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SYSTEM, METHOD, AND COMPUTER 
PROGRAMI PRODUCT FOR CONSTRUCTING 

A DATA FLOW AND IDENTIFYINGA 
CONSTRUCT 

FIELD OF THE INVENTION 

0001. The present invention relates to integrated circuit 
design. 

BACKGROUND 

0002 Hardware design and verification are important 
aspects of the hardware creation process. For example, a 
hardware description language may be used to model and 
Verify circuit designs. However, current techniques for 
designing hardware have been associated with various limi 
tations. 
0003 For example, validation and verification may com 
prise a large portion of a hardware design schedule utilizing 
current hardware description languages. Additionally, flow 
control and other protocol logic may not be addressed by 
current hardware description languages during the hardware 
design process. There is thus a need for addressing these 
and/or other issues associated with the prior art. 

SUMMARY 

0004. A system, method, and computer program product 
are provided for constructing a data flow (e.g., a representa 
tion of a flow of data through a hardware design, etc.). In use, 
one or more parameters are received, where at least one of the 
parameters corresponds to an interface protocol. Addition 
ally, a data flow is constructed based on the one or more 
parameters. Further, an indication of one or more control 
constructs (e.g., constructions that may perform various com 
mon data steering and storage operations, etc.) is received, 
where a hardware design is capable of being created, utilizing 
the constructed data flow and the one or more control con 
StructS. 

BRIEF DESCRIPTION OF THE DRAWINGS 

0005 FIG. 1 shows a method for constructing a data flow, 
in accordance with one embodiment. 
0006 FIG. 2 shows a method for building an integrated 
circuit using data flows and constructs, in accordance with 
another embodiment. 
0007 FIG. 3 shows an exemplary hardware design envi 
ronment, in accordance with one embodiment. 
0008 FIG. 4 illustrates an exemplary system in which the 
various architecture and/or functionality of the various pre 
vious embodiments may be implemented. 

DETAILED DESCRIPTION 

0009. In various embodiments, data flows and constructs 
that represent a hardware design including one or more cir 
cuits are specified. The data flows and constructs are analyzed 
by a hardware design application program that includes one 
or more components. The hardware design application pro 
gram may analyze the data flows and constructs, identify 
errors, and/or generate a representation of the hardware 
design that is Suitable for simulation and/or synthesis. 
0010 FIG. 1 shows a method 100 for constructing a data 
flow, in accordance with one embodiment. As shown in 
operation 102, one or more parameters are received, where at 
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least one of the parameters corresponds to an interface pro 
tocol. In one embodiment, the interface protocol may include 
a communications protocol associated with a particular inter 
face. In another embodiment, the communications protocol 
may include one or more formats for communicating data 
utilizing the interface, one or more rules for communicating 
data utilizing the interface, a syntax used when communicat 
ing data utilizing the interface, semantics used when commu 
nicating data utilizing the interface, synchronization methods 
used when communicating data utilizing the interface, etc. 
0011 Additionally, in one embodiment, the one or more 
parameters may include an identification of an interface (e.g., 
an interface of a hardware design, etc.). In another embodi 
ment, the one or more parameters may include a width field 
associated with the interface. In yet another embodiment, the 
one or more parameters may be received utilizing a hardware 
description language. For example, one or more parameters 
may be received utilizing a hardware description language 
embedded in a scripting language. 
0012. Further, as shown in operation 104, a data flow is 
constructed based on the one or more parameters. In one 
embodiment, the data flow (input or output) may represent a 
flow of data. For example, the data flow may represent a flow 
of data through a hardware design. In another embodiment, 
the data flow may include one or more groups of signals. For 
example, the data flow may include one or more groups of 
signals including implicit flow control signals that may oper 
ate according to the interface protocol. In yet another embodi 
ment, the data flow may be associated with one or more 
interfaces. For example, the data flow may be associated with 
one or more interfaces of a hardware design corresponding to 
at least one of the received parameters. In another embodi 
ment, the data flow may be constructed as a data type. 
0013 Also, in one embodiment, constructing the data flow 
as a data type may include implementing the data flow as an 
instance of a formal object class within a hardware descrip 
tion language. In another embodiment, the constructed data 
flow may include one or more fields with assigned values 
(e.g., one or more width fields each associated with an inter 
face, etc.). In yet another embodiment, the constructed data 
flow may be viewed as a predetermined data structure (e.g., a 
hash, etc.) within the scripting language. 
0014 Further, in one embodiment, the data flow may have 
multiple levels of hierarchy. For example, the data flow may 
include a superflow that represents multiple flows of data 
(e.g., Subflows, etc.) and that is associated with a plurality of 
interfaces. In another embodiment, the Superflow may act as 
an array within the scripting language. In yet another embodi 
ment, the Superflow may include one or more subfields with 
assigned values. In still another embodiment, the data flow 
may be included within the Superflow (e.g., as a data flow 
within the hierarchy of the superflow, etc.). 
0015. Further still, in one embodiment, the data flow may 
have a numeric hierarchy. For example, all fields of a data 
flow may be numbered with successive whole integers, start 
ing at Zero. In another embodiment, the data flow may have an 
alphabetic hierarchy. For example, all fields of a data flow 
may be labeled with one or more identifiers (e.g., letters of the 
alphabet, symbols, numbers, etc.). In yet another embodi 
ment, the data flow may have a custom naming hierarchy. For 
example, all fields of a data flow may be labeled with custom 
(e.g., user-provided, etc.) names. 
0016. Also, in one embodiment, the data flow may include 
a cloned data flow. For example, the data flow may be created 



US 2014/0278328A1 

by cloning another data flow, utilizing the hardware descrip 
tion language. In another embodiment, the data flow itself 
may be cloned to create another data flow. In yet another 
embodiment, the data flow may be an output data flow of a 
construct. In still another embodiment, the data flow may be 
located in adofabase. 
0017. In addition, as shown in operation 106, an indication 
of one or more control constructs is received, where a hard 
ware design is capable of being created, utilizing the con 
structed data flow and the one or more control constructs. In 
one embodiment, there may be two categories of constructs 
(e.g., constructions), control constructs and compute con 
structs. Control constructs may perform various common 
data steering and storage operations, be implemented in the 
hardware design application program, and be inserted into a 
hardware design representation. Compute constructs may 
provide a mechanism by which a designer can represent cir 
cuitry to perform user-defined operations. For example, in 
one embodiment, the function of a particular state machine 
may be encoded within a compute construct. 
0.018. In one embodiment, the one or more control con 
structs may include an entity (e.g., a module, etc.) imple 
mented as part of the hardware description language that 
receives one or more data flows as input. In another embodi 
ment, the one or more control constructs may be located in a 
database. In yet another embodiment, the one or more control 
constructs may perform one or more operations based on the 
input data flow or flows. In still another embodiment, the one 
or more control constructs may be built into the hardware 
description language. In another example, the one or more 
control constructs may perform one or more data steering and 
storage operations, utilizing the constructed data flow as 
input. 
0019. Furthermore, in one embodiment, the one or more 
control constructs may each create one or more output data 
flows, based on one or more input data flows. In another 
embodiment, the one or more output data flows may be input 
into one or more additional constructs (e.g., control con 
structs, compute constructs, etc.). In yet another embodiment, 
the one or more control constructs may each include one or 
more parameters. For example, the one or more control con 
structs may each include a name parameter that may indicate 
a name for that construct. In another example, each of the one 
or more control constructs may include a comment parameter 
that may provide a textual comment that may appear in a 
debugger when debugging a design. In yet another example, 
each of the one or more control constructs may include a 
stallable parameter that may indicate whether automatic flow 
control is to be performed within that construct. 
0020. Further still, in one example, each of the one or more 
control constructs may include a parameter used to specify a 
depth of an output queue (e.g., a first in, first out (FIFO) 
queue, etc.) for each output data flow of that construct. In 
another example, each of the one or more control constructs 
may include a parameter that causes an output data flow of 
that construct to be registered out. In yet another example, 
each of the one or more control constructs may include a 
parameter that causes a ready signal of an output data flow of 
that construct to be registered in and an associated skid flop 
row to be added. 

0021. Also, in one embodiment, one or more of the control 
constructs may include a separate construct that creates mul 
tiple output data flows from a single input data flow. In 
another embodiment, one or more of the control constructs 
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may include a merge construct that creates a single output 
data flow from multiple input data flows. In yet another 
embodiment, one or more of the control constructs may 
include a multicast construct that takes a single input data 
flow and sends it to one or more output data flows. In still 
another embodiment, one or more of the control constructs 
may include a select construct that accepts multiple input data 
flows and selects one of them to be an output data flow. 
0022. Additionally, in one embodiment, one or more of the 
control constructs may include a connect construct that con 
nects an input data flow of the construct to a deferred output. 
A deferred output may include a primary input to the design 
or an input data flow that does not yet connect to an output 
data flow of another construct. In another embodiment, one or 
more of the control constructs may include an as construct 
that maps flow data to a different format. In yet another 
embodiment, one or more of the control constructs may 
include a shuffle construct that rearranges a structuring of 
input data flows. In still another embodiment, one or more of 
the control constructs may include a derive clock construct 
that creates a new clock from an existing clock. 
0023. Further, in one embodiment, the hardware design 
may include one or more of the following: a circuit design, a 
behavioral simulation model, an estimated timing model, etc. 
For example, the hardware design may include an integrated 
circuit design, a digital circuit design, an analog circuit 
design, a mixed-signal circuit design, etc. In another embodi 
ment, the hardware design may be created utilizing the hard 
ware description language. For example, the hardware design 
may be created by initiating a new hardware design and 
saving the new hardware design into a database, utilizing the 
hardware description language. In yet another embodiment, 
both the data flow and the construct may be included within 
the hardware design. 
0024. Further still, in one embodiment, the hardware 
design may be created by activating the constructed data flow. 
For example, the data flow may be inactive while it is being 
constructed and modified, and the data flow may Subse 
quently be made active (e.g., by passing the data flow to an 
activation function utilizing the hardware description lan 
guage, etc.). In another embodiment, the hardware design 
may be created by inputting the activated data flow into the 
construct. For example, the activated data flow may be des 
ignated as an input of the construct within the hardware 
design, utilizing the hardware description language. In this 
way, the construct may perform one or more operations, 
utilizing the input data flow, and may create one or more 
additional output data flows, utilizing the input data flow. 
0025. Also, in one embodiment, the data flow may be 
analyzed within the construct. For example, the data flow may 
be analyzed during the performance of one or more actions by 
the construct, and execution of the hardware design may be 
halted immediately if an error is discovered during the analy 
sis. In this way, errors within the hardware design may be 
determined immediately and may not be propagated during 
the execution of the hardware design, until the end of hard 
ware construction, or during the running of a suspicious lan 
guage flagging program (e.g., a lint program) on the hardware 
construction. In another embodiment, the construct may ana 
lyze the data flow input to the construct and determine 
whether the data flow is an output flow from another construct 
or a deferred output (e.g., a data flow that is a primary design 
input, a data flow that will be later connected to an output of 
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a construct, etc.). In this way, it may be confirmed that the 
input data flow is an active output. 
0026. In addition, in one embodiment, one or more of the 
control constructs may interrogate the data flow utilizing one 
or more introspection methods. For example, one or more of 
the control constructs may utilize one or more introspection 
methods to obtain field names within the data flow, one or 
more widths associated with the data flow, etc. In another 
embodiment, all clocking may be handled implicitly within 
the hardware design. For example, a plurality of levels of 
clock gating may be generated automatically and may be 
Supported by the hardware design language. In this way, 
manual clock gating may be avoided. In yet another embodi 
ment, one or more of the control constructs may be Superflow 
aware. For example, the data flow may include a Superflow, 
and one or more of the control constructs may perform auto 
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design create construct shown in Table 1 is set forth for 
illustrative purposes only, and thus should not be construed as 
limiting in any manner. 

TABLE 1 

aFlow->Design Create(name => “NV XX yyy); 

aFlow->Design Save( top => Stopio); 

0030 Additionally, in one embodiment, one or more 
options may be associated with the creation of the integrated 
circuit design. Table 2 illustrates exemplary circuit design 
options, in accordance with one embodiment. Of course, it 
should be noted that the exemplary circuit design options 
shown in Table 2 are set forth for illustrative purposes only, 
and thus should not be construed as limiting in any manner. 

