wo 2014/172227 A1 |]I ONF O 0O 000 N O O R

(43) International Publication Date

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Ny
Organization é
International Bureau -,

=

\

23 October 2014 (23.10.2014)

WIPOIPCT

(10) International Publication Number

WO 2014/172227 Al

(51

eay)

(22)

(25)
(26)
(30)

1

(72

International Patent Classification:
GO6T 1/60 (2006.01)

International Application Number:
PCT/US2014/033915

International Filing Date:
14 April 2014 (14.04.2014)

English
English

Filing Language:
Publication Language:

Priority Data:
61/812,232 15 April 2013 (15.04.2013) Us
13/918,892 14 June 2013 (14.06.2013) Us

Applicant: MICROSOFT CORPORATION [US/US];
One Microsoft Way, Redmond, Washington 98052-6399

(US).

Inventors: EGURO, Kenneth Hiroshi; ¢/o Microsoft Cor-
poration, LCA - International Patents, One Microsoft Way,
Redmond, Washington 98052-6399 (US). BITTNER, Ray
A., Jr.; c/o Microsoft Corporation, LCA - International
Patents, One Microsoft Way, Redmond, Washington
98052-6399 (US). SMITH, George E.; c/o Microsoft Cor-

(8D

(84)

poration, LCA - International Patents, One Microsoft Way,
Redmond, Washington 98052-6399 (US). SWILLEY,
Shawn Michael; c/o Microsoft Corporation, LCA - Inter-
national Patents, One Microsoft Way, Redmond, Washing-
ton 98052-6399 (US). AHMED, Rehan; c/o Microsoft
Corporation, LCA - International Patents, One Microsoft
Way, Redmond, Washington 98052-6399 (US).

Designated States (uniess otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,
BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,
DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR,
KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME,
MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ,
OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA,
SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, T™M,
TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM,
ZW.

Designated States (uniess otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ,
UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,

[Continued on next page]

(54) Title: PARALLEL MEMORIES FOR MULTIDIMENSIONAL DATA ACCESS

(57) Abstract: The subject disclosure is directed towards loading parallel

102 114

~

7
Array -
{e.g., Image) o Array Processing

A 4

Distributing
Process

Fetching
Process | L 44p

A

Memory | |
(e.g., FPGA)
108(1)

Memory
(e.g., FPGA)

108(2

Memory
(e.g., FPGA)
108(3

Memory
(e.g., FPGA)
108{4.

110

\

®
° Cache

FIG. 1

memories (e.g., in one or more FPGAs) with multidimensional data in an in-
terleaved manner such that a multidimensional patch / window may be filled
with corresponding data in a single parallel read of the memories. Depending
on the position of the patch, the data may be rotated horizontally and/or ver-
tically, for example, so that the data in each patch is consistently arranged in
the patch regardless of from which memory each piece of data was read. Also
described is leveraging dual ported memory for multiple line reads and/or
loading one part of a buffer while reading from another.

WO 20147172227 A1 W00 A0 R A A

TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU,
LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SF, SI, SK,
SM, TR), OAPI (BF, BJ, CF, CG, CL, CM, GA, GN, GQ, Published:
GW, KM, ML, MR, NE, SN, TD, TG).

— as to the applicant's entitlement to claim the priority of
the earlier application (Rule 4.17(iii))

— with international search report (Art. 21(3))
Declarations under Rule 4.17:

— as to applicant’s entitlement to apply for and be granted
a patent (Rule 4.17(ii))

10

15

20

25

30

WO 2014/172227 PCT/US2014/033915

PARALLEL MEMORIES FOR MULTIDIMENSIONAL DATA ACCESS

BACKGROUND

[0001] Standard image and signal processing algorithms generally process data within a
sample window (e.g. a Gaussian blur). If this window “slides” neatly in raster order,
producing this sample window is relatively straightforward and, to a large degree, does not
become markedly more difficult as the sample window increases in size (e.g. larger radius
Gaussian blurs).
[0002] While this works for brute-force algorithms, algorithms that work on large data
sets often need perform more specific and targeted computations (for the sake of
computational efficiency). In this case, the sample windows that are computed upon are
generally arbitrarily-located windows within a larger search space. A similar situation
occurs if the analysis is data-dependent. Producing sample windows for these more
advanced algorithms is a much more difficult problem.
[0003] One solution stores the data representing the larger search space in a buffer and
uses a series of random memory accesses into that buffer to gradually construct the
required sample. However, this solution creates a bottleneck at the memory, limiting the
speed of computation. This is because real memory has limited 1/O capacity (i.e.
simultaneous read ports), whereby the speed at which “full” samples can be accessed is
inversely related to the size of the sample window; (e.g., algorithms with very large
sample windows simply cannot run as quickly as those with smaller windows). Another
issue is that unless the sample is very small, the entire sample cannot be accessed at once.
This strongly limits the amount of parallel computation that can be performed.
Notwithstanding, this is the solution that is implemented on a CPU.
[0004] An alternative solution avoids the memory bottleneck by creating multiple
identical copies of the larger search space using multiple buffers. In this way, parallel data
items are produced within the requested window, only limited by the number of parallel
buffers. This solution is amenable to a direct hardware implementation. However, having
multiple copies comes at a significant resource cost, as essentially the amount of memories
needed is proportional to the window size if normalized to a constant performance
requirement.

SUMMARY
[0005] This Summary is provided to introduce a selection of representative concepts in a

simplified form that are further described below in the Detailed Description. This

10

15

20

25

30

WO 2014/172227 PCT/US2014/033915

Summary is not intended to identify key features or essential features of the claimed
subject matter, nor is it intended to be used in any way that would limit the scope of the
claimed subject matter.

