US 20140278328A1
a9 United States

a2y Patent Application Publication o) Pub. No.: US 2014/0278328 A1

Alfieri 43) Pub. Date: Sep. 18, 2014
(54) SYSTEM, METHOD, AND COMPUTER Publication Classification
PROGRAM PRODUCT FOR CONSTRUCTING
A DATA FLOW AND IDENTIFYING A (51) Imnt.ClL
CONSTRUCT GO6F 17/50 (2006.01)
(52) US.CL
(71) Applicant: NVIDIA CORPORATION, Santa CPC oot GO6F 17/5045 (2013.01)
Clara, CA (US) USPC oo 703/14
(72) Inventor: Robert Anthony Alfieri, Chapel Hill, 67 ABSTRACT
NC (US) A system, method, and computer program product are pro-
vided for creating a hardware design. In use, one or more
(73) Assignee: NVIDIA CORPORATION, Santa parameters are received, where at least one of the parameters
Clara, CA (US) corresponds to an interface protocol. Additionally, a data flow

is constructed based on the one or more parameters. Further,
an indication of one or more control constructs is received,
where a hardware design is capable of being created, utilizing
the constructed data flow and the one or more control con-

(22) Filed: Mar. 15,2013 structs.
<)8

(21) Appl. No.: 13/844,330

CREATING AN INTEGRATED CIRCUIT DESIGHN,
UTILIZING A HARDWARE DESCRIPTION LANGUAGE 309
EMBEDDED IN A SCRIPTING LANGUAGE

CREATING ONE OR MORE DATA FLOWS IN 204
ASSOCIATION WITH THE INTEGRATED CIRCUIT /\)
DESIGN
INCORPORATING ONE OR MORE CONTROL 206

CONSTRUCTS INTO THE INTEGRATED CIRCUIT /\)
DESIGN IN ASSOCIATION WITH THE ONE OR MORE
DATA FLOWS

Patent Application Publication Sep. 18, 2014 Sheet 1 of 4 US 2014/0278328 A1

q}o

RECEIVING ONE OR MORE PARAMETERS, AT LEAST
ONE OF WHICH CORRESPONDING TO AN
INTERFACE PROTOCOL

A\

CONSTRUCTING A DATA FLOW BASED ON THE ONE
OR MORE PARAMETERS

104

RECEIVING AN INDICATION OF ONE OR MORE
CONTROL CONSTRUCTS, WHERE A HARDWARE
DESIGN 15 CAPABLE OF BEING CREATED, UTILIZING
THE CONSTRUCTED DATA FLOW AND THE ONE OR
MORE CONTROL CONSTRUCTS

106

FIGURE 1

Patent Application Publication Sep. 18, 2014 Sheet 2 of 4 US 2014/0278328 A1

%200

CREATING AN INTEGRATED CIRCUIT DESIGN,
UTILIZING A HARDWARE DESCRIPTION LANGUAGE
EMBEDDED IN A SCRIPTING LANGUAGE

CREATING ONE OR MORE DATAFLOWS IR
ASSOCIATION WITH THE INTEGRATED CIRCUIT
DESIGN

204

INCORPORATING ONE OR MORE CONTROL
CONSTRUCTS INTO THE INTEGRATED CIRCUIT
DESIGN IN ASSOCIATION WiTH THE ONE OR MORE
DATA FLOWS

206

FIGURE 2

Patent Application Publication Sep. 18, 2014 Sheet 3 of 4 US 2014/0278328 A1

300
A S

304
REUSABLE COMPONENT GENERATORS | |
306
FUNCTIONS BNy

308
HARDWARE DESCRIPTION LANGAUGE /"‘\\J

EMBEDDED IN SCRIPTING LANGUAGE

J 318
NS ?\ 6
/‘_) . 4 | HIGH-LEVEL GUI WAVEFORM /\\)
DEBUGGER

312

SOURCE
DATABASE

&

%

343 / 4 4
314 /\\J

234
(N 316 N\
L LN SIGNAL DUMP |

HARDWARE
MODEL DATABASE (i,z\a) / &

328 330

VERILOG VOS SiM N /\)

324

N\

_—

C++ OR CUDA

¥

FIGURE 3

Patent Application Publication Sep. 18, 2014 Sheet 4 of 4 US 2014/0278328 A1

400

CENTRAL ||
¥, PROCESSOR ||

401
MEMORY
404
N SECONDARY ||
i STORAGE |
INPUT 410
DEVICES
412
GRAPHICS
PROCESSOR

406
DISPLAY

408

FIGURE 4

US 2014/0278328 Al

SYSTEM, METHOD, AND COMPUTER
PROGRAM PRODUCT FOR CONSTRUCTING
A DATA FLOW AND IDENTIFYING A

CONSTRUCT
FIELD OF THE INVENTION
[0001] The present invention relates to integrated circuit
design.
BACKGROUND
[0002] Hardware design and verification are important

aspects of the hardware creation process. For example, a
hardware description language may be used to model and
verify circuit designs. However, current techniques for
designing hardware have been associated with various limi-
tations.

[0003] For example, validation and verification may com-
prise a large portion of a hardware design schedule utilizing
current hardware description languages. Additionally, flow
control and other protocol logic may not be addressed by
current hardware description languages during the hardware
design process. There is thus a need for addressing these
and/or other issues associated with the prior art.

SUMMARY

[0004] A system, method, and computer program product
are provided for constructing a data flow (e.g., a representa-
tion of a flow of data through a hardware design, etc.). In use,
one or more parameters are received, where at least one of the
parameters corresponds to an interface protocol. Addition-
ally, a data flow is constructed based on the one or more
parameters. Further, an indication of one or more control
constructs (e.g., constructions that may perform various com-
mon data steering and storage operations, etc.) is received,
where a hardware design is capable of being created, utilizing
the constructed data flow and the one or more control con-
structs.

BRIEF DESCRIPTION OF THE DRAWINGS

[0005] FIG. 1 shows a method for constructing a data flow,
in accordance with one embodiment.

[0006] FIG. 2 shows a method for building an integrated
circuit using data flows and constructs, in accordance with
another embodiment.

[0007] FIG. 3 shows an exemplary hardware design envi-
ronment, in accordance with one embodiment.

[0008] FIG. 4 illustrates an exemplary system in which the
various architecture and/or functionality of the various pre-
vious embodiments may be implemented.

DETAILED DESCRIPTION

[0009] In various embodiments, data flows and constructs
that represent a hardware design including one or more cir-
cuits are specified. The data flows and constructs are analyzed
by a hardware design application program that includes one
or more components. The hardware design application pro-
gram may analyze the data flows and constructs, identify
errors, and/or generate a representation of the hardware
design that is suitable for simulation and/or synthesis.

[0010] FIG. 1 shows a method 100 for constructing a data
flow, in accordance with one embodiment. As shown in
operation 102, one or more parameters are received, where at

Sep. 18,2014

least one of the parameters corresponds to an interface pro-
tocol. In one embodiment, the interface protocol may include
a communications protocol associated with a particular inter-
face. In another embodiment, the communications protocol
may include one or more formats for communicating data
utilizing the interface, one or more rules for communicating
data utilizing the interface, a syntax used when communicat-
ing data utilizing the interface, semantics used when commu-
nicating data utilizing the interface, synchronization methods
used when communicating data utilizing the interface, etc.
[0011] Additionally, in one embodiment, the one or more
parameters may include an identification of an interface (e.g.,
an interface of a hardware design, etc.). In another embodi-
ment, the one or more parameters may include a width field
associated with the interface. In yet another embodiment, the
one or more parameters may be received utilizing a hardware
description language. For example, one or more parameters
may be received utilizing a hardware description language
embedded in a scripting language.

[0012] Further, as shown in operation 104, a data flow is
constructed based on the one or more parameters. In one
embodiment, the data flow (input or output) may represent a
flow of data. For example, the data flow may represent a flow
of data through a hardware design. In another embodiment,
the data flow may include one or more groups of signals. For
example, the data flow may include one or more groups of
signals including implicit flow control signals that may oper-
ate according to the interface protocol. In yet another embodi-
ment, the data flow may be associated with one or more
interfaces. For example, the data flow may be associated with
one or more interfaces of a hardware design corresponding to
at least one of the received parameters. In another embodi-
ment, the data flow may be constructed as a data type.
[0013] Also,inone embodiment, constructing the data flow
as a data type may include implementing the data flow as an
instance of a formal object class within a hardware descrip-
tion language. In another embodiment, the constructed data
flow may include one or more fields with assigned values
(e.g., one or more width fields each associated with an inter-
face, etc.). In yet another embodiment, the constructed data
flow may be viewed as a predetermined data structure (e.g., a
hash, etc.) within the scripting language.

[0014] Further, in one embodiment, the data flow may have
multiple levels of hierarchy. For example, the data flow may
include a supertlow that represents multiple flows of data
(e.g., subflows, etc.) and that is associated with a plurality of
interfaces. In another embodiment, the superflow may act as
an array within the scripting language. In yet another embodi-
ment, the superflow may include one or more subfields with
assigned values. In still another embodiment, the data flow
may be included within the superflow (e.g., as a data flow
within the hierarchy of the superflow, etc.).

[0015] Further still, in one embodiment, the data flow may
have a numeric hierarchy. For example, all fields of a data
flow may be numbered with successive whole integers, start-
ing at zero. In another embodiment, the data flow may have an
alphabetic hierarchy. For example, all fields of a data flow
may be labeled with one or more identifiers (e.g., letters of the
alphabet, symbols, numbers, etc.). In yet another embodi-
ment, the data flow may have a custom naming hierarchy. For
example, all fields of a data flow may be labeled with custom
(e.g., user-provided, etc.) names.

[0016] Also, in one embodiment, the data flow may include
a cloned data flow. For example, the data flow may be created

US 2014/0278328 Al

by cloning another data flow, utilizing the hardware descrip-
tion language. In another embodiment, the data flow itself
may be cloned to create another data flow. In yet another
embodiment, the data flow may be an output data flow of a
construct. In still another embodiment, the data flow may be
located in ado/abase.

[0017] Inaddition, as shown in operation 106, an indication
of one or more control constructs is received, where a hard-
ware design is capable of being created, utilizing the con-
structed data flow and the one or more control constructs. In
one embodiment, there may be two categories of constructs
(e.g., constructions), control constructs and compute con-
structs. Control constructs may perform various common
data steering and storage operations, be implemented in the
hardware design application program, and be inserted into a
hardware design representation. Compute constructs may
provide a mechanism by which a designer can represent cir-
cuitry to perform user-defined operations. For example, in
one embodiment, the function of a particular state machine
may be encoded within a compute construct.

[0018] In one embodiment, the one or more control con-
structs may include an entity (e.g., a module, etc.) imple-
mented as part of the hardware description language that
receives one or more data flows as input. In another embodi-
ment, the one or more control constructs may be located in a
database. In yet another embodiment, the one or more control
constructs may perform one or more operations based on the
input data flow or flows. In still another embodiment, the one
or more control constructs may be built into the hardware
description language. In another example, the one or more
control constructs may perform one or more data steering and
storage operations, utilizing the constructed data flow as
input.

[0019] Furthermore, in one embodiment, the one or more
control constructs may each create one or more output data
flows, based on one or more input data flows. In another
embodiment, the one or more output data flows may be input
into one or more additional constructs (e.g., control con-
structs, compute constructs, etc.). Inyet another embodiment,
the one or more control constructs may each include one or
more parameters. For example, the one or more control con-
structs may each include a name parameter that may indicate
a name for that construct. In another example, each of the one
or more control constructs may include a comment parameter
that may provide a textual comment that may appear in a
debugger when debugging a design. In yet another example,
each of the one or more control constructs may include a
stallable parameter that may indicate whether automatic flow
control is to be performed within that construct.

[0020] Furtherstill, in one example, each of the one or more
control constructs may include a parameter used to specify a
depth of an output queue (e.g., a first in, first out (FIFO)
queue, etc.) for each output data flow of that construct. In
another example, each of the one or more control constructs
may include a parameter that causes an output data flow of
that construct to be registered out. In yet another example,
each of the one or more control constructs may include a
parameter that causes a ready signal of an output data flow of
that construct to be registered in and an associated skid flop
row to be added.

[0021] Also, in one embodiment, one or more of the control
constructs may include a separate construct that creates mul-
tiple output data flows from a single input data flow. In
another embodiment, one or more of the control constructs

Sep. 18,2014

may include a merge construct that creates a single output
data flow from multiple input data flows. In yet another
embodiment, one or more of the control constructs may
include a multicast construct that takes a single input data
flow and sends it to one or more output data flows. In still
another embodiment, one or more of the control constructs
may include a select construct that accepts multiple input data
flows and selects one of them to be an output data flow.

