIST MEMORY BASE ADDRESS ist. Auf diese Weise verwendet jedes TLAN 226 die RECEIVE LIST ME-
MORY BASE ADDRESS in dem FORWARD_POINTER Feld 831 seiner momentanen Empfangssteuerliste,
um die nachste Empfangssteuerliste anzufordern, wenn das nachste Datenpaket von einem Netzwerk 112
empfangen wird. Die TPl 220 muss daher fur Empfangsvorgange keine Vorgangsstartbefehle an die TLANS
226 ausgeben. Fir Sendevorgange fihrt das TLAN 226 jedes Mal Sendesteuerlisten aus der gleichen TX
CNTL LIST 808b aus. Die TPl 220 setzt jedoch das FORWARD_POINTER Feld 831 auf einen Nullwert
(0000h), sodass die TPI 220 und ein betreffendes TLAN 226 einen Sendevorgang ausflihren, wenn durch die
TPI1220 eingeleitet. Wenn Daten in einem der TPl TX FIFOs erfasst werden und die TP1 220 gegenwartig keine
Sendevorgange auf dem betreffenden TLAN-Port eines TPl TX FIFOs durchflihrt, gibt die TPl 220 einen Sen-
debefehl an ein betreffendes TLAN 226 aus, um einen Sendevorgang einzuleiten. Das betreffende TLAN 226
gewinnt die Sendesteuerliste aus der TX CNTL LIST 808b zurlck, fihrt die Sendesteuerliste aus und kehrt
dann in einen Vorgabezustand zuriick, wenn der Nullwert in dem FORWARD_POINTER Feld 831 angetroffen
wird.

[0194] Das PACKET_SIZE Feld 832a gibt gewdhnlich die Grofie eines Datenpakets an. Fiir Empfangsvor-
gange setzt die TPl 220 anfangs das PACKET_SIZE Feld 832a in der RX CNTL LIST 808a auf null. Nachdem
das TLAN 226 eine Ubertragung eines vollstédndigen Datenpakets an die TPI 220 vollendet hat, fiihrt das TLAN
226 einen letzten Ein-DWORD-Schreibvorgang in das PACKET_SIZE Feld 832a und das CSTAT Feld 832b
der RXCNTL LIST 808a durch. Das PACKET_SIZE Feld 832a wird mit der tatsachlichen Paketdatengrofie ge-
laden, und ein Rahmen-Vollendet-Bit in dem CSTAT Feld 832b wird gesetzt. Flir Sendevorgange wird das
PACKET_SIZE Feld 832a der TX CNTL LIST 808b mit der GréRe eines von der TPI 220 an ein TLAN 226 zu
sendenden Datenpakets geladen. Die HSB-Datenubertragungs-Schnittstellenlogik 819 schreibt die Paketgro-
Re DWORD im PACKET_SIZE Registeranhanger 819c¢ in die TX CNTL LIST 808b in der Sendelisten-Deco-

33/132

DE 697 31936 T2 2005.06.23

dierlogik 814. Die TPl 220 schreibt dann den Sendebefehl in das entsprechende TLAN 226, wie vorher be-
schrieben, und der Inhalt der TX CNTL LIST 808b wird an ein TLAN 226 als eine Sendesteuerliste, wenn ver-
langt, geliefert.

[0195] Das CSTAT Feld 832b wird verwendet, um Befehls- und Statusinformation zwischen der TPI 220 und
den TLANSs 226 zu tbermitteln. Die TPI 220 setzt anfangs das CSTAT Feld 832b der CNTL LIST 808a auf null.
Wenn eine Paketdatenibertragung von einem TLAN 226 in einen betreffenden TPI RX FIFO vollendet wurde,
setzt die TPl 220 das Rahmen-Vollendet-Bit des CSTAT Feldes 832b (Bit 14) in der RX CNTL LIST 808a, um
darzustellen, dass die Paketdatenibertragung vollendet wurde. Die TPI 220 informiert die Portstatuslogik 820,
dass das Paket vollstandig ist, um eine Ubertragung (iber den HSB 206 an den EPSM 210 einzuleiten. Die
Portstatuslogik 820 zeigt dann an, dass Daten in einem betreffenden TPI RX FIFO zur Ubertragung an den
EPSM 210 als Reaktion auf eine Abfrage durch den EPSM 210 verfiigbar sind. Dies gilt, selbst wenn die Men-
ge an Paketendedaten nicht den RBSIZE- oder TBUS-Wert erfiillt, da das Ende des Pakets ubertragen werden
muss.

[0196] Die TPI 220 setzt das CRC-(zyklische Redundanzprifung) Bit in dem CSTAT Feld 832b der TX CNTL
LIST 808b basierend auf dem Sataus des Al_FCS_IN* (oder FBPN) Signals wahrend des Empfangs eines Da-
tenpakets von dem EPSM 210. Die TPI 220 setzt das CRC-Bit, um anzuzeigen, ob das Datenpaket in einer
CRC benutzte Daten enthalt. Ein Ethernet-Datenpaket, das CRC einschlief3t, enthalt zusatzlich zu den Paket-
daten vier Bytes von CRC-Daten, die zur Fehlerprifung verwendet werden.

[0197] Das DATA_POINTER Feld 834 spezifiziert die durch ein TLAN 226 wahrend eines Dateniibertra-
gungsvorgangs geltend zu machende PCI-Adresse. Die Adresse ist vorzugsweise fir Sende- und Empfangs-
vorgange die gleiche und ist die PACKET DATA MEMORY BASE ADDRESS.

[0198] Wahrend eines Empfangsvorgangs macht ein TLAN 226 die PACKET DATA MEMORY BASE
ADDRESS geltend, und die Empfangsdaten-Decodierlogik 813 decodiert die Adresse, und ein Schreibzyklus
auf dem PCI-Bus 222 ermdglicht der PCI RX FIFO Steuerlogik 817, den Empfang von Paketdaten in einem
ausgewahlten TPl RX FIFO zu erlauben. Wéahrend eines Sendevorgangs macht ein TLAN 226 die PACKET
DATA MEMORY BASE ADDRESS geltend, und die Sendedaten-Decodierlogik 815 decodiert die Adresse, und
ein Lesevorgang ermdglicht der PCI TX FIFO Steuerlogik 816, die Ubertragung von Paketdaten aus einem
ausgewahlten TPl TX FIFO durchzufihren.

[0199] Das COUNT Feld 833 spezifiziert eine vorhandene Datenmenge oder die Menge an verfligbarem Puf-
ferplatz bei dem momentanen Wert des DATA _POINTER Feldes 834. Wahrend eines Datenempfangsvor-
gangs setzt die Empfangslisten-Decodierlogik 812 das COUNT Feld 833 auf einen in ein RCV_DATA_COUNT
Register 847b (Fig. 8F) der TPI-Steuerregister 846 geschricbenen Wert. Der Wert von dem
RCV_DATA_COUNT Register 847b bestimmt die grofte durch die TPl 220 zu empfangende Paketgrofle. Als
Vorgabe betragt dieser Wert 1518 Bytes, was die grof3te ETHERNET-DatenpaketgréRe mit vier Bytes von CRC
ist. Wahrend eines Datensendevorgangs setzt die TPl 220 das COUNT Feld 833 auf den gleichen Wert wie
das PACKET_SIZE Feld 832a.

[0200] Fig. 8E ist ein Diagramm, das eine Definition der von der TPI 220 eingesetzten TPI-PCI-Konfigurati-
onsregister 835 veranschaulicht. Die TPI-PCI-Konfigurationsregister 835 umfassen Register, die allen
PCI-Busarchitekturen gemeinsam sind, sowie fiir die TPl 220 einmalige, zusatzliche Register. Register, die al-
len PCI-Bussen gemeinsam sind, umfassen ein DEVICE_ID Register 836a, ein VENDOR_ID Register 836b,
ein STATUS Register 837a, ein COMMAND Register 837b, ein CLASS_CODE Register 838a, ein REV_ID Re-
gister 838b, ein BIST Register 839a, ein HDR_TYPE Register 839b, ein LATENCY Register 839¢, ein CA-
CHELSZ Register 839d, ein MAXLAT Register 845a, ein MINGNT Register 845b, ein INTPIN Register 845¢
und ein INTLINE Register 845d. Fur die TPl 220 einmalige Register umfassen ein TPl CONTROL 10 BASE
ADDRESS Register 840 ein TPl CONTROL MEMORY BASE ADDRESS Register 841, ein TRANSMIT LIST
MEMORY BASE ADDRESS Register 842, ein RECEIVE LIST MEMORY BASE ADDRESS Register 843 und
ein PACKET DATA MEMORY BASE ADDRESS Register 844.

[0201] Nach Initialisierung enthalt das TPI CONTROL 10 BASE ADDRESS Register 840 eine TPl CONTROL
IO BASE ADDRESS fiir die TPI-Steuerregister 846. Das TPl CONTROL MEMORY BASE ADDRESS Register
841 enthalt eine TPl CONTROL MEMORY BASE ADDRESS fir die TPI-Steuerregister 846. Auf diese Weise
sind die TPI-Steuerregister 846 sowohl im I/O- als auch im Speicherraum des PCI-Busses 220 zugénglich. Das
TRANSMIT LIST MEMORY BASE ADDRESS Register 842 enthalt die TRANSMIT LIST MEMORY BASE
ADDRESS fiir die TX CNTL LIST 808b, die von der Sendelisten-Decodierlogik 814 decodiert wird. Das RE-

34/132

DE 697 31936 T2 2005.06.23

CEIVE LIST MEMORY BASE ADDRESS Register 843 enthalt die RECEIVE LIST MEMORY BASE ADDRESS
fur die RX CNTL LIST 808a, die von der Empfangslisten-Decodierlogik 812 decodiert wird. Das PACKET DATA
MEMORY BASE ADDRESS Register 844 enthalt die PACKET DATA MEMORY BASE ADDRESS, die den Da-
tenpuffern 807 der TPl 220 entspricht. Die PACKET DATA MEMORY BASE ADDRESS wird sowohl von der
Sendedaten-Decodierlogik 815 als auch der Empfangsdaten-Decodierlogik 813 decodiert.

[0202] Fig. 8F ist ein Diagramm, das die Definition der durch die PTI 220 verwendeten TPI-Steuerregister 846
veranschaulicht. Die TPI-Steueregister 846 umfassen ein RCV_DATA_COUNT Register 847b, ein XBSIZE3
Register 848a, ein XBSIZE2 Register 848b, ein XBSIZE1 Register 848c, ein XBSIZEO Register 848d, ein
RBSIZE3 Register 849a, ein RBSIZE2 Register 849b, ein RBSIZE1 Register 849c, ein RBSIZEO Register
849d, ein NET_PRI3 Register 850a, ein NET_PRI2 Register 850b, ein NET_PRI1 Register 850c, ein
NET_PRIO Register 850d, ein TLANO MEMORY BASE ADDRESS Register 851, ein TLAN1 MEMORY BASE
ADDRESS Register 852, ein TLAN2 MEMORY BASE ADDRESS Register 853 und ein TLAN3 MEMORY
BASE ADDRESS Register 845.

[0203] Das RCV_DATA_COUNT Register 847b speichert die von der TPl 220 behandelte Maximalgré3e von
empfangenen Datenpaketen. Die TPl 220 gewinnt diesen Wert zurlick und legt ihn in das COUNT Feld 833
der RX CNTL LIST 808a. Jedes der XBSIZE Register 848a—d halt eine SendestoRgroRRe in DWORDs fir be-
treffende Ports, namlich XBSIZEO fiir Port24, XBSIZE1 fiir Port25, XBSIZE2 fiir Port26, XBSIZES3 fiir Port27.
Die XBSIZE SendestoRgroRenwerte werden von der HSB TX FIFO Steuerlogik 822 und der Portstatuslogik
820 der TPI 220 verwendet, wenn festgestellt wird, ob genug Paketpufferplatz in einem betreffenden TPI TX
FIFO vorhanden ist, um Daten von dem EPSM 210 fiir den betreffenden Port anzufordern. Jedes der RBSIZE
Register 849a—-d halt betreffende HSB-EmpfangsstoRgroRen in DWORDSs fiir die betreffenden Ports, namlich
RBSIZEO fiir Port24, RBSIZE1 fiir Port25, RBSIZE2 fiir Port26 und RBSIZE3 fiir Port27. Die RBSIZE Emp-
fangsstolRgroRenwerte werden von der HSB RX FIFO Steuerlogik 821 und der Portstatuslogik 820 verwendet,
wenn festgestellt wird, ob genug Paketdaten in einem betreffenden TPl RX FIFO vorhanden sind, um eine
Ubertragung von empfangenen Daten von dem betreffenden Port an den EPSM 210 anzufordern. In der ge-
zeigten Ausflihrung sind die in den XBSIZE- RBSIZE-Registern 848, 849 gespeicherten Werte einander gleich
und gleich dem TBUS-Wert. Die XBSIZE Register 848 und die RBSIZE Register 849 werden jedoch, abhangig
von der Ausfihrung, mit jedem gewtinschten StoRRlibertragungswert programmiert.

[0204] Die NET_PRI Register 850 halten betreffende Netzwerk-Prioritatswerte fiir die Ports, namlich
NET_PRIO fir Port24, NET_PRI1 fir Port25, NET_PRI2 fir Port26 und NET_PRI3 fiir Port27. Diese Werte
werden von der Sendelisten-Decodierlogik 814 verwendet, um die Sendeprioritat der betreffenden Ports fest-
zulegen. Das TLANO MEMORY BASE ADDRESS Register 851 halt eine PCI-Speicheradresse, bezeichnet als
TLANO MEMORY BASE ADDRESS, firr Port24. Das TLAN1 MEMORY BASE ADDRESS Register 852 halt
eine PCI-Speicheradresse, bezeichnet als TLAN1 MEMORY BASE ADDRESS, fir Port25. Das TLAN2 ME-
MORY BASE ADDRESS Register 853 halt eine PCI-Speicheradresse, bezeichnet als TLAN2 MEMORY BASE
ADDRESS, fiir Port26. Das TLAN3 MEMORY BASE ADDRESS Register 854 halt eine PCI-Speicheradresse,
bezeichnet als TLAN3 MEMORY BASE ADDress fur Port27. Jedes dieser Register wird beim Einschalten
durch die CPU 230 nach Bestimmen der Adressen jedes der TLANs 226 initialisiert. Diese Werte werden an
die PCI TX FIFO Steuerlogik 816 geliefert und von dieser verwendet, um jeden Sendebefehl auf dem PCI-Bus
222 auszugeben, um Paketsendevorgange zu starten.

[0205] Fig. 8G ist ein Flussdiagramm, das PCl-Initialisierungsoperationen der CPU 230 beim Initialisieren,
Starten oder Rucksetzen des Netzwerkschalters 102 veranschaulicht. Im ersten Schritt 855 konfiguriert die
CPU 230 den PCI-Bus 222, bildet die TLANs 226 in den PCI-Speicherraum ab und schreibt diese Konfiguration
Uber den PCI-Bus 222 in die TPI-PCI-Konfigurationsregister 835. Die Schritte zum Konfigurieren des PCI-Bus-
ses 222 sind bekannt und werden nicht werter beschrieben.

[0206] Insbesondere ist das DEVICE_ID Register 836a das Standard-PCl-Gerate-ID-Register und sein Wert
wird auf 0x500h gesetzt. Das VENDOR _ID Register 836b ist das Standard-PCl-Lieferanten-ID-Register und
sein Wert wird auf 0xOE11h gesetzt. Das STATUS-Register 837a ist das Standard-PCl-Geratestatusregister.
Das COMMAND-Register 837b ist das Standard-PCl-Geratebefehlsregister. Das CLASS CODE Register
838a ist das Standard-PCl-Gerateklassencoderegister und sein Wert wird auf 0x060200h gesetzt. Das
REV_ID Register 838b ist das Standard-PClI-Geraterevisions-ID-Register und sein Wert wird auf 0x00h ge-
setzt. Das BIST-Register 839a ist das Standard-PCI-BIST-Statusregister und sein Wert wird auf 0x0O0h gesetzt.
Das HDR_TYPE Register 839b ist das Standard-PCI-Vorspanntypregister und sein Wert wird auf 0x80h ge-
setzt. Das LATENCY Register 839c¢ ist das Standard-PCl-Latenztypregister und wird durch die CPU 230 initi-
alisiert. Das CACHELST-Register 839d ist das Standard-PCI-CachelinegréRenregister und wird durch die

35/132

DE 697 31936 T2 2005.06.23

CPU 230 initialisiert. Das MAXLAT _register 845a ist das Standard-PCl-Geratemaximallatenzregister und sein
Wert wird auf 0x00h gesetzt. Das MINGNT-Register 846b ist das Standard-PCI-Gerateminimalgewahnangs-
register und sein Wert wird auf 0x00h gesetzt. Das INTPIN-Register 845c¢ ist das Standard-PCI-Gerateunter-
brechungspinregister und sein Wert wird auf 0x00h gesetzt. Das INTLINE-Register 845d ist das Stan-
dard-PCI-Gerateunterbrechungsleitungsregister und wird von der CPU 230 eingerichtet.

[0207] Ferner schreibt in Schritt 855 die CPU 230 einen Wert von OxFFFFFFFFh in jedes der folgenden Re-
gister: das TPI CONTROL 10 BASE ADDRESS Register 840, das TP CONTROL MEMORY BASE ADDRESS
Register 841, das TRANSMIT LIST MEMORY BASE ADDRESS Register 842, das RECEIVE LIST MEMORY
BASE ADDRESS Register 843 und das PACKET DATA MEMORY BASE ADDRESS Register 844. Nach je-
dem Schreiben ersetzt die TPl 220 den Wert in jedem Register durch einen Wert, der die Menge an 1/O- oder
Speicherplatz angibt, der von dem einzelnen angegebenen Register benétigt wird. Die CPU 230 liest als Re-
aktion jeden neuen Wert in jedem Register und schreibt dann eine Basisadresse in jedes Register zuriick, um
die Wesenheit in den PCI-I/O- oder Speicherraum abzubilden.

[0208] Das heil’t, nach Bestimmen der bendtigten Menge an Platz schreibt die CPU 230 die TPl CONTROL
IO BASE ADDRESS in das TPl CONTROL 10 BASE ADDRESS Register 840, um den 1/0-Raumzugriff der
TPI-Steuerregister 846 zu ermdglichen, die CPU 230 schreibt die TPl CONTROL MEMORY BASE ADDRESS
in das TPI CONTROL MEMORY BASE ADDRESS Register 841, um den Speicherraumzugriff der TPI-Steu-
erregister 846 zu ermdglichen, die CPU 230 schreibt die TRANSMIT LIST MEMORY BASE ADDRESS in das
TRANSMIT LIST BASE ADDRESS Register 842, das der Adresse des TX CNTL LIST 808b Speicherblocks
entspricht, die CPU 230 schreibt die RECEIVE LIST MEMORY BASE ADDRESS in das RECEIVE LIST ME-
MORY BASE ADDRESS Register 843, das der Adresse der RX CNTL LIST 808a entspricht, und die CPU 230
schreibt die PACKET DATA MEMORY BASE ADDRESS in das PACKET DATA MEMORY BASE ADDRESS
Register 844, das der PCI-Adresse des Datenpuffers 807 entspricht.

[0209] Im nachsten Schritt 856a fragt die CPU 230 jedes TLAN 226, eines nach dem anderen, auf dem
PCI-Bus 222 ab, um die Zahl vorhandener TLANs und ihre entsprechenden PCI-Adressen zu bestimmen. Im
nachsten Schritt 856b initialisiert die CPU 230 die abgefragten TLANs 226 in einen bekannten Ruhezustand.
Die CPU 230 stellt dann im nachsten Schritt 857 fest, ob noch mehr TLANs 226 vorhanden sind, und kehrt,
wenn ja, zu Schritt 856a zurlick, um das nachste TLAN abzufragen, bis alle TLANs 226 auf dem PCI-Bus 222
initialisiert sind. Zu dieser Zeit sind die Werte der TLANO MEMORY BASE ADDRESS, der TLAN1 MEMORY
BASE ADDRESS, der TLAN2 MEMORY BASE ADDRESS und der TLAN3 MEMORY BASE ADDRESS be-
kannt.

[0210] Im nachsten Schritt 858 initialisiert die CPU 230 die TP1-Steuerregister 846 auf die geeigneten Werte,
wie oben mit Verweis auf Eig. 8F beschrieben. Dies schlieRt die Werte der TLANO MEMORY BASE
ADDRESS, der TLAN1 MEMORY BASE ADDRESS, der TLAN2 MEMORY BASE ADDRESS und der TLAN3
MEMORY BASE ADDRESS ein. Im nachsten Schritt 859 beginnt die CPU 230 die Einleitung des Empfangs-
vorgangs fur jedes TLAN 226 durch Schreiben der RECEIVE LIST MEMORY BASE ADDRESS in das Kanal-
parameterregister 828b. Die Einleitung des Empfangsvorgangs wird in Schritt 860 vollendet, wo die CPU 230
in das Befehlsregister 828a jedes TLANs 226 schreibt. In dieser Weise initialisiert, beginnt jedes TLAN 226
sofort einen Empfangsvorgang, indem es den PCI-Bus 222 auffordert, eine Empfangssteuerliste anzufordern.

[0211] Fig. 8H ist ein Flussdiagramm, das den Empfangsvorgang des Netzwerkschalters 102 fiir jedes der
TLANSs 226 veranschaulicht. Der Vorgang beginnt im ersten Schritt 861a, wo ein TLAN 226 den PCI-Bus 222
von dem PCI-Arbiter 811 anfordert und die Steuerung erhalt. Im nachsten Schritt 861b macht das TLAN 226
die RECEIVE LIST MEMORY ADDRESS auf dem PCI-Buss 222 geltend, um eine Empfangssteuerliste anzu-
fordern, und die CPU 230 liefert im nachsten Schritt 861¢c eine Empfangssteuerliste an das TLAN 226. Die
Empfangssteuerliste enthalt die PACKET DATA MEMORY BASE ADDRESS, um das TLAN 226 zu informie-
ren, wohin oder wie ein empfangenes Datenpaket zu senden ist. Im nachsten Schritt 861d gibt das TLAN 226
die Steuerung des PCI-Busses 222 frei.

[0212] Ein TLAN 226 empfangt ein Datenpaket von einem Netzwerk 112, wie im nachsten Schritt 862a ange-
geben, und verlangt und erhalt dann im nachsten Schritt 862b die Steuerung des PCl-Busses 222. Das TLAN
226 schreibt dann im nachsten Schritt 862¢ einen Datenstol3 unter Verwendung der PACKET DATA MEMORY
BASE ADDRESS als die Adresse auf den PCI-Bus 222, wahrend die TPl 220 Daten in einen ausgewahlten
TPI RX FIFO schreibt, wie im nachsten Schritt 862d angegeben. Nach Vollendung des SchreibstolRes gibt das
TLAN im nachsten Schritt 862e den PCI-Bus 222 frei. Im nachsten Schritt 865 stellt das TLAN 226 fest, ob das
ganze Datenpaket an die TPl 220 gesendet worden ist, was durch eine letzte DWORD-Schreiboperation an-

36/132

DE 697 31936 T2 2005.06.23

gezeigt wird. Wenn nicht, kehrt der Vorgang zu Schritt 862b zurlick, wo das TLAN 226 erneut den PCI-Bus 222
auffordert, einen weiteren Datensto3 zu senden.

[0213] Nachdem das TLAN 226 den letzten Teil des Datenpakets gesendet hat, fihrt es eine letzte Iteration
durch, um die TPl 220 Uber das Ende des Pakets zu informieren. Das heift, das TLAN 226 flhrt eine letzte
DWORD-Ubertragung an das PACKET_SIZE Feld 832a und das CSTAT Feld 832b in der RX CNTL LIST 808a
der TPI 220 aus. Diese DWORD-Ubertragung aktualisiert die RX CNTL LIST 808a mit der PaketgréRe des ge-
rade vollendeten Datenpakets und aktualisiert das Rahmen-Vollendet-Bit in dem CSTAT Feld 832b. Die TPI
220 erfasst diese Schreiboperation, wie in Schritt 865 angegeben, und setzt interne Flags, um anzuzeigen,
dass der Vorgang abgeschlossen ist, und Uibergibt den geeigneten Status an die Portstatuslogik 820, wie in
Schritt 866 angegeben.

[0214] Fig. 8l ist ein Flussdiagramm, das einen Empfangsdaten-Ubertragungsvorgang von der TPl 220 an
den EPSM 210 Uber den HSB 206 veranschaulicht. Der Vorgang beginnt in einem ersten Schritt 876, wo die
Portstatuslogik 820 der TPI 220 eine Datenmenge in jedem der TPl RX FIFOs, die gleich oder gréer ist als
die betreffende RBSIZE, wie in den TPI-Steuerregistern 846 bereitgestellt, oder das durch ein TLAN 226 an-
gezeigte EOP fur diesen Port erfasst.

[0215] Wie im nachsten Schritt 877 angegeben, antwortet die TPl 220 auf Abfragen des EPSM 210, indem
sie geeignete PKT_AVAIL[6]* Signale in gemultiplexter Form geltend macht, die angeben, ob in jedem der TPI
RX FIFOs genug Daten verflugbar sind. Das Abfragen erfolgt unabhangig und wird zur Klarung eingeschlos-
sen. Wenn das PKT_AVAIL[6]* Signal anzeigt, dass in jedem TPI RX FIFO der TPI 220 genug Daten vorhan-
den sind, leitet schlieRlich der EPSM 210 im nachsten Schritt 878 einen Lesezyklus auf dem HSB 206 an den
spezifizierten Port ein, wenn es genug Pufferplatz in einem verfligbaren Empfangspuffer des EPSM 210 gibt.

[0216] Im nachsten Schritt 879 erfasst die Portstatuslogik 820 der TPI 220 den Lesezyklus auf dem HSB 206
und wahlt den geeigneten TPl RX FIFO aus, um Daten bereitzustellen. In Schritt 880 sendet dann die TPl 220
den Datensto® an den EPSM 210. Wenn wahrend der Datenubertragung von Schritt 880 die Portstatuslogik
820 feststellt, dass die momentane Datentbertragung Giber den HSB 206 der Beginn eines Pakets ist, wie im
nachsten Schritt 881a angegeben, macht die TPI 220 in Schritt 881b das SOP* Signal auf dem HSB 206 wah-
rend der Datenubertragung geltend. Desgleichen, wenn wahrend der Datenubertragung im Schritt 880 die
Portstatuslogik 820 feststellt, dass die momentane Datentibertragung Gber den HSB 206 das Ende eines Pa-
kets ist, wie im nachsten Schritt 882a angegeben, macht die TPI 220, wie durch Schritt 881b angegeben, das
EOP* Signal auf dem HSB 206 wahrend der Datenbertragung geltend. Von Schritt 882a oder 882b kehrt der
Vorgang zu Schritt 876 zurick.

[0217] Fig. 8J ist ein Flussdiagramm, das einen Sendedaten-Ubertragungsvorgang zum Ubertragen von Pa-
ketdaten von dem EPSM 210 Gber den HSB 206 an die TPI 220 veranschaulicht. Der Vorgang beginnt beim
ersten Schritt 890, wo die Portstatuslogik 820 der TPI 220 feststellt, dass einer der TPl TX FIFOs ein Menge
an verfligbarem Pufferplatz hat, der gleich oder groRer ist als die entsprechende XBSIZE. Der Vorgang geht
dann zum nachsten Schritt 891, wo die Portstatuslogik 820 auf eine Abfrage des EPSM 210 durch geeignetes
Geltendmachen des BUF_AVAIL[6]* Signals in gemultiplexter Form antwortet, um verfigbaren Pufferplatz in
dem entsprechenden TPI TX FIFO anzuzeigen. Wie oben beschrieben, erfolgt die Abfrage unabhangig und
wird zur Klarung eingeschlossen. Im nachsten Schritt 892 leitet der EPSM 210 einen Schreibzyklus auf dem
HSB 206 an einen Port ein, der dem TPI TX FIFO entspricht, ein, wenn fir diesen Port genug Daten zum Sen-
den durch den EPSM 210 verfugbar sind. Im nachsten Schritt 893 erfasst die Portstatuslogik 820 der TPI 220
den Schreibzyklus auf dem HSB 206 und wahlt den geeigneten TPI TX FIFO fir den angegebenen Port aus.
Im nachsten Schritt 894 sendet der EPSM 210 einen Sto3 von Daten tber den HSB 206 an die TPI 220, und
die TPI 220 schreibt die Daten in den entsprechenden TPl TX FIFO in der TPI 220.

[0218] Wenn, wie in Schritt 895a angegeben, die TPI 220 die Geltendmachung des SOP* Signals wahrend
des DatenstolRes von Schritt 894 erfasst, wird in Schritt 895b das erste DWORD von Daten, das die Paketgro-
Re halt, in das PACKET SIZE Anhangerregister 819¢ gelegt. Wenn, wie in Schritt 896a angegeben, die TPI
220 die Geltendmachug des EOP* Signals wahrend des DatenstolRes von Schritt 894 erfasst, setzt die TPI 220
in Schritt 896b ein Flag in der TPI 220, um das Ende des Datenpakets anzuzeigen. Von Schritt 896a oder 896b
kehrt der Vorgang zurlick zu Schritt 890.

[0219] Fiq. 8K ist ein Flussdiagramm, das einen Sendevorgang des Netzwerkschalters 102 fir jedes der

TLANs 226 veranschaulicht. Im ersten Schritt 867 erfasst die TPl 220 Daten in jedem der TPI TX FIFOs und
verlangt und erhalt als Reaktion die Steuerung des PCI-Busses 222 von dem PCI-Arbiter 811. Im nachsten

37/132

DE 697 31936 T2 2005.06.23

Schritt 868 schreibt die TPl 220 einen Sendebefehl in das Befehlsregister 828a des entsprechenden TLAN
226. In Schritt 869 gibt dann die TPI1 220 den PCI-Bus 222 frei.

[0220] Im n&chsten Schritt 870a verlangt und erhalt das TLAN 226, das den Sendebefehl empfangt, die Steu-
erung des PCI-Busses 222 vom PCI-Arbiter 811 und verlangt dann eine Sendesteuerliste von der TP1 220. Im
nachsten Schritt 870b liefert die TPl 220 die Sendesteuerliste an das TLAN 226, das die Steuerung des
PCI-Busses 222 innehat, wo das TLAN 226 die Sendesteuerliste an seinen Sendesteuerlistenpuffer 827b lie-
fert. Im n&chsten Schritt 870¢ gibt das TLAN 226 den PCI-Bus 222 frei, fordert aber sofort den PCI-Bus 222
wieder an, wie in Schritt 870d angegeben. Sobald das TLAN 226 wieder die Steuerung des PCI-Busses 222
erhalt, beginnt es die Ausfiihrung der Sendesteuerliste, wie in Schritt 871a angegeben, durch Anfordern eines
StoRes von Daten von der TPI 220. Das heif3t, das TLAN 226 macht in Schritt 871a die PACKET DATA ME-
MORY BASE ADDRESS auf dem PCI-Bus 222 geltend. Im nachsten Schritt 871b antwortet die TPl 220 durch
Auswahlen und Freigeben des entsprechenden TPI TX FIFO und liefert Daten tber den PCI-Bus 222 an das
TLAN 226. Nach jedem Datenstol gibt das TLAN 226 die Steuerung des PCI-Busses 222 frei, wie im nachsten
Schritt 871a angegeben. Wenn die Ubertragung eines vollstédndigen Pakets von Daten nicht vollendet wurde,
wie im nachsten Schritt 872 angegeben, kehrt der Vorgang zu Schritt 870d zurtick, wo das TLAN 226 wieder
die Steuerung des PCIl-Busses 222 anfordert und schlief3lich zurtickgewinnt.

[0221] Wenn die Ubertragung des Pakets vollendet war, wie in Schritt 872a bestimmt, geht der Ablauf zu
Schritt 873a, wo das TLAN 226 an die TPI 220 schreibt, dass die Datenlbertragung vollendet ist, und die TPI
220 signalisiert, dass der Vorgang abgeschlossen ist. Das heil3t, das TLAN 226 flihrt einen letzten
Ein-DWORD-Schreibvorgang in das CSTAT Feld 832b der TX CNTL LIST 808b aus, um ein Rahmen-Vollen-
det-Bitin dem CSTAT Feld 832 zu setzen. Ferner wird das PACKET_SIZE Feld 832a der TX CNTL LIST 808b
mit der GroRRe eines von der TPl 220 an ein TLAN 226 zu sendenden Pakets geladen. Sobald das TLAN 226
den Schreibvorgang vollendet hat, gibt es in Schritt 873b den PCI-Bus 222 frei. Von Schritt 873b kehrt der Vor-
gang zu Schritt 867 fur den nachsten Sendevorgang zurtck.

[0222] Es ist nun zu erkennen, dass nach Initialisierung durch die CPU 230 die TPl 220 konfiguriert ist, um
mit den TLANs 226 zusammenzuarbeiten, um der CPU 230 zu gestatten, andere wichtige Aufgaben und Funk-
tionen des Netzwerkschalters 102 durchzufiihren. Die CPU 230 initialsiert PCI-Speicher- und 1/0-Raum durch
Bestimmen des Typs und der Zahl von Vorrichtungen auf dem PCI-Bus 222 und Zuweisen von entsprechenden
Adressenwerten. Die CPU 230 liefert Anfangsadressenwerte der TPl 220 an jedes der TLANs 226 und fligt
einen Befehl ein, um Vorgange einzuleiten. Die TLANs 226 werden konfiguriert, um eine Steuerliste anzufor-
dern und dann die Steuerliste auszufiihren, um Daten aus einem Speicher, der sich an einer Adresse in der
Steuerliste befindet, zu lesen bzw. in denselben zu schreiben. Die TPI 220 wird konfiguriert, um jede Steuerliste
zu aktualisieren und jedem anfordernden TLAN 226 zur Verfiigung zu stellen. Ferner wird die TPl 220 konfigu-
riert, um Sendevorgange durch Schreiben eines Befehls in das geeignete TLAN 226 einzuleiten, und dann die
entsprechende Sendesteuerliste bereitzustellen, wenn anschlieBend angefordert. Auf diese Weise ist die CPU
230 nach Durchfuhren der Initialisierung frei, um andere Funktionen des Netzwerkschalters 102 durchzufih-
ren.

[0223] Fig. 9A ist ein Blockschaltbild, das die Organisation des Speichers 212 zeigt. In der gezeigten Ausfih-
rung liegt die GroRRe des Speichers 212 zwischen 4 und 16 MB, obwohl die Speichergré3e variieren kann und
so grof oder so klein wie gewlinscht sein kann. Die Breite der in Fig. 9A-Fig. 9G gezeigten Speicherab-
schnittsblécke und daher die Breite jeder Speicherzeile betragt ein DWORD oder 32 Bit. Der Speicher 212 ist
in zwei Hauptabschnitte geteilt, einschlieRlich eines Hash-Speicherabschnitts 902 und eines Paketspeicherab-
schnitts 904. Der Hash-Speicherabschnitt 902 dient als ein Netzwerkgerate-ldentifikationsabschnitt zum Iden-
tifizieren eines oder mehr der Netzwerkgerate in den mit dem Netzwerkschalter 102 verbundenen Netzwerken
106, 112. Die Grof’e des Hash-Speicherabschnitts 902 ist basierend auf der Zahl von Vorrichtungen und zu-
gehdriger Adressen und der gewiinschten Eintrage programmierbar. In der gezeigten Ausfiihrung enthalt der
Hash-Speicherabschnitt 902 256 kB an Speicher zum Unterstiitzen von wenigstens 8 k (k = 2'°=1,024) Adres-
sen bis zu 16 k Adressen. Der Hash-Speicherabschnitt 902 kann irgendwo in dem Speicher 212 liegen, und
befindet sich in der gezeigten Ausflihrung am Anfang des Speichers 212. Die GroRRe des Paketspeicherab-
schnitts 904 ist der Rest des Speichers 212, der nicht flr den Hash-Speicherabschnitt 902 verwendet wird.