[0006] Briefly, one or more of various aspects of the subject matter described herein are
directed towards distributing multidimensional data among memories such that a patch /
window of the multidimensional data is able to filled in parallel data read operations. The
number of memories is determined based upon a product of a length of each dimension of
the patch that is used in processing the multidimensional data. The memories are read to
fill a positioned patch of data with the multidimensional data associated with a position of
the patch via a parallel read of each of the memories.

[0007] In one or more aspects, a distribution process is configured to determine a
number of memories based upon multidimensional patch dimensions. The distribution
process loads the memories with data from a multidimensional array in an interleaved
manner, in which the interleaving provides that any patch of data (that corresponds to the
multidimensional patch dimensions) that is filled by reading the memories has each data
access unit (one or more items read or written together as a unit) read from a different
memory.

[0008] One or more aspects are directed towards loading multidimensional data into a
plurality of memories, determining addresses in each of the memories based upon a
position of a window, and filling a data window with a single parallel read of the plurality
of memories. Data corresponding to the window data is output, and the process repeated
for different window positions. The window data may be rotated to provide the data
corresponding to the window data.

[0009] Other advantages may become apparent from the following detailed description
when taken in conjunction with the drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

[0010] The present invention is illustrated by way of example and not limited in the
accompanying figures in which like reference numerals indicate similar elements and in
which:

[0011] FIGURE 1 is a block diagram representing example components that may be
used to load multidimensional data for parallel reading, including into and from field
programmable gate array (FPGA) memories, according to one or more example

implementations.

10

15

20

25

30

WO 2014/172227 PCT/US2014/033915

[0012] FIGS. 2A and 2B are representations of how data may be loaded into memories
in an interleaved manner for subsequent parallel reading, according to one or more
example implementations.

[0013] FIG. 3 is a representation of a window of data being filled by parallel memory
reads, according to one or more example implementations.

[0014] FIG. 4 is a representation of a window of data being filled by parallel memory
reads, in which horizontal rotation of the data is performed based upon the window
position to provide a consistent return pattern, according to one or more example
implementations.

[0015] FIG. 5 is a representation of a window of data being filled by parallel memory
reads, in which horizontal and vertical rotation of the data is performed based upon the
window position to provide a consistent return pattern, according to one or more example
implementations.

[0016] FIG. 6 is a representation of how a subset of multidimensional data may be
buffered, according to one or more example implementations.

[0017] FIG. 7 is a representation of how memories may be arranged with section-based
offsets, according to one or more example implementations.

[0018] FIG. 8 is a representation of how two lines of a memory may be read, according
to one or more example implementations.

[0019] FIG. 9 is a flow diagram representing example steps taken to load memories in
an interleaved manner for parallel reading, according to one or more example
implementations.

[0020] FIG. 10 is a flow diagram representing example steps taken to read patch /
window data in parallel and if necessary rotate the data, according to one or more example
implementations.

[0021] FIG. 11 is a block diagram representing an exemplary non-limiting computing
system or operating environment, in the form of a gaming system, into which one or more
aspects of various embodiments described herein can be implemented.

DETAILED DESCRIPTION

[0022] Various aspects of the technology described herein are generally directed
towards dividing data to be processed among separate memories (comprising a “patch
cache”), each memory holding a different, but interleaved, portion of the data. The

interleaving is based upon the data to be processed (such as image data or other real-world

10

15

20

25

30

WO 2014/172227 PCT/US2014/033915

sampled data) being physically or time adjacent, ¢.g., pixels in an image are adjacent other
ones.

[0023] The division and interleaving (round-robin) are based upon the dimensions of the
patch (e.g., window size in two-dimensional data processing). When a patch is needed for
processing, the data are arranged such that each access into the “patch cache” needs to get
one and only one value from each memory within the cache. This provides fast single-
cycle access and a large degree of aggregate parallel bandwidth.

[0024] In general, the technology described herein provides a memory architecture that
capitalizes on the natural physical spatial locality of the image or other real-world data to
maintain high performance without duplication. This allows extremely high performance
with little resource overhead.

[0025] It should be understood that any of the examples herein are non-limiting. For
instance, benefits are readily apparent in hardware / FPGA / ASIC scenarios, however the
technology may be used in other scenarios. Further, two-dimensional image data are used
in some of the examples to help convey the concepts in a way that is relatively easy to
understand, however image data is only one type of data, and other types of data,
including in more than two dimensions, may benefit from the technology described herein.
As such, the present invention is not limited to any particular embodiments, aspects,
concepts, structures, functionalities or examples described herein. Rather, any of the
embodiments, aspects, concepts, structures, functionalities or examples described herein
are non-limiting, and the present invention may be used various ways that provide benefits
and advantages in data processing and/or connected components in general.

[0026] FIG. 1 shows an example system in which a multidimensional array 102 of data
to be processed, (e.g., two-dimensional image data) is processed by an array processing
component 104. As described herein, for efficient access, the array processing component
104 is coupled to a data distributing process 106 that writes the array data into a plurality
of independent (e.g., FPGA) memories 108(1) — 108(4), ¢.g., collectively arranged as a
patch cache 110. The distributing process is shown as being coded into the cache 110, but
may be a separate process, and may be incorporated into the array processing component.
Note that only four independent memories 108(1) — 108(4) are shown in FIG. 1, but that
any practical number may be used, and that the number depends on the dimensions of the
patch.

[0027] To process the data, the array processing component 104 is coupled to a data

fetching process 112 that reads a patch of data in parallel from the patch cache 110/

10

15

20

25

30

WO 2014/172227 PCT/US2014/033915

independent memories 108(1) — 108(4). The array processing component 104 processes
each patch, and uses the processing on one or more patches to ultimately provide results
114. Note that the array processing component also may be in hardware, ¢.g., the patch
cache.

