Office de la Propriete Canadian CA 2347404 A1 2002/11/10

Intellectuell Intellectual P
du Canada Office P oy 2 347 404
Fhdtiie Canads Indushy Ganada 12 DEMANDE DE BREVET CANADIEN
CANADIAN PATENT APPLICATION
(13) A1
(22) Date de depot/Filing Date: 2001/05/10 (51) Cl.Int.//Int.Cl.” GO6F 9/30, GO6F 11/07

(41) Mise a la disp. pub./Open to Public Insp.: 2002/11/10 (71) Demandeur/Applicant:
COREL CORPORATION, CA

(72) Inventeurs/Inventors:
SUBRAMANIAN, RAMESH, CA;
BIRCHALL, JAMES, CA;

VAN BEEK, ANDREW, CA

(74) Agent: GOWLING LAFLEUR HENDERSON LLP

(54) Titre : SYSTEME ET METHODE DE RECUPERATION D'APPLICATIONS
54) Title: SYSTEM AND METHOD FOR RECOVERING APPLICATIONS

6
: 30
>< YA
" , 34
Exception E‘I;(rcagati‘}sn
T
rapper Handler
. 8

Low i_evel
Exception
Handler

Exception
Dispatcher

(57) Abrége/Abstract:
An operating system has a top level exception handler which terminates an application as a default action upon receipt of any

exceptions. An application recovery system traps an exception which is dispatched to the top level exception handler before it
reaches the top level exception handler. In the event, an exception cannot be resolved, the application recovery system
terminates a thread that caused the exception, and continues execution of the application.

EORUIORIOR . o
b gy

I*I) . Pen, B N o
C an ad a http:/opic.ge.ca + Ottawa-Hull K1A 0C9 - atip.://eipo.ge.ca OPIC 48 & 7%% 110

- SRR RO S 2 A\-‘
OPIC - CIPO 191 -

CA 02347404 2001-05-10

ABSTRACT

An operating system has a top level exception handier which terminates an
application as a default action upon receipt of any exceptions. An application
recovery system traps an exception which is dispatched to the top level exception
handler before it reaches the top level exception handler. In the event, an
exception cannot be resolved, the application recovery system terminates a

thread that caused the exception, and continues execution of the application.

10

15

20

29

30

CA 02347404 2001-05-10

-1 -

System and Method for Recovering Applications

[0001] This invention relates to a system and method for recovering applications
and more particularly, to a system and method for recovering applications from

run time problems.

BACKGROUND OF THE INVENTION

[0002] There are a number of barriers to successful execution of an application
on a computer. The computer is operated by an operating system having an
executor. The executor executes code or instructions of the application. There
are some situations when the executor cannot execute the code contained in the
application. Examples of such situations include dividing by zeros and writing to

memory that either does not exist or is invalid.

[0003] These situations are detected by the hardware of the computer and
passed to the operating system as “interrupts”. This means that the operating
system is to “interrupt” the thread that is currently executing a piece of code of the
application, and cause the interrupt. Some of interrupts are expected by the
computer, and are used to signal the operating system that something has
happened in the hardware. Such expected interrupts are handled by the
operating system. Other times, interrupts mean that the hardware is
communicating to the operating system that an instruction of the application
cannot be completed because of some “exceptional” conditions. These

“exceptional” interrupts are known as “exceptions”.

[0004] Conventionally, applications do not have any mechanism that let

themselves handle these exceptions programmatically. Thus, the operating
system gets these exceptions first and, if the operating system is not able to
handle the exception, it terminates the application as a default action of the

operating system. Thus, the user does not have an opportunity to save its work

10

15

20

25

30

CA 02347404 2001-05-10

-2

prior to the termination of the application. Such premature termination of

applications are caused by the life-cycle of these exceptions.

[0005] In the Microsoft Windows kernel (Win32), an exception handler is
provided to handle exceptions occurred in Win32 applications. The exception
handler has a process-wide top-level exception filter. The default action of the
top-level exception filter is to terminate the application. When an exception
occurs, the CPU of the computer suspends the current path of execution, and
transfers control to the exception handler. Some exceptions are handled by the
exception handler. Any exception that reaches the Win32 top-level exception

filter will cause the application to close without saving any data.