[0224] Fig. 9B ist ein Blockdiagramm der Organisation des Hash-Speicherabschitts 902 des Speichers 212.
Der Hash-Speicherabschnitt 902 ist mit einer Ladnge von 16 kB gezeigt, wobei zu verstehen ist, dass die
Hash-SpeicherabschnittsgroRe, wie gewlinscht, entweder fest oder programmierbar ist. Der Hash-Speicher-
abschnitt 902 ist in zwei 128 kB Abschnitte geteilt, einschliellich eines ersten 128 kB Haupt-Hash-Speicher-
abschnitts 905 fir Haupt-Hash-Eintrage und eines zweiten 128 kB verketteten Hash-Eintragsabschnitts 908

38/132

DE 697 31936 T2 2005.06.23
fur verkettete Hash-Eintrage. Jeder der Abschnitte 908, 908 enthalt 8 k Eintrage, je 16 Bytes lang.

[0225] Fig. 9C ist ein Diagramm, das die Organisation eines Hash-Tabelleneintrags 910 zeigt, der fir die Ein-
trage in dem Hash-Speicherabschnitt 902, einschlief3lich des Haupt-Hash-Eintragsabschnitts 906 und des ver-
ketteten Hash-Eintragsabschnitts 908, reprasentativ ist. Jeder Eintrag 910 entspricht einer Netzwerkvorrich-
tung der mit dem Netzwerkschalter 102 verbundenen Netzwerke 106, 112. Jeder der Haupteinrage befindet
sich an einer Hash-Adresse, die durch "Haschieren" der MAC-Adresse fur diese Vorrichtung bestimmt wird.
Das heif’t, jeder Netzwerkvorrichtung wird eine 48-Bit Hardware-Adresse, auch bekannt als physikalische
Adresse oder MAC-Adresse, zugewiesen, die ein einmaliger nummerischer Wert ist, der jeder Netzwerkvor-
richtung wahrend des Herstellungsprozesses oder durch Setzen von Briicken oder Schaltern wahrend der
Netzwerkinstallation zugewiesen wird. Ein Teil dieser MAC-Adresse wird dem Hersteller durch das IEEE (Ins-
titute of Electrical and Electronics Engineers) zugewiesen und ist allen Komponenten von diesem Hersteller
gemeinsam, und der zweite Teil der Hardwre-Adresse ist ein einmalger Wert, der durch den Hardware-Herstel-
ler zugeteilt wird. Die ersten 6 Bytes, oder Bytes 5-0, des Hash-Tabelleneintrags 910 enthalten die
MAC-Adresse der mit diesem Eintrag verbundenen Vorrichtung. Der Netzwerkschalter 102 fligt daher einen
Hash-Tabelleneintrag fir jede Netzwerkvorrichtung hinzu, die ein Datenpaket einschlieRlich seiner Quel-
len-MAC-Adresse sendet.

[0226] Jedes von jeder Netzwerkvorrichtung in den Netzwerken 106, 112 gesendete Datenpaket enthalt typi-
scherweise eine Quellen- und eine Ziel-MAC-Adresse, die entsprechend einem oder mehreren Algorithmen
haschiert werden. In der gezeigten Ausfiihrung werden zwei Teile jeder MAC-Adresse logisch kombiniert oder
verglichen, um eine entsprechende Hash-Adresse zu berechnen. Jeder Teil ist 13 bis 16 Bits, die durch Exklu-
siv-ODER-(XOR) Logik bitweise kombiniert werden, um 13 bis 16 Bit Hash-Adressen zu bilden. Zum Beispiel
werden die ersten 16 Bits einer MAC-Adresse, oder MA[15:0], bitweise mit den nachsten 16 Bits der
MAC-Adresse MA[31:16]XOR-verknupft, um die Hash-Adresse HA[15:0] zu erhalten. In einer Ausfiihrung wer-
den die ersten 13, 14, 15 oder 16 Bits des haschierten Ergebnisses als die Hash-Adresse HA verwendet. Al-
ternativ werden die ersten 13 Bits der MAC-Adresse MA[12:0] mit den nachsten 13 Bits MA[25:13] haschiert,
um eine 13-Bit Hash-Adresse MA[12:0] zu erhalten. Oder die ersten 14 Bits der MAC-Adressen MA[13:0] wer-
den mit den nachsten 14 Bits MA[27:14] haschiert, um eine 14-Bit Adresse MA[13:0] zu erhalten, usw. Es ver-
steht sich, dass viele andere verschiedene Hash-Algorithmen bekannt sind und verwendet werden kénnen, um
alle bestimmten Kombinationen von Adressenbits zu kombinieren, wie den Fachleuten in der Technik bekannt
ist, und dass die vorliegende Erfindung nicht auf ein bestimmtes Hash-Schema begrenzt ist.

[0227] Die Hash-Adresse wird als die wirkliche Adresse oder als eine Offsetadresse verwendet, um jeden der
Hash-Eintrage des Haupt-Hash-Eintragsabschnitts 906 aufzufinden. Obwohl die MAC-Adressen einmalig sind,
kann die Hash-Adresse nicht einmalig sein, sodass zwei verschiedene MAC-Adressen zu der gleichen
Hash-Adresse haschieren. Der verkettete Hash-Eintragsabschnitt 908 wird bereitgestellt, um doppelte
Hash-Adressen fiir verschiedene Vorrichtungen zu speichern, wie unten weiter beschrieben. Die Organisation,
die einen durch die Hash-Adressen zuganglichen Haupt-Hash-Eintragsabschnitt 906 und einen durch eine im
ersten Eintrag des Hauptabschnitts 906 gelegene Link-Adresse zuganglichen verketteten Hash-Eintragsab-
schnitt 908 umfasst, beseitigt wenigstens eine Verzweigungsoperation. Anstatt eine Liste von Zeigern zu ver-
wenden, um auf die Tabelleneintradge zuzugreifen, wird der erste Eintrag im Speicher 212 in einer einzigen Ver-
zweigungsoperation zuriickgewonnen, der zweite Eintrag in einer zweiten Verzweigungsoperation usw. Auf
diese Weise liefert die Organisation des Speichers 212 einen effizienteren Zugriff der Hash-Eintrage durch Be-
seitigen wenigstens einer Verzweigungsoperation pro Zugriff.

[0228] Das nachste Byte (6) des Hash-Tabelleneintrags 910 enthalt eine binare Portnummer (Port-Num), die
die zugehdrige Portnummer identifiziert, mit der die Vorrichtung verbunden ist, wo die Portnummer fiir PortO
null ist, die Portnummer fiir Port1 eins ist, die Portnummer fiir Port28 (fir die CPU 230) 28 ist usw. Das nachste
Byte (7) ist ein Steuer- und Alters-Informationsbyte (Control/Age), das ein Giltig-Bit (VALIDENTRY) enthalt,
das identifiziert, ob der Eintrag gultig ist oder nicht, wo logisch "1" anzeigt, dass der Eintrag guiltig ist, und lo-
gisch "0" anzeigt, dass der Eintrag nicht guiltig ist, ansonsten ein leerer Eintrag genannt. Das Control/Age-Byte
enthalt eine binare Altersnummer (AGE), die die vergangene Zeit seit dem letzten mit dieser Vorrichtung ver-
bundenen Quellenzugriff darstellt. Eine Vorrichtung kann betagt sein und durch die CPU 230 aus dem
Hash-Eintrag geléscht werden, nachdem sie fir einen vorbestimmten Zeitraum seit dem letzten Quellenzugriff
nicht verwendet wurde. Die Messung der vergangenen Zeit wird mit einem von mehreren Verfahren durchge-
fihrt und kann in Sekunden oder Teilen davon, Minuten, Stunden usw. gemessen werden. Der vorbestimmte
Zeitraum, bevor eine Vorrichtung betagt ist, ist auch programmierbar. In einer alternativen Ausfiihrung ist die
AGE-Nummer ein einzelnes Bit, das benutzt wird, um anzuzeigen, ob die Vorrichtung fir "alt" gehalten wird
oder nicht, was durch einen Laufzeit-Timer oder dergleichen festgelegt wird.

39/132

DE 697 31936 T2 2005.06.23

[0229] Die nachsten vier Bytes (B:8) definieren einen 29-Bit Virtual-LAN-(VLAN)Bitmap-Wert, der Portgrup-
pierungen, wenn verwendet, darstellt. Jedes Bit des VLAN-Wertes entspricht einem betreffenden der Ports und
wird gesetzt, wenn die Vorrichtung oder Port mit diesem Port gruppiert wird. Der VLAN-Wert identifiziert daher,
mit welchem der anderen Ports die Vorrichtung gruppiert ist. Dies ermdglicht den Netzwerken 106, 112, in jeder
gewunschten Kombination kombiniert zu werden, um eine Vielzahl verschiedener, mit dem Netzwerkschalter
102 verbundener LANs zu bilden. Wenn z. B. die ersten funf Ports Port0 bis Port4 miteinander gruppiert wer-
den, ist der VLAN-Wert fir jeden 0000001fFh, wo "h" einen Hexadezimalwert bezeichnet. Ein von einer mit
Port Port2 verbundenen Vorrichtung gesendetes BC-Paket wird an die Ports Port0, Port1, Port3 und Port4 wie-
derholt, anstatt an alle anderen Ports des Netzwerkschalters 102 wiederholt zu werden. Ein VLAN-Wert von
nur Einsen oder 1TFFFFFFFh bezeichnet keine Gruppierungen fiir diese Vorrichtung. Es wird angemerkt, dass
es fur eine Vorrichtung mdglich ist, mit mehr als einer Gruppe verbunden zu werden. In einer alternativen Aus-
fuhrung kann ein VLAN-Feld eingeschlossen werden, um mehr als eine von mehreren VLAN-Gruppen, zu de-
nen jede Vorrichtung gehdrt, so vorhanden, zu identifizieren.

[0230] Die letzten vier Bytes (F:C) jedes Hash-Tabelleneintrags 910 ist eine Link-Adresse (Link A[31:0] oder
Link-Adresse), die auf den nachsten Eintrag mit einer identischen Hash-Adresse, so vorhanden, in dem ver-
ketteten Hash-Eintragsabschnitt 908 zeigt. Der nachste Eintrag wird an der nachsten verfligbaren Stelle in dem
verketteten Hash-Eintragsabschnitt 908 gespeichert. Auf diese Weise wird, wenn zwei MAC-Adressen von
zwei verschiedenen Vorrichtungen zu der gleichen Hash-Adresse haschieren, der erste oder "Haupt"-Eintrag
in dem Haupt-Hash-Eintragsabschnitt 906 gespeichert, und der zweite Eintrag wird in dem verketteten
Hash-Eintragsabschnitt 908 gespeichert, und die Link-Adresse des Haupteintrags zeigt auf den zweiten Ein-
trag. Wenn eine andere MAC-Adresse zu der gleichen Hash-Adresse wie die ersten zwei haschieren, wird je-
der zusatzliche Eintrag im verketteten Hash-Eintragsabschnitt 908 gespeichert und in aufeinanderfolgender
Reihenfolge oder mit Link-Adressen miteinander verbunden. Jeder Eintrag folgt dem Format des Hash-Tabel-
leneintrags 910. Das Format der Link-Adresse kann in jeder genehmen Weise definiert werden. Die
Link-Adresse enthalt typischerweise einen Basisadressteil, der auf den Hash-Speicherabschnitt 902 im Spei-
cher 212 zeigt, und einen Offsetteil, der auf den tatsachlichen Eintrag in dem Hash-Speicherabschnitt 902
zeigt. Die unteren Adressbits kdnnen, wenn gewlnscht, zum Byteabgleich auf null gesetzt werden. Der letzte
Eintrag in jeder Kette wird identifiziert, indem ein Teil der Link-Adresse auf null gesetzt wird. Zum Beispiel kann
der letzte Eintrag bezeichnet werden, indem die Link-Adressenbits [A31:28] auf null gesetzt werden.

[0231] Eiq. 9D ist ein Blockdiagramm, das die Organisation des Paketspeicherabschnitts 904 des Speichers
212 veranschaulicht. In der gezeigten Ausfihrung ist der Paketspeicherabschnitt 904 als eine Vielzahl von an-
einandergrenzenden und gleich groRen Sektoren 912 organisiert, wo jeder Sektor 912 einen Sektorinformati-
onsabschnitt, genannt Sektorprafix 914, und einen Paketabschnitt 916 mit einem oder mehr Paketdatenbl6-
cken umfasst. Jeder der Sektoren 912 hat vorzugsweise eine Gré3e von 2 KByte, um so der Seitengrof3e der
Speichervorrichtungen, die den Speicher 212 implementieren, zu entsprechen, um Entwurf und Overhead zu
vereinfachen. In der gezeigten Ausfuhrung sind FPM DRAM SIMMs mit 4 KByte Seitengrenzen organisiert,
und synchrone DRAM SIMMs sind in 2 KByte Seitengrenzen organisiert. Eine 2 KByte SektorgréRe ist daher
fur die unterstitzten Speichervorrichtungstypen ausreichend. Die Sektoren 912 sind anfangs leer, aber mit
Link-Adressen miteinander verkettet, um die FREEPOOL CHAIN von freien Speichersektoren zu bilden.

[0232] Wenn neue Informationspakete von jedem der Ports 104, 110 empfangen werden, werden ein oder
mehr Sektoren 912 von der FREEPOOL CHAIN getrennt und in einer RECEIVE SECTOR CHAIN pro Port mit-
einander verbunden. Ferner wird jedes Paket mit anderen Paketen in der gleichen oder anderen RECEIVE
SECTOR CHAINs verbunden, um eine getrennte TRANSMIT PACKET CHAIN pro Port zu bilden. Auf diese
Weise wird eine RECEIVE SECTOR CHAIN fur einen Port auch in eine TRANSMIT PACKET CHAIN fir einen
anderen Port gelegt. Wenn alle Daten im Paketabschnitt 816 eines Sektors 912 an einen Zielport gesendet
sind, wird der Sektor von seiner RECEIVE SECTOR CHAIN befreit und wieder mit der FREEPOOL CHAIN ver-
bunden. Die RECEIVE SECTOR und FREEPOOL Chaims werden mittels Link-Adressen oder Zeigern von ei-
nem Sektor zu dem nachsten in einer unten weiter beschriebenen Weise implementiert. Alle TRANSMIT PA-
CKET CHAINs werden von einem Paketdatenblock zu dem nachsten flr jeden Port mittels Link-Adressen oder
Zeigern miteinander verbunden, wie unten beschrieben.

[0233] Fig. 9E ist ein Diagramm, das die Organisation jedes der Sektorprafixe 914 fir jeden Sektor 912 des
Paketspeicherabschnitts 904 zeigt. Das Sektorprafix 914 enthalt Information eines entsprechenden Sektors
912 und fungiert werter als ein Link zu einem nachsten Sektor 912. Es wird angemerkt, dass, obwohl ein Prafix
angegeben ist, dieser Informationsteil irgendwo in dem Sektor 912 platziert werden kann. Das erste Byte (0)
definiert eine binare Sektorpaketzahlung (SecPktCnt), die die Zahl von Paketen oder Paketstiicken im gegen-
wartigen Sektor 912 angibt. Die Sektorpaketzahlung wird inkrementiert, wenn Paketdaten in den Sektor ge-

40/132

DE 697 31936 T2 2005.06.23

speichert werden, und dekrementiert, wenn die Daten zum Senden durch den Zielport gelesen werden. Der
Sektor wird an die FREEPOOL CHAIN zurlickgegeben, wenn die Sektorpaketzahlung SecPktCnt auf null de-
krementiert, und wenn der Sektor nicht am Ende der RECEIVE SECTOR CHAIN liegt. Das nachste Byte (1)
ist ein Sektorquellenwert (SecSource), der den Quellenport des empfangenen Pakets spezifiziert. Dieser Wert
soll eine geeignete Empfangsport-Sektorzahlung (RxSecCnt) identifizieren und dekrementieren, wenn der
Sektor an die FREEPOOL CHAIN zurlickgegeben wird. Die nachsten zwei Bytes (3:2) sind reserviert oder nicht
benutzt.

[0234] Die nachsten vier Bytes (7:4) in jedem Sektorpréafix 914 bilden eine nachste Link-Adresse (NextSec-
Link) zum nachsten Sektor in einer entsprechenden RECEIVE SECTOR CHAIN oder FREEPOOL CHAIN. Die
gleiche Link-Adresse wird fiir beide Zwecke verwendet, obwohl eine andere Link-Adresse auch benutzt wer-
den koénnte. In der gezeigten Ausfihrung ist die NextSecLink-Adresse 32 Bits, einschlieRlich Basis- und Off-
setteilen. Die niedrigstwertigen "n" Bits kdnnen auf null gesetzt werden, um die Bytes der NextSecLink-Adresse
entsprechend der SektorgréRe anzupassen. Die Ganzzahl "n" ist 12 fiir 4 KByte Sektoren, 11 fiir 2 KByte Sek-
toren, 10 fiir 1 KByte Sektoren und 9 fir 512 Byte Sektoren. In der gezeigten Ausfiihrung ist n 11 fir 2 KByte
Sektoren usw. Auf diese Weise wird, wenn ein oder mehr Pakete von einem Port 104, 110 empfangen werden,
eine RECEIVE SECTOR CHAIN von Sektoren 912 zugeteilt, um ein oder mehr durch diesen Port empfangene
Pakete zu speichern. Die Sektoren 912 werden in einer Kettenform unter Verwendung der Next-
Sec-Link-Adresse in dem Sektorprafix 914 jedes Sektors 912 in der Kette miteinander verbunden. Die Paket-
daten werden sequenziell im Paketabschnitt 916 jedes Sektors 912 in jeder RECEIVE SECTOR CHAIN ge-
speichert. Es wird angemerkt, dass Paketdaten fir ein einzelnes Paket Sektorgrenzen in einer RECEIVE SEC-
TOR CHAIN kreuzen kénnen. Die letzten acht Bytes (15:8) des Sektorprafixes 914 sind reserviert oder unbe-
nutzt.

[0235] Fiq. 9F ist ein Diagramm, das die Organisation eines exemplarischen Paketdatenblocks 917 zeigt, der
jeden Paketdatenblock im Paketabschnitt 916 reprasentiert. Der Paketdatenblock 917 ist in zwei Teile geteilt,
einen Paketblockvorspann 918 und einen Paketdatenabschnitt 920. Der Paketblockvorspann 918 wird vor-
zugsweise jedem Paket durch den MCB 404 vorangestellt, um einen Paketdatenblock 917 zu bilden. Die ers-
ten zwei Bytes (1:0) im Paketblockvorpsnn 918 bilden einen 15-Bit binaren Paketlangen-(PktLength) Wert, der
die Paketlange in Bytes definiert, und einen 1-Bit Mittelpaket-CT-WERT (MidPktCT), der gesetzt wird, wenn
ein CT-Moduspaket infolge eine stehen gebliebenen Ports an der Speicher 212 geleitet wird. Der MCB 404
hangt das erste DWORD, das die PktLength enthalt, an das Paket an, wenn es an Ports Port24—Port27 fir die
TLANs 226 und an Port28 fiir die CPU 230 gesendet wird. Das nachste Byte (2) des Paketblockvorspanns 918
identifiziert die Quellenport-(SourcePort) Nummer des Pakets, die eine binare 8-Bit Port-ID-Nummer ist, die die
Nummer des mit der Quellenadresse verbundenen Ports identifiziert. Der Quellenport wird auch durch die ein-
zelne RECEIVE SECTOR CHAIN identifiziert, in der das Paket gespeichert ist. Das nachste Byte (4) identifi-
ziert die Zielport-(DestPort) Nummer, die eine binare 8-Bit Port-ID-Nummer ist, die die Nummer des Zielport in
einer ahnlichen Weise wie der SourcePort-Wert identifiziert. Der Ziel wird auch durch die einzelne TRANSMIT
PACKET CHAIN identifiziert, zu der das Paket gehort.

[0236] Die Bytes (11:8) des Paketblockvorspanns 918 definieren eine 32-Bit nachste Link-Adresse (NextTx-
Link) zu dem nachsten Paket oder Paketdatenblock 917 in einer TRANSMIT PACKET CHAIN. Das Ende der
TRAMSMIT PACKET CHAIN wird angezeigt, wenn eine Sendepaketzahlung (TxPktCnt) auf null dekrementiert
ist. Das niedrigstwertige Bit AO der Next-TxLink-Adresse wird als ein BC-Paketbit (NextPktBC) benutzt, das
angibt, ob das nachste Paket rundgesendet wird oder nicht. Wenn NextPktBC = 1, ist das nachste Paket im
Rundsendeformat, unten beschrieben, und wenn NextPktBC = 0, ist das Nachste Nicht-Rundsenden. Das
zweitniedrigstwertige Bit A1 der NextTxLink-Adresse wird als ein SnF-Paketbit (NextPktSnF) benutzt, das an-
gibt, ob das nachste Paket SnF ist oder nicht. Es wird angemerkt, dass das niedrigstwertige Nibbel (vier Bits)
der NextTxLink-Adresse flir Byteabgleichzwecke ungeachtet des tatsachlichen Werte des Nibbels als null an-
genommen werden kann. Wenn z. B. die NextTxLink-Adresse gelesen wird, werden daher die Bits A[3:0] un-
geachtet ihres tatsachlichen Werts, z. B. NextPktBC = 1, als null angenommen. Dies erlaubt diesen Bits, fur
andere Zwecke benutzt zu werden. In der gezeigten Ausflihrung werden die Datenstrukturen 16-Byte-ausge-
richtet, sodass die niedrigstwertigen Bits A[3:0] als null angenommen werden.

[0237] In der gezeigten Ausfihrung folgt der Paketdatenabschnitt 920 sofort dem Paketblockvorspann 918,
wo die Lange des Datenfeldes im Paketvorspann definiert wird. Es wird jedoch angemerkt, dass die einzelne
Reihenfolge jedes Sektors und die einzelnen Stellen von Werten in der gezeigten Ausfuhrung willkirlich sind
und der Veranschaulichung dienen, und daher in jeder gewiinschten Weise organisiert werden kénnen, ohne
den Umfang der vorliegenden Erfindung zu verlassen.

41/132

DE 697 31936 T2 2005.06.23

[0238] Wie vorher beschrieben, werden Pakete aus jedem der Ports Port0-Port28 zuriickgewonnen und in
entsprechenden RECEIVE SECTOR CHAINs der Sektoren 912, eine RECEIVE SECTOR CHAIN pro Port, ge-
speichert. Wie in Fig. 9H gezeigt, wird eine erste Empfangssektorkette 930 fir Port0 gezeigt, wo ein erster
Sektor 931 mit einem anderen Sektor 932 mittels des NextSecLink im Sektorprafix 914 des Sektors 931 ver-
bunden ist. Wertere Sektoren kénnen, wenn gewtunscht, mittels der Link-Adressen in den Sektorprafixen 914
verbunden werden. Ferner wird eine zweite Empfangssektorkette 940 fir Port1 gezeigt, wo ein erster Sektor
941 mit einem anderen Sektor 942 mittels des NextSecLink im Sektorprafix 914 des Sektors 941 verbunden
ist. FUr jedes an einem gegebenen Port empfangene Paket wird der Paketblockvorspann 918 direkt hinter dem
vorher empfangenen Paketdatenblock 917 in dem Paketabschnitt 916 des momentanen Sektors 912 der ent-
sprechenden RECEIVE SECTOR CHAIN platziert, und der Paketblockvorspann 918 wird von seinem Paket-
datenabschnitt 920 gefolgt. Wenn der Paketabschnitt 916 des momentanen Sektors 912 voll wird, wahrend ein
Paketdatenblock 917 gespeichert wird, wird ein weiterer Sektor 912 aus der FREEPOOL CHAIN zugewiesen
und mit der RECEIVE SECTOR CHAIN fir den Port verbunden. Auf diese Weise werden die von einem Port
empfangenen Paketdatenblocke 917 in der entsprechenden RECEIVE SECTOR CHAIN fiir diesen Port anei-
nandergrenzend platziert. Ferner kann der Paketabschnitt eines Sektors 912 ganze Pakete und/oder Pakettei-
le enthaften.

[0239] Wie in Fig. 9H gezeigt, werden daher am Port0 empfangene Paketdatenblocke 934, 935 und 936 in
den Sektoren 931 und 932, wie gezeigt, platziert. Man beachte, dass der Paketdatenblock 935 die Sektoren
931 und 932 Uberspannt. In ahnlicher Weise werden am Port1 empfangene Paketdatenblocke 944 und 945 in
den Sektoren 941 und 942, wie gezeigt, platziert, wo der Paketdatenblock 945 die Sektoren 941 und 942 (iber-
spannt.

[0240] Jedes Paket ist auch mit der TRANSMIT PACKET CHAIN von Paketen fir jeden Zielport verbunden,
wo die Pakete mittels der NextTxLink-Adresse miteinander verbunden sind. Pakete in jeder TRANSMIT PA-
CKET CHAIN werden gewoénlich basierend darauf geordnet, wann sie durch den Netzwerkschalter 102 emp-
fangen werden, sodass die Reihenfolge bewahrt wird, wenn sie an den zugehorigen Zielport gesendet werden.
Wenn z. B., wie in Eig. 9H gezeigt, die Paketdatenblocke 934 und 944 vom Port10 zu senden sind, und der
Paketdatenblock 934 direkt vor dem Paketdatenblock 944 zu senden ist, zeigt die NextTxLink-Adresse des Pa-
ketblockvorspanns 918 des Paketdatenblocks 934 auf den Paketdatenblock 944. Die NextTxLink-Adresse des
Paketblockvorspanns 918 des Paketdatenblocks 944 zeigt auf den als Nachstes zu sendenen Paketdaten-
block usw. Die tatsachliche Reihenfolge zum Senden wird bestimmt, wenn ein Paket in eine TRANSMIT PA-
CKET CHAIN eingebunden wird. CT-Moduspakete werden verkettet, wenn der Anfang des Pakets empfangen
wird, und SnF-Moduspakete werden verkettet, nachdem das ganze Paket gespeichert ist. Mittelpaket-Inte-
rim-CT-Moduspakete werden mit dem Anfang der entsprechenden TRANSMIT PACKET CHIN verkettet, um
die richtige Reihenfolge zu sichern.

[0241] Eiq. 9G ist ein Blockdiagramm, das einen fur BC-Pakete benutzten 128-Byte Paketvorspann 922 zeigt,
der den normalen Paketblockvorspann 918 ersetzt. Fir BC-Pakete wird der Next-PktBC-Wert im vorherigen
Paket gesetzt, um anzuzeigen, dass das momentane Paket ein BC-Paket ist. Es wird angemerkt, dass jede
TRANSMIT PACKET CHAIN fir alle Ports unterhalten werden sollte, die das BC-Paket zum Senden enthalten.
Der BC-Paketvorspann 922 enthalt daher eine 4-Byte Link-Adresse (Port# NextTxLink) fir jeden Port von
Nummer 0-28 (einschlieRlich Ports 104, 110 und CPU 230), wo jede NextTxLink-Adresse auf das nachste Pa-
ket in der TRANSMIT PACKET CHAIH zeigt, die mit dem entsprechenden Port verbunden ist, der durch die
Stelle in der Liste (Port#) identifiziert wird. NextTxLink-Adressen beginnen daher bei Bytes (11:8) und enden
bei Bytes (123:120). Der erste NextTxLink-Adresseneintrag (11:8) entspricht dem nachsten Paket im Speicher
212 fur den ersten Port Port0, der zweite Eintrag (15:12) ist eine NextTxLink-Adresse zum nachsten Paket im
Speicher 212 fur den zweiten Port Port1 usw. bis zum letzten Eintrag (Bytes 123:120), der ein NextTxLink zum
nachsten Paket fir die CPU 230 ist. Jede BC-Link Adresse enthalt auch ein nachstes BC-Paket-(NextPktBC)
Bit, das anzeigt, ob das nachste Paket in der betreffenden Sendepaketkette ein BC-Paket ist oder nicht, und
ein nachstes SnF-Paket-(NextPktSnF) Bit, das anzeigt, ob das nachste Paket in der betreffenden Sendepaket-
kette ein SnF-Paket ist oder nicht.

[0242] Die ersten vier Bytes (3:0) des BC-Paketvorspanns 922 sind &hnlich den letzten vier Bytes des norma-
len Paketblockvorspanns 918, einschlieBlich der Werte fiir PktLength, MidPktCT, SourcePort und DestPort, au-
Rer dass der MidPktCT-Wert fur BC-Pakete null ist. Die nachsten vier Bytes (7:4) des BC-Paketvorspanns 922
ist eine Rundsendeport-Bitmap (BC_Ports), in der jedes der Bits 28:0 einem Port entspricht, der die BC-Paket-
daten empfangen wird. Jedes Bit wird gel6scht, wenn das Paket an einen entsprechenden Port gesendet wird.
Wenn alle BC_Ports-Bits geldscht sind, wird die vorher beschriebene SecPktCnt-Zahlung folglich auch dekre-
mentiert.

42/132

DE 697 31936 T2 2005.06.23

[0243] Fig. 10 ist ein exemplarisches Blockdiagramm, das mehrere Sendepaketlinks zeigt, die jeweils das
gleiche BC-Paket 1010 einschlieRen. In diesem Beispiel sind Ports 1, 5, 11 und 12 unter Verwendung der
VLAN-Funktion oder dergleichen zusammengruppiert, sodass die Daten des an einem Quellenport, z. B. Port
12, empfangenen BC-Pakets 1010 in die restlichen Ports 1, 5 und 11 in dieser Gruppe dupliziert werden. Vier
Sendepaketketten 1002, 1004, 1006 und 1008 werden fur Ports 1, 5, 11 und 12 gezeigt. Die Sendepaketketten
1002, 1004 und 1006 verbinden mehrere generische Nicht-Rundsendepakete 1000 mit dem BC-Paket 1010.
Da Port 12 der Quellenport ist, wird das BC-Paket 1010 auf Port 12 nicht gesendet, sodass es in der Sende-
paketkette 1008 nicht enthalten ist. Das BC-Paket 1010 enthalt einen BC-Paketvorspann 1012, der eine Liste
von Link-Adressen, eine fur jeden Port, enthalt, einschlieRlich einer Link-Adresse 1016, die auf das nachste
Paket 1000 in der Sendepaketkette 1002 von Port 1 zeigt, einer Link-Adresse 1018, die auf das nachste Paket
1000 in der Sendepaketkette 1004 von Port 5 zeigt, und einer Link-Adresse 1002, die auf das nachste Paket
1000 in der Sendepaketkette 1006 von Port 11 zeigt. Auf diese Weise wird jede der Sendepaketketten 1002,
1004 und 1006 aufrechterhalten. Es wird auch angemerkt, dass jede Sendepaketkette ein oder mehr BC-Pa-
kete enthaften kann, die, wie gewinscht, nicht-aufeinanderfolgend oder aufeinanderfolgend vorkommen koén-
nen.

[0244] Fig. 11A ist ein Blockdiagramm, das MCB-Paketsteuerregister 1102 zeigt, wobei der Satz von Regis-
tern im SRAM 650 bereitgestellt und fir jeden der 29 Ports 104, 110, einschliefl3lich der CPU 230, des Netz-
werkschalters 102 dupliziert wird. Die CPU 230 wird als ein "Port" fir bestimmte Zwecke behandelt, z. B. zum
Senden und Empfangen von Briickenprotokoll-Dateneinheiten (BPDUs) zu Zwecken der Uberspannungs-
baum-Prozedur. Jedes MCB-Paketsteuerregister 1102 enthalt einen Empfangsabschnitt 1104 und einen Sen-
deabschnitt 1106. Im Empfangsabschnitt 1104 ist ein 28-Bit Empfangspaketvorspann-Basiszeiger (Rx-BaseP-
tr) ein Zeiger auf die Basis des momentanen Empfangspaketvorspanns fiir den entsprechenden Port, der der
Anfang der RECEIVE SECTOR CHAIN fur diesen Port ist. Wie vorher fir den Speicher 212 beschrieben, sind
die Datenstrukturen fur das SRAM 650 16-Byte-ausgerichtet, sodass die niedrigstwertigen Bits A[3:0] aller Zei-
ger als null angenommen werden. Ein 28-Bit momentaner Empfangszeiger (RxCurPtr) ist ein Zeiger auf die
momentane Datenspeicherstelle fur die RECEIVE SECTOR CHAIN dieses Ports. Die niedrigstwertigen vier
Bits des RxCurPtr-Werts sind Steuerbits, einschliellich eines Empfangs-BC-Paketanzeigebits (RxBC), eines
Empfangsubertragung-im-Gange-(RxIP) Bits, das als ein Paketanfang-(SOP)Flag benutzt wird, eines Mehr-
sektorpaket-(MultisecPkt)Bits 1, das angibt. ob das momentane Paket eine Sektorgrenze kreuzt, und eines
SnF-Bits 0, das anzeigt, dass der Sende-Link am Ende des Pakets aktualisiert wird. Der Empfangsabschnitt
1104 umfasst werter ein Mittelpaket-CT-Bit (MidCT), einen 16-Bit Empfangspaketlangen-(RxPktLn)Wert gleich
der Lange des momentan empfangenen Pakets in Bytes bis zu dem RxCurPtr, eine 16-Bit Empfangsportsek-
torzahlung (RxSecCnt), die die Zahl von gegenwartig durch den entsprechenden Port benutzten Sektoren an-
gibt, und einen 16-Bit Empfangssektorschwellen-(RxSecThreshold)Wert, der eine CPU-programmierte maxi-
male Zahl von Sektoren identifiziert, die fur jeden Port oder jede RECEIVE SECTOR CHAIN erlaubt ist. Der
RxSecThreshold-Wert wird benutzt, um zu bestimmen, ob Rickstau fir diesen Port anzuwenden ist, indem
RxSecThreshold mit RcSecCnt verglichen wird. Wenn Ruckstau unterbunden ist, wird der RXSecThres-
hold-Wert verwendet, um alle werteren an dem entsprechenden Port empfangenen Pakete fallen zu lassen.

[0245] Der Empfangsabschnitt 1104 umfasst weiter einen Sendeende-Queue-Zeiger (EndOfTx-QPtr), der ein
28-Bit Zeiger auf die Basis des letzten Pakets in der TRANSMIT PACKET CHAIN fiir den entsprechenden Port
ist. SchlieRlich wird ein Sendeende-Queue-BC-(EOQ_BC) Bit gesetzt, um ein Rundsendeformat fiir das letzte
Paket in der TRANSMIT PACKET CHAIN fur den entsprechenden Port anzugeben.

[0246] Der Sendeabschnitt 1106 liefert Information fir die TRANSMIT PACKET CHAIN fur den entsprechen-
den Port. Ein Sendebasiszeiger (TxBasePtr) ist ein 28-Bit Zeiger auf die Basis des momentanen Sendepaket-
vorspanns, und ein anderer 28-Bit Momentan-Sendezeiger (TxCurPtr) zeigt auf die momentane Datenriickge-
winnungsstelle fir den entsprechenden Port. Ein Sende-Broadcast-(TxBC)Bit wird gesetzt, um anzuzeigen,
dass der Paketvorspann im Rundsendeformat ist. Ein Senden-im-Gange-(TxIP)Bit wird auf logisch 1 gesetzt,
um anzuzeigen, dass ein Senden momentan fiir den Port im Gange ist, und wird benutzt, SPO anzuzeigen.
Eine 8-Bit Sendequellenport-(TxSrcPort)Nummer ist die Quellenportnummer des momentanen Sendepakets,
die bei SOP aus dem Paketvorspann gelesen wird. Ein 16-Bit Sendepaketlangen-(TxPktLn)Wert ist gleich den
restlichen zu sendenden Bytes flir das momentane Sendepaket. Wenn ein Paket zu senden ist, wird der Pkt-
Length-Wert im Paketblockvorspann 918 des Pakets in den TxPktLn-Wert im Sendeabschnitt 1106 kopiert, und
dann wird der TxPktLn-Wert durch die TX-Steuerung 606 dekrementiert, wenn das Paket gesendet wird. Wenn
der TxPktLn auf null dekrementiert ist, erzeugt der EPSM 210 das entsprechende EOP* Signal, um das Ende
des Pakets anzuzeigen. Ein 16-Bit Maximal-Paketzahl-(TxPktThreshold)Wert ist gleich der CPU-programmier-
ten maximalen Zahl von Paketen, die fir jeden Port in einer Warteschlange eingereiht werden darf. Es wird
angemerkt, dass fur die CPU 230 bestimmte Pakete nicht der TxPktThreshold- oder TxPktThreshold-Grenze

43/132

DE 697 31936 T2 2005.06.23

unterliegen. SchlieBlich ist eine 16-Bit Sendepaketzahlung (TxPktCnt) gleich der Zahl von Paketen, die mo-
mentan fur den entsprechenden Port in einer Warteschlange eingereiht sind.