[0028] To produce arbitrarily located P-sized “patches” from the buffered data, the data
is divided among separate memories, each holding a different, but interleaved, portion of
the data. The total memory is thus divided among the separate memories; e.g., if a single,
serially accessed memory held the data in D space, each of the divided, parallel memories
hold D / P of the data.

[0029] The dimensions of the data may be enumerated as N, N’, N’” and so forth, up to
the number of data dimensions. Each of the dimensions of the patch may be enumerated as
P, P’, P’ and so forth. Internally, the patch cache 110 is organized as an array of
independent memories. The number of independent memories (M) is the product of each
of the lengths of dimensions in the patch.

[0030] Turning to an example, FIG. 2A shows an arrangement to produce a 2x2 patch
into a two-dimensional 4x4 space. That is, the patch has dimensions P and P’ (each of
length two), while the data has dimensions N and N’ (each of length four). The sixteen
data items are alphabetically represented in FIG. 2A by letters A through P, and by the
array indices (0, 0) to (3, 3).

[0031] In FIG. 2A and also shown in FIG. 2B, because the patch is 2x2, M =2x2 =4
memories are used, denoted as MemW, MemX, MemY and MemZ. If the overall buffer
can hold B values over the entire dimensional space, each memory hold B / M values. In
this example of FIGS. 2A and 2B, the buffer size B = 16, whereby each memory holds 4
values (FIG. 2B).

[0032] Data may be written into the cache in raster order, organized by some dimension
from N to N’ to N’ and so forth. These writes are generally low width (e.g., in FIG. 2A
only one value wide), but wider data may be accepted. For example, data may come in as
one-dimensional strips. A system may accept small length strips; this may be expanded to
full-width N length strips or even higher order multi-dimensional strips.

[0033] The cache 110 accepts the data and writes it in a round-robin style by dimension.
For example, if data arrives in raster-order, first along dimension N, then by dimension N’,
and so forth, the data for each dimension is written into each of the dimensions in the
patch array in turn. This proceeds in a round-robin manner among the first dimension of

the patch array across the entire length of first data dimension, wrapping on the first

10

15

20

25

30

WO 2014/172227 PCT/US2014/033915

dimension of the patch array. Subsequent data along progressively higher dimensions of
the data are distributed round-robin across progressively higher dimensions of the patch
array, again wrapping cach dimension of the patch array. If the dimension order of the data
is higher than the dimension order of the patch, the round-robin ordering restarts at the
first dimension of the patch. This distribution (e.g., for three dimensions) may be
represented as:

column = column address mod P

row = row address mod P’

depth = depth address mod P"

[0034] For example, in FIG. 2A, the MemW and MemX memories are in the first row of
the dimension PxP’ array (along the P dimension) and the MemY and MemZ memories
are in the second row of the dimension PxP’ array (again, along the P dimension but this
time in the next P’ dimension row).

[0035] Because in this example the length of the N dimension of the data is four, and the
P dimension of the patch is two, the first two data points A and B enter the cache and are
placed into the MemW and MemX memories, respectively. When the third data point C
enters the cache, the length of the P dimension has been exhausted, but the N dimension
has not. Thus, the P dimension will wrap around and the third and fourth data points C and
D are placed in the MemW and MemX memories, respectively.

[0036] At this point, the N dimension has been exhausted, so the fifth, sixth, seventh,
and eighth data points (E - H) enter the MemY, MemZ, MemY, MemZ memories in a
similar fashion.

[0037] At this time, both the N dimension and P’ dimension have been exhausted, but
the N’ dimension has not, whereby the ninth, tenth, eleventh and twelfth data points (I - L)
wrap around along the P’ dimension back to the MemW and MemX memories. This
continues to the end of the NxN’ data, e.g., M- P are written to the MemY and MemZ
memories in the example of FIGS. 2A and 2B.

[0038] Note that to maintain a 2x2 patch but with a third data dimension (e.g. the input
data were a 2D image over time), and the desire is to get any 2x2 patch of the image from
any time slice across the N’ dimension (e.g., the dimension of the patch array is smaller

than the dimension of the data), the second, third and so forth time slices across the N’

10

15

20

25

30

WO 2014/172227 PCT/US2014/033915

dimensions wrap back to the first P dimension in the same MemW, MemX, MemW,
MemX, MemY, MemZ, MemY, MemZ, MemW, MemX ... arrangement.

[0039] When the data is distributed and needs to be read back from the memory as a
“PxP’xP’’...” patch, the output from each memory can be re-arranged along each
dimension to a consistent orientation. For example, as shown in FIGS. 3 - 5, the top left
pixel in any 2x2 patch (represented by the dashed boxes) may come from any of the four
memories in the array. Thus, if the data are returned in order from MemW, MemX,
MemY, MemZ, the order does not correspond to the patch order. For example, in FIG. 4,
B, C, F, G is desired as the patch data, however the order corresponding to MemW,
MemX, MemY and MemZ is C, B, G and F.

[0040] For some usage scenarios, the order is irrelevant, e.g., if the array processing
component 104 is simply summing the returned values. However, other applications
expect the data to be returned in a consistent manner, e.g., top left, top right, and lower
left, lower right.

[0041] Assuming that the outputs from the memories remain static, these values may
need to be rotated along each axis (dimension P and then subsequently by dimension P’) to
ensure that the top left pixel of each resulting patch remains in a consistent location, and
SO on.

[0042] As can be seen, the data 330 from the patch 332 in FIG. 3 needs no reordering.
The data 440 from the patch 442 in FIG. 4 needs a horizontal shift of each row to obtain
the ordered data 444, namely B, C, F, G.

