
US 20140278328A1

(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2014/0278328A1

Alfieri (43) Pub. Date: Sep. 18, 2014

(54) SYSTEM, METHOD, AND COMPUTER Publication Classification
PROGRAMI PRODUCT FOR CONSTRUCTING
A DATA FLOW AND IDENTIFYINGA (51) Int. Cl.
CONSTRUCT G06F 17/50 (2006.01)

(52) U.S. Cl.
(71) Applicant: NVIDIA CORPORATION, Santa CPC G06F 17/5045 (2013.01)

Clara, CA (US) USPC .. 703A14

(72) Inventor: Robert Anthony Alfieri, Chapel Hill, (57) ABSTRACT
NC (US) A system, method, and computer program product are pro

vided for creating a hardware design. In use, one or more
(73) Assignee: NVIDIA CORPORATION, Santa parameters are received, where at least one of the parameters

Clara, CA (US) corresponds to an interface protocol. Additionally, a data flow
is constructed based on the one or more parameters. Further,
an indication of one or more control constructs is received,
where a hardware design is capable of being created, utilizing
the constructed data flow and the one or more control con

(22) Filed: Mar 15, 2013 StructS.

(21) Appl. No.: 13/844,330

g

CREATENG AN ENTEGRATED CiRCE DESGN,
ZNGA ARWARE DESCRPTION ANGAGE
E3EE N A SCR ANGAGE

\ 282

CREANG NE R RE AA FCS N 204
ASSOCATION WE NEGRATED CRC

ESGN

NCRORANG ONE OR ORE CONRE
CONSRCS NO E NEGRATED CRC

DESIGN N AssocATION WITH THE ONE OR NORE
AA FS

28

Patent Application Publication Sep. 18, 2014 Sheet 1 of 4 US 2014/0278328A1

RECEVING ONE or MORE PARAMETERS, AT LEAST
ONE O C CORESONN AN 8 \ 02

NERFACE ROOCC \ ,

14.
CONSTRUCTING A DATA FOW BASED ON THE ONE/

OR ORE ARAEERS

RECEWN AN NCAON OF ONE Ok ORE
CONTRO CONSTRCS, WHERE A HARDWARE
ESGN is CAPABLE OF BENG CREAE), ZNG
E CONSERCE: AA OF AN E ONE OK

ORE CONO CONSERCS

s

FGRE

Patent Application Publication Sep. 18, 2014 Sheet 2 of 4 US 2014/0278328A1

CREATING AN INTEGRATED CIRCUIT DESiGN,
Utilizing A HARDWARE DESCRIPTION LANGUAGE Y \ 22

E3EOE N A SORPNG ANGAGE

CREANG ONE OR ORE AA FCS N |- 204
ASSOCAN - E NEGRAE CRC

ESGN

NCORPORANG ONE OR ORE CONR
constructs iNTO THE INTEGRATED circuit /r

DESIGN IN ASSOCATION WTH THE ONE OR MORE
BAA FCS

FGRE 2

Patent Application Publication Sep. 18, 2014 Sheet 3 of 4 US 2014/0278328A1

co
32 X

38.
RESABE CORE GENERAORS

306
NCCS

33
ARDARE ESCRN ANGAGE
E3EEE NSCR ANGAGE

338
34 HEGH-LEVE. G. WAWEFOR:

EEGER

Sr.
AASASE

34

3.
333

316
SRA

AARE
MODELDATABASER 326 y

328 33
WER WCS S3

C. CR BA

GRE 3

Patent Application Publication Sep. 18, 2014 Sheet 4 of 4 US 2014/0278328A1

4.

CENTRA:
y PRocessor

40

EORY

404
SECONDARY
SORAGE

BUS
Ef CES

412
(RACS
KCCESSOR

48

SAY

408

FGURE 4.

US 2014/0278328A1

SYSTEM, METHOD, AND COMPUTER
PROGRAMI PRODUCT FOR CONSTRUCTING

A DATA FLOW AND IDENTIFYINGA
CONSTRUCT

FIELD OF THE INVENTION

0001. The present invention relates to integrated circuit
design.

BACKGROUND

0002 Hardware design and verification are important
aspects of the hardware creation process. For example, a
hardware description language may be used to model and
Verify circuit designs. However, current techniques for
designing hardware have been associated with various limi
tations.
0003 For example, validation and verification may com
prise a large portion of a hardware design schedule utilizing
current hardware description languages. Additionally, flow
control and other protocol logic may not be addressed by
current hardware description languages during the hardware
design process. There is thus a need for addressing these
and/or other issues associated with the prior art.

SUMMARY

0004. A system, method, and computer program product
are provided for constructing a data flow (e.g., a representa
tion of a flow of data through a hardware design, etc.). In use,
one or more parameters are received, where at least one of the
parameters corresponds to an interface protocol. Addition
ally, a data flow is constructed based on the one or more
parameters. Further, an indication of one or more control
constructs (e.g., constructions that may perform various com
mon data steering and storage operations, etc.) is received,
where a hardware design is capable of being created, utilizing
the constructed data flow and the one or more control con
StructS.

BRIEF DESCRIPTION OF THE DRAWINGS

0005 FIG. 1 shows a method for constructing a data flow,
in accordance with one embodiment.
0006 FIG. 2 shows a method for building an integrated
circuit using data flows and constructs, in accordance with
another embodiment.
0007 FIG. 3 shows an exemplary hardware design envi
ronment, in accordance with one embodiment.
0008 FIG. 4 illustrates an exemplary system in which the
various architecture and/or functionality of the various pre
vious embodiments may be implemented.

DETAILED DESCRIPTION

0009. In various embodiments, data flows and constructs
that represent a hardware design including one or more cir
cuits are specified. The data flows and constructs are analyzed
by a hardware design application program that includes one
or more components. The hardware design application pro
gram may analyze the data flows and constructs, identify
errors, and/or generate a representation of the hardware
design that is Suitable for simulation and/or synthesis.
0010 FIG. 1 shows a method 100 for constructing a data
flow, in accordance with one embodiment. As shown in
operation 102, one or more parameters are received, where at

Sep. 18, 2014

least one of the parameters corresponds to an interface pro
tocol. In one embodiment, the interface protocol may include
a communications protocol associated with a particular inter
face. In another embodiment, the communications protocol
may include one or more formats for communicating data
utilizing the interface, one or more rules for communicating
data utilizing the interface, a syntax used when communicat
ing data utilizing the interface, semantics used when commu
nicating data utilizing the interface, synchronization methods
used when communicating data utilizing the interface, etc.
0011 Additionally, in one embodiment, the one or more
parameters may include an identification of an interface (e.g.,
an interface of a hardware design, etc.). In another embodi
ment, the one or more parameters may include a width field
associated with the interface. In yet another embodiment, the
one or more parameters may be received utilizing a hardware
description language. For example, one or more parameters
may be received utilizing a hardware description language
embedded in a scripting language.
0012. Further, as shown in operation 104, a data flow is
constructed based on the one or more parameters. In one
embodiment, the data flow (input or output) may represent a
flow of data. For example, the data flow may represent a flow
of data through a hardware design. In another embodiment,
the data flow may include one or more groups of signals. For
example, the data flow may include one or more groups of
signals including implicit flow control signals that may oper
ate according to the interface protocol. In yet another embodi
ment, the data flow may be associated with one or more
interfaces. For example, the data flow may be associated with
one or more interfaces of a hardware design corresponding to
at least one of the received parameters. In another embodi
ment, the data flow may be constructed as a data type.
0013 Also, in one embodiment, constructing the data flow
as a data type may include implementing the data flow as an
instance of a formal object class within a hardware descrip
tion language. In another embodiment, the constructed data
flow may include one or more fields with assigned values
(e.g., one or more width fields each associated with an inter
face, etc.). In yet another embodiment, the constructed data
flow may be viewed as a predetermined data structure (e.g., a
hash, etc.) within the scripting language.
0014 Further, in one embodiment, the data flow may have
multiple levels of hierarchy. For example, the data flow may
include a superflow that represents multiple flows of data
(e.g., Subflows, etc.) and that is associated with a plurality of
interfaces. In another embodiment, the Superflow may act as
an array within the scripting language. In yet another embodi
ment, the Superflow may include one or more subfields with
assigned values. In still another embodiment, the data flow
may be included within the Superflow (e.g., as a data flow
within the hierarchy of the superflow, etc.).
0015. Further still, in one embodiment, the data flow may
have a numeric hierarchy. For example, all fields of a data
flow may be numbered with successive whole integers, start
ing at Zero. In another embodiment, the data flow may have an
alphabetic hierarchy. For example, all fields of a data flow
may be labeled with one or more identifiers (e.g., letters of the
alphabet, symbols, numbers, etc.). In yet another embodi
ment, the data flow may have a custom naming hierarchy. For
example, all fields of a data flow may be labeled with custom
(e.g., user-provided, etc.) names.
0016. Also, in one embodiment, the data flow may include
a cloned data flow. For example, the data flow may be created

US 2014/0278328A1

by cloning another data flow, utilizing the hardware descrip
tion language. In another embodiment, the data flow itself
may be cloned to create another data flow. In yet another
embodiment, the data flow may be an output data flow of a
construct. In still another embodiment, the data flow may be
located in adofabase.
0017. In addition, as shown in operation 106, an indication
of one or more control constructs is received, where a hard
ware design is capable of being created, utilizing the con
structed data flow and the one or more control constructs. In
one embodiment, there may be two categories of constructs
(e.g., constructions), control constructs and compute con
structs. Control constructs may perform various common
data steering and storage operations, be implemented in the
hardware design application program, and be inserted into a
hardware design representation. Compute constructs may
provide a mechanism by which a designer can represent cir
cuitry to perform user-defined operations. For example, in
one embodiment, the function of a particular state machine
may be encoded within a compute construct.
0.018. In one embodiment, the one or more control con
structs may include an entity (e.g., a module, etc.) imple
mented as part of the hardware description language that
receives one or more data flows as input. In another embodi
ment, the one or more control constructs may be located in a
database. In yet another embodiment, the one or more control
constructs may perform one or more operations based on the
input data flow or flows. In still another embodiment, the one
or more control constructs may be built into the hardware
description language. In another example, the one or more
control constructs may perform one or more data steering and
storage operations, utilizing the constructed data flow as
input.
0019. Furthermore, in one embodiment, the one or more
control constructs may each create one or more output data
flows, based on one or more input data flows. In another
embodiment, the one or more output data flows may be input
into one or more additional constructs (e.g., control con
structs, compute constructs, etc.). In yet another embodiment,
the one or more control constructs may each include one or
more parameters. For example, the one or more control con
structs may each include a name parameter that may indicate
a name for that construct. In another example, each of the one
or more control constructs may include a comment parameter
that may provide a textual comment that may appear in a
debugger when debugging a design. In yet another example,
each of the one or more control constructs may include a
stallable parameter that may indicate whether automatic flow
control is to be performed within that construct.
0020. Further still, in one example, each of the one or more
control constructs may include a parameter used to specify a
depth of an output queue (e.g., a first in, first out (FIFO)
queue, etc.) for each output data flow of that construct. In
another example, each of the one or more control constructs
may include a parameter that causes an output data flow of
that construct to be registered out. In yet another example,
each of the one or more control constructs may include a
parameter that causes a ready signal of an output data flow of
that construct to be registered in and an associated skid flop
row to be added.