[0247] Fig. 11B ist ein Blockdiagramm, das in dem SRAM 650 gelegene Freepool-Paketsteuerregister 1108
zeigt, die mit der FREEPOOL CHAIN von Registern verbunden sind. Jedes Freepool-Register 1108 enthalt ei-
nen Zeiger (NextFreeSecPtr) auf den nachsten freien Sektor in der FREEPOOL CHAIN, einen Zeiger (Last-
FreeSecPtr) auf den letzten Sektor in der FREEPOOL CHAIN, eine freie Sektor Zahlung (FreeSecCnt) gleich
der Zahl von momentan verfiigbaren freien Sektoren, einen Freisektor-Schwellen-(FreeSecThreshold)Wert
gleich der CPU-programmierten Mindestzahl von Sektoren, die erlaubt ist, bevor ein Speichertberlauf-Flag
(MOF) fur Rickstau- oder Filterungs-(Pakete fallen lassen)Zwecke gesetzt wird, eine BC-Paketzahlung
(BC_PktCnt) gleich der Zahl von BC-Paketen, die momentan im Speicher 212 sind, und eine BC-Paketschwel-
len-(BC_PKThreshold) Zahlung gleich einer CPU-programmieren Maximalzahl im Speicher 212 erlaubter
BC-Pakete.

[0248] Fig. 12A ist ein Flussdiagramm, das die Arbeitsweise des Netzwerkschalters 102 zum Empfangen von
Datenpaketen in dem Speicher 212 und zum Senden von Datenpaketen in der CT-Betriebsart veranschaulicht.
Daten werden typischerweise durch die Ports PortO—Port27 des Netzwerkschalters 102 in der Form von Pake-
ten in Echtzeit oder in ihrer Gesamtheit empfangen und gesendet und werden nicht unterteilt wahrend sie Gber
die Segmente 108, 114 gesendet werden. Die FIFOs im Netzwerkschalter 102 sind jedoch typischerweise nicht
grof genug, um ein ganzes Paket zu speichern. Paketdaten werden daher im Netzwerkschalter 102 von einem
FIFO zu einem anderen in Paketabschnitten oder Unterteilungen von Paketen bertragen.

[0249] In einem ersten Schritt 1200 erfasst der EPSM 210 ein neues Paket, das durch einen der Ports 104,
110 gesendet wird, durch Anzeigen der PKT_AVAILm* Signale. Im nachsten Schritt 1202 wird der Anfangsteil
oder Vorspann des Pakets aus dem Quellenport zuriickgewonnen und in die HASH REQ LOGIC 532 gelesen,
wo der Vorspann die Ziel- und Quellen-MAC-Adressen enthalt. Die HASH REQ LOGIC 532 stellt die Ziel- und
Quellenadressen und die Quellenportnummer auf den HASH_DA_SA[15:0] Signalen bereit und macht das
HASH_REQ* Signal am MCB 404 geltend. Der MCB 404 ruft als Reaktion die die Hashing-Prozedur zum Be-
stimmen der geeigneten Aktion fur das Paket auf, wo die Quellen- und Zieladressen haschiert werden, um zu
bestimmen, ob jede der Adressen vorher im Speicher 212 gespeicher wurde. Der MCB 404 macht das
HASH_DONE™* Signal geltend, wenn genug Information fir den HCB 404 verfugbar ist, um die fir das Paket
geeignete zu ergreifenden Aktion zu bestimmen. Das in Eig. 12A gezeigte Flussdiagramm umfasst zwei
Hauptabschnitte fur die Ziel- und die Quellenadressen, die getrennt erdrtert werden. In der gezeigten Ausfuh-
rung wird zuerst die Zieladresse haschiert, gefolgt von der Quellenadresse, obwohl die Prozeduren gleichzeitig
oder in jeder gewlinschten Reihenfolge durchgefuhrt werden kénnen.

[0250] Fur die Zieladresse geht der Vorgang zu Schritt 1204, wo die Haschierungsprozedur aufgerufen wird,
um die Zieladresse zu haschieren. Der Vorgang geht als Reaktion auf das HASH_DONE* Signal von Schritt
1204 zu Schritt 1208, um die Schwellenbedingung fiur Unicast- und BC-Pakete zu prifen. In Schritt 1208 wird
festgestellt, ob eine relevante Schwellenbedingung durch das neue Paket verletzt werden wiirde. Das heift,
wenn die FreSecCnt-Zahl gleich oder kleiner ist als die FreeSecThreshold-Zahl, kann nicht genug Platz vor-
handen sein, um das Paket im Speicher 212 zu speichern. Ferner, wenn die RxSecCnt-Zahl gréer oder gleich
der RxSecThreshold-Zahl ist, kann der Netzwerkschalter 102 bestimmen, das Paket fallen zu lassen. Fir
BC-Pakete wird die BC_PktThreshold-Zahl mit der BC_Pkt-Cnt-Zahl, die die tatsachlichen Zahl von BC-Pake-
ten ist, verglichen, um festzustellen, ob die Maximalzahl von BC-Paketen bereits empfangen wurde. Fir Uni-
cast-Pakete wird die TxSec-Threshold-Zahl mit der TxSecCnt-Zahl fiir den Zielport verglichen.

[0251] Von Schritt 1208 geht der Vorgang zu Schritt 1205, wo der HCB 404 aus den HASH_STATUS[1:0] Si-
gnalen und aus dem Vergleichen von jeder der Schwellenbedingungen bestimmt, ob das Paket fallen zu lassen
ist. Das Paket kann aus einer Vielfalt anderer Grinde, wie vorher beschrieben, fallen gelassen werden, z. B.,
wenn die Quellen- und Zielports gleich sind. Wenn das Paket fallen zu lassen ist, geht der Vorgang von Schritt
1205 zu Schritt 1207, wo das Paket entweder fallen gelassen oder Rickstau angewandt wird. Riickstau wird
angewandt, wenn die FreeSecThreshold- oder RxSecThreshold-Bedingungen verletzt werden, und wenn
Ruckstau freigegeben ist und der Quellenport im Halbduplex-Modus arbeitet. Andernfalls wird das Paket fallen
gelassen. Fir Rickstau fiihrt der EPSM 210 einen Riickstau-Zyklus auf dem HSB 206 aus, was den Quellen-
port veranlasst, eine Hemmungssequenz in der sendenden Vorrichtung geltend zu machen. Das Paket wird
fallen gelassen, wenn die Rickstau-Anzeige durch den Quellenport nicht angenommen wird (wie durch das
ABORT_OUT* Signal angezeigt), weil sie zu spat bereitgestellt wird, um die Hemmungssequenz geltend zu
machen. Ferner wird das Paket fallen gelassen, wenn die BC_PktThreshold-Bedingung die einzige Schwellen-
bedingung ist, die verletzt wird. Der Netzwerkschalter 102 fahrt fort, den Rest des fallen gelassenen Pakets zu

44/132

DE 697 31936 T2 2005.06.23

empfangen, aber das Paket wird nicht gespeichert oder an einen anderen Port gesendet. Von Schritt 1207 geht
der Vorgang zu Schritt 1214, wo die geeigneten Statistikregister in den MCB-Konfigurationsregistern 448 ba-
sierend auf der in Schritt 1207 ergriffenen Aktion aktualisiert werden. Die Statistikregister zeigen an, ob das
Paket infolge von Uberlaufbedingungen fallen gelassen oder riickgestaut wurde. Zum Beispiel wird eine pro
Port "fallen gelassenes Paket — kein Puffer" Zahlung fir den Port inkrementiert, um anzuzeigen, dass ein Paket
infolge von Uberlaufbedingungen fallen gelassen wird, oder eine "Paket zuriickgestaut" Zahlung wird inkre-
mentiert, wenn das Paket rlickgestaut wird.

[0252] Wenn das Paket nicht fallen gelassen wird, geht der Vorgang von Schritt 1205 zu Schritt 1206, wo fest-
gestellt wird, ob die Zieladresse im Hash-Speicherabschnitt 902 gefunden wurde, und ob das Paket rundzu-
senden ist oder nicht. Das Paket wird rundgesendet, wenn die Zieladresse nicht erkannt wird und daher der
Zielport nicht bekannt ist, oder wenn das GROUP-Bit in dem Paket gesetzt ist. Wenn die Zieladresse nicht ge-
funden wird, oder wenn das Paket andernfalls ein BC-Paket ist, wie in Schritt 1206 bestimmt, ist das Paket
rundzusenden, und der Vorgang geht zu Schritt 1210, wo der MCB 404 des EPSM 210, wenn nétig, einen wei-
teren Sektor im Speicher 212 fiur das neue Paket zuteilt. Ein neuer Sektor ist nicht ndtig, wenn der gegenwar-
tige Sektor genug Platz fur das Paket hat. Der Vorgang geht zu Schritt 1216, der angibt, dass der Rest des
Pakets, Stof3 fiir Stol3, durch den EPSM 210 gepuffert und in den Speicher 212 (ibertragen wird. Ungeachetet
Porteinstellungen werden BC-Pakete mit SnF-Modus gehandhabt, wo das ganze Paket im Speicher 212 ge-
speichert wird, bevor es gesendet wird. Von Schritt 1216 geht der Vorgang zu Schritt 1217, um festzustellen,
ob das ABORT_OUT* Signal wahrend des Empfangens des Pakets infolge eines Paketfehlers geltend ge-
macht wurde. Mehrere Fehlerbedingungen werden durch die Ports Port0—Port27 geprift, z. B. Erfassen eines
FIFO-Uberlaufs, eines Runt-Pakets, eines (ibergroRen Pakets, das Paket hatte eine schlechte FCS (Rahmen-
prufsequenz) oder ein PLL-Fehler wurde erfasst. Wenn in Schritt 1217 ein Paketfehler erfasst wird, geht der
Vorgang zu Schritt 1219, wo das Paket aus dem Speicher 212 entfernt wird.

[0253] Wenn in Schritt 1217 keine Paketfehler erfasst werden, geht der Vorgang zu Schritt 1218, wo die
Rundsendeport-Bitmap BC_Ports im Paketvorspann 922 des BC-Pakets mit den aktiven Ports, von denen das
BC-Paket zu senden ist, aktualisiert wird. Das BC-Paket wird an alle Ports auf3er den folgenden Ports gesen-
det: der Quellenport; jeder Port, der nichtim FORWARDING-Status ist, wenn der Quellenport die CPU 230 ist,
oder jeder Port im DISABLED-Status, wenn der Quellenport die CPU 230 ist, und alle Ports mit einer TxP-
ktCnt-Zahl gréRer oder gleich der entsprechenden TxPktThreshold-Zahl. Wenn VLAN freigegeben ist, wird
auch der VLAN-Bitmapwert im Hash-Tabelleneintrag 910 untersucht, was die Ports weiter auf aktive, zugeho-
rige Ports in der VLAN-Gruppe begrenzt. Ferner werden Fehl-BC-Pakete, wo das Paket infolge einer unbe-
kannten Zieladresse rundgesendet wird, entsprechend einem MissBCBitMap-Register beférdert. Es wird an-
gemerkt, dass, wenn die resultierende BC_Ports-Bitmap alles Nullen sind, sodass das Paket an keinen Port
zu senden ist, diese Entscheidung entweder in Schritt 1205 getroffen und das Paket in Schritt 1207 fallen ge-
lassen wird, oder das Paket in Schritt 1218 aus dem Speicher 212 entfernt wird.

[0254] Der Vorgang geht von Schritt 1218 zu Schritt 1220, wo das Paket zu der TRANSMIT PACKET CHAIN
fur jeden Port in der resultierenden BC_port-Bitmap hinzugefiigt wird. Das heil3t, jede der NextTx-
Link-Link-Adressen flr jeden in der BC_port-Bitmap bezeichneten Port im Paketvorspann 922 wird aktualisiert,
um das BC-Paket in die TRANSMIT PACKET CHAINs der geeigneten Ports einzufiigen. Alle anderen zuge-
horigen Register- oder Zahlwerte und Statistiken im Netzwerkschalter 102 werden folglich auch aktualisiert, z.
B. die BC_PktCnt-Z&hlung.

[0255] Zurlck auf Schritt 1206 verweisend geht, wenn die Zieladresse gefunden ist und das Paket kein
BC-Paket ist, der Vorgang zu Schritt 1222, wo die Hash-Cache-Tabelle 603 aktualisiert wird. Der Vorgang geht
dann zum nachsten Schritt 1224, wo abgefragt wird, ob entweder der Quellenport oder der Zielport fir den
SnF-Modus eingerichtet ist. Wenn beide Ports flir den CT-Modus eingerichtet sind und die anderen CT-Bedin-
gungen erfullt sind, z. B. gleiche Portgeschwindigkeit, und die TBUS-Einstellung fir den Zielport gleich der
TBUS-Einstellung fur den Quellenport ist, geht der Vorgang zu Schritt 1225, wo abgefragt wird, ob der Zielport
tatig ist. Wenn der Vorgang fiir den SnF-Modus bezeichnet ist, wie in Schritt 1224 bestimmt, oder wenn fiir den
CT-Modus bezeichnet, aber der Zielport tatig ist, wie in Schritt 1225 bestimmt, sodas der Interim-CT-Modus
eingeleitet wird, geht der Vorgang zu Schritt 1226, wo der MCB 404 des EPSM 210, wenn nétig, Platz im Spei-
cher 212 fiir das neue Paket zuweist. Von Schritt 1226 geht der Vorgang zu Schritt 1228, wo der restliche Teil
des Pakets in den EPSM 210 zuriickgewonnen und in den Speicher 212 Ubertragen wird. Wenn ein Paketfehler
wahrend des Empfangs des Pakets auftritt, wie in Schritt 1229, der dem Schritt 1217 ahnlich ist, angedeutet,
geht der Vorgang zu Schritt 1219, um das Paket aus dem Speicher 212 zu entfernen. Andernfalls geht der Vor-
gang zu Schritt 1230, wo das Paket zu der TRANSMIT PACKET CHAIN des Zielports hinzugefligt wird und die
geeigneten Link-Adressen, Zahlungen und CHAINs aktualisiert werden.

45/132

DE 697 31936 T2 2005.06.23

[0256] Wenn, wieder auf Schritt 1225 verweisend, der Zielport nicht tatig ist, geht der Vorgang zu Schritt 1231,
wo die Quellen- und Zielports flr normalen CT-Betrieb flir das momentane Paket bezeichnet werden. Fir den
normalen CT-Modus wird jeder restliche Paketteil nicht an den Speicher 212 gesendet, sondern wird stattdes-
sen durch den CT BUF 528 zu dem Zielport gepuffert. Der Vorspann des Pakets wird von dem RX FIFO des
EPSM 210 direkt zu dem Zielport Gbertragen. Der nachste Schritt 1232 gibt das Empfangen von Datenpaket-
teilen im CT BUF 528 und das Ubertragen der Paketteile zu dem Zielport an. Wahrend des CT-Betriebs fragt
der nachste Schritt 1233, ob der Zielport oder -Weg tatig oder unverfiigbar wird. Die in Schritt 1233 angegebe-
ne Abfrage wird ausgefihrt, bevor Daten im CT BUF 528 durch den Haupt-Arbiter 512 empfangen werden.
Wahrend der Zielport flir mehr Daten verflgbar bleibt, verzweigt der Vorgang zu Schritt 1234 um zu fragen, ob
das ganze Paket zu dem Zielport libertragen wurde, und geht, wenn nicht, zurick zu Schritt 1232, um mehr
Daten zu senden. Wenn das ganze Paket im CT-Modus Ubertragen wurde, wie in Schritt 1234 festgestellt, ist
der Vorgang fir dieses Paket abgeschlossen.

[0257] Wenn der Zielport wahrend der normalen CT-Modusilbertragung tatig oder unverfiigbar wird, wie in
Schritt 1233 festgestellt, geht der Vorgang zu Schritt 1235, um den restlichen Teil des Pakets im Speicher 212
zu empfangen, um den Mittelpaket-Interim-CT-Modus einzuleiten. Wahrend des Mittelpaket-Interim-CT-Modus
wird der restliche Teil des Pakets durch den Speicher 212 gepuffert. Da das Paket mitten in der Ubertragung
war, werden die restlichen an den Speicher 212 gesendeten Paketdaten am Anfang der TRANSMIT PACKET
CHAIN fir diesen Port platziert, um die richtige Paketreihenfolge zu sichern, wie im nachsten Schritt 1236 an-
gegeben. Wie in der normalen CT-Betriebsart ist jeder an den Speicher 212 wahrend des Mittelpaket-Inte-
rim-CT-Modus gelieferte Datenpaketteil zur Ubertragung zu dem Zielport, sobald empfangen, verfiigbar.

[0258] Wieder auf Schritt 1202 verweisend geht der Vorgang zu Schritt 1240, um die Quellenadresse zu ha-
schieren. Der Vorgang geht dann zu Schritt 1242, wo abgefragt wird, ob die Quellenadresse im Hash-Spei-
cherabschnitt 902 gefunden wurde, und ob das GROUP-Bit im Paket gesetzt wurde. Wenn die Quellenadresse
gefunden wurde und das GROUP-BIt nicht gesetzt war, geht der Vorgang zu Schritt 1244, wo das AGE-Feld
des Hash-Speicherabschnitts 902 mit der AGE-Information aktualisiert wird. Zum Beispiel wird der AGE-Wert
auf null gesetzt. Es wird angemerkt, dass die Quellen-MAC-Adresse und die Quellenportnummer nicht mehr
einem vorherigen Eintrag entsprechen kénnen. Dies kdnnte z. B. vorkommen, wenn eine Netzwerk- oder Da-
tenvorrichtung von einem Port zu einem anderen bewegt wird. Diese Information wird in Schritt 1244 verglichen
und aktualisiert.

[0259] Wenn, zurlick auf Schritt 1242 verweisend, die Quellenadresse nicht gefunden wurde, oder wenn das
GROUP-BiIt gesetzt war, geht der Vorgang zu Schritt 1246, wo eine Unterbrechung an der CPU 230 erzeugt
wird, die die folgenden Schritte durchfihrt. In Schritt 1248 weist die CPU 230 einen Hash-Tabelleneintrag im
Hash-Speicherabschnitt 902 des Speichers 212 oder einen am wenigsten kirzlich benutzten (LRU) Abschnitt
der Hash-Cache-Tabelle 603 fiir die neue Quellenadresse zu. Der Vorgang geht dann zu Schritt 1250, wo die
Werte in dem zugewiesenen Hash-Eintrag, z. B. die Quellen-MAC-Adresse, die Quellenportnummer und die
AGE-Information, aktualisiert werden.

[0260] Fia. 12B ist ein vereinfachtes Flussdiagram, das die allgemeine Arbeitsweise des Netzwerkschalters
102 zum Ubertragen von Daten aus dem Speicher 212 zu einem oder mehreren Zielports veranschaulicht. Die
Ubertragungsprozedur gilt allgemein fiir SnF- und Mittelpaket-Interim-CT-Betriebsarten und fiir BC-Pakete, wie
unten qualifiziert. Ein erster Schritt 1260 stellt allgemein dar, dass Paketdaten entsprechend den vorher be-
schriebenen Prozeduren im Speicher 212 in einer Warteschlange eingereiht sind. Der Vorgang geht dann zum
nachsten Schritt 1262, wo der MCB 404 dem HCB 402 anzeigt, dass Paketdaten verfugbar sind.

[0261] Fur den Mittelpaket-Interim-CT-Modus wird diese Anzeige bereitgestellt, sobald das erste DWORD
von Daten an den MCB 404 zur Speicherung im Speicher 212 gesendet wird, da die Daten fast sofort zur Uber-
tragung an einen Zielport zur Verfligung stehen. Fiir den SnF-Modus wird diese Anzeige jedoch nur bereitge-
stellt, nachdem das letzte DWORD von Daten fir ein Datenpaket an den MCB 404 gesendet ist, da das ganze
Paket vor der Ubertragung gespeichert wird. Sobald Paketdaten zum Senden verfiigbar sind, geht der Vorgang
zu Schritt 1264, wo festgestellt wird, ob der Zielport Pufferplatz zur Verfligung hat, um Paketdaten zum Senden
zu empfangen. Schritt 1264 stellt allgemein die durch den EPSM 210 durchgefiihrte Abfrageprozedur zum Ab-
fragen jedes der Ports 104, 110 dar, die mit entsprechenden BUF_AVAILm* Signalen antworten, wie vorher
beschrieben. Der Vorgang bleibt bei Schritt 1264, bis der Zielport anzeigt, dass er Pufferplatz zur Verfligung
hat, um Paketdaten zu empfangen.

[0262] Wenn der Zielport in Schritt 1264 anzeigt, dass er Pufferplatz besitzt, geht der Vorgang zu Schritt 1266,
wo der HCB 402 die Ubertragung von Daten fiir den Zielport anfordert. Im nachsten Schritt 1268 wird ein StoR

46/132

DE 697 31936 T2 2005.06.23

von Daten vom Speicher 212 an den Zielport zum Senden tbertragen. Der Vorgang geht zum nachsten Schritt
1270, wo abgefragt wird, ob alle Daten im Speicher 212 an den Zielport Gbertragen wurden. Wenn nicht, geht
der Vorgang zu Schritt 1264, um zu warten, bis der Zielport mehr Pufferplatz fir eine weitere Datentibertragung
zur Verfigung hat. SchlieBlich wird das ganze Datenpaket, im Fall des SnF- und Interim-CT-Modus, oder die
restlichen Paketdaten im Fall des Mittelpaket-Interim-CT-Modus Ubertragen, wie in Schritt 1270 festgestellt.

[0263] Der Vorgang geht dann zu Schritt 1272, wo festgestellt wird, ob das Paket ein BC-Paket ist oder nicht.
Wenn das Paket ein BC-Paket ist, geht der Vorgang zu Schritt 1274, um festzustellen, ob das ganze Paket an
alle aktiven Ports Ubertragen wurde. Wenn nicht, wird der Vorgang fir das momentane Paket vollendet. Die
Prozedur wird fur jeden Port wiederholt, bis das Paket an alle aktiven Ports Ubertragen ist. Es wird angemerkt,
dass die Schritte 1272 und 1274 gezeigt werden, um darzustellen, dass die Schritte 1264 bis 1270 fir jeden
Zielport fir jedes BC-Paket durchgefiihrt werden. Das ganze BC-Datenpaket bleibt daher im Speicher 212, bis
es an alle aktiven Zielports zum Ubertragen gesendet ist. Wenn das Paket kein BC-Paket ist, oder nachdem
das ganze Paket an alle aktiven Ports fliir BC-Pakete gesendet ist, wie in Schritt 1274 angegeben, geht der
Vorgang zu Schritt 1276, wo der Pufferplatz im Speicher 212, der das BC-Paket halt, freigesetzt wird. Das
heil}t, die Sektoren, die die Paketdaten halten, werden an die FREEPOOL CHAIN von freien Speichersektoren
im Speicher 212 zuriickgegeben.

[0264] Fig. 13 ist ein Flussdiagramm, das den Hash-Nachseh-Vorgang des EPSM 210 veranschaulicht. Die
Schritte im Flussdiagramm von Fig. 13 werden durch den MCB 404 ausgeflhrt. Ein Anfangsschritt 1302 er-
fasst eine Hash-Anforderung, wie durch Geltendmachung des HASH_REQ* Signals angezeigt. Der HCB 402
identifiziert den Vorspann des Pakets als ein neues Paket, bestimmt die Quellen- und Zieladressen und die
Quellenportnummer und macht die HASH_DA_SA[15:0] Signale an der Hash-Steuerung 602 des MCB 404
geltend. Der MCB 404 gewinnt dann die Quellen- und Ziel-MAC-Adressen und die Quellenportnummer zurlick
und fihrt die Haschierungs-Prozedur durch, die die geeignete Aktion fiir das Paket bestimmt.

[0265] Der MCB 404 ergreift gewdhnlich eine von vier Aktionen, wobei jede Aktion auf der Quellenportnum-
mer und der Quellen- und Ziel-MAC-Adresse basiert. Das heif’t, die Hash-Steuerung 602 bestimmt die
HASH_STATUS[1:0] Signale, die auf FORWARD_PKT, um das Paket an den Zielport zu beférdern,
DROP_PKT, um das Paket fallen zu lassen und zu ignorieren, MISS_BC, wenn die Ziel-MAC-Adresse neu und
unbekannt ist, sodass das Paket an alle anderen Ports rundgesendet wird, oder GROUP_BC gesetzt werden,
wenn das Paket in eine Untermenge verbundener Ports zu duplizieren und durch diese zu senden ist. Von
Schritt 1302 geht der Vorgang zu Schritt 1304, um festzustellen, ob das Paket fallen zu lassen ist, was durch
die folgende Gleichung (1) bestimmt wird:

DropPkt := (SrcState = DIS) oder (!FilterHit & SrcState != FWD) (1)

wo SrcState den Uberspannungsbaum-Zustand des Quellenports identifiziert, FilterHit ein Bit ist, das gesetzt
wird, wenn die Quellen-MAC-Adresse in einen vorbestimmten Bereich fallt, das Etzeichen "&" die logische
UND-Operation darstellt, das Ausrufezeichen "!" eine logische Verneinung bezeichnet, das Symbol "!=" die
Funktion "nicht gleich" bezeichnet, und das Symbol ":=" die Funktion "setzen gleich" bezeichnet. Jeder Port hat
einen von fiinf in den HSB-Konfigurationsregistern 448 bereitgestellten Zustanden, und wie durch die Uber-
spannungsbaum-Funktion der IEEE 802.1 Spezifikation bestimmt, einschlieRlich Lernen (LRN), Beférdern
(FWD), Gesperrt (BLK), Horen (LST) und Abgeschaltet (DIS). In der gezeigten Ausfihrung werden die Zustan-
de BLK UND LST gleich behandelt. Das Paket wird daher fallen gelassen, wenn der Quellenport abgeschaltet
ist, oder wenn die Quellen-MAC-Adresse nicht in dem vorbestimmten Filterbereich liegt und der Zustand des
Quellenports nicht Beférdernd ist.

[0266] Wenn DropPkt wahr ist, wie in Schritt 1304 bestimmt, geht der Vorgang zu Schritt 1305, wo
HASH_STATUS[1:0] Signale auf 00b = DROP_PKT gesetzt werden, um den HCB 402 anzuweisen, das Paket
zu ignorieren oder andernfalls fallen zu lassen. Wenn DropPkt unwabhr ist, geht der Vorgang zu Schritt 306, wo
das FilterHit-Bis untersucht wird, um festzustellen, ob die Quellen-MAC-Adresse in dem vorbestimmten Be-
reich liegt. Der vorbestimmte Bereich identifiziert Pakete, die von der CPU 230 stammen oder dafiir bestimmt
sind, einschlieRlich Brickenprotokoll-Dateneinheiten (BPDUs), die an die CPU 230 gesendet werden. Wenn
FilterHit wahr ist, wie in Schritt 1306 bestimmt, geht der Vorgang zu Schritt 1308, um den Zielport (DstPrt) zu
identifizieren. Wenn das Paket von der CPU 230 kommt (SrcPrt = CPU=, wird der Zielport gleich einem durch
die CPU 230 in einem vorherigen Vorgang (Dst := FltrPrt) gesetzten Wert FltrPrt gesetzt. Andernfalls wird das
Paket an die CPU 230 gesendet (DstPrt := PORT28). Der Vorgang geht dann von Schritt 1308 zu Schritt 1310,
um nach der folgenden Formel (2) zu bestimmen, ob das Paket zu beférdern (FwdPkt) ist.

47/132

DE 697 31 936 T2 2005.06.23
FwdPkt := (DstPrt != SrcPrt) & ((DstState = FWD) oder (SrcPrt = CPU & DstState != DIS)) (2)

wo DstState der Uberspannungsbaum-Zustand des Zielports (DstPrt) ist und "&" die logische UND-Operation
bezeichnet. Das Paket wird daher an den Zielport beférdert, wenn der Ziel- und Quellenport nicht der gleiche
nicht, und wenn der Status des Zielports Beférdern ist, oder wenn der Quellenport die CPU 230 und der Status
des Zielports nicht Abgeschattet ist. Der Zielport ist auch ohne Hash-Nachsehen bekannt, da er entweder die
CPU 230 ist oder durch die CPU 230 als FltrPrt bestimmt wird. Wenn FwdPkt unwahr ist, geht der Vorgang zu
Schritt 1305, um das Paket fallen zu lassen. Andernfalls, wenn FwdPkt wahr ist, geht der Vorgang zu 1312, wo
die HASH_STATUSI[1:0] Signale auf 11b = FORWARD_PKT gesetzt werden, um anzuzeigen, dass das Paket
an den Zielport zu berférdern ist. Ferner werden die HASH_DSTPRTI[4:0] Signale mit der DstPrt-Zielportnum-
mer geltend gemacht.

[0267] Wenn, wieder auf Schritt 1306 verweisend, die Quellenandresse nicht in dem vorbestimmten Bereich
und daher auBerhalb der gefilterten MAC-Adressen liegt, geht der Vorgang zu Schritt 1314, um das
GROUP-Bit in dem empfangenen Paket zu untersuchen, das angibt, ob das Paket ein BC-Paket ist oder nicht.
Wenn GROUP unwahr ist (GROUP-BIt = logisch 0), geht der Vorgang zu Schritt 1316, um ein Hash-Nachsehen
der Ziel-MAC-Adresse (DA) durchzufiihren. Die MAC-Adresse wird zuerst haschiert, indem zwei verschiedene
Satze von Bits aus der Adresse genommen werden die zwei Satze Bit fur Bit logisch kombiniert oder verglichen
werden, um eine entsprechende 13-16 Bit Hash-Adressee zu bilden, wie vorher beschrieben. Alle Bits der
MAC-Adresse konnen fir die Zwecke der Haschierungs-Prozedur gewahlt werden. Die tatsachliche Nach-
schlag-Prozedur wird von einer getrennten Routine oder Funktion durchgefiihrt, die unten mit Verweis auf das
Flussdiagramm von Fig. 14 beschrieben wird.

[0268] Die Nachschlag-Prozedur in Schritt 1316 gibt, wenn gewiinscht, einen oder mehr Werte zuruck, ein-
schlielich eines HIT bezeichneten Bits, das als DA_Hit fur die Zieladresses oder SA_Hit fiir die Quellenadres-
se zuruckgegeben wird. Das HIT-Bit bestimmt, ob die haschierte Adresse im Hash-Speicherabschnitt 902 ge-
funden wurde. Von Schritt 1316 geht der Vorgang zu Schritt 1318, wo der DA_Hit-Wert untersucht wird, um
festzustellen, ob die Adresse gefunden wurde oder nicht. Die Adresse wird im Speicher 212 gefunden werden,
wenn die der Ziel-MAC-Adresse entsprechende Vorrichtung vorher ein Paket hervorgebracht hat. Wenn
DA_Hit wahr ist, geht der Vorgang zu Schritt 1310, um festzustellen, ob das Paket zu beférdern ist, wie vorher
beschrieben. Wenn die Hash-Adresse nicht gefunden wurde und DA_Hit unwahr ist, geht der Vorgang zu
Schritt 1320, wo die HASH_STATUS[1:0] Signale auf 10b = MISS_BC gesetzt werden, um eine neue
MAC-Adresse anzuzeigen. Da die mit der Zielvorrichtung verbundene Portnummer noch nicht bekannt ist, wird
das Paket an alle anderen aktiven (und wie durch VLAN und andere Logik qualifizierte) Ports rundgesendet,
um sicherzustellen, dass das Paket an die geeignete Zielvorrichtung gesendet wird. Schliel3lich antwortet die
Zielvorrichtung auf das Paket mit einem neuen Paket, das die gleiche MAC-Adresse als eine Quellenadresse
enthalt. Der Netzwerkschalter 102 ist dann in der Lage, die MAC-Adresse mit einem Port und einer Portnum-
mer zu verbinden und den Hash-Speicher abschnitt 902 entsprechend zu aktualisieren. Wenn, wieder auf
Schritt 1314 verweisend, das GROUP-Bit wahr (oder logisch 1) ist, geht der Vorgang zu Schritt 1322, wo die
HASH_STATUSI1:0] Signale auf 01b = GROUP_BC gesetzt werden, um anzuzeigen, dass das Paket an alle
anderen Ports oder an eine durch die VLAN-Funktion spezifizierte Gruppe von Ports rundzusenden ist.

[0269] Von jedem der Schritte 1305, 1312, 1320 oder 1322 geht der Vorgang zu Schritt 1324, um durch Un-
tersuchen eines SrcLookUp-Wertes festzustellen, ob der Hash-Speicherabschnit 902 nach der Quel-
len-MAC-Adresse abzusuchen ist. Der SrcLookUp-Wert wird nach der folgenden Gleichung (3) bestimmt:

SrcLookUp := (SrcState = (LRN oder FWD)) & SrcPrt = CPU (3)

die anzeigt, dass die MAC-Quellenadresse gesucht wird, wenn der Quellenport im Lernen- oder Beférdern-Mo-
dus ist und nicht die CPU 230 ist. Wenn SrcLookUp wahr oder gesetzt ist, wie in Schritt 1324 bestimmt, geht
der Vorgang zu Schritt 1326, wo zwei Werte VLAN und SecurePort untersucht werden. Das VLAN-Bit ist wahr,
wenn einer der VLAN-Modi freigegeben ist, aber andernfalls unwahr. SecurePort ist wahr, wenn der Quellen-
port sicher ist, wo keine neuen Adressen zu dem Hash-Speicherabschnitt 902 hinzugefiligt werden und Pakete
von unbekannten Quellenadressen fallen gelassen werden. Wenn VLAN nicht wahr ist, und wenn der Port
nicht sicher ist, geht der Vorgang zu Schritt 1328, wo das HASH_DONE* Signal geltend gemacht und voriber-
gehend geltend gemacht gelassen wird. An diesem Punkt werden die HASH_STATUS- und
HASH_DSTPRT-Signale durch den HCB 402 ergriffen.

