Title: N-ACYLPEPTIDE DERIVATIVES AND THEIR USES

Abstract: N-acylpeptide derivatives are described. Compositions comprising N-acylpeptide derivatives are therapeutically effective for topical or systemic administration to alleviate or improve conditions, disorders, diseases, symptoms or syndromes associated with tumors or cancers, immune, nervous, vascular, musculoskeletal, cutaneous system, or other tissues or systems in a subject.
TITLE OF THE INVENTION

[0001] N-acylpeptide Derivatives And Their Uses

FIELD OF THE INVENTION

[0002] The embodiments described herein relate to novel compounds, compositions and uses of the compositions comprising N-acylpeptide derivatives for systemic or topical administration to a mammal to alleviate or improve diseases, symptoms or syndromes associated with tumors, cancers, immune, nervous, vascular, musculoskeletal, cutaneous system, or other tissues and systems.

BACKGROUND OF THE INVENTION

[0003] In Handbook of Neurochemistry and Molecular Neurobiology 3rd Ed. "Amino Acids and Peptides in the Nervous System" by Oja et al. Springer Science 2007, page 401-411, Reichelt describes in "Low Molecular Weight Peptides" endogenous peptides. These peptides are Glu-Ala-Gly and Glu-Cys-Gly isolated from monkey brain; Glu-Met-Cys-Gly (SEQ ID NO:1) isolated from ox brain; N-acetyl (N-Ac) or N-pyroglutamyl (N-PyroE) peptides, such as N-Ac-Asp-Gly-Ser, N-Ac-Asp-Glu-Gly, N-Ac-Asp-Glu-Asp, N-PyroE-His-Pro-NH₂, N-PyroE-His-Trp-Ser-Tyr-Gly-Leu-Arg-Pro-NH₂ (SEQ ID NO:2) are naturally occurring small peptides acting as signal molecules in the body. However, there is no description or report about the N-acylpeptide derivatives of the present invention.

[0004] In a publication by Tuszynski et al. Experimental and Molecular Pathology: 91, 608-613, 2011 "G-protein coupled receptor-associated sorting protein 1 (GASP-1), a potential biomarker in breast cancer", a two dimensional high performance liquid electrophoresis method (2D-HPLE, US 7,326,326) was used to identify serum biomarkers associated with different stages of breast cancer. Based on this technology, a specific fragment or peptide of GASP-1 was found in sera of patients with early stage of breast cancer, but absent in sera of normal subjects. One of the fragments or peptides was identified as a pentadecapeptide containing 15 amino acid residues with a free amino group and a free carboxyl group each at one end of the peptide, and confirmed as Glu-Ala-Ser-Pro-Glu-Ala-Val-Ala-Gly-Val-Gly-Phe-Glu-Ser-Lys (GASP-1 P15, SEQ ID NO:3). In Chang et al. U.S. Patent Application No. 13/384,014, published on 7/19/12, entitled "Serum Markers Associated with Early and Other Stages of Breast Cancer" it was described that in addition to the above pentadecapeptide, a hexadecapeptide containing 16 amino
acid residues with a free amino group and a free carboxyl group at both ends of the peptide, and confirmed as Glu-Glu-Ala-Ser-Pro-Glu-Ala-Val-Ala-Gly-Val-Gly-Phe-Glu-Ser-Lys (GASP-1 PI6, SEQ ID NO:4). It has been reported that GASP-1 is also highly expressed in the sera of patients having brain cancer, lung cancer, liver cancer, or triple negative breast cancer.

However, there is no description or report about N-acylpeptide derivatives of the present invention.

[0005] In a publication by Zhou et al. J. Cellular Biochemistry 92: 125-146, 2004; entitled "Cloning and Characterization of Angiocidin, a Tumor Cell Binding Protein for Thrombospondin-1", a hexapeptide, Cys-Ser-Val-Thr-Cys-Gly (SEQ ID NO:5), a sequence or part of thrombospondin-1 molecule was shown to function as a tumor cell adhesion domain, and also to bind angiocidin. The thrombospondin-1 is a matrix glycoprotein in the body, and has been implicated in mechanisms of tumor progression. However, there is no description or report about N-acylpeptide derivatives of the present invention.

[0006] In a publication by Sabherwal et al. Experimental Cell Research 312:2443-2453, 2006; entitled "Integrin α2β1 Mediates the Anti-Angiogenic and Anti-Tumor Activities of Angiocidin, a Novel Tumor-Associated Protein" an eicosapeptide, a peptide containing 20 amino acid residues, FCTGIRVAHLALKHRQGKNH (SEQ ID NO:6) is a sequence or part of angiocidin protein (from No. 87 to No. 106 in amino acid sequence), which has been found to mediate the anti-tumor activity of angiocidin. The angiocidin protein was initially isolated from lung carcinoma in 1993, and was later cloned based on the full-length cDNA in bacteria. This recombinant protein was referred to as angiocidin. However, there is no description or report about N-acylpeptide derivatives of the present invention.

BRIEF SUMMARY OF THE INVENTION

[0007] It has been discovered in the present invention that novel N-acylpeptide derivatives and compositions comprising the N-acylpeptide derivatives are therapeutically effective for topical or systemic administration to alleviate or improve conditions, disorders, diseases, symptoms or syndromes associated with tumors, cancers, immune, nervous, vascular, musculoskeletal, cutaneous system, or other tissues or systems in a subject.