0021. Also, in one embodiment, one or more of the control
constructs may include a separate construct that creates mul
tiple output data flows from a single input data flow. In
another embodiment, one or more of the control constructs

Sep. 18, 2014

may include a merge construct that creates a single output
data flow from multiple input data flows. In yet another
embodiment, one or more of the control constructs may
include a multicast construct that takes a single input data
flow and sends it to one or more output data flows. In still
another embodiment, one or more of the control constructs
may include a select construct that accepts multiple input data
flows and selects one of them to be an output data flow.
0022. Additionally, in one embodiment, one or more of the
control constructs may include a connect construct that con
nects an input data flow of the construct to a deferred output.
A deferred output may include a primary input to the design
or an input data flow that does not yet connect to an output
data flow of another construct. In another embodiment, one or
more of the control constructs may include an as construct
that maps flow data to a different format. In yet another
embodiment, one or more of the control constructs may
include a shuffle construct that rearranges a structuring of
input data flows. In still another embodiment, one or more of
the control constructs may include a derive clock construct
that creates a new clock from an existing clock.
0023. Further, in one embodiment, the hardware design
may include one or more of the following: a circuit design, a
behavioral simulation model, an estimated timing model, etc.
For example, the hardware design may include an integrated
circuit design, a digital circuit design, an analog circuit
design, a mixed-signal circuit design, etc. In another embodi
ment, the hardware design may be created utilizing the hard
ware description language. For example, the hardware design
may be created by initiating a new hardware design and
saving the new hardware design into a database, utilizing the
hardware description language. In yet another embodiment,
both the data flow and the construct may be included within
the hardware design.
0024. Further still, in one embodiment, the hardware
design may be created by activating the constructed data flow.
For example, the data flow may be inactive while it is being
constructed and modified, and the data flow may Subse
quently be made active (e.g., by passing the data flow to an
activation function utilizing the hardware description lan
guage, etc.). In another embodiment, the hardware design
may be created by inputting the activated data flow into the
construct. For example, the activated data flow may be des
ignated as an input of the construct within the hardware
design, utilizing the hardware description language. In this
way, the construct may perform one or more operations,
utilizing the input data flow, and may create one or more
additional output data flows, utilizing the input data flow.
0025. Also, in one embodiment, the data flow may be
analyzed within the construct. For example, the data flow may
be analyzed during the performance of one or more actions by
the construct, and execution of the hardware design may be
halted immediately if an error is discovered during the analy
sis. In this way, errors within the hardware design may be
determined immediately and may not be propagated during
the execution of the hardware design, until the end of hard
ware construction, or during the running of a suspicious lan
guage flagging program (e.g., a lint program) on the hardware
construction. In another embodiment, the construct may ana
lyze the data flow input to the construct and determine
whether the data flow is an output flow from another construct
or a deferred output (e.g., a data flow that is a primary design
input, a data flow that will be later connected to an output of

US 2014/0278328A1

a construct, etc.). In this way, it may be confirmed that the
input data flow is an active output.
0026. In addition, in one embodiment, one or more of the
control constructs may interrogate the data flow utilizing one
or more introspection methods. For example, one or more of
the control constructs may utilize one or more introspection
methods to obtain field names within the data flow, one or
more widths associated with the data flow, etc. In another
embodiment, all clocking may be handled implicitly within
the hardware design. For example, a plurality of levels of
clock gating may be generated automatically and may be
Supported by the hardware design language. In this way,
manual clock gating may be avoided. In yet another embodi
ment, one or more of the control constructs may be Superflow
aware. For example, the data flow may include a Superflow,
and one or more of the control constructs may perform auto

Sep. 18, 2014

design create construct shown in Table 1 is set forth for
illustrative purposes only, and thus should not be construed as
limiting in any manner.

TABLE 1

aFlow->Design Create(name => “NV XX yyy);

aFlow->Design Save(top => Stopio);

0030 Additionally, in one embodiment, one or more
options may be associated with the creation of the integrated
circuit design. Table 2 illustrates exemplary circuit design
options, in accordance with one embodiment. Of course, it
should be noted that the exemplary circuit design options
shown in Table 2 are set forth for illustrative purposes only,
and thus should not be construed as limiting in any manner.

TABLE 2

Option Type Default Description

l8le id required name of top-level module for design
clks array of clkspec {clk=> array of into about primary clk-reset pairs;

“clk', reset clkspec is a hash with “clk and “reset as
=> “reset required fields and currently there are no

optional clkspec fields, but there will likely be
others in the future: the first clk name in the
array becomes the default for created constructs

Src dirs array of string * array of directories Design Inst() searches for

matic looping on a plurality of subflows of the Superflow, Such
that each subflow of the superflow is automatically analyzed
within the one or more control constructs.

0027. More illustrative information will now be set forth
regarding various optional architectures and features with
which the foregoing framework may or may not be imple
mented, per the desires of the user. It should be strongly noted
that the following information is set forth for illustrative
purposes and should not be construed as limiting in any
manner. Any of the following features may be optionally
incorporated with or without the exclusion of other features
described.

0028 FIG. 2 shows a method 200 for building an inte
grated circuit using data flows and constructs, in accordance
with one embodiment. As an option, the method 200 may be
carried out in the context of the functionality of FIG. 1. Of
course, however, the method 200 may be implemented in any
desired environment. It should also be noted that the afore
mentioned definitions may apply during the present descrip
tion.

0029. As shown in operation 202, an integrated circuit
design is created, utilizing a hardware description language
embedded in a scripting language. In one embodiment, the
integrated circuit design may be saved to a database or hard
drive after the integrated circuit design is created. In another
embodiment, the integrated circuit design may be created in
the hardware description language. In yet another embodi
ment, the integrated circuit may be created utilizing a design
create construct. Table 1 illustrates an exemplary design cre
ate construct that may be used within the Scripting language to
create an integrated circuit design, in accordance with one
embodiment. Ofcourse, it should be noted that the exemplary

Source databases of instantiated designs; by
default, we search only in the current directory;
note that this has nothing to do with the
directories Perl searches for pm modules

0031. Further, as shown in operation 204, one or more data
flows are created in association with the integrated circuit
design. In one embodiment, each of the one or more data
flows may represent a flow of data through the integrated
circuit design and may be implemented as instances of a data
type utilizing a scripting language (e.g., Perl, etc.). For
example, each data flow may be implemented in Perl as a
formal object class. In another embodiment, one or more data
flows may be associated with a single interface. In yet another
embodiment, one or more data flows may be associated with
multiple interfaces, and each of these data flows may be called
Superflows. For example, Superflows may allow the passing
of multiple interfaces utilizing one variable.
0032. Further still, in one embodiment, each of the one or
more data flows may have an arbitrary hierarchy. In another
embodiment, each node in the hierarchy may have alphanu
meric names or numeric names. In yet another embodiment,
the creation of the one or more data flows may be tied into
array and hash structures of the Scripting language. For
example, Verilog(R) literals may be used and may be automati
cally converted into constant data flows by a preparser before
the scripting language sees them.
0033. Also, in one embodiment, once created, each of the
one or more data flows may look like hashes to Scripting code.
In this way, the data flows may fit well into the scripting
language's way of performing operations, and may avoid
impedance mismatches. In another embodiment, the one or
more data flows may be created in the hardware description
language. Table 3 illustrates an exemplary data flow creation
within a scripting language, in accordance with one embodi
ment. Of course, it should be noted that the exemplary data

US 2014/0278328A1

flow creation shown in Table 3 is set forth for illustrative
purposes only, and thus should not be construed as limiting in
any manner.

TABLE 3

my SIn = aFlow
->Hier(a => 22, b => 32, c => 42)
->Defer Output();

0034. As shown in Table 3, a data flow may be represented
by an allow class package within the Scripting language. In
one embodiment, the data flow may represent a single inter
face with multiple named signals within the design. In
another embodiment, flow control may be handled implicitly.
In another embodiment, data may be defined for a single cycle
within the design.
0035. Additionally, in one embodiment, a data flow may
have multiple levels of hierarchy. For example, the root of the
hierarchy may be called level 0, or level “top” in another
example, the leaves may be unsigned integers of an assigned
hit width. In another embodiment, a hierarchical level may
have all alphanumeric names or all numeric names. For
example, if the names are numeric, they may be numbered
with whole integers starting with Zero.
0036 Further, in one embodiment, a level in the hierarchy
may be called the iflow level. For example, iflow may refer to
an interface data flow. In another example, theiflow level may
denote one interface, specifically the data for one cycle on the
interface. In another embodiment, by default, a root of the
data flow hierarchy may be the iflow level. In this way, each
data flow may represent one interface by default. In yet
another embodiment, flow control may be handled implicitly
for each iflow.

0037. Further still, in one embodiment, one or more of the
data flows may include a Superflow. For example, a Superflow
may include a data flow whose iflow level is lower than the top
level. In this way, a superflow may have multiple iflows (each
representing an interface with independent flow control)
within it. In another embodiment, each of the one or more data
flows may have an inactive or active status. For example,
while a data flow is being constructed, it may be inactive. In
another example, inactive data flows may be modified in any
arbitrary way. In yet another embodiment, nodes may be
added and removed in the hierarchy.
0038 Also, in one embodiment, before a data flow can be
passed to a construct, it may need to be made active (e.g.,
using a command Such as Defer Output(), etc.). At that point,
the data flow may not be modified directly by a user, but only
indirectly by control and compute constructs. In another
embodiment, Defer Output() may have an option that lets
you pick which level in the data flow that is the iflow level. In
yet another embodiment, by default, level 0 (top) may be the
iflow level.

0039 Table 4 illustrates exemplary data flow creation con
structs within a scripting language, in accordance with one
embodiment. Ofcourse, it should be noted that the exemplary
data flow creation constructs shown in Table 4 are set forth for
illustrative purposes only, and thus should not be construed as
limiting in any manner.

Sep. 18, 2014

TABLE 4

1 . Hier() may create a named hierarchy of arbitrary structure
2. Hier N() may create numeric hierarchies
3. Hier Named N() may create a named hierarchy with N fields with

the same name prefix
4. Hash manipulations may allow you to add and remove Subflows from

hierarchies
5. Uint() may create a simple leaf flow with no name
6. Const(Sval) may create a leaf that has a constant value
7. Const All Ones(Swidth) may create a leaf that has a constant

value that is width Swidth and all 1's
Literals like 32'hdeadbeef may implicitly create constant values

9. Clone() may copy an active or inactive flow, and may always yield
an inactive flow; all constant leaves may also be cloned

10. Clone(0) is like Clone() but may not clone constant leaves

8.

0040 Table 5 illustrates the creation of a one-level hierar
chy data flow within a scripting language, in accordance with
one embodiment. Of course, it should be noted that the exem
plary data flow creation shown in Table 5 is set forth for
illustrative purposes only, and thus should not be construed as
limiting in any manner.

TABLE 5

my SFlow = aFlow
->Hier(a => 12, b => 33, c => 46):

Flow->print(“Flow):
add a field, remove a field

Flow->print("Flow after removing 'a and adding 'd'');
Flow->Defer Output();
Flow->print("Flow after marking it active”);

Flow =>
a => 17
b => 33

Flow after removing 'a and adding 'd =>

c => 46

Flow after marking it active => (iflow)

c => 46
d => SS

0041 As shown in Table 5, a one-level hierarchy data flow
is created with alphanumeric names “a,” “b,” and “c.” Addi
tionally, field “a” is then removed and field 'd' is added.
Further, the data flow is marked active using Defer Output()
with the iflow at the root.
0042 Table 6 illustrates the creation of a two-level hierar
chy data flow within a scripting language, in accordance with
one embodiment. Of course, it should be noted that the exem
plary data flow creation shown in Table 6 is set forth for
illustrative purposes only, and thus should not be construed as
limiting in any manner.

TABLE 6

my SFlow = aFlow
->Hier(a => 12, b => c => 33, d => 46));

SFlow->print(“Flow):
SFlow->{e} = f => 11, g => 32);
SFlow->print("Flow after adding sub-hierarchy 'e');
Flow =>

a => 12
b =>

c => 33
d => 46

US 2014/0278328A1

TABLE 6-continued

Flow after adding Sub-hierarchy 'e' =>
a => 12
b =>

c => 33
d => 46

e =>
f=> 11
g => 32

0.043 Table 7 illustrates the creation of a data flow with
manual numbering within a scripting language, inaccordance
with one embodiment. Of course, it should be noted that the
exemplary data flow creation shown in Table 7 is set forth for
illustrative purposes only, and thus should not be construed as
limiting in any manner.