[0270] Wenn VLAN wahr ist, oder wenn SecurePort wahr ist, wie in Schritt 1326 bestimmt, oder nachdem
Schritt 1328 ausgefihrt ist, wird die Geltendmachung des HASH_DONE* Signals bis nach dem nachsten Quel-

48/132

DE 697 31936 T2 2005.06.23

lenadressen-Nachschlagen verzogert. Der Vorgang geht dann zu Schritt 1330, wo ein Hash-Nachschlagen auf
der Quellen-MAC-Adresse (SA) in der gleichen Weise wie oben fir die Ziel-MAC-Adresse beschrieben durch-
gefuhrt wird. In Schritt 1330 wird ein Wert SA_Hit wahr zurlickgegeben, wenn die Hash-Adresse fiir die ent-
sprechende Vorrichtung gefunden ist. Von Schritt 1330 geht der Vorgang zu Schritt 1332, wo ein Wert Src_Hit
untersucht wird. Src_Hit ist mit SA_Hit durch die folgende Gleichung (4) verknipft:

Src_Hit := SA_Hit & (HshPrt = SrcPort) (4)

wo Src_Hit wahr ist, wenn ein Source-Treffer vorkam (SA_Hit ist wahr), und wenn die in dem Eintrag in dem
Hash-Speicherabschnitt 902 gefundene Portnummer gleich der tatsachlichen Quellenportnummer ist, wo das
Paket empfangen wurde. Wenn die gespeicherte Quellenportnummer nicht gleich der tatsachlichen Qellen-
portnummer ist, wurde die Vorrichtung wahrscheinlich zu einem anderen Port bewegt, und der Hash-Speicher-
abschnitt 902 wird durch die CPU 230 aktualisiert, wie unten beschrieben. Wenn Src_Hit wahr ist, geht der Vor-
gang zu Schritt 1334, wo das HASH_DONE* Signal geltend gemacht wird, wenn VLAN unwahr ist. Der Vor-
gang geht dann zu Schritt 1336, wo die AGE-Zahl der Vorrichtung mit null verglichen wird. Wenn AGR nicht
gleich null ist, wird die AGE-Zahl in Schritt 1338 auf Null gesetzt. Wenn die AGE-Zahl null ist, wie in Schritt
1336 bestimmt, oder nachdem sie in Schritt 1338 auf null gesetzt wurde, geht der Vorgang zu Schritt 1340, wo
das VLAN-Bit erneut untersucht wird. Wenn VLAN wahr ist, geht der Vorgang zu Schritt 1342, wo eine
HASH-VLAN-Routine oder Prozedur ausgefuhrt wird, um in Beziehung stehende Ports zu identifizieren, wie
aus dem entsprechenden VLAN-Bitmap-Wert im Hash-Tabelleneintrag 910 bestimmt. Wenn VLAN nicht wahr
ist, wie in Schritt 1340 bestimmt, geht der Vorgang zu Schritt 1344, wo das HASH_DONE* Signal geltend ge-
macht oder firr eine Zeitperiode gepulst, wenn nicht bereits geltend gemacht, und dann negiert wird. Von Schritt
1344 wird der Vorgang fir diese Prozedur abgeschlossen. Die Negation des HASH_DONE* Signals beendet
das Hash-Nachschlagen des HCB 402.

[0271] Wenn, wieder auf Schritt 1332 verweisend, Src_Hit unwahr ist, geht der Vorgang zu Schritt 1350, wo
durch Untersuchen eines LearnDisPrt-Wertes festgestellt wird, ob das Lernen des Quellenports abgeschaltet
ist. Wenn nicht, geht der Vorgang zu Schritt 1352, wo neue Information des Pakets in geeignete Register ge-
laden und die CPU 230 unterbrochen wird. Als Reaktion aktualisiert die CPU 230 den Hash-Speicherabschnitt
902 mit einem neuen Hash-Tabelleneintrag 910. Wenn das Lernen des Quellenports abgeschaltet ist, wie in
Schritt 1350 festgestellt, oder nachdem der Hash-Speicherabschnitt 902 in Schritt 902 akualisiert wurde, geht
der Vorgang zu Schritt 1354, um das SecurePort-Bit zu untersuchen. Wenn SecurePort wahr ist, geht der Vor-
gang zu Schritt 1356, wo die HASH_STATUS[1:0] Signale in 00b = DROP_PKT geandert werden. In diesem
Fall wird das neue Paket fallen gelassen, da die Adresse neu ist und neue Adressen auf sicheren Ports nicht
erlaubt sind. Ferner wird, wenn gewunscht, eine Sicherheitsverletzungs-Unterbrechung an der CPU 230 gel-
tend gemacht, um geeignete Malnahmen als Reaktion auf die Sicherheitsverletzung zu ergreifen. Von Schritt
1356 geht der Vorgang zu Schritt 1344. Wenn, wieder auf Schritt 1354 verweisend, das SecurePort-Bit unwahr
ist, um einen nicht-sicheren Port anzuzeigen, geht der Vorgang zu Schritt 1340. Wenn, wieder auf Schritt 1324
verweisend, SrcLookUp unwahr ist, geht der Vorgang direkt zu Schritt 1344.

[0272] Fig. 14 ist ein Flussdiagramm, das eine Hash-Nachschlag-Prozedur zum Suchen aller Hash-Tabellen-
eintrage 910 im Hash-Speicherabschnitt 902 veranschaulicht. Im ersten Schritt 1402 wird ein Adresswert A
gleich der empfangenen Hash-Adresse gesetzt, wie sie z. B. von Schritten 1316 oder 1330 gesendet wirde.
Der Vorgang geht zu Schritt 1404, wo der Hash-Tabelleneintrag 910 in dem mit der empfangenen Hash-Adres-
se verbundenen Haupt-Hash-Eintragsabschnitt 906 gelesen wird. Der Vorgang geht zu Schritt 1406, wo das
VALIDENTRY-Bit gelesen und die MAC-Adresse des neuen Pakets mit der gespeicherten MAC-Adresse ver-
glichen wird. Wenn der Eintrag giiltig ist und eine genaue Ubereinstimmung zwischen den MAC-Adressen vor-
kommt, geht der Vorgang zu Schritt 1408, wo das HIT-Bit auf wahr gesetzt wird, um einen Hash-Treffer anzu-
zeigen, und der Vorgang kehrt zur aufrufenden Prozedur oder Routine zuritick. Andernfalls, wenn der Eintrag
nicht glltig ist oder keine Adresstibereinstimmung vorkam, geht der Vorgang zu Schritt 1410, wo das VALI-
DENTRY-Bit und der EOC-(Kettenende)Wert des Eintrags untersucht werden. Wenn der Eintrag unglltig oder
das EOC erreicht ist, kehrt der Vorgang mit HIT-Bit unwahr zuriick. Andernfalls wird in Schritt 1412 die
Hash-Adresse gleich der Link-Adresse im Hash-Eintrag (Bytes F:C) gesetzt, und der Vorgang kehrt zu Schritt
1404 zuriick, um den nachsten verketteten Eintrag im verketteten Hash-Eintragsabschnitt 908 zu versuchen.
Der Vorgang wiederholt die Schritte 1404, 1406, 1410 und 1412, bis ein gultiger Eintrag mit einer MAC-Adress-
Ubereinstimmung oder ein unguiltiger Eintrag gefunden ist oder der EOC-Wert angetroffen wird.

[0273] Die folgende Tabelle (1) zeigt die CPU 230 Eingabe/Ausgabe-(E/A)Raum-Register fur eine bestimmte,

erfindungsgeman implementierte Ausfiihrung. Tabelle (1) wird nur als Beispiel bereitgestellt, wo die einzelnen
Register in einzelnen Ausfihrungen implementiert werden kdnnen oder nicht, oder ahnliche Register verschie-

49/132

DE 697 31936 T2 2005.06.23

dene Nomenklatur aufweisen konnen.

50/132

DE 697 31936 T2 2005.06.23

TABELLE 1: E/A-Raum-Register der CPU 230

Offset(h) | Master | Shadowed | Access (RW) Reg_name/Bit_name Description
0 PCB CPU: R Interrupt Source 1 The source of any interrupt(s)
406 PCB: W Bit 0: MCB_INT to the CPU 230. These
MCB: ---- 1: MEM_RDY interrupts are cleared by the
HCB: - 2: ABORT_PKT CPU 230 when it
3: STAT_RDY acknowledges the interrupt.
4-31: RESERVED
4 PCB CPU: RW Interrupt Mask 1 interrupts to the CPU 230
406 PCB: R Bit 0: MCB_INT which are to be masked.
MCB: ---- 1: MEM_RDY
HCB: - 2: ABORT_PKT
3: STAT_RDY
4: HASH_MISS
5-31: RESERVED
8 PCB CPU: RW Packet Information -RdPkt | This register is written by the
406 PCB: RW Bit 0: SOP CPU 230.
MCB: - 1. EOP
HCB: --- 2-15: RESERVED
16-23: Length (for EOP)
24-31: RESERVED
C PCB CPU: RW Packet Information -WrPkt This register is written by the
406 PCB: RW Bit 0: SOP EPSM 210.
MCB; --- 1: EOP
HCB: --- 2-5: BE (for SOP)
6-15: RESERVED
16-23: Length
24-31: RESERVED
10 PCB CPU: R SIMM Presence Detect This register will contain
406 PCB: RW Bit 0-3: simm1_pd[0..3] information on the SIMM’s
MCB: ---- 4-7: simm2_pdf0..3] through a shift register
HCB: ---- 8-11: simm3_pd[0..3] interface.
12-15: simm4_pd|[0..3]
16-31: RESERVED
14 PCB CPU: RW Polling Source (1 & 2) The source of any interrupt(s)
406 PCB: W Bit 0: MCB_INT to the CPU 230 which have
MCB: - 1: MEM_RDY been masked.
HCB: - 2: PKT_AVAIL
3: BUF_AVAIL
4: ABORT_PKT
5: STAT_RDY
6: HASH_MISS
7-31: RESERVED
18 PCB CPU: R Interrupt Source 2 The source of any interrupt(s)
406 PCB: W Bit 0: PKT_AVAIL to the CPU 230. These
MCB: - 1: BUF_AVAIL interrupts are cleared by the
HCB: —-- 2-31: RESERVED CPU 230 when it
acknowledges the interrupt.
1c PCB CPU. RW interrupt Mask 2 Interrupts to the CPU 230
406 PCB: R Bit 0: PKT_AVAIL which are to be masked.
MCB: - 1: BUF_AVAIL
HCB; ---— 2-31: RESERVED
20 PCB CPU: RW QC Statistics Info The CPU 230 writing to this
406 PCB: RW Bit 0-1: Port number register will inform the QC
MCB: - 2-4: QC number interface to issue a statistics
HCB: --- 5-9: Register number read of the appropriate port.
10-14: Number of Regs.
15-19: Max. number of regs.
20-31: RESERVED
24 PCB CPU. R Total Packet Info This register is written by the
406 PCB: RW Bit 0-15: Packet Length EPSM 210
MCB: - 16-23: Source Port
HCB: ---- 24-31: Dest. Port
28 PCB CPU: WO Flush Fifo This register when written to
406 PCB: RW will flush the fifo contents and
MCB: --- continue to flush until EOP is

51/132

DE 697 31936 T2 2005.06.23

Offset(h) | Master | Shadowed | Access (RIW) Reg_name/Bit_name Description
HCB: ---- received.
30 PCB MCB 404 | CPU: RW EPSM Setup This register holds the
406 HCB402 | PCB: R Bit 0: TP! installed general setup parameters.
MCB: R 1: EXP installed
HCB: R 2: Master Switch Enable
3-4: QcXferSize[1:0]
5-6: TPIXferSize[1:0]
7: AI_FCS
8: DramWrDis
9: SramWrDis
10-12: Epsm Addr Dcd
13: Clk1Sel
14-21: CPU Port Number
22-31: RESERVED
34 PCB HCB 402 | CPU: RW Port Speed This is the Port Speed
406 PCB: -—- Bit 0: Port 0 Speed Bitmap register. When the
MCB: R 1: Port 1 Speed bit for a port is reset it is a
HCB: R : 10mhz port and when the bit
: is set it is a 100mhz port.
27: Port 27 Speed i.e.: 0=10mhz
28-31: RESERVED 1=100mhz
Powerup default should
contain the correct values.
38 PCB MCB404 | CPU: R Port Type This is the Port Type Bitmap
406 HCB 402 | PCB: --- Bit O: Port 0 Type register. When the bit for a
MCB: R 1: Port 1 Type portis reset it is a QC port
HCB: R : and when the bit is set itis a
: TLAN port.
27: Port 27 Type ie.: 0=QC
28-31: RESERVED 1=TLAN
Powerup default should
contain the correct values.
3c PCB MCB 404 | CPU: RW MEM Request This is the register that
406 PCB: R Bit 0-23: Mem Address contains the address and the
MCB: R 24: Memory Select controls for memory transfers
HCB: - 25: Transfer size from the CPU 230.
26-29: Byte Enables
30: RW
31: Locked Page Hit
40 PCB HCB402 | CPU: R EPSM Revision This read only register
406 PCB: - Bit 0-7: Rev. Number provides the revision number
MCB: R 8-31: RESERVED for the EPSM 210.
HCB: R
54 HCB CPU: RW HCB Utilization Setup This register selects the port
402 PCB; -—-- Bit 0-7: Port Number to be observed for HCB 402
MCB: ---- or Total utilization and the mode bits.
HCB: R 8-9: Mode The possible modes are TX,
10-31: RESERVED RX, Both.
58 HCB CPU: RW HCB Utilization HCB 402 utilization is the
402 PCB: - Bit 0-31: Average Time average time the port
MCB: - selected is on the bus.
HCB: RW
5c HCB CPU: RW Source CT_SNF Per Port This register is a bitmap for
402 PCB: ---- Bit 0: Port 0 the ports to indicate which
MCB: - 1: Port 1 source ports are able to CT
HCB: R : and which are only able to do
: SnF.
27: Port 27
28-31: RESERVED
60 HCB CPU: RW Destination CT_SNF Per This register is a bitmap for
402 PCB: - Port the ports to indicate which
MCB: - Bit 0: Port 0 destination ports are able to
HCB: R CT and which are only able

1: Port 1

to do SnF.

52/132

DE 697 31936 T2 2005.06.23

Offset(h) | Master | Shadowed | Access (RW) Reg_name/Bit_name Description
27: Port 27
28-31: RESERVED
64 HCB CPU: RW XferSize Per Port This register contains the
402 PCB: - Bit 0-3: Port 0 xfersize xfersize for the specified port.
(High 2 MCB: ---- 4-7: Port 1 xfersize
bits of HCB: R 8-11: Port 2 xfersize
each 12-15: Port 3 xfersize
xfersz) 16-19: Port 4 xfersize
20-23: Port 5 xfersize
24-27: Port 6 xfersize
28-31: Port 7 xfersize
68 HCB CPU: RW XferSize Per Port This register contains the
402 PCB: ---- Bit 0-3: Port 8 xfersize xfersize for the specified port.
(High 2 MCB: - 4-7: Port 9 xfersize
bits of HCB: R 8-11: Port 10 xfersize
each 12-15: Port 11 xfersize
xfersz) 16-19: Port 12 xfersize
20-23: Port 13 xfersize
24-27: Port 14 xfersize
28-31: Port 15 xfersize
6c HCB CPU: RW XferSize Per Port This register contains the
402 PCB: - Bit 0-3: Port 16 xfersize xfersize for the specified port.
(High 2 MCB: ---- 4-7: Port 17 xfersize
bits of HCB: R 8-11: Port 18 xfersize
each 12-15: Port 19 xfersize
xfersz) 16-19: Port 20 xfersize
20-23: Port 21 xfersize
24-27: Port 22 xfersize
28-31: Port 23 xfersize
70 HCB CPU: RW XferSize Per Port This register contains the
402 PCB: --- Bit 0-3: Port 24 xfersize xfersize for the specified port.
(High 2 MCB: ---- 4-7: Port 25 xfersize
bits of HCB: R 8-11: Port 26 xfersize
each 12-15: Port 27 xfersize
xfersz) 16-19: Port 28 xfersize
20-31: RESERVED
74 HCB CPU: RW Arb_Mode This register contains the
402 PCB: ---- Bit 0-1: Mode Value arbitration mode value.
MCB: ---- 2-31: RESERVED Arbitration modes available
HCB: R are FCFS, weighted, or
round_robin.
78 HCB CPU: RW HCB Misc Cntl Miscellaneous controls for
402 PCB: --- Bit 0: Enable CT Fifo the HCB 402 subsection.
MCB: --- 1: Enable Rd Extra WS
HCB: R 2: Enable CC Rd/Wr Qc
3: Enable CC RA/Wr Qe
4: Enable Early AD
5-31: RESERVED
7c HCB CPU: RW Port Shutdown Bitmap of ports to be that are
402 PCB: - Bit 0-27: Bitmap disabled.
MCB: ---
HCB: R
80 MCB CPU: RW Program Port State This register tells what state
404 PCB: --- Bit 0-1: State Value the ports indicated in the port
MCB: R 2-31: RESERVED state bitmap register should
HCB: - be changed to.

State Value Condition
00b Disabled
01b Blocked/

Listening
10b Learning
11b Forwardin

90 MCB CPU: RW Port State Bitmap This register indicates which
404 PCB: --- Bit 0: Port 0 ports are going to change
MCB: R 1: Port 1 their state. This register in

53/132

DE 697 31936 T2 2005.06.23

Offset(h) | Master | Shadowed | Access (R'W) Reg_name/Bit_name Description
HCB: --- : combination with program
: port state register fill the port
27: Port 27 state registers.
28-31: RESERVED
94 MCB CPU: R Port State #1 The two bits for each port tell
404 PCB: - Bit 0-1: Port_0_st[1:0] the arbiter what state the port
MCB: RW 2-3: Port_1_st[1:0] is in as follows:
HCB: ---- 4-5: Port_2_st[1:0] State Value Condition
6-7: Port_3_st[1:0] 00b Disabled
8-9: Port_4_st[1:0] 01b Blocked/
10-11: Port_5_st[1:0] Listening
12-13: Port_6_st{1:0} 10b Leaming
14-15: Port_7_st{1:0] 11b Forwarding
16-17: Port_8_st[1:0]
18-19: Port_9_st[1:0]
20-21: Port_10_st[1:0]
22-23: Port_11_st[1:0]
24-25: Port_12_st[1:0]
26-27: Port_13_st{1:0]
28-29: Port_14_st[1:0]
30-31: Port_15_st{1:0}
98 MCB CPU: R Port State #2 The two bits for each port tell
404 PCB: -—-- Bit 0-1: Port_16_st[1:0] the arbiter what state the port
MCB: RW 2-3: Port_17_st[1:0) is in as follows:
HCB: --- 4-5: Port_18_st[1:0] State Value Condition
6-7: Port_19_st[1:0) 00b Disabled
8-9: Port_20_st[1:0) 01b Blocked/
10-11: Port_21_st[1:0) Listening
12-13: Port_22_st{1:0) 10b Learning
14-15: Port_23_st{1:0] 11b Forwarding
16-17: Port_24_st{1:0]
18-19: Port_25_st[1:0]
20-21: Port_26_st[1:0]
22-23: Port_27_st{1:0]
24-31: RESERVED
9¢ MCB CPU: RW Destination Miss Broadcast | Destination miss broadcast
404 PCB: ---- Bit 0-28: DestMissBC bitmap | bitmap.
MCB: R 29-31: RESERVED
HCB: -—-
ag MCB CPU: RW Memory Bus Monitor Cntl The memory bus 214 monitor
404 PCB: -— Bit 0-14: Monitor Mode control is utilized to setup the
MCB: RW 15: Monitor Select monitoring (if any) that is
HCB: -—- 16-23: Monitor Port Select | being done on the memory
24-27: Filter Time Scale bus 214.
28: Monitor Clear
29: Count/Filter Mode
30: Backpress. Enable
31: Alarm
ac MCB CPU: RW Memory Bus Monitor The memory bus 214 monitor
404 PCB: -— Thresholds thresholds are used to set an
MCB: R Bit 0-7: Alarm Set Threshold | alarm and to clear the alarm.
HCB: - 8-15: Alarm Clir Threshold
16-19: RESERVED
20-31: Peak BW
b0 MCB CPU: R Memory Bus Utilization Memory bus 214 utilization
404 PCB: - Bit 0-31: Percent Utilization register.
MCB: RW
HCB: --—--
b8 MCB CPU: R Dropped Packets Memory The number of packets
404 PCB: --- OF dropped due lack of memory
MCB: RW Bit 0-31: Number of packets | space because of the
HCB: - memory threshold counters.
This register is cleared when
read.
bc MCB CPU: R Dropped Packets BC OF The number of broadcast

54/132

DE 697 31936 T2 2005.06.23

Offset(h) | Master | Shadowed | Access (R/W) Reg_name/Bit_name Description
404 PCB: ---- Bit 0-31: Number of packets packets dropped due lack of
MCB: RW broadcast memory space.
HCB: ---- This register is cleared when
read.
c0 MCB CPU: RW Hash Table Definition The address for the base of
404 PCB: ---- Bit 0-14: Address[16:2] the hash table. Size of the
MCB: R 15-23: Address[25:17] hash table as described in
HCB: - 24-25: Table size the register definition.
26: Lock Hash Cycle
27: Vlan Group BC
28: Vlan Miss BC
29: Vlan Unicast
30-31: RESERVED
c4 MCB CPU: R Rx Sector Count OF The bitmap of ports that have
404 PCB: ---- Bit 0-28: Bitmap interrupted the CPU 230 due
MCB: RW 29-31: RESERVED either a set or clear of
HCB: ---- receive sector threshold
overflow.
c8 MCB CPU: R Tx Packet Count OF The bitmap of ports that have
404 PCB: ---- Bit 0-28: Bitmap interrupted the CPU 230 due
MCB: RW 29-31: RESERVED to either a set or clear of
HCB: ---- transmit packet threshold
overflow.
cc MCB CPU: R Hash Address Low The address which was
404 PCB: ---- Bit 0-31: Byte 0-3 missed when looking in the
MCB: RW hash table.
HCB: ----
do MCB CPU: R Hash Address High The remaining hash address
404 PCB: --- Bit 0-15: Byte 4-5 and source port.
MCB: RW 16-23: Source Port
HCB: ---- 24: Port Miss
25-31: RESERVED
d4 MCB CPU: R Dropped Packets Receive The number of packets
404 PCB: ---- OF dropped due to receive
MCB: RW Bit 0-31: Number of packets memory sectors overflow.
HCB: ---- This register is cleared when
read.
ds MCB CPU: R Dropped Packets Transmit | The number of packets
404 PCB: - OF dropped due to transmit
MCB: RW Bit 0-31: Number of packets memory sectors overflow.
HCB: -~ This register is cleared when
read.
dc MCB CPU: RW Dropped Packets Receive This register is the bitmap of
404 PCB: --- Bit 0-28: Port Bitmap ports that have dropped
MCB: R 29-31: RESERVED packets due to receive
HCB: --- overflow.
e0 MCB CPU: RW Dropped Packets Transmit | This register is the bitmap of
404 PCB: --- Bit 0-28: Port Bitmap ports that have dropped
MCB: R 29-31: RESERVED packets due to transmit
HCB: --— overflow.
e4 MCB CPU: RW Learning Disable Ports Leaming disable port bitmap.
404 PCB: - Bit 0-27: Learn’g Dis. bitmap
MCB: R 28-31: RESERVED
HCB: ----
e8 MCB CPU: RW Secure Ports Secure port bitmap.
404 PCB: - Bit 0-27: Secure port bitmap
MCB: R 28-31: RESERVED
HCB: ----
ec MCB CPU: RW Security Violation Stats This register contains the
404 PCB: - Bit 0-31: Count total dropped packets due to
MCB: R port security.
HCB: -
fo MCB CPU: RW Security Violation This register is the bitmap of
404 PCB: - Bit 0-27: Port Bitmap ports that have dropped
MCB: R 28-31: RESERVED packets due to security.

55/132

DE 697 31936 T2 2005.06.23

Offset(h) | Master | Shadowed | Access (RW) Reg_name/Bit_name Description
HCB: ---
f4 MCB CPU: RW Mem Control This register contains the
404 PCB: ---- Bit 0-1: Memory Type memory type, speed etc.
MCB: RW 2: Memory Speed
HCB: --- 3: EDO Test Mode
4: Dbl Link Mode
5: DisRcPgHits
6: DisTxPGHits
7-31: RESERVED
8 MCB CPU: RW RAS Select RAS enables for 4M blocks
404 PCB: ---- Bit 0-31: Rasenx[1:0] of memory.
MCB: R
HCB: ---
fc MCB CPU: RW Refresh Counter The refresh counter
404 PCB: R Bit 0-9: Count generates a refresh signal for
MCB: --- 10-31: RESERVED the memory controller.
HCB: -
100 MCB CPU: RW Filter Control This register enables address
404 PCB: --- Bit 0-3: Address Enables[3:0] | filtering and masking
(bit 4- MCB: R 4-7: Mask Enables[3:0] address.
7) HCB: --- 8-31: RESERVED
104 MCB CPU: RW Mask Address Filter Low This register contains mask
404 PCB: - Bit 0-31: Bytes 0-3 bits for address filtering.
MCB: R
HCB: ---
108 MCB CPU: RW Mask Address Filter High This register contains mask
404 PCB: ---- Bit 0-15: Bytes 4-5 bits for address filtering.
MCB: R 16-31: RESERVED
HCB: ----
10c MCB CPU: RW Address Filter OLow This register contains bytes
404 PCB: --- Bit 0-31: Bytes 0-3 0-3 of address filter 0.
MCB: R
HCB: ---
110 MCB CPU: RW Address Filter OHigh This register contains bytes
404 PCB: - Bit 0-15: Bytes 4-5 4-5 of address filter 0.
MCB: R 16-23: Dest. Port
HCB: ---- 24-31: FilterMask0
114 MCB CPU: RW Address Filter 1Low This register contains bytes
404 PCB: ---- Bit 0-31: Bytes 0-3 0-3 of address filter 1.
MCB: R
HCB: ---
118 MCB CPU: RW Address Filter 1High This register contains bytes
404 PCB: --- Bit 0-15: Bytes 4-5 4-5 of address filter 1.
MCB: R 16-23: Dest. Port
HCB: ---- 24-31: FilterMask1
11c MCB CPU: RW Address Filter 2Low This register contains bytes
404 PCB: -—- Bit 0-31: Bytes 0-3 0-3 of address filter 2.
MCB: R
HCB: ---
120 MCB CPU: RW Address Filter 2High This register contains bytes
404 PCB: --- Bit 0-15: Bytes 4-5 4-5 of address filter 2.
MCB: R 16-23: Dest. Port
HCB: --—- 24-31: FilterMask2
124 MCB CPU: RW Address Filter 3Low This register contains bytes
404 PCB: - Bit 0-31: Bytes 0-3 0-3 of address filter 3.
MCB: R
HCB: ----
128 MCB CPU: RW Address Filter 3High This register contains bytes
404 PCB: ---- Bit 0-15: Bytes 4-5 4-5 of address filter 3.
MCB: R 16-23: Dest. Port
HCB: ---- 24-31: FilterMask3
12¢ MCB CPU: R MCB Interrupt Source This register contains the
404 PCB: - Bit 0: Security Int source of any interrupt
MCB: RW 1: Memory Overflow Set initiated in the MCB 404.

56/132

DE 697 31936 T2 2005.06.23

Offset(h) | Master | Shadowed | Access (RW) Reg_name/Bit_name Description
HCB: - 2: Memory Overflow Cir
3: Broadcast OF Set
4: Broadcast OF Cir
5: Receive OF
6: Transmit OF
7: Rx Packet Aborted
8: BW Alarm Set 0
9: BW Alarm Cir 0
10: BW Alarm Set 1
11: BW Alarm Cir 1
12-31: RESERVED
130 MCB CPU: RW MCB Interrupt Mask This register contains the
404 PCB: ---- Bit 0: Security Int masking for any interrupt
MCB: R 1: Memory Overflow Set initiated in the MCB 404.
HCB: --- 2: Memory Overflow Clir
3: Broadcast OF Set
4: Broadcast OF Cir
5: Receive OF
6: Transmit OF
7: Rx Packet Aborted
8: BW Alarm Set 0
9: BW Alarm CIr 0
10: BW Alarm Set 1
11: BW Alarm Clr 1
12-31: RESERVED
134 MCB CPU: RW MCB Polling Source This register contains the
404 PCB: --- 13it 0: Security Int source of any interrupt
MCB: RW 1: Memory Overflow Set initiated in the MCB 404
HCB: --- 2: Memory Overflow Cir which are masked.
3: Broadcast OF Set
4: Broadcast OF Cir
5: Receive OF
6: Transmit OF
7: Rx Packet Aborted
8: BW Alarm Set 0
9: BW Alarm CIr 0
10: BW Alarm Set 1
11: BW Alarm Clir 1
12-31: RESERVED
138 MCB CPU: RW BackPressure Enable
404 PCB: - Bit 0-23: RESERVED
MCB: R 24-27: Port Bitmap
HCB: -—- 28-31: RESERVED
13¢ MCB CPU: RW Bonded Port Set 0
404 PCB: ---- Bit 0-27: Port Bitmap
MCB: R 28-31: RESERVED
HCB: -—
140 MCB CPU: RW Bonded Port Set 1
404 PCB: -—- Bit 0-27: Port Bitmap
MCB: R 28-31: RESERVED
HCB: --—-
144 MCB CPU: RW Default Vian Bitmap
404 PCB: --- Eiit 0-28: Bitmap
MCB: R
HCB: ----
148 MCB CPU: RW Promiscuous Port This register holds the value
404 PCB: - Bit 0-7: Observed Port No. of the port that is being
MCB: --- 8-15: Rx Monitor Port No. observed in promiscuous
HCB: R 16-23: Tx Monitor Port No. mode. Also contains the
24-31: RESERVED ports that the Rx traffic and
the Tx traffic appear on.
200-2ff CPU: RW Cluad Cascade 0 Regs This is the offset for the Quad
PCB: RW Cascade registers. This is
MCB: -—- for QCO.
HCB: ----

57/132

DE 697 31936 T2 2005.06.23

Offset(h) | Master | Shadowed | Access (R/W) Reg_name/Bit_name Description

300-3ff CPU: RW Quad Cascade 1 Regs This is the offset for the Quad
PCB: RW Cascade registers. This is
MCB: ---- for QC1.
HCB: --—

400-4ff CPU: RW Quad Cascade 2 Regs This is the offset for the Quad
PCB: RW Cascade registers. This is
MCB: ---- for QC2.
HCB: ----

500-5ff CPU: RW Quad Cascade 3 Regs This is the offset for the Quad
PCB: RW Cascade registers. This is
MCcB: - for QC3.
HCB: ---

600-6ff CPU: RW Quad Cascade 4 Regs This is the offset for the Quad
PCB: RW Cascade registers. This is
MCB: - for QC4.
HCB: ----

700-7ff CPU: RW Quad Cascade 5 Regs This is the offset for the Quad
PCB: RW Cascade registers. This is
MCB: ---- for QC5.
HCB: ----

800-8ff CPU: R QC Statistics Buffer This is the address space for
PCB: RW the statistics buffers just read
MCB: ---- from the Quad Cascade.
HCB: -

900 CPU: RW HCB FIFO - BPDU This is address of the fifo to
PCB: RW send/receive packet data
MCB: -— to/from the HCB 402.
HCB: ----
a00 CPU: RW MCB DATA FIFO This is address of the fifo to

PCB: ---- send/receive data to/from the
MCB: RW MCB 404. 16 Byte Fifo.
HCB: ----

b0O-fff RESERVED For Expansion

[0274] Die folgenden Registerdefinitionen werden bereitgestellt, um die Register von Tabelle (1) zu erklaren.
Unterbrechungsinformation

[0275] Es gibt drei Unterbrechungspins von dem EPSM 210 an die CPU 230: CPUINTHASHL, CPUINTPKTL
und CPUINTL. Der CPUINTHASHL wird nur geltend gemacht, wenn ein Hash-Miss aufgetreten ist, und wird
durch Lesen des Hash-Adresse-Tief-Registers (bei Offset'hcc) geldéscht. Der CPUINTPKTL wird geltend ge-
macht, wenn entweder ein Paket in dem Paketschnittstellen-FIFO verfiigbar ist oder wenn der Paketschnitt-
stellen-FIFO freien Pufferplatz zum Senden von mehr Paketdaten hat. Der CPUINTL wird flir vier mogliche
Quellen geltend gemacht: Eine dieser Quellen betrifft acht mogliche Quellen im MCB 404. Die Unterbrechungs-
quellen werden eine Unterbrechung der CPU 230 bewirken, wenn sie nicht maskiert werden. Damit die Infor-
mation der Unterbrechungsquelle verfligbar werden kann, ohne die CPU 230 zu unterbrechen, ist ein Abfra-
gemechanismus verfligbar. Das Maskieren einer Unterbrechungsquelle bewirkt, dass die Unterbrechungen
von der CPU 230 ferngehalten werden, aber die Information noch in dem Abfragequellenregister verfiigbar ist.
Wenn z. B. das STAT_RDY-Maskenbit gesetzt ist, wird, wenn die verlangte Statistik verfligbar ist, keine Unter-
brechung auftreten, aber die CPU 230 kann noch bestimmen, dass die Statistik bereit ist, durch Lesen des Ab-
frageregisters gelesen zu werden. Man beachte: Das Unterbrechungsquellenregister wird durch Lesen dessel-
ben geldscht, aber das Abfragequellenregister muss beschrieben werden, um es zu I6schen.

[0276] Unterbrechungsquelle 1 Reg. — (Offset = 'h00) Quelle der an die CPU 230 gesendeten Unterbrechung.
Dieses Register wird durch den EPSM 210 aktualisiert, und dann wird die Unterbrechung an die CPU 230 ge-
sendet. Wenn die CPU dieses Register liest, wird der Inhalt geldscht. Ein Wert von 1 in einem Bit zeigt an, dass
eine Unterbrechung aufgetreten ist. Die Vorgabe ist 32'h0000_0000.

Bit 0 (W/R) — MCB_INT ist die Unterbrechung, die der CPU 230 sagt, dass eine Unterbrechung im MCB 404
aufgetreten ist, und dass das MCB-Unterbrechungsquellenregister gelesen werden muss, um die Unterbre-
chung weiter zu verstehen. Vorgabe ist 0.
Bit 1 (W/R) - MEM_RDY ist die Unterbrechung, die der CPU 230 sagt, dass die verlangten Speicherdaten im
Pufferraum vorhanden sind. Vorgabe ist 0.

58/132

DE 697 31936 T2 2005.06.23

Bit 2 (W/R) — ABORT_PKT ist die Unterbrechung, die der CPU 230 zeigt, dass das ABORT_IN* Signal in den
PCB 406 geltend gemacht wurde. Vorgabe ist 0.

Bit 3 (W/R) — STAT_RDY ist die Unterbrechung, die der CPU 230 sagt, dass die verlangte Statistikinformation
im PCB 406 Pufferraum bereit ist. Vorgabe ist 0.

Bits 4-31 (RO)-RESERVIERT. Immer als 0 gelesen.

PCB-Registerschnittstelle flir Unterbrechungsquellenregister

Mcblnt (in) — Eingabe vom MCB, die Bit 0 bestimmt.

MemRdy (in) — Eingabe vom FIFO, die Bit 1 bestimmt.

AbortPktInt (in) — Eingabe von der HCB 402 Schnittstelle, die Bit 4 be-
stimmt.

StatRdyInt (in) — Eingabe von der QC-Schnittstelle, die Bit 5 be-
stimmt.

Cpuint_(out) — das Signal an die CPU 230, das anzeigt, dass eine

Unterbrechung stattgefunden hat

[0277] Unterbrechungsmaske 1 Reg. — (Offset = 'h04) Unterbrechungen, die durch die CPU 230 zu maskieren
sind. Ein Wert von 1 in einem Bit zeigt an, dass die Unterbrechung maskiert ist. Vorgabe = 32'h0000_001f.

Bit 0 (W/R) — Maskiert die Mcblint-Unterbrechung an die CPU
230. Vorgabe ist 1.

Bit 1 (W/R) — Maskiert die MemRdy-Unterbrechung an die CPU
230. Vorgabe ist 1.

Bit 2 (W/R) — Maskiert die AbortPktInt-Unterbrechung an die CPU
230. Vorgabe ist 1.

Bit 3 (W/R) — Maskiert die StatRdyInt-Unterbrechung an die CPU
230. Vorgabe ist 1.

Bit 4 (W/R) — Maskiert die Hash-Miss-Unterbrechung an die CPU
230. Vorgabe ist 1.

Bit 5-31 (RO) — RESERVIERT. Immer als 0 gelesen.

[0278] Unterbrechungsquelle 2 Reg. — (Offset = 'h18) Quelle der an die CPU 230 gesendeten CPU-INTPKTL-
Unterbrechung. Dieses Register wird durch den EPSM 210 aktualisiert, und dann wird die Unterbrechung an
die CPU 230 gesendet. Wenn die CPU 230 dieses Register liest, wird der Inhalt geléscht. Ein Wert von 1 in
einem Bit zeigt an, dass eine Unterbrechung aufgetreten ist. Vorgabe = 32'h0000_0000.

Bit 0 (W/R) — PKT-AVAIL ist die Unterbrechung, die der CPU 230
sagt, dass Paketdaten fur die CPU 230 vorhanden
sind. Vorgabe ist 0.