[0022] Additionally, in one embodiment, one or more ofthe
control constructs may include a connect construct that con-
nects an input data flow of the construct to a deferred output.
A deferred output may include a primary input to the design
or an input data flow that does not yet connect to an output
data flow of another construct. In another embodiment, one or
more of the control constructs may include an as construct
that maps flow data to a different format. In yet another
embodiment, one or more of the control constructs may
include a shuffle construct that rearranges a structuring of
input data flows. In still another embodiment, one or more of
the control constructs may include a derive clock construct
that creates a new clock from an existing clock.

[0023] Further, in one embodiment, the hardware design
may include one or more of the following: a circuit design, a
behavioral simulation model, an estimated timing model, etc.
For example, the hardware design may include an integrated
circuit design, a digital circuit design, an analog circuit
design, a mixed-signal circuit design, etc. In another embodi-
ment, the hardware design may be created utilizing the hard-
ware description language. For example, the hardware design
may be created by initiating a new hardware design and
saving the new hardware design into a database, utilizing the
hardware description language. In yet another embodiment,
both the data flow and the construct may be included within
the hardware design.

[0024] Further still, in one embodiment, the hardware
design may be created by activating the constructed data flow.
For example, the data flow may be inactive while it is being
constructed and modified, and the data flow may subse-
quently be made active (e.g., by passing the data flow to an
activation function utilizing the hardware description lan-
guage, etc.). In another embodiment, the hardware design
may be created by inputting the activated data flow into the
construct. For example, the activated data flow may be des-
ignated as an input of the construct within the hardware
design, utilizing the hardware description language. In this
way, the construct may perform one or more operations,
utilizing the input data flow, and may create one or more
additional output data flows, utilizing the input data flow.

[0025] Also, in one embodiment, the data flow may be
analyzed within the construct. For example, the data flow may
be analyzed during the performance of one or more actions by
the construct, and execution of the hardware design may be
halted immediately if an error is discovered during the analy-
sis. In this way, errors within the hardware design may be
determined immediately and may not be propagated during
the execution of the hardware design, until the end of hard-
ware construction, or during the running of a suspicious lan-
guage flagging program (e.g., a lint program) on the hardware
construction. In another embodiment, the construct may ana-
lyze the data flow input to the construct and determine
whether the data flow is an output flow from another construct
or a deferred output (e.g., a data flow that is a primary design
input, a data flow that will be later connected to an output of

US 2014/0278328 Al

a construct, etc.). In this way, it may be confirmed that the
input data flow is an active output.

[0026] In addition, in one embodiment, one or more of the
control constructs may interrogate the data flow utilizing one
or more introspection methods. For example, one or more of
the control constructs may utilize one or more introspection
methods to obtain field names within the data flow, one or
more widths associated with the data flow, etc. In another
embodiment, all clocking may be handled implicitly within
the hardware design. For example, a plurality of levels of
clock gating may be generated automatically and may be
supported by the hardware design language. In this way,
manual clock gating may be avoided. In yet another embodi-
ment, one or more of the control constructs may be superflow
aware. For example, the data flow may include a superflow,
and one or more of the control constructs may perform auto-

Sep. 18,2014

design create construct shown in Table 1 is set forth for
illustrative purposes only, and thus should notbe construed as
limiting in any manner.

TABLE 1

aFlow->Design_ Create(name => “NV_XX_yyy”);

aFlow->Design__Save(top => $topio);

[0030] Additionally, in one embodiment, one or more
options may be associated with the creation of the integrated
circuit design. Table 2 illustrates exemplary circuit design
options, in accordance with one embodiment. Of course, it
should be noted that the exemplary circuit design options
shown in Table 2 are set forth for illustrative purposes only,
and thus should not be construed as limiting in any manner.

TABLE 2
Option Type Default Description
name id required name of top-level module for design
clks array_ of clkspec [{clk => array of into about primary clk-reset pairs;
“clk” reset_ clkspec is a hash with “clk” and “reset_" as
=>“reset_"} required fields and currently there are no
1 optional clkspec fields, but there will likely be
others in the future; the first clk name in the
array becomes the default for created constructs
src_dirs array_of_string [<”1] array of directories Design_ Inst() searches for

source databases of instantiated designs; by
default, we search only in the current directory;
note that this has nothing to do with the
directories Perl searches for .pm modules

matic looping on a plurality of subflows of the supertlow, such
that each subflow of the superflow is automatically analyzed
within the one or more control constructs.

[0027] More illustrative information will now be set forth
regarding various optional architectures and features with
which the foregoing framework may or may not be imple-
mented, per the desires of the user. It should be strongly noted
that the following information is set forth for illustrative
purposes and should not be construed as limiting in any
manner. Any of the following features may be optionally
incorporated with or without the exclusion of other features
described.

[0028] FIG. 2 shows a method 200 for building an inte-
grated circuit using data flows and constructs, in accordance
with one embodiment. As an option, the method 200 may be
carried out in the context of the functionality of FIG. 1. Of
course, however, the method 200 may be implemented in any
desired environment. It should also be noted that the afore-
mentioned definitions may apply during the present descrip-
tion.

[0029] As shown in operation 202, an integrated circuit
design is created, utilizing a hardware description language
embedded in a scripting language. In one embodiment, the
integrated circuit design may be saved to a database or hard
drive after the integrated circuit design is created. In another
embodiment, the integrated circuit design may be created in
the hardware description language. In yet another embodi-
ment, the integrated circuit may be created utilizing a design
create construct. Table 1 illustrates an exemplary design cre-
ate construct that may be used within the scripting language to
create an integrated circuit design, in accordance with one
embodiment. Of course, it should be noted that the exemplary

[0031] Further, as shownin operation 204, one or more data
flows are created in association with the integrated circuit
design. In one embodiment, each of the one or more data
flows may represent a flow of data through the integrated
circuit design and may be implemented as instances of a data
type utilizing a scripting language (e.g., Perl, etc.). For
example, each data flow may be implemented in Perl as a
formal object class. In another embodiment, one or more data
flows may be associated with a single interface. In yet another
embodiment, one or more data flows may be associated with
multiple interfaces, and each of these data flows may be called
supertlows. For example, superflows may allow the passing
of multiple interfaces utilizing one variable.

[0032] Further still, in one embodiment, each of the one or
more data flows may have an arbitrary hierarchy. In another
embodiment, each node in the hierarchy may have alphanu-
meric hames or numeric names. In yet another embodiment,
the creation of the one or more data flows may be tied into
array and hash structures of the scripting language. For
example, Verilog® literals may be used and may be automati-
cally converted into constant data flows by a preparser before
the scripting language sees them.

[0033] Also, in one embodiment, once created, each of the
one or more data flows may look like hashes to scripting code.
In this way, the data flows may fit well into the scripting
language’s way of performing operations, and may avoid
impedance mismatches. In another embodiment, the one or
more data flows may be created in the hardware description
language. Table 3 illustrates an exemplary data flow creation
within a scripting language, in accordance with one embodi-
ment. Of course, it should be noted that the exemplary data

US 2014/0278328 Al

flow creation shown in Table 3 is set forth for illustrative
purposes only, and thus should not be construed as limiting in
any manner.

TABLE 3

my $In = aFlow
->Hier(a=>22,b=>32,c=>42)
->Defer_ Output();

[0034] As shown in Table 3, a data flow may be represented
by an allow class package within the scripting language. In
one embodiment, the data flow may represent a single inter-
face with multiple named signals within the design. In
another embodiment, flow control may be handled implicitly.
Inanother embodiment, data may be defined for a single cycle
within the design.

[0035] Additionally, in one embodiment, a data flow may
have multiple levels of hierarchy. For example, the root of the
hierarchy may be called level O, or level “top.” in another
example, the leaves may be unsigned integers of an assigned
hit width. In another embodiment, a hierarchical level may
have all alphanumeric names or all numeric names. For
example, if the names are numeric, they may be numbered
with whole integers starting with zero.

[0036] Further, in one embodiment, a level in the hierarchy
may be called the iflow level. For example, iflow may refer to
an interface data flow. In another example, the iflow level may
denote one interface, specifically the data for one cycle on the
interface. In another embodiment, by default, a root of the
data flow hierarchy may be the iflow level. In this way, each
data flow may represent one interface by default. In yet
another embodiment, flow control may be handled implicitly
for each iflow.

[0037] Further still, in one embodiment, one or more of the
data flows may include a superflow. For example, a superflow
may include a data flow whose iflow level is lower than the top
level. In this way, a superflow may have multiple iflows (each
representing an interface with independent flow control)
withinit. In another embodiment, each of the one or more data
flows may have an inactive or active status. For example,
while a data flow is being constructed, it may be inactive. In
another example, inactive data flows may be modified in any
arbitrary way. In yet another embodiment, nodes may be
added and removed in the hierarchy.

[0038] Also, in one embodiment, before a data flow can be
passed to a construct, it may need to be made active (e.g.,
using acommand such as Defer_Output(), etc.). At that point,
the data flow may not be modified directly by a user, but only
indirectly by control and compute constructs. In another
embodiment, Defer_Output() may have an option that lets
you pick which level in the data flow that is the iflow level. In
yet another embodiment, by default, level O (top) may be the
iflow level.

[0039] Table 4 illustrates exemplary data flow creation con-
structs within a scripting language, in accordance with one
embodiment. Of course, it should be noted that the exemplary
data flow creation constructs shown in Table 4 are set forth for
illustrative purposes only, and thus should not be construed as
limiting in any manner.

Sep. 18,2014

TABLE 4

1. Hier() may create a named hierarchy of arbitrary structure

2. Hier_ N() may create numeric hierarchies

3. Hier_ Named_ N() may create a named hierarchy with N fields with
the same name prefix

4. Hash manipulations may allow you to add and remove subflows from
hierarchies

5. Ulnt() may create a simple leaf flow with no name

6. Const($val) may create a leaf that has a constant value

7. Const_All_ Ones($width) may create a leaf that has a constant
value that is width $width and all 1°s

8. Literals like 32'hdeadbeef may implicitly create constant values

9. Clone() may copy an active or inactive flow, and may always yield
an inactive flow; all constant leaves may also be cloned

10. Clone(0) is like Clone() but may not clone constant leaves

[0040] Table 5 illustrates the creation of a one-level hierar-
chy data flow within a scripting language, in accordance with
one embodiment. Of course, it should be noted that the exem-
plary data flow creation shown in Table 5 is set forth for
illustrative purposes only, and thus should notbe construed as
limiting in any manner.

TABLE 5

my $Flow = aFlow
->Hier(a=>12,b=>33,c=>46);
$Flow->print(“Flow”);
add a field, remove a field
delete $Flow->{a};
$Flow->{d} = 55;
$Flow->print(“Flow after removing ‘a’ and adding *d™);
$Flow->Defer_ Output();
$Flow->print(“Flow after marking it active™);
Flow =>
a=>17
b=>33
c=>46
Flow after removing ‘a’ and adding ‘d’ =>
b=>33
c=>46
d=>55
Flow after marking it active => (iflow)
b=>33
c=>46
d=>55

[0041] Asshown in Table 5, a one-level hierarchy data flow
is created with alphanumeric names “a,” “b,” and “c.” Addi-
tionally, field “a” is then removed and field “d” is added.
Further, the data flow is marked active using Defer_Output()
with the iflow at the root.

[0042] Table 6 illustrates the creation of a two-level hierar-
chy data flow within a scripting language, in accordance with
one embodiment. Of course, it should be noted that the exem-
plary data flow creation shown in Table 6 is set forth for
illustrative purposes only, and thus should notbe construed as
limiting in any manner.

TABLE 6

my $Flow = aFlow
->Hier(a=>12,b=>[c =>33,d =>46]);
$Flow->print(“Flow”);
$Flow->{e} = [f=> 11, g => 32];
$Flow->print(“Flow after adding sub-hierarchy ‘¢);
Flow =>
a=>12
b=>
c=>33
d=>46

US 2014/0278328 Al

TABLE 6-continued

Flow after adding sub-hierarchy ‘e’ =>
a=>12
b=>
c=>33
d=>46
e=>
f=>11
g=>32

[0043] Table 7 illustrates the creation of a data flow with
manual numbering within a scripting language, in accordance
with one embodiment. Of course, it should be noted that the
exemplary data flow creation shown in Table 7 is set forth for
illustrative purposes only, and thus should not be construed as
limiting in any manner.