TABLE 7

numeric hierarchy created manually using a loop
my Sfields =);
for my Si (0.3)
{

apush Sfields, Si => a => 12, b => 3; # equivalent to push (a)
{Sfields, ...

my SFlow = aFlow
->Hier((a)(Sfields)
->Defer Output();

SFlow->print(“Flow):
Flow => (iflow)

O =>
a => 12
b => 3

1 =>
a => 12
b => 3

2 =>
a => 12
b => 3

3 =>
a => 12
b => 3

0044 Table 8 illustrates the creation of a data flow with
automatic numbering within a scripting language, in accor
dance with one embodiment. Of course, it should be noted
that the exemplary data flow creation shown in Table 8 is set
forth for illustrative purposes only, and thus should not be
construed as limiting in any manner.

TABLE 8

my SFlow = aFlow
->Hier N(4, a => 12, b =>3)
->Defer Output();

SFlow->print(“Flow):
Flow => (iflow)

O =>
a => 12
b => 3

1 =>
a => 12
b => 3

2 =>
a => 12
b => 3

3 =>
a => 12
b => 3

Sep. 18, 2014

0045 Table 9 illustrates the creation of a data flow with a
named hierarchy with N names with the same prefix within a
Scripting language, in accordance with one embodiment. Of
course, it should be noted that the exemplary data flow cre
ation shown in Table 9 is set forth for illustrative purposes
only, and thus should not be construed as limiting in any
a.

TABLE 9

my SFlow = aFlow
->Hier Named N(“prefix, 4, a => 12, b => 3)
->Defer Output();

SFlow->print(“Flow):
Flow => (iflow)

prefixO =>
a => 12
b => 3

prefix1 =>
a => 12
b => 3

prefix2 =>
a => 12
b => 3

prefix3 =>
a => 12
b => 3

0046 Table 10 illustrates the creation and cloning of a data
flow within a scripting language, in accordance with one
embodiment. Ofcourse, it should be noted that the exemplary
data flow creation and cloning shown in Table 10 is set forth
for illustrative purposes only, and thus should not be con
Strued as limiting in any manner.

TABLE 10

my SFlow0 = aFlow
->Hier N(4, a => 12, b => 3)
->Defer Output(iflow level => 1);

SFlow0->print(“Flow0);
my SFlow 1 = SFlow0->Clone();
delete SFlow 1->{1}; # causes 2 and 3 to be renumbered down
SFlow 1->Defer Outputs();
SFlow 1->print("Flow 1 after removing node '1');
Flow 0 =>

O => (iflow)
a => 12
b => 3

1 => (iflow)
a => 12
b => 3

2 => (iflow)
a => 12

Flow 1 after removing node 1 => (iflow)
O =>

a => 12
b => 3
=>

a => 12
b => 3
=>

0047. As shown in Table 10, a data flow is created with an
iflow level of 1, which ends up creating four iflows. Addition
ally, the active data flow is then cloned using Clone(), which
creates an inactive data flow. Field 1 is then deleted, which

US 2014/0278328A1

causes fields 2 and 3 to be renumbered down. Further, the new
data flow is activated and the iflow level is set at level 0.

0048 Table 11 illustrates the marking of an inactive data
flow as an active output within a scripting language, in accor
dance with one embodiment. Of course, it should be noted
that the exemplary data flow marking shown in Table 11 is set
forth for illustrative purposes only, and thus should not be
construed as limiting in any manner.

TABLE 11

my SIn = aflow
->Hier(a => 22, b => 32, c => 42)
->Defer Output();

Connect SOut => SIn; # or SOut->Connect(SIn)

0049. As shown in Table 11, Defer Output () is used to
mark an inactive data flow as an active output, which may
allow it to be used as an input to another construct, but
deferring where it came from until later. In one embodiment,
once a data flow is marked as active, it may not be changed
directly, only by passing it to other constructs.
0050 Additionally, in one embodiment, if a data flow is a
primary input to the design, it may be passed to Design Save(
) as part of the top I/O hash. In another embodiment, if the data
flow is part of some kind of circular pipeline where the data
flow goes into the top of the pipeline, then comes out the
bottom later, a Connect operator may be used to connect the
real output that comes out the bottom with the deferred output
that went into the top.
0051. Additionally, as shown in operation 206, one or
more control constructs are incorporated into the integrated
circuit design in association with the one or more data flows.
In one embodiment, the one or more data flows may be passed
into the one or more constructs, where they may be checked at
each stage. In another embodiment, bugs may be immediately
found and the design Script may be killed immediately upon
finding an error. In this way, a user may avoid reviewing a
large amount of propagated errors. In yet another embodi
ment, the one or more control constructs may check that each
input data flow is an output data flow from Some other con
struct or is what is called a deferred output.
0052 For example, a deferred output may include an indi
cation that a data flow is a primary design input or a data flow
will be connected later to the output of some future construct.
In another embodiment, it may be confirmed that each input
data flow is an input to no other constructs. In yet another
embodiment, each construct may create one or more output
data flows that may then become the inputs to other con
structs. In this way, the concept of correctness-by-construc
tion is promoted. In still another embodiment, the constructs
are also Superflow-aware. For example, some constructs may
expect Superflows, and others may perform an implicit for
loop on the superflows subflows so that the user doesn’t have
tO.

0053. Furthermore, in one embodiment, a set of introspec
tion methods may be provided that may allow user designs
and generators to interrogate data flows. For example, the one
or more control constructs may use these introspection func
tions to perform their work. More specifically, the introspec
tion methods may enable obtaining a list offield names within
a hierarchical data flow, widths of various subflows, etc. In
another embodiment, in response to the introspection meth

Sep. 18, 2014

ods, values may be returned in forms that are easy to manipu
late by the scripting language.

0054 Further still, in one embodiment, the one or more
control constructs may include constructs that are built into
the hardware description language and that perform various
data steering and storage operations that have to be built into
the language. In another embodiment, the constructs may be
bug-free as an incentive for the user to utilize them as much as
possible.

0055 Also, in one embodiment, the one or more control
constructs may each contain a plurality of common param
eters. For example, the one or more control constructs may
contain a “name parameter that indicates a base module
name that will be used for the construct and which shows up
in the debugger. In another embodiment, the one or more
control constructs may contain a "comment' parameter that
provides a textual comment that shows up in the debugger. In
yet another embodiment, the one or more control constructs
may contain a “stallable' parameter that indicates whether
automatic flow control is to be performed according to an
interface protocol within the construct (e.g., whether input
data flows are to be automatically stalled when outputs arent
ready, etc.). For example, if the “stallable' parameter is 0, the
user may use various flow methods such as Valid() and
Ready (), as well as a Stall statement to perform manual flow
control. In another example, additional flow controls such as
vld/rdy next and vld/credit may be used.
0056. Additionally, in one embodiment, the one or more
control constructs may contain an out fifo parameter that
allows the user to specify a depth of the output FIFO for each
output data flow. For example, when multiple output data
flows are present, the user may supply one depth that is used
by all, or an array of per-output-flow depths. In another
embodiment, the one or more control constructs may contain
an out reg parameter that causes the output data flow to be
registered out. For example, the out reg parameter may take
a 0 or 1 value or an array of such like out fifo. In yet another
embodiment, the one or more control constructs may contain
an in reg parameter that causes the input data flow to be
registered in. In still another embodiment, the one or more
control constructs may contain an in fifo parameter that
allows the user to specify a depth of the input FIFO for each
output data flow. Further, in one embodiment, the one or more
control constructs may contain an out rdy regparameter that
causes the output data flows implicit ready signal to be
registered in. This may also lay down an implicit skid flop
before the out reg. In another embodiment, out fifo, out reg,
and out rdy reg may be mutually exclusive and may be used
in any combination.
0057 The “stainable', out reg, out fifo, and out rdy reg
parameters specify how the interface protocol is imple
mented. An interface protocol defines a characteristic of an
input or output data flow that is represented in a simulation
model and a synthesized circuit created from the hardware
design representation. For example, circuitry is automatically
inserted into a representation of the hardware design based on
the interface protocol. The automatic insertion reduces the
amount of work needed to enter a design by a user and
presumably also ensures that the interface protocol operation
has been thoroughly verified. Furthermore, the hardware
design application components may perform various checks
to identify errors when data flows having incompatible inter

US 2014/0278328A1

face protocols are connected. Errors may also be identified
during simulation by the automatically inserted representa
tions.

0058. Further still, in one embodiment, clocking and clock
gating may be handled implicitly. For example, there may be
three levels of clock gating that may be generated automati
cally: fine-grain clock gating (FGCG), second-level module
clock gating (SLCG), and block-level design clock gating
(BLCG). In another embodiment, FGCG may be handled by
synthesis tools. In yet another embodiment, a per-construct
(i.e., per-module) status may be maintained. In still another
embodiment, when the status is IDLE or STALLED, all the
flops and rams in that module may be gated. In another
embodiment, the statuses from all the constructs may be
combined to form the design-level status that is used for the
BLCG. This may be performed automatically, though the user
may override the status value for any Compute() construct
using the Status <value statement.
0059 Also, in one embodiment, the one or more control
constructs may include a Separate() construct. For example,
the Separate() construct may take an input data flow and
provide ways of peeling off various fields from that data flow
(e.g., by splitting a data flow into multiple output data flows
and returning the output data flows, etc.). In another example,
a user can create as many data flows as needed from a single
input data flow. In another embodiment, regular expressions
may be used to concisely describe the set of fields to be
retained for each output data flow. If the input data flow is a
superflow (multiple interface data flows), the Separate() con
struct may implicitly perform the same operation on the inter
face data flows in parallel. The output of the Separate()

Sep. 18, 2014

construct may be a list of data flows or a Superflow containing
them. In yet another embodiment, there may be options that
allow levels of hierarchy to be automatically collapsed in the
process. If the chosen fields have numeric names, they may be
renumbered automatically (e.g., so they follow 0, 1, 2, etc.).
0060. Further, in one embodiment, the Separate() con
struct may split the input data flow in one or more ways. For
example, the Separate() construct may supply a list of fields
to be kept for each output data flow. The list may contain
regular expressions. In another example, the Separate() con
struct may supply a count of the number of fields to be kept for
each output data flow. In yet another example, the Separate()
construct may duplicate the input data flow N times, produc
ing N+1 output data flows.
0061 Table 12 illustrates the application of a Separate()
construct to a data flow within a scripting language, in accor
dance with one embodiment. Of course, it should be noted
that the exemplary application shown in Table 12 is set forth
for illustrative purposes only, and thus should not be con
Strued as limiting in any manner.

TABLE 12

my (GOuts = SIn->Separate(name => “NV XX yyy split,
keep => “a,b,

“b,c']);

0062 Table 13 illustrates the options associated with a
Separate() construct, in accordance with one embodiment.
Of course, it should be noted that the options shown in Table
13 are set forth for illustrative purposes only, and thus should
not be construed as limiting in any manner.

TABLE 13

Option Type Default Description

l8le id required name of generated module
comment String undef optional comment to display in the

debugger (highly recommended)
keep array of namelist one of these 3 is array of strings each of which is a

keep count

duplicate

level
remove hier

clk
stallable
Out reg

out separate

out ridy reg

out fifo

array of int

int

String
array of int

id
int
array of int

int

array of int

array of fifospec

required

one of these 3 is
required

one of these 3 is
required

iflow
O, O, . . .)

global default
global default
global default, ...

global default, ...

list of names to keep for that output
flow
array of counts each of which is the
number of subflows to keep for that
output flow
number of times to simply duplicate
the input flow (this count + 1 are
returned)
level at which to perform separate
array of boolean flags each of which
indicates whether a level of
hierarchy is to be removed for that
output flow
clock to use for this construct
whether the construct is stallable
array of O or 1 indicating whether
the corresponding output iflow is
registered out
indicates that the output is a
separate list of flows (default value
of 1) or a Superflow (O)
array of O or 1 indicating whether
the corresponding output iflows rdy
signal is registered in; causes a skid
flop to be added even if out reg = 0.
array of fifo specs, which are
currently limited to a simple int
representing depth of the fifo for the
corresponding output iflow; out reg
and out rody reg flops are after the
fifo

US 2014/0278328A1

0063. Further still, in one embodiment, if the stallable
option is 1, then the input may be stalled until data can be
advanced on all outputs (even if internally when out
reg 1 out reg). In another embodiment, the input may not be
transferred to any output until all outputs can accept it. In yet
another embodiment, if the stallable option is 0, a simulation
time check may be generated Such that the input may always
be transferred to all outputs whenever valid input is available.
0064 Table 14 illustrates the application of a keep option
within a Separate() construct, in accordance with one
embodiment. Ofcourse, it should be noted that the exemplary
application shown in Table 14 is set forth for illustrative
purposes only, and thus should not be construed as limiting in
any manner.