[0043] The data 550 in patch 552 in FIG. 5 needs both horizontal shifting (data 554) and
vertical shifting (data 556) to get F, G, J, and K. Note further that the row data in FIG. 5
needs to be accessed via an offset to account for the next vertical row, e.g., memory
MemW is arranged as A (0,0), C (2, 0), 1 (0, 2) and K (2,2). As used herein, with the patch
window’s row height being two in this example, MemW is considered as having two
sections that correspond to this offset, namely section 0 containing A (0,0) and C (2, 0),
and section 1 containing I (0, 2) and K (2,2). This section-based offset addressing allows
the patch window to be filled with the correct data when positioned at any row, as in FIG.
5.

[0044] Rotation may be efficiently accomplished by a series of shift registers. The
rotations (e.g., in two dimensions) for any patch (window) dimensions are determined

according to:

10

15

20

25

30

WO 2014/172227 PCT/US2014/033915

Xrot = X Y% Ayx

Yot =Y % Ay
where % indicates modulo and Awx and Awy define the access window, that is, the patch
dimensions, and X and Y are the starting coordinates of the patch.
[0045] An entire array (e.g., a full set of image data) need not be put into the cache at the
same time. For example, as generally shown in FIG. 6, a part (e.g., a band) of an image
660 may be written to the memories, and read back and processed. In FIG. 6, the band
being read is between Yrow and Ywuich, indicated by the dashed horizontal lines. In
general, the patch / access window 662 needs to be able to be positioned (aligned on
pixels) anywhere in the band, and is defined by Awx (patch width) and Awy (patch height),
which, for example, may be the 2x2 window in the above examples. As can be readily
appreciated, in a sliding window scenario that never moves upwardly, once the window
moves down a line, that line is freed and may be overwritten with more data to process, as
long as the wrapping / circular buffer situation is tracked (as the next lower line in the
image is now above the sliding window in the buffer).
[0046] In some implementations having dual ported memory, one part of the memories
may be written while reading from another part. Thus, as a line is freed, it may be written
while the next line is being processed. In a non-dual ported memory scenario, the reading
needs to pause when new writes are needed. Also, as described below, with dual ported
memory there may be times when both ports are being used for reads; if this is not the
case, reads and writes can occur on the same cycle. However, this opportunity may not
occur, or the writes may fall behind the reads, whereby some pausing of the reads needs to
occur.
[0047] FIG. 7 shows each memory is divided into sections, ¢.g., sec 0 or sec 1, to
provide the offset into the data to match the patch’s vertical row position as described
above. To this end, the section number is calculated from the Y-coordinate in order to give
the starting address for the part of the memory that contains the line being accessed. In
other words, the section number, and thus the address in the memory is based upon the Y-
coordinate; to find an address in the memory for a section of a certain size (sec size), the
following may be used:

Y -Y, A,y —1
secH = LOW+ Awy % AwY
AWY

X
ADDR = (sec#) - (secsize) + —
AWX

10

15

20

25

30

WO 2014/172227 PCT/US2014/033915

[0048] FIG. 8 shows another alternative, in which instead of one item of data (e.g.,
pixel) being returned for a read, two pixels are returned as a unit. This may be because the
pixels are eight bits wide and the memory is sixteen bits wide, for example, so two pixels
are read at once. Note that as used herein, the term “access unit” refers to whatever
reading and writing scheme is in place, ¢.g., one-byte reads, two-byte reads, four-byte
reads and so on. Note that the scheme in use affects the number of memories needed; for
example, if the patch is 4x4 and each memory provides two pixels, then two memories
across and four memories down are needed.

[0049] However, as represented by the dashed lines in FIG. 8, using a 4x4 access
window as an example, at times the window is positioned such that more than one line
needs to be read from a memory at once to fill the window. This is not a problem with
dual ported memory which allows fetching two lines out of one memory; the two lines are
concatenated and any rotation handled as described above. However, if not dual ported,
two clock cycles are needed. Further, as set forth above, if dual ported but one port is
being used for simultaneous writing, then either the write needs to be paused to allow the
dual read, or two clock cycles are needed for the read.

[0050] FIG. 9 is a flow diagram showing example steps for interleaving data among
memories based upon a window (patch) size. FIG. 9 is generally described with respect to
two dimensions, and assumes that the data will fit in the memories (whether as a whole or
via a band at a time as described above). Step 902 obtains the patch dimensions, ¢.g., as
part of a setup process performed by the array processing algorithm. Step 904 represents
allocating memories according to the patch dimensions, e.g., a 2x2 patch has four
memories, a 3x3 nine, a 4x4 sixteen, and so on.

[0051] Step 906 selects the first dimension of data, e.g., the X-dimension starting at
coordinate zero. Step 908 selects the memories based upon the X- dimension, such as the
first two of four memories for a 2x2 patch, the first three for a 3x3 patch, and so on.
[0052] Step 910 represents the interleaving of the data along the X-axis among the
selected memories, ¢.g., alternating between them. Note that the data wraps in the selected
memories as needed, as described above. This continues until the first dimension is
exhausted, that is, the entire line is placed in the selected memories.

[0053] When the first dimension is exhausted, step 914 evaluates whether the second
dimension is exhausted, e.g., the last row has been placed into the memories. If not, at step
916 the first dimension is “reset” (e.g., the X-coordinate returns to zero) and the next

dimension incremented, e.g., the Y-coordinate is moved to the next line.

10

15

20

25

30

WO 2014/172227 PCT/US2014/033915

[0054] Step 908 selects the next memories, e.g., not the ones used previously. For
example, with a 2x2 patch, every other row is placed into a different pair of the memories;
for a 3x3 patch, every third row into a different set of three memories, and so on. In this
way, every value in a window is in a different memory.