Bit 1 (W/R) —BUF_AVAIL ist die Unterbrechung, die der CPU 230
sagt, dass Pufferplatz fir die CPU 230 verfigbar ist,
um Paketdaten zu senden. Vorgabe ist 0.

Bits 2-13 (RO) — RESERVIERT. Immer als 0 gelesen.

PCB-Registerschnittstelle flir Unterbrechungsquellenregister

PktAvailint (in) — Eingabe vom TX FIFO, die Bit 2 bestimmt.
BufAvaillnt (in) — Eingabe vom RX FIFO, die Bit 3 bestimmt.
Cpulint_Pkt (out) — das Signal an die CPU 230, das anzeigt, dass eine

Paketunterbrechung aufgetreten ist.

[0279] Unterbrechungsmaske 2 Reg. — (Offset = 'h1c) Unterbrechungen, die von der CPU 230 zu maskieren
sind. Ein Wert von 1 in einem Bit zeigt an, dass die Unterbrechung maskiert ist. Vorgabe ist 32'h0000_0003.

Bit 0 (W/R) — Maskiert die PktAvaillnt-Unterbrechung an die CPU
230. Vorgabe ist 1.

Bit 1 (W/R) — Maskiert die BufAvaillnt-Unterbrechung an die CPU
230. Vorgabe ist 1.

Bits 2-31 (RO) — RESERVIERT. Immer als 0 gelesen.

59/132

DE 697 31936 T2 2005.06.23

[0280] Abfragequellen 1 & 2 Reg. — (Offest = 'h14) Dieses Register enthalt die maskierte Unterbrechungsin-
formation und wird durch die CPU 230 geldscht, die Einsen schreibt, um die gewlinschten Bits zu Idschen. Dies
erlaubt der CPU 230, abzufragen anstatt unterbrochen zu werden. Die CPU 230 wird jede Unterbrechungs-
quelle zu maskieren haben, die sie stattdessen abzufragen wiinschen wirde.

Bit 0 (W/R) — MCB_INT ist die Unterbrechung, die der CPU 230
sagt, dass eine Unterbrechung im MCB 404 aufgetre-
ten ist, und dass das Unterbrechungsquellenregister
gelesen werden muss, um die Unterbrechung weiter
zu verstehen. Vorgabe ist 0.

Bit 1 (W/R) —MEM_RDY ist die Unterbrechung, die der CPU 230
sagt, dass die verlangten Speicherdaten im Puffer-
raum vorhanden sind. Vorgabe ist 0.

Bit 2 (W/R) — PKT_AVAIL ist die Unterbrechung, die der CPU 230
sagt, dass Paketdaten fiur die CPU 230 vorhanden
sind. Vorgabe ist 0.

Bit 3 (W/R) —BUF_AVAIL ist die Unterbrechung, die der CPU 230
sagt, dass Pufferplatz fir die CPU 230 verfigbar ist,
um Paketdaten zu senden. Vorgabe ist 0.

Bit 4 (W/R) — ABORT_PKT ist die Unterbrechung, die der CPU
230 sagt, dass das Abort_ In Signal in den PCB 406
geltend gemacht wurde. Vorgabe ist 0.

Bit 5 (W/R) — STAT_RDY ist die Unterbrechung, die der CPU 230
sagt, dass die verlangte Statistikinformation im PCB
406 Pufferplatz bereit ist. Vorgabe ist 0.

Bit 6 (W/R) — HASH_MISS ist die Unterbrechung, die der CPU
230 sagt, dass ein Hash-Miss aufgetreten ist.
Bits 7-31 (RO) — RESERVIERT. Immer als 0 gelesen.

PCB-Schnittstelle fir Abfragequellenregister

Mcbint (in) — Eingabe vom MCB, die Bit 0 bestimmt.

MemRdy (in) — Eingabe vom Speicher-FIFO, die Bit 1 bestimmt.

PktAvaillnt (in) — Eingabe vom TX FIFO, die Bit 2 bestimmt.

BufAvaillnt (in) - Eingabe vom RX FIFO, die Bit 3 bestimmt.

AbortPktInt (in) — Eingabe von HCB 402 Schnittstelle, die Bit 4 be-
stimmt.

StatRdyInt (in) — Eingabe von QC-Schnittstelle, die Bit 5 bestimmt.

m_Hashlint (in) — Eingabe vom MCB 404, die Bit 6 bestimmt.

Paketdatenkonfiguration

[0281] Es gibt drei flir Paketdatenibertragungen verwendete Reisten: Eines fir empfangene Pakete und zwei
fur Sendepakete. Die empfangenen Pakete sind mit dem ReadOutPkt Signal vom HSB 206 verbunden. Die
Sendepakete sind mit dem WritelnPkt Signal vom HSB 206 verbunden. Beachte: Die Begriffe Empfangen und
Senden sind auf den HSB 206 bezogen. Die CPU 230 sollte auf das geeignete Register zugreifen, bevor auf
den Paketdatenpuffer zugegriffen wird.

[0282] Paketinformations RdPkt Reg. — (Offset = 'h08) Die bendtigte Information fir das durch die CPU 230
empfangene Datenpaket. Empfange Pakete beziehen sich auf den HSB 206. Vorgabe = 32'h0000_0000.

Bit 0 (W/R) — SOP. Start von Paket von der CPU 230. 1 = SOP.

Bit 1 (W/R) - EOP. Ende von Paket von der CPU 230. 1 = EOP.

Bits 2-15 (RO) — RESERVIRET. Immer als 0 gelesen.

Bits 16-23 (W/R) — Lange von Daten im FIFO, wenn EOP geltend ge-
macht ist (Zahl von Bytes.

Bits 24-31 (RO) — RESERVIERT. Immer als 0 gelesen.

60/132

DE 697 31936 T2 2005.06.23

PCB-Registerschnittstelle flir Paketinformations RdPkt Register

r_Sop (out) — Paketstartanzeiger, gegeben an die HSB 206
Schnittstelle.

r_Eop (out) — Paketendeanzeiger, gegeben an die HSB 206
Schnittstelle.

r_length (out) — Lange in Bytes von Daten im Puffer, wenn EOP an-
gezeigt wird.

[0283] Paketinformations WrPkt Reg. — (Offset = 'hOc) Die benétigte Information fiir das durch den HSB 206
gesendete Datenpaket. Sendepaket bezieht sich auf den HSB 206. Vorgabe ist 32'h0000_0000.

Bit 0 (W/R) — SOP. Start von Paket vom HSB 206. 1 = SOP.
Bit 1 (W/R) — EOP. Ende von Paket vom HSB 206. 1 = EOP.
Bits 2-5 (W/R) — Bytefreigaben fur mit SOP oder EOP verbundenes

DWORD. Gewohnlich sind alle Bytes freigegeben. 1 =
freigegeben.

Bits 6-15 (R/O) — RESRVIERT. Immer als 0 gelesen.
Bits 16-23 (W/R) — Lange von Daten im FIFO (Zahl von Bytes)
Bits 24-31 (RO) — RESERVIERT. Immer als 0 gelesen.

PCB-Registerschnittstelle fiir Paketinformations Wr Pkt Register

h_SoplIn_ (in) — SOP-Anzeiger von der HSB 206 Schnittstelle
h_EoplIn_ (in) — EOP-Anzeiger von der HSB 206 Schnittstelle
h_ByteAalln_ (in) — Bytefreigbaben von der HSB 206 Schnittstelle

[0284] Gesamtpaket-Info — (Offset ='h24) Dies ist die Information, die der MCB 404 dem Paket hinzuftigt, be-
vor es an die CPU 230 gesendet wird. Dieser Wert wird gesetzt, wenn es ein SOP fiir ein an die CPU gerich-
tetes Paket gibt. Vorgabe = 32'h0000_0000.

Bits 0-15 (RO) — Paketlange
Bits 16-23 (RO) — Quellenport
Bits 24-31 (RO) — Zielport

Speicheranwesenheits-Erfassung

[0285] SIMM/DIMM-Anwesenheits-Erfassungsregister — (Offset = 'h10) Enthalt die Information Uber die
SIMMs in dem System. Diese Information wird kurz nach Riicksetzen aus einem Schieberegister auf der Pla-
tine geladen.

Bits 0-3 (RO) —simm1_pd[0...3].
Bits 4-7 (RO) —simm2_pd[0...3].
Bits 8-11 (RO) —simm3_pd[0...3].
Bits 12-15 (RO) —simm4_pd[0...3].
Bits 16-31 (RO) — RESERVIERT. Immer als 0 gelesen.

PCB-Registerschnittstelle flir Anwesenheits-Erfassungsregister

i_PDSerln (in) — Serielle Eingabe von Anwesenheitserfas-
sungs-Schieberegistern.

Vierfach-Kaskaden-Statistik-Einstellung
[0286] QC-Statistik-Informationsregister — (Offset = 'h20). Einstellinformation zum Lesen der Vierfach-Kaska-

den-Statistikregister. Die CPU schreibt dieses Register, das die Statistik-Lesungen einleitet. Vorgabe =
32'h000b_8000.

61/132

DE 697 31936 T2 2005.06.23

Bits 0-1 (W/R) — Portnummer. Dies ist die Portnummer, dessen Sta-
tistik gelesen wird. Der zu lesende Port wird durch die-
se Nummer und die spezifizierte Vierfach-Kaskade

bestimmt.

Bits 2—4 (W/R) — QC-Nummer. Bezeichnet die Vierfach-Kaskade, auf
die zuzugreifen ist. Reservierte Kombinationen 3'b110
und 3'b111.

Bits 5-9 (W/R) —Registernummer. Dies ist die Nummer des ersten fur
den spezifizierten Port zu lesenden Registers.

Bits 10-14 (W/R) — Zahl von Register. Die ist die Zahl zu lesender Re-

gister. Beachte: Software ist nétig, um diese Zahl zu-
sammen mit der Registernummer im Bereich zu le-
sender, verfugbarer Register zu halten.

Bits 15-19 (W/R) —Maximale Zahl von Registern. Dies ist die maximale
Zahl von Statistikregisterrn, die den Vierfach-Kaska-
den verfugbar sind. Vorgabe = 6'h17.

Bits 20-31 (RO) — RESERVIERT. Immer als 0 gelesen.

PCB-Registerschnittstelle fir Vierfach-Kaskaden-Statistik-Einstellregister

r_QcStatPortNo (out) — Portnummer zum Statistik-Lesen. Dies ist ein Wert
zwischen 0 und 3. Er wird zusammen mit der
QC-Nummer benutzt, um zu bestimmen, welcher Port
in dem Schalter beobachtet wird.

r_QcStatQcNo (out) — Qc-Nummer. Wird mit der obigen Portnummer ver-
wendet.

r_StatRegNo (out) — Anfangsregisternummer. Dies ist die Nummer des
ersten zu lesenden Statistikregisters.

r_NoStatRegs (out) — Zahl zu lesender Statistikregister.

r_Maxregs (out) - Maximalzahl von Statistikregistern, die existieren.

Diese steht besonders fiir kiinftigen Gebrauch zur
Verfigung, wenn die Zahl von Statistiken, die unter-
halten werden, geandert wird.

EPSM 210 Einstellung

[0287] EPSM-Einstellregister — (Offset = 'h30) Allgemeine Einstellparameter fiir dem EPSM 210. Vorgabe =
32'h0007_1000 oder 32'h0007_3000, abhangig von clk1sel-Eingabe.

Bit 0 (W/R) — TPl installiert. 1 = TPI 220 installiert. Vorgabe = 0.
Dieses Bit kann nur geschrieben werden, wenn Mas-
ter Switch Enable (Bit 2) negiert ist.

Bit 1 (W/R) — EXP installiert. 1 = Erweiterung installiert. Vorgabe
= 0. Dieses kann nur geschrieben werden, wenn Mas-
ter Switch Enable (Bit 2) negiert ist.

Bit 2 (W/R) —Master Switch Enable. 1 = ermdglicht Paketverkehr.
Vorgabe = 0.
Bits 3-4 (W/R) —QcXferSize[1:0]. Diese Bits kdnnen nur geschrieben

werden, wenn Master Switch Enable (Bit 2) negiert ist.
00 = 16 Byte UbertragungsgréRe auf dem HSB 206.
01 = 32 Byte UbertragungsgréRe auf dem HSB 206.
10 = 64 Byte Ubertragungsgrofe auf dem HSB 206.
11 = Unglltige Kombination.

62/132

DE 697 31936 T2 2005.06.23

Bits 5-6 (W/R) — PTIXferSize[1:0]. Diese Bits kdnnen nur geschrie-
ben werden, wenn Master Switch Enable (Bit 2) ne-
giert ist.

00 = 16 Byte UbertragungsgréRe auf dem HSB 206.
01 = 64 Byte UbertragungsgréRe auf dem HSB 206.
10 = 128 Byte Ubertragungsgrofe auf dem HSB 206.
11 = 256 Byte UbertragungsgréRe auf dem HSB 206.

Bit 7 (W/R) — AIFCS. Dieses Bit wird benutzt, um den Vier-
fach-Kaskaden zu erméglichen, die FCS-Bits automa-
tisch einzufligen. Dies wird nur fir die Pakete von der
CPU 230 verwendet.

Bit 8 (W/R) —DramWrDis. Dies wird, wenn gesetzt, Schreiben von
der CPU 230 in das DRAM unterbinden. Vorgabe = 0.

Bit 9 (W/R) — SramWrDis. Dies wird, wenn gesetzt, Schreiben von
der CPU 230 in das interne SRAM unterbinden. Vor-
gabe = 0.

Bits 10-12 (W/R) — EPSM 210 Adressdecodierung. Diese Bits werden

benutzt, um den EPSM 210 Registerraum und die
Speicherschnittstelle zu decodieren.
Bit 13 (RO) —clk1sel.
1 = CLK2 Frequenz ist 1X CLK1 Frequenz.
0 = CLK2 Frequenz ist 2X CLK1 Frequenz.

Bits 14-21 (RO) — CPU Portnummer. Bezeichnet die CPU Portnum-
mer. Vorgabe = 8'h1c.
Bits 22-31 (RO) — RESERVIERT. Immer als 0 gelesen.

PCB-Registerschnittstelle fir EPSM-Einstellregister

clk1sel (in) — Eingabe von Pin, um zu bestimmen, ob clk1 und
clk2 gleiche Raten haben.

r_DramWrDis (out) — Lasst CPU 230 wissen, dass Sehreibungen in das
DRAM unterbunden sind.

r_SramWrDis (out) — Lasst CPU 230 wissen, dass Schreibungen in das
interne SRAM unterbunden sind.

r_EPSMAdrDcd (out) — Diese 3-Bit Zahl wird mit Adressbits 31:29 auf dem

CPU 230 Bus verglichen.
HCB-Registerschnittstelle fir EPSM-Einstellregister

r_MstrSwEn (out) — Sagt dem Arbiter usw., dass der Schalter fur Paket-
verkehr freigegeben ist.

r_Tpilnst (out)

r_Explnst (out)

r_NonULBCMode[1:0] (out)

r_ULBCMode[1:0] (out)

r_AIFCS (out)

MCB-Registerschnittstelle fur EPSM-Einstellregister

r_DramWrDis (out) — Unterbindet CPU-Anforderungen fur DRAM-Schrei-
bungen.
r_SramWrDis (out) — Unterbindet CPU-Anforderungen fur Schreibungen

in das interne SRAM.
[0288] EPSM-Revisionsregister — (Offset = 'h40) Die Revisionsnummer des EPSM 210.

Bits 0-7 (RO) — Die Revisionsnummer des EPSM 210.
Bits 8-31 — RESERVIERT. Immer als 0 gelesen.

63/132

DE 697 31936 T2 2005.06.23

PCB-Registerschnittstelle fir EPSM-Revisionsregister
Keine
Porteinstellung

[0289] Portgeschwindigkeitsregister — (Offset = 'h34) Bitmap, die die Geschwindigkeit jedes Ports enthalt. 1
=100 Mhz, 0 = 10 MHz. Vorgabe = 32'h0f00_0000.

Bit 0 (W/R) — Port 0 Geschwindigkeit.

Bit 1 (W/R) — Port 1 Geschwindigkeit.

i3it 27 (WIR) — Port 27 Geschwindigkeit.

Bits 28-31 (RO) — RESERVIERT. Immer als 0 gelesen.

HCB-Registerschnittstelle fiir Portgeschwindigkeitsregister
r_PortSpd[27:0] (out) — Portgeschwindigkeits-Bitmap flir HCB 402 Blocke.

[0290] Porttyp-Register — (Offset = 'h38) Bitmap, die den Typ jedes Ports enthalt. 1 = TLAN, 0 = Vierfach-Kas-
kade. Vorgabe = 32'h0100_000.

Bit 0 (W/R) —Port 0 Typ

Bit 1 (W/R) —Port1 Typ

Bit 27 (W/R) — Port 27 Typ

Bit 28-31 (RO) — RESERVIERT. Immer als 0 gelesen.

MCB-Register- & HCB-Registerschnittstelle fir Porttyp-Register

r_PortType[27:0] (out) — Porttyp-Bitmap fiir den MCB-Bus 404 & HCB-Bus
402.

CPU-Speicheranforderung
[0291] Die Speicheranforderungen durch die CPU 230 kdnnen auf zwei Wegen erfolgen. Das folgende Re-
gister wird in beiden Verfahren verwendet; die CPU greift auf das Register nur direkt zu, wenn das Anfangsre-
gister/FIFO-Speicheranforderungsverfahren verwendet wird.
[0292] Speicheranforderungsregister — (Offset = 'h3c) Die CPU schreibt in dieses Register, um Speicher-Le-

sen oder Schreiben anzufordern. Dieser Anforderungsmechanismus wird benutzt, um entweder auf das exter-
ne DRAM oder das interne SRAM zuzugreifen.

64/132

DE 697 31936 T2 2005.06.23

Bits 0-23 (W/R) — Anfangsadresse[25:0] der Ubertragung. Fir
SRAM-Zugriffe sind Bits 23-8 reserviert. Bits 7:0
adressieren die 256 24-Bit Worter.

Bits 24 (W/R) — Speicherauswahl.

0 = Zugriff auf externes DRAM (d. h. Paket- &
Hash-Speicher).

1 = Zugriff auf linternes SRAM (d. h. Paketsteuerre-
gister).

Bit 25 (W/R) — Ubertragungslange.

0 = 1 Ubertragung (4 Bytes)

1 = 4 Ubertragungen (16 Bytes).

Anmerkung: Die Startadresse & Ubertragungsléange

sollten nicht so eingestellt sein, dass die Ubertragung
eine 2 K Seitengrenze kreuzen wiirde. Ein Weg, dies
zu garantieren, ist, sicherzustellen, dass alle Daten-

strukturen (wie Hash-Eintrage) 16-Byte-ausgerichtet
sind.

Bits 26-29 (W/R) — Bytefreigabe[3:0]. (1 = geltend gemacht). Ntzlich
zum Schreiben von Teilwértern. Wird auch im
EDO-Testmodus benutzt, um ohne CAS zu lesen.
Zum Schreiben mit Ubertragungslange gréRer als 1,
missen Bytefreigaben 1111 sein. Diese sind beim Le-
sen ohne Bedeutung, sofern nicht der EDO-Testmo-
dus eingestellt ist.

Bit 30 (W/R) — Schreiben/Lesen. 0 = Lesen. 1 = Schreiben.

Bit 31 (W/R) — Treffer auf gesperrte Seite. Zeigt an, dass eine an-
dere CPU-Anfordederung in der gleichen Speicher-
seite folgen wird. Der DRAM-Speicher-Arbiter wird
dem anderen Anforderer das Speichersystem nicht
gewahren, und RAS wird nach dem momentanen Zy-
klus geltend gemacht bleiben. Wird nur im EDO-Test-
modus benutzt. Kein anderer Anforderer, einschliel3-
lich Auffrischung, hat Zugriff auf den Speicher, wah-
rend gesetzt. Sollte niemals in SRAM-Zugriffen (au-
Rer fir Hardware-Fehlersuche) benutzt werden, da
ankommender Paketspeicherverkehr aufhéren wird,
wahrend das SRAM gesperrt ist.

65/132

DE 697 31936 T2 2005.06.23

MCB-Registerschnittstelle flir Speicheranforderungsregister

CpuAdr[25:2] (out) — Ubergibt Startadresse Memctl & Mcbsram Modul.

CpuBE[3:0] (out) - Ubergibt Bytefreigaben an Memctl & Mcbsram Mo-
dul.

CpulLn[1:0] (out) — Ubergibt Ubertragungslange an Memctl & Mcbsram
Modul (00, wenn In =1, 11, wenn In = 4).

CpuMemSel (out) — Steuert Mux zwischen externen DRAM (0) 6 inter-
nen SRAM (1) Daten.

CpuWr (out) —an Memctl & Mcbsram Modul geltend gemacht,
wenn Schreib/Lese-Bit = 1.

CpuPgHit (out) —an Memctl & Mcbsram Modul geltend gemacht,
wenn Gesperrte-Seite-Treffer-Bit = 1.

CpuReq (out) —an Memctl & Mcbsram geltend gemacht, wenn das

Speicheranforderungsregister geschrieben wird und
Speicherauswahl = 0. Muss geltend gemacht bleiben,
bis CpuAck geltend gemacht wird.

CpuAck (in) — wird von Memctl Modul an Mcb-Registern geltend
gemacht, wenn Cpu-Req angenommen wird.
CpulinternalReq (out) — An McbSram geltend gemacht, wenn das Speicher-

anforderungsregister geschrieben wird und Speicher-
auswah = 1. Muss geltend gemacht bleiben, bis
CpulnternalAck geltend gemacht wird.
CpulnternalAck (in) —wird vom Mcbsram Modul an Mcb-Registern geltend
gemacht, wenn CpulnternalReq angenommen wird.

[0293] Anmerkung: Die Folgende Sequenz sollte benutzt werden, um auf EDO-Speicher zu priifen:
1: EDO-Testmodusbit im Speichersteuerregister setzen.
2: Ein DWORD in die zu prifende Bank mit 0000h schreiben.
3: Das gleiche DWORD mit gesetztem Gesperrte-Seite-Treffer-Bit und Bytefreigaben = 1111b lesen. Nach
diesem Lesen werden EDO-DRAMs MD tief halten, wahrend FPM-DRAMs MD schweben lassen, und ein
Pull-Up-Widerstand auf MD[0] diese Leitung nach etwa 100 ns hoch ziehen wird.
4: Das DWORD mit geléschtem Gesperrte-Seite-Treffer-Bit und den Bytefreigaben = 0000b erneut lesen.
Dies ist ein Lesen ohne CAS geltend gemacht. MD[0] wird fur EDO-DRAM tief und fir FPM hoch sein.
5: Schritte 14 flr jede installierte Speicherbank wiederholen. Speichertyp kann nur auf EDO-DRAM ge-
setzt werden, wenn alle Banke EDO-DRAM enthalten.
6: EDO-Testmodusbit I6schen und den Speichertyp setzen. EDO-Testmodus nicht gesetzt lassen.

Gemischter Port
[0294] Gemischter-Port-Register — (Offset = 'h148) Die Steuerungen und welcher Port im gemischten Modus

beobachtet wird, istin dem Register enthalten. Vorgabe = 32'h0000_0000. Dieses Register kann nur geschrie-
ben werden, wenn Master Switch Enable (EPSM-Einstellregister) negiert ist.

Bits 0-7 (W/R) — Portnummer, die im gemischten Modus beobachtet
wird.

Bits 8-15 (W/R) — Der Port, der Daten, die empfangen werden, zeigen
wird.

Bits 16-23 (W/R) — Der Port, der Daten, die an den beobachteten Port
gesendet werden, zeigen wird.

Bits 24-31 (RO) — RESERVIERT. Immer als 0 gelesen.

Hochgeschwindigkeits-Busmonitor

[0295] HSB-Benutzungs-Einstellregister — (Offset = 'h54) Die Steuerungen und welcher Port fir HSB 206 Be-
nutzung Uberwacht werden wird. Vorgabe = 32'h0000_0000.

Bits 0-7 (W/R) — Portnummer oder Total.
Bits 8-9 (W/R) — Modus.
Bits 10-31 (RO) — RESERVIERT. Immer als 0 gelesen.

66/132

DE 697 31936 T2 2005.06.23

[0296] HSB-Benutzungsregister — (Offset = 'b58) HSB 206 Benutzung ist die mittlere Zeit, die der ausgewahl-
te Port auf dem HSB 206 ist. Vorgabe = 32'h0000_0000:
Bits 0-31 (RO) — Mittlere Zeit, die der ausgewahlte Port auf dem HSB 206 ist.

CUT-THRU/STORE-N-FORWARD INFORMATION

[0297] Quellen-CT_SNF-Register — (Offset = 'h5c) Bitmap, die den CT/SnF-Status des Quellenports enthalt.
0 = CT, 1 = SNF. Vorgabe = 32'h0000_0000.

Bit 0 (W/R) — Port 0 Quelle CT_SNF.

Bit 1 (W/R) — Port 1 Quelle CT_SNF.

i3it 27 (WIR) — Port 27 Quelle CT_SNF.

Bits 28-31 (RO) — RESERVIERT. Immer als 0 gelesen.

HCB-Registerschnittstelle fir Quellen-CT_SNF-Register

TbISrcPrt (in) — Der momentane Paketquellenport. 8-Bit Eingabe.
r_RxPortCtSnf (out) — Der CT_SNF-Status fir TbISrcPrt. 1-Bit Ausgabe.

[0298] Ziel-CT_SNF-Register — (Offset = 'h60) Bitmap, die den CT/SnF-Status des Zielports enthalt. 0 = CT;
1 = SNF. Vorgabe = 32'h0000_0000.

Bit 0 (W/R) — Port 0 Ziel CT_SNF.

Bit 1 (W/R) — Port 1 Ziel CT_SNF.

i3it 27 (WIR) — Port 27 Ziel CT_SNF.

Bits 28-31 (RO) — RESERVIERT. Immer als 0 gelesen.

HCB-Registerschnittstelle fir Quellen-CT_SNF-Register

TbIDstPrt (in) — Der momentane Paketzielport. (8-Bit Eingabe).
r_TxPortCtSnf (out) — Der CT_SNF-Satus fir TbIDstPrt. 1-Bit Ausgabe).

Arbitrationsinformation

[0299] Arbitrationsmodusregister — (Offset = 'h74) Enthalt den Arbitrationsmoduswert. Vorgabe =
32'h0000_0000. Dieses Register kann nur geschrieben werden, wenn Master Switch Enable (EPSM-Einstell-
register) negiert ist.

Bits 0-1 (W/R) — Arbitrationsmodus.
2'b00: Wer-zuerst-kommt, -mahlt-zuerst-Arbitrations-
modus.
2'b01: Arbitationsmodus mit gewichteter Prioritat.
2'pb10: Umlauf-Arbitrationsmodus.
2'b11: Bewirkt auch Wer-zuerst-kommt, -mahlt-zu-
erst-Modus.

Bits 2-31 (RO) — RESERVIERT. Immer als 0 gelesen.

HCB-Registerschnittstelle fiir Arbitrationsmodusregister

r_ArbMode (out) — Der oben gezeigte 2-Bit Wert, der in Arbitrationsmo-
dulen im HCB 402 bendtigt wird.

[0300] Arbitrationsgewichtsregister #1 — (Offset = 'h64) Das Gewicht fiir Ports 0-7 fiir Arbitrationsmodus mit
gewichteter Prioritat.

67/132

DE 697 31936 T2 2005.06.23

Bits 0-3 (W/R) —Port 0 Arbitrationsgewicht fiir Modus mit gewichteter
Prioritat.

Bits 4-7 (W/R) —Port 1 Arbitrationsgewicht fiir Modus mit gewichteter
Prioritat.

Bits 8-11 (W/R) —Port 2 Arbitrationsgewicht fiir Modus mit gewichteter
Prioritat.

Bits 12-15 (W/R) — Port 3 Arbitrationsgewicht fiir Modus mit gewichteter
Prioritat.

Bits 16-19 (W/R) — Port 4 Arbitrationsgewicht fiir Modus mit gewichteter
Prioritat.

Bits 20-23 (W/R) — Port 5 Arbitrationsgewicht fiir Modus mit gewichteter
Prioritat.

Bits 24-27 (W/R) — Port 6 Arbitrationsgewicht fiir Modus mit gewichteter
Prioritat.

Bits 28-31 (W/R) —Port 7 Arbitrationsgewicht fiir Modus mit gewichteter
Prioritat.

HCB-Registerschnittstelle fir Arbitrationsgewichtsregister #1

r_ArbWt0 (out) — Diese vier Bits werden durch den HCB 402 zum Ge-
wichten von Port 0 im gewichteten Arbitrationsmodus
verwendet.

r_ArbWt1 (out) — Diese vier Bits werden durch den HCB 402 zum Ge-
wichten von Port 1 im gewichteten Arbitrationsmodus
verwendet.

r_ArbWt2 (out) — Diese vier Bits werden durch den HCB 402 zum Ge-
wichten von Port 2 im gewichteten Arbitrationsmodus
verwendet.

r_ArbWt3 (out) — Diese vier Bits werden durch den HCB 402 zum Ge-
wichten von Port 3 im gewichteten Arbitrationsmodus
verwendet.

r_ArbWt4 (out) — Diese vier Bits werden durch den HCB 402 zum Ge-
wichten von Port 4 im gewichteten Arbitrationsmodus
verwendet.

r_ArbWt5 (out) — Diese vier Bits werden durch den HCB 402 zum Ge-
wichten von Port 5 im gewichteten Arbitrationsmodus
verwendet.

r_ArbWt6 (out) — Diese vier Bits werden durch den HCB 402 zum Ge-
wichten von Port 6 im gewichteten Arbitrationsmodus
verwendet.

r_ArbWt7 (out) — Diese vier Bits werden durch den HCB 402 zum Ge-
wichten von Port 7 im gewichteten Arbitrationsmodus
verwendet.

[0301] Arbitrationsgewichtsregister #2 — (Offset = 'h68) Das Gewicht fiir Ports 8-15 fiir Arbitrationsmodus mit
gewichteter Prioritat.

68/132

DE 697 31936 T2 2005.06.23

Bits 0-3 (W/R) — Port 8 Arbitrationsgewicht fiir Modus mit gewichteter
Prioritat.

Bits 4-7 (W/R) —Port 9 Arbitrationsgewicht fiir Modus mit gewichteter
Prioritat.

Bits 8-11 (W/R) — Port 10 Arbitrationsgewicht fiir Modus mit gewichte-
ter Prioritat.

Bits 12-15 (W/R) — Port 11 Arbitrationsgewicht fiir Modus mit gewichte-
ter Prioritat.

Bits 16-19 (W/R) — Port 12 Arbitrationsgewicht fiir Modus mit gewichte-
ter Prioritat.

Bits 20-23 (W/R) — Port 13 Arbitrationsgewicht fiir Modus mit gewichte-
ter Prioritat.

Bits 24-27 (W/R) — Port 14 Arbitrationsgewicht fiir Modus mit gewichte-
ter Prioritat.

Bits 28-31 (W/R) —Port 15 Arbitrationsgewicht fir Modus mit gewichte-

ter Prioritat.
HCB-Registerschnittstelle fir Arbitrationsgewichtsregister #2

r_ArbWit8 (out) — Diese vier Bits werden durch den HCB 402 zum Ge-
wichten von Port 8 im gewichteten Arbitrationsmodus
verwendet.

r_ArbWt9 (out) — Diese vier Bits werden durch den HCB 402 zum Ge-
wichten von Port 9 im gewichteten Arbitrationsmodus
verwendet.

r_ArbWt10 (out) — Diese vier Bits werden durch den HCB 402 zum Ge-
wichten von Port 10 im gewichteten Arbitrationsmo-
dus verwendet.

r_ArbWt11 (out) — Diese vier Bits werden durch den HCB 402 zum Ge-
wichten von Port 11 im gewichteten Arbitrationsmo-
dus verwendet.

r_ArbWt12 (out) — Diese vier Bits werden durch den HCB 402 zum Ge-
wichten von Port 12 im gewichteten Arbitrationsmo-
dus verwendet.

r_ArbWt13 (out) — Diese vier Bits werden durch den HCB 402 zum Ge-
wichten von Port 13 im gewichteten Arbitrationsmo-
dus verwendet.

r_ArbWt14 (out) — Diese vier Bits werden durch den HCB 402 zum Ge-
wichten von Port 14 im gewichteten Arbitrationsmo-
dus verwendet.

r_ArbWt15 (out) — Diese vier Bits werden durch den HCB 402 zum Ge-
wichten von Port 15 im gewichteten Arbitrationsmo-
dus verwendet.

[0302] Arbitrationsgewichtsregister #3 — (Offset = 'h6¢c) Das Gewicht flir Ports 16-23 fiir Arbitrationsmodus mit
gewichteter Prioritat.

69/132

Bits 0-3 (W/R)
Bits 4-7 (W/R)
Bits 8-11 (W/R)
Bits 12-15 (W/R)
Bits 16-19 (W/R)
Bits 20-23 (W/R)
Bits 24-27 (W/R)

Bits 28-31 (W/R)

r_ArbWt16 (out)

r_ArbWt17 (out)

r_ArbWt18 (out)

r_ArbWt19 (out)

r_ArbWt20 (out)

r_ArbWt21 (out)

r_ArbWt22 (out)

r_ArbWit23 (out)

DE 697 31936 T2 2005.06.23

— Port 16 Arbitrationsgewicht fiir Modus mit gewichte-
ter Prioritat.
— Port 17 Arbitrationsgewicht fiir Modus mit gewichte-
ter Prioritat.
— Port 18 Arbitrationsgewicht fiir Modus mit gewichte-
ter Prioritat.
— Port 19 Arbitrationsgewicht fiir Modus mit gewichte-
ter Prioritat.
— Port 20 Arbitrationsgewicht fiir Modus mit gewichte-
ter Prioritat.
— Port 21 Arbitrationsgewicht flir Modus mit gewichte-
ter Prioritat.
— Port 22 Arbitrationsgewicht flir Modus mit gewichte-
ter Prioritat.
— Port 23 Arbitrationsgewicht flir Modus mit gewichte-
ter Prioritat.

HCB-Registerschnittstelle fiir Arbitrationsgewichtsregister #3

— Diese vier Bits werden durch den HCB 402 zum Ge-
wichten von Port 16 im gewichteten Arbitrationsmo-
dus verwendet.

— Diese vier Bits werden durch den HCB 402 zum Ge-
wichten von Port 17 im gewichteten Arbitrationsmo-
dus verwendet.

— Diese vier Bits werden durch den HCB 402 zum Ge-
wichten von Port 18 im gewichteten Arbitrationsmo-
dus verwendet.

— Diese vier Bits werden durch den HCB 402 zum Ge-
wichten von Port 19 im gewichteten Arbitrationsmo-
dus verwendet.

— Diese vier Bits werden durch den HCB 402 zum Ge-
wichten von Port 20 im gewichteten Arbitrationsmo-
dus verwendet.

— Diese vier Bits werden durch den HCB 402 zum Ge-
wichten von Port 21 im gewichteten Arbitrationsmo-
dus verwendet.

— Diese vier Bits werden durch den HCB 402 zum Ge-
wichten von Port 22 im gewichteten Arbitrationsmo-
dus verwendet.

— Diese vier Bits werden durch den HCB 402 zum Ge-
wichten von Port 23 im gewichteten Arbitrationsmo-
dus verwendet.

[0303] Arbitrationsgewichtsregister #4 — (Offset = 'h70) Das Gewicht fur Ports 24-28 flr Arbitrationsmodus

mit gewichteter Prioritat.

Bits 0-3 (W/R)
Bits 4-7 (W/R)
Bits 8-11 (W/R)
Bits 12-15 (W/R)
Bits 16-19 (W/R)

Bits 20-31 (RO)

— Port 24 Arbitrationsgewicht fir Modus mit gewichte-
ter Prioritat.

— Port 25 Arbitrationsgewicht fir Modus mit gewichte-
ter Prioritat.

— Port 26 Arbitrationsgewicht fir Modus mit gewichte-
ter Prioritat.