[0008] In one general aspect, the present invention relates to a peptide derivative having the following generic Formula (I):

\[R_1\text{-AAB-(AAA)}_n\text{-AAC-R}_2 \]

Formula (I)
or an isomer, free acid, base, salt, lactone, amide, hydroxylamide, hydrazide, or ester thereof,
wherein \(R_i \) is an acyl radical having up to 19 carbon atoms; AAB is an amino-terminal amino acid residue; \((\text{AAA})_n\) is a peptide having \(n \) amino acid residues, each of the amino acid residue is independently selected from any amino acid; \(n \) is an integer from 3-18; AAC is a carboxyl-terminal amino acid residue; \(R_2 \) is \(\text{OR}_3, \text{NHR}_4 \) or \(\text{NHNHR}_5 \); \(R_3 \) is \(H, \) an alkyl, aralkyl or aryl radical having up to 19 carbon atoms; \(r_4 \) or \(R_5 \) is independently \(H, \) OH, an alkyl, aralkyl, aryl or acyl radical having up to 19 carbon atoms; a side chain of each of the AAB, AAA and AAC optionally and independently has an extra functional radical selected from the group consisting of \(\text{OH}, \) \(\text{SH}, \) \(\text{NHCONH}_2, \) \(\text{NHC}=(\text{NH})\text{NH}_2, \text{NH}_2, \text{COOH}, \text{CONH}_2, \) imidazolyl, pyrrolidinyl, and indolyl; and the \(\text{H} \) or \(\text{OH} \) of the extra functional radical is optionally substituted by \(\text{N}^{\text{3}} \), an acyl, alkyl, aralkyl, or aryl radical having up to 19 carbon atoms. A typical acyl radical includes, but is not limited to, acetyl (Ac), propanoyl (Pr), and benzoyl (Bz). A typical group attached to the carboxyl-terminial amino acid residue includes, but is not limited to, \(\text{OH}, \) \(\text{OEt}, \text{NH}_2, \text{NHOH}, \) and \(\text{NHN}^{\text{3}}. \) Preferably, \(n \) is an integer selected from 3-4, 13-14, and 17-18.

Another general aspect of the invention relates to a composition for topical or systemic administration to a mammal, which comprises a pharmaceutically or cosmetically acceptable carrier and a therapeutically effective amount of a peptide derivative having the generic Formula (I) described above, except that wherein \(n \) is an integer from 1-18. Preferably, \(n \) is an integer selected from 1-4, 13-14, and 17-18.

In yet another aspect, an embodiment of the present invention relates to a method of treating a disorder, disease, symptom or syndrome associated with a tumor, cancer, immune, nervous, vascular, musculoskeletal or cutaneous system, or other tissues or systems in a subject, comprising systemically or topically administering to the subject a composition according to an embodiment of the present invention.

Other aspects, features and advantages of the invention will be apparent from the following disclosure, including the detailed description of the invention and its preferred embodiments, and the appended claims.

DESCRIPTION OF THE INVENTION

Various publications, articles and patents are cited or described in the background and throughout the specification; each of these references is herein incorporated by reference in its entirety. Discussion of documents, acts, materials, devices, articles or the like which has been included in the present specification is for the purpose of providing context for the present invention. Such discussion is not an admission that any or all of these matters form part of the prior art with respect to any inventions disclosed or claimed.
Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention pertains. Otherwise, certain terms used herein have the meanings as set forth in the specification. All patents, published patent applications and publications cited herein are incorporated by reference as if set forth fully herein. It must be noted that as used herein and in the appended claims, the singular forms "a," "an," and "the" include plural reference unless the context clearly dictates otherwise.

An amino acid is an organic acid having one or more than one alkaline radical such as amino, guanidino, imino, or hydrazine radical attached at any carbon atom other than carbon one. There are 20 common amino acids which are represented by chemical names, such as "glycine", or abbreviated symbols such as three letters, "Gly" or one letter "G. In this disclosure, both one letter and three letters will be used. Except glycine, all other common amino acids have stereoisomers, i.e., enantiomer, D or L form. The amino acids in most natural peptides and proteins are all in L-form. Some D-form amino acids are produced by microorganisms or present in antibiotics, and have inhibitory or antagonistic actions. For example, D-alanine, D-aspartic acid, and D-glutamic acid are present in bacterial cell walls, and D-glutamic acid, D-aspartic acid and D-phenylalanine are present in the antibiotic bacitracin. An uncommon amino acid is an amino acid that is not a common amino acid. Examples of uncommon amino acids include, but are not limited to, β-alanine and taurine. The uncommon amino acids can exist as a D or L form.

The one letter and three letter symbols used for the 20 common amino acids are as follows: alanine (A, Ala), arginine (R, Arg), aspartic acid (D, Asp), asparagine (N, Asn), cysteine (C, Cys), glycine (G, Gly), glutamic acid (E, Glu), glutamine (Q, Gin), histidine (H, His), isoleucine (I, Ile), leucine (L, Leu), lysine (K, Lys), methionine (M, Met), phenylalanine (F,
Phe), proline (P, Pro), serine (S, Ser), threonine (T, Thr), tryptophan (W, Trp), tyrosine (Y, Tyr)
and valine (V, Val).