TABLE 1.4

my SIn = aFlow
->Hier(a => 12, b => 33, c => 46)
->Defer Output();

SIn->print(“In);
In => (iflow)

a => 12
b => 33
c => 46

my(SOutO, SOut1, SOut2, SOut3) = SIn
->Separate(name => “NV separate',

keep => “a,b,
b,c,
s/, # matches all fields
*/S/), # matches no fields
“? (b.S)/); # matches any field that is not b

SOut0->print(“OutO');
SOutl->print(“Outl”);
SOut2->print(“Out 2):
SOut3->print(“Out3);
SOut4->print(“Out4);
OutO => (iflow)
a => 12
b => 33

Outl => (iflow)
b => 33
c => 46

Out2 => (iflow)
a => 12
b => 33
c => 46

Out3 => (iflow)
Out:4 => (iflow)
a => 12
c => 46

0065. As shown in Table 14, the keep option may allows
for explicit naming of the subflows that are kept for each
output data flow. In one embodiment, each name list may be
enclosed in double quotes. In another embodiment, each
name may be an identifier or a regular expression. In still
another embodiment, unused input Subflows may be dropped.
0066 Table 15 illustrates the application of a duplicate
option within a Separate() construct, in accordance with one
embodiment. Ofcourse, it should be noted that the exemplary
application shown in Table 15 is set forth for illustrative
purposes only, and thus should not be construed as limiting in
any manner.

TABLE 1.5

my SIn = aFlow
->Hier(d => 32, e => 8)
->Defer Output();

SIn->print(“In);

Sep. 18, 2014

TABLE 15-continued

In => (iflow)
d => 32
e => 8

my(SOutO, SOut1) = SIn
->Separate(name => “NV separate dup',

duplicate => 1); # will get 2 copies
SOut0->print(“OutO);
SOut1->print(“Outl);
OutO => (iflow)

d => 32
e => 8

Outl => (iflow)
d => 32
e => 8

0067. As shown in Table 15, the duplicate option may
provide a quick way to completely duplicate the input data
flow. In another embodiment, the count may be one less than
the number of copies returned.
0068 Table 16 illustrates the application of a keep count
option within a Separate() construct, in accordance with one
embodiment. Ofcourse, it should be noted that the exemplary
application shown in Table 16 is set forth for illustrative
purposes only, and thus should not be construed as limiting in
any manner.

TABLE 16

my SIn = aFlow
->Hier(0 => m => 40), # normally these are all the same,

but this makes it clearer what's happening
1 => n => 2, O => 1),
2 => p => 5, q => 10),
3 => | r =>3),
4 => s => 17, t => 19)

->Defer Output();
SIn->print(“In);
In => (iflow)

O =>
m => 40

1 =>
n => 2
O => 1

2 =>
p => 5
q => 10

3 =>
r => 3

4 =>
S => 17
t => 19

my(SOutO, SOut1) = SIn
->Separate(name => “NV separate keep count',

keep count=> 1, 3);
SOutO->print(“OutO);
SOutl->print(“Outl”);
OutO => (iflow)

O =>
m => 40

Outl => (iflow)
O =>

n => 2
O => 1

1 =>
p => 5
q => 10

2 =>
r => 3

0069. As shown in Table 16, the keep count option may
split a numerical hierarchical into multiples where each out
put data flow contains some count of the next input Subflows.

US 2014/0278328A1

In one embodiment, the chosen subflows may be renumbered
in the second, third, etc. output data flows. In another embodi
ment, not all input Subflows may need to be consumed (e.g.,
note that input subflow “4” was dropped).
0070 Table 17 illustrates the application of remove hier
and out reg options within a Separate() construct, in accor
dance with one embodiment. Of course, it should be noted
that the exemplary application shown in Table 17 is set forth
for illustrative purposes only, and thus should not be con
Strued as limiting in any manner,

TABLE 17

my(SOutO, SOut1) = SIn
->Separate(name => “NV separate remove hier,

keep count=> 1, 3,
remove hier => 1, Ol,
first output flow
out reg=> 0, 1); # flop second output flow

SOut0->print(“OutO);
SOut1->print(“Outl);
OutO => (iflow)
m => 40

Outl => (iflow)
O =>

n => 2
O => 1

1 =>
p => 5
q => 10

2 =>
r => 3

remove hierarchy for

0071. As shown in Table 17, the remove hier option may
allow for the removal of a level of a hierarchy for each output
data flow. Additionally, the out regoption may indicate that a
particular output is to be flopped. For example, in Table 17,
SOutl will be flopped (and will have a skid register because
stallable is 1 by default), while SOut0 will not be flopped.
0072 Table 18 illustrates the parallel application of a
Separate() construct, in accordance with one embodiment.
Of course, it should be noted that the exemplary application
shown in Table 18 is set forth for illustrative purposes only,
and thus should not be construed as limiting in any manner.

TABLE 18

my SIn = aFlow
->Hier N(4, a => 12, b => 22, c => 32)
->Defer Output (iflow level => 1);

SIn->print(“In);
In =>
O => (iflow)

a => 12
b => 22
c => 32

1 => (iflow)
a => 12
b => 22
c => 32

2 => (iflow)
a => 12
b => 22
c => 32

3 => (iflow)
a => 12
b => 22
c => 32

my(SOutO, SOut1) = SIn
->Separate(name => “NV separate parallel keep',

keep => “a,b”, “c”);

Sep. 18, 2014

TABLE 18-continued

SOutO->print(“Out O');
SOutl->print(“Outl);
OutO =>

O => (iflow)
a => 12
b => 22

1 => (iflow)
a => 12
b => 22

2 => (iflow)
a => 12
b => 22

3 => (iflow)
a => 12
b => 22

Out1 =>
O => (iflow)

c => 32
1 => (iflow)

c => 32
2 => (iflow)

c => 32
3 => (iflow)

c => 32

0073. As shown in Table 18, a Separate() occurs at the
iflow level. If the input data flow has multiple iflows, then the
Separate() may be repeated for each iflow. As also shown in
Table 18, the input data flow has 4 mows, each of which has
subflows “a”, “b', and “c.
0074 Table 19 illustrates a separation of iflows using a
level option, in accordance with one embodiment. Of course,
it should be noted that the exemplary application shown in
Table 19 is set forth for illustrative purposes only, and thus
should not be construed as limiting in any manner.

TABLE 19

my(SOutO, SOut1) = SIn
->Separate(name => “NV separate above iflow,

level => “top”,
keep count=> 1,3);

SOutO->print(“OutO);
SOutl->print(“Outl);
OutO =>

O => (iflow)
a => 12
b => 22
c => 32

Out1 =>
O => (iflow)

a => 12
b => 22
c => 32

1 => (iflow)
a => 12
b => 22
c => 32

2 => (iflow)
a => 12
b => 22
c => 32

(0075. As shown in Table 19, iflows are separated from
each other from within the input data flow from Table 18,
using the level option. The first iflow is placed in one output
data flow, and the other three iflows are placed in another
output data flow.
0076. Additionally, in one embodiment, the one or more
control constructs may include a Merge() construct. For
example, the Merge() construct may be the inverse of the

US 2014/0278328A1
10

Separate() construct. In another embodiment, the Merge()
construct may take multiple input data flows (e.g., in list form,
Superflow form, etc.) and may merge the corresponding fields
into the same data flow. In yet another embodiment, when
fields are names, they may not conflict in name. In still
another embodiment, when fields are numbered, they may
conflict so they may be renumbered. In another embodiment,
all other features of the Separate() construct may be sup
ported.
0077 Table 20 illustrates the application of a Merge()
construct to a data flow within a scripting language, in accor
dance with one embodiment. Of course, it should be noted
that the exemplary application shown in Table 20 is set forth
for illustrative purposes only, and thus should not be con
Strued as limiting in any manner.

TABLE 20

my SOut = SIno
->Merge(name => “NV XX yyy combine',

Others => SIn1, SIn2);

0078 Table 21 illustrates the options associated with a
Merge() construct, in accordance with one embodiment. Of
course, it should be noted that the options shown in Table 21
are set forth for illustrative purposes only, and thus should not
be construed as limiting in any manner.

Sep. 18, 2014

TABLE 22

my SIn() = aFlow
->Hier(a => 25, b => 35)
->Defer Output();

my SIn1 = aFlow
->Hier(c => 33, d => 43)
->Defer Output();

SIno->print(“In O”);
SIn1->print(“In 1);
InO => (iflow)

a => 25
b => 3S

In1 => (iflow)
c => 33
d => 43

my SOut = SIno
->Merge(name => “NV merge named,

Others => SIn 1);
SOut->print(“Out"):
Out => (iflow)

a => 25
b => 3S
c => 33
d => 43

I0081 Table 23 illustrates the merging of two data flows
with conflicting numeric names using a Merge() construct, in
accordance with one embodiment. As shown in Table 23, the
second data flows 0 subflow is renumbered up to 1. Of
course, it should be noted that the exemplary merging shown

TABLE 21

Option Type Default Description

l8le id required name of generated module
comment string undef optional comment to display in the

debugger (highly recommended)
Others array of flow required array of other flows to be merged
level string iflow level at which to perform the merge
add hier O or 1 O indicates whether to add a level of

hierarchy to each input (at level) before
doing the merge

clk id global default clock to use for this construct
stallable O or 1 global default whether the construct is stallable
Out reg O or 1 global default O or 1 indicating whether the output iflow

is registered out
out roly reg O or 1 global default O or 1 indicating whether the output

iflow's roly signal is registered in; causes a
skid flop to be added even if out reg = 0.

out fifo fifospec O a fifospec which is currently limited to a
simple intrepresenting depth of the fifo
for the output iflow; out reg and
out rely reg flops are after the fifo

0079. In one embodiment, the Merge() construct may take
multiple input data flows and merge them into one output data
flow. In another embodiment, if the stallable option is 1, then
inputs may be stalled until all arrive and an output cycle can
be advanced (even if internally when out reg-0). In another
embodiment, if the stallable option is 0, then all input data
flows may be valid in the same cycle because there may be no
way to stall any inputs. This may be checked at simulation
time. Further, the output may not be stalled when the Merge(
) construct is trying to send out a new cycle.
0080 Table 22 illustrates the merging of two data flows
with non-conflicting names using a Merge() construct, in
accordance with one embodiment. Of course, it should be
noted that the exemplary merging shown in Table 22 is set
forth for illustrative purposes only, and thus should not be
construed as limiting in any manner.

in Table 23 is set forth for illustrative purposes only, and thus
should not be construed as limiting in any manner.

TABLE 23

my SIn() = aFlow
->Hier(0 => a => 25, b => 35)
->Defer Output();

my SIn1 = aFlow
->Hier(0 => a => 25, b => 35)
->Defer Output();

SIno->print(“In O”);
SIn1->print(“In 1);
InO => (iflow)

O =>
a => 25
b => 3S

In1 => (iflow)

US 2014/0278328A1

TABLE 23-continued

O =>
a => 25
b => 3S

my SOut = SIno
->Merge(name => “NV merge numeric',

Others => SIn 1);
SOut->print(“Out);
Out => (iflow)

O =>
a => 25
b => 3S

1 =>
a => 25
b => 3S

0082 Table 24 illustrates the parallel use of a Merge()
construct, in accordance with one embodiment. As shown in
Table 24, if the input data flows have multiple iflows, the
merge may occur in parallel. Ofcourse, it should be noted that
the exemplary usage shown in Table 24 is set forth for illus
trative purposes only, and thus should not be construed as
limiting in any manner.