— Port 27 Arbitrationsgewicht fir Modus mit gewichte-
ter Prioritat.

— Port 28 Arbitrationsgewicht fir Modus mit gewichte-
ter Prioritat.

— RESERVIERT. Immer als 0 gelesen.

70/132

DE 697 31936 T2 2005.06.23

HCB-Registerschnittstelle fir Arbitrationsgewichtsregister #4

r_ArbWi24 (out) — Diese vier Bits werden durch den HCB 402 zum Ge-
wichten von Port 24 im gewichteten Arbitrationsmo-
dus verwendet.

r_ArbWi25 (out) — Diese vier Bits werden durch den HCB 402 zum Ge-
wichten von Port 25 im gewichteten Arbitrationsmo-
dus verwendet.

r_ArbWi26 (out) — Diese vier Bits werden durch den HCB 402 zum Ge-
wichten von Port 26 im gewichteten Arbitrationsmo-
dus verwendet.

r_ArbWit27 (out) — Diese vier Bits werden durch den HCB 402 zum Ge-
wichten von Port 27 im gewichteten Arbitrationsmo-
dus verwendet.

r_ArbWi28 (out) — Diese vier Bits werden durch den HCB 402 zum Ge-
wichten von Port 28 im gewichteten Arbitrationsmo-
dus verwendet.

HCB 402 Gemischte Steuerung

[0304] HCB Gemischte Steuerung — (Offset = 'h78) Gemischte Steuerungen fir den HCB 402. Vorgabe =
32'h0000_0000

Bit 0 (W/R) — CT FIFO freigeben. 1 = CT FIFO freigegeben.

Bit 1 (W/R) — Extra Lesewartezustande freigeben. 1 = Wartezu-
stande freigegeben.

Bit 2 (W/R) — Gleichzeitiges Lesen und Schreiben fir Vier-
fach-Kaskade freigeben.

Bit 3 (W/R) — Gleichzeitiges Lesen und Schreiben fir QE110 frei-
geben.

Bit 4 (W/R) — Frihe Adresse freigeben.

Bits 5-31 (RO) — RESERVIERT. Immer als 0 gelesen.

Port-Abschalten

[0305] Port-Abschalten — (Offset = 'h7c) Bitmap fir welche Ports abgeschaltet sind. Vorgabe =
32'h0000_0000.

Bits 0-27 (W/R) — Bitmap fur Ports 0 bis 27. 1 = Port ist abgeschaltet.
Bits 28-31 (RO) — RESERVIERT. Immer als 0 gelesen.

Portstatus-Einstellung

[0306] Um den Status eines Ports einzustellen oder zu andern, missen zwei Register geschrieben werden.
Das erste zu schreibende Register ist das Portstatus-Bitmapregister, das die Bitmap des Ports enthalt, der ge-
andert werden wird. Das zweite zu schreibende Register ist das Programm-Portstatusregister, das den Wert
des Status enthalt und die Programmierung der zwei Portstatusregister einleitet. Der Portstatus der CPU ist
immer Beférdern und kann niemals geandert werden.

[0307] Portstatus-Bitmapregister — (Offset = 'h90) Bitmap von Ports, deren Staus sich andern wird. 1 = Andern
dieses Portstatus in einen Wert im Programm-Portstatusregister. Vorgabe = 32'h0000_0000.

71/132

DE 697 31936 T2 2005.06.23

Bit 0 (W/R) — Port 0. Setzen dieses Bits ermdglicht das Andern
des Status von Port 0.
Bit 1 (W/R) — Port 1. Setzen dieses Bits ermdglicht das Andern

des Status von Port 1.

Bit 27 (W/R) — Port 27. Setzen dieses Bits erméglicht das Andern

des Status von Port 27.
Bits 28-31 (RO) — RESERVIERT. Immer als 0 gelesen.

[0308] Programm-Portstatusregister — (Offset = 'h80) Portstatus. Die CPU schreibt dieses Register, das die
Programmierung der Portstatusregister einleitet. Das Portstatus-Bitmapregister muss zuerst beschrieben wer-
den. Vorgabe = 32'h0000_0000.

Bits 0-1 (W/R) - Statuswert. Dieser Wert wird bei Offset 30 in die in der Bitmap angege-
benen Ports gelegt.

Statuswert Bedingung

00b Abgeschaltet
01b Gesperrt/Horen
10b Lernen

11b Befordern

Bits 2-31 (RO) - RESERVIERT. Immer als 0 gelesen.

[0309] Portstatus #1 Register — (Offset = 'h94) Zustédnde von Ports 0 bis 15. Programmiert durch das Pro-
gramm-Portstatus- und das Portstatus-Bitmapregister. Vorgabe = 32'h0000_0000.

72/132

DE 697 31936 T2 2005.06.23

Statuswert Bedingung

00b Abgeschaltet
01b Gesperrt/Horen
10b Lernen

11b Befordern

Bits 0-1 (RO) - Port_0_st[1:0]
Bits 2-3 (RO) - Port_1_st[1:0]
Bits 4-5 (RO) - Port_2_st[1:0]
Bits 6-7 (RO) - Port_3_st[1:0]
Bits 8- (RO) - Port_4_st[1:0]
Bits 10-11 (RO) - Port_5_st[1:0)
Bits 12-13 (RO) - Port_6_st[1:0]
Bits 14-15 (RO) - Port_7_st[1:0]
Bits 16-17 (RO) - Port_8_st[1:0)
Bits 18-19 (RO) - Port_9_st[1:0]
Bits 20-21 (RO) - Port_10_st[1:0]
Bits 22-23 (RO) - Port_11_st[1:0]
Bits 24-25 (RO) - Port_12_st[1:0]
Bits 26-27 (RO) - Port_13_st{1:0]
Bits 28-29 (RO) - Port_14_st[1:0]
Bits 30-21 (RO) - Port_15_st[1:0]

[0310] Portstatus #2 Register — (Offset = 'h98) Zustdnde von Ports 16 bis 28. Programmiert durch das Pro-
gramm-Portstatus- und das Portstatus-Bitmapregister. Vorgabe = 32'h0300_0000

Statuswert Bedingung

00b Abgeschaltet
01b Gesperrt/Héren
10b Lernen

11b Beférdern

73/132

DE 697 31936 T2 2005.06.23

Bits 0-1 (RO) - Port_16_st{1:0]

Bits 2-3 (RO) - Port_17_st[1:0]

Bits 4-5 (RO) - Port_18_st[1:0]

Bits 6-7 (RO) - Port_19_st[1:0]

Bits 8-9 (RO) - Port_20_st[1:0]

Bits 10-11 (RO) - Port_21_st[1:0]

Bits 12-13 (RO) - Port_22_st[1:0]

Bits 14-15 (RO) - Port_23_st[1:0]

Bits 16-17 (RO) - Port_24_st[1:0]

Bits 18-19 (RO) - Port_25_st[1:0]

Bits 20-21 (RO) - Port_26_st[1:0]

Bits 22-23 (RO) - Port_27_st[1:0]

Bits 24-25 (RO) - Port_28_st[1:0] CPU-Port istimmer Beférdernd (11)
Bits 26-31 (RO) - RESERVIERT. Immer als 0 gelesen.

MCB-Registerschnittstelle fiir Portstatus-Einstellregister

SourcePort[7:0] (in) — Quellenportnummer vom Mcb-Hash-Modul.
m_HashDstprt[7:0] (in) — Zielportnummer vom Mcb-Hash-Modul.
SrcPrtState[1:0] (out) — Kombinierte Ausgabe an Mcb-Hash basierend auf
Quellenport- und Portstatusregistern.
DstPrtState[1:0] (out) — Kombinierte Ausgabe an Mcb-Hash basierend auf

m_HashDst-Prt- und Portstatusregistern.
Paketspeicherdefinition

[0311] Speichersektor-Informationsregister — (Offset = 'ha0) Paketspeicher besteht aus einer festen Zahl von
Sektoren. Dieses Register definiert die SektorgréRe. Die minimale SektorgroRe von 2 KByte stellt sicher, dass
das groRte Paket (1518 Bytes + Overhead) nicht mehr als eine Sektorgrenzenkreuzung machen kann. Gegen-
wartig wird nur die Sektorgrofie von 2 KByte unterstitzt. Dieses Register kann nur geschrieben werden, wenn
Master Switch Enable (EPSM-Einstellregister) negiert ist.

Bits 0-1 (W/R) — SektorgrofRe. Gegenwartig wird nur die Sektorgro-
Re von 2 KByte unterstitzt.
00 = 2 KByte (Vorgabe)
01 =4 KByte
10 = 8 KByte
11 = 16 KByte
Bits 2-31 (RO) RESERVIERT. Immer als 0 gelesen.

Spereicherbus-Bandbreitenmonitor

[0312] Speicherbus-Monitorsteuerregister — (Offset = 'ha8) Es gibt zwei unabhangige durch das Register ge-
steuerte Busmonitoren. Das Monitorauswahlbit (24) wird benutzt, um zu wahlen, auf welchen Monitor zugegrif-
fen wird. Dieses Bit steuert auch den Zugriff auf das Speicherbusmonitor-Schwellenregister und das Speicher-
benutzungsregister. Das Monitorbit kann durch Schreiben nur des hohen Bytes dieses Registers unabhangig
gesetzt werden.

74/132

Bits 0-9 (W/R)

Bits 10-15 (RO)
Bits 16-19 (W/R)

DE 697 31936 T2 2005.06.23

— Monitormodus [9:0]. Definiert den Typ der zu Uber-
wachenden Busaktivtat. Vorgabe ist 10'h3FF (alles
Uberwachen).

Zyklustyp (ein oder mehr Bits setzen).

Bit 0 — Paket (gesetzt, um paketbezogenen Verkehr
zu Uberwachen).

Bit 1 — Hash (gesetzt, um Hash-Lookup-Verkehr zu
Uberwachen).

Bit 2 — CPU (gesetzt, um CPU-Zugriffe auf Speicher
zu Uberwachen).

Bit 3 — Auffrischung (gesetzt, um Auffrischungszyklen
zu Uberwachen).

Pakettyp (muss ein oder beide Bits setzen, wenn Pa-
ketbit (0) gesetzt ist).

Bit 4 — Unicast (gesetzt, um bekannte Einzel-Adress-
moduspakete zu Uberwachen.

Bit 5 — Broadcast (gesetzt, um Pakete mit gesetztem
Gruppenbit oder Hash-Miss zu (iberwachen).

Paket Tx/Rx (muss ein oder beide Bits setzen, wenn
Paketbit (0) gesetzt ist).

Bit 6 — Senden (gesetzt, um sendebezogenen Verkehr
zu Uberwachen).

Bit 7 — Empfangen (gesetzt, um empfangsbezogenen
Verkehr zu tiberwachen).

Paketdaten/Overhead (muss ein oder beide Bits set-
zen, wenn Paketbit (0) gesetzt ist).

Bit 8 — Daten (gesetzt, um den Datenteil von Paketi-
bertragungen zu tiberwachen).

Bit 9 — Overhead (gesetzt, um den nicht-datenbezo-
genen Teil von Paketlbertragungen zu Uberwachen,
d. h. Bus-Arbitration, Paketspeicherwartung, unbe-
nutzbare Zyklen).

— Reserviert. Immer als 0 gelesen.

- Filterzeitmalistab. Stellt ungefahre Zeitkonstante fur
LP-Filterung ein:

Oh =75 ms 4h = 300 ms 8h = Res. Ch = Res.

1h = 600 ms 5h = 2.5 Sek 9h = Res. Dh = Res.

2h =5 ms 6h = 20 Sek Ah = Res. Eh = Res.

3h =40 ms 7h = 2.5 Min Bh = Res. Fh = Res.
Vorgabe = Oh. Gt nur im Filtermodus.

75/132

DE 697 31936 T2 2005.06.23

Bit 20 (W/R)

Bit 21 (W/R)

Bit 22 (W/R)

Bit 23 (W/R)

Bit 24 (W/R)

Bits 25-31 (RO)

— Zahl/Filter-Modus (Vorgabe = 0, Filtermodus).

0 = Monitor arbeitet als ein Tiefpassfilter, wie durch
Filtermalstab definiert. Lesen des Busbenutzungsre-
gisters beeinflusst seinen Wert im Filtermodus nicht.
1 = Monitor zahlt Buszyklen, filtert aber nicht. Wennim
Zahimodus, wird das Busbenutzungsregister ge-
I6scht, wenn gelesen.

— Timermodus. Gilt nur, wenn im Zahimodus. (Vorga-
be = 0).

0 = Nur durch Monitormodusbits definierte Zyklen
zahlen.

1 = Zahler bei jedem Taktzyklus inkrementieren.

— Rlckstau-Freigabe. 1 = Alarm von diesem Monitor
verwenden, um Rickstau auf allen Ports freizugeben.
Vorgabe = 0, abgeschaltet.

— Broadcast-Steuerfreigabe. 1 = Den Alarm von die-
sem Monitor verwenden, um von einem Port empfan-
gene Broadcast-Pakete fallen zu lassen. Vorgabe = 0,
abgeschaltet.

— Monitorauswahl. 0 = Monitor1 (Vorgabe). 1 =
Monitor2.

— Reserviert. Immer als 0 gelesen.

[0313] Speicherbusmonitor-Schwellen-BW-Register — (Offset = 'hac). Das Monitorauswahlbit muss vor dem

Zugriff auf dieses Register gesetzt werden.

Bits 0-7 (W/R)

Bits 8-15 (W/R)

Bits 16-23 (RO)

Bits 24-31 (RO)

— Alarm-Einstellschwelle. Wenn die Busbenutzung
diesen Wert erreicht oder Ubersteigt, wird das Alarm-
flag gesetzt und eine CPU-Unterbrechung erzeugt.
Ruckstau- oder Broadcast-Steuerung wird ange-
wandt, wenn freigegeben. (Vorgabe 08'h00).

— Alarm-Ldschschwelle. Wenn die Busbenutzung un-
ter diesen Wert fallt, wird das Alarmflag geléscht und
eine CPU-Unterbrechung erzeugt. Riickstau- und
Broadcast-Steuerung werden losgelassen (Vorgabe =
8'h00.

— Spitzen-BW. Max. erfasste Bandbreite seit letztem
Lesen. Geldscht, wenn gelesen.

- Momentane BW. Momentaner Wert des Busband-
breiten-Benutzungsfilters. Ein Wert von 00h stellt 0%
Benutzung dar, und ein Wert von FFh stellt 100% Be-
nutzung dar.

[0314] Speicherbus-Benutzungsregister — (Offset = 'hb0). Das Monitorauswahlbit muss vor dem Zugreifen auf

dieses Register gesetzt werden.

76/132

Bits 0-31 (RO)

DE 697 31936 T2 2005.06.23

— Busbenutzung [31:0]. Speicherbusbenutzungszah-
ler.

—Im Zahlmodus ist dieser Wert eine Zahlung von ak-
tiven Buszyklen seit dem letzten Starten des Zahlers.
Gelbscht, wenn gelesen. Zahler von beiden Filtern
starten gleichzeitig, wenn das Busbenutzungsregister
fur beide gelesen wurde.

— Im Filtermodus ist es nicht nétig, dieses Register zu
lesen, da die oberen 8 Bits als momentane BW in das
Schwellen-BW-Register kopiert werden. Es ist er-
winscht, mehr als 8 Bits fir BW zu verwenden. Man
beachte, dass der Maximalbandbreitenwert immer
32'hFF00_0000 ist und der Minimalwert abhangig von
dem gewahlten Zeitmalistab zwischen
32'h0000-0000 und 32'h00FF_FFFF sein wird. Nicht
geldscht, wenn im Filtermodus gelesen.

MCB-Reisterschnittstelle flir Speicherbandbreitenmonitore

Ausgewahlte Bandbreite [31:0] (in)

SelectedMaxBW [7:0] (in)
AlarmO (in)

Alarm1 (in)

r_MonMode0 [9:0] (out)
r_MonMode1 [9:0] (out)
r_BwSacle0 [2:0] (out)
r_BwSacle1 [2:0] (out)
r_CountOnly0 (out)
r_CountOnly1 (out)
r_TimermodeO (out)
r_Timermode1 (out)
r_BackPresOnAlarmO (o)
r BackPresOnAlarm1 (o)

r_DropBcPktsOnAlarmO (o)
r_DropBcPktsOnAlarm1 (o)

r_FilterSelect (out)
r_AlarmSet0 [7:0] (out)
r_AlarmSet1 [7:0] (out)
r_AlarmCIrQ [7:0] (out)
r_AlarmCIr1 [7:0] (out)
CIrBwCtrO (out)
CIrBwCtr1 (out)
ClrMaxBWO (out)

ClrMaxBW1 (out)

— Speicherbus-Benutzungsregister [31:0] fiir ausge-
wahlten Monitor. Ferner sind Bits 24-31 momentane
BW im Schwellen-BW-Register.

— Spitzen-BW in Schwellen-BW-Registerbits 16-23.
— Alarmflag fiir Monitor0. MCB-Register werden Un-
terbrechungen BWALARMSETO und
BWALARMCLRO erzeugen, wenn dieses Flag ge-
setzt oder geldscht wird.

— Alarmflag fiir Monitor1. MCB-Register werden Un-
terbrechungen BWALARMSET1 und
BWALARMCLR1 erzeugen, wenn dieses Flag ge-
setzt oder geldscht wird.

— Monitormodus fiir Monitor O.

— Monitormodus fiir Monitor 1.

— Filter-ZeitmaRstab fir Monitor 0.

— Filter-ZeitmafRstab fur Monitor 1.

— Zahl/Filtermodusbit fir Monitor 0.

— Zahl/Filtermodusbit fir Monitor 1.

— Timermodusbit fir Monitor 0.

— Timermodusbit fir Monitor 1.

- Rickstau-Freigabebit fir Monitor 0.

— Rickstau-Freigabebit fiir Monitor 1.

— Broadcast-Steuerfreigabebit fiir Monitor 0.

— Broadcast-Steuerfreigabebit fiir Monitor 1.

— Monitorauswahlbit.

— Alarmeinstellschwelle fir Monitor 0.

— Alarmeinstellschwelle fir Monitor 1.

— Alarm-Ldschschwelle fur Monitor 0.

— Alarm-Ldschschwelle fur Monitor 1.

— Gesetz fur einen Takt, wenn das Benutzungsregister
fur Monitor 0 gelesen wird.

— Gesetz fur einen Takt, wenn das Benutzungsregister
fur Monitor 1 gelesen wird.

— Gesetzt fir einen Takt, wenn das Schwel-
len-BW-Register fur Monitor O gelesen wird.

— Gesetzt fir einen Takt, wenn das Schwel-
len-BW-Register fur Monitor 1 gelesen wird.

77/132

DE 697 31936 T2 2005.06.23

Statistik flir abgeworfene Pakete

[0315] Pakete, die infolge von Speicheriiberlauf, Broadcast-Uberlauf, Empfangssektor-Uberlauf und Sende-
sektor-Uberlauf abgeworfen werden, werden gezahlt. Diese Zahlungen und die Bitmaps fiir den Empfangssek-
tor-Uberlauf und Sendesektor-Uberlauf werden behalten. Diese Bedingungen bewirken auch Unterbrechun-
gen an der CPU 230. Die Unterbrechungsinformation wird im MCB-Unterbrechungsquellenregister aufbe-
wahrt.

[0316] Abwerfpaket-Speichertberlaufregister — (Offset = 'hb8) Dieses Register enthalt die Zahl von Paketen,
die infolge von Speicheruberlauf abgeworfen wurden, der durch zwei Bedingungen verursacht wird. Diese Be-
dingungen sind Schwelleniiberschreitung wahrend Hash-Lookup und tatsachlicher Speichertiberlauf, wenn ein
Paket gespeichert wird, dieser verursacht ein abgebrochenes Paket.

Bits 0-31 (W/R) — Zahl infolge Speicheriiberlaufs abgeworfener Pakete.
Abwerfpaket-Broadcast-Uberlaufregister — (Offset = 'hbc) Dieses Register enthalt die Zahl von Paketen, die in-
folge von Broadcast-Schwellentberlauf abgeworfen warfen.

Bits 0-31 (W/R) — Zahl infolge Broadcast-Schwellenliberlaufs abgeworfener Pakete.
Abwerfpaket-Empfangssektor-Uberlaufregister — (Offset = 'hd4) Dieses Register enthélt die Zahl von Paketen,
die infolge von Empfangssektor-Uberlauf abgeworfen wurden.

Bits 0-31 (W/R) — Zahl infolge Empfangssektor-Uberlaufs abgeworfener Pakete.
Abwerfpaket-Sendesektor-Uberlaufregister — (Offset = 'hd8) Dieses Register enthalt die Zahl von Paketen, die
infolge von Sendesektor-Uberlauf abgeworfen wurden.

Bits 0-31 (W/R) — Zahl infolge Sendesektor-Uberlaufs abgeworfener Pakete.
Abwerfpaket-Empfangssektor-Bitmapregister — (Offset = 'hdc) Dieses Register enthalt die Bitmap von Ports,
die Pakete infolge von Empfangssektor-Uberlauf abgeworfen haben.

Bits 0-28 (W/R) — Bitmap von Ports, die Uberlauf von Empfangssektorgebrauch melden.
Abwertpaket-Sendesektor-Bitmapregister — (Offset = 'he0) Dieses Register enthalt die Bitmap von Ports, die
Pakete infolge von Sendesektor-Uberlauf abgeworfen haben.

Bits 0-28 (W/R) — Bitmap von Ports, die Uberlauf von Sendesektorgebrauch melden.

MCB-Registerschnittstelle fur Abwerfpaket-Statistik

x_rxPktAbortet_ — Strobe vom XCB, der sagt, wenn Paket ein infolge
Speicherlberlaufs abgebrochen wurde.
DropPktStb_MemOF — Strobe, der sagt, wenn ein Paket abgeworfen wird,
weil es den Speicher zum Uberlaufen bringt.
DropPktStb_ BCOF — Strobe, der sagt, wenn ein Paket abgeworfen wird,
weil die Broadcast-Schwelle Gberlaufen wird.
DropPktStb_RxOF — Strobe, der sagt, wenn ein Paket abgeworfen wird,
weil die Empfangssektor-Schwelle tUberlaufen wird.
DropPktStb_TxOF — Strobe, der sagt, wenn ein Paket abgeworfen wird,

weil die Sendesektor-Schwelle tUberlaufen wird.
Hash-Tabellendefinition
[0317] Hash-Tabellen-Definitionsregister — (Offset = 'hc0) Definiert die Basisadresse und GrdéRe der

Haupt-Hash-Eintragstabelle. Wenn mehrfache Kopien der Hash-Tabelle im Speicher gehalten werden, kann
dieses Register benutzt werden, um den EPSM 210 zwischen ihnen schalten zu lassen.

78/132

DE 697 31936 T2 2005.06.23

Bits 0-14 (RO) — Primar-Hash-Tabellen-Basisadresse [16:2]. Immer
0.

Bits 15-23 (RO) —Primar-Hash-Tabellen-Basisadresse [25:17]. Immer
0

Bits 24-25 (W/R) — Primar-Hash-Tabellengré3e [1:0]. (Vorgabe ist 00).

00 = Schlusselgrofie 13 Bits, Tabellengrofie 128 KB
(8 K 16-Byte Eintrage.

01 = Schllsselgrofie 14 Bits, Tabellengrofie 256 KB
(16 K 16-Byte Eintrage. (Basisadressbit 17 wird igno-
riert und intern auf 0 gezwungen).

10 = SchlisselgréRe 15 Bits, Tabellengrofie 512 KB
(32 K 16-Byte Eintrage. (Basisadressbits 18-17 wer-
den ignoriert und intern auf 0 gezwungen).

11 = SchlusselgroRe 16 Bits, Tabellengrofie 1 MB (64
K 16-Byte Eintrage. (Basisadressbits 19-17 werden
ignoriert und intern auf 0 gezwungen).

Bit 26 (W/R) — Hash-Zyklen sperren. Setzen dieses Bits bewirkt,
dass Speicherzyklen wahrend eines Hash-Lookup
gesperrt werden. Dies minimiert die
Hash-Lookup-Zeit auf Kosten des Verzogerns von
Paket-Lese- und Schreibiibertragungen an den Spei-
cher. Vorgabe ist 0.

Bits 31:27 (RO) — Reserviert. Immer als 0 gelesen.

MCB-Registerschnittstelle fir Hash-Tabellendefinitionsregister

r_HashBaseAdr[25:17] (out) - Ubergibt Basisadresse an Mem-Hash-Modul.

r_HashKeySize[1:0] (out) — Ubergibt Schliisselgrofe an Mem-Hash-Modul.

r_LockHashCycs (out) — An Mcb-Hash-Modul geltend gemacht, wenn
Lock-Hash-Cycles-Bit gesetzt ist.

HashLookuplP (in) — Gesetzt durch Mcb-Hash-Modul, um anzuzeigen,

dass ein Hash-Lookup im Gange ist und alle Schrei-
bungen in das Hash-Tabellendefinitionsregister auf-

geschoben werden sollen, bis negiert. MCB-Register
kénnen das Register auf jeder steigenden Taktflanke
aktualisiern, wenn HashLookUpIP negiert ist.

Quellenwort-Lernen

[0318] Hash-Quellen-Miss-Register-Tief — (Offset = 'hcc) Bytes 3:0 der neuen Quellenadresse sind der
Hash-Tabelle hinzufigen. Diese Register werden geladen und eine Unterbrechung wird ausgegeben, wenn
eine Hash-SA unbekannt ist oder der Port sich gedndert hat und der Quellenport nicht Lernen-Unwirksam ge-
macht ist. Die Register sind gesperrt, bis das Hash-Quellen-Miss-Reg-Hoch-Register gelesen wird (Tief-Reg
muss zuerst gelesen werden). Unbekannte SA's oder Portdnderungen, die angetroffen werden, wahrend Re-
gister gesperrt sind, werden ignoriert.

Bits 0-7 (RO) — Byte 0 der der Hash-Tabelle hinzufligenden
MAC-Adresse. (Hochwertiges Adressbyte. Gruppen-
bit = Bit 0).

Bits 8-15 (RO) — Byte 1 der der Hash-Tabelle hinzufigenden
MAC-Adresse.

Bits 16-23 (RO) — Byte 2 der der Hash-Tabelle hinzufligenden
MAC-Adresse.

Bits 24-31 (RO) — Byte 3 der der Hash-Tabelle hinzufigenden

MAC-Adresse.

79/132

DE 697 31936 T2 2005.06.23

Hash-Quellen-Miss-Register-Hoch — (Offset = 'hd0) Bytes 5:4 der neuen Quellenadresse und Quellenport-ID

Bits 0-7 (RO) — Byte 4 der der Hash-Tabelle hinzufligenden
MAC-Adresse.

Bits 8-15 (RO) — Byte 5 der der Hash-Tabelle hinzufligenden
MAC-Adresse.

Bits 16-23 (RO) — Die der Hash-Tabelle hinzufiigende Quellenport-ID.

Bits 24-31 (RO) — Reserviert. Immer als 0 gelsen.

[0319] Lernen-Unwirksam-Portregister — (Offset = 'he4) Bitmapped Lernen-Unwirksam-Portregister. Gilt nicht
fir CPU.

Bit 0 (W/R) — Port 0 Lernen Unwirksam. 1 = Unwirksam. Vorgabe
=0.

Bit 1 (W/R) — Port 1 Lernen Unwirksam. 1 = Unwirksam. Vorgabe
=0.

Bit 28 (W/R) — Port 28 Lernen Unwirksam. 1 = Unwirksam. Vorga-
be = 0.

Bits 29-31 (RO) — Reserviert. Immer als 0 gelesen.

MCB-Registerschnittstelle fir Quellenport-Lernen

SelectedAdr[47:0] (in) — Quellenadresse vom Mem-Hash-Modul.
SourcePort[7:0] (in) — Quellenportnummer vom Mem-Hash-Modul.
SrcMissStb (in) — Gesetzt durch Mem-Hash-Modul, wenn

Hash-SA-Miss aufgetreten ist und SelectedAdr und
SourcePort gliltig sind. Sollte als Tor zu den
Hash-Quellen-Miss-Registern benutzt werden. Mem-
hash wird Haltezeit garantieren.

SrcMissLock (out) — Geltend gemacht an Memhash, um zu verhindern,
dass SrcMissStb geltend gemacht wird.
LearnDisPort (out) — Geltend gemacht, wenn Lernen-Umwirksam fiir Port

gesetzt. Dies ist eine kombinatorische Ausgabe an
MemHash basierend auf dem SourcePort-Eingang
und dem Lernen-Umwirksam-Register und wird dau-
ernd bewertet. MemHash weil3, wenn abzutasten ist.

Portsicherheit

[0320] Sicherer-Port-Register — (Offset = 'he8) Bitmapped Sicherer-Port-Register. (Es kann auch erwiinscht
sein, Lernen-Unwirksam-Bits fir Ports mit Sicherheit-Freigegeben zu setzen).

Bit 0 (W/R) —Port 0 Sicherheit freigegeben. 1 = Freigegeben. Vor-
gabe = 0.

Bit 1 (W/R) —Port 1 Sicherheit freigegeben. 1 = Freigegeben. Vor-
gabe = 0.

Bit 28 (W/R) — Port 28 Sicherheit freigegeben. 1 = Freigegeben.
Vorgabe = 0.

Bits 29-31 (RO) — Reserviert. Immer als 0 gelesen.

Sicherheits-Verletzungsregister — (Offset = 'hf0) Bitmapped Sicherheitsverletzung durch Port

[0321] Gelbscht, wenn gelesen. Initialisiert auf 0. Eine Unterbrechung wird ausgegeben, wenn das erste Bits
gesetzt ist, und geldscht, wenn gelesen.

80/132

DE 697 31936 T2 2005.06.23

Bit 0 (RO) — Sicherheitsverletzung Port 0. 1 = Verletzung aufge-
treten.

Bit 1 (RO) — Sicherheitsverletzung Port 1. 1 = Verletzung aufge-
treten.

Bit 28 (RO) — Sicherheitsverletzung Port 28. 1 = Verletzung aufge-
treten.

Bits 29-31 (RO) — Reserviert. Immer als 0 gelesen.

[0322] Sicherheitsverletzungs-Statistikregister — (Offset = 'hec) Zahlung aller Sicherheitsverletzungen auf al-
len Ports. Geldscht, wenn gelesen. Initialisiert auf 0.

Bits 0-31 (RO) — Sicherheitsverletzungszahlung [31:0].
MCB-Registerschnittstelle flir Portsicherheit

SourcePort[7:0] (in) — Quellenportnummer vom Mem-Hash-Modul.

SecurePort (out) — Geltend gemacht, wenn sicherer Modus fiir Port ge-
setzt ist. Dies ist ein kombinatorischer Ausgang basie-
rend auf der SourcePort-Eingabe und dem Siche-
rer-Port-Register und wird standig bewertet.
Mem-Hash weifl}, wenn abzutasten ist.

SecViolationStb (in) — Strobe, der anzeigt, dass eine Sicherheitsverletzung
auf dem angegebenen Port aufgetreten ist. Sollte als
ein Tor zu dem durch SourcePort angegebenen Si-
cherheitsverletzungsregisterbit benutzt werden.
Mem-Hash wird Haltezeit garantieren.

Speicherkonfiguration

[0323] Speichersteuerregister — (Offset = 'hf4) Gemischte Speichersteuerfunktionen. Dieses Register kann
nur geschrieben werden, wenn Master Switch Enable (EPSM-Einstellregister) negiert ist.

Bits 0—1 (W/R) — Speichertyp
00 = Schnelles Seitenmodus-DRAM (Vorgabe).
01 = EDO-DRAM.
10 = Synchron-DRAM.
11 = Reserviert.

Bit 2 (W/R) — Speichergeschwindigkeit (0 = 60 ns, 1 = 50 ns). Vor-
gabe ist 0.

Bit 3 (W/R) — EDO-Testmodus (1 = Freigabe). Vorgabe ist 0.

Bit 4 (W/R) — Doppel-Link-Modus. Vorgabe = 0.

Bit 5 (W/R) — Empfangsseitentreffer unwirksam machen. Vorgabe
ist 0.

Bit 6 (W/R) — Sendeseitentreffer unwirksam machen. Vorgabe ist
0.

Bits 7-31 (RO) — Reserviert. Immer als 0 gelesen.

MCB-Registerschnittstelle fir Speichersteuerregister

r MemEDO (out) — Durch mcbregs an memctl-Modul geltend gemacht,
wenn Speichertyp 01 ist.

r_MemSync (out) — Durch mcbregs an memctl-Modul geltend gemacht,
wenn Speichertyp 10 ist.

r_Mem50ns (out) — Durch mcbregs an memctl-Modul geltend gemacht,
wenn Speichergeschwindigkeit 1 ist.

r_TestForEDO out) — Durch mcbregs an memctl-Modul geltend gemacht,

wenn EDO-Testmodus 1 ist.

[0324] Speicher-RAS-Auswahliregister — (Offset = 'hf8) Definiert, welche RAS-Leitung fiir jeden 4 M Block an

81/132

DE 697 31936 T2 2005.06.23

Speicher geltend zu machen ist. Dieses Register kann nur geschrieben werden, wenn Master Switch Enable
(EPSM-Einstellregister) negiert ist.

Bits 0-1 (W/R) — RAS-Auswahl fir 0000000h-03FFFFFh (4 M)
Bits 2-3 (W/R) — RAS-Auswahl fir 0400000h-07FFFFFh (8 M)
Bits 4-5 (W/R) — RAS-Auswahl fir 0800000h0-BFFFFFh (12 M)
Bits 6-8 (W/R) — RAS-Auswahl fir 0C00000h-OFFFFFFh (16 M)
Bits 30-31 (W/R) — RAS-Auswahl fir 3000000h-3FFFFFFh (64 M)

[0325] RAS-Auswahlen sind wie folgt codiert: 00 = RASO, 01 = RAS1, 10 = RAS2, 11 = RAS3. Vorgaben sind
immer 00.

MCB-Registerschnittstelle fir Speicher-RAS-Auswahlregister

r_RasSelReg[31:0] (out) — Ubergibt die Daten von mcbregs an memctl-Modul.

Speicherauffrischungs-Zahlregister — (Offset = 'hfc) Definiert die Zahl von CLK-Zyklen zwi-
schen Auffrischungsanforderungen.

Bits 0-9 (W/R) — Auffrischungszahlung [9:0]. Auffrischungszahlung

mal CLK-Periode muss kleiner oder gleich 15.625 ms
sein. Vorgabe ist 208h. (15.60 ms fir 30 ns CLK).
Bits 10-31 (RO) — Reserviert. Immer als 0 gelesen.

MCB-Registerschnittstelle fiir Speicherauffrischungszahlregister

[0326] RefReg (out) — Auffrischungs-Anforderungsstrobe an memctl-Modul. Strobe kann jede Lange haben,
da memctl die Anforderung auf der positiven Flanke erfasst. Es wird kein ack zurlickgegeben.

MAC-Adressfilterung

[0327] Filterung basierend auf Zieladresse wird bereitgestellt, um Pakete an die und von der CPU 230 zu lei-
ten. Vier Filter werden bereitgestellt, obwohl gegenwartig nur zwei bendtigt werden. Maskieren ist verfiigbar,
um 'nicht kimmern' in den Adressvergleich einzuschlief3en, obwohl gegenwartig kein Bedarf daflr besteht.
Zwei Filter sollten eingerichtet werden, eines mit der individuellen Adresse der CPU 230 und das andere mit
der BPDU-Multicast-Adresse (fiir Uberspannungsbaum). Wenn ein von einem Port, der nicht die CPU 230 ist,
empfangenes Paket eine Filteradresse trifft, wird das Paket an die CPU 230 und nur die CPU 230 befordert
(selbst wenn BC oder MC). Wenn ein von der CPU 230 stammendes Paket eine Filteradresse (BPDU-Adresse)
trift, wird das Paket an den im Filteradressregister spezifizierten Zielport beférdert. Hash-Tabellen-Lookups
werden umgangen, wenn ein Paket eine Filteradresse ftrifft.