TABLE 2 

Option Type Default Description 

l8le id required name of top-level module for design 
clks array of clkspec {clk=> array of into about primary clk-reset pairs; 

“clk', reset clkspec is a hash with “clk and “reset as 
=> “reset required fields and currently there are no 

optional clkspec fields, but there will likely be 
others in the future: the first clk name in the 
array becomes the default for created constructs 

Src dirs array of string * array of directories Design Inst() searches for 

matic looping on a plurality of subflows of the Superflow, Such 
that each subflow of the superflow is automatically analyzed 
within the one or more control constructs. 

0027. More illustrative information will now be set forth 
regarding various optional architectures and features with 
which the foregoing framework may or may not be imple 
mented, per the desires of the user. It should be strongly noted 
that the following information is set forth for illustrative 
purposes and should not be construed as limiting in any 
manner. Any of the following features may be optionally 
incorporated with or without the exclusion of other features 
described. 

0028 FIG. 2 shows a method 200 for building an inte 
grated circuit using data flows and constructs, in accordance 
with one embodiment. As an option, the method 200 may be 
carried out in the context of the functionality of FIG. 1. Of 
course, however, the method 200 may be implemented in any 
desired environment. It should also be noted that the afore 
mentioned definitions may apply during the present descrip 
tion. 

0029. As shown in operation 202, an integrated circuit 
design is created, utilizing a hardware description language 
embedded in a scripting language. In one embodiment, the 
integrated circuit design may be saved to a database or hard 
drive after the integrated circuit design is created. In another 
embodiment, the integrated circuit design may be created in 
the hardware description language. In yet another embodi 
ment, the integrated circuit may be created utilizing a design 
create construct. Table 1 illustrates an exemplary design cre 
ate construct that may be used within the Scripting language to 
create an integrated circuit design, in accordance with one 
embodiment. Ofcourse, it should be noted that the exemplary 

Source databases of instantiated designs; by 
default, we search only in the current directory; 
note that this has nothing to do with the 
directories Perl searches for pm modules 

0031. Further, as shown in operation 204, one or more data 
flows are created in association with the integrated circuit 
design. In one embodiment, each of the one or more data 
flows may represent a flow of data through the integrated 
circuit design and may be implemented as instances of a data 
type utilizing a scripting language (e.g., Perl, etc.). For 
example, each data flow may be implemented in Perl as a 
formal object class. In another embodiment, one or more data 
flows may be associated with a single interface. In yet another 
embodiment, one or more data flows may be associated with 
multiple interfaces, and each of these data flows may be called 
Superflows. For example, Superflows may allow the passing 
of multiple interfaces utilizing one variable. 
0032. Further still, in one embodiment, each of the one or 
more data flows may have an arbitrary hierarchy. In another 
embodiment, each node in the hierarchy may have alphanu 
meric names or numeric names. In yet another embodiment, 
the creation of the one or more data flows may be tied into 
array and hash structures of the Scripting language. For 
example, Verilog(R) literals may be used and may be automati 
cally converted into constant data flows by a preparser before 
the scripting language sees them. 
0033. Also, in one embodiment, once created, each of the 
one or more data flows may look like hashes to Scripting code. 
In this way, the data flows may fit well into the scripting 
language's way of performing operations, and may avoid 
impedance mismatches. In another embodiment, the one or 
more data flows may be created in the hardware description 
language. Table 3 illustrates an exemplary data flow creation 
within a scripting language, in accordance with one embodi 
ment. Of course, it should be noted that the exemplary data 
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flow creation shown in Table 3 is set forth for illustrative 
purposes only, and thus should not be construed as limiting in 
any manner. 

TABLE 3 

my SIn = aFlow 
->Hier(a => 22, b => 32, c => 42) 
->Defer Output(); 

0034. As shown in Table 3, a data flow may be represented 
by an allow class package within the Scripting language. In 
one embodiment, the data flow may represent a single inter 
face with multiple named signals within the design. In 
another embodiment, flow control may be handled implicitly. 
In another embodiment, data may be defined for a single cycle 
within the design. 
0035. Additionally, in one embodiment, a data flow may 
have multiple levels of hierarchy. For example, the root of the 
hierarchy may be called level 0, or level “top” in another 
example, the leaves may be unsigned integers of an assigned 
hit width. In another embodiment, a hierarchical level may 
have all alphanumeric names or all numeric names. For 
example, if the names are numeric, they may be numbered 
with whole integers starting with Zero. 
0036 Further, in one embodiment, a level in the hierarchy 
may be called the iflow level. For example, iflow may refer to 
an interface data flow. In another example, theiflow level may 
denote one interface, specifically the data for one cycle on the 
interface. In another embodiment, by default, a root of the 
data flow hierarchy may be the iflow level. In this way, each 
data flow may represent one interface by default. In yet 
another embodiment, flow control may be handled implicitly 
for each iflow. 

0037. Further still, in one embodiment, one or more of the 
data flows may include a Superflow. For example, a Superflow 
may include a data flow whose iflow level is lower than the top 
level. In this way, a superflow may have multiple iflows (each 
representing an interface with independent flow control) 
within it. In another embodiment, each of the one or more data 
flows may have an inactive or active status. For example, 
while a data flow is being constructed, it may be inactive. In 
another example, inactive data flows may be modified in any 
arbitrary way. In yet another embodiment, nodes may be 
added and removed in the hierarchy. 
0038 Also, in one embodiment, before a data flow can be 
passed to a construct, it may need to be made active (e.g., 
using a command Such as Defer Output(), etc.). At that point, 
the data flow may not be modified directly by a user, but only 
indirectly by control and compute constructs. In another 
embodiment, Defer Output() may have an option that lets 
you pick which level in the data flow that is the iflow level. In 
yet another embodiment, by default, level 0 (top) may be the 
iflow level. 

0039 Table 4 illustrates exemplary data flow creation con 
structs within a scripting language, in accordance with one 
embodiment. Ofcourse, it should be noted that the exemplary 
data flow creation constructs shown in Table 4 are set forth for 
illustrative purposes only, and thus should not be construed as 
limiting in any manner. 
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TABLE 4 

1 . Hier() may create a named hierarchy of arbitrary structure 
2. Hier N() may create numeric hierarchies 
3. Hier Named N() may create a named hierarchy with N fields with 

the same name prefix 
4. Hash manipulations may allow you to add and remove Subflows from 

hierarchies 
5. Uint() may create a simple leaf flow with no name 
6. Const(Sval) may create a leaf that has a constant value 
7. Const All Ones(Swidth) may create a leaf that has a constant 

value that is width Swidth and all 1's 
Literals like 32'hdeadbeef may implicitly create constant values 

9. Clone() may copy an active or inactive flow, and may always yield 
an inactive flow; all constant leaves may also be cloned 

10. Clone(0) is like Clone() but may not clone constant leaves 

8. 

0040 Table 5 illustrates the creation of a one-level hierar 
chy data flow within a scripting language, in accordance with 
one embodiment. Of course, it should be noted that the exem 
plary data flow creation shown in Table 5 is set forth for 
illustrative purposes only, and thus should not be construed as 
limiting in any manner. 

TABLE 5 

my SFlow = aFlow 
->Hier(a => 12, b => 33, c => 46): 

Flow->print(“Flow): 
# add a field, remove a field 

Flow->print("Flow after removing 'a and adding 'd''); 
Flow->Defer Output(); 
Flow->print("Flow after marking it active”); 

Flow => 
a => 17 
b => 33 

Flow after removing 'a and adding 'd => 

c => 46 

Flow after marking it active => (iflow) 

c => 46 
d => SS 

0041 As shown in Table 5, a one-level hierarchy data flow 
is created with alphanumeric names “a,” “b,” and “c.” Addi 
tionally, field “a” is then removed and field 'd' is added. 
Further, the data flow is marked active using Defer Output() 
with the iflow at the root. 
0042 Table 6 illustrates the creation of a two-level hierar 
chy data flow within a scripting language, in accordance with 
one embodiment. Of course, it should be noted that the exem 
plary data flow creation shown in Table 6 is set forth for 
illustrative purposes only, and thus should not be construed as 
limiting in any manner. 

TABLE 6 

my SFlow = aFlow 
->Hier(a => 12, b => c => 33, d => 46)); 

SFlow->print(“Flow): 
SFlow->{e} = f => 11, g => 32); 
SFlow->print("Flow after adding sub-hierarchy 'e'); 
Flow => 

a => 12 
b => 

c => 33 
d => 46 
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TABLE 6-continued 

Flow after adding Sub-hierarchy 'e' => 
a => 12 
b => 

c => 33 
d => 46 

e => 
f=> 11 
g => 32 

0.043 Table 7 illustrates the creation of a data flow with 
manual numbering within a scripting language, inaccordance 
with one embodiment. Of course, it should be noted that the 
exemplary data flow creation shown in Table 7 is set forth for 
illustrative purposes only, and thus should not be construed as 
limiting in any manner. 

TABLE 7 

# numeric hierarchy created manually using a loop 
my Sfields = ); 
for my Si (0.3) 
{ 

apush Sfields, Si => a => 12, b => 3; # equivalent to push (a) 
{Sfields, ... 

my SFlow = aFlow 
->Hier((a)(Sfields) 
->Defer Output(); 

SFlow->print(“Flow): 
Flow => (iflow) 

O => 
a => 12 
b => 3 

1 => 
a => 12 
b => 3 

2 => 
a => 12 
b => 3 

3 => 
a => 12 
b => 3 

0044 Table 8 illustrates the creation of a data flow with 
automatic numbering within a scripting language, in accor 
dance with one embodiment. Of course, it should be noted 
that the exemplary data flow creation shown in Table 8 is set 
forth for illustrative purposes only, and thus should not be 
construed as limiting in any manner. 

TABLE 8 

my SFlow = aFlow 
->Hier N(4, a => 12, b =>3) 
->Defer Output(); 

SFlow->print(“Flow): 
Flow => (iflow) 

O => 
a => 12 
b => 3 

1 => 
a => 12 
b => 3 

2 => 
a => 12 
b => 3 

3 => 
a => 12 
b => 3 
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0045 Table 9 illustrates the creation of a data flow with a 
named hierarchy with N names with the same prefix within a 
Scripting language, in accordance with one embodiment. Of 
course, it should be noted that the exemplary data flow cre 
ation shown in Table 9 is set forth for illustrative purposes 
only, and thus should not be construed as limiting in any 
a. 

TABLE 9 

my SFlow = aFlow 
->Hier Named N(“prefix, 4, a => 12, b => 3) 
->Defer Output(); 

SFlow->print(“Flow): 
Flow => (iflow) 

prefixO => 
a => 12 
b => 3 

prefix1 => 
a => 12 
b => 3 

prefix2 => 
a => 12 
b => 3 

prefix3 => 
a => 12 
b => 3 

0046 Table 10 illustrates the creation and cloning of a data 
flow within a scripting language, in accordance with one 
embodiment. Ofcourse, it should be noted that the exemplary 
data flow creation and cloning shown in Table 10 is set forth 
for illustrative purposes only, and thus should not be con 
Strued as limiting in any manner. 

TABLE 10 

my SFlow0 = aFlow 
->Hier N(4, a => 12, b => 3) 
->Defer Output(iflow level => 1); 

SFlow0->print(“Flow0 ); 
my SFlow 1 = SFlow0->Clone(); 
delete SFlow 1->{1}; # causes 2 and 3 to be renumbered down 
SFlow 1->Defer Outputs(); 
SFlow 1->print("Flow 1 after removing node '1'); 
Flow 0 => 

O => (iflow) 
a => 12 
b => 3 

1 => (iflow) 
a => 12 
b => 3 

2 => (iflow) 
a => 12 

Flow 1 after removing node 1 => (iflow) 
O => 

a => 12 
b => 3 
=> 

a => 12 
b => 3 
=> 

0047. As shown in Table 10, a data flow is created with an 
iflow level of 1, which ends up creating four iflows. Addition 
ally, the active data flow is then cloned using Clone(), which 
creates an inactive data flow. Field 1 is then deleted, which 
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causes fields 2 and 3 to be renumbered down. Further, the new 
data flow is activated and the iflow level is set at level 0. 