TABLE 24

my SIn() = aFlow
->Hier N(3, a => 25, b => 35)
->Defer Output(iflow level => 1);

my SIn1 = aFlow
->Hier N(3, c => 33, d => 43)
->Defer Output(iflow level => 1);

SIno->print(“Ino');
SIn1->print(“In 1);
InO =>
O => (iflow)

a => 25
b => 3S

1 => (iflow)
a => 25
b => 3S

2 => (iflow)
a => 25
b => 3S

In1 =>

O => (iflow)
c => 33
d => 43

1 => (iflow)
c => 33
d => 43

2 => (iflow)
c => 33
d => 43

my SOut = SIno
->Merge(name => “NV merge parallel,

Others => SIn 1);
SOut->print(“Out);
Out =>

O => (iflow)
a => 25
b => 3S
c => 33
d => 43

1 => (iflow)
a => 25
b => 3S
c => 33
d => 43

2 => (iflow)
a => 25
b => 3S
c => 33
d => 43

Sep. 18, 2014
11

I0083 Table 25 illustrates the use of a Merge() construct
above theiflow level, inaccordance with one embodiment. Of
course, it should be noted that the exemplary usage shown in
Table 25 is set forth for illustrative purposes only, and thus
should not be construed as limiting in any manner.

TABLE 25

my SOut = SIno
->Merge(name => “NV merge above iflow,

evel => 0, # same as “top”
Others => SIn 1);

SOut->print(“Out"):
Out =>

O => (iflow)
a => 25
b => 3S

1 => (iflow)
a => 25
b => 3S

2 => (iflow)
a => 25
b => 3S

3 => (iflow)
c => 33
d => 43

4 => (iflow)
c => 33
d => 43

5 => (iflow)
c => 33
d => 43

I0084 Table 26 illustrates the use of a Merge() construct
above the top level, in accordance with one embodiment. For
example, if the iflow level is 0 (e.g., top, etc.), a level of
hierarchy may be added, which may require both level=>-1
and add hier->1. Of course, it should be noted that the exem
plary usage shown in Table 26 is set forth for illustrative
purposes only, and thus should not be construed as limiting in
any manner.

TABLE 26

my SInc) = aFlow
->Hier(a => 25, b => 35)
->Defer Output();

my SIn1 = aFlow
->Hier(a => 25, b => 35)
->Defer Output();

SIno->print(“In O”);
SIn1->print(“In 1);
InO => (iflow)

a => 25
b => 3S

In1 => (iflow)
a => 25
b => 3S

my SOut = SIno
->Merge(name => “NV merge add hier above top',

Others => SIn 1),
level => -1,
add hier => 1);

SOut->print(“Out"):
Out =>

O => (iflow)
a => 25
b => 3S

1 => (iflow)
a => 25
b => 3S

0085. Further, in one embodiment, the one or more control
constructs may include a Multicast() construct. For example,

US 2014/0278328A1

the Multicast() construct may take a single data flow input
and send it to one or more output data flows. In another
embodiment, there may be various ways to specify the mask
of outputs to receive the input, including embedding the mask
in the input data flow or providing a separate Unicast/Dest
mask input data flow. In yet another embodiment, the Multi
cast() construct may implicitly work in parallel on input data
flows that are Superflows, and produce corresponding Super
flows. In still another embodiment, automatic data flow con
trol may be provided if stallable is 1.
I0086 Table 27 illustrates the application of a Multicast()
construct to a data flow within a scripting language, in accor
dance with one embodiment. Of course, it should be noted
that the exemplary application shown in Table 27 is set forth

Option

l8le

comment

count

broadcast

Unicast Dest Flow

unicast dest field

Destmask Flow

destmask field

destmask code

unicast dest field drop

destmask field drop

clk

stallable

Out reg

out ridy reg

out fifo

out separate

Sep. 18, 2014

for illustrative purposes only, and thus should not be con
Strued as limiting in any manner.

TABLE 27

my SOut = SIn
->Multicast(name => “NV XX yyy unicast,

count => 3,
Unicast Dest Flow => SDest Flow);

I0087 Table 28 illustrates the options associated with a
Multicast () construct, in accordance with one embodiment.
Of course, it should be noted that the options shown in Table
28 are set forth for illustrative purposes only, and thus should
not be construed as limiting in any manner.

TABLE 28

Type Default Description

id require name of generated module
string undef optional comment to display in

he debugger (highly
recommended)

int require number of output iflows per
input iflow

int Ole:St. broadcast to all scount output
6 is iflows
require

flow Ole:St. send to one output; the unicast
6 is flow must have one field of
require width log2(count)

id Ole:St. send to one output; the
6 is estination is a separate field in
require he input with this name

flow Ole:St. send to Zero or more outputs; the
6 is estination mask must have one
require field of width <count

id Ole:St. send to Zero or more outputs; the
6 is estination mask is a separate
require field in the input with this name

code Ole:St. send to Zero or more outputs; the
6 is estination mask is computed
require combinatorially by a user

Supplied code block; the code
block receives the input iflow
and the output destmask flow as
parameters from Multicast()

O or 1 O when unicast dest field is given,
indicates whether to drop the
field in the output iflows

O or 1 O when destmask field is given,
indicates whether to drop the
field in the output iflows

id global clock to use for this construct
default

O or 1 global whether the construct is stallable
default

array of int global array of O or 1 indicating whether
default, ... the corresponding output iflow is

registered out
global array of O or 1 indicating whether
default, ... the corresponding output iflows

rdy signal is registered in; causes
a skid flop to be added even if
out reg= 0.
array of fifo specs, which are
currently limited to a simple int
representing depth of the fifo for
the corresponding output iflow;
out regand out roly reg flops
are after the fifo
indicates whether to return a list
of flows or return one superflow

(default)

array of int

array of fifospec 0, 0,...

int O

US 2014/0278328A1

0088. In one embodiment, the Multicast() construct may
take one input iflow and sends it to one or more output iflows.
Table 29 illustrates various options for redirecting an input
data flow using the Multicast() construct, in accordance with
one embodiment. Of course, it should be noted that the
options shown in Table 29 are set forth for illustrative pur
poses only, and thus should not be construed as limiting in any
a.

TABLE 29

1. Use the broadcast => 1 option to send it always to all outputs
2. Use the Unicast Dest Flow option to have a side flow indicate the

single output that should receive the input
3. Use the Destmask Flow option to have a side flow that contains a

bitmask indicating some arbitrary number of Zero or more outputs to
receive the input

4. Use the unicast dest field option to indicate that the unicast
destination is embedded in the input as a separate field

5. Use the destmask field option to indicate that the destmask is
embedded in the input as a separate field

6. Use the destmask code option that allows you to write arbitrary code
to compute the destination using any combination of input fields

0089 Additionally, in one embodiment, the multicast may
always occur at the iflow level. In another embodiment, if
stallable is 1, then the input iflow may be stalled until all
destined output iflows are unstalled. No outputs may receive
the input until all of them are uninstalled. In yet another
embodiment, if stainable is 0, then the input iflow and the
Unicast Dest Flow/Destmask Flow iflow may be valid in
the same cycle because there may be no way to stall any
inputs. This may be checked at simulation time. Further, an
output may not be stalled when the Multicast() construct is
trying to send out a new cycle. In still another embodiment,
the Multicast() construct () may not returnalist of data flows.
Instead, it may returns a Superflow containing all the output
iflows. The out separate=> 1 option may be used to have the
Multicast() construct return a list.
0090 Table 30 illustrates the application of the broadcast
option within a Multicast() construct, in accordance with one
embodiment. Ofcourse, it should be noted that the exemplary
application shown in Table 30 is set forth for illustrative
purposes only, and thus should not be construed as limiting in
any manner,

TABLE 30

my SIn = aFlow
->Hier(a => 12, b => 33, c => 46)
->Defer Output();

SIn->print(“In);
In => (iflow)

a => 12
b => 33
c => 46

my SOut = SIn
->Multicast(name

count => 3,
broadcast => 1);

SOut->print(“Out"):
Out =>

O => (iflow)
a => 12
b => 33
c => 46

1 => (iflow)
a => 12
b => 13
c => 46

=> NV multicast broadcast,

Sep. 18, 2014

TABLE 30-continued

2 => (iflow)
a => 12
b => 33
c => 46

(0091. As shown in Table 30, there are three output iflows,
and the output iflows are all under the same superflow.
0092 Table 31 illustrates the application of the Unicast
Dest Flow option within a Multicast() construct, in accor
dance with one embodiment. Of course, it should be noted
that the exemplary application shown in Table 31 is set forth
for illustrative purposes only, and thus should not be con
Strued as limiting in any manner,

TABLE 31

my SIn = aFlow
->Hier(a => 12, b => 33, c => 46)
->Defer Output();

my SDest = aFlow
->Hier(dest => 2)
->Defer Output();

SIn->print(“In);
SDest->print(“Dest);
In => (iflow)

a => 12
b => 33
c => 46

Dest => (iflow)
dest => 2

my SOut = SIn
->Multicast(name => “NV multicast unicast dest flow,

count => 3,
Unicast Dest Flow => SDest);

SOut->print(“Out"):
Out =>

O => (iflow)
a => 12
b => 33
c => 46

1 => (iflow)
a => 12
b => 33
c => 46

2 => (iflow)
a => 12
b => 33
c => 46

0093. As shown in Table 31, a single output iflow is sent
and the destination is coming from a parallel iflow.
0094 Table 32 illustrates the application of the unicast
dest field option within a Multicast() construct, in accor
dance with one embodiment. Of course, it should be noted
that the exemplary application shown in Table 32 is set forth
for illustrative purposes only, and thus should not be con
Strued as limiting in any manner,

TABLE 32

my SIn = aFlow
->Hier(a => 12, b => 33, c => 46, dest => 2)
->Defer Output();

SIn->print(“In);
In => (iflow)
a => 12
b => 33
c => 46
debt => 2
my SOut = SIn

US 2014/0278328A1

TABLE 32-continued

->Multicast(name
count => 3,
unicast dest field => “dest,
unicast dest field drop => 1); # drop it from the output

SOut->print(“Out"):
Out =>
O => (iflow)
a => 12
b => 33
c => 46

1 => (iflow)
a => 12
b => 33
c => 46
2 => (iflow)
a => 12
b => 33
c => 46

=> “NV multicast unicast dest field,

0.095 As shown in Table 32, the destination is encoded in
the input packet itself using a “dest field. The unicast dest
field drop option may be used to ensure that this does not end
up in the output iflows.
0096 Table 33 illustrates the application of the Destmask
flow option within a Multicast() construct, in accordance
with one embodiment. Of course, it should be noted that the
exemplary application shown in Table 33 is set forth for
illustrative purposes only, and thus should not be construed as
limiting in any manner.

TABLE 33

my SIn = aFlow
->Hier(a => 12, b => 33, c => 46)
->Defer Output();

my SDestmask = aFlow
->Hier(destmask => 3)
->Defer Output();

SIn->print(“In);
SDestmask->print(“Destmask');
In => (iflow)

a => 12
b => 33
c => 46

Destmask=> (iflow)
destmask => 3

my SOut = SIn
->Multicast(name

count => 3,
Destmask Flow => SDestmask);

SOut->print(“Out"):
Out =>

O => (iflow)
a => 12
b => 33
c => 46

1 => (iflow)
a => 12
b => 33
c => 46

2 => (iflow)
a => 12
b => 33
c => 46

=> “NV multicast destmask flow,

0097. As shown in Table 33, a bitmask of any name that
includes 0 to 3 iflows may be supplied to receive the input data
flow.

0098 Table 34 illustrates the application of the destmask
field option within a Multicast() construct, in accordance
with one embodiment. Of course, it should be noted that the

Sep. 18, 2014

exemplary application shown in Table 34 is set forth for
illustrative purposes only, and thus should not be construed as
limiting in any manner.