[0055] The process continues alternating among memories along the columns until the
first dimension (row) is exhausted, and alternating among memories along the rows until
all rows are exhausted. At this time, the memory is ready for reading. Note that as
described above, if a sliding window scenario is in use, reading may begin as soon as
enough lines to fill a patch with data have been written. If the window is allowed to be
positioned anywhere in the buffer at any time, then the buffer needs to be filled.

[0056] FIG. 10 represents reading the data, beginning at step 1002 where the window
data (e.g., the starting coordinate and size) are received. Note that in a sliding window
scenario, the logic of FIG. 10 may simply receive a “next position” command and move
the window horizontally until it needs to move down to the next line.

[0057] Step 1004 represents computing the address in each memory for the data points
in the access window, e.g., using the address computations described above. Note that
rather than the full computation, in a sliding window scenario the previous computation
may be used to determine the next location in each memory because the window position
and underlying memory changes regularly.

[0058] Step 1006 reads the memories at their respective addresses, in parallel, into a set
of shift registers or the like. As described above, step 1008 performs any needed X
rotation, and step 1010 any needed Y rotation. At this time, the window is output, filled
with the correct data in the correct order.

EXAMPLE OPERATING ENVIRONMENT

[0059] FIG. 11 illustrates an example of a suitable computing and networking
environment / system 1100 into which computer-related examples and implementations
described herein may be implemented, for example. As one example, the computing and
networking environment 1100 may program an FPGA with data and/or logic to perform
multidimensional array processing as described herein, provide input data (e.g., capture
images), receive output data, and so forth. Notwithstanding, the computing and
networking environment 1100 also may implement the technology described in FIGS. 1 -
10 in software, at least in part.

[0060] It can be readily appreciated that the above-described implementation and its

alternatives may be implemented on any suitable computing device, including a gaming

10

10

15

20

25

30

WO 2014/172227 PCT/US2014/033915

system, personal computer, tablet, DVR, set-top box, smartphone and/or the like.
Combinations of such devices are also feasible when multiple such devices are linked
together. For purposes of description, a gaming (including media) system is described as
one exemplary operating environment hereinafter.

[0061] FIG. 11 is a functional block diagram of an example gaming and media system
1100 and shows functional components in more detail. Console 1101 has a central
processing unit (CPU) 1102, and a memory controller 1103 that facilitates processor
access to various types of memory, including a flash Read Only Memory (ROM) 1104, a
Random Access Memory (RAM) 1106, a hard disk drive 1108, and portable media drive
1109. In one implementation, the CPU 1102 includes a level 1 cache 1110, and a level 2
cache 1112 to temporarily store data and hence reduce the number of memory access
cycles made to the hard drive, thereby improving processing speed and throughput.
[0062] The CPU 1102, the memory controller 1103, and various memory devices are
interconnected via one or more buses (not shown). The details of the bus that is used in
this implementation are not particularly relevant to understanding the subject matter of
interest being discussed herein. However, it will be understood that such a bus may
include one or more of serial and parallel buses, a memory bus, a peripheral bus, and a
processor or local bus, using any of a variety of bus architectures. By way of example,
such architectures can include an Industry Standard Architecture (ISA) bus, a Micro
Channel Architecture (MCA) bus, an Enhanced ISA (EISA) bus, a Video Electronics
Standards Association (VESA) local bus, and a Peripheral Component Interconnects (PCI)
bus also known as a Mezzanine bus.

[0063] In one implementation, the CPU 1102, the memory controller 1103, the ROM
1104, and the RAM 1106 are integrated onto a common module 1114. In this
implementation, the ROM 1104 is configured as a flash ROM that is connected to the
memory controller 1103 via a Peripheral Component Interconnect (PCI) bus or the like
and a ROM bus or the like (neither of which are shown). The RAM 1106 may be
configured as multiple Double Data Rate Synchronous Dynamic RAM (DDR SDRAM)
modules that are independently controlled by the memory controller 1103 via separate
buses (not shown). The hard disk drive 1108 and the portable media drive 1109 are shown
connected to the memory controller 1103 via the PCI bus and an AT Attachment (ATA)
bus 1116. However, in other implementations, dedicated data bus structures of different

types can also be applied in the alternative.

11

10

15

20

25

30

WO 2014/172227 PCT/US2014/033915

[0064] A three-dimensional graphics processing unit 1120 and a video encoder 1122
form a video processing pipeline for high speed and high resolution (e.g., High Definition)
graphics processing. Data are carried from the graphics processing unit 1120 to the video
encoder 1122 via a digital video bus (not shown). An audio processing unit 1124 and an
audio codec (coder/decoder) 1126 form a corresponding audio processing pipeline for
multi-channel audio processing of various digital audio formats. Audio data are carried
between the audio processing unit 1124 and the audio codec 1126 via a communication
link (not shown). The video and audio processing pipelines output data to an A/V
(audio/video) port 1128 for transmission to a television or other display / speakers. In the
illustrated implementation, the video and audio processing components 1120, 1122, 1124,
1126 and 1128 are mounted on the module 1114.

[0065] FIG. 11 shows the module 1114 including a USB host controller 1130 and a
network interface (NW I/F) 1132, which may include wired and/or wireless components.
The USB host controller 1130 is shown in communication with the CPU 1102 and the
memory controller 1103 via a bus (e.g., PCI bus) and serves as host for peripheral
controllers 1134. The network interface 1132 provides access to a network (e.g., Internet,
home network, etc.) and may be any of a wide variety of various wire or wireless interface
components including an Ethernet card or interface module, a modem, a Bluetooth
module, a cable modem, and the like.