[0017] The letter symbols used for uncommon amino acids are as follows: \(\beta\)-alanine (bAla), 4-aminobenzoic acid (Abz), 2-aminobutanoic acid (Abu), 4-aminobutanoic acid (4Abu), 2-
aminoisobutanoic acid (Aib), 5-aminolevulinic acid (All), alliiin (Ali), 2-aminoacidic acid (Aad),
3-aminoacidic acid (bAad), aminopimelic acid (Apa), 3-aminotyrosine (Atyr), canavanine (Cav),
canaline (Can), ciliatine (Cil), cysteic acid (Cya), cystine sulfinic acid (Csa), citruline (Cit);
creatine (Cre), creatinine (Crn); 2,3-diaminosuccinic acid (Dsa); 2,4-diaminobutanoic acid
(Dbu); 2,3-diaminopropanoic acid (Dpr); 3,4-dihydroxyphenyl-alanine (Dopa); 3,5-
diiodotyrosine (Dtyr); homoarginine (Har), homoserine (Hser), homocysteine (Hcys),
homocitrulline (Hcit), hydroxyllysine (Hyl); 3-hydroxyproline (3Hyp); 4-hydroxyproline (4Hyp);
2-hydroxy-4-aminobutanoic acid (Haba); 3-hydroxy-4-aminobutanoic acid (Hyba); 4-
hydroxyornithine (Horn); 4-hydroxyaspartic acid (Hasp); 4-hydroxyphenyl-glycine (Hpg); 3-
iodotyrosine (Ityr), lanthionine (Lan), \(\beta\)-lysine (PLys); a-methylalanine (Mala); \(\beta\)-methylaspartic
acid (Mas), 4-methylproline (Mpro); 2-methylserine (Mser); N-methylhistidine (Mhis); ornithine
(Orn); phenylglycine (B or Pgly); 3-phenylserine (Pser); sarcosine (Sar); S-allyl-cysteine (Sac);
theanine (The); thyroxine (Thy); 3,5,3'-triiodothyronine (Tth); and taurine (Tau).

[0018] The terms and abbreviations that can be used are as follows: acetyl, Ac; benzoil, Bz;
benzyl, Bzl; diphenylmethyl, Dpm; benzyl ester, OBzl; benzyloxy carbonyl, Z; t-butyl ester,
Otbu; t-butyl, tBu; ethyl ester, OEt; formyl, For; hexyl ester, OHex; methyl ester, OMe;
propanoyl, Pr; pyroglutamyl, Pyro; phenylacetyl, PhAc; and trityl, Trt.

[0019] A peptide bond, \(\text{C} (=\text{O})\text{NH}\), is a covalent bond formed between two amino acid
molecules when the carboxyl group on one amino acid reacts with the amino group of the other
amino acid in a dehydration synthesis reaction. A tripeptide is a peptide that contains three
amino acid residues. Theoretically, about 8,000 different tripeptides can be formed from 20
common amino acids, and more than 300,000 different tripeptides can be formed from both the
common and uncommon amino acids. A tetra peptide is a peptide that contains four amino acid
residues. A pentapeptide is a peptide that contains five amino acid residues. A hexapeptide is a
peptide that contains six amino acid residues. A pentadecapeptide is a peptide that contains
fifteen amino acid residues. A hexadecapeptide is a peptide that contains sixteen amino acid
residues. A nonadecapeptide is a peptide that contains nineteen amino acid residues. An
eicosapeptide is a peptide that contains twenty amino acid residues. Peptides can be further
modified by substitutions, etc. Each peptide can have different chemical and physical properties,
and has different biological and pharmacological actions.
When a particular group is "substituted", that group can have one or more substituents, preferably from one to five substituents, more preferably from one to three substituents, most preferably from one to two substituents, independently selected from the list of substituents.

With reference to substituents or amino acid residues in a peptide, the term "independently" means that when more than one of such substituents or amino acid residues are possible, such substituents or amino acid residues may be the same or different from each other.

As used herein, the term "subject" means any animal, preferably a mammal, most preferably a human, to whom will be or has been administered compounds or topical formulations according to embodiments of the invention. The term "mammal" as used herein, encompasses any mammal. Examples of mammals include, but are not limited to, cows, horses, sheep, pigs, cats, dogs, mice, rats, rabbits, guinea pigs, monkeys, humans etc., more preferably, a human.

In one embodiment, "treatment" or "treating" refers to amelioration, prophylaxis, or reversal of a disease or disorder, or at least one discernible symptom thereof. In another embodiment, "treatment" or "treating" refers to amelioration, prophylaxis, or reversal of at least one measurable physical parameter related to the disease or disorder being treated, not necessarily discernible in or by the mammal. In yet another embodiment, "treatment" or "treating" refers to inhibiting or slowing the progression of a disease or disorder, either physically, e.g., stabilization of a discernible symptom, physiologically, e.g., stabilization of a physical parameter, or both. In yet another embodiment, "treatment" or "treating" refers to delaying the onset of a disease or disorder.

In certain embodiments, compounds of interest are administered as a preventative measure. As used herein, "prevention" or "preventing" refers to a reduction of the risk of acquiring a given disease or disorder.

As used herein, a "therapeutically effective amount" of a compound of an embodiment of the present invention means the amount of the compound that elicits the biological or medicinal response in a tissue system, animal or human that is being sought by a researcher, veterinarian, medical doctor or other clinician, which includes alleviation of the symptoms of the disease or disorder being treated.

