(54) 发明名称
具有防摔保护功能的电子设备

(57) 摘要
一种具有防摔保护功能的电子设备，其包括壳体、控制器及感应装置，所述感应装置设置于壳体外表面，其包括压力感应器及触碰感应器，所述控制器设置于壳体内，其与感应装置相连接，用于根据压力感应器是否感应到压力判定电子设备处于放置状态或非放置状态，在判定电子设备处于非放置状态时根据触碰感应器是否被触碰判定电子设备处于握持状态或掉落状态，并在判定电子设备处于掉落状态时启动保护状态。
1. 一种具有防摔保护功能的电子设备，其包括壳体、控制器及感测装置，所述感测装置设置于壳体外表面上，其包括压力感测器及触碰感测器。所述控制器设置于壳体内，其与感测装置相连接，用于根据压力感测器是否感测到压力判定电子设备处于放置状态或非放置状态，在判定电子设备处于非放置状态时根据触碰感测器是否被触碰判定电子设备处于握持状态或掉落状态，并在判定电子设备处于掉落状态时启动保护状态。

2. 如权利要求1所述的具有防摔保护功能的电子设备，其特征在于，所述压力感测器感测到压力时，控制器判定电子设备处于放置状态，压力感测器未感测到压力时，控制器判定电子设备处于非放置状态。

3. 如权利要求1所述的具有防摔保护功能的电子设备，其特征在于，当电子设备处于非放置状态时，触碰感测器感测到触碰时，控制器判定电子设备处于握持状态，触碰感测器未感测到触碰时，控制器判定电子设备处于掉落状态。

4. 如权利要求1所述的具有防摔保护功能的电子设备，其特征在于，当控制器启动保护状态时，控制器控制电子设备关机或者停止电子设备正在进行的程序。

5. 如权利要求1所述的具有防摔保护功能的电子设备，其特征在于，所述电子设备还包括显示屏，所述壳体具有相对的承载面与工作面，所述显示屏设置于所述工作面。

6. 如权利要求5所述的具有防摔保护功能的电子设备，其特征在于，所述所述压力感测器设置于所述承载面并凸出于所述承载面。

7. 如权利要求5所述的具有防摔保护功能的电子设备，其特征在于，所述壳体还具有连接承载面和工作面的侧面，所述压力感测器设置于所述侧面并凸出于所述承载面。

8. 如权利要求6或7所述的具有防摔保护功能的电子设备，其特征在于，所述压力感测器的数量为多个，所述多个压力感测器凸出于承载面的高度相等。

9. 如权利要求6或7所述的具有防摔保护功能的电子设备，其特征在于，所述触碰感测器设置于承载面或侧面上，并凸出于所述承载面，所述压力感测器凸出于承载面的高度大于触碰感测器凸出于承载面的高度。

10. 如权利要求6或7所述的具有防摔保护功能的电子设备，其特征在于，所述触碰感测器设置于承载面或侧面上，并且所述承载面或侧面齐平。
具有防摔保护功能的电子设备

技术领域
[0001] 本发明涉及一种电子设备，尤其设计一种具有防摔保护功能的电子设备。

背景技术
[0003] 然而，在便携式电子设备的使用过程中，难免会有摔落现象发生，从而使得便携式电子设备受到撞击造成电子设备的损坏，进而影响到使用者使用此产品的安全或者使用者数据的存储。例如，当便携式电子设备发生摔落时，摔落所造成的冲撞将会造成便携式电子设备的电路主板发生弯曲变形，从而使得安装配于电路主板上的各种元件脱落、断线或者短路，使得电子设备不能正常使用并且可能由于短路等问题造成电子设备中某些元件烧毁。

发明内容
[0004] 因此，有必要提供一种具有防摔保护功能的电子设备，以降低电子设备由于摔落引起损坏的程度。
[0005] 下面将以多个实施例说明一种具有防摔保护功能的电子设备。
[0006] 一种具有防摔保护功能的电子设备，其包括壳体、控制器及感测装置，所述感测装置设置于壳体外表面，其包括压力感测器及触碰感测器，所述控制器设置于壳体内，其与感测装置相连接，用于根据压力感测器是否感测到压力判定电子设备处于放置状态或非放置状态，在判定电子设备处于非放置状态时根据触碰感测器是否被触碰判定电子设备处于握持状态或掉落状态，并在判定电子设备处于掉落状态时启动保护状态。
[0007] 本技术方案中的具有具有防摔保护功能的电子设备，具有感测装置，通过感测装置感测所述电子设备所处的状态，从而可以减少由于摔落引起的对电子设备的损害。