[0006] Traditionally, this situation has been handled by having the application
perform periodic saves while the application is running. Although this works well
In any situation, including power failures, it still introduces a large “panic-factor”
Into any exceptional condition. Any changes made between a periodic save and
the closing of the application will be lost. Basically, the application still fails even
when something as catastrophic as a null pointer exception is encountered. Such

a situation is unaccéptable to the user.

[0007] Application recovery is the art of maintaining an application in an
executable state regardless of internal conditions. There are some attempts to

programmatically perform application recovery.

[0008] Microsoft File Recovery uses an on-demand repair which allows
applications to repair themselves if they come across any problems during
application execution. This program uses a management API| of the Windows to
programmatically determine the path to specific install package components that
are installed on a computer. The primary use of their APl is to enable the

Windows Installer service to manage all file paths on behalf of the application. At

run time, the application can ask the Windows Installer service for a path to a

10

15

20

25

30

CA 02347404 2001-05-10

-3 -

given component. If a file path problem occurs in an application at run time, the
Windows Installer service can repair the problem by recopying the necessary files
to the appropriate folder. However, this seems to deal with the file path problems

only.

[0009] It is therefore desirable to provide a system and method which increases

the chances of success of application recovery from runtime problems.

SUMMARY OF THE INVENTION

[0010] An operating system has a top level exception handler which terminates
an application as a default action upon receipt of any exceptions occurred due to
runtime problems of an application. The present invention traps an exception
before it reaches the top level exception handler. Thus, premature termination of
the application is prevented in a case of a runtime problem. In preferred
embodiments, the invention attempts to return the application to the last known

good state.

[0011] In accordance with an aspect of the present invention, there is provided a
method for recovering an application from a runtime fault. The method comprises
steps of receiving an exception caused due to a runtime fault in a thread;
dispatching the exception to an exception handler; trapping the exception before
the exception reaches the exception handler when the exception handler is a top
level exception handler which terminates the application; and continuing

execution of the application.

[0012] In accordance with another aspect of the present invention, there is
provided a method for recovering an application from a runtime fault in a thread.
The application is executed under an operating system having one or more low
level exception handlers and a top level exception handler. The method

comprises steps of trapping an exception which is despatched to the top level

10

15

20

29

30

CA 02347404 2001-05-10

-4 -

exception handler before the exception reaches the top level exception handler, a
default action of which is to terminate the application upon receipt of exceptions;

and continuing execution of the application.

[0013] In accordance with another aspect of the present invention, there is
provided an application recovery system for recovering an application from a
runtime fault caused in a thread. The application runs under an operating system
having an exception dispatcher, one or more low level exception handlers and a
top level exception handler which terminates the application. The application
recovery system comprises an exception trapper and a trapped exception
handler. The exception trapper is placed between the exception dispatcher and
the top level exception handler, and provided for trapping an exception before the
exception reaches the top level exception handler. The trapped exception

handler is provided for handling the trapped exception.

[0014] Other aspects and features of the present invention will be readily
apparent to those skilled in the art from a review of the following detailed
description of preferred embodiments in conjunction with the accompanying

drawings.

BRIEF DESCRIPTION OF THE DRAWINGS
[0015] The invention will be further understood from the following description with
reference to the drawings in which:

Figure 1 is a block diagram showing an example of an existing exception
handler;

Figure 2 is a flowchart showing the operation of the exception handler
shown In Figure 1;

Figure 3 Is a block diagram showing an application recovery system in
accordance with an embodiment of the present invention;

Figure 4 is a flowchart showing the operation of the application recovery

system shown in Figure 3;

10

15

20

25

30

CA 02347404 2001-05-10

-5-

Figure 5 Is a block diagram showing an example of a trapped exception
handler shown in Figure 3;

Figure 6 is a flowchart showing the operation of the trapped exception
handler shown in Figure 5;

Figure 7 is a block diagram showing an application recovery system in
accordance with another embodiment of the present invention; and'

Figure 8 is a flowchart showing the operation of the application recovery

system shown in Figure /.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

[0016] Prior to describing embodiments of the present invention, a typical
existing OS exception handler of an Operating System (OS) is described referring
to Figures 1 and 2. The OS exception handler 2 has an exception dispatcher 4, a

top level exception handler 6 and one or more lower level exception handlers 6.