TABLE 7

numeric hierarchy created manually using a loop
my $fields = [];
formy $i (0..3)

apush $fields, $i => [a => 12, b => 3]; # equivalent to push @
{$fields}, ...

my $Flow = aFlow
->Hier(@{$fields})
->Defer_ Output();
$Flow->print(“Flow”);
Flow => (iflow)
0=>
a=>12
b=>3
1=>
a=>12
b=>3
2 =>
a=>12
b=>3
3=
a=>12
b=>3

[0044] Table 8 illustrates the creation of a data flow with
automatic numbering within a scripting language, in accor-
dance with one embodiment. Of course, it should be noted
that the exemplary data flow creation shown in Table 8 is set
forth for illustrative purposes only, and thus should not be
construed as limiting in any manner.

TABLE 8

[0045]
named hierarchy with N names with the same prefix within a
scripting language, in accordance with one embodiment. Of
course, it should be noted that the exemplary data flow cre-
ation shown in Table 9 is set forth for illustrative purposes
only, and thus should not be construed as limiting in any
manner.

Sep. 18,2014

Table 9 illustrates the creation of a data flow with a

TABLE 9

my $Flow = aFlow
->Hier Named_ N(“prefix”, 4, [a => 12, b=>3])
->Defer_ Output();
$Flow->print(“Flow”);
Flow => (iflow)
prefix0 =>
a=>12
b=>3
prefixl =>
a=>12
b=>3
prefix2 =>
a=>12
b=>3
prefix3 =>
a=>12
b=>3

my $Flow = aFlow
—>Hier_N(4, [a=>12,b=>3])
->Defer_ Output();
$Flow->print(“Flow”);
Flow => (iflow)
0=>
a=>12
b=>3
1=>
a=>12
b=>3
2 =>
a=>12
b=>3
3=
a=>12
b=>3

[0046] Table 10 illustrates the creation and cloning ofa data
flow within a scripting language, in accordance with one
embodiment. Of course, it should be noted that the exemplary
data flow creation and cloning shown in Table 10 is set forth
for illustrative purposes only, and thus should not be con-
strued as limiting in any manner.

TABLE 10

my $Flow0 = aFlow
—>Hier_N(4,[a=>12,b=>3])
->Defer_ Output(iflow__level =>1);
$Flow0->print(“Flow0”);
my $Flowl = $Flow0->Clone();
delete $Flow1->{1}; # causes 2 and 3 to be renumbered down
$Flow1->Defer_ Outputs();
$Flowl->print(“Flowl after removing node ‘1°7);
Flow0 =>
0 => (iflow)
a=>12
b=>3
1 => (iflow)
a=>12
b=>3
2 => (iflow)
a=>12
b=>3
3 => (iflow)
a=>12
b=>3
Flowl after removing node 1’ => (iflow)
0=>
a=>12
b=>3
1=>
a=>12
b=>3
2 =>
a=>12
b=>3

[0047] Asshown in Table 10, a data flow is created with an
iflow level of 1, which ends up creating four iflows. Addition-
ally, the active data flow is then cloned using Clone(), which
creates an inactive data flow. Field 1 is then deleted, which

US 2014/0278328 Al

causes fields 2 and 3 to be renumbered down. Further, the new
data flow is activated and the iflow level is set at level 0.
[0048] Table 11 illustrates the marking of an inactive data
flow as an active output within a scripting language, in accor-
dance with one embodiment. Of course, it should be noted
that the exemplary data flow marking shown in Table 11 is set
forth for illustrative purposes only, and thus should not be
construed as limiting in any manner.

TABLE 11

my $In = aflow
->Hier(a=>22,b=>32,c=>42)
->Defer_ Output();

Connect $Out => $In; # or $Out->Connect($In)

[0049] As shown in Table 11, Defer_Output() is used to
mark an inactive data flow as an active output, which may
allow it to be used as an input to another construct, but
deferring where it came from until later. In one embodiment,
once a data flow is marked as active, it may not be changed
directly, only by passing it to other constructs.

[0050] Additionally, in one embodiment, if a data flow is a
primary input to the design, it may be passed to Design_Save(
) as part of the top [/O hash. In another embodiment, ifthe data
flow is part of some kind of circular pipeline where the data
flow goes into the top of the pipeline, then comes out the
bottom later, a Connect operator may be used to connect the
real output that comes out the bottom with the deferred output
that went into the top.

[0051] Additionally, as shown in operation 206, one or
more control constructs are incorporated into the integrated
circuit design in association with the one or more data flows.
Inone embodiment, the one or more data flows may be passed
into the one or more constructs, where they may be checked at
each stage. In another embodiment, bugs may be immediately
found and the design script may be killed immediately upon
finding an error. In this way, a user may avoid reviewing a
large amount of propagated errors. In yet another embodi-
ment, the one or more control constructs may check that each
input data flow is an output data flow from some other con-
struct or is what is called a deferred output.

[0052] For example, a deferred output may include an indi-
cation that a data flow is a primary design input or a data flow
will be connected later to the output of some future construct.
In another embodiment, it may be confirmed that each input
data flow is an input to no other constructs. In yet another
embodiment, each construct may create one or more output
data flows that may then become the inputs to other con-
structs. In this way, the concept of correctness-by-construc-
tion is promoted. In still another embodiment, the constructs
are also superflow-aware. For example, some constructs may
expect supertlows, and others may perform an implicit “for’
loop on the supertlow’s subflows so that the user doesn’t have
to.

[0053] Furthermore, in one embodiment, a set of introspec-
tion methods may be provided that may allow user designs
and generators to interrogate data flows. For example, the one
or more control constructs may use these introspection func-
tions to perform their work. More specifically, the introspec-
tion methods may enable obtaining a list of field names within
a hierarchical data flow, widths of various subflows, etc. In
another embodiment, in response to the introspection meth-

Sep. 18,2014

ods, values may be returned in forms that are easy to manipu-
late by the scripting language.

[0054] Further still, in one embodiment, the one or more
control constructs may include constructs that are built into
the hardware description language and that perform various
data steering and storage operations that have to be built into
the language. In another embodiment, the constructs may be
bug-free as an incentive for the user to utilize them as much as
possible.

[0055] Also, in one embodiment, the one or more control
constructs may each contain a plurality of common param-
eters. For example, the one or more control constructs may
contain a “name” parameter that indicates a base module
name that will be used for the construct and which shows up
in the debugger. In another embodiment, the one or more
control constructs may contain a “comment” parameter that
provides a textual comment that shows up in the debugger. In
yet another embodiment, the one or more control constructs
may contain a “stallable” parameter that indicates whether
automatic flow control is to be performed according to an
interface protocol within the construct (e.g., whether input
data flows are to be automatically stalled when outputs aren’t
ready, etc.). For example, if the “stallable” parameter is 0, the
user may use various flow methods such as Valid() and
Ready(), as well as a Stall statement to perform manual flow
control. In another example, additional flow controls such as
vld/rdy_next and vld/credit may be used.

[0056] Additionally, in one embodiment, the one or more
control constructs may contain an out_fifo parameter that
allows the user to specity a depth of the output FIFO for each
output data flow. For example, when multiple output data
flows are present, the user may supply one depth that is used
by all, or an array of per-output-flow depths. In another
embodiment, the one or more control constructs may contain
an out_reg parameter that causes the output data flow to be
registered out. For example, the out_reg parameter may take
a 0 or 1 value or an array of such like out_fifo. In yet another
embodiment, the one or more control constructs may contain
an in_reg parameter that causes the input data flow to be
registered in. In still another embodiment, the one or more
control constructs may contain an in_fifo parameter that
allows the user to specify a depth of the input FIFO for each
output data flow. Further, in one embodiment, the one or more
control constructs may contain an out_rdy_reg parameter that
causes the output data flow’s implicit ready signal to be
registered in. This may also lay down an implicit skid flop
before the out_reg. In another embodiment, out_fifo, out_reg,
and out_rdy_reg may be mutually exclusive and may be used
in any combination.

[0057] The “stainable”, out_reg, out_fifo, and out_rdy_reg
parameters specify how the interface protocol is imple-
mented. An interface protocol defines a characteristic of an
input or output data flow that is represented in a simulation
model and a synthesized circuit created from the hardware
design representation. For example, circuitry is automatically
inserted into a representation of the hardware design based on
the interface protocol. The automatic insertion reduces the
amount of work needed to enter a design by a user and
presumably also ensures that the interface protocol operation
has been thoroughly verified. Furthermore, the hardware
design application components may perform various checks
to identify errors when data flows having incompatible inter-

US 2014/0278328 Al

face protocols are connected. Errors may also be identified
during simulation by the automatically inserted representa-
tions.

[0058] Furtherstill, in one embodiment, clocking and clock
gating may be handled implicitly. For example, there may be
three levels of clock gating that may be generated automati-
cally: fine-grain clock gating (FGCG), second-level module
clock gating (SLCG), and block-level design clock gating
(BLCGQ). In another embodiment, FGCG may be handled by
synthesis tools. In yet another embodiment, a per-construct
(i.e., per-module) status may be maintained. In still another
embodiment, when the status is IDLE or STALLED, all the
flops and rams in that module may be gated. In another
embodiment, the statuses from all the constructs may be
combined to form the design-level status that is used for the
BLCG. This may be performed automatically, though the user
may override the status value for any Compute() construct
using the Status <value> statement.

[0059] Also, in one embodiment, the one or more control
constructs may include a Separate() construct. For example,
the Separate() construct may take an input data flow and
provide ways of peeling off various fields from that data flow
(e.g., by splitting a data flow into multiple output data flows
and returning the output data flows, etc.). In another example,
a user can create as many data flows as needed from a single
input data flow. In another embodiment, regular expressions
may be used to concisely describe the set of fields to be
retained for each output data flow. If the input data flow is a
supertlow (multiple interface data flows), the Separate() con-
struct may implicitly perform the same operation on the inter-
face data flows in parallel. The output of the Separate()

Sep. 18,2014

construct may be a list of data flows or a superflow containing
them. In yet another embodiment, there may be options that
allow levels of hierarchy to be automatically collapsed in the
process. If the chosen fields have numeric names, they may be
renumbered automatically (e.g., so they follow O, 1, 2, etc.).
[0060] Further, in one embodiment, the Separate() con-
struct may split the input data flow in one or more ways. For
example, the Separate() construct may supply a list of fields
to be kept for each output data flow. The list may contain
regular expressions. In another example, the Separate() con-
struct may supply a count of the number of fields to be kept for
each output data flow. In yet another example, the Separate()
construct may duplicate the input data flow N times, produc-
ing N+1 output data flows.

[0061] Table 12 illustrates the application of a Separate()
construct to a data flow within a scripting language, in accor-
dance with one embodiment. Of course, it should be noted
that the exemplary application shown in Table 12 is set forth
for illustrative purposes only, and thus should not be con-
strued as limiting in any manner.

TABLE 12
my @Outs = $In->Separate(name => “NV_XX_ yyy_ split”,
keep => [“a,b”,
b))

[0062] Table 13 illustrates the options associated with a
Separate() construct, in accordance with one embodiment.
Of course, it should be noted that the options shown in Table
13 are set forth for illustrative purposes only, and thus should
not be construed as limiting in any manner.

TABLE 13
Option Type Default Description
name id required name of generated module
comment string undef optional comment to display in the
debugger (highly recommended)
keep array_of namelist one of these 3 is array of strings each of which is a

keep__count

duplicate int

level string
remove__hier

clk id
stallable int
out__reg

out_separate int

out_rdy_reg

out__fifo

array_of_int

array_of_int

array_of_int

array_of_int

array__of fifospec

required list of names to keep for that output
flow

array of counts each of which is the
number of subflows to keep for that
output flow

number of times to simply duplicate

one of these 3 is
required

one of these 3 is

required the input flow (this count + 1 are
returned)

iflow level at which to perform separate

[0,0,...] array of boolean flags each of which
indicates whether a level of
hierarchy is to be removed for that
output flow

global default clock to use for this construct

global default whether the construct is stallable

[global default, . ..] array of 0 or 1 indicating whether
the corresponding output iflow is
registered out

1 indicates that the output is a
separate list of flows (default value
of 1) or a supertlow (0)

array of 0 or 1 indicating whether
the corresponding output iflow’s rdy
signal is registered in; causes a skid
flop to be added even if out__reg = 0.
array of fifo specs, which are
currently limited to a simple int
representing depth of the fifo for the
corresponding output iflow; out_ reg
and out_rdy_ reg flops are after the
fifo

[global default, . ..]