One skilled in the art will recognize that the therapeutically effective amount of a compound to be used in the instant invention can vary with factors, such as the particular subject, e.g., age, diet, health, etc., severity and complications and types of the symptom or disorder sought to be treated or prevented, the formulation used, etc.
One general aspect of the invention relates to a peptide derivative having the following generic Formula (I):

\[
\text{R}_1\text{-AAB-(AAA)}_n\text{-AAC-R}_2
\]

Formula (I)

or an isomer, free acid, base, salt, lactone, amide, hydroxylamide, hydrazide, or ester thereof, wherein \(R_1 \) is an acyl radical having up to 19 carbon atoms; AAB is an amino-terminal amino acid residue; (AAA)_n is a peptide having n amino acid residues, each of the amino acid residues is independently selected from any amino acid; n is an integer from 3-18; AAC is a carboxyl-terminal amino acid residue; \(R_2 \) is OR_3, NFIR_4 or NHNHR_5; \(R_3 \) is H, an alkyl, aralkyl or aryl radical having up to 19 carbon atoms; \(R_4 \) or \(R_5 \) is independently H, OH, an alkyl, aralkyl, aryl or acyl radical having up to 19 carbon atoms; a side chain of each of the AAB, AAA and AAC optionally and independently has an extra functional radical selected from the group consisting of OH, SH, NHCONH_2, NHC(=NH)N_3, NH_2, COOH, CONH_2, imidazolyl, pyrrolidinyl, and indoly; and the H or OH of the extra functional radical is optionally substituted by NH_2, an acyl, alkyl, aralkyl, or aryl radical having up to 19 carbon atoms. A typical acyl radical includes, but is not limited to, acetyl (Ac), propanoyl (Pr), and benzoyl (Bz). A typical group attached to the carboxyl-terminal amino acid residue includes, but is not limited to, OH, OEt, NH_2, NHOH, and NHNHR_2. Preferably, \(n \) is an integer selected from 3-4, 13-14, and 17-18.

In another aspect, an embodiment of the present invention relates to a composition for topical or systemic administration to a mammal comprising a pharmaceutically or cosmetically acceptable carrier and a therapeutically effective amount of a peptide derivative having the following generic Formula (I):

\[
\text{R}_1\text{-AAB-(AAA)}_n\text{-AAC-R}_2
\]

Formula (I)

or an isomer, free acid, base, salt, lactone, amide, hydroxylamide, hydrazide, or ester thereof, wherein \(R_1 \) is an acyl radical having up to 19 carbon atoms; AAB is an amino-terminal amino acid residue; (AAA)_n is a peptide having n amino acid residues, each of the amino acid residues is independently selected from any amino acid; n is an integer from 1-18; AAC is a carboxyl-terminal amino acid residue; \(R_2 \) is OR_3, NFIR_4 or NHNHR_5; \(R_3 \) is H, an alkyl, aralkyl or aryl radical having up to 19 carbon atoms; \(R_4 \) or \(R_5 \) is independently H, OH, an alkyl, aralkyl, aryl or acyl radical having up to 19 carbon atoms; a side chain of each of the AAB, AAA and AAC optionally and independently has an extra functional radical selected from the group consisting of OH, SH, NHCONH_2, NHC(=NH)N_3, NH_2, COOH, CONH_2, imidazolyl, pyrrolidinyl, and indoly; and the H or OH of the extra functional radical is optionally substituted by NH_2, an acyl,
alkyl, aralkyl, or aryl radical having up to 19 carbon atoms. Preferably, n is an integer selected from 1-4, 13-14 and 17-18.

Based on Formula (I), illustrative N-acylpeptide derivatives that can be used in the present invention include, but are not limited to, the following:

Representative N-acyltripeptide derivatives (n=1), include, but are not limited to:

- N-Ac-Tyr-Tyr-Tyr-OH,
- N-Ac-Tyr-Tyr-Tyr-OEt,
- N-Ac-Tyr-Tyr-Tyr-NH₂,
- N-Ac-Cys-Cys-Tyr-NH₂,
- N-Ac-Cys-Cys-Tyr-NHH₂,
- N-Ac-Cys-Cys-Tyr-NHNH₂,
- N-Ac-Cys-Cys-Tyr-NHNHAc,
- N-Ac-Cys-Cys-Tyr-NHAc,
- N-Ac-Cys-Cys-Tyr-NHOH,
- N-Ac-Cys-Cys-Tyr-NH₂,
- N-Ac-Dopa-Dopa-Tyr-NH₂,
Representative N-acyltetrapeptide derivatives (n=2), include, but are not limited to: N-Ac-Tyr-Tyr-Tyr-Tyr-OH, N-Ac-Tyr-Tyr-Tyr-Tyr-OEt, N-Ac-Tyr-Tyr-Tyr-Tyr-NH₂, N-Ac-Tyr-Tyr-Tyr-Tyr-NHAc, N-Ac-Tyr-Tyr-Tyr-Tyr-NH₂H₂, N-Ac-Tyr-Tyr-Tyr-Tyr-NHHAc, N-Ac-Tyr-Tyr-Tyr-Tyr-NHOH, N-Pr-Tyr-Tyr-Tyr-Tyr-Tyr-OH, N-Pr-Tyr-Tyr-Tyr-Tyr-OEt, N-Pr-Tyr-Tyr-Tyr-Tyr-NH₂, N-Pr-Tyr-Tyr-Tyr-Tyr-NHAc, N-Pr-Tyr-Tyr-Tyr-Tyr-NHNH₂, N-Pr-Tyr-Tyr-Tyr-Tyr-NHNHAc, N-Pr-Tyr-Tyr-Tyr-Tyr-NHOH, N-Bz-Tyr-Tyr-Tyr-Tyr-OH, N-Bz-Tyr-Tyr-Tyr-Tyr-OEt. N-Bz-Tyr-Tyr-Tyr-Tyr-NH₂, N-Bz-Tyr-Tyr-Tyr-Tyr-NH₂H₂, N-Bz-Tyr-Tyr-Tyr-Tyr-NHBz, N-Bz-Tyr-Tyr-Tyr-Tyr-NHH₁N₂, and N-Bz-Tyr-Tyr-Tyr-Tyr-NHH₂ (SEQ ID NO: 7- SEQ ID NO: 27, respectively).