[0017] During execution of an application, the executor of the operating system
creates a primary thread to execute the code of the application. The application,
during its execution cycle, may create any number of threads. As shown in
Figure 2, when the computer hardware detects a fault in a thread, the exception
dispatcher 4 receives an exception from the computer hardware (10). The
exception dispatcher 4 determines if there exists a low level exception handler 8
that matches the exception, i.e., that is capable of resolving the exception (12). It
may use a look up table to select a matching lower level exception handler 8. If a
matching lower level exception handler 8 exists, the exception dispatcher 4
dispatches the exception to the matching low level exception handler (14). The
matching low level exception handler 8 resolves the exception, and the executor

of the operating system continues execution of the application (16).

[0018] If there is no low level exception handler that matches the exception (12),
the exception dispatcher 4 dispatches the exception to the top level exception

handler 6 (18). The top level exception handler 6 then terminates the application

——y

10

15

20

25

30

CA 02347404 2001-05-10

-6 -

as a default action (20). Thus, the application is terminated without executing any

other code.

[0019] Now, referring to Figures 3 and 4, an application recovery system 30 in
accordance with an embodiment of the present invention is described. In Figures
3 and 4, similar elements or steps to those in Figures 1 and 2 are indicated with

the same reference numerails.

[0020] The application recovery system 30 comprises an exception trapper 32
and a trapped exception handler 34. The exception trapper 32 is placed between
the exception dispatcher 4 and the top level exception handler 6 of the OS
exception handler 2 so that exceptions dispatched to the top level exception
handler 6 can be trapped by the exception trapper 32 prior to reaching the top
level exception handler 6. The exception trapper 32 may be provided in place of

the top level exception handler 6.

[0021] As shown in Figure 4, when there is no lower level exception handler that
matches the exception (12), the exception trapper 4 traps the exception before it
reaches the top level exception handler 6 (40). The exception trapper 32
dispatches the trapped exception to a trapped exception handler 34 (42). If the
trapped exception handler 34 is capable of resolving the trapped exception (44), it
resolves the trapped exception and continues the execution of the application
(46). If the trapped exception handier 34 is not capable of resolving the trapped
exception (44), it terminates the thread that caused the exception, and continues

the execution of the application (46).

[0022] Thus, the application will not be terminated by the top level exception
handler 6. Even if the exception cannot be resolved, the application recovery
system 30 allows the execution of some code of the application before the
application is terminated. Thus, an exceptional condition need not result in the
termination of the application. For example, when a worker thread fails and

executes without a message queue, only the worker thread needs to be

10

15

20

25

30

CA 02347404 2001-05-10

-7 -

terminated and the application may be restored to the state that it was in before
the thread failed.

[0023] As shown in Figure 5, the trapped exception handler 34 may include an
exception translator 50, an exception handler selector 52, a thread terminator 54

and a state restorer 56.

[0024) As shown in Figure 6, the exception translator 50 passes the exception to
be resolved by one of low level exception handlers 8 in the exception handler 2 of
the operating system (70). The exception handler selector 52 selects a low level
exception handler 8 that matches the translated exception (72). If there is such a
matching low level exception handler 8 (74), then it dispatches the translated
exception to the matching low level exception handler 8 (76). The translated

exception is resolved and the execution of the application continues (78).

[0025] If there is no matching low level exception handler 8 (74), then the thread
terminator 54 terminates the thread that caused the exception (80). The state
restorer 56 restores the state that the application was in before the thread failure,

and the execution of the application is continued (82).

[0026] Figure 7 shows an application recovery system 90 in accordance with
another embodiment of the invention. The recovery system 90 has an exception
trapper 32 and a trapped exception handler 34, as in the recovery system 30
shown in Figure 3. In addition, the recovery system 90 has a state information

logger 92, a comparator 94, an user advisor 96 and a query generator 98.

[0027] An example of the operation of the recovery system 90 is described

referring to Figure 8.

[0028] The recovery system 90 is started when the application starts up. When
the recovery system 90 receives an exception (100), the state information logger

92 logs the state information that the application was in before the thread failure

10

15

20

25

30

CA 02347404 2001-05-10

-8 -

occurred (102). The state information may include the information of the

application and computer just before the thread failure.

[0029] If the exception may be resolved locally (104), the exception is resolved
as described above referring to Figures 4 and 6 (106), and the execution of the

application is continued (108).

[0030] If the exception cannot be resolved locally (104), the comparator 94
compares the state information with a local database to search for a solution
(110). If the exception is a known issue in the local database (112), the
comparator 94 retrieves solution information found in the local database, and the
user advisor 96 informs the user of the solution information (114). The solution
information may include information of the problem caused the exception and
recommendation for resolving the problem. Then, the execution of the application

is continued (116).