0048 Table 11 illustrates the marking of an inactive data 
flow as an active output within a scripting language, in accor 
dance with one embodiment. Of course, it should be noted 
that the exemplary data flow marking shown in Table 11 is set 
forth for illustrative purposes only, and thus should not be 
construed as limiting in any manner. 

TABLE 11 

my SIn = aflow 
->Hier(a => 22, b => 32, c => 42) 
->Defer Output(); 

Connect SOut => SIn; # or SOut->Connect(SIn ) 

0049. As shown in Table 11, Defer Output () is used to 
mark an inactive data flow as an active output, which may 
allow it to be used as an input to another construct, but 
deferring where it came from until later. In one embodiment, 
once a data flow is marked as active, it may not be changed 
directly, only by passing it to other constructs. 
0050 Additionally, in one embodiment, if a data flow is a 
primary input to the design, it may be passed to Design Save( 
) as part of the top I/O hash. In another embodiment, if the data 
flow is part of some kind of circular pipeline where the data 
flow goes into the top of the pipeline, then comes out the 
bottom later, a Connect operator may be used to connect the 
real output that comes out the bottom with the deferred output 
that went into the top. 
0051. Additionally, as shown in operation 206, one or 
more control constructs are incorporated into the integrated 
circuit design in association with the one or more data flows. 
In one embodiment, the one or more data flows may be passed 
into the one or more constructs, where they may be checked at 
each stage. In another embodiment, bugs may be immediately 
found and the design Script may be killed immediately upon 
finding an error. In this way, a user may avoid reviewing a 
large amount of propagated errors. In yet another embodi 
ment, the one or more control constructs may check that each 
input data flow is an output data flow from Some other con 
struct or is what is called a deferred output. 
0052 For example, a deferred output may include an indi 
cation that a data flow is a primary design input or a data flow 
will be connected later to the output of some future construct. 
In another embodiment, it may be confirmed that each input 
data flow is an input to no other constructs. In yet another 
embodiment, each construct may create one or more output 
data flows that may then become the inputs to other con 
structs. In this way, the concept of correctness-by-construc 
tion is promoted. In still another embodiment, the constructs 
are also Superflow-aware. For example, some constructs may 
expect Superflows, and others may perform an implicit for 
loop on the superflows subflows so that the user doesn’t have 
tO. 

0053. Furthermore, in one embodiment, a set of introspec 
tion methods may be provided that may allow user designs 
and generators to interrogate data flows. For example, the one 
or more control constructs may use these introspection func 
tions to perform their work. More specifically, the introspec 
tion methods may enable obtaining a list offield names within 
a hierarchical data flow, widths of various subflows, etc. In 
another embodiment, in response to the introspection meth 
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ods, values may be returned in forms that are easy to manipu 
late by the scripting language. 

0054 Further still, in one embodiment, the one or more 
control constructs may include constructs that are built into 
the hardware description language and that perform various 
data steering and storage operations that have to be built into 
the language. In another embodiment, the constructs may be 
bug-free as an incentive for the user to utilize them as much as 
possible. 

0055 Also, in one embodiment, the one or more control 
constructs may each contain a plurality of common param 
eters. For example, the one or more control constructs may 
contain a “name parameter that indicates a base module 
name that will be used for the construct and which shows up 
in the debugger. In another embodiment, the one or more 
control constructs may contain a "comment' parameter that 
provides a textual comment that shows up in the debugger. In 
yet another embodiment, the one or more control constructs 
may contain a “stallable' parameter that indicates whether 
automatic flow control is to be performed according to an 
interface protocol within the construct (e.g., whether input 
data flows are to be automatically stalled when outputs arent 
ready, etc.). For example, if the “stallable' parameter is 0, the 
user may use various flow methods such as Valid() and 
Ready (), as well as a Stall statement to perform manual flow 
control. In another example, additional flow controls such as 
vld/rdy next and vld/credit may be used. 
0056. Additionally, in one embodiment, the one or more 
control constructs may contain an out fifo parameter that 
allows the user to specify a depth of the output FIFO for each 
output data flow. For example, when multiple output data 
flows are present, the user may supply one depth that is used 
by all, or an array of per-output-flow depths. In another 
embodiment, the one or more control constructs may contain 
an out reg parameter that causes the output data flow to be 
registered out. For example, the out reg parameter may take 
a 0 or 1 value or an array of such like out fifo. In yet another 
embodiment, the one or more control constructs may contain 
an in reg parameter that causes the input data flow to be 
registered in. In still another embodiment, the one or more 
control constructs may contain an in fifo parameter that 
allows the user to specify a depth of the input FIFO for each 
output data flow. Further, in one embodiment, the one or more 
control constructs may contain an out rdy regparameter that 
causes the output data flows implicit ready signal to be 
registered in. This may also lay down an implicit skid flop 
before the out reg. In another embodiment, out fifo, out reg, 
and out rdy reg may be mutually exclusive and may be used 
in any combination. 
0057 The “stainable', out reg, out fifo, and out rdy reg 
parameters specify how the interface protocol is imple 
mented. An interface protocol defines a characteristic of an 
input or output data flow that is represented in a simulation 
model and a synthesized circuit created from the hardware 
design representation. For example, circuitry is automatically 
inserted into a representation of the hardware design based on 
the interface protocol. The automatic insertion reduces the 
amount of work needed to enter a design by a user and 
presumably also ensures that the interface protocol operation 
has been thoroughly verified. Furthermore, the hardware 
design application components may perform various checks 
to identify errors when data flows having incompatible inter 
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face protocols are connected. Errors may also be identified 
during simulation by the automatically inserted representa 
tions. 

0058. Further still, in one embodiment, clocking and clock 
gating may be handled implicitly. For example, there may be 
three levels of clock gating that may be generated automati 
cally: fine-grain clock gating (FGCG), second-level module 
clock gating (SLCG), and block-level design clock gating 
(BLCG). In another embodiment, FGCG may be handled by 
synthesis tools. In yet another embodiment, a per-construct 
(i.e., per-module) status may be maintained. In still another 
embodiment, when the status is IDLE or STALLED, all the 
flops and rams in that module may be gated. In another 
embodiment, the statuses from all the constructs may be 
combined to form the design-level status that is used for the 
BLCG. This may be performed automatically, though the user 
may override the status value for any Compute() construct 
using the Status <value statement. 
0059 Also, in one embodiment, the one or more control 
constructs may include a Separate() construct. For example, 
the Separate() construct may take an input data flow and 
provide ways of peeling off various fields from that data flow 
(e.g., by splitting a data flow into multiple output data flows 
and returning the output data flows, etc.). In another example, 
a user can create as many data flows as needed from a single 
input data flow. In another embodiment, regular expressions 
may be used to concisely describe the set of fields to be 
retained for each output data flow. If the input data flow is a 
superflow (multiple interface data flows), the Separate() con 
struct may implicitly perform the same operation on the inter 
face data flows in parallel. The output of the Separate() 
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construct may be a list of data flows or a Superflow containing 
them. In yet another embodiment, there may be options that 
allow levels of hierarchy to be automatically collapsed in the 
process. If the chosen fields have numeric names, they may be 
renumbered automatically (e.g., so they follow 0, 1, 2, etc.). 
0060. Further, in one embodiment, the Separate() con 
struct may split the input data flow in one or more ways. For 
example, the Separate() construct may supply a list of fields 
to be kept for each output data flow. The list may contain 
regular expressions. In another example, the Separate() con 
struct may supply a count of the number of fields to be kept for 
each output data flow. In yet another example, the Separate() 
construct may duplicate the input data flow N times, produc 
ing N+1 output data flows. 
0061 Table 12 illustrates the application of a Separate() 
construct to a data flow within a scripting language, in accor 
dance with one embodiment. Of course, it should be noted 
that the exemplary application shown in Table 12 is set forth 
for illustrative purposes only, and thus should not be con 
Strued as limiting in any manner. 

TABLE 12 

my (GOuts = SIn->Separate(name => “NV XX yyy split, 
keep => “a,b, 

“b,c']); 

0062 Table 13 illustrates the options associated with a 
Separate() construct, in accordance with one embodiment. 
Of course, it should be noted that the options shown in Table 
13 are set forth for illustrative purposes only, and thus should 
not be construed as limiting in any manner. 

TABLE 13 

Option Type Default Description 

l8le id required name of generated module 
comment String undef optional comment to display in the 

debugger (highly recommended) 
keep array of namelist one of these 3 is array of strings each of which is a 

keep count 

duplicate 

level 
remove hier 

clk 
stallable 
Out reg 

out separate 

out ridy reg 

out fifo 

array of int 

int 

String 
array of int 

id 
int 
array of int 

int 

array of int 

array of fifospec 

required 

one of these 3 is 
required 

one of these 3 is 
required 

iflow 
O, O, . . . ) 

global default 
global default 
global default, ... 

global default, ... 

list of names to keep for that output 
flow 
array of counts each of which is the 
number of subflows to keep for that 
output flow 
number of times to simply duplicate 
the input flow (this count + 1 are 
returned) 
level at which to perform separate 
array of boolean flags each of which 
indicates whether a level of 
hierarchy is to be removed for that 
output flow 
clock to use for this construct 
whether the construct is stallable 
array of O or 1 indicating whether 
the corresponding output iflow is 
registered out 
indicates that the output is a 
separate list of flows (default value 
of 1) or a Superflow (O) 
array of O or 1 indicating whether 
the corresponding output iflows rdy 
signal is registered in; causes a skid 
flop to be added even if out reg = 0. 
array of fifo specs, which are 
currently limited to a simple int 
representing depth of the fifo for the 
corresponding output iflow; out reg 
and out rody reg flops are after the 
fifo 
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0063. Further still, in one embodiment, if the stallable 
option is 1, then the input may be stalled until data can be 
advanced on all outputs (even if internally when out 
reg 1 out reg). In another embodiment, the input may not be 
transferred to any output until all outputs can accept it. In yet 
another embodiment, if the stallable option is 0, a simulation 
time check may be generated Such that the input may always 
be transferred to all outputs whenever valid input is available. 
0064 Table 14 illustrates the application of a keep option 
within a Separate( ) construct, in accordance with one 
embodiment. Ofcourse, it should be noted that the exemplary 
application shown in Table 14 is set forth for illustrative 
purposes only, and thus should not be construed as limiting in 
any manner. 

TABLE 1.4 

my SIn = aFlow 
->Hier(a => 12, b => 33, c => 46) 
->Defer Output(); 

SIn->print(“In ); 
In => (iflow) 

a => 12 
b => 33 
c => 46 

my(SOutO, SOut1, SOut2, SOut3) = SIn 
->Separate(name => “NV separate', 

keep => “a,b, 
b,c, 
s/, # matches all fields 
*/S/), # matches no fields 
“? (b.S)/ ); # matches any field that is not b 

SOut0->print(“OutO'); 
SOutl->print(“Outl”); 
SOut2->print(“Out 2): 
SOut3->print(“Out3 ); 
SOut4->print(“Out4); 
OutO => (iflow) 
a => 12 
b => 33 

Outl => (iflow) 
b => 33 
c => 46 

Out2 => (iflow) 
a => 12 
b => 33 
c => 46 

Out3 => (iflow) 
Out:4 => (iflow) 
a => 12 
c => 46 

0065. As shown in Table 14, the keep option may allows 
for explicit naming of the subflows that are kept for each 
output data flow. In one embodiment, each name list may be 
enclosed in double quotes. In another embodiment, each 
name may be an identifier or a regular expression. In still 
another embodiment, unused input Subflows may be dropped. 
0066 Table 15 illustrates the application of a duplicate 
option within a Separate() construct, in accordance with one 
embodiment. Ofcourse, it should be noted that the exemplary 
application shown in Table 15 is set forth for illustrative 
purposes only, and thus should not be construed as limiting in 
any manner. 

TABLE 1.5 

my SIn = aFlow 
->Hier(d => 32, e => 8) 
->Defer Output(); 

SIn->print(“In ); 
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TABLE 15-continued 

In => (iflow) 
d => 32 
e => 8 

my(SOutO, SOut1) = SIn 
->Separate(name => “NV separate dup', 

duplicate => 1); # will get 2 copies 
SOut0->print(“OutO); 
SOut1->print(“Outl); 
OutO => (iflow) 

d => 32 
e => 8 

Outl => (iflow) 
d => 32 
e => 8 

0067. As shown in Table 15, the duplicate option may 
provide a quick way to completely duplicate the input data 
flow. In another embodiment, the count may be one less than 
the number of copies returned. 
0068 Table 16 illustrates the application of a keep count 
option within a Separate() construct, in accordance with one 
embodiment. Ofcourse, it should be noted that the exemplary 
application shown in Table 16 is set forth for illustrative 
purposes only, and thus should not be construed as limiting in 
any manner. 