[0066] In the example implementation depicted in FIG. 11, the console 1101 includes a
controller support subassembly 1140, for supporting four game controllers 1141(1) -
1141(4). The controller support subassembly 1140 includes any hardware and software
components needed to support wired and/or wireless operation with an external control
device, such as for example, a media and game controller. A front panel I/O subassembly
1142 supports the multiple functionalities of a power button 1143, an ¢ject button 1144, as
well as any other buttons and any LEDs (light emitting diodes) or other indicators exposed
on the outer surface of the console 1101. The subassemblies 1140 and 1142 are in
communication with the module 1114 via one or more cable assemblies 1146 or the like.
In other implementations, the console 1101 can include additional controller
subassemblies. The illustrated implementation also shows an optical I/O interface 1148
that is configured to send and receive signals (e.g., from a remote control 1149) that can be
communicated to the module 1114.

[0067] Memory units (MUs) 1150(1) and 1150(2) are illustrated as being connectable to
MU ports "A" 1152(1) and "B" 1152(2), respectively. Each MU 1150 offers additional

12

10

15

20

25

WO 2014/172227 PCT/US2014/033915

storage on which games, game parameters, and other data may be stored. In some
implementations, the other data can include one or more of a digital game component, an
executable gaming application, an instruction set for expanding a gaming application, and
a media file. When inserted into the console 1101, each MU 1150 can be accessed by the
memory controller 1103.

[0068] A system power supply module 1154 provides power to the components of the
gaming system 1100. A fan 1156 cools the circuitry within the console 1101.

[0069] An application 1160 comprising machine instructions is typically stored on the
hard disk drive 1108. When the console 1101 is powered on, various portions of the
application 1160 are loaded into the RAM 1106, and/or the caches 1110 and 1112, for
execution on the CPU 1102. In general, the application 1160 can include one or more
program modules for performing various display functions, such as controlling dialog
screens for presentation on a display (e.g., high definition monitor), controlling
transactions based on user inputs and controlling data transmission and reception between
the console 1101 and externally connected devices.

[0070] The gaming system 1100 may be operated as a standalone system by connecting
the system to high definition monitor, a television, a video projector, or other display
device. In this standalone mode, the gaming system 1100 enables one or more players to
play games, or enjoy digital media, e.g., by watching movies, or listening to music.
However, with the integration of broadband connectivity made available through the
network interface 1132, gaming system 1100 may further be operated as a participating
component in a larger network gaming community or system.

CONCLUSION

[0071] While the invention is susceptible to various modifications and alternative
constructions, certain illustrated embodiments thereof are shown in the drawings and have
been described above in detail. It should be understood, however, that there is no intention
to limit the invention to the specific forms disclosed, but on the contrary, the intention is to
cover all modifications, alternative constructions, and equivalents falling within the spirit

and scope of the invention.

13

WO 2014/172227 PCT/US2014/033915

CLAIMS
1. A method comprising, distributing multidimensional data among memories,
in which a number of memories are determined based upon a product of a length of each
dimension of a patch used in processing the multidimensional data, and reading the
memories to fill a positioned patch of data with the multidimensional data that corresponds

to a position of the patch via a parallel read of each of the memories.

2. The method of claim 1 wherein the distributing the multidimensional data
comprises a) loading a band of the multidimensional data into a buffer comprising the
memories, or b) alternating writing data corresponding to a first dimension of the data to a
first set of memories corresponding to a first dimension of the patch, or ¢) alternating
writing data corresponding to a first dimension of the data to a second set of second
memories corresponding to a second dimension of the patch, or any combination of a), b)

or ¢).

3. The method of claim 1 wherein the memories comprise dual ported
memories, and a) wherein reading the memories comprises reading data from two
addresses in a single cycle, or b) further comprising writing to a memory address of a
memory while reading from a different or same memory address of the memory, or ¢) both

a) and b).

4. The method of claim 1 further comprising, (a) rotating data in the patch
zero or more times in a vertical rotation into a consistent order based upon a position of
the patch, and returning the patch after any rotating of the data, or (b) rotating data in the
patch zero or more times in a horizontal rotation and at least once in a vertical rotation into
a consistent order based upon a position of the patch, and returning the patch after any

rotating of the data, or both a) and b).

5. A system comprising, a distribution process configured to determine a
number of memories based upon multidimensional patch dimensions, the distribution
process further configured to load the memories with data from a multidimensional array
in an interleaved manner, in which the interleaving provides that any patch of data
corresponding to the multidimensional patch dimensions that is filled by reading the

memories has each data access unit read from a different memory.

14

WO 2014/172227 PCT/US2014/033915

6. The system of claim 5 wherein the memories are contained in a single field
programmable gate array, or wherein the memories are distributed among a plurality of

field programmable gate arrays.

7. The system of claim 5 further comprising a fetching process configured to
fill a patch at a given position relative to the multidimensional array with data read from

the memories in parallel.

8. The system of claim 7 wherein the fetching process is configured to rotate

the data read from the memories into a consistent order.

9. One or more computer-readable storage media or logic having executable
instructions, which when executed perform steps, comprising:

(a) loading multidimensional data into a plurality of memories;

(b) determining addresses in each of the memories based upon a position of a
window;

(c) filling a data window with a single parallel read of the plurality of memories;

(d) outputting data corresponding to the window data;

(e) returning to step (b) when the position of the window changes for at least a

plurality of different window positions.

10. The one or more computer-readable storage media or logic of claim 9

having further executable instructions comprising rotating the data in the data window.