[0031] If the exception is not a known issue in the local database (112), the
recovery system 90 may query a remote database (118). The remote database
may be provided in a computer of a manufacturer or merchant of the application.
When it is to query a remote database (118), the query generator 98 generates a
query with the state information to the remote database (120). If the problem is a
known issue at the remote database (122), solution recommendation is returned
to the recovery system 90 and the user advisor 96 informs the user of the solution
recommendation (124). If it is not a known issue (122), the query generator 98
may send a bug report to a bug report centre (126). The bug report centre may
be provided in a manufacture computer, and the bug report may be used for
further debugging process. |In either case, the execution of the application is
continued (116).

[0032] Thus, the application recovery system 90 may store information about the
state that the application was in just before it failed. This information allows

initiation of a bug report using accurate information.

10

15

20

25

30

CA 02347404 2001-05-10

[0033] The recovery system 90 and the remote database and the bug report
centre may be connected through one or more computer networks, such as the

Internet.

[0034] Another embodiment of the present invention using a Win32 function is

described.

[0035] Under the Win32 Exception Handling, when an exception occurs, the
CPU suspends the current path of execution in preparation for transferring control
to the exception handler. The CPU saves the current executing state by pushing
its flags register (EFLAGS), the code segment register (CS), and the instruction
pointer (EIP) onto a stack. Next, the exception code is used to look up and
transfer control to the address where the designated handler for this exception
resides. at the most fundamental level, the exception code is merely an index
into CPU’s Interrupt Descriptor Table (IDT), which indicates where the exception
should be handled. The IDT is a fundamental data structure comprising an array

of interrupt descriptors. It is under the control of the operating system.

[0036] The action of certain exception handlers, such as access violations and
stack overflows, in Win32 is to create a structure in the faulting thread's memory
that contains information about the fault which was pushed onto the stack, and
then to push pointers to this structure onto the thread’s stack. The operating
system then looks at the user-process and determines if the process has
exception handling enabled. If it does, it passes this information off to the

exception handler and assumes that the exception has been handled.

[0037] When an exception occurs in user-mode code, the system first checks to
see if the process is being debugged or not. Ifitis, it passes the exception off to
the debugger as a “first-chance exception”. If the process is not being debugged,
or if the associated debugger does not handle the exception, the system next

attempts to locate a frame-based exception handler by searching the stack

10

15

20

25

30

CA 02347404 2001-05-10

-10 -

frames of the thread in which the exception occurred. The system searches the
current stack frame first, then searches through preceding stack frames in reverse
order. If no frame-based handler can be found, or no frame-based handler
handles the exception, but the process is being debugged, the system notifies the
debugger a second time. This is known as a “second-chance exception” and

usually results in the debuggers handling the exception. Finally, if the process is
not being debugged, or if the associated debugger does not handle the exception,
the system provides default handling based on the exception type. For most

exceptions, the default action is to call the ExitProcess function which results in

the dreaded application termination.

[0038] Win32 provides a function, SetUnhandledExceptionFilter, that allows
replacement of the standard top-level exception handler with a different handler.
The present embodiment of the invention uses this function to provide a
replacement handler that replaces for the standard top-level exception handier.
The replacement handler terminate the thread if it is a worker thread and log the
error. It does not terminate the application. If a stable state is determined to put
the application into, then the replacement handler returns the application to the

stable state without causing the application to exit.

[0039] After calling the SetUnhandledExceptionFilter function, if an exception
occurs in a process that is not being debugged, and the exception makes it to the
Win32 unhandled exception filter, the SetUnhandledExceptionFilter calls an
exception filter function specified by the Ip TopLevelExceptionFilter parameter.

For example, the exception filter function may be specified as follows:

LPTOP LEVEL EXCEPTION FILTER SetUnhandledExceptionFilter (
PTOP LEVEL EXCEPTION FILTER IpTopLevelExceptionFilter

// exception filter function

) ;

10

15

20

25

30

CA 02347404 2001-05-10

- 11 -

[0040] The parameter Ip TopLevelExceptionFilter is a pointer to a top-level
exception filter function that will be called whenever the UnhandledExceptionFilter
function gets control, and the process is not being debugged. A value of NULL
for this parameter specifies default handling within UnhandledExceptionFilter,
which results in the termination of the application. Accordingly, by setting the
parameter to a value other than NULL, the termination of the application is

prevented.