TABLE 16 

my SIn = aFlow 
->Hier( 0 => m => 40), # normally these are all the same, 

but this makes it clearer what's happening 
1 => n => 2, O => 1 ), 
2 => p => 5, q => 10), 
3 => | r =>3), 
4 => s => 17, t => 19) 

->Defer Output(); 
SIn->print(“In ); 
In => (iflow) 

O => 
m => 40 

1 => 
n => 2 
O => 1 

2 => 
p => 5 
q => 10 

3 => 
r => 3 

4 => 
S => 17 
t => 19 

my(SOutO, SOut1) = SIn 
->Separate(name => “NV separate keep count', 

keep count=> 1, 3 ); 
SOutO->print(“OutO); 
SOutl->print(“Outl”); 
OutO => (iflow) 

O => 
m => 40 

Outl => (iflow) 
O => 

n => 2 
O => 1 

1 => 
p => 5 
q => 10 

2 => 
r => 3 

0069. As shown in Table 16, the keep count option may 
split a numerical hierarchical into multiples where each out 
put data flow contains some count of the next input Subflows. 
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In one embodiment, the chosen subflows may be renumbered 
in the second, third, etc. output data flows. In another embodi 
ment, not all input Subflows may need to be consumed (e.g., 
note that input subflow “4” was dropped). 
0070 Table 17 illustrates the application of remove hier 
and out reg options within a Separate() construct, in accor 
dance with one embodiment. Of course, it should be noted 
that the exemplary application shown in Table 17 is set forth 
for illustrative purposes only, and thus should not be con 
Strued as limiting in any manner, 

TABLE 17 

my(SOutO, SOut1) = SIn 
->Separate(name => “NV separate remove hier, 

keep count=> 1, 3, 
remove hier => 1, Ol, 
first output flow 
out reg=> 0, 1); # flop second output flow 

SOut0->print(“OutO); 
SOut1->print(“Outl); 
OutO => (iflow) 
m => 40 

Outl => (iflow) 
O => 

n => 2 
O => 1 

1 => 
p => 5 
q => 10 

2 => 
r => 3 

# remove hierarchy for 

0071. As shown in Table 17, the remove hier option may 
allow for the removal of a level of a hierarchy for each output 
data flow. Additionally, the out regoption may indicate that a 
particular output is to be flopped. For example, in Table 17, 
SOutl will be flopped (and will have a skid register because 
stallable is 1 by default), while SOut0 will not be flopped. 
0072 Table 18 illustrates the parallel application of a 
Separate() construct, in accordance with one embodiment. 
Of course, it should be noted that the exemplary application 
shown in Table 18 is set forth for illustrative purposes only, 
and thus should not be construed as limiting in any manner. 

TABLE 18 

my SIn = aFlow 
->Hier N(4, a => 12, b => 22, c => 32) 
->Defer Output (iflow level => 1); 

SIn->print(“In ); 
In => 
O => (iflow) 

a => 12 
b => 22 
c => 32 

1 => (iflow) 
a => 12 
b => 22 
c => 32 

2 => (iflow) 
a => 12 
b => 22 
c => 32 

3 => (iflow) 
a => 12 
b => 22 
c => 32 

my(SOutO, SOut1) = SIn 
->Separate(name => “NV separate parallel keep', 

keep => “a,b”, “c”); 
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TABLE 18-continued 

SOutO->print(“Out O'); 
SOutl->print(“Outl); 
OutO => 

O => (iflow) 
a => 12 
b => 22 

1 => (iflow) 
a => 12 
b => 22 

2 => (iflow) 
a => 12 
b => 22 

3 => (iflow) 
a => 12 
b => 22 

Out1 => 
O => (iflow) 

c => 32 
1 => (iflow) 

c => 32 
2 => (iflow) 

c => 32 
3 => (iflow) 

c => 32 

0073. As shown in Table 18, a Separate() occurs at the 
iflow level. If the input data flow has multiple iflows, then the 
Separate() may be repeated for each iflow. As also shown in 
Table 18, the input data flow has 4 mows, each of which has 
subflows “a”, “b', and “c. 
0074 Table 19 illustrates a separation of iflows using a 
level option, in accordance with one embodiment. Of course, 
it should be noted that the exemplary application shown in 
Table 19 is set forth for illustrative purposes only, and thus 
should not be construed as limiting in any manner. 

TABLE 19 

my(SOutO, SOut1) = SIn 
->Separate(name => “NV separate above iflow, 

level => “top”, 
keep count=> 1,3); 

SOutO->print(“OutO); 
SOutl->print(“Outl); 
OutO => 

O => (iflow) 
a => 12 
b => 22 
c => 32 

Out1 => 
O => (iflow) 

a => 12 
b => 22 
c => 32 

1 => (iflow) 
a => 12 
b => 22 
c => 32 

2 => (iflow) 
a => 12 
b => 22 
c => 32 

(0075. As shown in Table 19, iflows are separated from 
each other from within the input data flow from Table 18, 
using the level option. The first iflow is placed in one output 
data flow, and the other three iflows are placed in another 
output data flow. 
0076. Additionally, in one embodiment, the one or more 
control constructs may include a Merge() construct. For 
example, the Merge() construct may be the inverse of the 
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Separate() construct. In another embodiment, the Merge() 
construct may take multiple input data flows (e.g., in list form, 
Superflow form, etc.) and may merge the corresponding fields 
into the same data flow. In yet another embodiment, when 
fields are names, they may not conflict in name. In still 
another embodiment, when fields are numbered, they may 
conflict so they may be renumbered. In another embodiment, 
all other features of the Separate() construct may be sup 
ported. 
0077 Table 20 illustrates the application of a Merge() 
construct to a data flow within a scripting language, in accor 
dance with one embodiment. Of course, it should be noted 
that the exemplary application shown in Table 20 is set forth 
for illustrative purposes only, and thus should not be con 
Strued as limiting in any manner. 

TABLE 20 

my SOut = SIno 
->Merge(name => “NV XX yyy combine', 

Others => SIn1, SIn2); 

0078 Table 21 illustrates the options associated with a 
Merge() construct, in accordance with one embodiment. Of 
course, it should be noted that the options shown in Table 21 
are set forth for illustrative purposes only, and thus should not 
be construed as limiting in any manner. 
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TABLE 22 

my SIn() = aFlow 
->Hier(a => 25, b => 35) 
->Defer Output(); 

my SIn1 = aFlow 
->Hier( c => 33, d => 43) 
->Defer Output(); 

SIno->print(“In O”); 
SIn1->print(“In 1); 
InO => (iflow) 

a => 25 
b => 3S 

In1 => (iflow) 
c => 33 
d => 43 

my SOut = SIno 
->Merge(name => “NV merge named, 

Others => SIn 1); 
SOut->print(“Out"): 
Out => (iflow) 

a => 25 
b => 3S 
c => 33 
d => 43 

I0081 Table 23 illustrates the merging of two data flows 
with conflicting numeric names using a Merge() construct, in 
accordance with one embodiment. As shown in Table 23, the 
second data flows 0 subflow is renumbered up to 1. Of 
course, it should be noted that the exemplary merging shown 

TABLE 21 

Option Type Default Description 

l8le id required name of generated module 
comment string undef optional comment to display in the 

debugger (highly recommended) 
Others array of flow required array of other flows to be merged 
level string iflow level at which to perform the merge 
add hier O or 1 O indicates whether to add a level of 

hierarchy to each input (at level) before 
doing the merge 

clk id global default clock to use for this construct 
stallable O or 1 global default whether the construct is stallable 
Out reg O or 1 global default O or 1 indicating whether the output iflow 

is registered out 
out roly reg O or 1 global default O or 1 indicating whether the output 

iflow's roly signal is registered in; causes a 
skid flop to be added even if out reg = 0. 

out fifo fifospec O a fifospec which is currently limited to a 
simple intrepresenting depth of the fifo 
for the output iflow; out reg and 
out rely reg flops are after the fifo 

0079. In one embodiment, the Merge() construct may take 
multiple input data flows and merge them into one output data 
flow. In another embodiment, if the stallable option is 1, then 
inputs may be stalled until all arrive and an output cycle can 
be advanced (even if internally when out reg-0). In another 
embodiment, if the stallable option is 0, then all input data 
flows may be valid in the same cycle because there may be no 
way to stall any inputs. This may be checked at simulation 
time. Further, the output may not be stalled when the Merge( 
) construct is trying to send out a new cycle. 
0080 Table 22 illustrates the merging of two data flows 
with non-conflicting names using a Merge() construct, in 
accordance with one embodiment. Of course, it should be 
noted that the exemplary merging shown in Table 22 is set 
forth for illustrative purposes only, and thus should not be 
construed as limiting in any manner. 

in Table 23 is set forth for illustrative purposes only, and thus 
should not be construed as limiting in any manner. 

TABLE 23 

my SIn() = aFlow 
->Hier( 0 => a => 25, b => 35) 
->Defer Output(); 

my SIn1 = aFlow 
->Hier( 0 => a => 25, b => 35) 
->Defer Output(); 

SIno->print(“In O”); 
SIn1->print(“In 1); 
InO => (iflow) 

O => 
a => 25 
b => 3S 

In1 => (iflow) 
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TABLE 23-continued 

O => 
a => 25 
b => 3S 

my SOut = SIno 
->Merge(name => “NV merge numeric', 

Others => SIn 1); 
SOut->print(“Out ); 
Out => (iflow) 

O => 
a => 25 
b => 3S 

1 => 
a => 25 
b => 3S 

0082 Table 24 illustrates the parallel use of a Merge() 
construct, in accordance with one embodiment. As shown in 
Table 24, if the input data flows have multiple iflows, the 
merge may occur in parallel. Ofcourse, it should be noted that 
the exemplary usage shown in Table 24 is set forth for illus 
trative purposes only, and thus should not be construed as 
limiting in any manner. 

TABLE 24 

my SIn() = aFlow 
->Hier N(3, a => 25, b => 35) 
->Defer Output(iflow level => 1); 

my SIn1 = aFlow 
->Hier N(3, c => 33, d => 43) 
->Defer Output(iflow level => 1); 

SIno->print(“Ino'); 
SIn1->print(“In 1); 
InO => 
O => (iflow) 

a => 25 
b => 3S 

1 => (iflow) 
a => 25 
b => 3S 

2 => (iflow) 
a => 25 
b => 3S 

In1 => 

O => (iflow) 
c => 33 
d => 43 

1 => (iflow) 
c => 33 
d => 43 

2 => (iflow) 
c => 33 
d => 43 

my SOut = SIno 
->Merge(name => “NV merge parallel, 

Others => SIn 1); 
SOut->print(“Out ); 
Out => 

O => (iflow) 
a => 25 
b => 3S 
c => 33 
d => 43 

1 => (iflow) 
a => 25 
b => 3S 
c => 33 
d => 43 

2 => (iflow) 
a => 25 
b => 3S 
c => 33 
d => 43 
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I0083 Table 25 illustrates the use of a Merge() construct 
above theiflow level, inaccordance with one embodiment. Of 
course, it should be noted that the exemplary usage shown in 
Table 25 is set forth for illustrative purposes only, and thus 
should not be construed as limiting in any manner. 

TABLE 25 

my SOut = SIno 
->Merge(name => “NV merge above iflow, 

evel => 0, # same as “top” 
Others => SIn 1); 

SOut->print(“Out"): 
Out => 

O => (iflow) 
a => 25 
b => 3S 

1 => (iflow) 
a => 25 
b => 3S 

2 => (iflow) 
a => 25 
b => 3S 

3 => (iflow) 
c => 33 
d => 43 

4 => (iflow) 
c => 33 
d => 43 

5 => (iflow) 
c => 33 
d => 43 

I0084 Table 26 illustrates the use of a Merge() construct 
above the top level, in accordance with one embodiment. For 
example, if the iflow level is 0 (e.g., top, etc.), a level of 
hierarchy may be added, which may require both level=>-1 
and add hier->1. Of course, it should be noted that the exem 
plary usage shown in Table 26 is set forth for illustrative 
purposes only, and thus should not be construed as limiting in 
any manner. 