The preferred N-acylpentapeptide derivatives are:

[0036] The more preferred N-acylpentapeptide derivatives are:

[0038] Representative N-acylpentadecapeptide derivatives (n=13), include, but are not limited to:

N-Ac-(EASPEAVAGVGFESK)-OH, N-Ac-(EASPEAVAGVGFESK)-OEt, N-Ac-(EASPEAVAGVGFESK)-NH₂, N-Ac-(EASPEAVAGVGFESK)-NHAc, N-Ac-(EASPEAVAGVGFESK)-NHNH₂, N-Ac-(EASPEAVAGVGFESK)-NHNHAc, N-Ac-(EASPEAVAGVGFESK)-NHOH, N-Pr-(EASPEAVAGVGFESK)-OH, N-Pr-(EASPEAVAGVGFESK)-OEt, N-Pr-(EASPEAVAGVGFESK)-NH₂, N-Pr-(EASPEAVAGVGFESK)-NHAc, N-Pr-(EASPEAVAGVGFESK)-NHNH₂, N-Pr-(EASPEAVAGVGFESK)-NHNHAc, N-Pr-(EASPEAVAGVGFESK)-NHOH, N-Pr-(EASPEAVAGVGFESK)-NHNHPr, N-Pr-(EASPEAVAGVGFESK)-NHNHPr (SEQ ID NO: 70- SEQ ID NO: 102, respectively).
Representative N-acylhexadecapeptide derivatives (n=14), include, but are not limited to:

- N-Ac-(EEASPEAVAGVGFESK)-OH,
- N-Ac-(EEASPEAVAGVGFESK)-OEt,
- N-Ac-(EEASPEAVAGVGFESK)-NHAc,
- N-Ac-(EEASPEAVAGVGFESK)-NHNH,
- N-Ac-(EEASPEAVAGVGFESK)-NHBz,
- N-Ac-(EEASPEAVAGVGFESK)-NHNHAc,
- (SEQ ID NOs: 124, 125, 126, 127, 131, 132, 133, 134, 138, 139, 140, 141, 145, and 146, respectively).

[0040] The preferred N-acylhexadecapeptide derivatives are:

- N-Ac-(EEASPEAVAGVGFESK)-OH,
- N-Ac-(EEASPEAVAGVGFESK)-OEt,
- N-Ac-(EEASPEAVAGVGFESK)-NHAc,
- N-Ac-(EEASPEAVAGVGFESK)-NHNH,
- N-Ac-(EEASPEAVAGVGFESK)-NHBz,
- (SEQ ID NOs: 124, 125, 126, 127, 131, 132, 133, 134, 138, 139, 140, 141, 145, and 146, respectively).

[0041] Representative N-acylnonadecapeptide derivatives (n=17), include, but are not limited to:

- N-Ac-(CKKEEASPEAVAGVGFESK)-OH,
- N-Ac-(CKKEEASPEAVAGVGFESK)-OEt,
Representative N-acyleicosapeptide derivatives (n=18), include, but are not limited to:
N-Ac-(FCTGIRVAHLALKHRQGKNH)-OH, N-Ac-(FCTGIRVAHLALKHRQGKNH)-OEt,
N-Ac-(FCTGIRVAHLALKHRQGKNF)-NH₂, N-Ac-(FCTGIRVAHLALKHRQGKNII)-NHNH₂,
N-Pr-(FCTGIRVAHLALKHRQGKNH)-OH, N-Pr-(FCTGIRVAHLALKHRQGKNH)-OEt,
N-Pr-(FCTGIRVAHLALKHRQGKNH)-NH₂, N-Pr-(FCTGIRVAHLALKHRQGKNH)-NHNH₂,
N-Pr-(FCTGIRVAHLALKHRQGKNH)-NHNHAc, N-Pr-(FCTGIRVAHLALKHRQGKNH)-NHNH₂,
N-Ac-Tyr-Tyr-Tyr-Tyr-Tyr-OEt, N-Ac-Tyr-Tyr-Tyr-Tyr-Tyr-NH₂,
N-Ac-(EEASPEAVGFGESK)-OH, N-Ac-(EEASPEAVGFGESK)-OEt,
N-Ac-(EEASPEAVGFGESK)-NH₂, N-Ac-(EEASPEAVGFGESK)-NHAc,
N-Ac-(EEASPEAVGFGESK)-NHNH₂, N-Ac-(EEASPEAVGFGESK)-NHNHAc,
N-Ac-(EEASPEAVGFGESK)-NHOFI, N-Ac-(EEASPEAVGFGESK)-NH₂,
N-Ac-(EEASPEAVGFGESK)-NHNH₂, N-Ac-(EEASPEAVGFGESK)-NHAc,
N-Ac-(EEASPEAVGFGESK)-NHNH₂, N-Ac-(EEASPEAVGFGESK)-NHNHAc,
N-Ac-(EEASPEAVGFGESK)-NHOFI, N-Ac-(EEASPEAVGFGESK)-NH₂,
N-Ac-(EEASPEAVGFGESK)-NHNH₂, N-Ac-(EEASPEAVGFGESK)-NHAc,
N-Ac-(EEASPEAVGFGESK)-NHNH₂, N-Ac-(EEASPEAVGFGESK)-NHNHAc,
N-Ac-(EEASPEAVGFGESK)-NHOFI, N-Ac-(EEASPEAVGFGESK)-NH₂,
N-Ac-(EEASPEAVGFGESK)-NHNH₂, N-Ac-(EEASPEAVGFGESK)-NHAc,
N-Ac-(EEASPEAVGFGESK)-NHNH₂, N-Ac-(EEASPEAVGFGESK)-NHNHAc,
N-Ac-(EEASPEAVGFGESK)-NHOFI, N-Ac-(EEASPEAVGFGESK)-NH₂,
effects of a peptide are also changed when the functional groups of such peptides are modified by substitution. In most cases, the N-acylpeptide derivatives of the present invention have different and much improved chemical and physical properties, biological functions and therapeutic effects as compared to an unmodified peptide.