[0041] The filter function has syntax congruent to that of
UnhandledExceptionFilter. It takes a single parameter of type
LPEXCEPTION POINTERS, and returns a value of type LONG. The fiiter
function returns one of the values: EXCEPTION EXECUTE_HANDLER,
EXCEPTION CONTINUE_EXECUTION, and

EXCEPTION CONTINUE_SEARCH.

[0042] EXCEPTION_EXECUTE_HANDLER is a value returned from
UnhandledExceptionFilter and executes the associated exception handler. This
value usually resuits in the process termination.

EXCEPTION _CONTINUE_EXECUTION is a value returned from
UnhandledExceptionFilter and continues the execution from the point of the
exception. The filter function is free to modify the continuation by modifying the
exception information supplied to its LPEXCEPTION POINTERS parameter.
EXCEPTION CONTINUE SEARCH proceeds with normal execution of
UnhandledExceptionFilter. That means obeying the SetErrorMode flags, or

invoking the application pop-up message box.

[0043] The SetUnhandledExceptionFilter function returns the address of the
previous exception filter established with the function. A NULL return value

means that there is no current top-level exception handier.

[0044] Issuing SetUnhandiedExceptionFilter replaces the existihg top-level

exception filter for all existing and future threads in the calling process.

10

15

20

29

30

CA 02347404 2001-05-10

-12 -

[0045] The present invention is further described below by examples of
application recovery systems for recovering Microsoft Foundation Classes (MFC)

applications from runtime problems.

[0046] MFC installs various exception handlers at different spots throughout the

code. The reason that access violations and stack overflows result in the

~ termination of an application is that they are not handled by any other default

exception handlers included in MFC code except for the
UnhandledExceptionFilter function installed as the top-level exception handler for
the process. The default action of the UnhandledExceptionFilter function is to

terminate the application. This is what results in an lllegal Page Fault (IPF)

terminating an application.

[0047] In this example an application recovery system is provided as a structured
exception handling (SEH) block. The structured exception handling is used to

recover a crashed application from IPFs and other runtime problems.

[0048] The SEH block is provided around the PumpMessage() call in the
applications’ CWinApp override. In case of an exception caused by an |IPF, the
SEH block provides a logging mechanism of getting the current state of registers,
i.e., state information of the application and computer. The logging mechanism
also retrieves currently loaded modules, their version numbers and other useful

memory references, which can be used as a unique signature into the |PF.

[0049] The SEH block traps the exception on the message pump level. At this
level, most of the |IPFs can be recoverable. Thus, IPFs will usually just result in

unwinding from the current message processing. This will give an opportunity for

the users to save their work.

[0050] The SEH block overrides CwinApp::ProcessWndProException with a

callback that allows the application to determine if any special conditions need to

10

15

20

25

30

CA 02347404 2001-05-10

-13 -

be met before terminating a message. Thus, even if an exception cannot be

resolved, the SEH block can prevent termination of the application until other

condition is met.

[0051] Alternatively, the SEH block may Install a top-level exception handler with
a callback that will allow the application to determine what it should do instead of
terminating. This may be done by using the SetUnhandledExceptionFilter Win32

function.

[0052] Further, the SEH block may retrieve an appropriate remedial procedure
from the Internet for the given problem and make appropriate suggestions to the

user.

[0053] The logged state information can be sent to a Web server of the
manufacturer of the application for a lookup into a database maintained by the
Tech Support of the manufacturer. Thus, the SEH block it may retrieve a
remedial procedure if any, and it may display the remedial procedure on the user
system. It may also suggest a service patch download or incompatible
DLLs/drivers.

[0054] Another example provides an application recovery system as a crash
recovery manager (CRM). Before a message queue is created for an application
and the application message pump engaged, any terminal exceptions do not
usually have a stable state to fall back to. The CRM logs the exception before
terminating either the thread in the case of a worker thread gone awry, or the
application. To set a pre-queue handler, the CRM uses the process wide

unhandled exception filter function:

LPTOP LEVEL EXCEPTION_FILTER SetUnhandledExceptionFilter
(LPTOP_LEVEL _EXCEPTION_FILTER IpToplLevelExceptionFilter / / exception

filter function);

10

15

20

25

30

CA 02347404 2001-05-10

_14 -

[0055] The function that is passed as the IpTopLevelExceptionFilter is CRM-
specific and resides at an exception level just below the application when
installed. All of its logging functions are enclosed within a try-catch block of C++
Exception Handling that will ensure that no exception gets passed to a top level
exception handler, theWin32 global UnhandledException Filter function which

terminates the application as a default action upon receipt of any exception.