TABLE 26 

my SInc) = aFlow 
->Hier(a => 25, b => 35) 
->Defer Output(); 

my SIn1 = aFlow 
->Hier(a => 25, b => 35) 
->Defer Output(); 

SIno->print(“In O”); 
SIn1->print(“In 1); 
InO => (iflow) 

a => 25 
b => 3S 

In1 => (iflow) 
a => 25 
b => 3S 

my SOut = SIno 
->Merge(name => “NV merge add hier above top', 

Others => SIn 1), 
level => -1, 
add hier => 1); 

SOut->print(“Out"): 
Out => 

O => (iflow) 
a => 25 
b => 3S 

1 => (iflow) 
a => 25 
b => 3S 

0085. Further, in one embodiment, the one or more control 
constructs may include a Multicast() construct. For example, 
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the Multicast() construct may take a single data flow input 
and send it to one or more output data flows. In another 
embodiment, there may be various ways to specify the mask 
of outputs to receive the input, including embedding the mask 
in the input data flow or providing a separate Unicast/Dest 
mask input data flow. In yet another embodiment, the Multi 
cast() construct may implicitly work in parallel on input data 
flows that are Superflows, and produce corresponding Super 
flows. In still another embodiment, automatic data flow con 
trol may be provided if stallable is 1. 
I0086 Table 27 illustrates the application of a Multicast() 
construct to a data flow within a scripting language, in accor 
dance with one embodiment. Of course, it should be noted 
that the exemplary application shown in Table 27 is set forth 

Option 

l8le 

comment 

count 

broadcast 

Unicast Dest Flow 

unicast dest field 

Destmask Flow 

destmask field 

destmask code 

unicast dest field drop 

destmask field drop 

clk 

stallable 

Out reg 

out ridy reg 

out fifo 

out separate 
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for illustrative purposes only, and thus should not be con 
Strued as limiting in any manner. 

TABLE 27 

my SOut = SIn 
->Multicast(name => “NV XX yyy unicast, 

count => 3, 
Unicast Dest Flow => SDest Flow ); 

I0087 Table 28 illustrates the options associated with a 
Multicast () construct, in accordance with one embodiment. 
Of course, it should be noted that the options shown in Table 
28 are set forth for illustrative purposes only, and thus should 
not be construed as limiting in any manner. 

TABLE 28 

Type Default Description 

id require name of generated module 
string undef optional comment to display in 

he debugger (highly 
recommended) 

int require number of output iflows per 
input iflow 

int Ole:St. broadcast to all scount output 
6 is iflows 
require 

flow Ole:St. send to one output; the unicast 
6 is flow must have one field of 
require width log2(count) 

id Ole:St. send to one output; the 
6 is estination is a separate field in 
require he input with this name 

flow Ole:St. send to Zero or more outputs; the 
6 is estination mask must have one 
require field of width <count 

id Ole:St. send to Zero or more outputs; the 
6 is estination mask is a separate 
require field in the input with this name 

code Ole:St. send to Zero or more outputs; the 
6 is estination mask is computed 
require combinatorially by a user 

Supplied code block; the code 
block receives the input iflow 
and the output destmask flow as 
parameters from Multicast() 

O or 1 O when unicast dest field is given, 
indicates whether to drop the 
field in the output iflows 

O or 1 O when destmask field is given, 
indicates whether to drop the 
field in the output iflows 

id global clock to use for this construct 
default 

O or 1 global whether the construct is stallable 
default 

array of int global array of O or 1 indicating whether 
default, ... the corresponding output iflow is 

registered out 
global array of O or 1 indicating whether 
default, ... the corresponding output iflows 

rdy signal is registered in; causes 
a skid flop to be added even if 
out reg= 0. 
array of fifo specs, which are 
currently limited to a simple int 
representing depth of the fifo for 
the corresponding output iflow; 
out regand out roly reg flops 
are after the fifo 
indicates whether to return a list 
of flows or return one superflow 

(default) 

array of int 

array of fifospec 0, 0,... 

int O 
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0088. In one embodiment, the Multicast() construct may 
take one input iflow and sends it to one or more output iflows. 
Table 29 illustrates various options for redirecting an input 
data flow using the Multicast() construct, in accordance with 
one embodiment. Of course, it should be noted that the 
options shown in Table 29 are set forth for illustrative pur 
poses only, and thus should not be construed as limiting in any 
a. 

TABLE 29 

1. Use the broadcast => 1 option to send it always to all outputs 
2. Use the Unicast Dest Flow option to have a side flow indicate the 

single output that should receive the input 
3. Use the Destmask Flow option to have a side flow that contains a 

bitmask indicating some arbitrary number of Zero or more outputs to 
receive the input 

4. Use the unicast dest field option to indicate that the unicast 
destination is embedded in the input as a separate field 

5. Use the destmask field option to indicate that the destmask is 
embedded in the input as a separate field 

6. Use the destmask code option that allows you to write arbitrary code 
to compute the destination using any combination of input fields 

0089 Additionally, in one embodiment, the multicast may 
always occur at the iflow level. In another embodiment, if 
stallable is 1, then the input iflow may be stalled until all 
destined output iflows are unstalled. No outputs may receive 
the input until all of them are uninstalled. In yet another 
embodiment, if stainable is 0, then the input iflow and the 
Unicast Dest Flow/Destmask Flow iflow may be valid in 
the same cycle because there may be no way to stall any 
inputs. This may be checked at simulation time. Further, an 
output may not be stalled when the Multicast() construct is 
trying to send out a new cycle. In still another embodiment, 
the Multicast() construct () may not returnalist of data flows. 
Instead, it may returns a Superflow containing all the output 
iflows. The out separate=> 1 option may be used to have the 
Multicast() construct return a list. 
0090 Table 30 illustrates the application of the broadcast 
option within a Multicast() construct, in accordance with one 
embodiment. Ofcourse, it should be noted that the exemplary 
application shown in Table 30 is set forth for illustrative 
purposes only, and thus should not be construed as limiting in 
any manner, 

TABLE 30 

my SIn = aFlow 
->Hier(a => 12, b => 33, c => 46) 
->Defer Output(); 

SIn->print(“In ); 
In => (iflow) 

a => 12 
b => 33 
c => 46 

my SOut = SIn 
->Multicast(name 

count => 3, 
broadcast => 1); 

SOut->print(“Out"): 
Out => 

O => (iflow) 
a => 12 
b => 33 
c => 46 

1 => (iflow) 
a => 12 
b => 13 
c => 46 

=> NV multicast broadcast, 
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TABLE 30-continued 

2 => (iflow) 
a => 12 
b => 33 
c => 46 

(0091. As shown in Table 30, there are three output iflows, 
and the output iflows are all under the same superflow. 
0092 Table 31 illustrates the application of the Unicast 
Dest Flow option within a Multicast() construct, in accor 
dance with one embodiment. Of course, it should be noted 
that the exemplary application shown in Table 31 is set forth 
for illustrative purposes only, and thus should not be con 
Strued as limiting in any manner, 

TABLE 31 

my SIn = aFlow 
->Hier(a => 12, b => 33, c => 46) 
->Defer Output(); 

my SDest = aFlow 
->Hier(dest => 2 ) 
->Defer Output(); 

SIn->print(“In ); 
SDest->print(“Dest); 
In => (iflow) 

a => 12 
b => 33 
c => 46 

Dest => (iflow) 
dest => 2 

my SOut = SIn 
->Multicast(name => “NV multicast unicast dest flow, 

count => 3, 
Unicast Dest Flow => SDest); 

SOut->print(“Out"): 
Out => 

O => (iflow) 
a => 12 
b => 33 
c => 46 

1 => (iflow) 
a => 12 
b => 33 
c => 46 

2 => (iflow) 
a => 12 
b => 33 
c => 46 

0093. As shown in Table 31, a single output iflow is sent 
and the destination is coming from a parallel iflow. 
0094 Table 32 illustrates the application of the unicast 
dest field option within a Multicast( ) construct, in accor 
dance with one embodiment. Of course, it should be noted 
that the exemplary application shown in Table 32 is set forth 
for illustrative purposes only, and thus should not be con 
Strued as limiting in any manner, 

TABLE 32 

my SIn = aFlow 
->Hier(a => 12, b => 33, c => 46, dest => 2 ) 
->Defer Output(); 

SIn->print(“In ); 
In => (iflow) 
a => 12 
b => 33 
c => 46 
debt => 2 
my SOut = SIn 
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TABLE 32-continued 

->Multicast(name 
count => 3, 
unicast dest field => “dest, 
unicast dest field drop => 1); # drop it from the output 

SOut->print(“Out"): 
Out => 
O => (iflow) 
a => 12 
b => 33 
c => 46 

1 => (iflow) 
a => 12 
b => 33 
c => 46 
2 => (iflow) 
a => 12 
b => 33 
c => 46 

=> “NV multicast unicast dest field, 

0.095 As shown in Table 32, the destination is encoded in 
the input packet itself using a “dest field. The unicast dest 
field drop option may be used to ensure that this does not end 
up in the output iflows. 
0096 Table 33 illustrates the application of the Destmask 
flow option within a Multicast( ) construct, in accordance 
with one embodiment. Of course, it should be noted that the 
exemplary application shown in Table 33 is set forth for 
illustrative purposes only, and thus should not be construed as 
limiting in any manner. 

TABLE 33 

my SIn = aFlow 
->Hier(a => 12, b => 33, c => 46) 
->Defer Output(); 

my SDestmask = aFlow 
->Hier(destmask => 3) 
->Defer Output(); 

SIn->print(“In ); 
SDestmask->print(“Destmask'); 
In => (iflow) 

a => 12 
b => 33 
c => 46 

Destmask=> (iflow) 
destmask => 3 

my SOut = SIn 
->Multicast(name 

count => 3, 
Destmask Flow => SDestmask); 

SOut->print(“Out"): 
Out => 

O => (iflow) 
a => 12 
b => 33 
c => 46 

1 => (iflow) 
a => 12 
b => 33 
c => 46 

2 => (iflow) 
a => 12 
b => 33 
c => 46 

=> “NV multicast destmask flow, 

0097. As shown in Table 33, a bitmask of any name that 
includes 0 to 3 iflows may be supplied to receive the input data 
flow. 

0098 Table 34 illustrates the application of the destmask 
field option within a Multicast( ) construct, in accordance 
with one embodiment. Of course, it should be noted that the 
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exemplary application shown in Table 34 is set forth for 
illustrative purposes only, and thus should not be construed as 
limiting in any manner. 

TABLE 34 

my SIn = aFlow 
->Hier(a => 12, b => 33, c => 46, destmask =>3) 
->Defer Output(); 

SIn->print(“In ); 
In => (iflow) 

a => 17 
b => 33 
c => 46 
destmask => 3 

my SOut = SIn 
->Multicast(name 

count => 3, 
destmask field => “destmask, 
destmask field drop => 1); # drop it from the output 

SOut->print(“Out"): 
Out => 

O => (iflow) 
a => 12 
b => 33 
c => 46 

1 => (iflow) 
a => 12 
b => 33 
c => 46 

2 => (iflow) 
a => 12 
b => 33 
c=> 46 

=> “NV multicast destmask field, 

0099. As shown in Table 34, the destmask may be embed 
ded in the input data flow as the “destmask” field. The dest 
mask field drop option may be used to drop the destmask 
from the output iflows. 
0100 Table 35 illustrates the application of the destmask 
code option within a Multicast( ) construct, in accordance 
with one embodiment. Of course, it should be noted that the 
exemplary application shown in Table 35 is set forth for 
illustrative purposes only, and thus should not be construed as 
limiting in any manner. 