15

WO 2014/172227

102

[

Array

/

(e.g., Image)

1/11

104

Array Processing

PCT/US2014/033915

1

14

[

7
Results

Y

Yy

—

Distributing
Process

Fetching
Process

A

Memory
(e.g., FPGA)

108(1)

Memory
(e.g., FPGA)

108(2)

Memory
(e.g., FPGA)

108(3)

Memory
(e.g., FPGA)

108(4)

Cache

-+ 112

110

FIG. 1

WO 2014/172227

PCT/US2014/033915

2/11
A B C D
0,0 1,0 2,0 3,0
MemW MemX MemW MemX
E F G H
0, 1 1,1 2,1 3,1
MemY MemZ MemY MemZ
[J K L
0,2 1,2 2,2 3,2
MemW MemX MemW MemX
M N O P
0,3 1,3 2,3 3,3
MemY MemZ MemY MemZ
FIG. 2A
A C B D
0,0 2,0 1,0 3,0
[K J L
0,2 2,2 1,2 3,2
MemW MemX
E G F H
0, 1 2,1 1,1 3,1
M 0] N P
0,3 2,3 1,3 3,3
MemY MemZ

FIG. 2B

WO 2014/172227 PCT/US2014/033915

3/11
332\
| A B [¢ D
i 0,0 1,0 i 2,0 3,0
| MemW | MemX || MemW]| MemX
| E S H
| o1 11 21 3,1
: MemY MemZ ! MemY MemZ
=== T 1 "~ " K L
0,2 1,2 2,2 3,2
MemW MemX MemW MemX
M N O P
0,3 1,3 2,3 3,3
MemY MemZ MemY MemZ

330

(0, 0) (1,0) (0, 1) (1,1)

FIG. 3

WO 2014/172227 PCT/US2014/033915
4/11
442
A B c : D
I
0,0 : 1,0 2,0 : 3,0
MemW 1| MemX MemW [} MemxX
1
E : F G : H
0,1 1| 1.1 21 | 31
I
MemY ! MemZ MemY : MemZ
[) -_-J_ ------- K & L
0,2 1,2 2,2 3,2
MemW MemX MemW MemX
M N 0] P
0,3 1,3 2,3 3,3
MemY MemZ MemY MemZ
\ y s \

C B B C
(2,0) (1,0) I:> (1,0) (2,0)
G F F G
(2,1) (1,1) (1,1) (2,1)

w“__v

FIG. 4

WO 2014/172227 PCT/US2014/033915
5/11
552
\
A B C D
0,0 1,0 2,0 3,0
MemW |XMemX_J__Mem\W | MemX
1 T
E F G » H
0,1 1| 1.1 2,1 i 3,1
]
MemY || Memz MemY |i MemZ
1 J K L L
[}
0.2 1| 1,2 2,2 |1 32
MemW | MemX MemW E MemX
M TN o7 P
0,3 1,3 2,3 3,3
MemY MemZ MemY MemZ
550 554
\ AT A \4
J J K
(2, 2) (1,2) (1,2) (2,2)
—) - .
(2,1) (1,1) (1,1) (2,1)
__v
556
F G
(1, 1) (2,1)
J K
(1, 2) (2,2)

FIG. 5

WO 2014/172227 PCT/US2014/033915

6/11
- Buffer Window X >
0,0
o I ¥
o — —}— 662 Buffer
Aw | 7 Window
- Y
YHIGH = — — —l= F——_—_—_—————— 1 T
wX
Image Data

660

FIG. 6

WO 2014/172227

sec 0 <

sec 1 <

sec 0 <

sec 1 <

711
0,0 [
2,0
° sec 0 <
[]
[]

1022, 0
0,2
2,2

o sec 1 <
[]
[]

1022, 2 L
0, 1 [
2,1

° sec 0 <
.

1022, 1
0,3
2,3

o sec 1 <
[]
[]

1022, 3 .

FIG. 7

PCT/US2014/033915

PCT/US2014/033915

WO 2014/172227

8/11

T T
O\l v«
3._7“3,7,
==
oclo! < <
2,_6,“2,6,
1

!

]

1

/

1 L)
n»O“44
/1./_10.._1.._10..
—aa_ '
\ LY

o N < <
Y ,,_“ " -
owlo«

\
4
s

’

1]

] 1] T

| T iww

1| A~ o5 N

W TV T T T

1| ~'~ 10O W

| S

| 2._6“26

|

])

|)

])

] I

| 1

} 1 T

YA~ 110wL
[N WP I
L N
\ [}

= o w
u,,_" - -
O:M_.J\.OA_.

FIG. 8

WO 2014/172227

9/11

902 ——

Obtain Patch Dimensions, Data
Dimensions

v

904 ——

Allocate Memories based Upon
Patch Dimensions

906 —

v

Select First Dimension
of Data

v

908 —
>

Select Memories Based Upon
Second Dimension of Patch

v

910 ——

Interleave Data to Each Selected
Memory in Round Robin
Distribution

916

J

912

Dimension

PCT/US2014/033915

Exhausted

no

914

Second
Dimension
xhausteg

Reset First Dimension
Increment Second Dimension

FIG. 9

WO 2014/172227 PCT/US2014/033915
10/11

Receive Window
Data

!

1004 N Compute Address each Memory
for Data Points in Access Window

!

Read Data from Addresses

!

1008 —] Perform X Rotation

!

1010 ——~ Perform Y Rotation

!