[0056] The CRM installs a second exception handler after the message queue
has been created for the application and the main message pump is in operation.

The second exception handler is as follows:

virtual LRESULT ProcessWndProException(CException *e, const MSG *pMsg);

[0057] In this situation, the CRM overrides the default Microsoft Foundation
Classes (MFC) message handler that simply unwinds a thread stack and eats the
message with one that calls an application defined callback that supplies
application -specific handling before unwinding the thread stack and eating the
message. |t is further preferable to specify to the application what happened to
the message and/or change conditions to let it re-execute the instruction and
continue at the next line of code of the application. If the system uses a different
framework, rather than MFC code, the CRM may enclose the WindowsProc pump
code in a try-catch block similar to the one found in AfxWindowsProc which calls

this function.

[0058] Each of the exception handlers relies upon two situations: the application
logging and the application Structured Exception translator. The structured
Exception translator is provided as the exception filter
(CwinThread::ProcessWndProException) does not, by default handle exceptions
such as access violations which are structured in the old C-style. Such
exceptions are called Structured Exceptions in Win32 parlance and need to be
translated into C++ style MFC exceptions before the application can handle them.
Normally, without the CRM, since the application does not know what to do with

5

10

15

20

25

30

CA 02347404 2001-05-10

-15 -

these exceptions, they do not get handled by default, and get populated to the
IpTopLevelExceptionFilter which result in termination of the application. To

remedy this, the CRM employs a thread -specific MSC Runtime function called:

_se_translator_function_set_se_translator(_se_translator_function

se trans_func);

[0059] This function translates the C-style exception into a C++ structured
exception. The CRM then goes one step further by throwing this new exception
as a class derived from CException which is the MFC implementation of C++
styled exceptions. Because of the nature of this function and where it gets
installed, namely in the memory allocated to a thread, the CRM includes

initialization routine for every thread.

[0060] Logging of the state information is accomplished by extracting information
based on the address of the function to determine in which module the exception
occurred. The CRM uses a number of Win32 global functions to determine
various system information including the platform and operating system as well as
functions included in other DLLs for DLL versions and DLLs loaded in process.
The CRM has a DLL recovery module that loads required DLLs explicitly when
they are needed. Because the application logging is enclosed in a try-catch
block, any problems encountered will simply terminate the logging feature without

disabling the recovery feature.

[0061] The CRM may be provided with a callback function for the actions upon
encountering an error. Such a provision causes the CRM to be flexible. Also, the
application may provide a mechanism by which the error information can be
automatically transmitted to a computer of the manufacturer. Because the
application version and the exception address provide a unique signature for any
particular crash, the CRM enables pro-active retrieval of updates and bug-fixes

from the manufacture computer automatically so that the application may fix itself.

10

15

CA 02347404 2001-05-10

- 16 -

[0062] The application recovery system of the present invention may be
implemented by any hardware, software or a combination of hardware and
software having the above described functions. The software code, either in its
entirety or a part thereof, may be stored in a computer readable memory.
Further, a computer data signal representing the software code which may be
embedded in a carrier wave may be transmitted via a communication network.
Such a computer readable memory and a computer data signal are also within
the scope of the present invention, as well as the hardware, software and the

combination thereof.

[0063] While particular embodiments of the present invention have been shown
and described, changes and modifications may be made to such embodiments
without departing from the true scope of the invention. For example, the
elements of the application recovery system are described separately in the
above embodiments. However, two or more elements may be combined in a
single element. Also, one or more elements may be shared with a different

computer in the computer.

CA 02347404 2001-05-10

- 17 -

What is claimed is:

1. A method for recovering an application from a runtime fault, the method
comprising steps of:

receiving an exception caused due to a runtime fault in a thread,

dispatching the exception to an exception handler;

trapping the exception before the exception reaches the exception handler
when the exception handler is a top level exception handler which terminates the
application; and

continuing execution of the application.

2. The method recited in claim 1 further comprising a step of terminating the

thread that caused the exception.