TABLE 35 

my SIn = aFlow 
->Hier(a => 12, b => 33, c => 46) 
->Defer Output(); 

SIn->print(“In ); 
In => (iflow) 

a => 17 
b => 33 
c => 46 

my SOut = SIn 
->Multicast(name 

count => 3, 
destmask code => Sub 
{ 
my (SIn, SD) = (a) ; 
# arbitrary destmask code using input fields 
i 

If SIn->{a} == 0 Then 
SD->{destmask} <== 0: 

Else 
SD->{destmask} <== SIn->{b} & Ox7; 

Endif 

=> “NV multicast destmask code, 
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TABLE 35-continued 

SOut->print(“Out"): 
Out => 

O => (iflow) 
a => 17 
b => 33 
c => 46 

1 => (iflow) 
a => 12 
b => 33 
c => 46 

2 => (iflow) 
a => 12 
b => 33 
c => 46 

0101. As shown in Table 35, the destmask code option 
may allow for the Supplying of a code block to perform a 
computation of a destmask from various fields in the input, 
where such computations are performed combinationally. 
For example, destmask may be set to all O’s if “a” is 0; 
otherwise it may be set to the lower 3 bits of “b.” In another 
embodiment, the code block may work similarly to Compute( 
) code blocks. For example, the input iflow may be passed by 
Multicast() as the first argument. The second argument is the 
data flow holding “destmask' which may be assigned by the 
code block. If the input data flow has multiple iflows, the code 
block may get called for each input iflow, thus producing a 
separate destmask for each input iflow. 
01.02 Table 36 illustrates the application of the Multicast( 

) construct in parallel, in accordance with one embodiment. 
Of course, it should be noted that the exemplary application 
shown in Table 36 is set forth for illustrative purposes only, 
and thus should not be construed as limiting in any manner. 

TABLE 36 

my SIn = aFlow 
>Hier N(4, a => 12, b => 33, c => 46)) 
->Defer Output(iflow level => 1); 

my SDestmask = aFlow 
->Hier N(4., destmask=> 3) 
->Defer Output(iflow level => 1); 

SIn->print(“In ); 
SDestmask->print(“Destmask'); 

O => (iflow) 
12 
33 

1 => (iflow) 
12 

b => 33 
c => 46 

2 => (iflow) 
a => 12 
b => 33 
c => 46 

3 => (iflow) 
a => 12 
b => 33 
c => 46 

Destmask => 
O => (iflow) 

destmask => 3 
1 => (iflow) 
destmask => 3 

2 => (iflow) 
destmask => 3 

3 => (iflow) 
destmask => 3 
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TABLE 36-continued 

my SOut = SIn 
->Multicast(name => “NV multicast parallel destmask flow”, 

count => 3, 
Destmask Flow => SDestmask); 

SOut->print(“Out"): 
Out => 

O => 
O => (iflow) 

a => 12 
b => 33 
c => 46 

1 => (iflow) 
a => 12 
b => 33 
c => 46 

2 => (iflow) 
a => 12 
b => 33 
c => 46 

1 => 
O => (iflow) 

a => 12 
b => 33 
c => 46 

1 => (iflow) 
a => 12 
b => 33 
c => 46 

2 => (iflow) 
a => 12 
b => 33 
c => 46 

2 => 

0 => (iflow) 
a => 12 
b => 33 
c => 46 

1 => (iflow) 
a => 12 
b => 33 
c => 46 

2 => (iflow) 
a => 12 
b => 33 
c => 46 

3 => 
O => (iflow) 

a => 12 
b => 33 
c => 46 

1 => (iflow) 
a => 12 
b => 33 
c => 46 

2 => (iflow) 
a => 12 
b => 33 
c => 46 

0103) As shown in Table 36, the input data flow has 4 
iflows, and each of those 4 iflows produces 3 output iflows in 
the final superflow. In one embodiment, a Shuffle() construct 
may be used to rearrange the output iflows. 
0.104 Further still, in one embodiment, the one or more 
control constructs may include a Select( ) construct. For 
example, the Select() construct may be the inverse of Multi 
cast() and may perform arbitration. In another embodiment, 
the Select( ) construct may take a list of data flows or a 
superflow where all interface data flows have the same struc 
ture, and may choose one interface data flow for its output. 
For example, one arbitration algorithm may be round-robin, 
but any type arbiter may be supported, including priority 
based, LRU, weighted-RR, etc. In another embodiment, the 
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arbiters may be implemented separately and may be regis 
tered, then referred to by name in the Select( ) construct. 
Further, in yet another embodiment, a user may supply their 
own arbitration code, or may supply the arbitration decision 
as a separate input data flow. Like Multicast(), the input data 
flows may be superflows, and the Select() construct may be 
applied in parallel and may produce an output Superflow 
containing the answers. Further, data flow control may be 
automatically managed by default. 
0105 Table 37 illustrates the application of a Select() 
construct to a data flow within a scripting language, in accor 
dance with one embodiment. Of course, it should be noted 
that the exemplary application shown in Table 37 is set forth 
for illustrative purposes only, and thus should not be con 
Strued as limiting in any manner, 

TABLE 37 

my SOut = SIn 
->Select(name => “NV XX yyy arb', 

Arb Flow => SArb); 

0106 Table 38 illustrates the options associated with a 
Select() construct, in accordance with one embodiment. Of 
course, it should be noted that the options shown in Table 38 
are set forth for illustrative purposes only, and thus should not 
be construed as limiting in any manner. 

16 
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0107. In one embodiment, the Select() construct may be 
the inverse of the Multicast( ) construct. The Select() con 
struct may choose one iflow from multiple input iflows. For 
example, the Select( ) construct may act as an arbiter. In 
another embodiment, the Select() construct may perform a 
round-robin arbitration. In yet another embodiment, the 
Select() construct may allow for a user to Supply an arbitra 
tion decision. 

0108. Additionally, in one embodiment, the Select() con 
struct may occur at the level above the iflow level, (e.g., called 
the parent of the iflow level, etc.). In another embodiment, the 
parent may have numerically named children iflows 0, 1, etc. 
In yet another embodiment, if there are multiple parents, then 
an output iflow may be created for each parents arbitration. 
0109 Further, in one embodiment, if the stallable option is 
1, then inputs may be stalled if the output is stalled. Also, if an 
Arb Flow is supplied, then the Arb Flow and the chosen 
input data flow may both arrive before either can be retired. 
Unchosen input iflows may be stalled. In another embodi 
ment, if the stallable option is 0, an Arb Flow may still be 
used as an assertion check that the proper input flow is valid. 
That input may always be chosen. The output iflow may not 
be stalling when a chosen iflow is attempted to be transferred 
to it. 

0110. Further still, in one embodiment, the Select() con 
struct may take in a superflow rather than a list of data flows. 
In another embodiment, an arb code option may exist that 

TABLE 38 

Option Type Default Description 

l8le id required name of generated module 
comment string undef optional comment to display in the debugger (highly 

recommended) 
arb string rr arbitration algorithm if there is no Arb Flow. 

rr is a simple round-robin algorithm without 
priorities and is the default. 
sp is a simple priority-based algorithm where iflow 0 
has highest priority always, iflow 1 has next-highest 
priority always, etc. 

Arb Flow flow undef separate arbitration flow; each arb iflow must have 
one field (any name) of width log2 
(input iflow count) 

keep hier O or 1 O indicates that the output iflow will have a dummy “O'” 
node added above it 

raise iflow O or 1 O when keep hier => 1 is specified, indicates that the 
output iflow level will be above the dummy “Onode 

out Src name string undef if specified, each output iflow will contain a field 
with this name that holds the index of the selected 

input iflow 
clk id global clock to use for this construct 

default 

stallable O or 1 global whether the construct is stallable 
default 

Out reg O or 1 global 0 or 1 indicating whether the output iflow is 
default registered out 

out roly reg O or 1 global O or 1 indicating whether the output iflows rdy signal 
default is registered in; causes a skid flop to be added even if 

out reg = 0. 
out fifo fifospec O a fifospec which is currently limited to a simple int 

representing depth of the fifo for the output iflow: 
out reg and out rody reg flops are after the fifo 
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may allow a user to supply a code block with its own arbiter. 
There may also be an aflow method to register an arbiter code 
block by name so that other designers may use them easily 
(e.g., arb=>''name, etc.). In this way, the system itself may 
not need to implement any arbiter. 
0111 Table 39 illustrates the application of round-robin 
arbitration within a Select() construct, in accordance with 
one embodiment. Of course, it should be noted that the exem 
plary application shown in Table 39 is set forth for illustrative 
purposes only, and thus should not be construed as limiting in 
any manner. As shown in Table 39, one output iflow is deter 
mined from three input iflows. 

TABLE 39 

my SIn = aFlow 
->Hier N(3, a => 12, b => 33, c => 46) 
->Defer Output(iflow level => 1); 

SIn->print(“In ); 
In => 
O => (iflow) 

a => 12 
b => 33 
c => 46 

1 => (iflow) 
a => 12 
b => 33 
c => 46 

2 => (iflow) 
a => 12 
b => 33 
c => 46 

my SOut = SIn 
->Select (name => “NV select rr'); 

SOut->print(“Out ); 
Out => (iflow) 

a => 12 
b => 33 
c => 46 

0112 Table 40 illustrates the application of an Arb Flow 
option within a Select() construct, in accordance with one 
embodiment. Ofcourse, it should be noted that the exemplary 
application shown in Table 40 is set forth for illustrative 
purposes only, and thus should not be construed as limiting in 
any manner. 

TABLE 40 

my SIn = aFlow 
->Hier N(3, a => 12, b => 33, c => 46) 
->Defer Output(iflow level => 1); 

my SArb =aFlow 
->Hier(arb => 2 ) 
->Defer Output(); 

SIn->print(“In ); 
SArb->print('Arb'): 
In => 

O => (iflow) 
a => 12 
b => 33 
c => 46 

1 => (iflow) 
a => 12 
b => 33 
c => 46 

2 => (iflow) 
a => 12 
b => 33 
c => 46 

Arb => (iflow) 
arb => 2 

my SOut = SIn 
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TABLE 40-continued 

->Select (name => “NV select arb flow”, 
Arb Flow => SArb); 

SOut->print(“Out"): 
Out => (iflow) 

a => 12 
b => 33 
c => 46 

0113. As shown in Table 40, the arbitration decision 
comes from a separate SArb data flow. In one embodiment, 
the SArb data flow may have one field (any name) with width 
log2(3)==2 in this case. 
0114 Table 41 illustrates the application of an keep hier 
option within a Select() construct, in accordance with one 
embodiment. Ofcourse, it should be noted that the exemplary 
application shown in Table 41 is set forth for illustrative 
purposes only, and this should not be construed as limiting in 
any manner. 

TABLE 41 

my SIn = aFlow 
->Hier N(3, a => 12, b => 33, c => 46) 
->Defer Output(iflow level => 1); 

my SArb =aFlow 
->Hier(arb => 2) 
->Defer Output(); 

SIn->print(“In ); 
SArb->print('Arb'): 
In => 

O => (iflow) 
a => 12 
b => 33 
c => 46 

1 => (iflow) 
a => 12 
b => 33 
c => 46 

2 => (iflow) 
a => 12 
b => 33 
c => 46 

Arb => (iflow) 
arb => 2 

my SOut = SIn 
->Select (name => “NV select keep hier, 

Arb Flow => SArb, 
keep hier => 1); 

SOut->print(“Out"): 
Out => 

O => (iflow) 
a => 12 
b => 33 
c => 46 

0.115. As shown in Table 41, the numeric level of hierarchy 
may be removed from the output iflow. If a user wants to keep 
it, the keep hier option may be used. 
0116 Table 42 illustrates the application of an raise iflow 
option within a Select() construct, in accordance with one 
embodiment. Ofcourse, it should be noted that the exemplary 
application shown in Table 42 is set forth for illustrative 
purposes only, and thus should not be construed as limiting in 
any manner. 