TABLE 34

my SIn = aFlow
->Hier(a => 12, b => 33, c => 46, destmask =>3)
->Defer Output();

SIn->print(“In);
In => (iflow)

a => 17
b => 33
c => 46
destmask => 3

my SOut = SIn
->Multicast(name

count => 3,
destmask field => “destmask,
destmask field drop => 1); # drop it from the output

SOut->print(“Out"):
Out =>

O => (iflow)
a => 12
b => 33
c => 46

1 => (iflow)
a => 12
b => 33
c => 46

2 => (iflow)
a => 12
b => 33
c=> 46

=> “NV multicast destmask field,

0099. As shown in Table 34, the destmask may be embed
ded in the input data flow as the “destmask” field. The dest
mask field drop option may be used to drop the destmask
from the output iflows.
0100 Table 35 illustrates the application of the destmask
code option within a Multicast() construct, in accordance
with one embodiment. Of course, it should be noted that the
exemplary application shown in Table 35 is set forth for
illustrative purposes only, and thus should not be construed as
limiting in any manner.

TABLE 35

my SIn = aFlow
->Hier(a => 12, b => 33, c => 46)
->Defer Output();

SIn->print(“In);
In => (iflow)

a => 17
b => 33
c => 46

my SOut = SIn
->Multicast(name

count => 3,
destmask code => Sub
{
my (SIn, SD) = (a) ;
arbitrary destmask code using input fields
i

If SIn->{a} == 0 Then
SD->{destmask} <== 0:

Else
SD->{destmask} <== SIn->{b} & Ox7;

Endif

=> “NV multicast destmask code,

US 2014/0278328A1

TABLE 35-continued

SOut->print(“Out"):
Out =>

O => (iflow)
a => 17
b => 33
c => 46

1 => (iflow)
a => 12
b => 33
c => 46

2 => (iflow)
a => 12
b => 33
c => 46

0101. As shown in Table 35, the destmask code option
may allow for the Supplying of a code block to perform a
computation of a destmask from various fields in the input,
where such computations are performed combinationally.
For example, destmask may be set to all O’s if “a” is 0;
otherwise it may be set to the lower 3 bits of “b.” In another
embodiment, the code block may work similarly to Compute(
) code blocks. For example, the input iflow may be passed by
Multicast() as the first argument. The second argument is the
data flow holding “destmask' which may be assigned by the
code block. If the input data flow has multiple iflows, the code
block may get called for each input iflow, thus producing a
separate destmask for each input iflow.
01.02 Table 36 illustrates the application of the Multicast(

) construct in parallel, in accordance with one embodiment.
Of course, it should be noted that the exemplary application
shown in Table 36 is set forth for illustrative purposes only,
and thus should not be construed as limiting in any manner.

TABLE 36

my SIn = aFlow
>Hier N(4, a => 12, b => 33, c => 46))
->Defer Output(iflow level => 1);

my SDestmask = aFlow
->Hier N(4., destmask=> 3)
->Defer Output(iflow level => 1);

SIn->print(“In);
SDestmask->print(“Destmask');

O => (iflow)
12
33

1 => (iflow)
12

b => 33
c => 46

2 => (iflow)
a => 12
b => 33
c => 46

3 => (iflow)
a => 12
b => 33
c => 46

Destmask =>
O => (iflow)

destmask => 3
1 => (iflow)
destmask => 3

2 => (iflow)
destmask => 3

3 => (iflow)
destmask => 3

Sep. 18, 2014
15

TABLE 36-continued

my SOut = SIn
->Multicast(name => “NV multicast parallel destmask flow”,

count => 3,
Destmask Flow => SDestmask);

SOut->print(“Out"):
Out =>

O =>
O => (iflow)

a => 12
b => 33
c => 46

1 => (iflow)
a => 12
b => 33
c => 46

2 => (iflow)
a => 12
b => 33
c => 46

1 =>
O => (iflow)

a => 12
b => 33
c => 46

1 => (iflow)
a => 12
b => 33
c => 46

2 => (iflow)
a => 12
b => 33
c => 46

2 =>

0 => (iflow)
a => 12
b => 33
c => 46

1 => (iflow)
a => 12
b => 33
c => 46

2 => (iflow)
a => 12
b => 33
c => 46

3 =>
O => (iflow)

a => 12
b => 33
c => 46

1 => (iflow)
a => 12
b => 33
c => 46

2 => (iflow)
a => 12
b => 33
c => 46

0103) As shown in Table 36, the input data flow has 4
iflows, and each of those 4 iflows produces 3 output iflows in
the final superflow. In one embodiment, a Shuffle() construct
may be used to rearrange the output iflows.
0.104 Further still, in one embodiment, the one or more
control constructs may include a Select() construct. For
example, the Select() construct may be the inverse of Multi
cast() and may perform arbitration. In another embodiment,
the Select() construct may take a list of data flows or a
superflow where all interface data flows have the same struc
ture, and may choose one interface data flow for its output.
For example, one arbitration algorithm may be round-robin,
but any type arbiter may be supported, including priority
based, LRU, weighted-RR, etc. In another embodiment, the

US 2014/0278328A1

arbiters may be implemented separately and may be regis
tered, then referred to by name in the Select() construct.
Further, in yet another embodiment, a user may supply their
own arbitration code, or may supply the arbitration decision
as a separate input data flow. Like Multicast(), the input data
flows may be superflows, and the Select() construct may be
applied in parallel and may produce an output Superflow
containing the answers. Further, data flow control may be
automatically managed by default.
0105 Table 37 illustrates the application of a Select()
construct to a data flow within a scripting language, in accor
dance with one embodiment. Of course, it should be noted
that the exemplary application shown in Table 37 is set forth
for illustrative purposes only, and thus should not be con
Strued as limiting in any manner,

TABLE 37

my SOut = SIn
->Select(name => “NV XX yyy arb',

Arb Flow => SArb);

0106 Table 38 illustrates the options associated with a
Select() construct, in accordance with one embodiment. Of
course, it should be noted that the options shown in Table 38
are set forth for illustrative purposes only, and thus should not
be construed as limiting in any manner.

16
Sep. 18, 2014

0107. In one embodiment, the Select() construct may be
the inverse of the Multicast() construct. The Select() con
struct may choose one iflow from multiple input iflows. For
example, the Select() construct may act as an arbiter. In
another embodiment, the Select() construct may perform a
round-robin arbitration. In yet another embodiment, the
Select() construct may allow for a user to Supply an arbitra
tion decision.

0108. Additionally, in one embodiment, the Select() con
struct may occur at the level above the iflow level, (e.g., called
the parent of the iflow level, etc.). In another embodiment, the
parent may have numerically named children iflows 0, 1, etc.
In yet another embodiment, if there are multiple parents, then
an output iflow may be created for each parents arbitration.
0109 Further, in one embodiment, if the stallable option is
1, then inputs may be stalled if the output is stalled. Also, if an
Arb Flow is supplied, then the Arb Flow and the chosen
input data flow may both arrive before either can be retired.
Unchosen input iflows may be stalled. In another embodi
ment, if the stallable option is 0, an Arb Flow may still be
used as an assertion check that the proper input flow is valid.
That input may always be chosen. The output iflow may not
be stalling when a chosen iflow is attempted to be transferred
to it.

0110. Further still, in one embodiment, the Select() con
struct may take in a superflow rather than a list of data flows.
In another embodiment, an arb code option may exist that

TABLE 38

Option Type Default Description

l8le id required name of generated module
comment string undef optional comment to display in the debugger (highly

recommended)
arb string rr arbitration algorithm if there is no Arb Flow.

rr is a simple round-robin algorithm without
priorities and is the default.
sp is a simple priority-based algorithm where iflow 0
has highest priority always, iflow 1 has next-highest
priority always, etc.

Arb Flow flow undef separate arbitration flow; each arb iflow must have
one field (any name) of width log2
(input iflow count)

keep hier O or 1 O indicates that the output iflow will have a dummy “O'”
node added above it

raise iflow O or 1 O when keep hier => 1 is specified, indicates that the
output iflow level will be above the dummy “Onode

out Src name string undef if specified, each output iflow will contain a field
with this name that holds the index of the selected

input iflow
clk id global clock to use for this construct

default

stallable O or 1 global whether the construct is stallable
default

Out reg O or 1 global 0 or 1 indicating whether the output iflow is
default registered out

out roly reg O or 1 global O or 1 indicating whether the output iflows rdy signal
default is registered in; causes a skid flop to be added even if

out reg = 0.
out fifo fifospec O a fifospec which is currently limited to a simple int

representing depth of the fifo for the output iflow:
out reg and out rody reg flops are after the fifo

US 2014/0278328A1

may allow a user to supply a code block with its own arbiter.
There may also be an aflow method to register an arbiter code
block by name so that other designers may use them easily
(e.g., arb=>''name, etc.). In this way, the system itself may
not need to implement any arbiter.
0111 Table 39 illustrates the application of round-robin
arbitration within a Select() construct, in accordance with
one embodiment. Of course, it should be noted that the exem
plary application shown in Table 39 is set forth for illustrative
purposes only, and thus should not be construed as limiting in
any manner. As shown in Table 39, one output iflow is deter
mined from three input iflows.

TABLE 39

my SIn = aFlow
->Hier N(3, a => 12, b => 33, c => 46)
->Defer Output(iflow level => 1);

SIn->print(“In);
In =>
O => (iflow)

a => 12
b => 33
c => 46

1 => (iflow)
a => 12
b => 33
c => 46

2 => (iflow)
a => 12
b => 33
c => 46

my SOut = SIn
->Select (name => “NV select rr');

SOut->print(“Out);
Out => (iflow)

a => 12
b => 33
c => 46

0112 Table 40 illustrates the application of an Arb Flow
option within a Select() construct, in accordance with one
embodiment. Ofcourse, it should be noted that the exemplary
application shown in Table 40 is set forth for illustrative
purposes only, and thus should not be construed as limiting in
any manner.

TABLE 40

my SIn = aFlow
->Hier N(3, a => 12, b => 33, c => 46)
->Defer Output(iflow level => 1);

my SArb =aFlow
->Hier(arb => 2)
->Defer Output();

SIn->print(“In);
SArb->print('Arb'):
In =>

O => (iflow)
a => 12
b => 33
c => 46

1 => (iflow)
a => 12
b => 33
c => 46

2 => (iflow)
a => 12
b => 33
c => 46

Arb => (iflow)
arb => 2

my SOut = SIn

Sep. 18, 2014

TABLE 40-continued

->Select (name => “NV select arb flow”,
Arb Flow => SArb);

SOut->print(“Out"):
Out => (iflow)

a => 12
b => 33
c => 46

0113. As shown in Table 40, the arbitration decision
comes from a separate SArb data flow. In one embodiment,
the SArb data flow may have one field (any name) with width
log2(3)==2 in this case.
0114 Table 41 illustrates the application of an keep hier
option within a Select() construct, in accordance with one
embodiment. Ofcourse, it should be noted that the exemplary
application shown in Table 41 is set forth for illustrative
purposes only, and this should not be construed as limiting in
any manner.

TABLE 41

my SIn = aFlow
->Hier N(3, a => 12, b => 33, c => 46)
->Defer Output(iflow level => 1);

my SArb =aFlow
->Hier(arb => 2)
->Defer Output();

SIn->print(“In);
SArb->print('Arb'):
In =>

O => (iflow)
a => 12
b => 33
c => 46

1 => (iflow)
a => 12
b => 33
c => 46

2 => (iflow)
a => 12
b => 33
c => 46

Arb => (iflow)
arb => 2

my SOut = SIn
->Select (name => “NV select keep hier,

Arb Flow => SArb,
keep hier => 1);

SOut->print(“Out"):
Out =>

O => (iflow)
a => 12
b => 33
c => 46

0.115. As shown in Table 41, the numeric level of hierarchy
may be removed from the output iflow. If a user wants to keep
it, the keep hier option may be used.
0116 Table 42 illustrates the application of an raise iflow
option within a Select() construct, in accordance with one
embodiment. Ofcourse, it should be noted that the exemplary
application shown in Table 42 is set forth for illustrative
purposes only, and thus should not be construed as limiting in
any manner.