[0,0,...]

US 2014/0278328 Al

[0063] Further still, in one embodiment, if the stallable
option is 1, then the input may be stalled until data can be
advanced on all outputs (even if internally when out_
reg=lout_reg). In another embodiment, the input may not be
transferred to any output until all outputs can accept it. In yet
another embodiment, if the stallable option is 0, a simulation-
time check may be generated such that the input may always
be transferred to all outputs whenever valid input is available.
[0064] Table 14 illustrates the application of a keep option
within a Separate() construct, in accordance with one
embodiment. Of course, it should be noted that the exemplary
application shown in Table 14 is set forth for illustrative
purposes only, and thus should not be construed as limiting in
any manner.

TABLE 14

my $In = aFlow
->Hier(a=>12,b=>33,c=>46)
->Defer_ Output();
$In->print(“In”);
In => (iflow)
a=>12
b =>33
c=>46
my($Out0, $Outl, $Out2, $Out3) = $In
->Separate(name => “NV__separate”,

keep => [“a,b”,
“bc”,
I, # matches all fields
/80, # matches no fields

“/A(?!b\$)/” 1); # matches any field that is not ‘b’
$Out0->print(“Out0”);
$Outl->print(“Outl™);
$Out2->print(“Out2”);
$Out3->print(“Out3”);
$Outd->print(“Outd”);
Out0 => (iflow)
a=>12
b=>33

Outl => (iflow)
b=>33
c=>46

Out2 => (iflow)
a=>12
b=>33
c=>46

Out3 => (iflow)

Outd => (iflow)
a=>12
c=>46

[0065] As shown in Table 14, the keep option may allows
for explicit naming of the subflows that are kept for each
output data flow. In one embodiment, each name list may be
enclosed in double quotes. In another embodiment, each
name may be an identifier or a regular expression. In still
another embodiment, unused input subflows may be dropped.
[0066] Table 15 illustrates the application of a duplicate
option within a Separate() construct, in accordance with one
embodiment. Of course, it should be noted that the exemplary
application shown in Table 15 is set forth for illustrative
purposes only, and thus should not be construed as limiting in
any manner.

TABLE 15

my $In = aFlow
->Hier(d => 32, e => 8)
->Defer_ Output();
$In->print(“In”);

Sep. 18,2014

TABLE 15-continued

In => (iflow)

d=>32

e=>8
my($Out0, $0utl) = $In

->Separate(name => “NV__separate_ dup”,
duplicate =>1); # will get 2 copies

$Out0->print(“Out0”);
$Out1->print(“Outl”);
Out0 => (iflow)

d=>32

e=>8
Outl => (iflow)

d=>32

e=>8

[0067] As shown in Table 15, the duplicate option may
provide a quick way to completely duplicate the input data
flow. In another embodiment, the count may be one less than
the number of copies returned.

[0068] Table 16 illustrates the application of a keep_count
option within a Separate() construct, in accordance with one
embodiment. Of course, it should be noted that the exemplary
application shown in Table 16 is set forth for illustrative
purposes only, and thus should not be construed as limiting in
any manner.

TABLE 16

my $In = aFlow
->Hier(0=>[m=>40], # normally these are all the same,
but this makes it clearer what’s happening
1=>[n=>2,0=>1],
2=>[p=>5,q=>10],
3=>[r=>3],
4=>[s=>17,t=>191])
->Defer_ Output();
$In->print(“In”);
In => (iflow)
0=>
m =>40
1=>
n=>2
o=>1
2 =>
p=>5
q=>10
3 =>
r=>3
4=>
s=>17
t=>19
my($Out0, $Outl) = $In
->Separate(name =>“NV__separate_ keep__count”,
keep__count =>[1, 3]);
$Out0->print(“Out0”);
$Outl->print(“Outl™);
Out0 => (iflow)
0=>
m =>40
Outl => (iflow)
0=>
n=>2
o=>1
1=>
p=>5
q=>10
2 =>
r=>3

[0069] As shown in Table 16, the keep_count option may
split a numerical hierarchical into multiples where each out-
put data flow contains some count of the next input subflows.

US 2014/0278328 Al

In one embodiment, the chosen subflows may be renumbered
in the second, third, etc. output data flows. In another embodi-
ment, not all input subflows may need to be consumed (e.g.,
note that input subflow “4” was dropped).

[0070] Table 17 illustrates the application of remove_hier
and out_reg options within a Separate() construct, in accor-
dance with one embodiment. Of course, it should be noted
that the exemplary application shown in Table 17 is set forth
for illustrative purposes only, and thus should not be con-
strued as limiting in any manner,

TABLE 17

my($Out0, $0utl) = $In
->Separate(name =>“NV__separate__remove__hier”,
keep__count => [1, 3],
remove__hier => [1, 0],
first output flow
out_reg=>[0,1]); # flop second output flow
$Out0->print(“Out0”);
$Out1->print(“Outl”);
Out0 => (iflow)
m =>40
Outl => (iflow)
0=>
n=>2
o=>1
1=>
p=>5
q=>10
2 =>
r=>3

remove hierarchy for

[0071] As shown in Table 17, the remove_hier option may
allow for the removal of a level of a hierarchy for each output
data flow. Additionally, the out_reg option may indicate that a
particular output is to be flopped. For example, in Table 17,
$0utl will be flopped (and will have a skid register because
stallable is 1 by default), while $Out0 will not be flopped.

[0072] Table 18 illustrates the parallel application of a
Separate() construct, in accordance with one embodiment.
Of course, it should be noted that the exemplary application
shown in Table 18 is set forth for illustrative purposes only,
and thus should not be construed as limiting in any manner.

TABLE 18

my $In = aFlow
->Hier N(4,[a=>12,b=>22,c=>32])
->Defer_ Output(iflow__level =>1);
$In->print(“In”);
In=>
0 => (iflow)
a=>12
b=>22
c=>32
1 => (iflow)
a=>12
b=>22
c=>32
2 => (iflow)
a=>12
b=>22
c=>32
3 => (iflow)
a=>12
b=>22
c=>32
my($Out0, $0utl) = $In
->Separate(name =>“NV__separate_ parallel_keep”,
keep =>[“a,b”, “c”]);

Sep. 18,2014

TABLE 18-continued

$Out0->print(“Out0”);
$Outl->print(“Outl”);
Out0 =>
0 => (iflow)
a=>12
b=>22
1 => (iflow)
a=>12
b=>22
2 => (iflow)
a=>12
b=>22
3 => (iflow)
a=>12
b=>22
Outl =>
0 => (iflow)
c=>32
1 => (iflow)
c=>32
2 => (iflow)
c=>32
3 => (iflow)
c=>32

[0073] As shown in Table 18, a Separate() occurs at the
iflow level. If the input data flow has multiple iflows, then the
Separate() may be repeated for each iflow. As also shown in
Table 18, the input data flow has 4 mows, each of which has
subflows “a”, “b”, and “c.”

[0074] Table 19 illustrates a separation of iflows using a
level option, in accordance with one embodiment. Of course,
it should be noted that the exemplary application shown in
Table 19 is set forth for illustrative purposes only, and thus
should not be construed as limiting in any manner.

TABLE 19

my($Out0, $0utl) = $In
->Separate(name =>“NV__separate__above__iflow”,
level => “top”,
keep__count =>[1,3]);
$Out0->print(“Out0”);
$Outl->print(“Outl”);
Out0 =>
0 => (iflow)
a=>12
b=>22
c=>32
Outl =>
0 => (iflow)
a=>12
b=>22
c=>32
1 => (iflow)
a=>12
b=>22
c=>32
2 => (iflow)
a=>12
b=>22
c=>32

[0075] As shown in Table 19, iflows are separated from
each other from within the input data flow from Table 18,
using the level option. The first iflow is placed in one output
data flow, and the other three iflows are placed in another
output data flow.

[0076] Additionally, in one embodiment, the one or more
control constructs may include a Merge() construct. For
example, the Merge() construct may be the inverse of the

US 2014/0278328 Al

Separate() construct. In another embodiment, the Merge()
construct may take multiple input data flows (e.g., in list form,
supertlow form, etc.) and may merge the corresponding fields
into the same data flow. In yet another embodiment, when
fields are names, they may not conflict in name. In still
another embodiment, when fields are numbered, they may
conflict so they may be renumbered. In another embodiment,
all other features of the Separate() construct may be sup-
ported.

[0077] Table 20 illustrates the application of a Merge()
construct to a data flow within a scripting language, in accor-
dance with one embodiment. Of course, it should be noted
that the exemplary application shown in Table 20 is set forth
for illustrative purposes only, and thus should not be con-
strued as limiting in any manner.

TABLE 20

my $Out = $In0
->Merge(name =>“NV_XX_ yyy_ combine”,
Others => [$In1, $In2]);

Sep. 18,2014

TABLE 22

my $In0 = aFlow
->Hier(a =>25,b=>35)
->Defer_ Output();
my $Inl = aFlow
->Hier(¢ =>33,d =>43)
->Defer_ Output();
$In0->print(“In0”);
$Inl->print(“In1”);
In0 => (iflow)
a=>25
b=>35
Inl => (iflow)
c=>33
d=>43
my $Out = $In0
->Merge(name =>“NV__merge_named”,
Others => [$Inl1]);
$Out->print(“Out”);
Out => (iflow)
a=>25
b=>35
c=>33
d=>43

[0078] Table 21 illustrates the options associated with a
Merge() construct, in accordance with one embodiment. Of
course, it should be noted that the options shown in Table 21
are set forth for illustrative purposes only, and thus should not
be construed as limiting in any manner.

[0081] Table 23 illustrates the merging of two data flows
with conflicting numeric names using a Merge() construct, in
accordance with one embodiment. As shown in Table 23, the
second data flow’s 0 subflow is renumbered up to 1. Of
course, it should be noted that the exemplary merging shown

TABLE 21

Option Type Default Description

name id required name of generated module

comment string undef optional comment to display in the
debugger (highly recommended)

Others array_of flow required array of other flows to be merged

level string iflow level at which to perform the merge

add__hier Oorl 0 indicates whether to add a level of
hierarchy to each input (at level) before
doing the merge

clk id global default clock to use for this construct

stallable Oorl global default whether the construct is stallable

out_reg Oorl global default 0 or 1 indicating whether the output iflow

is registered out

out_rdy_reg Oorl global default

0 or 1 indicating whether the output

iflow’s rdy signal is registered in; causes a
skid flop to be added even if out__reg = 0.

out_fifo fifospec 0 a fifospec which is currently limited to a
simple int representing depth of the fifo
for the output iflow; out_reg and
out_rdy_ reg flops are after the fifo

[0079] Inoneembodiment,the Merge() construct may take

multiple input data flows and merge them into one output data
flow. In another embodiment, if the stallable option is 1, then
inputs may be stalled until all arrive and an output cycle can
be advanced (even if internally when out_reg>0). In another
embodiment, if the stallable option is O, then all input data
flows may be valid in the same cycle because there may be no
way to stall any inputs. This may be checked at simulation
time. Further, the output may not be stalled when the Merge(
) construct is trying to send out a new cycle.

[0080] Table 22 illustrates the merging of two data flows
with non-conflicting names using a Merge() construct, in
accordance with one embodiment. Of course, it should be
noted that the exemplary merging shown in Table 22 is set
forth for illustrative purposes only, and thus should not be
construed as limiting in any manner.

in Table 23 is set forth for illustrative purposes only, and thus
should not be construed as limiting in any manner.

TABLE 23

my $In0 = aFlow
>Hier(0 => [a =>25, b =>35])
->Defer_ Output();
my $Inl = aFlow
>Hier(0 => [a =>25, b =>35])
->Defer_ Output();
$In0->print(“In0”);
$Inl->print(“In1”);
In0 => (iflow)
0=>
a=>25
b=>35
Inl => (iflow)

US 2014/0278328 Al

TABLE 23-continued

0=>
a=>25
b=>35
my $O0ut = $In0
->Merge(name =>“NV__merge_numeric”,
Others => [$In1]);
$Out->print(“Out”);
Out => (iflow)
0=>
a=>25
b=>35
1=>
a=>25
b=>35

[0082] Table 24 illustrates the parallel use of a Merge()
construct, in accordance with one embodiment. As shown in
Table 24, if the input data flows have multiple iflows, the
merge may occur in parallel. Of course, it should be noted that
the exemplary usage shown in Table 24 is set forth for illus-
trative purposes only, and thus should not be construed as
limiting in any manner.