TABLE 42 

my SIn = aFlow 
->Hier N(3, a => 12, b => 33, c => 46) 
->Defer Output(iflow level => 1); 
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TABLE 42-continued 

my SArb =aFlow 
->Hier(arb => 2) 
->Defer Output(); 

SIn->print(“In ); 
SArb->print('Arb'): 
In => 
O => (iflow) 

a => 12 
b => 33 
c => 46 

1 => (iflow) 
a => 12 
b => 33 
c => 46 

2 => (iflow) 
a => 12 
b => 33 
c => 46 

Arb => (iflow) 
arb => 2 
my SOut = SIn 

->Select (name => “NV select raise iflow, 
Arb Flow => SArb, 
keep hier => 1, 
raise iflow => 1); 

SOut->print(“Out"): 
Out => (iflow) 

O => 
a => 12 
b => 33 
c => 46 

0117. As shown in Table 42, the iflow level may be made 
one level higher. 
0118 Table 43 illustrates the parallel application of a 
Select() construct, in accordance with one embodiment. Of 
course, it should be noted that the exemplary application 
shown in Table 43 is set forth for illustrative purposes only, 
and thus should not be construed as limiting in any manner, 

TABLE 43 

my SIn = aFlow 
->Hier N(4, aFlow->Hier N(3, a => 12, b => 33, c => 46)) 
->Defer Output(iflow level => 2); 

my SArb =aFlow 
->Hier N(4, arb => 2) 
->Defer Output(iflow level => 1); 

SIn->print(“In ); 
SArb->print('Arb'): 
In => 
O => 

O => (iflow) 
a => 12 
b => 33 
c => 46 

1 => (iflow) 
a => 12 
b => 33 
c => 46 

2 => (iflow) 
a => 12 
b => 33 
c => 46 

1 => 
O => (iflow) 

a => 12 
b => 33 
c => 46 

1 => (iflow) 
a => 12 
b => 33 
c => 46 
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TABLE 43-continued 

2 => (iflow) 
a => 12 
b => 33 
c => 46 

2 => 

O => (iflow) 
a => 12 
b => 33 
c => 46 

1 => (iflow) 
a => 12 
b => 33 
c => 46 

2 => (iflow) 
a => 12 
b => 33 
c => 46 

3 => 
O => (iflow) 

a => 12 
b => 33 
c => 46 

1 => (iflow) 
a => 12 
b => 33 
c => 46 

2 => (iflow) 
a => 12 
b => 33 
c => 46 

Arb => 
O => (iflow) 

arb => 2 
1 => (iflow) 

arb => 2 
2 => (iflow) 

arb => 2 
3 => (iflow) 

arb => 2 
my SOut = SIn 

->Select (name => “NV select parallel arb flow, 
Arb Flow => SArb); 

SOut->print(“Out"): 
Out => 

O => (iflow) 
a => 12 
b => 33 
c => 46 

1 => (iflow) 
a => 12 
b => 33 
c => 46 

2 => (iflow) 
a => 12 
b => 33 
c => 46 

3 => (iflow) 
a => 12 
b => 33 
c => 46 

0119. As shown in Table 43, there are 4 parents, each with 
3 children input iflows. One child is chosen for each parent, 
thus producing 4 output iflows. The SArb data flow in this 
case may have 4 separate decisions. 
0.120. Also, in one embodiment, the one or more control 
constructs may include a Connect() construct. For example, 
a deferred input may not be a primary input. Instead, the 
deferred input may be part of a circular design. For example, 
it may go into the top of a contrived pipeline, then come out 
the bottom. The Connect() construct may be used to connect 
the bottom to the deferred data flow at the top. In this way, the 
data flows may become the same, thus completing the circle. 
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0121 Table 44 illustrates the application of a Connect() 
construct, in accordance with one embodiment. Of course, it 
should be noted that the exemplary application shown in 
Table 44 is set forth for illustrative purposes only, and thus 
should not be construed as limiting in any manner. 

TABLE 44 

my SOut = SIn 
->Select(name => “NV defer circular ) 
->print("after select) 
->Multicast(name => “NV defer circular, # silly example here 

count => 3, 
broadcast => 1 ) 

->print("after multicast') 
->Connect(SIn ); 

after select => (iflow) 
a => 12 
b => 33 
c => 46 

after multicast => 
O => (iflow) 

a => 12 
b => 33 
c => 46 

1 => (iflow) 
a => 12 
b => 33 
c => 46 

2 => (iflow) 
a => 12 
b => 33 
c => 46 

0122. In addition, in one embodiment, the one or more 
control constructs may include an AS( ) construct. For 
example, the AS() construct may be used to map iflow data to 
a completely different packet format. The AS() construct may 
be used both inside and outside of a code block. In another 
embodiment, a user may pass a width to get a simple flattened 
Uint() leaf result, or the user may pass anything that can be 
passed to aFlow->Clone() including a name=>width list as 
shown above, or another active or inactive data flow to use as 
a template. 
0123. Furthermore, in one embodiment, SFlow->As Bits.( 

) may include shorthand for SFlow->As(SFlow->width.()). It 
may flatten out SFlow to the same number of raw bits. In 
another embodiment, if the input data flow has multiple 
iflows, then the template may be applied to each iflow. In yet 
another embodiment, the AS() construct may not be used to 
modify data flows above the iflow level. Note that inside a 
code block, the input data flow may not denote multiple 
iflows. In still another embodiment, if the template is larger 
than the input iflow, then the result may be zero-extended, and 
if the template is smaller than the input iflow, then the result 
may be truncated. In another embodiment, after this operation 
is performed, the template may not be modified in any way. 
0.124 Table 45 illustrates the application of an As) con 
struct to a data flow withina Scripting language, inaccordance 
with one embodiment. Of course, it should be noted that the 
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exemplary application shown in Table 45 is set forth for 
illustrative purposes only, and thus should not be construed as 
limiting in any manner. 

TABLE 45 

my SOut = SIn->As(a => 5, b => 20 ); 

0.125 fable 46 illustrates the application of an As() con 
struct as a control construct, in accordance with one embodi 
ment. Of course, it should be noted that the exemplary appli 
cation shown in Table 46 is set forth for illustrative purposes 
only, and thus should not be construed as limiting in any 
manner. As shown in Table 46, a hierarchical data flow is 
mapped to a Unit( ) leaf, and is then mapped back to the 
original packet format. 

TABLE 46 

my SIn = aFlow 
->Hier(a => 24, b => 40) 
->Defer Output() 
->print(“In ); 

my SOutO = SIn->As(SIn->width.()); 
my SOutl = SOut0->As(SIn ); 
In => (iflow) 

a => 24 
b => 40 

OutO => (iflow) 64 
Outl => (iflow) 

a => 24 
b => 40 

# raw bits 
# back to original format 

0.126 Table 47 illustrates the application of an As() con 
struct with different packet sizes, in accordance with one 
embodiment. Ofcourse, it should be noted that the exemplary 
application shown in Table 47 is set forth for illustrative 
purposes only, and thus should not be construed as limiting in 
any manner. As shown in Table 47, a data flow is converted to 
a Smaller packet (extra bits truncated), and then to a larger 
packet (Zero-extended). 

TABLE 47 

my SIn = aFlow 
->Hier(a => 24, b => 40) 
->Defer Output() 
->print(“In ); 

my SOut() = SIn->As(a => 12); # to Smaller packet containing only 
half of “a 
my SOutl = SOut0->As(SIn ); 
and all of “b' are zeroed) 

# back to larger format (half of “a 

I0127 Table 48 illustrates the application of an As() con 
struct inside a code block, in accordance with one embodi 
ment. Of course, it should be noted that the exemplary appli 
cation shown in Table 48 is set forth for illustrative purposes 
only, and thus should not be construed as limiting in any 
a. 

TABLE 48 

my SIn = aFlow 
->Hier(a => 24, b => 40) 
->Defer Output() 
->print(“In ); 

my SOut = SIn 
->Compute(name 

Out 
=> “NV as code, 
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TABLE 48-continued 

code => Sub 
{ 
my (SIn, SOut ) = (a) : 
my SOutO = SIn->As(a) => 12, a1 => 12); 

sa 

my SOut1 = {< SIn >}: 
SIn->width.() ) 

my SOut2 = {< 3 of SIn >}: 
of 

my SOut3 = SOut0->As(SIn ); 
back to SIn format 

my SOut4 = SOut0->As Bits(); 
>As(SOut0->width ()); 

Null SOut: 
SIn->print(“In ); 
SOutO->print(“OutO); 
SOutl->print(“Outl”); 
SOut2->print(“Out 2): 
SOut3->print(“Out3 ); 
SOut4->print(“Out4); 

); 

In => (iflow) 
a => 24 
b => 40 

OutO => 
aO => 12 
a1 => 12 

Out1 => 64 
Out? => 192 
Out3 => 

a => 24 
b => 40 

Outa => 24 

# don't care about output 

0128. As shown in Table 48, the As( ) construct may be 
used inside a code block. For example, a concatenation opera 
tor {<>} may be used to flatten a hierarchical flow into a leaf. 
Further, the "of extension may act as a macro that replicates 
SIn 3 times inside the concatenation. In one embodiment. 
As Bits() may be used as shorthand to flatten a data flow into 
the same number of raw bits. In another embodiment, "of 
may be used anywhere a programming language (e.g., Perl, 
etc.) list is allowed and the RHS may not need to be an 
aFlow it may return a Perl list. Additionally, see, for 
example, U.S. patent application Ser. No. , filed 

, which is hereby incorporated by reference in its 
entirety, and which describes examples of creating a compute 
COnStruct. 

0129. Table 49 illustrates the parallel application of an As( 
) construct inside a code block, in accordance with one 
embodiment. Ofcourse, it should be noted that the exemplary 
application shown in Table 49 is set forth for illustrative 
purposes only, and thus should not be construed as limiting in 
any manner. 

TABLE 49 

my SIn = aFlow 
->Hier N(3, a => 24, b => 40) 
->Defer Output(iflow level => 1) 
->print(“In ); 

my SOutO = SIn->As(a => 12); 
my SOut1 = SOut0->As(SIn->{O}); 
iflow) 

# make it smaller 

# back to original format (per 
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# equivalent to SIn->As( 

# no zero-extend it 
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# grab each half of 

# use repetition operator 

# shorthand for SOutO 

TABLE 49-continued 

a => 24 
b => 40 

0.130. As shown in Table 49, the As( ) construct may be 
applied to each iflow of an input data flow. Note that each 
iflow may be rewired to look like the template. In one embodi 
ment, changes may not be made above the iflow level. 
0131 Further, in one embodiment, the one or more control 
constructs may include a Shuffle() construct. For example, 
the Shuffle() construct may be used to rearrange data flows 
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above the iflow level. This may result in pure wiring and no 
logic. In another embodiment, constructs Such as Shuffle(). 
Select( ), and Multicast() may be used to manipulate data 
flows above the iflow level. In still another embodiment, the 
Shuffle() construct may support a transpose operation. 

0132 Table 50 illustrates the options associated with a 
Shuffle() construct, in accordance with one embodiment Of 
course, it should be noted that the options shown in Table 50 
are set forth for illustrative purposes only, and thus should not 
be construed as limiting in any manner. 

TABLE SO 

Option Type Default Description 

l8le id required name of generated module 
comment string undef optional comment to display 

in the debugger (highly 
recommended) 

op string transpose the type of shuffle operation; 
only transpose is Supported, so 
there is no point in ever 
Supplying this option 

level string iflow child level at which to perform 
shuffle: there must be two 
levels available above this 
level 

clk id global clock to use for this construct 
default 

0.133 Table 51 illustrates the application of a Transpose() 
construct, in accordance with one embodiment. Of course, it 
should be noted that the exemplary application shown in 
Table 51 is set forth for illustrative purposes only, and thus 
should not be construed as limiting in any manner. 

TABLE 51 

my SIn = aFlow 
->Hier N(5, aFlow->Hier N(2, a => 12, b => 33, c => 46)) 
->Defer Output(iflow level => 2): 

SIn->print(“In ); 
In => 
O => 

O => (iflow) 
a => 12 
b => 33 
c => 46 

1 => (iflow) 
a => 12 
b => 33 
c => 46 

1 => 

O => (iflow) 
a => 12 
b => 33 
c => 46 

1 => (iflow) 
a => 12 
b => 33 
c => 46 
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TABLE 51-continued 

O => (iflow) 
a => 12 
b => 33 
c => 46 

1 => (iflow) 
a => 12 
b => 33 
c => 46 

4 => 

O => (iflow) 
a => 12 
b => 33 
c => 46 

1 => (iflow) 
a => 12 
b => 33 
c => 46 

my SOut = SIn 
->Shuffle(name => “NV shuffle transpose”); 

SOut->print(“Out"): 

O => (iflow) 
a => 12 

33 
c => 46 

1 => (iflow) 
a => 12 

33 
c => 46 

2 => (iflow) 
a => 12 

33 
c => 46 

3 => (iflow) 
a => 12 

33 
c => 46 

4 => (iflow) 

O => (iflow) 

b => 33 
c => 46 

1 => (iflow) 
a => 12 

33 
c => 46 

2 => (iflow) 
a => 12 

33 
c => 46 

3 => (iflow) 
a => 12 

33 
c => 46 

4 => (iflow) 
a => 12 
b => 33 
c => 46 

I0134. As shown in Table 51, inputs of a crossbar switch 
may be shuffled to the outputs of the switch. For example, the 
data flow may have at least two levels above the iflow level. In 
another example, a grandfather level may be at the top, with a 
parent level at level 1, and an iflow level at level 0. There may 
be 5 parents, each with 2 childliflows. After the transpose, the 
output data flow may have 2 parents, each with 5 child iflows, 
one taken from each of the input parents. In this way, output 
parent 0 may have child iflow 0 from each of the 5 input 
parents, and output parent 1 may have child iflow 1 from each 
of the 5 input parents. 
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0135 Further still, in one embodiment, the one or more 
control constructs may include a Derive Clock() construct. 
For example, the Derive Clock() construct may be used to 
create a new clock from an existing clock from clk "clk’. In 
another embodiment, Disable Flow may disable the new 
clock when Disable Flow()->Valid(). 
0.136 Table 52 illustrates the options associated with a 
Derive Clock() construct, in accordance with one embodi 
ment. Of course, it should be noted that the options shown in 
Table 52 are set forth for illustrative purposes only, and thus 
should not be construed as limiting in any manner. 