A peptide is usually an amphoteric substance, having positive and negative charges in the same molecule. A peptide normally cannot penetrate the skin on topical application because of the tough stratum corneum layer acting as a permeation barrier. In general, an ionic substance or any substance with a molecular weight of more than 800 daltons cannot readily penetrate the intact skin. The N-acylpeptide derivatives of the present invention have the alkaline radical such as an amino group modified by acylation, so that they are no longer amphoteric in nature, and are readily bioavailable for penetration and/or distribution to target tissues or sites for pharmacological actions by topical or systemic administration.

Another general aspect of the present invention relates to a method of treating or preventing a disease, symptom or syndrome associated with tumors, cancers, immune, nervous, vascular, musculoskeletal, cutaneous system, or other tissues or systems in a subject in need of treatment. The method comprises topically or systemically administering to the subject a composition comprising a therapeutically effective amount of an N-acylpeptide derivative according to an embodiment of the present invention and a pharmaceutically or cosmetically acceptable carrier.

Conditions, disorders, symptoms and syndromes associated with the (A) tumors and cancers, (B) immune system, (C) nervous system, (D) vascular system, (E) musculoskeletal system, (F) cutaneous system, and (G) other tissues or systems that can be treated with a composition of the present invention are described as follows.

(A) Tumors and Cancers.

Cancer is an unregulated proliferation of cells due to loss of normal controls, resulting in abnormal growth, lack of differentiation, local tissue invasion, and often, metastasis. Tumor is an abnormal growth of cells or tissues which may be benign or malignant. Tumors or cancers that can be treated with a composition of the present invention include, but are not limited to, actinic keratosis, adrenal cancer, basal cell carcinoma, bladder cancer, brain tumor, breast cancer, cervical cancer, colon cancer, esophagus cancer, head and neck cancer, Hodgkin disease, Kaposi’s sarcoma, larynx cancer, leukemia, lung carcinoma, liver cancer, melanoma, multiple myeloma, mesothelioma, ovarian cancer, pancreatic cancer, prostate cancer, renal cancer, rectal cancer, stomach cancer, squamous cell carcinoma, thyroid cancer, testicular cancer, thyroid cancer, and uterine cancer. Breast cancer most often involves glandular breast cells in the ducts
or lobules, and can invade locally and spread through lymph nodes and into the bloodstream, then to lungs, liver, bone, brain and skin. Lung carcinoma is a leading cause of lung cancer with symptoms of coughing, chest discomfort or pain, and weight loss. Liver cancer is usually hepatocellular carcinoma often resulting from liver cirrhosis. Pancreatic cancer, primarily ductal adenocarcinoma has symptoms of weight loss, abdominal pain, and jaundice. Brain tumors such as gliomas, medulloblastomas and ependymomas can have symptom of headache, pain, edema, etc.

[0053] The development and growth of tumors and cancers can be due to deranged immune system even though the tumors or cancers may be caused by mutations.

[0054] (B) Immune System.

[0055] The immune system, very similar to organs such as liver, kidney and thyroid, is composed of specialized cells that play a vital role in host defense. These cells include leukocytes (white blood cells) and dendritic cells. The leukocytes are divided into granulocytes (65%); specific granules in the cytoplasm such as neutrophils, eosinophils, and basophils; and agranulocytes; no specific granules in the cytoplasm such as lymphocytes (25-35%) and monocytes (5-10%). The lymphocytes are subdivided into B lymphocytes (antibody production) and T lymphocytes (foreign agent and tissue destruction). The monocyte can migrate from blood to tissue, and becomes macrophage. The dendric cell is derived from bone marrow and is critical in activation and priming of lymphocyte.

[0056] Deranged immune system can cause the following disorders:

(1) Rheumatic, comiective tissue or collagen diseases. These diseases include, but are not limited to, systemic lupus erythematosus, rheumatoid arthritis, seronegative spondylarthritis (ankylosing spondylitis), Sjogren's syndrome (keratoconjunctivitis sicca, xerostomia), systemic sclerosis, polymyositis and dermatomyositis.

(2) Endocrine autoimmune diseases. These diseases include, but are not limited to, Type 1 diabetes, autoimmune thyroid disease such as Graves' disease and Hashimoto's thyroiditis, and Addison's disease.

(3) Liver diseases. These diseases include, but are not limited to, autoimmune hepatitis, sclerosing cholangitis, biliary cirrhosis, viral hepatitis including hepatitis A, hepatitis B, and hepatitis C.

(4) Gastrointestinal diseases. These diseases include, but are not limited to, mucosal disorder, atrophic gastritis, pernicious anemia, inflammatory bowel disease, and allergic food reactions.
(5) Immune mediated nephritis and vasculitis. These diseases include, but are not limited to, glomerulonephritis, Wegener’s granulomatosis, microscopic polyarteritis, and cryoglobulinemia.

(6) Immune mediated skin diseases. These diseases include, but are not limited to, psoriasis, vitiligo, bullous pemphigoid, pemphigus vulgaris, and pemphigus foliaceus.