TABLE 24

my $In0 = aFlow
->Hier N(3, [a=> 25, b=>35])
->Defer_ Output(iflow__level =>1);
my $Inl = aFlow
->Hier N(3, [c=>33,d =>43])
->Defer_ Output(iflow__level =>1);
$In0->print(“In0”);
$Inl->print(“In1”);
In0 =>
0 => (iflow)
a=>25
b=>35
1 => (iflow)
a=>25
b=>35
2 => (iflow)
a=>25
b=>35
Inl =>
0 => (iflow)
c=>33
d=>43
1 => (iflow)
c=>33
d=>43
2 => (iflow)
c=>33
d=>43
my $O0ut = $In0
->Merge(name =>“NV__merge_ parallel”,
Others => [$Inl]);
$Out->print(“Out”);
Out =>
0 => (iflow)
a=>25
b=>35
c=>33
d=>43
1 => (iflow)
a=>25
b=>35
c=>33
d=>43
2 => (iflow)
a=>25
b=>35
c=>33
d=>43

11

Sep. 18,2014

[0083] Table 25 illustrates the use of a Merge() construct
above the iflow level, in accordance with one embodiment. Of
course, it should be noted that the exemplary usage shown in
Table 25 is set forth for illustrative purposes only, and thus
should not be construed as limiting in any manner.

TABLE 25

my $Out = $In0
->Merge(name =>“NV__merge_ above_ iflow”,
level =>0, # same as “top”
Others => [$Inl]);
$Out->print(“Out”);
Out =>
0 => (iflow)
a=>25
b=>35
1 => (iflow)
a=>25
b=>35
2 => (iflow)
a=>25
b=>35
3 => (iflow)
c=>33
d=>43
4 => (iflow)
c=>33
d=>43
5 => (iflow)
c=>33
d=>43

[0084] Table 26 illustrates the use of a Merge() construct
above the top level, in accordance with one embodiment. For
example, if the iflow level is O (e.g., top, etc.), a level of
hierarchy may be added, which may require both level=>-1
and add_hier=>1. Of course, it should be noted that the exem-
plary usage shown in Table 26 is set forth for illustrative
purposes only, and thus should not be construed as limiting in
any manner.

TABLE 26

my $In0 = aFlow
->Hier(a=>25,b=>35)
->Defer_ Output();
my $Inl = aFlow
->Hier(a=>25,b=>35)
->Defer_ Output();
$In0->print(“In0”);
$In1->print(“In1”);
In0 => (iflow)
a=>25
b=>35
Inl => (iflow)
a=>25
b=>35
my $Out = $In0
->Merge(name =>“NV_merge_add_ hier_above_ top”,
Others =>[$Inl],
level =>-1,
add__hier=>1);
$Out->print(“Out”);
Out =>
0 => (iflow)
a=>25
b=>35
1 => (iflow)
a=>25
b=>35

[0085] Further, in one embodiment, the one or more control
constructs may include a Multicast() construct. For example,

US 2014/0278328 Al

the Multicast() construct may take a single data flow input
and send it to one or more output data flows. In another
embodiment, there may be various ways to specify the mask
of outputs to receive the input, including embedding the mask
in the input data flow or providing a separate Unicast/Dest-
mask input data flow. In yet another embodiment, the Multi-
cast() construct may implicitly work in parallel on input data
flows that are superflows, and produce corresponding super-
flows. In still another embodiment, automatic data flow con-
trol may be provided if stallable is 1.

[0086] Table 27 illustrates the application of a Multicast()
construct to a data flow within a scripting language, in accor-
dance with one embodiment. Of course, it should be noted
that the exemplary application shown in Table 27 is set forth

Sep. 18,2014

for illustrative purposes only, and thus should not be con-
strued as limiting in any manner.

TABLE 27
my $Out = $In
->Multicast(name =>“NV_XX_ yyy_unicast”,
count =>3,

Unicast_Dest_ Flow => $Dest__Flow);

[0087] Table 28 illustrates the options associated with a
Multicast () construct, in accordance with one embodiment.
Of course, it should be noted that the options shown in Table
28 are set forth for illustrative purposes only, and thus should
not be construed as limiting in any manner.

TABLE 28
Option Type Default Description
name id required name of generated module
comment string undef optional comment to display in
the debugger (highly
recommended)
count int required number of output iflows per
input iflow
broadcast int 1 of these broadcast to all <count> output
6is iflows
required
Unicast_ Dest_ Flow flow 1 of these send to one output; the unicast
6is flow must have one field of
required width log2(count)
unicast_ dest_ field id 1 of these send to one output; the
6 is destination is a separate field in
required the input with this name
Destmask_ Flow flow 1 of these send to zero or more outputs; the

destmask_ field

destmask_ code

unicast_ dest_ field_ drop

destmask_ field drop

clk
stallable

out__reg

out_rdy_reg

out__fifo

out__separate

6is destination mask must have one
required fleld of width <count>
id 1 of these send to zero or more outputs; the
6 is destination mask is a separate
required field in the input with this name
code 1 of these send to zero or more outputs; the
6 is destination mask is computed

required combinatorially by a user-
supplied code block; the code
block receives the input iflow
and the output destmask flow as
parameters from Multicast()
Oorl 0 when unicast__dest_field is given,
indicates whether to drop the
field in the output iflows
Oorl 0 when destmask_ field is given,
indicates whether to drop the
field in the output iflows
id global clock to use for this construct
default
Oorl global whether the construct is stallable
default
array_ of_int [global array of 0 or 1 indicating whether

default, ...] the corresponding output iflow is
registered out
[global array of 0 or 1 indicating whether
default, ...] the corresponding output iflow’s
rdy signal is registered in; causes
a skid flop to be added even if
out_reg=0.
array of fifo specs, which are
currently limited to a simple int
representing depth of the fifo for
the corresponding output iflow;
out_regand out_rdy_ reg flops
are after the fifo
indicates whether to return a list
of flows or return one superflow
(default)

array_ of_int

array_ of_fifospec [0,0,...]

int 0

US 2014/0278328 Al

[0088] In one embodiment, the Multicast() construct may
take one input iflow and sends it to one or more output iflows.
Table 29 illustrates various options for redirecting an input
data flow using the Multicast() construct, in accordance with
one embodiment. Of course, it should be noted that the
options shown in Table 29 are set forth for illustrative pur-
poses only, and thus should not be construed as limiting in any
manner.

TABLE 29

1. Use the broadcast => 1 option to send it always to all outputs

2. Use the Unicast_ Dest_ Flow option to have a side flow indicate the
single output that should receive the input

3. Use the Destmask_ Flow option to have a side flow that contains a
bitmask indicating some arbitrary number of zero or more outputs to
receive the input

4. Use the unicast_ dest_field option to indicate that the unicast
destination is embedded in the input as a separate field

5. Use the destmask_ field option to indicate that the destmask is
embedded in the input as a separate field

6. Use the destmask__code option that allows you to write arbitrary code
to compute the destination using any combination of input fields

[0089] Additionally, in one embodiment, the multicast may
always occur at the iflow level. In another embodiment, if
stallable is 1, then the input iflow may be stalled until all
destined output iflows are unstalled. No outputs may receive
the input until all of them are uninstalled. In yet another
embodiment, if stainable is 0, then the input iflow and the
Unicast_Dest_Flow/Destmask_Flow iflow may be valid in
the same cycle because there may be no way to stall any
inputs. This may be checked at simulation time. Further, an
output may not be stalled when the Multicast() construct is
trying to send out a new cycle. In still another embodiment,
the Multicast() construct () may not return a list of data flows.
Instead, it may returns a superflow containing all the output
iflows. The out_separate=>1 option may be used to have the
Multicast() construct return a list.

[0090] Table 30 illustrates the application of the broadcast
option within a Multicast() construct, in accordance with one
embodiment. Of course, it should be noted that the exemplary
application shown in Table 30 is set forth for illustrative
purposes only, and thus should not be construed as limiting in
any manner,

TABLE 30

my $In = aFlow
->Hier(a=>12,b=>33,c=>46)
->Defer_ Output();
$In->print(“In”);
In => (iflow)
a=>12
b=>33
c=>46
my $Out = $In
->Multicast(name
count =>3,
broadcast =>1);
$Out->print(“Out”);
Out =>
0 => (iflow)
a=>12
b=>33
c=>46
=> (iflow)
a=>12
b=>13
c=>46

=>“NV__multicast_ broadcast”,

—

Sep. 18,2014

TABLE 30-continued

2 => (iflow)
a=>12
b=>33
c=>46

[0091] As shown in Table 30, there are three output iflows,
and the output iflows are all under the same superflow.
[0092] Table 31 illustrates the application of the Unicast_
Dest_Flow option within a Multicast() construct, in accor-
dance with one embodiment. Of course, it should be noted
that the exemplary application shown in Table 31 is set forth
for illustrative purposes only, and thus should not be con-
strued as limiting in any manner,

TABLE 31

my $In = aFlow
->Hier(a=>12,b=>33,c=>46)
->Defer_ Output();
my $Dest = aFlow
->Hier(dest=>2)
->Defer_ Output();
$In->print(“In”);
$Dest->print(“Dest”);
In => (iflow)
a=>12
b=>33
c=>46
Dest => (iflow)
dest =>2
my $Out = $In
->Multicast(name =>“NV__multicast__unicast_ dest_ flow”,
count =>3,
Unicast_ Dest_ Flow => $Dest);
$Out->print(“Out”);
Out =>
0 => (iflow)
a=>12
b=>33
c=>46
1 => (iflow)
a=>12
b=>33
c=>46
2 => (iflow)
a=>12
b=>33
c=>46

[0093] As shown in Table 31, a single output iflow is sent
and the destination is coming from a parallel iflow.

[0094] Table 32 illustrates the application of the unicast_
dest_field option within a Multicast() construct, in accor-
dance with one embodiment. Of course, it should be noted
that the exemplary application shown in Table 32 is set forth
for illustrative purposes only, and thus should not be con-
strued as limiting in any manner,

TABLE 32

my $In = aFlow
->Hier(a=>12,b=>33,¢c=>46,dest=>2)
->Defer_ Output();
$In->print(“In”);
In => (iflow)
a=>12
b=>33
c=>46
debt =>2
my $Out = $In

US 2014/0278328 Al

TABLE 32-continued

->Multicast(name =>“NV__multicast_ unicast_ dest_ field”,
count =>3,
unicast__dest_ field => “dest”,
unicast_dest_field_drop =>1); # drop it from the output
$Out->print(“Out”);
Out =>
0 => (iflow)
a=>12
b =>33
c=>46
1 => (iflow)
a=>12
b =>33
c=>46
2 => (iflow)
a=>12
b =>33
c=>46

[0095] As shown in Table 32, the destination is encoded in
the input packet itself using a “dest” field. The unicast_dest_
field_drop option may be used to ensure that this does not end
up in the output iflows.

[0096] Table33 illustrates the application of the Destmask_
flow option within a Multicast() construct, in accordance
with one embodiment. Of course, it should be noted that the
exemplary application shown in Table 33 is set forth for
illustrative purposes only, and thus should not be construed as
limiting in any manner.

TABLE 33

my $In = aFlow
->Hier(a=>12,b=>33,c=>46)
->Defer_ Output();
my $Destmask = aFlow
->Hier(destmask => 3)
->Defer_ Output();
$In->print(“In”);
$Destmask->print(“Destmask”);
In => (iflow)
a=>12
b=>33
c=>46
Destmask => (iflow)
destmask => 3
my $Out = $In
->Multicast(name
count =>3,
Destmask_Flow => $Destmask);
$Out->print(“Out”);
Out =>
0 => (iflow)
a=>12
b=>33
c=>46
1 => (iflow)
a=>12
b=>33
c=>46
2 => (iflow)
a=>12
b=>33
c=>46

=>“NV__multicast_destmask_ flow”,

[0097] As shown in Table 33, a bitmask of any name that
includes Oto 3 iflows may be supplied to receive the input data
flow.

[0098] Table 34 illustrates the application of the destmask_
field option within a Multicast() construct, in accordance
with one embodiment. Of course, it should be noted that the

14

Sep. 18,2014

exemplary application shown in Table 34 is set forth for
illustrative purposes only, and thus should notbe construed as
limiting in any manner.