附图说明
[0008] 图1是本技术方案第一实施例的电子设备的正视图。
[0009] 图2是本技术方案第一实施例的电子设备的侧视图。
[0010] 图3是本技术方案第一实施例的电子设备的俯视图。
[0011] 图4是本技术方案第一实施例的电子设备的模块结构示意图。
[0012] 图5是本技术方案第二实施例的电子设备的俯视图。
[0013] 图6是本技术方案第二实施例的电子设备的侧视图。
[0014] 图7是本技术方案第三实施例的电子设备的俯视图。
具体实施方式
[0015] 下面将结合附图及多个实施例，对本技术方案的具有防摔保护功能的电子设备作进一步的详细说明。
[0016] 请一并参见图 1、图 2、图 3 及图 4，本技术方案第一实施例提供的一种具有防摔保护功能的电子设备 100，其中包括电子设备本体 110 及感测装置 120。
[0017] 设备本体 110 具体可以为笔记本电脑、便携式播放器、数码相机及手机等电子设备的主体。设备主体 110 包括控制实现上述的电子设备各项功能的控制电路 111、壳体 112、键盘 113、屏幕 114 及内部电路（图未示）。控制电路 111 及内部电路收容于壳体 112 内，使得控制器 111 及内部电路得到保护。壳体 112 可以为圆柱形、多棱柱形、长方体形或其他形状。本实施例中，壳体 112 为长方体形，其具有相对的第三侧面 1121、与第三侧面对应的第四侧面 1122、工作面 1123、与工作面 1123 相对的承载面 1124、第一侧面 1125 及与第一侧面 1125 相对的第二侧面 1126。工作面 1123 与承载面 1124 的面积均大于第一侧面 1125 和第二侧面 1126 的面积，第一侧面 1125 和第二侧面 1126 的面积大于第三侧面 1121 和第四侧面 1122 的面积。键盘 113 及屏幕 114 从壳体 112 的工作面 1123 露出。键盘 113 及屏幕 114 通过内部电路连接于控制器 111。通过键盘 113 输入指令，经过内部电路传递到控制器，从而控制器将从键盘 113 输入的数据实现实的功能从屏幕 114 显示出来。
[0018] 感测装置 120 与控制器 111 相连接，用于将感测的信号传递给控制器 111，从而判定电子设备 100 所处的状态。感测装置 120 设置于壳体 112 的外表面，其包括压力感测器 121 及触碰感测器 122。压力感测器 121 用于感测其是否接收到压力，并将感测结果传递给控制器 111，从而使得控制器 111 判定电子设备 100 处于放置状态或者非放置状态。具体地，在压力感测器 121 感测到有压力时，控制器 111 判定电子设备 100 处于放置状态，在压力感测器 121 感应到压力时，判定 100 处于非放置状态。触碰感测器 122 用于感测是否被触碰，并将感测结果传递给控制器 111，从而使得控制器 111 在判定电子设备 100 处于非放置状态时进一步判定电子设备 100 处于握持状态或者摔落状态。在触碰感测器 122 感测到被触碰时，控制器 111 判定电子设备 100 处于握持状态，当触碰感测器 122 感测到触碰时，控制器 111 判定电子设备 100 处于摔落状态，从而控制器 111 触发内部电路使得 100 处于保护状态。例如，使得电子设备 100 从开机状态转换为关机状态或者停止电子设备正在进行的程序等，以尽可能减少由于摔落的冲击对电子设备 100 造成的损害。
[0019] 压力感测器 121 及触碰感测器 122 的数量可以根据电子设备 100 的壳体 112 的形状进行设定。本实施例中，感测装置 120 包括四个压力感测器 121 及三个触碰感测器 122。四个压力感测器 121 分别设置于第一侧面 1125 与第二侧面 1121 的连接处、第三侧面 1121 与第二侧面 1126 的连接处、第二侧面 1126 与第四侧面 1122 的连接处及第四侧面 1122 与第一侧面 1125 的连接处，四个压力感测器 121 均凸出于工作面 1123 且凸出的高度相等，四个压力感测器 121 均凸出于承载体 1124 且凸出的高度也相等。当四个压力感测器 121 中一个或多个感测到压力，控制器 111 判定电子设备 100 处于放置状态，当四个压力感测器 121 均没有感测到压力时，四个压力感测器 121 将信号传递给控制器 111，控制器 111 判定电子设备 100 处于非放置状态。
[0020] 三个触碰感测器 122 分别设置于第一侧面 1125、第二侧面 1126 和承载体 1124。三个触碰感测器 122 的表面分别与第一侧面 1125、第二侧面 1126 和承载体 1124 相平或者稍
微凸出。本实施例中，三个触碰感测器 122 分别与第一侧面 1125、第二侧面 1126 和承载面 1124 相平。三个触碰感测器 122 均沿着自第三侧面 1121 向第四侧面 1122 的方向延伸。当然，触碰感测器 122 的个数也可以为一个，其自第一侧面 1125，沿着承载面 1124，延伸至第二侧面 1126。当电子设备 100 处于非放置状态时，三个触碰感测器 122 中的一个或者多个感测到触碰时，控制器 111 判定电子设备 100 处于握持状态，当触碰感测器 122 没有感测到触碰时，控制器 111 判定电子设备 100 处于摔倒状态，从而可以启动保护状态。