1012 ~J Output Window
Data

1002 —

end

FIG. 10

WO 2014/172227 PCT/US2014/033915

11/11
1100
1114 Game Console 1101
e N P
1 |
| i |
| _crume ooy | 1T]
‘|| L1 cache L2 Cache 1120 .
! 111 1112 1122 AV !
! 0 112 Port | 1
: Audio Audio | |1128] |
| Memory Processing Codec !
| | Flash ROM Controller Unit 1124 1126 :
! E— 1103 :
: USB Host |
] Controller NW I/F :
: RAM 1106 1130 1132 "
I |

Y S @“"771’1@""
< ATA tabie 7 > System Power

Supply Module
1154
Portable phard Dok Fan 115
Media Drive —
1109
=2 App 1160 114
v Y !
Opl)/’g:al Front Panel | | Wired/Wireless Memory Mermory
I/O Sub-
Interface asserrlljbly (;ortm)troller F;?rt Unit Port Unit Port
1148 1142 u jjjeom Y oI A 115201 | [“B” 1152(2)
A ——
/W Iy \)
1141(2
1141(2)~N | /-11414I 115002
I_ Controller I_ Controller \
114 1141(1) 1141(3) Mem. Unit
—2" 1144711504)~_ k& 11406) ~ &
v — 1]
Coﬁtergﬁt% || Mem. Unit I_ Mem. Unit| [vem. Unit
— N11503) -
1150(5) \-1150(1)

FIG. 11

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2014/033915

A. CLASSIFICATION OF SUBJECT MATTER

INV. GO6T1/60
ADD.

According to International Patent Classification (IPC) or to both national classification and IPG

B. FIELDS SEARCHED

GO6T

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

EPO-Internal, WPI Data

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* | Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
X YAMAGUCHI K ET AL: "Interleaved pixel 1-10
lookup for embedded computer vision",

COMPUTER VISION AND PATTERN RECOGNITION,
CYPR WORKSHOPS 2008. TEEE, PISCATAWAY, NJ,
USA,

23 June 2008 (2008-06-23), pages 1-8,

XP031285708,
the whole document

WO 2007/132399 Al (KONINKL PHILI

[NL]; SETHURA)

22 November 2007 (2007-11-22)
page 1, line 9 - page 3, line 28
page 8, line 1 - page 10, line 2

ELECTRONICS NV [NL]; ALBA PINTO CARLOS A

PS 1,2,5,6,

_/__

Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents :

"A" document defining the general state of the art which is not considered
to be of particular relevance

"E" earlier application or patent but published on or after the international
filing date

"L" document which may throw doubts on priority claim(s) or which is
cited to establish the publication date of another citation or other
special reason (as specified)

"Q" document referring to an oral disclosure, use, exhibition or other
means

"P" document published prior to the international filing date but later than
the priority date claimed

"T" later document published after the international filing date or priority
date and not in conflict with the application but cited to understand
the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive
step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search

3 July 2014

Date of mailing of the international search report

16/07/2014

Name and mailing address of the ISA/

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswik

Tel. (+31-70) 340-2040,

Fax: (+31-70) 340-3016

Authorized officer

Pierfederici, A

Form PCT/ISA/210 (second sheet) (April 2005)

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2014/033915

C(Continuation).

DOCUMENTS CONSIDERED TO BE RELEVANT

Category* | Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

X

EP 0 085 210 Al (IBM [US]; IBM UK [GB])

10 August 1983 (1983-08-10)

page 2, paragraph 4 - page 3, paragraph 1
I. KUON ET AL.: "FPGA Architecture:
Survey and Challenges",

FOUNDATIONS AND TRENDS IN ELECTRONIC
DESIGN AUTOMATION,

vol. 2, no. 2, 2007, pages 135-253,
XP002726220,

page 167, paragraph 4 - page 168,
paragraph 2

CHIHOUB A ET AL: "A BAND PROCESSING
IMAGING LIBRARY FOR A TRICORE-BASED
DIGITAL STILL CAMERA",

REAL-TIME IMAGING, ACADEMIC PRESS LIMITED,
GB,

vol. 7, no. 4, 1 August 2001 (2001-08-01),
pages 327-337, XP001124987,

page 330, right-hand column, paragraph 1 -
paragraph 2

WO 20067016303 A2 (PHILIPS INTELLECTUAL
PROPERTY [DE]; KONINKL PHILIPS ELECTRONICS
NV [NL) 16 February 2006 (2006-02-16)

page 2, line 18 - page 3, line 6

1,2,5,6,
9

1-10

1-10

1-10

Form PCT/ISA/210 (continuation of second sheet) (April 2005)

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No

PCT/US2014/033915
Patent document Publication Patent family Publication
cited in search report date member(s) date
WO 2007132399 Al 22-11-2007 CN 101443809 A 27-05-2009
EP 2024928 Al 18-02-2009
JP 5248482 B2 31-07-2013
JP 2009536392 A 08-10-2009
KR 20090012320 A 03-02-2009
US 2009135192 Al 28-05-2009
WO 2007132399 Al 22-11-2007
EP 0085210 Al 10-08-1983 EP 0085210 Al 10-08-1983
JP S642993 B2 19-01-1989
JP $58132855 A 08-08-1983
WO 2006016303 A2 16-02-2006 CN 101002226 A 18-07-2007
EP 1779321 A2 02-05-2007
JP 2008510213 A 03-04-2008
US 2008094406 Al 24-04-2008
WO 2006016303 A2 16-02-2006

Form PCT/ISA/210 (patent family annex) (April 2005)

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - claims
	Page 17 - claims
	Page 18 - drawings
	Page 19 - drawings
	Page 20 - drawings
	Page 21 - drawings
	Page 22 - drawings
	Page 23 - drawings
	Page 24 - drawings
	Page 25 - drawings
	Page 26 - drawings
	Page 27 - drawings
	Page 28 - drawings
	Page 29 - wo-search-report
	Page 30 - wo-search-report
	Page 31 - wo-search-report