TABLE 34

my $In = aFlow
->Hier(a=>12,b => 33, ¢ => 46, destmask =>3)
->Defer_ Output();
$In->print(“In”);
In => (iflow)
a=>17
b=>33
c=>46
destmask => 3
my $Out = $In
->Multicast(name =>“NV__multicast_ destmask_ field”,
count =>3,
destmask_ field => “destmask”,
destmask_ field_drop =>1); # drop it from the output
$Out->print(“Out”);
Out =>
0 => (iflow)
a=>12
b=>33
c=>46
1 => (iflow)
a=>12
b=>33
c=>46
2 => (iflow)
a=>12
b=>33
c=>46

[0099] As shown in Table 34, the destmask may be embed-
ded in the input data flow as the “destmask” field. The dest-
mask_field_drop option may be used to drop the destmask
from the output iflows.

[0100] Table 35 illustrates the application of the destmask_
code option within a Multicast() construct, in accordance
with one embodiment. Of course, it should be noted that the
exemplary application shown in Table 35 is set forth for
illustrative purposes only, and thus should notbe construed as
limiting in any manner.

TABLE 35

my $In = aFlow
->Hier(a=>12,b=>33,c=>46)
->Defer_ Output();
$In->print(“In”);
In => (iflow)
a=>17
b=>33
c=>46
my $Out = $In
->Multicast(name =>“NV__multicast_ destmask_ code”,
count =>3,
destmask__code => sub
{
my($In, $D)=@_;
arbitrary destmask code using input fields
#
If $In->{a} == 0 Then
$D->{destmask} <== 0;
Else
$D->{destmask} <== $In->{b} & 0x7;
Endif

US 2014/0278328 Al

Sep. 18,2014

15
TABLE 35-continued TABLE 36-continued
$Out->print(“Out”); my $Out = $In
Out => ->Multicast(name =>“NV_multicast_parallel destmask flow”,
0 => (iflow) count =>3,
a=>17 Destmask__Flow => $Destmask);
b=>33 $Out->print(“Out”);
c=>46 Out =>
1 => (iflow) 0=>
a=>12 0 => (iflow)
b=>33 a=>12
c=>46 b=>33
2 => (iflow) c=>46
a=>12 1 => (iflow)
b=>33 a=>12
c=>46 b=>33
c=>46
2 => (iflow)
. . =>12
[0101] As shown in Table 35, the destmask_code option g >33
may allow for the supplying of a code block to perform a c=>46
computation of a destmask from various fields in the input, 1=> - din
where such computations are performed combinationally. 0 =a =(; 10;)
For example, destmask may be set to all 0’s if “a” is 0; b => 33
otherwise it may be set to the lower 3 bits of “b.”” In another c=>46
embodiment, the code block may work similarly to Compute(1 => (iflow)
) code blocks. For example, the input iflow may be passed by E Z g
Multicast() as the first argument. The second argument is the c=>46
data flow holding “destmask” which may be assigned by the 2 => (iflow)
code block. Ifthe input data flow has multiple iflows, the code a=>12
- . . b=>33
block may get called for each input iflow, thus producing a o5
separate destmask for each input iflow. 5>
. .. . 0 => (ifl
[0102] Table 36 illustrates the application of the Multicast(a =(; 10;)
) construct in parallel, in accordance with one embodiment. b=>33
Of course, it should be noted that the exemplary application c=>46
shown in Table 36 is set forth for illustrative purposes only, 1 j_(;ﬁl";”)
and thus should not be construed as limiting in any manner. b33
c=>46
TABLE 36 2 => (iflow)
a=>12
my $In = aFlow b=>33
->Hier_ N(4,[a=>12,b=>33,¢c=>46]) c=>46
->Defer_ Output(iflow__level =>1); 3=>
my $Destmask = aFlow 0 => (iflow)
->Hier_ N(4, [destmask => 3]) a=>12
->Defer_ Output(iflow__level =>1); b =>33
$In->print(“In”); c=>46
$Destmask->print(“Destmask™); 1 => (iflow)
In => a=>12
0 => (iflow) b =>33
a=>12 c=>46
b=>33 2 => (iflow)
c=>46 a=>12
1 => (iflow) b =>33
a=>12 c=>46
b=>33
c=>46
2 => (ifiow) [0103] As shown in Table 36, the input data flow has 4
a=>12
b => 33 iflows, and each of those 4 iflows produces 3 output iflows in
c=>46 the final superflow. In one embodiment, a Shuffle() construct
3=> (iﬁlog’V) may be used to rearrange the output iflows.
a=>
b=>33 [0104] Further still, in one embodiment, the one or more
¢ =>46 control constructs may include a Select() construct. For
Degzlflﬁ{ﬁ:v) example, the Select() construct may be the inverse of Multi-
destmask => 3 cast() and may perform arbitration. In another embodiment,
1 => (iflow) the Select() construct may take a list of data flows or a
destmask => 3 superflow where all interface data flows have the same struc-
2 Ziﬁ‘;‘:ﬁ 3 ture, and may choose one interface data flow for its output.
3 => (iflow) For example, one arbitration algorithm may be round-robin,
destmask => 3 but any type arbiter may be supported, including priority-

based, LRU, weighted-RR, etc. In another embodiment, the

US 2014/0278328 Al

arbiters may be implemented separately and may be regis-
tered, then referred to by name in the Select() construct.
Further, in yet another embodiment, a user may supply their
own arbitration code, or may supply the arbitration decision
as a separate input data flow. Like Multicast(), the input data
flows may be superflows, and the Select() construct may be
applied in parallel and may produce an output superflow
containing the answers. Further, data flow control may be
automatically managed by default.

[0105] Table 37 illustrates the application of a Select()
construct to a data flow within a scripting language, in accor-
dance with one embodiment. Of course, it should be noted
that the exemplary application shown in Table 37 is set forth
for illustrative purposes only, and thus should not be con-
strued as limiting in any manner,

TABLE 37

my $O0ut = $In
->Select(name =>“NV_XX_ yyy_arb”,
Arb_ Flow => $Arb);

[0106] Table 38 illustrates the options associated with a
Select() construct, in accordance with one embodiment. Of
course, it should be noted that the options shown in Table 38
are set forth for illustrative purposes only, and thus should not
be construed as limiting in any manner.

16

Sep. 18,2014

[0107] In one embodiment, the Select() construct may be
the inverse of the Multicast() construct. The Select() con-
struct may choose one iflow from multiple input iflows. For
example, the Select() construct may act as an arbiter. In
another embodiment, the Select() construct may perform a
round-robin arbitration. In yet another embodiment, the
Select() construct may allow for a user to supply an arbitra-
tion decision.

[0108] Additionally, in one embodiment, the Select() con-
struct may occur atthe level above the iflow level, (e.g., called
the parent of the iflow level, etc.). In another embodiment, the
parent may have numerically named children iflows 0, 1, etc.
In yet another embodiment, if there are multiple parents, then
an output iflow may be created for each parent’s arbitration.

[0109] Further, in one embodiment, if the stallable option is
1,then inputs may be stalled if the output is stalled. Also, ifan
Arb_Flow is supplied, then the Arb_Flow and the chosen
input data flow may both arrive before either can be retired.
Unchosen input iflows may be stalled. In another embodi-
ment, if the stallable option is 0, an Arb_Flow may still be
used as an assertion check that the proper input flow is valid.
That input may always be chosen. The output iflow may not
be stalling when a chosen iflow is attempted to be transferred
to it.

[0110] Further still, in one embodiment, the Select() con-
struct may take in a supertlow rather than a list of data flows.
In another embodiment, an ‘arb_code’ option may exist that

TABLE 38
Option Type Default Description
name id required name of generated module
comment string undef optional comment to display in the debugger (highly
recommended)
arb string rr arbitration algorithm if there is no Arb_ Flow.
1t is a simple round-robin algorithm without
priorities and is the default.
sp is a simple priority-based algorithm where iflow 0
has highest priority always, iflow 1 has next-highest
priority always, etc.
Arb_ Flow flow undef separate arbitration flow; each arb iflow must have
one field (any name) of width log2
(input__iflow__count)
keep__hier Oorl 0 indicates that the output iflow will have a dummy “0”
node added above it
raise__iflow Oorl 0 when keep__hier => 1 is specified, indicates that the
output iflow level will be above the dummy “0” node
out_src_name string undef ifspecified, each output iflow will contain a field
with this name that holds the index of the selected
input iflow
clk id global clock to use for this construct
default
stallable Oorl global whether the construct is stallable
default
out_reg Oorl global 0 or 1 indicating whether the output iflow is
default registered out
out_rdy_reg Oorl global 0 or 1 indicating whether the output iflow’s rdy signal
default is registered in; causes a skid flop to be added even if
out_reg=0.
out_fifo fifospec 0 a fifospec which is currently limited to a simple int

representing depth of the fifo for the output iflow;

out_reg and out_rdy_ reg flops are after the fifo

US 2014/0278328 Al

may allow a user to supply a code block with its own arbiter.
There may also be an aFlow method to register an arbiter code
block by name so that other designers may use them easily
(e.g., arb=>“name”, etc.). In this way, the system itself may
not need to implement any arbiter.

[0111] Table 39 illustrates the application of round-robin
arbitration within a Select() construct, in accordance with
one embodiment. Of course, it should be noted that the exem-
plary application shown in Table 39 is set forth for illustrative
purposes only, and thus should not be construed as limiting in
any manner. As shown in Table 39, one output iflow is deter-
mined from three input iflows.

TABLE 39

my $In = aFlow
->Hier N(3,[a=>12,b=>33,c=>46])
->Defer_ Output(iflow__level =>1);
$In->print(“In”);
In =>
0 => (iflow)
a=>12
b=>33
c=>46
1 => (iflow)
a=>12
b=>33
c=>46
2 => (iflow)
a=>12
b=>33
c=>46
my $O0ut = $In
->Select (name => “NV_select_11”);
$Out->print(“Out”);
Out => (iflow)
a=>12
b=>33
c=>46

[0112] Table 40 illustrates the application of an Arb_Flow
option within a Select() construct, in accordance with one
embodiment. Of course, it should be noted that the exemplary
application shown in Table 40 is set forth for illustrative
purposes only, and thus should not be construed as limiting in
any manner.

TABLE 40

my $In = aFlow
->Hier N(3,[a =>12, b=>33,c=>46])
->Defer_ Output(iflow__level =>1);
my $Arb = aFlow
->Hier(arb =>2)
->Defer_ Output();
$In->print(“In”);
$Arb->print(“Arb”);
In=>
0 => (iflow)
a=>12
b=>33
c=>46
1 => (iflow)
a=>12
b=>33
c=>46
2 => (iflow)
a=>12
b=>33
c=>46
Arb => (iflow)
arb =>2
my $Out = $In

17

Sep. 18,2014

TABLE 40-continued
->Select (name =>“NV_select_arb_ flow”,
Arb_ Flow => $Arb);

$Out->print(“Out”);
Out => (iflow)

a=>12

b=>33

c=>46

[0113] As shown in Table 40, the arbitration decision

comes from a separate $Arb data flow. In one embodiment,
the $Arb data flow may have one field (any name) with width
log 2(3)==2 in this case.

[0114] Table 41 illustrates the application of an keep_hier
option within a Select() construct, in accordance with one
embodiment. Of course, it should be noted that the exemplary
application shown in Table 41 is set forth for illustrative
purposes only, and this should not be construed as limiting in
any manner.

TABLE 41

my $In = aFlow
>Hier N(3,[a=>12, b=>33,c=>46])
->Defer_ Output(iflow__level =>1);
my $Arb = aFlow
->Hier(atb =>2)
->Defer_ Output();
$In->print(“In”);
$Arb->print(“Arb™);
In=>
0 => (iflow)
a=>12
b=>33
c=>46
1 => (iflow)
a=>12
b=>33
c=>46
2 => (iflow)
a=>12
b=>33
c=>46
Arb => (iflow)
arb =>2
my $Out = $In
->Select (name =>“NV__select_keep__hier”,
Arb__Flow => $Arb,
keep__hier=>1);
$Out->print(“Out”);
Out =>
0 => (iflow)
a=>12
b=>33
c=>46

[0115] Asshownin Table 41, the numeric level ofhierarchy
may be removed from the output iflow. If a user wants to keep
it, the keep_hier option may be used.

[0116] Table 42 illustrates the application of an raise_iflow
option within a Select() construct, in accordance with one
embodiment. Of course, it should be noted that the exemplary
application shown in Table 42 is set forth for illustrative
purposes only, and thus should not be construed as limiting in
any manner.