(7) Immune mediated diseases of nervous system and eye. These diseases include, but are not limited to, multiple sclerosis, Guillain-Barre syndrome, myasthenia gravis, Lambert-Eaton syndrome, stiff man syndrome, keratitis, keratoconjunctivitis sicca, scleritis, episcleritis, and uveitis.

(8) Human immunodeficiency virus (HIV) and acquired immune deficiency syndrome (AIDS). HIV is a member of retrovirus family, with a single-stranded RNA genome. Such RNA genome can encode the enzyme reverse transcriptase, capable of transcribing viral RNA into DNA, and allowing the virus to integrate into the host cell genome. During the initial stage of infection, the virus targets memory CD4 T lymphocytes as a receptor, and depletes CD4 T cells from gut and peripheral lymph nodes. The immunity from B lymphocytes, dendritic cells and macrophages is also weakened. The vaccine remains the best hope of controlling HIV infection, however, there are numerous issues to be resolved for an effective, inexpensive and safe immunization against HIV infection. The challenging issues are (a) the virus can survive and be transmitted within a host and between hosts in extracellular form, as blood borne virus particles, and also in intracellular form hidden within infected host cells, (b) the virus copies its genome into host cells, and a live attenuated virus vaccine may pose safety issues, (c) the virus has multiple strains and a very high mutability which is challenging for a vaccine using fixed virus sequences, and may not be effective for other strains, (d) there is no small animal model existing for HIV infection, and the efficacy studies carried out for non-human primates are rather expensive.

[0057] Other deranged immune system may also involve the growth and spread (metastasis) of tumors and cancers.

[0058] (C) Nervous System.

[0059] The conditions, disorders, symptoms and syndromes associated with the nervous system include, but are not limited to, the following conditions or disorders, which may present as indicated, or otherwise: (1) dementia and Alzheimer’s disease: progressive loss of memory, shrinkage and atrophy of cerebral cortex, tangles of fibers in nerve cells, senile plaques of β-amyloid, decreased choline acetyltransferase enzyme; (2) carpal tunnel syndrome: weakness, pain, tingling, numbness, burning in palm and fingers; (3) encephalitis: inflammation of the brain; (4) headache: migraine, expansion of blood vessels pressing on nerves or constriction
blocking blood supply, inflammation, muscle contraction to face, neck or scalp; (5) meningitis: infection of spinal fluid and meninges; (6) neuralgia: nerve pain, peripheral neuropathy, sciatica, shingles, trigeminal neuralgia; (7) Parkinson's disease: tremors in limbs, muscular rigidity; (8) amnesia: loss of memory and inability to form new memory; and (9) others, such as nervousness, anxiety, ataxia, Bell's palsy, epilepsy, multiple sclerosis, myasthenia gravis, narcolepsy, paralysis and rabies.

Alzheimer's disease causes progressive cognitive deterioration and is characterized by senile plaques of β-amyloid deposits, neurofibrillary tangles in the cerebral cortex and subcortical gray matter, and currently there is no cure.

Parkinson's disease is an idiopathic, slowly progressive, degenerative central nerve system (CNS) disorder characterized by resting tremor, muscular rigidity, slow and decreased movement, and postural instability, and currently there is no cure.

The vascular conditions, reactions and disorders that can be treated with a composition of the present invention include, but are not limited to, acanthosis nigricans, acrocyanosis, actinic cheilitis, actinic prurigo, dermatitis, dermatosis, dermographism, dyshidrosis, drug eruptions, inflammation, or eczema, erythema, erythema migrans, erythrocyanosis, erythromelalgia, familial hemorrhage, histamine reaction, hypertension, inflammatory papular and pustular lesions, lichen planus, lupus erythematosus, mycosis fungoides, neurodermatitis, neuropeptide and neurovascular reactions, parapsoriasis, perniosis (chilblains), photoallergy, photoreaction, photosensitivity, pityriasis rosea, pityriasis rubra pilaris, polymorphic light eruption, psoriasis, rhinophyma, rosacea, sclerosis, spider naevi, T-cell disorders, telangiectasia, varicose veins (varicosis), urticaria, vessel dilation, and other vascular reactions.

The conditions or abnormalities of musculoskeletal system include, but are not limited to, the following conditions or disorders, which may present as indicated, or otherwise: (1) osteoporosis: reduction of calcium in bone leading to thin bone and bone susceptible to fracture; (2) osteoarthritis: inflammation of joint cartilage provoking swelling and pain; (3) rheumatoid arthritis: inflammation of synovium and destruction of cartilage, damage to heart, lungs, nerves and eyes; (4) ankylosing spondylitis: arthritis affecting sacroiliac joints and spine with inflammation and immovability; (5) bursitis: inflammation of bursa; (6) tendinitis: inflammation of tendon; (7) gout: recurrent acute arthritis from uric acid deposit; and (8)
specifically, neck, shoulder, elbow, wrist, lower back, hip, knee and ankle pains, inflammation, and arthritis.

[F] Cutaneous System.