【0021】 设置于承载面 1124 的压力感测器 121 位于位于承载面 1124 的长度应大于设置于承载面 1124 的触碰感测器 122 位于承载面 1124 的长度。从而，当电子设备 100 放置于桌面或其它地方时，不论是承载面 1124 与桌面相对还是工作面 1123 与桌面相对，四个压力感测器 121 均可与桌面接触，均可感测到来自桌面的压力，从而控制器 111 可以判定电子设备 111 处于放置状态或者非放置状态。本实施例中，压力感测器 121 可以为电阻应变压力感测器等。

【0022】 请参阅图 5 及图 6，本技术方案第二实施例提供的一种具有防摔保护功能的电子设备 200，其结构与本技术方案第一实施例提供的电子设备 100 的相近，不同之处在于，四个压力感测器 221 设置于承载面 2114。本实施例中，四个压力感测器 221 设置于承载面 2114 的四个顶点处，凸出于位于承载面 2114 的触碰感测器 222，使得当承载面 2114 与承载台相对时，四个压力感测器 221 均与桌面接触，并由于电子设备 200 的重力而感测到压力。

【0023】 当然，四个压力感测器 221 也可以分散设置于承载面 2114 的其它位置，只要不影响电子设备的正常使用即可。也可以根据需要设压力感测器 221 的个数。

【0024】 当控制器控制四个压力感测器 221 开启工作时，当四个压力感测器 221 感测到压力时，控制器判定此时电子设备 200 处于放置状态；当四个压力感测器 221 没有感测到压力，并将感测的信号传递至控制器，控制器判定此时电子设备 200 处于非放置状态；当电子设备处于非放置状态时，触碰感测器 222 感测到触碰时，控制器判定电子设备 200 处于握持状态。当触碰感测器 222 没有感测到触碰时，控制器判定电子设备 200 处于摔倒状态触碰感测器，控制器控制电子设备 200 启动保护状态，以保护其安全。

【0025】 请参见图 7，本技术方案第三实施例提供的一种具有防摔保护功能的电子设备 300，其结构与本技术方案第一实施例提供的电子设备 100 的结构相近，不同之处在于，电子设备 300 的壳体 312 为圆柱形，其具有圆弧工作面（图未示）、与工作面相对的圆形的承载面 3122 及连接于工作面与承载面 3122 之间的侧面 3123。感测装置 320 包括一个压力感测器 321、第一触碰感测器 322 和第二触碰感测器 323。压力感测器 321 呈圆环形，与承载面 3122 同轴地设置于承载面 3122 边缘的位置，并凸出于承载面 3122。第一触碰感测器 322 与侧面 3123 的形状相对应并设置于侧面 3123 的表面，使其与侧面 3123 相平或者稍微凸出于侧面 3123。第二触碰感测器 323 设置于承载面 3122 的中心位置。本实施例中，第二触碰感测器 323 设置于圆环形压力感测器 321 的圆环内，其与承载面 3122 相平或者稍微凸出于承载面 3122，但其凸出于承载面 3122 的高度小于压力感测器 321 凸出于承载面 3122 的高度。

【0026】 当控制器控制三个压力感测器 321 开启工作时，当压力感测器 321 感测到压力时，表明电子设备 300 处于放置状态；当压力感测器 321 均没有感测到压力时，控制器判
定此时电子设备 300 处于非放置状态；当电子设备 300 处于非放置状态时，通过第一触碰感应器 322 及第二触碰器 323 感测电子设备 300 处于握持状态或者摔倒状态。当电子设备 300 处于非放置状态时并且触碰感应器 322 感测到被触碰时，控制器判定电子设备 200 处于握持状态；当电子设备 300 处于非放置状态时并且第一触碰感应器 322 及第二触碰感应器 323 感测器未感测到被触碰时，控制器判定电子设备 300 处于摔倒状态，控制器控制电子设备 300 关机，以保护其安全。

【0027】本技术方案中的具有防摔保护功能的电子设备，具有感测装置，通过感测装置感测所述电子设备所处的状态，从而可以减少由于摔倒引起的对电子设备的损害。

【0028】另外，本领域技术人员还可根据本发明精神内做其它变化，当然，这些依据本发明精神所做的变化，都应包含在本发明所要求保护的范围之内。
图2
图 3
图 4