TABLE 42

my SIn = aFlow
->Hier N(3, a => 12, b => 33, c => 46)
->Defer Output(iflow level => 1);

US 2014/0278328A1

TABLE 42-continued

my SArb =aFlow
->Hier(arb => 2)
->Defer Output();

SIn->print(“In);
SArb->print('Arb'):
In =>
O => (iflow)

a => 12
b => 33
c => 46

1 => (iflow)
a => 12
b => 33
c => 46

2 => (iflow)
a => 12
b => 33
c => 46

Arb => (iflow)
arb => 2
my SOut = SIn

->Select (name => “NV select raise iflow,
Arb Flow => SArb,
keep hier => 1,
raise iflow => 1);

SOut->print(“Out"):
Out => (iflow)

O =>
a => 12
b => 33
c => 46

0117. As shown in Table 42, the iflow level may be made
one level higher.
0118 Table 43 illustrates the parallel application of a
Select() construct, in accordance with one embodiment. Of
course, it should be noted that the exemplary application
shown in Table 43 is set forth for illustrative purposes only,
and thus should not be construed as limiting in any manner,

TABLE 43

my SIn = aFlow
->Hier N(4, aFlow->Hier N(3, a => 12, b => 33, c => 46))
->Defer Output(iflow level => 2);

my SArb =aFlow
->Hier N(4, arb => 2)
->Defer Output(iflow level => 1);

SIn->print(“In);
SArb->print('Arb'):
In =>
O =>

O => (iflow)
a => 12
b => 33
c => 46

1 => (iflow)
a => 12
b => 33
c => 46

2 => (iflow)
a => 12
b => 33
c => 46

1 =>
O => (iflow)

a => 12
b => 33
c => 46

1 => (iflow)
a => 12
b => 33
c => 46

Sep. 18, 2014

TABLE 43-continued

2 => (iflow)
a => 12
b => 33
c => 46

2 =>

O => (iflow)
a => 12
b => 33
c => 46

1 => (iflow)
a => 12
b => 33
c => 46

2 => (iflow)
a => 12
b => 33
c => 46

3 =>
O => (iflow)

a => 12
b => 33
c => 46

1 => (iflow)
a => 12
b => 33
c => 46

2 => (iflow)
a => 12
b => 33
c => 46

Arb =>
O => (iflow)

arb => 2
1 => (iflow)

arb => 2
2 => (iflow)

arb => 2
3 => (iflow)

arb => 2
my SOut = SIn

->Select (name => “NV select parallel arb flow,
Arb Flow => SArb);

SOut->print(“Out"):
Out =>

O => (iflow)
a => 12
b => 33
c => 46

1 => (iflow)
a => 12
b => 33
c => 46

2 => (iflow)
a => 12
b => 33
c => 46

3 => (iflow)
a => 12
b => 33
c => 46

0119. As shown in Table 43, there are 4 parents, each with
3 children input iflows. One child is chosen for each parent,
thus producing 4 output iflows. The SArb data flow in this
case may have 4 separate decisions.
0.120. Also, in one embodiment, the one or more control
constructs may include a Connect() construct. For example,
a deferred input may not be a primary input. Instead, the
deferred input may be part of a circular design. For example,
it may go into the top of a contrived pipeline, then come out
the bottom. The Connect() construct may be used to connect
the bottom to the deferred data flow at the top. In this way, the
data flows may become the same, thus completing the circle.

US 2014/0278328A1

0121 Table 44 illustrates the application of a Connect()
construct, in accordance with one embodiment. Of course, it
should be noted that the exemplary application shown in
Table 44 is set forth for illustrative purposes only, and thus
should not be construed as limiting in any manner.

TABLE 44

my SOut = SIn
->Select(name => “NV defer circular)
->print("after select)
->Multicast(name => “NV defer circular, # silly example here

count => 3,
broadcast => 1)

->print("after multicast')
->Connect(SIn);

after select => (iflow)
a => 12
b => 33
c => 46

after multicast =>
O => (iflow)

a => 12
b => 33
c => 46

1 => (iflow)
a => 12
b => 33
c => 46

2 => (iflow)
a => 12
b => 33
c => 46

0122. In addition, in one embodiment, the one or more
control constructs may include an AS() construct. For
example, the AS() construct may be used to map iflow data to
a completely different packet format. The AS() construct may
be used both inside and outside of a code block. In another
embodiment, a user may pass a width to get a simple flattened
Uint() leaf result, or the user may pass anything that can be
passed to aFlow->Clone() including a name=>width list as
shown above, or another active or inactive data flow to use as
a template.
0123. Furthermore, in one embodiment, SFlow->As Bits.(

) may include shorthand for SFlow->As(SFlow->width.()). It
may flatten out SFlow to the same number of raw bits. In
another embodiment, if the input data flow has multiple
iflows, then the template may be applied to each iflow. In yet
another embodiment, the AS() construct may not be used to
modify data flows above the iflow level. Note that inside a
code block, the input data flow may not denote multiple
iflows. In still another embodiment, if the template is larger
than the input iflow, then the result may be zero-extended, and
if the template is smaller than the input iflow, then the result
may be truncated. In another embodiment, after this operation
is performed, the template may not be modified in any way.
0.124 Table 45 illustrates the application of an As) con
struct to a data flow withina Scripting language, inaccordance
with one embodiment. Of course, it should be noted that the

19
Sep. 18, 2014

exemplary application shown in Table 45 is set forth for
illustrative purposes only, and thus should not be construed as
limiting in any manner.

TABLE 45

my SOut = SIn->As(a => 5, b => 20);

0.125 fable 46 illustrates the application of an As() con
struct as a control construct, in accordance with one embodi
ment. Of course, it should be noted that the exemplary appli
cation shown in Table 46 is set forth for illustrative purposes
only, and thus should not be construed as limiting in any
manner. As shown in Table 46, a hierarchical data flow is
mapped to a Unit() leaf, and is then mapped back to the
original packet format.

TABLE 46

my SIn = aFlow
->Hier(a => 24, b => 40)
->Defer Output()
->print(“In);

my SOutO = SIn->As(SIn->width.());
my SOutl = SOut0->As(SIn);
In => (iflow)

a => 24
b => 40

OutO => (iflow) 64
Outl => (iflow)

a => 24
b => 40

raw bits
back to original format

0.126 Table 47 illustrates the application of an As() con
struct with different packet sizes, in accordance with one
embodiment. Ofcourse, it should be noted that the exemplary
application shown in Table 47 is set forth for illustrative
purposes only, and thus should not be construed as limiting in
any manner. As shown in Table 47, a data flow is converted to
a Smaller packet (extra bits truncated), and then to a larger
packet (Zero-extended).

TABLE 47

my SIn = aFlow
->Hier(a => 24, b => 40)
->Defer Output()
->print(“In);

my SOut() = SIn->As(a => 12); # to Smaller packet containing only
half of “a
my SOutl = SOut0->As(SIn);
and all of “b' are zeroed)

back to larger format (half of “a

I0127 Table 48 illustrates the application of an As() con
struct inside a code block, in accordance with one embodi
ment. Of course, it should be noted that the exemplary appli
cation shown in Table 48 is set forth for illustrative purposes
only, and thus should not be construed as limiting in any
a.

TABLE 48

my SIn = aFlow
->Hier(a => 24, b => 40)
->Defer Output()
->print(“In);

my SOut = SIn
->Compute(name

Out
=> “NV as code,

US 2014/0278328A1

TABLE 48-continued

code => Sub
{
my (SIn, SOut) = (a) :
my SOutO = SIn->As(a) => 12, a1 => 12);

sa

my SOut1 = {< SIn >}:
SIn->width.())

my SOut2 = {< 3 of SIn >}:
of

my SOut3 = SOut0->As(SIn);
back to SIn format

my SOut4 = SOut0->As Bits();
>As(SOut0->width ());

Null SOut:
SIn->print(“In);
SOutO->print(“OutO);
SOutl->print(“Outl”);
SOut2->print(“Out 2):
SOut3->print(“Out3);
SOut4->print(“Out4);

);

In => (iflow)
a => 24
b => 40

OutO =>
aO => 12
a1 => 12

Out1 => 64
Out? => 192
Out3 =>

a => 24
b => 40

Outa => 24

don't care about output

0128. As shown in Table 48, the As() construct may be
used inside a code block. For example, a concatenation opera
tor {<>} may be used to flatten a hierarchical flow into a leaf.
Further, the "of extension may act as a macro that replicates
SIn 3 times inside the concatenation. In one embodiment.
As Bits() may be used as shorthand to flatten a data flow into
the same number of raw bits. In another embodiment, "of
may be used anywhere a programming language (e.g., Perl,
etc.) list is allowed and the RHS may not need to be an
aFlow it may return a Perl list. Additionally, see, for
example, U.S. patent application Ser. No. , filed

, which is hereby incorporated by reference in its
entirety, and which describes examples of creating a compute
COnStruct.

0129. Table 49 illustrates the parallel application of an As(
) construct inside a code block, in accordance with one
embodiment. Ofcourse, it should be noted that the exemplary
application shown in Table 49 is set forth for illustrative
purposes only, and thus should not be construed as limiting in
any manner.

TABLE 49

my SIn = aFlow
->Hier N(3, a => 24, b => 40)
->Defer Output(iflow level => 1)
->print(“In);

my SOutO = SIn->As(a => 12);
my SOut1 = SOut0->As(SIn->{O});
iflow)

make it smaller

back to original format (per

20

equivalent to SIn->As(

no zero-extend it

Sep. 18, 2014

grab each half of

use repetition operator

shorthand for SOutO

TABLE 49-continued

a => 24
b => 40

0.130. As shown in Table 49, the As() construct may be
applied to each iflow of an input data flow. Note that each
iflow may be rewired to look like the template. In one embodi
ment, changes may not be made above the iflow level.
0131 Further, in one embodiment, the one or more control
constructs may include a Shuffle() construct. For example,
the Shuffle() construct may be used to rearrange data flows

US 2014/0278328A1
21

above the iflow level. This may result in pure wiring and no
logic. In another embodiment, constructs Such as Shuffle().
Select(), and Multicast() may be used to manipulate data
flows above the iflow level. In still another embodiment, the
Shuffle() construct may support a transpose operation.

0132 Table 50 illustrates the options associated with a
Shuffle() construct, in accordance with one embodiment Of
course, it should be noted that the options shown in Table 50
are set forth for illustrative purposes only, and thus should not
be construed as limiting in any manner.

TABLE SO

Option Type Default Description

l8le id required name of generated module
comment string undef optional comment to display

in the debugger (highly
recommended)

op string transpose the type of shuffle operation;
only transpose is Supported, so
there is no point in ever
Supplying this option

level string iflow child level at which to perform
shuffle: there must be two
levels available above this
level

clk id global clock to use for this construct
default

0.133 Table 51 illustrates the application of a Transpose()
construct, in accordance with one embodiment. Of course, it
should be noted that the exemplary application shown in
Table 51 is set forth for illustrative purposes only, and thus
should not be construed as limiting in any manner.

TABLE 51

my SIn = aFlow
->Hier N(5, aFlow->Hier N(2, a => 12, b => 33, c => 46))
->Defer Output(iflow level => 2):

SIn->print(“In);
In =>
O =>

O => (iflow)
a => 12
b => 33
c => 46

1 => (iflow)
a => 12
b => 33
c => 46

1 =>

O => (iflow)
a => 12
b => 33
c => 46

1 => (iflow)
a => 12
b => 33
c => 46

Sep. 18, 2014

TABLE 51-continued

O => (iflow)
a => 12
b => 33
c => 46

1 => (iflow)
a => 12
b => 33
c => 46

4 =>

O => (iflow)
a => 12
b => 33
c => 46

1 => (iflow)
a => 12
b => 33
c => 46

my SOut = SIn
->Shuffle(name => “NV shuffle transpose”);

SOut->print(“Out"):

O => (iflow)
a => 12

33
c => 46

1 => (iflow)
a => 12

33
c => 46

2 => (iflow)
a => 12

33
c => 46

3 => (iflow)
a => 12

33
c => 46

4 => (iflow)

O => (iflow)

b => 33
c => 46

1 => (iflow)
a => 12

33
c => 46

2 => (iflow)
a => 12

33
c => 46

3 => (iflow)
a => 12

33
c => 46

4 => (iflow)
a => 12
b => 33
c => 46

I0134. As shown in Table 51, inputs of a crossbar switch
may be shuffled to the outputs of the switch. For example, the
data flow may have at least two levels above the iflow level. In
another example, a grandfather level may be at the top, with a
parent level at level 1, and an iflow level at level 0. There may
be 5 parents, each with 2 childliflows. After the transpose, the
output data flow may have 2 parents, each with 5 child iflows,
one taken from each of the input parents. In this way, output
parent 0 may have child iflow 0 from each of the 5 input
parents, and output parent 1 may have child iflow 1 from each
of the 5 input parents.