TABLE 52 

Option Type Default Description 

l8le id required name of new clock 
comment string undef optional comment to 

display in the debugger 
(highly recommended) 

from clk id global clock from which this new 
default clock is derived; may be a 

primary or derived clock 
Disable Flow flow undef optional empty flow that 

indicates when to disable 
the new clock 

0137 Table 53 illustrates the application of a Derive 
Clock () construct, in accordance with one embodiment. Of 
course, it should be noted that the exemplary application 
shown in Table 53 is set forth for illustrative purposes only, 
and thus should not be construed as limiting in any manner. 

TABLE 53 

aFlow->default options set( clk=> "derived clk'); 

0.138. In one embodiment, "derived clk” may be made the 
default clk for subsequent constructs. In another embodi 
ment, clock dividers, Enable Flow, and other resets may be 
Supported. 
0139. In this way, clocking, clock gating, and data flow 
control may be regulated automatically during the creation of 
the integrated circuit design, utilizing a hardware develop 
ment language that is embedded in a scripting language. 
Additionally, the hardware development language may 
include high level built in control constructs that may be 
guaranteed to work and that may deal in terms of data flows. 
These control constructs may also be reused. 
0140. Further, the embedded hardware development lan 
guage may incorporate validation and Verification tests and 
may allow for automatic bottom up formal verification. Fur 
ther still, the embedded hardware description language may 
be flexible and configurable, and may be compatible with a 
variety of programming languages (e.g., Verilog(R, C++, 
CUDATM, etc.). Also, the embedded hardware development 
language may allow for debugging and visualization. For 
example, users may be taken to the earliest assertion failure 
within code, and signals may be automatically grouped. 
0141 FIG. 3 shows an exemplary hardware design envi 
ronment 300, in accordance with one embodiment. As an 
option, the environment 300 may be carried out in the context 
of the functionality of FIGS. 1-2. Of course, however, the 
environment 300 may be implemented in any desired envi 
ronment. It should also be noted that the aforementioned 
definitions may apply during the present description. 
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0142. As shown, within a design module 302, reusable 
component generators 304, functions 306, and a hardware 
description language embedded in a scripting language 308 
are all used to construct a design that is run and stored 310 at 
a source database 312. Also, any build errors within the 
design are corrected 344, and the design module 302 is 
updated. Additionally, the system backend is run on the con 
structed design 314 as the design is transferred from the 
source database 312 to a hardware model database 3160. 

0.143 Additionally, the design in the hardware model data 
base 316 is translated into C++ or CUDATM 324, translated 
into VerilogR 326, or sent directly to the high level GUI 
(graphical user interface) waveform debugger 336. If the 
design is translated into C++ or CUDATM324, the translated 
design 330 is provided to a signal dump 334 and then to a high 
level debugger 336. If the design is translated into Verilog(R) 
326, the translated design is provided to the signal dump 334 
or a VCS simulation 328 is run on the translated design, which 
is then provided to the signal dump 334 and then to the high 
level GUI waveform debugger 336. Any logic bugs found 
using the high level GUI waveform debugger 336 can then be 
corrected 340 utilizing the design module 302. 
014.4 FIG. 4 illustrates an exemplary system 400 in which 
the various architecture and/or functionality of the various 
previous embodiments may be implemented. As shown, a 
system 400 is provided including at least one host processor 
401 which is connected to a communication bus 402. The 
communication bus 402 may be implemented using any suit 
able protocol, such as PCI (Peripheral Component Intercon 
nect), PCI-Express, AGP (Accelerated Graphics Port), 
HyperTransport, or any other bus or point-to-point commu 
nication protocol(s). The system 400 also includes a main 
memory 404. Control logic (software) and data are stored in 
the main memory 404 which may take the form of random 
access memory (RAM). 
0145 The system 400 also includes input devices 412, a 
graphics processor 406 and a display 408, i.e. a conventional 
CRT (cathode ray tube), LCD (liquid crystal display), LED 
(light emitting diode), plasma display or the like. User input 
may be received from the input devices 412, e.g., keyboard, 
mouse, touchpad, microphone, and the like. In one embodi 
ment, the graphics processor 406 may include a plurality of 
shader modules, a rasterization module, etc. Each of the fore 
going modules may even be situated on a single semiconduc 
tor platform to form a graphics processing unit (GPU). 
0146 In the present description, a single semiconductor 
platform may refer to a sole unitary semiconductor-based 
integrated circuit or chip. It should be noted that the term 
single semiconductor platform may also refer to multi-chip 
modules with increased connectivity which simulate on-chip 
operation, and make Substantial improvements over utilizing 
a conventional central processing unit (CPU) and bus imple 
mentation. Of course, the various modules may also be situ 
ated separately or in various combinations of semiconductor 
platforms per the desires of the user. The system may also be 
realized by reconfigurable logic which may include (but is not 
restricted to) field programmable gate arrays (FPGAs). 
0147 The system 400 may also include a secondary stor 
age 410. The secondary storage 410 includes, for example, a 
hard disk drive and/or a removable storage drive, representing 
a floppy disk drive, a magnetic tape drive, a compact disk 
drive, digital versatile disk (DVD) drive, recording device, 
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universal serial bus (USB) flash memory, etc. The removable 
storage drive reads from and/or writes to a removable storage 
unit in a well-known manner. 
0148 Computer programs, or computer control logic 
algorithms, may be stored in the main memory 404 and/or the 
secondary storage 410. Such computer programs, when 
executed, enable the system 400 to perform various functions. 
Memory 404, storage 410 and/or any other storage are pos 
sible examples of computer-readable media. 
0149. In one embodiment, the architecture and/or func 
tionality of the various previous figures may be implemented 
in the context of the host processor 401, graphics processor 
406, an integrated circuit (not shown) that is capable of at 
least a portion of the capabilities of both the host processor 
401 and the graphics processor 406, a chipset (i.e. a group of 
integrated circuits designed to work and sold as a unit for 
performing related functions, etc.), and/or any other inte 
grated circuit for that matter. 
0150 Still yet, the architecture and/or functionality of the 
various previous figures may be implemented in the context 
of a general computer system, a circuit board system, a game 
console system dedicated for entertainment purposes, an 
application-specific system, and/or any other desired system. 
For example, the system 400 may take the form of a desktop 
computer, laptop computer, server, workstation, game con 
soles, embedded system, and/or any other type of logic. Still 
yet, the system 400 may take the form of various other devices 
m including, but not limited to a personal digital assistant 
(PDA) device, a mobile phone device, a television, etc. 
0151. Further, while not shown, the system 400 may be 
coupled to a network e.g. a telecommunications network, 
local area network (LAN), wireless network, wide area net 
work (WAN) such as the Internet, peer-to-peer network, cable 
network, etc.) for communication purposes. 
0152 While various embodiments have been described 
above, it should be understood that they have been presented 
by way of example only, and not limitation. Thus, the breadth 
and scope of a preferred embodiment should not be limited by 
any of the above-described exemplary embodiments, but 
should be defined only in accordance with the following 
claims and their equivalents. 
What is claimed is: 
1. A computer program product embodied on a non-tran 

sitory computer readable medium, comprising: 
code for receiving one or more parameters, at least one of 
which corresponds to an interface protocol; 

code for constructing a data flow based on the one or more 
parameters; 

code for receiving an indication of one or more control 
constructs; and 

code for creating a hardware design, utilizing the con 
structed data flow and the one or more control con 
StructS. 

2. The computer program product of claim 1, wherein the 
data flow represents a flow of data through the hardware 
design. 

3. The computer program product of claim 1, wherein the 
data flow is associated with one or more interfaces of the 
hardware design. 

4. The computer program product of claim 1, wherein the 
one or more parameters are received utilizing a hardware 
description language embedded in a scripting language. 

5. The computer program product of claim 4, wherein the 
computer program product is operable Such that the data flow 
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is implemented as an instance of a formal object class within 
the hardware description language. 

6. The computer program product of claim 1, wherein the 
data flow includes a superflow that represents multiple flows 
of data and that is associated with a plurality of interfaces. 

7. The computer program product of claim 1, wherein the 
data flow has a numeric, alphabetic, or custom naming hier 
archy. 

8. The computer program product of claim 1, wherein one 
or more of the control constructs include a module imple 
mented as part of a hardware description language that 
receives one or more data flows as input. 

9. The computer program product of claim 8, wherein the 
computer program product is operable such that one or more 
of the control constructs perform one or more operations 
based on the input data flow or flows. 

10. The computer program product of claim wherein the 
computer program product is operable such that one or more 
of the control constructs create one or more output data flows, 
based on the one or more input data flows. 

11. The computer program product of claim 10, wherein 
the computer program product is operable such that the one or 
more output data flows are input into one or more additional 
COnStructS. 

12. The computer program product of claim 1, wherein one 
or more of the control constructs include one or more param 
eters. 

13. The computer program product of claim 12, wherein 
the one or more parameters may include one or more of a 
name parameter, a comment parameter, a stallable parameter, 
a parameter used to specify a depth of an output queue, a 
parameter that causes an output data flow of the construct to 
be registered out, and aparameter that causes a ready signal of 
an output data flow of the construct to be registered in. 

14. The computer program product of claim 1, wherein one 
or more of the control constructs include a separate construct, 
a merge construct, a multicast construct, a select construct, a 
connect construct, an as construct, a shuffle construct, or a 
derive clock construct. 

15. The computer program product of claim 1, wherein the 
hardware design includes an integrated circuit design. 

16. The computer program product of claim 1, wherein the 
computer program product is operable such that both the data 
flow and the construct are included within the hardware 
design. 

17. The computer program product of claim 1, wherein the 
computer program product is operable such that one or more 
of the control constructs interrogate the data flow utilizing 
one or more introspection methods. 

18. The computer program product of claim 1, wherein the 
data flow includes a Superflow, and the computer program 
product is operable such that one or more of the control 
constructs performs automatic looping on a plurality of Sub 
flows of the superflow. 

19. A method, comprising: 
receiving one or more parameters, at least one of which 

corresponding to an interface protocol; 
constructing a data flow based on the one or more param 

eters; and 
receiving an indication of one or more control constructs; 
wherein a hardware design is capable of being created, 

utilizing the constructed data flow and the one or more 
control constructs. 
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20. A system, comprising: 
a processor for receiving one or more parameters, at least 

one of which corresponding to an interface protocol, 
constructing a data flow based on the one or more param 
eters, and receiving an indication of one or more control 
constructs; 

wherein a hardware design is capable of being created, 
utilizing the constructed data flow and the one or more 
control constructs. 

21. A method, comprising: 
receiving a plurality of parameters associated with a data 

flow to be included within a hardware design, the plu 
rality of parameters including an identification of an 
interface and a width field associated with the interface; 

constructing a data flow based on the plurality of param 
eters; 

receiving an indication of one or more control constructs to 
be included within the hardware design; and 

creating a hardware design, utilizing the constructed data 
flow and the one or more control constructs. 

22. The method of claim 21, wherein the constructed data 
flow is input to one or more of the control constructs, which 
creates one or more output data flows based on the input data 
flow. 