TABLE 42

my $In = aFlow
>Hier N(3,[a=>12, b=>33,c=>46])
->Defer_ Output(iflow__level =>1);

US 2014/0278328 Al Sep. 18,2014
18
TABLE 42-continued TABLE 43-continued
my $Arb = aFlow 2 => (iflow)
->Hier(atb =>2) a=>12
->Defer_ Output(); b=>33
$In->print(“In”); c=>46
$Arb->print(“Arb™); 2=>
In=> 0 => (iflow)
0 => (iflow) a=>12
a=>12 b=>33
b=>33 c=>46
c=>46 1 => (iflow)
1 => (iflow) a=>12
a=>12 b=>33
b=>33 c=>46
c=>46 2 => (iflow)
2 => (iflow) a=>12
a=>12 b=>33
b=>33 c=>46
c=>46 3=>
Arb => (iflow) 0 => (iflow)
arb =>2 a=>12
my $Out = $In b=>33
->Select (name =>“NV__select_raise__iflow”, c=>46
Arb__Flow => $Arb, 1 => (iflow)
keep__hier =>1, a=>12
raise_iflow =>1); b=>33
$Out->print(“Out”); c=>46
Out => (iflow) 2 => (iflow)
0=> a=>12
a=>12 b=>33
b=>33 c=>46
c=>46 Arb =>
0 => (iflow)
arb =>2
. . 1 => (iflow)
[0117] As shown in Table 42, the iflow level may be made arh =52
one level higher. 2 => (iflow)
[0118] Table 43 illustrates the parallel application of a 3 j;b(i;i)
Select() construct, in accordance with one embodiment. Of arb =>2
course, it should be noted that the exemplary application my $Out = $In

shown in Table 43 is set forth for illustrative purposes only,
and thus should not be construed as limiting in any manner,

TABLE 43

my $In = aFlow
->Hier_ N(4, aFlow->Hier_ N(3,[a=>12,b=>33,c=>46]))
->Defer_ Output(iflow__level => 2);
my $Arb = aFlow
->Hier_ N(4, [arb=>2])
->Defer_ Output(iflow__level =>1);
$In->print(“In”);
$Arb->print(“Arb™);
In=>
0=>
0 => (iflow)
a=>12
=>33

—
I e o
I
vV
S
=)

> (iflow)
=>12
=>33
=>46
> (iflow)
=>12
=>33
=>46

o
o ocw

o o o=

1=>

0 => (iflow)
a=>12
b=>33
c=>46

1 => (iflow)
a=>12
b=>33
c=>46

->Select (name =>“NV__select_parallel_arb_ flow”,
Arb_ Flow => $Arb);
$Out->print(“Out”);
Out =>
0 => (iflow)
a=>12
b=>33
c=>46
1 => (iflow)
a=>12
=>33

)
o o
I
v
N
(=2}

> (iflow)
=>12
=>33
=>46
> (iflow)
=>12
=>33
=>46

w
o ocwp

o o o=

[0119] Asshown in Table 43, there are 4 parents, each with
3 children input iflows. One child is chosen for each parent,
thus producing 4 output iflows. The $Arb data flow in this
case may have 4 separate decisions.

[0120] Also, in one embodiment, the one or more control
constructs may include a Connect() construct. For example,
a deferred input may not be a primary input. Instead, the
deferred input may be part of a circular design. For example,
it may go into the top of a contrived pipeline, then come out
the bottom. The Connect() construct may be used to connect
the bottom to the deferred data flow at the top. In this way, the
data flows may become the same, thus completing the circle.

US 2014/0278328 Al

[0121] Table 44 illustrates the application of a Connect()
construct, in accordance with one embodiment. Of course, it
should be noted that the exemplary application shown in
Table 44 is set forth for illustrative purposes only, and thus
should not be construed as limiting in any manner.

TABLE 44

my $Out = $In
->Select(name => “NV__defer_ circular”)
->print(“after select”)
->Multicast(name =>“NV__defer_ circular”, # silly example here
count =>3,
broadcast =>1)
->print(“after multicast™)
->Connect($In);
after select => (iflow)
a=>12
b =>33
c=>46
after multicast =>
0 => (iflow)
a=>12
b =>33
c=>46
1 => (iflow)
a=>12
b =>33
c=>46
2 => (iflow)
a=>12
b =>33
c=>46

[0122] In addition, in one embodiment, the one or more
control constructs may include an As() construct. For
example, the As() construct may be used to map iflow data to
acompletely different packet format. The As() construct may
be used both inside and outside of a code block. In another
embodiment, a user may pass a width to get a simple flattened
Uint() leaf result, or the user may pass anything that can be
passed to aFlow->Clone() including a name=>width list as
shown above, or another active or inactive data flow to use as
a template.

[0123] Furthermore, in one embodiment, $Flow->As_Bits(
) may include shorthand for $Flow->As($Flow->width()). It
may flatten out $Flow to the same number of raw bits. In
another embodiment, if the input data flow has multiple
iflows, then the template may be applied to each iflow. In yet
another embodiment, the As() construct may not be used to
modify data flows above the iflow level. Note that inside a
code block, the input data flow may not denote multiple
iflows. In still another embodiment, if the template is larger
than the input iflow, then the result may be zero-extended, and
if the template is smaller than the input iflow, then the result
may be truncated. In another embodiment, after this operation
is performed, the template may not be modified in any way.

[0124] Table 45 illustrates the application of an As) con-
struct to a data flow within a scripting language, in accordance
with one embodiment. Of course, it should be noted that the

Sep. 18,2014

exemplary application shown in Table 45 is set forth for
illustrative purposes only, and thus should notbe construed as
limiting in any manner.

TABLE 45

my $Out = $In->As(a =>5,b =>20);

[0125] fable 46 illustrates the application of an As() con-
struct as a control construct, in accordance with one embodi-
ment. Of course, it should be noted that the exemplary appli-
cation shown in Table 46 is set forth for illustrative purposes
only, and thus should not be construed as limiting in any
manner. As shown in Table 46, a hierarchical data flow is
mapped to a Unit() leaf, and is then mapped back to the
original packet format.

TABLE 46

my $In = aFlow
->Hier(a=>24,b=>40)
->Defer_ Output()
->print(“In”);
my $0ut0 = $In->As($In->width());
my $0utl = $Out0->As($In);
In => (iflow)
a=>24
b =>40
Out0 => (iflow) 64
Outl => (iflow)
a=>24
b =>40

raw bits
back to original format

[0126] Table 47 illustrates the application of an As() con-
struct with different packet sizes, in accordance with one
embodiment. Of course, it should be noted that the exemplary
application shown in Table 47 is set forth for illustrative
purposes only, and thus should not be construed as limiting in
any manner. As shown in Table 47, a data flow is converted to
a smaller packet (extra bits truncated), and then to a larger
packet (zero-extended).

TABLE 47

my $In = aFlow
->Hier(a=>24,b=>40)
->Defer_ Output()

->print(“In”);
my $0ut() = $In->As(a=>12); # to smaller packet containing only
half of “a”

my $0utl = $Out0->As($In);
and all of “b” are zero’ed)

back to larger format (half of “a”

[0127] Table 48 illustrates the application of an As() con-
struct inside a code block, in accordance with one embodi-
ment. Of course, it should be noted that the exemplary appli-
cation shown in Table 48 is set forth for illustrative purposes
only, and thus should not be construed as limiting in any
manner.

TABLE 48

my $In = aFlow
->Hier(a=>24,b=>40)
->Defer_ Output()
->print(“In”);

my $Out = $In
->Compute(name

=>“NV_as_ code”,

=[]

US 2014/0278328 Al

TABLE 48-continued

Sep. 18,2014

code =>sub

my($In, $0ut) = @_;

my $0ut0 = $In->As(a0 => 12, al =>12);
“p

my $Outl = {< $In >};
$In->width())

my $Out2 = {< 3 of $In >};
“of’

my $0ut3 = $Out0->As($In);
back to $In format

my $Out4 = $Out0->As_ Bits();
>As($Out0->width());

Null $Out;

$In->print(“In”);

$Out0->print(“Out0”);

$Outl->print(“Outl™);

$Out2->print(“Out2”);

$Out3->print(“Out3”);

$Outd->print(“Outd”);

¥
)

In => (iflow)

a=>24

b =>40
Out0 =>

a0 =>12

al =>12
Outl => 64
Out2 =>192
Out3 =>

a=>24

b =>40
Outd =>24

don’t care about output

equivalent to $In->As(

no zero-extend it

grab each half of

use repetition operator

shorthand for $Out0-

[0128] As shown in Table 48, the As() construct may be
used inside a code block. For example, a concatenation opera-
tor {<>} may be used to flatten a hierarchical flow into a leaf.
Further, the “of” extension may act as a macro that replicates
$In 3 times inside the concatenation. In one embodiment.
As_Bits() may be used as shorthand to flatten a data flow into
the same number of raw bits. In another embodiment, “of”
may be used anywhere a programming language (e.g., Perl,
etc.) list is allowed and the RHS may not need to be an
aFlow—it may return a Perl list. Additionally, see, for
example, U.S. patent application Ser. No. , filed

, which is hereby incorporated by reference in its
entirety, and which describes examples of creating a compute
construct.

[0129] Table 49 illustrates the parallel application of an As(
) construct inside a code block, in accordance with one
embodiment. Of course, it should be noted that the exemplary
application shown in Table 49 is set forth for illustrative
purposes only, and thus should not be construed as limiting in
any manner.

TABLE 49

TABLE 49-continued

In=>
0 => (iflow)
a=>24
b =>40
1 => (iflow)
a=>24
b =>40
2 => (iflow)
a=>24
b =>40
Out0 =>
0 => (iflow)
a=>12
1 => (iflow)
a=>12
2 => (iflow)
a=>12
Outl =>
0 => (iflow)
a=>24
b =>40
1 => (iflow)
a=>24
b =>40
2 => (iflow)
a=>24
b =>40

my $In = aFlow
>Hier_ N(3,[a=>24,b=>40])
->Defer_ Output(iflow__level =>1)
->print(“In”);

my $0ut0 = $In->As(a=>12);

my $Outl = $Out0->As($In->{0});

iflow)

make it smaller

back to original format (per

[0130] As shown in Table 49, the As() construct may be
applied to each iflow of an input data flow. Note that each
iflow may be rewired to look like the template. In one embodi-
ment, changes may not be made above the iflow level.

[0131] Further, in one embodiment, the one or more control
constructs may include a Shuffle() construct. For example,
the Shuffle() construct may be used to rearrange data flows

US 2014/0278328 Al
21

above the iflow level. This may result in pure wiring and no
logic. In another embodiment, constructs such as Shuffle().
Select(), and Multicast() may be used to manipulate data
flows above the iflow level. In still another embodiment, the
Shuftle() construct may support a transpose operation.

[0132] Table 50 illustrates the options associated with a
Shuftle() construct, in accordance with one embodiment Of
course, it should be noted that the options shown in Table 50
are set forth for illustrative purposes only, and thus should not
be construed as limiting in any manner.

TABLE 50

Option Type Default Description

name id required name of generated module

comment string undef optional comment to display
in the debugger (highly
recommended)

op string transpose the type of shuffle operation;
only transpose is supported, so
there is no point in ever
supplying this option

level string iflow child level at which to perform
shuftle; there must be two
levels available above this
level

clk id global clock to use for this construct

default
[0133] Table 51 illustrates the application of a Transpose()

construct, in accordance with one embodiment. Of course, it
should be noted that the exemplary application shown in
Table 51 is set forth for illustrative purposes only, and thus
should not be construed as limiting in any manner.