US 2014/0278328A1

0135 Further still, in one embodiment, the one or more
control constructs may include a Derive Clock() construct.
For example, the Derive Clock() construct may be used to
create a new clock from an existing clock from clk "clk’. In
another embodiment, Disable Flow may disable the new
clock when Disable Flow()->Valid().
0.136 Table 52 illustrates the options associated with a
Derive Clock() construct, in accordance with one embodi
ment. Of course, it should be noted that the options shown in
Table 52 are set forth for illustrative purposes only, and thus
should not be construed as limiting in any manner.

TABLE 52

Option Type Default Description

l8le id required name of new clock
comment string undef optional comment to

display in the debugger
(highly recommended)

from clk id global clock from which this new
default clock is derived; may be a

primary or derived clock
Disable Flow flow undef optional empty flow that

indicates when to disable
the new clock

0137 Table 53 illustrates the application of a Derive
Clock () construct, in accordance with one embodiment. Of
course, it should be noted that the exemplary application
shown in Table 53 is set forth for illustrative purposes only,
and thus should not be construed as limiting in any manner.

TABLE 53

aFlow->default options set(clk=> "derived clk');

0.138. In one embodiment, "derived clk” may be made the
default clk for subsequent constructs. In another embodi
ment, clock dividers, Enable Flow, and other resets may be
Supported.
0139. In this way, clocking, clock gating, and data flow
control may be regulated automatically during the creation of
the integrated circuit design, utilizing a hardware develop
ment language that is embedded in a scripting language.
Additionally, the hardware development language may
include high level built in control constructs that may be
guaranteed to work and that may deal in terms of data flows.
These control constructs may also be reused.
0140. Further, the embedded hardware development lan
guage may incorporate validation and Verification tests and
may allow for automatic bottom up formal verification. Fur
ther still, the embedded hardware description language may
be flexible and configurable, and may be compatible with a
variety of programming languages (e.g., Verilog(R, C++,
CUDATM, etc.). Also, the embedded hardware development
language may allow for debugging and visualization. For
example, users may be taken to the earliest assertion failure
within code, and signals may be automatically grouped.
0141 FIG. 3 shows an exemplary hardware design envi
ronment 300, in accordance with one embodiment. As an
option, the environment 300 may be carried out in the context
of the functionality of FIGS. 1-2. Of course, however, the
environment 300 may be implemented in any desired envi
ronment. It should also be noted that the aforementioned
definitions may apply during the present description.

22
Sep. 18, 2014

0142. As shown, within a design module 302, reusable
component generators 304, functions 306, and a hardware
description language embedded in a scripting language 308
are all used to construct a design that is run and stored 310 at
a source database 312. Also, any build errors within the
design are corrected 344, and the design module 302 is
updated. Additionally, the system backend is run on the con
structed design 314 as the design is transferred from the
source database 312 to a hardware model database 3160.

0.143 Additionally, the design in the hardware model data
base 316 is translated into C++ or CUDATM 324, translated
into VerilogR 326, or sent directly to the high level GUI
(graphical user interface) waveform debugger 336. If the
design is translated into C++ or CUDATM324, the translated
design 330 is provided to a signal dump 334 and then to a high
level debugger 336. If the design is translated into Verilog(R)
326, the translated design is provided to the signal dump 334
or a VCS simulation 328 is run on the translated design, which
is then provided to the signal dump 334 and then to the high
level GUI waveform debugger 336. Any logic bugs found
using the high level GUI waveform debugger 336 can then be
corrected 340 utilizing the design module 302.
014.4 FIG. 4 illustrates an exemplary system 400 in which
the various architecture and/or functionality of the various
previous embodiments may be implemented. As shown, a
system 400 is provided including at least one host processor
401 which is connected to a communication bus 402. The
communication bus 402 may be implemented using any suit
able protocol, such as PCI (Peripheral Component Intercon
nect), PCI-Express, AGP (Accelerated Graphics Port),
HyperTransport, or any other bus or point-to-point commu
nication protocol(s). The system 400 also includes a main
memory 404. Control logic (software) and data are stored in
the main memory 404 which may take the form of random
access memory (RAM).
0145 The system 400 also includes input devices 412, a
graphics processor 406 and a display 408, i.e. a conventional
CRT (cathode ray tube), LCD (liquid crystal display), LED
(light emitting diode), plasma display or the like. User input
may be received from the input devices 412, e.g., keyboard,
mouse, touchpad, microphone, and the like. In one embodi
ment, the graphics processor 406 may include a plurality of
shader modules, a rasterization module, etc. Each of the fore
going modules may even be situated on a single semiconduc
tor platform to form a graphics processing unit (GPU).
0146 In the present description, a single semiconductor
platform may refer to a sole unitary semiconductor-based
integrated circuit or chip. It should be noted that the term
single semiconductor platform may also refer to multi-chip
modules with increased connectivity which simulate on-chip
operation, and make Substantial improvements over utilizing
a conventional central processing unit (CPU) and bus imple
mentation. Of course, the various modules may also be situ
ated separately or in various combinations of semiconductor
platforms per the desires of the user. The system may also be
realized by reconfigurable logic which may include (but is not
restricted to) field programmable gate arrays (FPGAs).
0147 The system 400 may also include a secondary stor
age 410. The secondary storage 410 includes, for example, a
hard disk drive and/or a removable storage drive, representing
a floppy disk drive, a magnetic tape drive, a compact disk
drive, digital versatile disk (DVD) drive, recording device,

US 2014/0278328A1

universal serial bus (USB) flash memory, etc. The removable
storage drive reads from and/or writes to a removable storage
unit in a well-known manner.
0148 Computer programs, or computer control logic
algorithms, may be stored in the main memory 404 and/or the
secondary storage 410. Such computer programs, when
executed, enable the system 400 to perform various functions.
Memory 404, storage 410 and/or any other storage are pos
sible examples of computer-readable media.
0149. In one embodiment, the architecture and/or func
tionality of the various previous figures may be implemented
in the context of the host processor 401, graphics processor
406, an integrated circuit (not shown) that is capable of at
least a portion of the capabilities of both the host processor
401 and the graphics processor 406, a chipset (i.e. a group of
integrated circuits designed to work and sold as a unit for
performing related functions, etc.), and/or any other inte
grated circuit for that matter.
0150 Still yet, the architecture and/or functionality of the
various previous figures may be implemented in the context
of a general computer system, a circuit board system, a game
console system dedicated for entertainment purposes, an
application-specific system, and/or any other desired system.
For example, the system 400 may take the form of a desktop
computer, laptop computer, server, workstation, game con
soles, embedded system, and/or any other type of logic. Still
yet, the system 400 may take the form of various other devices
m including, but not limited to a personal digital assistant
(PDA) device, a mobile phone device, a television, etc.
0151. Further, while not shown, the system 400 may be
coupled to a network e.g. a telecommunications network,
local area network (LAN), wireless network, wide area net
work (WAN) such as the Internet, peer-to-peer network, cable
network, etc.) for communication purposes.
0152 While various embodiments have been described
above, it should be understood that they have been presented
by way of example only, and not limitation. Thus, the breadth
and scope of a preferred embodiment should not be limited by
any of the above-described exemplary embodiments, but
should be defined only in accordance with the following
claims and their equivalents.
What is claimed is:
1. A computer program product embodied on a non-tran

sitory computer readable medium, comprising:
code for receiving one or more parameters, at least one of
which corresponds to an interface protocol;

code for constructing a data flow based on the one or more
parameters;

code for receiving an indication of one or more control
constructs; and

code for creating a hardware design, utilizing the con
structed data flow and the one or more control con
StructS.

2. The computer program product of claim 1, wherein the
data flow represents a flow of data through the hardware
design.

3. The computer program product of claim 1, wherein the
data flow is associated with one or more interfaces of the
hardware design.

4. The computer program product of claim 1, wherein the
one or more parameters are received utilizing a hardware
description language embedded in a scripting language.

5. The computer program product of claim 4, wherein the
computer program product is operable Such that the data flow

Sep. 18, 2014

is implemented as an instance of a formal object class within
the hardware description language.

6. The computer program product of claim 1, wherein the
data flow includes a superflow that represents multiple flows
of data and that is associated with a plurality of interfaces.

7. The computer program product of claim 1, wherein the
data flow has a numeric, alphabetic, or custom naming hier
archy.

8. The computer program product of claim 1, wherein one
or more of the control constructs include a module imple
mented as part of a hardware description language that
receives one or more data flows as input.

9. The computer program product of claim 8, wherein the
computer program product is operable such that one or more
of the control constructs perform one or more operations
based on the input data flow or flows.

10. The computer program product of claim wherein the
computer program product is operable such that one or more
of the control constructs create one or more output data flows,
based on the one or more input data flows.

11. The computer program product of claim 10, wherein
the computer program product is operable such that the one or
more output data flows are input into one or more additional
COnStructS.

12. The computer program product of claim 1, wherein one
or more of the control constructs include one or more param
eters.

13. The computer program product of claim 12, wherein
the one or more parameters may include one or more of a
name parameter, a comment parameter, a stallable parameter,
a parameter used to specify a depth of an output queue, a
parameter that causes an output data flow of the construct to
be registered out, and aparameter that causes a ready signal of
an output data flow of the construct to be registered in.

14. The computer program product of claim 1, wherein one
or more of the control constructs include a separate construct,
a merge construct, a multicast construct, a select construct, a
connect construct, an as construct, a shuffle construct, or a
derive clock construct.

15. The computer program product of claim 1, wherein the
hardware design includes an integrated circuit design.

16. The computer program product of claim 1, wherein the
computer program product is operable such that both the data
flow and the construct are included within the hardware
design.

17. The computer program product of claim 1, wherein the
computer program product is operable such that one or more
of the control constructs interrogate the data flow utilizing
one or more introspection methods.

18. The computer program product of claim 1, wherein the
data flow includes a Superflow, and the computer program
product is operable such that one or more of the control
constructs performs automatic looping on a plurality of Sub
flows of the superflow.

19. A method, comprising:
receiving one or more parameters, at least one of which

corresponding to an interface protocol;
constructing a data flow based on the one or more param

eters; and
receiving an indication of one or more control constructs;
wherein a hardware design is capable of being created,

utilizing the constructed data flow and the one or more
control constructs.

US 2014/0278328A1 Sep. 18, 2014
24

20. A system, comprising:
a processor for receiving one or more parameters, at least

one of which corresponding to an interface protocol,
constructing a data flow based on the one or more param
eters, and receiving an indication of one or more control
constructs;

wherein a hardware design is capable of being created,
utilizing the constructed data flow and the one or more
control constructs.

21. A method, comprising:
receiving a plurality of parameters associated with a data

flow to be included within a hardware design, the plu
rality of parameters including an identification of an
interface and a width field associated with the interface;

constructing a data flow based on the plurality of param
eters;

receiving an indication of one or more control constructs to
be included within the hardware design; and

creating a hardware design, utilizing the constructed data
flow and the one or more control constructs.

22. The method of claim 21, wherein the constructed data
flow is input to one or more of the control constructs, which
creates one or more output data flows based on the input data
flow.