3. The method recited in claim 1, wherein the dispatching step comprises
steps of:

determining a corresponding exception handler to which the exception is to
be dispatched,;

dispatching the exception to the corresponding exception handler when the
corresponding exception handler exists; and

dispatching the exception to a top level dispatcher is the corresponding

exception handler when no corresponding exception handler exists.

4. The method recited in claim 1 further comprising a step of despatching the

trapped exception to a trapped exception handier.

S. The method recited in claim 4 further comprising a step of terminating the
thread when the trapped exception handler is not capable of resolving the trapped

exception.

6. The method recited in claim 5, wherein the continuing step allows

continuing execution of the application after the thread is terminated.

CA 02347404 2001-05-10

- 18 -

7. The method recited in claim 1 further comprising steps of:
translating the trapped exception into an exception which is able to be '

resolved by a lower level exception handler, and

determining if there is a lower level exception handler which is capable of

resolving the translated exception.

8. The method recited in claim 7 further comprising a step of terminating the
thread that caused the exception when there is no lower level exception which is

capable of resolving the transiated exception.

9. The method recited in claim 2 further comprising a step of logging sate
information representing the state that the application was in before occurrence of

the exception caused the termination of the thread.

10. The method recited in claim 9 further comprising a step of forwarding the

logged information to a remote database over a computer network.

11. The method recited in claim 10 further comprising steps of:
receiving a recommendation from the remote database; and

informing the recommendation to the user.

12. The method recited in claim 9 further comprising a step of forwarding a

bug report to a bug report centre over a computer network.

13. A method for recovering an application from a runtime fault in a thread, the
application being executed under an operating system having one or more low
level exception handlers and a top level exception handler, the method
comprising steps of:

trapping an exception which is despatched to the top level exception
handler before the exception reaches the top level exception handler, a default

action of which is to terminate the application upon receipt of exceptions; and

CA 02347404 2001-05-10

- 19 -

continuing execution of the application.

14. The method recited in claim 13 further comprising steps of:

translating the trapped exception into an exception which is able to be
resolved by a lower level exception handler, and

determining if there is a lower level exception handler which is capable of

resolving the translated exception.

15. The method recited in claim 14 further comprising a step of terminating the
thread that caused the exception when there is no lower level exception which is

capable of resolving the translated exception.

16. The method recited in claim 13 further comprising a step of terminating the

thread that caused the exception.

17. The method recited in claim 16 further comprising a step of logging sate
information representing the state that the application was in before occurrence of

the exception caused the termination of the thread.

18. The method recited in claim 17 further comprising a step of forwarding the

logged information to a remote database over a computer network.

19. The method recited in claim 18 further comprising steps of:
receiving a recommendation from the remote database; and

informing the recommendation to the user.

20. The method recited in claim 17 further comprising a step of forwarding a
bug report to a bug report centre over a computer network.
21. An application recovery system for recovering an application from a
runtime fault, the application recovery system comprising:

an exception dispatcher for receiving an exception caused due to a runtime

fault in a thread and dispatching the exception to an exception handler;

CA 02347404 2001-05-10

- 20 -

an exception trapper for trapping the exception before the exception
causes termination of the application; and

an executor for continuing execution of the application.

22. The application recovery system as claimed in claim 21, wherein the
exception trapper has a thread terminator for terminating the thread that caused

the exception.

23. The application recover system as claimed in claim 21, wherein the
exception trapper is provided in place of a top level exception handler which

terminates the application.

24. An application recovery system for recovering an application from a
runtime fault caused in a thread, the application running under an operating
system having an exception dispatcher, one or more low level exception handlers
and a top level exception handler which terminates the application, the application
recovery system comprising:

an exception trapper placed between the exception dispatcher and the top
level exception handler for trapping an exception before the exception reaches
the top level exception handler; and

a trapped exception handler for handling the trapped exception.

25. The application recovery system recited in claim 24, wherein the trapped
exception handler comprises a thread terminator for terminating the thread when

there is no lower level exception handler that is capable of handling the translated

exception.

26. The application recovery system recited in claim 24, wherein the trapped
exception handler comprises:
an exception translator for translating the trapped exception to a translated

exception; and

CA 02347404 2001-05-10

- 21 -

an exception handler selector for determining if a lower level exception

handler is capable of resolving the translated exception.

27. The application recovery system recited in claim 26, wherein the trapped
exception handler further comprises a thread terminator for terminating the thread

when there is no lower level exception handler that is capable of handling the

translated exception.