82/132

Filtersteuerregister
Bits 0-3 (W/R)

Bits 4-7 (W/R)

Filtermaskenregister Tief
Bits 0-7 (W/R)

Bits 8-15 (W/R)
Bits 16-23 (W/R)
Bits 24-31 (W/R)

Filtermaskenregister Hoch
Bits 0-7 (W/R)

Bits 8-15 (W/R)

Bits 16-31 (RO)
Filteradressregister O Tief
Bits 0-7 (W/R)

Bits 8-15 (W/R)

Bits 16-23 (W/R)

Bits 24-31 (W/R)

Filteradressregister 0 Hoch
Bits 0-7 (W/R)

Bits 8-15 (W/R)

Bits 16-23 (W/R)

Bits 24-31 (RO)
Filteradressregister 1 Tief
Filteradressregister 2 Tief
Filteradressregister 1 Hoch
Filteradressregister 2 Hoch
Filteradressregister 3 Tief
Filteradressregister 3 Hoch

DE 697 31936 T2 2005.06.23

— (Offset = 'h100) Steuert MAC-Zieladressenfilterung.
— Adressfilter-Freigaben [3:0]. 1 = Einzel-Zieladres-
senfilterung fir entsprechendes Adressfilterregister
[3:0] freigeben. Vorgabe 0.

— Adressmasken-Freigaben [3:0]. 1 = Maskieren frei-
geben, wenn das Adressfilterregister [3:0], mit dem
Adressfilter-Maskenregister. Vorgabe 0.

— (Offset = 'h104) Vorgabe = 0.

— Byte 0 der MAC-Adressmaske (1 = Adressbit mas-
kieren).

— Byte 1 der MAC-Adressmaske (1 = Adressbit mas-
kieren).

— Byte 2 der MAC-Adressmaske (1 = Adressbit mas-
kieren).

— Byte 3 der MAC-Adressmaske (1 = Adressbit mas-
kieren).

— (Offset = 'h108) Vorgabe 0.

— Byte 4 der MAC-Adressmaske (1 = Adressbit mas-
kieren).

— Byte 5 der MAC-Adressmaske (1 = Adressbit mas-
kieren).

— Reserviert. Immer als 0 gelesen.

— (Offset = 'h10c)

— Byte 0 der zu beférdernden MAC-Adresse.

— Byte 1 der zu beférdernden MAC-Adresse.

— Byte 2 der zu beférdernden MAC-Adresse.

— Byte 3 der zu beférdernden MAC-Adresse.

— (Offset ='h110)

— Byte 4 der zu beférdernden MAC-Adresse.

— Byte 5 der zu beférdernden MAC-Adresse.

— Zielport. Wenn der Quellenport die CPU 230 ist,
spezifiziert dieses Feld, an welchen Port das Paket
beférdert werden soll, wenn die MAC-Adresse mit der
Filteradresse Uibereinstimmt. Wenn der Quellenport
nicht die die CPU 230 ist, wird dieses Feld ignoriert,
und Treffer auf die Filter-MAC-Adresse werden an die
CPU 230 befordert.

— Reserviert. Immer als 0 gelesen.

— (Offset = 'h114) siehe oben.

— (Offset = 'h11c) siehe oben.

— (Offset = 'h118) siehe oben.

— (Offset = 'h120) siehe oben.

— (Offset = 'h124) siehe oben.

— (Offset = 'h128) siehe oben.

83/132

DE 697 31936 T2 2005.06.23

MCB-Registerschnittstelle fir Adressfilterung

SelectedAdr[47:0] (in) — Zieladresse von Memhash-Modul.

FilterHit (out) — Geltend gemacht, wenn ein Filteradresstreffer auf-
tritt. Dies ist ein kombinatorischer Ausgang an Mem-
hash basierend auf der SelectedAdr und den Filterre-
gistern und wird standig bewertet. Memhash weil3,
wenn abzutasten ist.

FilterPort[7:0] (out) —Wenn der Quellenport die CPU 230 ist, ist FilterPort
gleich dem Zielportfeld von dem Filterregister, das ei-
nen Filtertraffer erzeugt. Wenn der Quellenport nicht
die CPU 230 ist, ist FilterPort gleich CpuPort (von dem
EPSM-Einstellregister).

SourcePort[7:0] (in) — Quellenportnummer von Memhash-Modul.

SrcPrtlsCpu — Geltend gemacht, wenn SourcePort mit Cpu-
Port-Nummer im EPSM-Einstellregister iberein-
stimmt.

MCB-Unterbrechungsinformation

[0328] Es gibt acht Unterbrechungsquellen in dem MCB 404. Die Unterbrechungsquellen werden bewirken,
dass die CPU 230 unterbrochen wird, wenn sie nicht maskiert werden. Damit die Information der Unterbre-
chungsquelle verfuigbar sein kann, ohne die CPU 230 zu unterbrechen, steht ein Abfragemechanismus zur
Verfligung. Die Maskierung einer Unterbrechungsquelle bewirkt, dass die Unterbrechungen von der CPU 230
ferngehalten werden, aber die Information noch in dem Abfragequellenregister verfiigbar ist.

[0329] MCB-Unterbrechungsquellenregister — (Offset = 'h12c) Quelle der an die CPU 230 gesendeten Unter-
brechung. Dieses Register wird durch den EPSM 210 aktualisiert, und dann wird eine Unterbrechung an die
CPU 230 gesendet. Wenn die CPU 230 dieses Register liest, wird der Inhalt geléscht. Ein Wert von 1 in einem
Bit zeigt an, dass eine Unterbrechung aufgetreten ist. Vorgabe = 32'h0000_0000.

Bit 0 (W/R) — Sicherheitsunterbrechung. Wenn eine Sicherheits-
verletzung stattfindet, erscheint diese Unterbrechung.
Bit 1 (W/R) — Speicherlberlauf gesetzt. Wenn der Speicher sich

mit Paketen fiillt und die Uberlaufschwelle durch-
schritten wird, erscheint diese Unterbrechung.

Bit 2 (W/R) — Speicheruberlauf geléscht. Wenn der Speicher sich
leert und die Uberlaufschwelle durchschritten wird, er-
scheint diese Unterbrechung.

Bit 3 (W/R) — Broadcast-OF gesetzt. Wenn die Broadcast-Pakete
den Speicher fillen und die Broadcast-Schwelle
durchschritten wird, erscheint diese Unterbrechung.

Bit 4 (W/R) — Broadcast-OF geléscht. Wenn die Broadcast-Pake-
te aus dem Speicher ausgeleert werden und die
Broadcast-Schwelle durchschritten wird, erscheint
diese Unterbrechung.

Bit 5 (W/R) — Empfangs-OF. Wenn ein Port seinen zugeteilten
Platz zum Empfangen von Paketen lberschreiten
wird, erscheint diese Unterbrechung.

Bit 6 (W/R) — Sende-OF. Wenn ein Port, der Pakete sendet, sei-
nen zugeteilten Platz Gberschreiten wird, erscheint
diese Unterbrechung.

Bit 7 (W/R) — Rx-Paket abgebrochen. Wenn ein Paket begonnen
hat, gespeichert zu werden und festgestellt wird, dass
der Speicher Uberschritten wird, wird das Paket abge-
brochen und diese Unterbrechung erscheint.

Bits 8-31 (RO) — Reserviert. Immer als 0 gelesen.

84/132

DE 697 31936 T2 2005.06.23

MCB-Registerschnittstelle fir Unterbrechungsquellenregister

[0330] Unterbrechungs-Maskierungsregister — (Offset = 'h130) Unterbrechungen, die durch die CPU 230 zu
maskieren sind. Ein Wert von 1 in einem Bit zeigt an, dass eine Unterbrechung maskiert ist. Vorgabe =

32'h0000_0000.

Bit 0 (W/R)
Bit 1 (W/R)

Bit 2 (W/R)

Bit 3 (W/R)

Bit 4 (W/R)

Bit 5 (W/R)
Bit 6 (W/R)
Bit 7 (W/R)

Bits 8-31 (RO)

— Maske fur die Sicherheitsunterbrechung.

— Maske fir die Speicheriberlauf-Gesetzt-Unterbre-
chung.

— Maske fir die Speicheriberlauf-Geldscht-Unterbre-
chung.

— Maske fur die Broadcast-OF-Gesetzt-Unterbre-
chung.

— Maske fir die Broadcast-OF-Geldscht-Unterbre-
chung.

— Maske flir die Empfangs-OF-Unterbrechung.

— Maske fir die Sende-OF-Unterbrechung.

— Maske fir die Rx-Paket-Abgebrochen-Unterbre-
chung.

— Reserviert. Immer als 0 gelesen.

[0331] Abfragequellenregister — (Offset = 'h134) Dieses Register enthalt die maskierte Unterbrechungsinfor-
mation und wird durch die CPU 230 geldscht, die eine eins schreibt, um die gewlinschten Bits zu Idschen. Dies
erlaubt der CPU 230, abzufragen, anstatt unterbrochen zu werden. Die CPU wird jede Unterbrechungsquelle
zu maskieren haben, die sie stattdessen abzufragen wiinschen wiirde.

Bit 0 (W/R)

Bit 1 (W/R)

Bit 2 (W/R)

Bit 3 (W/R)

Bit 4 (W/R)

Bit 5 (W/R)

Bit 6 (W/R)

Bit 7 (W/R)

Bits 8-31 (RO)

— Sicherheitsunterbrechung. Wenn eine Sicherheits-
verletzung stattfindet, erscheint diese Unterbrechung.
— Speicherlberlauf gesetzt. Wenn der Speicher sich
mit Paketen fiillt und die Uberlaufschwelle durch-
schritten wird, erscheint diese Unterbrechung.

— Speicheruberlauf geléscht. Wenn der Speicher sich
leert und die Uberlaufschwelle durchschritten wird, er-
scheint diese Unterbrechung.

— Broadcast-OF gesetzt. Wenn die Broadcast-Pakete
den Speicher fillen und die Broadcast-Schwelle
durchschritten wird, erscheint diese Unterbrechung.
— Broadcast-OF geldscht. Wenn die Broadcast-Pake-
te aus dem Speicher ausgeleert werden und die
Broadcast-Schwelle durchschritten wird, erscheint
diese Unterbrechung.

— Empfangs-OF. Wenn ein Port seinen zugeteilten
Platz zum Empfangen von Paketen Gberschreiten
wird, erscheint diese Unterbrechung.

— Sende-OF. Wenn ein Port, der Pakete sendet, sei-
nen zugeteilten Platz Uberschreiten wird, erscheint
diese Unterbrechung.

— Rx-Paket abgebrochen. Wenn ein Paket begonnen
hat, gespeichert zu werden und festgestellt wird, dass
der Speicher Uberschritten wird, wird das Paket abge-
brochen und diese Unterbrechung erscheint.

— Reserviert. Immer als 0 gelesen.

85/132

DE 697 31936 T2 2005.06.23

MCB-Registerschnittstelle fiir Abfragequellenregister

Ruckstau
Ruckstau-Freigabe — (Offset = 'h138) Bitmap zum Freigeben von Riick-
stau.
Bits 0-23 (RO) — Reserviert. Immer als 0 gelesen.
Bits 24-27 (W/R) - Bitmap.
Bits 28-31 (RO) — Reserviert. Immer als 0 gelsen.

Port-Bondierung

[0332] Es gibt zwei Satze von bondierten Ports. Daher gibt es zwei Register, um zu sagen, welche Ports mit-
einander bondiert sind. Anmerkung: Nur zwei Bits in jedem Register sollten gesetzt werden, das heil3t, nicht
mehr als zwei Port sollten miteinander bondiert werden.

Bondierter Portsatz 0 — (Offset = 'n13c) Diese Bitmap sagt, welche Ports in
diesem Statz miteinander bondiert sind.

Bits 0-27 (W/R) — Bitmap fir Satz 0.

Bits 28-31 (R0) — Reserviert. Immer als 0 gelesen.

Bondierter Portsatz 1 — (Offset ='h140) Diese Bitmap sagt, welche Ports in
diesem Statz miteinander bondiert sind.

Bits 0-27 (W/R) — Bitmap fir Satz 1.

Bits 28-31 (RO) — Reserviert. Immer als 0 gelesen.

VLAN

Vorgabe VLAN-Register — (Offset = 'h144).

[0333] Nun ist einzusehen, dass ein Multiport-Abfragesystem fiir einen Netzwerkschalter ein effizientes Sys-
tem zum Bestimmen des Empfangs- und Sendestatus fir eine Vielzahl von Netzwerkports bereitstellt. Eine Ab-
fragelogik macht periodisch ein einziges Abfragesignal geltend und empféangt eine Vielzahl von Sende- und
Empfangsstatussignalen, um so den Status von mehrfachen Ports zu einer Zeit zu empfangen. Die Abfrage-
logik aktualisiert Sende- und Empfangslisten entsprechend einer fortlaufenden Verfolgung des Statusses aller
Ports. Dies ermdglicht einer Arbitrations- und Steuerlogik, die die Listen durchsieht, zu bestimmen, wenn Daten
von einem Quellenport zuriickzugewinnen sind und wenn Daten an einen Port zum Senden zu liefern sind.

[0334] Obwohl ein erfindungsgemales System und Verfahren in Verbindung mit der bevorzugten Ausfilihrung
beschrieben wurde, ist es nicht gedacht, auf die hierin dargelegte Form begrenzt zu sein, sondern ist im Ge-
genteil gedacht, solche Alternativen, Modifikationen und Gleichwertigkeiten einzuschlief3en, wie sie verninfti-
gerweise im Umfang der Erfindung, wie in den anliegenden Anspriichen definiert, enthalten sein kénnen.

Patentanspriiche

1. Netzwerk-Switch (102), der umfasst:
eine Vielzahl von Netzwerk-Ports (104) zum Empfangen und Senden von Daten, die jeweils enthalten:
eine Netzwerk-Schnittstelle;
eine Datenbus-Schnittstelle (202); und
eine Prozessor-Port-Schnittstelle (202);
wobei der Netzwerk-Switch des Weiteren einen Datenbus (206) umfasst, der mit der Datenbus-Schnittstelle
jedes der Vielzahl von Netzwerk-Ports (104) gekoppelt ist;
einen Prozessor (230), der mit einem Prozessorbus (218) gekoppelt ist, der mit der Prozessor-Port-Schnittstel-
le jedes der Vielzahl von Netzwerk-Ports gekoppelt ist;
einen Speicher (212), der mit einem Speicherbus (214) gekoppelt ist;
wobei der Netzwerk-Switch gekennzeichnet ist durch:
einen Switch-Manager (210), der mit dem Datenbus (206), mit dem Prozessorbus (218) und mit einem weite-
ren Prozessorbus (204), der mit jedem der Vielzahl von Netzwerk-Ports (104) gekoppelt ist, sowie mit dem
Speicherbus (214) gekoppelt ist, um Datenstrom zwischen der Vielzahl von Netzwerk-Ports (104) und dem
Speicher (212) zu steuern und den Prozessor (230) in die Lage zu versetzen, auf die Vielzahl von Netz-
werk-Ports (104) und den Speicher (212) zuzugreifen; wobei der Switch-Manager (210) umfasst:
eine Datenbus-Schnittstelle (410), die mit dem Datenbus (206) gekoppelt ist und enthalt;

86/132

DE 697 31936 T2 2005.06.23

eine Abfrage-Logik (501), die periodisch abfragt, um den Status jedes der Vielzahl von Netzwerk-Ports (104)
zu bestimmen; und

eine Steuer-Logik (504), die mit der Abfrage-Logik (501) gekoppelt ist, wobei die Steuer-Logik so betrieben
werden kann, dass sie Datenstrom zwischen der Vielzahl von Netzwerk-Ports (104), dem Prozessor (230) und
einer Speicherbus-Schnittstelle (422) steuert;

wobei die Speicherbus-Schnittstelle (422) mit dem Speicherbus (214) und der Datenbus-Schnittstelle (410) ge-
koppelt ist; und

eine Prozessorbus-Schnittstelle (432), die mit dem Prozessorbus (204), der Datenbus-Schnittstelle und der
Speicherbus-Schnittstelle (422) gekoppelt ist.

2. Netzwerk-Switch nach Anspruch 1, wobei die Datenbus-Schnittstelle (410) umfasst:
einen Empfangs-Puffer (520, 522) zum Empfangen und temporaren Speichern von Daten von der Vielzahl von
Netzwerk-Ports (104);
einen Sende-Puffer (524, 526) zum Empfangen und temporaren Speichern von Daten von der Speicher-
bus-Schnittstelle (414);
wobei die Steuer-Logik (504), der Empfangs-Puffer (520, 522) und der Sende-Puffer (524, 526) so betrieben
werden kdnnen, dass sie Datenstrom zwischen der Vielzahl von Netzwerk-Ports (104), dem Prozessor (230)
und der Speicherbus-Schnittstelle (414) steuern.

3. Netzwerk-Switch nach Anspruch 1 oder Anspruch 2, wobei die Speicherbus-Schnittstelle (414) enthalt:
eine Speicher-Steuerung (636), die mit dem Speicherbus (214) gekoppelt ist, um Speicherzyklen zu steuern;
und
einen Zuteiler (638), der mit der Speicher-Steuerung (636), der Datenbus-Schnittstelle (418,410) und der Pro-
zessorbus-Schnittstelle (424) verbunden ist, um Zugriff auf den Speicher (212) Uber die Speicher-Steuerung
(636) zu steuern.

4. Netzwerk-Switch nach Anspruch 3, wobei die Speicherbus-Schnittstelle des Weiteren enthalt:
eine Empfangs-Steuerung (604), die mit der Datenbus-Schnittstelle (418, 410) und der Speicher-Steuerung
(636) verbunden ist, um Datenstrom von der Datenbus-Schnittstelle zu dem Speicher zu steuern; und
eine Sende-Steuerung (606), die mit der Datenbus-Schnittstelle (418, 410) und der Speicher-Steuerung (636)
gekoppelt ist, um Datenstrom von dem Speicher zu der Datenbus-Schnittstelle (418, 410) zu steuern.

5. Netzwerk-Switch nach Anspruch 1, wobei die Prozessorbus-Schnittstelle (432) einschliel3t:
dass der Prozessorbus (218) einen Prozessor-Abschnitt (218), der zwischen den Switch-Manager (210) und
den Prozessor (230) gekoppelt ist, sowie einen Port-Abschnitt (204) enthalt, der zwischen den Switch-Manager
(210) und die Prozessor-Port-Schnittstelle (202) jedes der Vielzahl von Netzwerk-Ports gekoppelt ist;
eine Prozessor-Schnittstelle (432), die mit dem Prozessor (230) Giber den Prozessor-Abschnitt (218) des Pro-
zessorbusses gekoppelt ist; und
eine Port-Schnittstelle, die mit der Prozessor-Schnittstelle (432) und jedem der Vielzahl von Netzwerk-Ports
(104) Gber den Port-Abschnitt (204) des Prozessorbusses gekoppelt ist.

6. Netzwerk-Switch nach Anspruch 5, wobei die Prozessorbus-Schnittstelle (434) eine Bustransfer-Logik
zum Umsetzen von Zyklen zwischen dem Prozessor-Abschnitt (218) und dem Port-Abschnitt (204) des Pro-
zessorbusses enthalt.

7. Netzwerk-Switch nach Anspruch 5, wobei die Prozessorbus-Schnittstelle (432) des Weiteren umfasst:
einen ersten Empfangs-Puffer (710), der mit der Prozessor-Schnittstelle (432) und der Datenbus-Schnittstelle
(436, 410) gekoppelt ist;
einen ersten Sende-Puffer (712), der mit der Prozessor-Schnittstelle (432) und der Datenbus-Schnittstelle
(436, 410) gekoppelt ist;
eine erste Steuerung (713), die mit der Datenbus-Schnittstelle (436, 410), der Prozessor-Schnittstelle, dem
ersten Empfangs-Puffer (710) und dem ersten Sende-Puffer (712) gekoppelt ist, um Datenstrom zwischen der
Prozessorbus-Schnittstelle (432) und der Datenbus-Schnittstelle (436, 410) zu steuern;
einen zweiten Empfangs-Puffer (706), der mit der Prozessor-Schnittstelle (432) und der Speicherbus-Schnitt-
stelle (426, 422) gekoppelt ist;
einen zweiten Sende-Puffer (708), der mit der Prozessor-Schnittstelle (432) und der Speicherbus-Schnittstelle
(426, 422) gekoppelt ist; und
eine zweite Steuerung (718), die mit der Speicherbus-Schnittstelle (426, 422), der Prozessor-Schnittstelle
(432), dem zweiten Empfangs-Puffer (706) und dem zweiten Sende-Puffer (708) gekoppelt ist, um Datenstrom
zwischen der Prozessorbus-Schnittstelle (432) und der Speicherbus-Schnittstelle (426, 422) zu steuern.

87/132

DE 697 31936 T2 2005.06.23

8. Netzwerk-Switch nach einem der Anspriiche 1 bis 7, wobei jeder der Vielzahl von Netzwerk-Ports (104)
des Weiteren enthalt:
eine Vielzahl von Statistik-Zahlern (303), die mit dem Prozessorbus (204) gekoppelt sind, wobei jeder der Viel-
zahl von Statistik-Zahlern (303) Status und Funktion eines entsprechenden Ports (104) verfolgt.

9. Netzwerk-Switch nach einem der Anspriiche 1 bis 8, wobei der Prozessorbus einen Prozessor-Abschnitt
(218), der zwischen den Switch-Manager (210) und den Prozessor (230) gekoppelt ist, sowie einen Port-Ab-
schnitt (204) enthalt, der zwischen den Switch-Manager (210) und jeden der Vielzahl von Netzwerk-Ports (104)
gekoppelt ist,
wobei der Prozessor-Abschnitt (218) des Prozessorbusses, der Datenbus (206) und der Speicherbus (214) je-
weils 32-Bit-Busse umfassen und der Port-Abschnitt (204) des Prozessor-Busses einen 16-Bit-Bus umfasst.

10. Netzwerk-Switch nach einem der Anspriche 2 bis 8, wobei die Vielzahl von Ports (104, 110) umfassen:
eine erste Vielzahl von Ports, die entsprechend einem ersten Protokoll arbeiten;
eine zweite Vielzahl von Ports (110), die entsprechend einem zweiten Protokoll arbeiten;
einen zweiten Datenbus (222), der mit der zweiten Vielzahl von Ports (110) und dem Prozessor (230) gekoppelt
ist; und
eine Briuickenvorrichtung (220), die mit dem Datenbus (206) und mit dem zweiten Datenbus (222) gekoppelt ist.

11. Netzwerk-System, das umfasst:
eine Vielzahl von Netzwerken, die jeweils wenigstens eine Datenvorrichtung zum Senden und Empfangen von
Datenpaketen enthalten; und
einen Netzwerk-Switch nach Anspruch 1, der mit dem Datenbus, dem Prozessorbus und dem Speicherbus ge-
koppelt ist, um Datenstrom zwischen der Vielzahl von Netzwerk-Ports und dem Speicher zu steuern und den
Prozessor in die Lage zu versetzen, auf die Vielzahl von Netzwerk-Ports und den Speicher zuzugreifen.

Es folgen 44 Blatt Zeichnungen

88/132

DE 697 31936 T2 2005.06.23

Anhangende Zeichnungen

coi

1140d-4

1140d-8

oLdod-9

431TVHIS
MIIMZ13IN

[1¥Od-V

LLIHOdY

0LMOd-VY

IMYIMZLIN-9

.
o o1 chi
B | .
L/o: L Cpip | PREImzLaNE[
B! , |
I | S
ol i OREMZLING[S
{ 74X [44% (14}
1 | .
0l MYIMZLIN-Y
| . /2:
ol
- gor | PRIEMZLANY [~
o N

89/132

DE 697 31936 T2 2005.06.23

¢ ol ¥IHOIAS ™
eviz [¢ arie
1T 2 1z
e8I
ARl o
C B WSd3
q812 —
= oz
voe 902 s e90z
L % ozen ||] \asz A_ | A— | _‘ _ h J
i 3% 43
o | \ﬁﬁ Lz 70z) 70 | 7oz
AT ﬂ 11 [% 11 .
zez r —r |
T v s o | o e i i | O |
-HSVT4 A vir] [NviL] [NvaL] [NvL vol 13NY3H13 awol
. . —~
yee \ . f - - " 922 .
Pl T TOZ
L] 1¥odj 9¢¢ -0} ____
gcz —| “IVIN3S, 13NY3HL GO0t col

90/132

DE 697 31936 T2 2005.06.23

902

80¢

V€ 'Old
poe
. - T |
- ——P
.mﬂwwm 04i4-3aN3S N e
MO «——] 0414-SONV4dIN3 _nHlv dE[-ELTE] Sug -
C N~ zog | aTavz] 99¢
£0¢e 0 " iusuvis eoe
.wmm_m_munwm_ [odFENIs =1 7w 0
—— |+—{ Od14-SONVidIN3 "LINYIHL3 |
see - z0¢ savavz] O
SIHOLV \Sn T -wsuvis ooe
-3531| —— —
230 O4139GNIS . o D e o
VeE le—1 0dI3-SONVAdNT [&— _CLANUEHIE >
- \-zoc uzavz| 00¢
| mgn «— MLSILVLS [90¢
S FETER — ON fe— .0
«—{ 0313 SONVdN3 4 eELLELE g
2ot [onnaanaisann],__ | |, [u3wavz] 90F
/ NOLLYANOIANOY | . MILSILVLS
e oze Nae LI \oge
02 114 -

91/132

DE 697 31936 T2 2005.06.23

202
| '\

204

[ADRS[5:0]

ADRS_STROBE*

“CHIP_SELECTm®

INTERRUPT*

\FPDATA[1 3 0]
PREADY*

=z vv\}_’

READ*

A 4

RESET*

NWK-I/F-
SIGNALE <

STATUS-
SIGNALE

y

~ - COLLIN([3:0]

-COLLIP[3:0]
'CREF[3:0]

- DATAI[3:0]
DATAN[3 0]

—>
>

g

»l

<DATAP(3:0]
DATATN[3:0]
DATATP[3:0]
DREF[3:0]_
PREEN[3:0]

_’

>

: PREEP[3:0
TP/AUI3:0]

COLLOUTN*

“TBADN*
<

! <ﬁLEDSEL[1:O]

LPASSN'

“RCVNGN*

:TRNSMTN*

' ABORT IN* .

 CLK
JAKT 20 MHZ

[————
PRUEFSIGNALE
N

206

ABORT ouUT*

tAI_FCS_IN* (FBPN”)

A\

BUF_AVAILm*

C@YTE{VALID[S:O]* |

@ATA[M 0]
EOP*)

A2 2N

PKT_AVAILm*

“PORT . BUSY"

A\

<- —PORT NO‘[1‘ 0]

READ OUT_PKTm*

SOP* :

“STROBE"

“WRITE_IN_PKTm"
- . .

/1~ GEMISCHTE SIGNALE)

FIG. 3B

92/132

DE 697 31936 T2 2005.06.23

TAKT

CHIP_SELECT*

ADRS_STROBE*
~ ADRS[5:0]
READ*

PDATA[15:0]" |

PREADY*

TAKT

CHIP_SELECT*

ADRS STROBE*
ADRSIS: 0]
READ*
PDATA[15:0]*
PREADY*

93/132

I .
[—
XADRX
—— /"
%—(_DATEN __>——
T ___/—
"FIG. 3C
0y T VP T e I o
S\ g /-
"
“XADRY
7
(o __DATEN
N\
FIG. 3D

DE 697 31936 T2 2005.06.23

- 4¢ 'Ol

LMIVAY 4Ng

N/ \ . [SWIVAY N
€140d 21¥0d }1¥0d 0L40d /" __|.am0u1s |
0 O o LML L L]l
| B 3¢ '9Id
_ /N " AQVENd
——wHHLy X miAaue X X mHaNz X_MHISE)% - — Jo:s1lvivad
A l /N ___l.avay
 XHavX [o:slsuav
«/ _____|.38041S Syav
—/ | | __|.1031357dHO
NSl el nEnEuE a7y

94/132

DE 697 31936 T2 2005.06.23

 9¢°9ld

<«
— i o . 7 . —1{,1NO_ 1H08av
O —(XXX ‘ [0:1€lvLva
X #14d ¥M Yerud oy #18d M “Y#rudau [o:1JoN"180d -
I J | \ . RITTE Y V=TT

[S \L | wind™ino avay

v\ ez T\ |0

Z M0

__Jor_JeL S8\

N3gI34HOS ANN N3S3 wmw_h_mN_._o_m._ON NIG/3uH0S GNN N3ST1 wmo_h_uNIo_m_._o

T T T __.___._.__._
SUOOH! . sug

I | b
mcoom_ mcoou_ |

95/132

330

332

\(I MACHEN, UM QUELLEN-
PORT ZU IDENTIFIZIEREN| .

334

DE 697 31 936 T2

C START)

| LESE/SCHREIB-

"BESTIMMEN, OB
GLEICHZEITIGER

ZYKLUS AUSZU-
FUEHREN IST
(EPSM 210)

SIGNALE GELTEND

(EPSM 210)

I

QUELLENPORT-VOR-

__|RICHTUNG ERFASST

336

338

UND/ODER SPEICHERT

«_| MACHEN, UM ZIELPORT

PORT-ID-SIGNALE

A

SIGNALE GELTEND

ZU IDENTIFIZIEREN

(EPSM 210)

A

\ ERFASST UND/ODER

SPEICHERT PORT-ID-
SIGNALE

ZIELPORT-VORRICHTUNG

2005.06.23

340

96/132

| AUF HSB 206,
“— WAEHREND

| HSB 206 LIEST

QUELLENPORT-
VORRICHUNG
SCHREIBT DATEN

ZIELPORT-
'VORRICHTUNG
DATEN VOM

+ Reo————

'4(EN_DE)

" FIG. 3H

DE 697 31936 T2 2005.06.23

4
el .

:14 4

vy 80N
n_s_.mm_._o_m_n_mj |
244
T 3
| dn8oH 8Ly

r :v

o V(%

505 90d e
 s0dld L
osy |
o
41
o3
ey
/ Al
LN anndd 50414
— —

— L
aoH

DEY
|otdNOM
-80H

Z0% 9OH

AN

NEON [iy
R
sodld I~
- Ziy
T v
anoo ™

oLy

It
=7

402

A...I:_OOA;

'INSd3

902

R

012

97/132

DE 697 31936 T2 2005.06.23

L o Y R
—me === | -=- . .
O N | ELT 18 [T Se [U
0 vy (| BHHS . i , . | | NI [o:Leloan |
! ANOMINX | | | T - 043 W3W
T PIS || ot A | .momEomE Id xm !

_ : | lodazsxauvxL e 4 © W 3131dN0D ™ id X
! ANJLOVXY MOV BHY XL «d8 HSVH ~BLSTXY |
. . 5116 || .03 ewvxy JOUSAUVIS HSYH U IOV XY !
_ __ _ | lovlwod guy Xy OVILMAISOHSYH g1sTiN0d 08 . LIVAY Did Xd |
Ul sos LNOMINXYH| i TR .mum_m HSVH ~ lortehan - __ : [0:G1LND X |
] Nzowivdl||| THIS |lees| annw9oTl. fosive va HevH u_<><.m%m L o m&momuw X
Noodl | [~ 4 !
- 1[[-SLHOIMI9) || INNODL |- ANV-8dvV-X1 araow| - lo:sINOTXL +dOFXY |
[o8 A e QNNNIOOT I~ geg IR ogmarionoe |
I ansT Lo ||| ENA00dH CANVHSWH fo - TldoaTa 08 SSIN XY |
|t 016 s E=— —9 - [o:t]31r87ON3_ X1 .dOS™ HHL 50 XY |
R Bl 60§ 3LSITXY ALLEANS Rk i 4 _
1 -oraNoy | |1 A I | JHBONXL| JFBONXY ||
! “80H || 908 so3y 10 | JMN{ LLOV||{MN 1 ee/]] il 0gs !
| . + [J|LXLILXL][Xd]| Xd uzama.s. woo1a| 825 | 928 Vs |228 |ozs |
! = | L M >l -y3naLs _
m | €05 | | 205 1dnvi[—CHS (b O] B e mmu_uﬁ w0
_ XL || Xy _ — v .l ‘ 11 !
“ WIDOTIOVHAEY je—— _ 508 *628 D aE i
i —Ff [AP0 s . | L L B)
| LUIIVAY dng | C\— — gLy e /
O U e o o e e o e e e e e e o o o o o v | o e e e e o - - —— — - .ﬂ llllllllll 1

WAVAY 1id -JH0dLS <m .w_n_ | oev 902 cov

98/132

DE 697 31936 T2 2005.06.23

[8210A01010VX1 [8210A0.L0X 1]I8Z]OADWINXL _&m:oz_xp__mm_v_wsEn_xh_suwau,_:mEon_xh 82.140d|
[1J0ADL010VXL | [1]OADLOXL | [HJOAOWIWXL | [1]3NONIXL [LINSWLHdXL | [0:+]L4N8.1HO0dX.L | 1L¥Od
TToloADLoLoVXL | ToloADLoxL | loloaowanxL | [0JanONIXL | loMsiddX L | [0:4]0dNG1¥OdX L | 01H0d
B) 015
. ‘ . \mom .
l[szloADLOvxy|l8zloADWINXY| [8Z]INDNIXY [[BZINSINLHXY [o:plgzanaLuodxylsziyod|
[LIoAoLovxd |[HoAowamxa | [1I3NONIXY TTiivsnindxy [lo:plidngryodxy | 11dod
505 .§o>8.o<xm [oloAowanxy |- [olanonNixy | lobiswiddxy _oio%mpmon_xm 01¥0d
m.,.n|..|....|;||...is..uln.l.......:...s||..........,..|..t.i..|||.. nnnnnnnnnnnnnnnnnn
! [0:¥18ZLMIHOd |821¥0d [82]laNS ™10 1s3a f[szldNS 1D D¥S|8zLHOd
! e e w : v . & e
- . | . ' .
| mm. old m [o:v]LmidOd. | 11MOd [1]INS™LD 153a [[1]INS™ 10 J¥S | 11¥Od
. [0vloimidod | 01dOd [0]4NS ™19 1530 |[0JINS 1D J¥S | 0140d
| GF 805 Emo.E:s - 208

99/132

DE 697 31936 T2 2005.06.23

£ STROBE* |
RXPOLLIDLE o
STROBE* ' '
552 + !STROBE*
' RXPO@ ~ABFRAGE EMPFANGEN
‘ - 502 -
oy G | ‘/

RXPORTOPOLL *\
(SIEHE FIG. 5C-1)

" ISTROBE! ok

, .' RX_PC}RT1POLL '
- \(SIEHE FIG. 5C-2)

[RXPORT3POLL
(SIEHE FIG. 5C-4)

CLK -
CLK o

RXPORT2POLL
(SIEHE FIG. 5C-3)/.

- FIG. 5C

100/132

554

FIG.