TABLE 51

my $In = aFlow
->Hier_ N(5, aFlow->Hier_ N(2, [a=>12,b=>33,c=>46]))
->Defer_ Output(iflow__level =>2);
$In->print(“In”);
In=>
0=>
0 => (iflow)
a=>12
b =>33
c=>46
1 => (iflow)
a=>12
b =>33
c=>46
1=>
0 => (iflow)
a=>12
b =>33
c=>46
1 => (iflow)
a=>12
b =>33
c=>46
2 =>
0 => (iflow)
a=>12
b =>33
c=>46
1 => (iflow)
a=>12
b =>33
c=>46
3=

Sep. 18,2014

TABLE 51-continued

<

=> (iflow)
a=>12
b =>33
c=>46
=> (iflow)
a=>12
b =>33
c=>46
4=>
0 => (iflow)
a=>12
b =>33
c=>46
=> (iflow)
a=>12
b =>33
c=>46
my $Out = $In
->Shuffle(name => “NV__shuffle_ transpose™);
$Out->print(“Out”);
Out =>
0=>
0 => (iflow)
a=>12
b =>33
c=>46
1 => (iflow)
a=>12
b =>33
c=>46
2 => (iflow)
a=>12
b =>33
c=>46
3 => (iflow)
a=>12
b =>33
c=>46
4 => (iflow)
a=>12
b =>33
c=>46
1=>
0 => (iflow)
a=>12
b =>33
c=>46
1 => (iflow)
a=>12
b =>33
c=>46
2 => (iflow)
a=>12
b =>33
c=>46
3 => (iflow)
a=>12
b =>33
c=>46
4 => (iflow)
a=>12
b =>33
c=>46

—

—

[0134] As shown in Table 51, inputs of a crossbar switch
may be shuffled to the outputs of the switch. For example, the
data flow may have at least two levels above the iflow level. In
another example, a grandfather level may be at the top, with a
parent level at level 1, and an iflow level at level 0. There may
be 5 parents, each with 2 child iflows. After the transpose, the
output data flow may have 2 parents, each with 5 child iflows,
one taken from each of the input parents. In this way, output
parent 0 may have child iflow 0 from each of the 5 input
parents, and output parent 1 may have child iflow 1 from each
of'the 5 input parents.

US 2014/0278328 Al

[0135] Further still, in one embodiment, the one or more
control constructs may include a Derive_Clock() construct.
For example, the Derive_Clock() construct may be used to
create a new clock from an existing clock from_clk “clk”. In
another embodiment, Disable Flow may disable the new
clock when Disable_Flow()->Valid().

[0136] Table 52 illustrates the options associated with a
Derive_Clock() construct, in accordance with one embodi-
ment. Of course, it should be noted that the options shown in
Table 52 are set forth for illustrative purposes only, and thus
should not be construed as limiting in any manner.

TABLE 52

Option Type Default Description

name id required name of new clock

comment string undef optional comment to
display in the debugger
(highly recommended)

from_ clk id global clock from which this new

default clock is derived; may be a

primary or derived clock

Disable_ Flow flow undef optional empty flow that
indicates when to disable
the new clock

[0137] Table 53 illustrates the application of a Derive_

Clock () construct, in accordance with one embodiment. Of
course, it should be noted that the exemplary application
shown in Table 53 is set forth for illustrative purposes only,
and thus should not be construed as limiting in any manner.

TABLE 53

aFlow->default_ options__set(clk => “derived__clk™);

[0138] Inoneembodiment, “derived_clk” may be made the
default clk for subsequent constructs. In another embodi-
ment, clock dividers, Enable_Flow, and other resets may be
supported.

[0139] In this way, clocking, clock gating, and data flow
control may be regulated automatically during the creation of
the integrated circuit design, utilizing a hardware develop-
ment language that is embedded in a scripting language.
Additionally, the hardware development language may
include high level built in control constructs that may be
guaranteed to work and that may deal in terms of data flows.
These control constructs may also be reused.

[0140] Further, the embedded hardware development lan-
guage may incorporate validation and verification tests and
may allow for automatic bottom up formal verification. Fur-
ther still, the embedded hardware description language may
be flexible and configurable, and may be compatible with a
variety of programming languages (e.g., Verilog®, C++,
CUDA™_ etc.). Also, the embedded hardware development
language may allow for debugging and visualization. For
example, users may be taken to the earliest assertion failure
within code, and signals may be automatically grouped.
[0141] FIG. 3 shows an exemplary hardware design envi-
ronment 300, in accordance with one embodiment. As an
option, the environment 300 may be carried out in the context
of the functionality of FIGS. 1-2. Of course, however, the
environment 300 may be implemented in any desired envi-
ronment. It should also be noted that the aforementioned
definitions may apply during the present description.

Sep. 18,2014

[0142] As shown, within a design module 302, reusable
component generators 304, functions 306, and a hardware
description language embedded in a scripting language 308
are all used to construct a design that is run and stored 310 at
a source database 312. Also, any build errors within the
design are corrected 344, and the design module 302 is
updated. Additionally, the system backend is run on the con-
structed design 314 as the design is transferred from the
source database 312 to a hardware model database 3160.

[0143] Additionally, the design in the hardware model data-
base 316 is translated into C++ or CUDA™ 324, translated
into Verilog® 326, or sent directly to the high level GUI
(graphical user interface) waveform debugger 336. If the
design is translated into C++ or CUDAT™ 324, the translated
design 330 is provided to a signal dump 334 and then to a high
level debugger 336. If the design is translated into Verilog®
326, the translated design is provided to the signal dump 334
oraVCS simulation 328 is run on the translated design, which
is then provided to the signal dump 334 and then to the high
level GUI waveform debugger 336. Any logic bugs found
using the high level GUI waveform debugger 336 can then be
corrected 340 utilizing the design module 302.

[0144] FIG. 4illustrates an exemplary system 400 in which
the various architecture and/or functionality of the various
previous embodiments may be implemented. As shown, a
system 400 is provided including at least one host processor
401 which is connected to a communication bus 402. The
communication bus 402 may be implemented using any suit-
able protocol, such as PCI (Peripheral Component Intercon-
nect), PCI-Express, AGP (Accelerated Graphics Port),
HyperTransport, or any other bus or point-to-point commu-
nication protocol(s). The system 400 also includes a main
memory 404. Control logic (software) and data are stored in
the main memory 404 which may take the form of random
access memory (RAM).

[0145] The system 400 also includes input devices 412, a
graphics processor 406 and a display 408, i.e. a conventional
CRT (cathode ray tube), LCD (liquid crystal display), LED
(light emitting diode), plasma display or the like. User input
may be received from the input devices 412, e.g., keyboard,
mouse, touchpad, microphone, and the like. In one embodi-
ment, the graphics processor 406 may include a plurality of
shader modules, a rasterization module, etc. Each of the fore-
going modules may even be situated on a single semiconduc-
tor platform to form a graphics processing unit (GPU).

[0146] In the present description, a single semiconductor
platform may refer to a sole unitary semiconductor-based
integrated circuit or chip. It should be noted that the term
single semiconductor platform may also refer to multi-chip
modules with increased connectivity which simulate on-chip
operation, and make substantial improvements over utilizing
a conventional central processing unit (CPU) and bus imple-
mentation. Of course, the various modules may also be situ-
ated separately or in various combinations of semiconductor
platforms per the desires of the user. The system may also be
realized by reconfigurable logic which may include (butis not
restricted to) field programmable gate arrays (FPGAs).

[0147] The system 400 may also include a secondary stor-
age 410. The secondary storage 410 includes, for example, a
hard disk drive and/or a removable storage drive, representing
a floppy disk drive, a magnetic tape drive, a compact disk
drive, digital versatile disk (DVD) drive, recording device,

US 2014/0278328 Al

universal serial bus (USB) flash memory, etc. The removable
storage drive reads from and/or writes to a removable storage
unit in a well-known manner.

[0148] Computer programs, or computer control logic
algorithms, may be stored in the main memory 404 and/or the
secondary storage 410. Such computer programs, when
executed, enable the system 400 to perform various functions.
Memory 404, storage 410 and/or any other storage are pos-
sible examples of computer-readable media.

[0149] In one embodiment, the architecture and/or func-
tionality of the various previous figures may be implemented
in the context of the host processor 401, graphics processor
406, an integrated circuit (not shown) that is capable of at
least a portion of the capabilities of both the host processor
401 and the graphics processor 406, a chipset (i.e. a group of
integrated circuits designed to work and sold as a unit for
performing related functions, etc.), and/or any other inte-
grated circuit for that matter.

[0150] Still yet, the architecture and/or functionality of the
various previous figures may be implemented in the context
of'a general computer system, a circuit board system, a game
console system dedicated for entertainment purposes, an
application-specific system, and/or any other desired system.
For example, the system 400 may take the form of a desktop
computer, laptop computer, server, workstation, game con-
soles, embedded system, and/or any other type of logic. Still
yet, the system 400 may take the form of various other devices
m including, but not limited to a personal digital assistant
(PDA) device, a mobile phone device, a television, etc.
[0151] Further, while not shown, the system 400 may be
coupled to a network [e.g. a telecommunications network,
local area network (LAN), wireless network, wide area net-
work (WAN) such as the Internet, peer-to-peer network, cable
network, etc.) for communication purposes.

[0152] While various embodiments have been described
above, it should be understood that they have been presented
by way of example only, and not limitation. Thus, the breadth
and scope of a preferred embodiment should not be limited by
any of the above-described exemplary embodiments, but
should be defined only in accordance with the following
claims and their equivalents.

What is claimed is:

1. A computer program product embodied on a non-tran-
sitory computer readable medium, comprising:

code for receiving one or more parameters, at least one of

which corresponds to an interface protocol;

code for constructing a data flow based on the one or more

parameters;

code for receiving an indication of one or more control

constructs; and

code for creating a hardware design, utilizing the con-

structed data flow and the one or more control con-
structs.

2. The computer program product of claim 1, wherein the
data flow represents a flow of data through the hardware
design.

3. The computer program product of claim 1, wherein the
data flow is associated with one or more interfaces of the
hardware design.

4. The computer program product of claim 1, wherein the
one or more parameters are received utilizing a hardware
description language embedded in a scripting language.

5. The computer program product of claim 4, wherein the
computer program product is operable such that the data flow

Sep. 18,2014

is implemented as an instance of a formal object class within
the hardware description language.

6. The computer program product of claim 1, wherein the
data flow includes a superflow that represents multiple flows
of data and that is associated with a plurality of interfaces.

7. The computer program product of claim 1, wherein the
data flow has a numeric, alphabetic, or custom naming hier-
archy.

8. The computer program product of claim 1, wherein one
or more of the control constructs include a module imple-
mented as part of a hardware description language that
receives one or more data flows as input.

9. The computer program product of claim 8, wherein the
computer program product is operable such that one or more
of the control constructs perform one or more operations
based on the input data flow or flows.

10. The computer program product of claim wherein the
computer program product is operable such that one or more
of'the control constructs create one or more output data flows,
based on the one or more input data flows.

11. The computer program product of claim 10, wherein
the computer program product is operable such that the one or
more output data flows are input into one or more additional
constructs.

12. The computer program product of claim 1, wherein one
or more of the control constructs include one or more param-
eters.

13. The computer program product of claim 12, wherein
the one or more parameters may include one or more of a
name parameter, a comment parameter, a stallable parameter,
a parameter used to specify a depth of an output queue, a
parameter that causes an output data flow of the construct to
be registered out, and a parameter that causes a ready signal of
an output data flow of the construct to be registered in.

14. The computer program product of claim 1, wherein one
or more of the control constructs include a separate construct,
a merge construct, a multicast construct, a select construct, a
connect construct, an as construct, a shuffle construct, or a
derive clock construct.

15. The computer program product of claim 1, wherein the
hardware design includes an integrated circuit design.

16. The computer program product of claim 1, wherein the
computer program product is operable such that both the data
flow and the construct are included within the hardware
design.

17. The computer program product of claim 1, wherein the
computer program product is operable such that one or more
of the control constructs interrogate the data flow utilizing
one or more introspection methods.

18. The computer program product of claim 1, wherein the
data flow includes a superflow, and the computer program
product is operable such that one or more of the control
constructs performs automatic looping on a plurality of sub-
flows of the superflow.

19. A method, comprising:

receiving one or more parameters, at least one of which

corresponding to an interface protocol;

constructing a data flow based on the one or more param-

eters; and

receiving an indication of one or more control constructs;

wherein a hardware design is capable of being created,

utilizing the constructed data flow and the one or more
control constructs.

US 2014/0278328 Al Sep. 18,2014
24

20. A system, comprising:

a processor for receiving one or more parameters, at least
one of which corresponding to an interface protocol,
constructing a data flow based on the one or more param-
eters, and receiving an indication of one or more control
constructs;

wherein a hardware design is capable of being created,
utilizing the constructed data flow and the one or more
control constructs.

21. A method, comprising:

receiving a plurality of parameters associated with a data
flow to be included within a hardware design, the plu-
rality of parameters including an identification of an
interface and a width field associated with the interface;

constructing a data flow based on the plurality of param-
eters;

receiving an indication of one or more control constructs to
be included within the hardware design; and

creating a hardware design, utilizing the constructed data
flow and the one or more control constructs.

22. The method of claim 21, wherein the constructed data
flow is input to one or more of the control constructs, which
creates one or more output data flows based on the input data
flow.