28. The application recovery system recited in claim 27, wherein the trapped
exception handler further comprises a state restorer for restoring the state that
the application was in before the fault occurred to continue the execution of the

application.

29. The application recovery system recited in claim 24 further comprising a
state information logger for logging information of the state that the application

was in before the fault occurred.

30. The application recovery system recited in claim 29 further comprising a
query generator for generating a query including the state information to query a

recommendation from a remote database over a computer network.

31. The application recovery system as claimed in claim 30 further comprising
a user advisor for receiving a recommendation from the remote database and

informing the user of the recommendation.

32. The application recovery system as claimed in claim 30 wherein the query
generator has a bug report generator for forwarding a bug report with the state

information to a bug report centre.

33. A computer readable memory element storing the instructions or
statements for use in the execution in a computer of a method for recovering an

application from a runtime fault, the method comprising steps of:

CA 02347404 2001-05-10

- 292 .

receiving an exception caused due to a runtime fault in a thread;

dispatching the exception to an exception handler;

trapping the exception before the exception reaches the exception handler
when the exception handler is a top level exception handler which terminates the
application; and

continuing execution of the application.

34. Electronic signals for use in the execution in a computer of a method for
recovering an application from a runtime fault, the method comprising steps of:
receiving an exception caused due to a runtime fault in a thread;
dispatching the exception to an exception handler;
trapping the exception before the exception reaches the exception handler
when the exception handler is a top level exception handler which terminates the
application; and
continuing execution of the application.

CA 02347404 2001-05-10

Top Level
Exception
Handler

Exception

Dispatcher

10 Receive exception

caused by fault in
thread

12

low level
exception handler
exists?

yes
|

no
18 Dispatch exception to
top level exception
handler
20

Terminate Application

Handler

Dispatch exception
to matching low

level exception
handler

Low Level
Exception

Figure 1
(Prior Art)

14 16

Resolve exception
and continue
execution of

application

Figure 2
(Prior Art)

Gowling Lafleur Henderson LLP

CA 02347404 2001-05-10

Top Level

Exception
Han'dler 30
>;< VA
32 . Trapped 54
Exception .
Trapper Exception
Handler
4 . Low Level 8
Exception .
Dispatcher =Xception
Handler
Figure 3
10 . .
Receive exception
caused by fault in
thread
14 16

Dispatch exception
to matching low
level exception

Resolve exception
and continue
execution of

12

low level
exception handler

yes |
exists? handler application
no
40 Dispatch trapped |~ 42
Trap exception exception to trapped
exception handler
s 46

Resolve exception
and continue
yes execution of
application

Xception

can be resolved
?

44

|

no

48

Terminate thread and
continue execution of
application

Figure 4

CA 02347404 2001-05-10

50 92

Exception
Handler
Selector

Exception
Translator

54

Thread
Terminator

State
Restorer

Figure 5
70
Translate exception
72 ~] Select matching low
level exception
handler
76 78

Dispatch translated
exception to
matching low level
exception handler

Resolve translated
exception and
continue execution
of application

74

there any matching
low level exception

yes

no

30 Terminate thread and
continue execution of
application
Fiqur
. gure 6

Restoring original
state and continue
execution of
application

CA 02347404 2001-05-10

32

Trapped 34

Exception
Handler

Exception
Trapper

02 State Que 98
Information M 90
Generator
Logger
04 06
Figure 7
100 '
Receive exception
102 Trap state of
application before
thread failure
106 108
104 Can Continue
. Resolve .
exception be resolved excention execution of
locally? yes P application
no
10 Compare trapped
iInformation with local
database for solution
120
112 118
Query remote Query remote
no database? ves database
yes no
114 ¢ e
Inform user of |
recommendation yes
no
116 124 126
Continue execution Inform user of S?ncti) bug reprct)rt
of application recommendation © bug repo
centre
Figure 8

Gowling Lafleur Henderson LLP

Exception
Trapper

Exception

Dispatcher

30

Low i_evel
Exception
Handler

34

	Page 1 - abstract
	Page 2 - abstract
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - claims
	Page 20 - claims
	Page 21 - claims
	Page 22 - claims
	Page 23 - claims
	Page 24 - claims
	Page 25 - drawings
	Page 26 - drawings
	Page 27 - drawings
	Page 28 - drawings
	Page 29 - abstract drawing