5C-1

556

FIG.
5C-2

DE 697 31936 T2 2005.06.23

A T S

RXPORTOPOLL
" IF ((RXNEWCNT+1 1= RPCOUNT)
1| (RXACTCNT+1 I= RPCOUNT)), THEN

i (
1) IF (IPKT_AVAIL*[0] 8& IRXPRTMSKI0]), THEN
(IF (WTPRIORITY), THEN RXPORTBUF0 = PORTWTIO},
ELSE RXPORTBUFO = RPCOUNT;
RXPRTMSK[O] = 1; RKINCCNTBY(0] = 1);

2) IF (IPKT_AVAIL[1]* && IRXPRTMSK[4]), THEN
(IF (WTPRIQRITY), then RXPORTBUF4 = PORTWF4),
ELSE RXPORTBUF4 = RPCOUNT + RXINCCNTBY(O};

RXPRTMSK[4] = 1; RXINCCNTBY[1] = 1);

| 8) IF (IPKT._ AVAIL[7)* && IRXPRTMSK(28]), THEN
(IF (WTPRIORITY), THEN RXPORTBUF28 = PORTWT(28),
ELSE RXPORTBUF28 = RPCOUNT +
BITSUM(RXINCCNTBY[6:0]);
RXPRTMSKI28] = 1; RXINCCNTBY([7] = 1);

9) RPCOUNT = RPCOUNT +
BITSUM(RXINCCNTBY[7:0])
}

RXPORT1POLL
IF ((RXNEWCNT+1 1= RPCOUNT)
Il (RXACTCNT+1 I= RPCOUNT)), THEN

{
1) 'F ('PKT AVA\L{O]' && !RXPRTMSK[‘I]) THEN
: (IF (WTPRIORITY), ﬁ
THEN RXPORTBUF1 = PORTWT[1].
ELSE RXPORTBUF1 = RPCOUNT;
RXPRTMSK[1] =1 RXINCCNTBY({0] = 1);

7) IF ('PKT AVAIL[E]" 8& IRXPRTMSK([25]), THEN
(IF (WTPRIORITY),
THEN RXPORTBUF25 = PORTWT(25],
ELSE RXPORTBUF25 =
RPCOUNT + BITSUM(RXINCCNTBY[5:0]);
RXPRTMSKI25] = 1; RXINCCNTBY(6] = 1);

8) (SAME EQUATION 8 AS IN STATE 554);
9) RPCOUNT = RPCOUNT +
BITSUM(RXINCCNTBY(E:0})

)

101/132

DE 697 31936 T2 2005.06.23

;| ' - RXPORT2POLL
\ . “ (RXACTCNT-H = RPCOUNT)). THEN

| { .
1) IF (IPKT_AVAIL[0]" && IRXPRTMSK[2]), THEN
_ (IF (WTPRIORITY), o
THEN RXPORTBUF2 = PORTWT[2],
~ ELSE RXPORTBUF2 = RPCOUNT;
RXPRTMSK[2] = 1; RXINCCNTBYI0] = 1);

F'G. ' 7) IF (IPKT_AVAIL[E)* &'&' !'RXPRTMSK[ZGD. THEN
SC 3 (IF (WTPRIORITY), -
B THEN RXPORTBUF26 = PORTWT[26],

ELSE RXPORTBUF26 = RPCOUNT +
BITSUM(RXINCCNTBY[S:0]); =
RXPRTMSK([26] = 1; RXINCCNTBY[6] = 1);

8) (SAME EQUATION 8 AS IN STATE 554); -
9) RPCOUNT = RPCOUNT +
BITSUM(RXINCCNTBY[5:0])

} :

| RXPORT3POLL ‘
560 | IF ((RXNEWCNT+1 t= RPCOUNT)
| (RXACTCNT+1 I= RPCOUNT)), THEN

{
1) IF (IPKT_AVAIL[0]* && IRXPRTMSK[3]), THEN
" (IF (WTPRIORITY),
 THEN RXPORTBUF3 = PORTWT(3],
ELSE RXPORTBUF3 = RPCOUNT;
RXPRTMSK[3] = 1; RXINCCNTBY[0] = 1);

FIG. 7) IF (IPKT_AVAIL[6]* && IRXPRTMSK[27]), THEN
(IF (WTPRIORITY), | -
5C-4 THEN RXPORTBUF27 = PORTWT[27],
- ELSE RXPORTBUF27 = RPCOUNT +
 BITSUM(RXINCCNTBY([5:0]);
RXPRTMSK[27] = 1; RXINCCNTBYI6] = 1);

8) (SAME EQUATION 8 AS IN STATE 554);
9) RPCOUNT = RPCOUNT +
BITSUM(RXINCCNTBY[B:0])

"}

102/132

DE 697 31936 T2 2005.06.23

— 'STROBE*.
TXPOLLIDLE
STROBE* -
: 562 . ISTROBE*
“TXPOLLWAIT)
_) ABFRAGE SENDEN
. 503
T - ‘/

- TXPORTOPOLL
(SIEHE FIG. 5D-1) |

RXPORT1POLL
- (SIEHE FIG. 5D-2) /

RXPORT3POLL
(SIEHE FIG. 5D-4)

. RXPORT2POLL
(SIEHE FIG. 5D-3)

FIG. 5D

103/132

DE 697 31936 T2 2005.06.23

564

N

FIG.
S5D-1

. TXPORTOPOLL
IF ((TXNEWCNT+1 I= TPCOUNT)
Il (TXCTCNT+1 1= TPCOUNT)), THEN

1) IF (IBUF_AVAIL*[0) && (\TXPRTMSKI0] 8&
(TXMEMCYC[0] || TXCTACTCYC[O] || TXCTCYC[0}))). THEN
(IF (WTPRIORITY), THEN TXPORTBUFO = PORTWTI0],
ELSE TXPORTBUFO = TPCOUNT;
"TXPRTMSK[0] = 1; TXINCCNTBY[0] = 1);

2) IF (IBUF_AVAIL[1]* && (ITXPRTMSKI|4) &&

~ (TXMEMCYCI4] || TXCTACTCYC(4] || TXCTCYC[4}))), THEN-

(IF (WTPRIORITY), THEN TXPORTBUF4 = PORTWT(4],
ELSE TXPORTBUF4 = TPCOUNT + TXINCCNTBYI[0);
TXPRTMSK[4] = 1; TXINCCNTBY[1] = 1);

8) IF (IBUF_AVAIL[7]" && (ITXPRTMSK[28] 8&
(TXMEMCYC[28] || TXCTACTCYC[28] || TXCTCYC[28])), THEN
(IF (WTPRIORITY), THEN TXPORTBUF28 = PORTWT[Za]

ELSE TXPORTBUF28 = TPCOUNT + »
. BITSUM(TXINCCNTBY[6:0]);
TXPRTMSKI[28] = 1; TXINCCNTBY[7] = 1);
9) TPCOUNT = TPCOUNT + -
BITSUM(TXINCCNTBY[7:0})
.) |

.566

“FIG.
' 5D-2

. TXPORTIPOLL -
IF ((TXNEWCNT+1 t= TPCOUNT) }j
(TXCTCNT+1 1= TPCOUNT)), THEN

{
1) IF (IBUF_AVAIL[O]" && (ITXPRTMSK[1] &&
(TXMEMCYCL1] || TXCTACTCYCL1] || TXCTCYCI1D),
THEN (IF (WTPRIORITY), .
© THEN TXPORTBUF1 = PORTWT[1], ELSE TXPORTBUF1 =
TPCOUNT; TXPRTMSK[1] = 1; TXINCCNTBY[0] = 1);

7) IF (IBUF_AVAIL[E]* 8& (ITXPRTMSK(25] 8&

(IF (WTPRIORITY), THEN TXPORTBUF25 = PORTWT[25],
 ELSE TXPORTBUF25 = .
TPCOUNT + BITSUM(TXINCCNTBY([5:0]);
TXPRTMSK[25] = 1; TXINCCNTBY[6] = 1);

8) (SAME EQUATION 8 AS IN STATE 564);
9) TPCOUNT = TPCOUNT +
BITSUM(TXINCCNTBY[6:0))

} S

(TXMEMCYC[25] || TXCTACTCYC[25]]| TXCTCYC[25}))). THEN|

104/132

568

FIG.
5D-3

570.

FIG.

5D-4-

DE 697 31936 T2 2005.06.23

TXPORT2POLL
“IF (TXNEWCNT#1 1= TPCOUNT)
| (TXCTCNT+1 I= TPCOUNT)), THEN

{
1) IF ('BUF_AVAIL[O]* 8& (ITXPRTMSK[2] &&
(TXMEMCYC[2] || TXCTACTECYC[2] || TXCTCYC[2)).
“THEN(IF (WTPRIORITY), ‘
THEN TXPORTBUF2 = PORTWTI[2],
ELSE TXPORTBUF2 = TPCOUNT;
TXPRTMSK[2] = 1; TXINCCNTBY[0] = 1);

7) IF (1BUF_AVAIL[B]" 8& (!TXPRTMSK[ZB] 88
(TXMEMCYC[26] || TXCTACTCYC[26] || TXCTCYC[26]))). THEN
(IF (WTPRIORITY), |
THEN TXPORTBUF26 = PORTWT[26],
ELSE TXPORTBUF26 = TPCOUNT +
BITSUM(TXINCCNTBY][5:0));
TXPRTMSK[26] = 1; TXINCCNTBY[6] = 1);

8) (SAME EQUATION 8 AS IN STATE 564),
g) TPCOUNT = TPCOUNT .+
BITSUM(TXINCCNTBY[6:0])

}

. TXPORT3POLL
IF (TXNEWCNT+1 1= TPCOUNT) ||
(TXCTCNT+1 I= TPCOUNT)), THEN

{
1) IF (IBUF_AVAIL[O]" && (ITXPRTMSK(3] 8&
(TXMEMCYC[3] || TXCTACTCYC[3] || TXCTCYC{3]))), THEN.
" (IF (WTPRIORITY), »
THEN TXPORTBUF3 = PORTWTI[3},
 ELSE TXPORTBUF3 = TPCOUNT;
TXPRTMSK(3] = 1; TXINCCNTBY[0] = 1);

7)IF (BUF_AVAIL[E]* 8& (ITXPRTMSK[27] 8&
(TXMEMCYC{27] || TXCTACTCYC[27] || TXCTCYC[27])),
- THEN (IF (WTPRIORITY),
THEN TXPORTBUF27 = PORTWT[27],
ELSE TXPORTBUF27 = TPCOUNT +
 BITSUM(TXINCCNTBY(5:0]);
TXPRTMSK[27] = 1; TXINCCNTBY[6] = 1);

8) (SAME EQUATION 8 AS IN STATE 564);
: 9) TPCOUNT = TPCOUNT +
BITSUM(TXINCCNTBYI[6:0))

)

105/132

DE 697 31936 T2 2005.06.23

g0z 1810 | FIG. 6
T | HAsH- ‘ 404 .
CACHE- DIN I - :
|_s03 — 7° %
DRAM R/G/SIC :
636
620 ~=
601 ‘
\ DOUT o
' 1 AILUS
SIC [+ JALS
MEM
| 420 | REFRESH
| ALIS o 860
12 oo ~ 214 C;D
: D%?J U ;'I_-l —NDATEN{ -}
' M T 1T Mux [—YMemDataOut
srRaM RiG/SICl— | [622] | L3, FH{VemO=
DRAM R/G/SICle - | A
653—:}‘F - /r
g0 A L - 'MemDétaln-
DIN= - F :
| 4 »
S/ICl+—1 | | 634 | Memct
606 HE ;
T DA&JI?' i - MemCtl
-\ L r.c | MuxCtl
' DINA—— 624 | 38
1t JL 1} R .
- 4 11 REFREQ
azs| ¥ S‘(’)‘fr [T]
| 1 1] K > SCTL
— DIN [625~ | SCTL L
SRAM R/G/S/C [+—1— 9T 651
DRAM R/G/S/C |+ . 650 SRAM
esz = RIGISIC
654 ~ | T

106/132

DE 697 31936 T2 2005.06.23

- CPU-BUS

218
~ 700
yi

FIG. 7A

406

J

CPU-IIF
05 'y 7Y [I T
710 N ! j" - |
' RX- '.‘ 5 702-\) -
“T7lpurrerR | = 204
a3 QC/CPU-IF L
712 ~ | |
TX-
| PUFFER bl
436 704—
»| QC/HCB- [PCB-
W REGISTER
706~ .703\ ‘ e B
428 '?;;PEFFER N | REGISTER- | 444
X »| TX-PUFFER] g%m;
426~ |
—» MCBH/F e

107/132

DE 697 31936 T2 2005.06.23

FIG. 7B
700 | -
\v 718~ |
‘ ALTERNATIVE
SPEICHER-
| STEUER-
ZUSTANDS-
T8N |MASCHINE
.) . 717 \ : Y S W
~ 218b~ |STEUERLOGIK |, T
: ' FUER CPU - | TRACKER-
| | ZUSTANDS-
. 714 | MASCHINE
ADRESSEN. % 1 o
DECODIER! | ANFORDERUNGS- | .
~ ANFORDERUNG-| SIGNALE
218 [ERZEUGUNG |
' 715]
cPU- STEUERUNGEN 4 .
INFORMATIONS- | VERRIEGELTE ADRESSEN
LATCHES VERRIEGELTE DATEN
716
- J/
DATENBUS- |
FREIGABE-
LOGIK
DATENEINGAENGE
VON ANDEREN
PCB-

UNTERABSCHNITTEN

108/132

DE 697 31936 T2 2005.06.23

- -1 702
QC-REGISTER- FIG. 7C QC-STATISTIK-
ANFORDERUNGS- ANFORDERUNGS-

SIGNAL SIGNAL _
o,] 720 7,3 [STATISTIK- |
gggTL'E’I\)CS‘fER 1/ _| ANFORDERUNG-
| MASCHINE ZUSTANDS-

MASCHINE

i)

722 [ZERLEGUNG/ QCICPU-BUS; 730
CEZUNG. “ ZUSTANDS- —
 |ZUSTANDSMASCHINE ‘MASCHINE

- T26N .
STATISTIK-
- PUFFER
A T -
701 ~N DATEN-, ADRESSEN- UND 524
— STEUERSIGNAL-TREIBER/ |
EMPFAENGER

204 |

9z

109/132

FIG. 7D
SPEICHER- S
ANFORDERUNGS-
SIGNAL
746~
'7«4LZUGRIFF-- | ADRESSEN-
{ZUSTANDS- ERZEUGUNG
MASCHINE
a6~ | 706,708
‘w49 |FIFO-STATUS-
742 | UND UNTER. FIFO (DATEN- j
BRECHUNGS- | SPEICHER)
ERZEUGUN)
- 744
. T03 —
DATENAN "N | DATEN- ADRESSEN- UND STEUERSIGNAL-|
CPU-SCHNITT- TREIBER/EMPFAENGER
STELLE

DE 697 31936 T2 2005.06.23

428

110/132

Y 3

DE 697 31936 T2 2005.06.23

DATEN-, ADRESSEN- UNb
STEUERSIGNAL-TREIBER/EMPFAENGER

PAKETLESE- -~ - PAKETSCHREIB-
ANFORDERUNGS- ANFORDERUNGS-
SIGNAL SIGNAL
760 |SENDEPAKET- 768 |EMPFANGSPAKET-|
\ - \|zUSTANDS- -
ZUSTANDS- MASCHINE
MASCHINE |
766 | PUFFERSTATUS
- UND
STEUERUNG
762 |
q) EMPFANGS-
" SENDEPUFFER}« PUFFER
764
705) ;

-

111/132

770

DE 697 31936 T2 2005.06.23

V8 Ol

b

sSNng-idd

0ce

ONMAINILS
-SN8-10d

ONNY3AN3LS
8SH

s

mm_._o_mn_w
808" . .zm._.w_._Mm:m._.w

< W >

. 8SH

112/132

DE 697 31936 T2 2005.06.23

25/44
TPI- TPI-PCI- PCI-BUS 220
»|STEUER-|+—>{KONFIG.- . Y4
IREG. REG. 222 ; 810
g6 § 835~ 4 .
— Y z 4 REQm
PCI-BUS-SCHNITTSTELLENLOGIK ~ GNTm
815 1 r'y) Y ‘
! 814 813 | 812 s
| . EMPFANGS- EMPFANGS- -
SENDEDATEN- zi’égﬁ'l-g EN- DATEN- LISTEN- ARBITER
oo | ock DECODIER- DECODIER- w’ f
LOGIK LOGI_K_ _ ‘
| | E‘TxljssTTEEUER. E_ N i .I:R)LsgrEEUER:r 808a -
TEN looo s oo] 808D ——— TSELm
r REN|- 818
. ¥ R 817~ Y __ ./ I '
816 ~/ PCFTX-FIFO-STRG, PBSELm |/ PCHRXFIFOSTRG. _ PBSELm
TPCITX Y {HSBTX! .PCI RX! |HSBRX! \ PCNTm
| PTRs | '_S_P_T '35' | PTRS | '.Sf.T Rs |
1
807ar 5o | | 807c~| _ { 807d~ | |
PORT|PORT| [PORT|PORT| [PORT|PORT| |PORT|PORT FIFO-
24 | 24 |] 25 | 25 26 | 26 27 | 27 SYNCH.-
TX-| RX~ ™% | RX~ TX~| RX~ TX~| RX~ |LOGIK
FIFO | FIFO FIFO | FIFO FIFO | FIFO FIFO | FIFO
1 T X3 ¥ |
— — 821 "o
HSBIXFIFO-STRS. ’ : _HSB-RX-FIFO-STRG. |
.Hsa TX} /PCITX | / HCNTm \ {HSBRX!.| PCIRX | //HCNTm
822 _EIFES..' '§EIB§..'j HBSELM \u-EI‘.‘.S..‘ | SPTRs | [TEseLm]
E 4 4 1 : 7y
HREN .
HTEN | PSELm
819a 819b e —
T LA (C R g T S VAL N TV
HSB-DATENUEBERTRAGUNGS-SCHNITTSTELLENLOGIK YRR X - -
819 208 . SOP* WRITE_IN_PKT[6)’
EOP* READ_OUT_PKT[6]"
' _STROBE”_
HSB-BUS

113/132

DE 697 31936 T2 2005.06.23

100 Mb ETHERNET - 112

$114
- 110

ETHERNET-PORT

| 826~ i ' i /825 /827 |
- EMPFANGSSTEUERUSTE ™
DATEN- | | 'SENDESTEUERLISTE Hw'
PUFFER BEFEHLSREGISTER 1.
| KANALPARAM.-REG. 2%
t f824\828 828b

PCI-BUS-SCHNITTSTELLE

P, 4

PCI-BUS 222

FIG. 8C

114/132

DE 697 31936 T2 2005.06.23

BIT 31

BITO.

831’7 '

VORWAERTS-ZEIGER

8324 |

PAKETGROESSE

CSTAT

—832b

833

ZAEHLUNG

8347 |

' DATENZEIGER

7
830

BIT 31

FIG. 8D

BITO

836a |

GERAETE-ID

LIEFERANTEN-ID

’ 836a

837a 7|

STATUS

BEFEHL

- 83t

838a~ |

'KLASSENCODE

REV.-ID

— 838b

839a7 |

BIST

HDR-TYP

LATENZ

CACHELSZ | -

839¢c

839b
/840

".—"

TPI-STEUER-I0-BASISADRESSE

— 839d

841 1

TPI-STEUERSPEICHER-BASISADRESSE

842 7|

SENDELISTENSPEICHER-BASISADRESSE

- 843

~ EMPFANGSLISTENSPEICHER-BASISADRESSE

. 844 7|

PAKETDAT ENSPEICH.ER-BASISADRESSE

MAXLAT

- MINGNT

INTPIN

INTLINE

~—845d

- 8452

835

845b/

\8450

FIG. 8E

115/132

DE 697 31936 T2 2005.06.23

BITO

~ BIT 31
sara—{ 0 RCV_DATA_COUNT |- 847b
'3332“ XBSIZE3 | XBSIZE2 | XBSIZE1 | XBSIZEQ ”»g:g: .
3;‘3;\ RBSIZE3 | RBSIZE2 | RBSIZE1 | RBSIZEO ’gzgg
se0p —|NET_PRI3 | NET_PRI2 NET_PRI|NET_PRI0 [~ 350d
851~ | TLANO-SPEICHERBASISADRESSE (PORT24) |
852~ TLAN1-SPEICHERBASISADRESSE (PORT25) |
853~ | TLAN2-SPEICHERBASISADRESSE (PORT26)
854" |

846

FIG.

116/132

8F

TLAN3-SPEICHERBASISADRESSE (PORT27)

DE 697 31936 T2 2005.06.23

855 \@SCHALTEND
| _RUECKSETZEN

PCI-BUS KONFIGURIEREN,TLANs IM SPEICHERRAUM ABBILDEN, IN |
TPI-PCI-KONFIGURATIONSREGISTER SCHREIBEN

‘ 856a
V-
NAECHSTES TLAN
ABFRAGEN |

| l . ,856b

ABGEFRAGTES TLAN AUF BEKANNTEN1
RUHENDEN ZUSTAND INITIALISIEREN

WEITERE TLANS ?

JA

NEIN| 858

TPI-STEUERREGISTER INITIALISIERENl »

o . Iy | f. 859

[BASISADRESSE DER EMPFANGSSTEUERLISTE IN
KANALPARAMETERREGISTER JEDES TLAN
SCHREIBEN T

"IN TLAN-BEFEHLSREGISTER SCHREIBEN,
UM EMPFANGSVORGANG EINZULEITEN

v
A= -

FiG. 8G

- 860

117/132

DE 697 31936 T2 2005.06.23

‘ z 1 ' L '8'61a.
TLAN VERLANGT UND ERHAELT STEUERUNG -
DES PCI-BUSSES VOM PCI-ARBITER -
TLAN FORDERT EMPFANGSSTEUER-
LISTE VON TPI AN N

€k ‘ Vs 861c

TPI LIEFERT EMPFANGSSTEUERLISTE EINSCHLIESSLICH
TPI-PAKETDATENSPEICHER-BASISADRESSE AN TLAN

861b

i ‘ - . 861d o
TPI.GIBT ‘PCI-BUS 'FREI o
v 862a
TLAN EMPFANGT PAKET VON NETZWERK —
=T :

AN VERLANGT UND ERRAELT | 862b

STEUERUNG DES PCI-BUSSES i
4 862c
TLAN SCHREIBT DATENSTOSS AUF PCI-BUS |-
K _ 862d
TPI PUFFERT DATEN IN VOM PCI-ARBITER |/
| AUSGEWAEHLTEN RX-FIFO '
| Y 862

TLAN GIBT PCI-BUS FREI

FIG 8H

865

NEIN

PAKET VOLLENDET ?_
| 866

EMPFANGSSTEUERLISTEN-PAKETSTATUS UND
PORTSTATUSLOGIK VON TPI AKTUALISIEREN

118/132

DE 697 31936 T2 2005.06.23

] _en
TPI ERFASST DATENMENGE IN EINEM RX-FIFO,

DIE GLEICH ODER GROESSER ALS RBSIZE IST,
ODER TPI ERFASST EOP.

N - 877
|TPI ANTWORTET AUF EPSM-ABFRAGE MIT J |
LS

GELTENDMACHUNG DES PKT_AVAIL[6]* SIGNA

3 878

EPSM LEITET EINEN HSB-LESEPAKETZYKLUS AUF
HSB AN SPEZIFIZIERTEN PORT EIN

s

- | PORSTATUSLOGIK VON TPI ERFASST LESEVORGANG UND
- WAEHLT GEEIGNETEN RX-FIFO AUS

| l | 880
TPI SENDET DATENSTOSS AN EPSM

881a

| ~881b |

SOP SETZEN
—

8820

EEOP SETZEN|.

FIG. 8l

119/132

DE 697 31936 T2 2005.06.23

) l - 890
TPI ERFASST, DASS DIE MENGE AN VERFUEGBAREM

RAUM IN EINEM TPI-TX-FIFO GLEICH ODER GROESSER
IST ALS EINE BETREFFENDE XBSIZE

| l o, 891
TPI ANTWORTET AUF EPSM-ABFRAGE MIT
GELTENDMACHUNG DES BUF_AVAIL[6]* SIGNALS

v 89

EPSM LEITET EINEN HSB-SCHREIBPAKETZYKLUS AUF HSB

AN SPEZIFIZIERTEN PORT EIN, WENN DATEN VORHANDEN

| ¢ _ e 893
PORTSTATUSLOGIK VON TPI ERFASST SCHREIBVORGANG}
UND WAEHLT GEEIGNETEN TX-FIFO AUS

- v 894
* EPSM SENDET DATENSTOSS AN TPI, DIE DATEN AN
GEEIGNETEN TPI-TX-FIFO LIEFERT

gesa. - - 895b
PAKETGROESSE LESEN
T
8%6b

TPI-FLAG SETZEN

FIG. 8J

120/132

DE 69731936 T

]

2 2005.06.23

r 867

WENN DATEN IN ‘EINEM TX-FIFO ERFASST, VERLANGT UND

| |ERHAELT TPI DIE STEUERUNG DES P

CI-BUSSES VOM PCI-ARBITER

*.

TPI SCHREIBT IN BETREFFENDES TLAN, UM | 598
PAKETDATENUEBERTRAGUNG EINZULEITEN
¥ 869 |
TPI GIBT PCI-BUS FREl | <
—5 — . 8708

TLAN VERLANGT UND ERHAELT STEUERUNG DES PCI-BUSSES

2

UND FORDERT SENDESTEUERLISTE VONTPIAN

PAKET VOLLENDET?

SENDELISTE-DECODIERLOGIK LIEFERT SENDE- 870b
STEUERLISTE AN TLAN -
| 2N 870c |
TLAN GIBT PCI-BUS FREI __/
—y 870d
TLAN VERLANGT UND ERHAELT PCI-BUS L
TLAN FORDERT DATENSTOSS VON TPIBEl | 871a.
PAKETDATEN-SPEICHERADRESSE AN |/
) * : e
TPI SCHREIBT DATEN VON TX-FIFO AUF pcl-BUS, | 871P
WIE DURCH PCI-ARBITER AUSGEWAEHLT -
Yy - 871c
TLAN GIBT PCI-BUS FREI
~ 872a

JA 873

“TLAN SCHREIBT DATENU'EBERTRAGUNG-VOLLENDET IN

v

TPIUND TPI ZEIGT AN, DASS VORGANG VOLLENDET

873b

TLAN GIBT PCI-BUS FREl |-/

1211

32

FIG. 8K

212 |

DE 697 31936 T2 2005.06.23

PAKETSPEICHER

4M/16M

256K

(o]
o
N

HASH-SPEICHER

FIG. 9A

122/132

DE 697 31936 T2 2005.06.23

806

0-€ S31A8
¥-L SALAE
8-8 S31A8
O-4 S31Ad

06914

0 3LAGSSFAV

Fm;mwmmmod_. | ¢ 3LA8SSRIAV

€ 31A89SS3yav

¥ 31A8SSIAV

G 31A8SSAV

AIWNNNLEOd

43LTV/IONNYEINALS

0 JLAL NVIA

{ 31AH NVIA

C J1LAH NVIA

€ 3LAG NVIA

0000'-LV %N

8-GLV NI

- 91-82V MNIN

yC-LEV INIT

/Sm

(LA 91) 09VYLNII-HSVH

(31A9 91) LOVHLINIZ-HSVH

906

J1LA8M 8C1 - NITT13LS M8
J93VUINI3-HSVH-LdNVH

(SLXE91) 1618 OVILNIT-HSVH

v_w_N._‘

\31A9 91) OVYINIZ-NILLIN

(31LA8 91) OVHLINIF-NILLIN

1A 821 - 3OIVULNIT 18

! JOVHINIF-HSVH 13LIINYIA :

952

(3LAg 91) OVIINIE-NILLIN

~

206

46 "Old

123/132

DE 697 31936 T2 2005.06.23

90
4N

912

914, PAKETABSCHNITT 16 |
A . - SEKTOR N
| SEKTOR-PRAEFIX |
‘ /912
, 916
914, PAKETABSCHNITT 96 ~SEKTOR 1
SEKTOR-PRAEFIX | - o 912
914y PAKETABSCHNITT 916
SEKTOR-PRAEFIX SEKTOR 0
FIG. 9D
914 |
: A o |
RSVD BYTES 15-12
| RSVD | BYTES 11-8
~ NEXTSECLINK A31-0 , BYTES 7-4
RSVD RSVD SECSOURCE SECPKTCNT BYTES 3-0
FIG.9E
- 917
920 .
PAKETDATEN | -
- 918 PKT-

- SOP) |[VORSPANN
RSVD BYTES 15-12.
NEXTTXLINK A31:4,00, NEXT PKTSNF, NEXTPKTBC || |BYTES 11-8.
RSVD e . - - BYTES 7-4
DESPTORT]| SOURCEPORT | MIDPKTCT, PKTLENGTH|| |BYTES 3-0

FIG. 9F

124/132

DE 697 31936 T2 2005.06.23

0-€ S31AG
-1 S31AG

811 S3LAG

Z1-Gl S31Ad

0ZL-€Z1 S31AG
pZi-LZL SILAD

96’014

~ HIONZIDd 0 - | 1yod3ounos 1¥0d1s3a

dviN 118 S1¥Od 08

O8.d 1X3N 'INSINALXIN '00'v:LEV WNITXLLXEN 0 180d

o81Md 1X3N 'ANSIIALXIN ‘00°P:LEY INIIXLLXAN | 1HOd

O8N 1X3N 'INSINALXEN ‘00°V:LEV MNITXLLXEN 8Z 140d

ansy

\.zz6

125/132

DE 697 31936 T2 2005.06.23

-

’A \942 |

126/132

\sa1

>
-
K-
N o
ol .
o , L) K '
' o
]
. | o g
o ' : -
. N\
; -E 7 :
2 & ‘[
I 3 |
0 ' & 32
K- < ot
b N :
o <3 : -~
‘ ~ -
o] -
P
~ & @ < @
5 o ,
: g
= ' © - 4
» , -~ :
I @ = T
o . .
o | SRR -
a . o
(3]
P S

" FIG. 9H

DE 697 31936 T2 2005.06.23

" PORTS PORT11 PORT12

PORT1
100 \ 1004\ 1006w ' 1008\
1000 1600] [000] [f000)
® ® ®
1000 1000 [1000
® ® .,
. J J
1000] 1000
[4 @
h 4
1000
B
A A A . l
101 '
' L
| e
1012
. 1016
"o N——1018
* o—1020
! , :
1000 1000 7000
A A
@ ® L , .
] ® ' .
. . « - FIG.10

127/132

DE 697 31936 T2 2005.06.23

HoLY"
Hode"
- HOLE'
Hod2'
HoLZ™
HodL"

HOLL

Hod0'
Iono.

g1l 'old

CHrdo[T0:GHINODIA 08 [0:51]TOHSIHHLLNG 08
Hoo| loGi)iN0O3S3ud | [0°SLIaT0HSINHLO3STTYS
~ H8L0 [0:0L]aASY TL11ERLHD3STANALISY |
Hp 20 ~ [o:otlansy THi:LElMLdOTSATYLLXIN ..
- 031A8 13A@ - 231A8 . €31A8 .AU.:
Vil 'Old |
“'HYOV 'HOOY | [O'SLLANOIMAXL [0:51]aTOHSIUHLINDXL B
“'HY8E 'HOBE oG LINTIIAXL [0:21140d0usXL | [¥Z:LElansY -
““'HPOE 'HOOE “ANSXL'XI438dXL'dIXL'08XL T2 L ElH LdHNOXL
“"'HP8Z ‘H08Z - 0000'[bEldLd3sSvaxXL | <
“Hp0Z 'HODZ 08 003'000'1FLEMLHOXIJ0ANT -
“'Hy8L 'HO8!L [0:511LINOO3SXY [0:51]Q10HS3YHLOISXY
““"HpO} "HOOL [0:GHINIXY LOaIN T2¢:1Elansy > bOb
“"'Hy80 'HO80 _dNS 'INdOISILINW ‘dIXY ‘0axy ‘[v: s_mtmnoxm
Ivoo "H000 0000Tr’1 ERILIISVEXY | » j
POFmOQ 03LA8 1 3lAd z3alAe £31A8

T0LL

128/132

DE 697 31936 T2 2005.06.23

- 12%AKETEMPFANGS) -
. ANZEIGE -
1240y 1202 4204~

4 v

EPSM 210 HASCHIERT EPSM 210 LIEST ZIEL- | | EPSM 210 HASCHIERT
QUELLENADR., UM <+ UND ~» ZIEL-ADR. FUER

EXISTENZ ZU ERFASSEN QUELLENADRESSE ZIELPORT

' v . 1222 L I
12¢2 1225 S schweLLen. | 1208.
NEIN_~"GEF., GRP-BIT > HASH-CACHE- : BEDINGUNGEN ./
N GESETZT ? JA| |TABELLE 603 |e— PRUEFEN
1244 AKTUALISIEREN
A 4 .

HASH-
TABELLE
AKTUALISIERE

y

| ABWERFEN
- GEF., NICHT lop. BP
: DATEN PUFFERIN _ BC ? | ANWENDEN
1246 SENDEN, -»| SPEICHER 212
, WENNEMPF. | [ZUTEILEN 1210
CPU 230 | 4233 | \ ‘kPUFFER N |- Y
| 1226 NSPEICHER 212| . grarrec.
- [ZUTEILEN AKTUALISlEREN'
w1 12& REST v;rf PAKET |
REST VON PAKET A
M SPEICHER 212 IM SPEICHER 212 '
|ODER LRU- EMPF. . o
EINTRAGIN || 1236 ! S
HASH-CACHE-{| \J PAKET AN ANF. |
" ITABELLE 603 | [+— VON ZIELPORT- :
ZUWEISEN .{QUEUE EINF.
Ty REST VON 1219 '
11 1228) paker um - O _
Y SToCTERZZ & BC_PORT PAKET AUS
HASH- L———-—--——9 : ‘ \ BITMAP 1 L,!sPEICHER
gy 1229 AKTUALISIEREN | | 212 ENT-
AKTUALISIEREN 4 - |FERNEN
<—| 1230 NeNy_ 1220(PAKET DER !
1 2.50 \J PAKET DER \.‘QUEUE JEDES __@
~ |ZIELPORTQUEUE AKTIVEN PORTS |
HINZUFUEGEN [HINZUFUEGEN
UFUE . ,
= FIG. 12A

129/132

DE 697 31936 T2 2005.06.23

1260 iM SPEICHER 212
EINGEREIHTE

PAKETDATEN

o 4262 ANZEIGEN, DASS |
FIG.12B ‘| PAKETDATEN

~|VERFUEGBAR

DATENUEBER-

TRAGUNG

FUER PORT
NFORDERN

o 1 1268
PAKETDATEN VOM /
SPEICHER 212 AN

" | ZIELPORT
UEBERTRAGEN

1274

PAKETDATEN
UEBERTRAGEN 2.~

" GANZES
PAKETANALLE

AKTIVEN PORTS UEBER- -

TRAGEN ?

NEIN
JA

PUFFERPLATZ IM 1/275 ‘
SPEICHER 212 |
|FREIGEBEN

»(FERTIG)

A 4

130/132

DE 697 31936 T2 2005.06.23

(" sTART)—»CHASH_REQ?.

~
1314 1302

JA ~GRP ?

1316 NEIN T

‘~(ZA-HASH-.LOOKUP) [WENN QUELLENPORT = CPU,
; . DANN ZIELPORT = FLTRPRT,

'13{22. 1312; A 1305\ |
. : A 4
HASH_STATUS| [HASH_STATUs=| [HASH_STATUS =| |HASH_STATUS =
= GROUP_BC MISS_BC :2?:"%2%‘:;7; DROP_PKT |
. |) DSTPRT
1328y 1326 1324 ‘.\ |
'HASH_DONE . "QUELLEN- NEIN
Ei &ISECURE- _
| GELTEND MACHEN ‘P ORT.~ | LQQKUP ? : .
| —Y NEIN _
© 1330
Q2 ZA HASH LOOKUP)
1332 ¢ 1382~
’ NEIN HASH-MISS ADR/PORTREG.
LADEN & CPU UNTERBR.
1334 N : .
~ |HASH_DONE* 1}56
GELTEND MACHEN
(WENN NICHT VLAN)}' HASH_STATUS IN DROP_PKT

: ' AENDERN, SICH.-VERLETZUNG
1338\ GELTEND MACHEN,
CPU UNTERBR,

QA AGE = 0 SCHREIBEN |

1 A

1 344\ HASH_DONE* GELTEND C GASH_REQ-

NEGIEREN

131/132

DE 697 31936 T2 2005.06.23

GASH-LOOKUD

1402 |

\| A=HASH-

ADRESSE

!

HASH-EINTRAG | 1404
—» | ESEN; A = HASH
|ODER LINK; L = 4

EINTRAG & ADRESS-
UEBEREINSTIMMUNG ?

HASH-
TREFFER

1410

A =LINK- -
ADRESSE TRAG ODER
: J EOC? -
1412
SHLOOK
VOLLENDET
FIG.14

132/132

	Titelseite
	Beschreibung
	Patentansprüche
	Anhängende Zeichnungen