The cosmetic, dermatological or other conditions and disorders of cutaneous system that can be treated with a composition of the present invention include, but are not limited to, infections, deranged or disordered cutaneous or mucocutaneous tissue relevant to skin, nail and hair; oral, vaginal and anal mucosa; disturbed keratinization; inflammation; changes associated with intrinsic and extrinsic aging, and others which may or may not be related to cutaneous system. The manifestations include, but are not limited to: oily skin; acne; rosacea; age spots; blemished skin; blotches; cellulite; dermatoses; dermatitis; skin, nail and hair infections; dandruff; dryness or looseness of skin, nail and hair; xerosis; inflammation, or eczema; elastosis; herpes; hyperkeratosis; hyperpigmented skin; ichthyosis; keratoses; lentigines; melasmas; mottled skin; pseudofolliculitis barbae; photoaging and photodamage; pruritus; psoriasis; skin lines; stretch marks; thinning of skin, nail plate and hair; warts; wrinkles; oral or gum disease; irritated, inflamed, red, unhealthy, damaged or abnormal mucosa, skin, hair, nail, nostril, ear canal, anal or vaginal conditions; breakdown, defective synthesis or repair of dermal components; abnormal or diminished synthesis of collagen, glycosaminoglycans, proteoglycans and elastin, as well as diminished levels of such components in the dermis; uneven skin tone; uneven and rough surface of skin, nail and hair; loss or reduction of skin, nail and hair resiliency, elasticity and recoilability; laxity; lack of skin, nail and hair lubricants and luster; fragility and splitting of nail and hair; yellowing skin; reactive, irritating or telangiectatic skin; and dull and older-looking skin, nail and hair. In addition, the composition of the current invention can be used for general care of skin, nail and hair; to improve skin texture and pores, flakiness and redness; to make skin soft, smooth, fresh, balanced, visibly clear, even-toned and brighter; to increase skin fullness and plumpness; and for skin bleach and lightening and wound healing; to reduce or prevent sweating or perspiration of underarm, crotch, palm, or other parts of the body.

Skin, nail and hair infections can be caused by microorganisms which include bacteria, fungi, yeasts, molds, parasites and viruses. More specifically, the bacterial infections can cause trichomycosis axillaris, pitted keratolysis, erythrasma, impetigo, eczema, furunculosis (boils), carbuncle, scalded skin syndrome, toxic shock syndrome, erysipelas, cellulitis, necrotizing fasciitis, erysipelooid, cat-scratch disease (*Rocha lamae henselae*), syphilis, lyme disease (*Borrelia burgdorferi*), cutaneous anthrax (*Bacillus anthracis*), gonococcal septicaemia, inoculation tuberculosis, scrofuloderma, tuberculides, erythema induratum, leprosy (*Mycobacterium leprae*), leishmaniasis and acute paronychia. The viral infections can cause
viral warts (human papilloma virus), varicella (chickenpox), herpes zoster (varicella-zoster),
herpes simplex (herpesvirus hominis), molluscum contagiosum, orf, AIDS (acquired
immunodeficiency syndrome, human immunodeficiency virus, HIV), herpangina,
mucocutaneous lymph node syndrome (Kawasaki’s disease), Gianotti-Crosti syndrome (hepatitis
B virus), measles, rubella and erythema infectiosum. The fungal infections can cause ringworm,
tinea pedis (athlete's foot), tinea unguis (nail infection), tinea hands, tinea groin, tinea trunk and
limbs, tinea capitis (scalp), oral candidiasis, Candida intertrigo, genital candidiasis, chronic
paronychia, chronic mucocutaneous candidiasis, pityriasis versicolor, histoplasmosis,
coccidioidomycosis, blastomycosis, sporotrichosis, actinomycosis and mycetoma (madura foot).

(G) Other Tissues or Systems

These conditions and diseases include tremor or shaking, obesity, vision disorders of
eyes, vocal dysfunctions, gum and periodontal diseases, hearing loss, sexual dysfunctions,
desired augmentation of breast and penis, to control, reduce or lose appetite for food, and
increased body strength. Aside from cataract and glaucoma, the vision disorders can be due to
near-sightedness (myopia) and far-sightedness (hyperopia). Enhanced strength of extrinsic and
intrinsic eye muscles, along with increased relaxation of eye nerves may help improve conditions
of myopia and hyperopia.

Weakness and poor quality of the voice can be caused by larynx dysfuction.

Relaxation of laryngeal nerves and enhanced laryngeal muscle may help improve the quality and
the strength of the voice.

The preferred condition or disease to be treated according to embodiments of the
present invention is selected from the group consisting of arthritis, cancer, immune, infections,
inflammation, musculus, nerve, skin, vasculature and obesity.

The more preferred condition or disease to be treated is selected from the group
consisting of obesity, tremor or shaking, arthritis, Alzheimer's disease, aging related skin
changes, age spots, breast cancer, cellulitis, dermatitis, dermatoses, dry skin, eczema, itch,
infections, inflammation, joint disorder, mottled skin, muscle disorder, pain, Parkinson's
disease, photoaging, psoriasis, rosacea, stretch marks, varicose veins, viral infections, wrinkles, for skin
lightening, to enhance muscle strength; to induce relaxation; to reduce blood pressure or
hypertension; to control, reduce or lose appetite; and to reduce or prevent sweating or
perspiration of underarm, crotch, palm, or other parts of the body.

The most preferred condition or disease to be treated is selected from the group
consisting of tremor, arthritis, joint disorder, breast cancer, Alzheimer's disease, Parkinson's
disease, psoriasis, aging related skin changes, age spots, wrinkles, cellulitis, eczema, itch, inflammation, mottled skin, rosacea, stretch marks, and for skin lightening.

Physiological Functions, Pharmacological Actions and Therapeutic Effects.

When a substance is found to modulate or normalize certain physiological functions, the resulting pharmacological actions can provide broad therapeutic effects on related conditions, disorders, diseases, symptoms and syndromes; simply described as "related indications". Therefore, the related indications can be grouped into one single physiological function as follows.

1. **Disturbed keratinization (DK).** Many skin disorders such as dry skin, ichthyosis, calluses, keratosis and acne (initiated by blackhead formation) are due to disturbed keratinization (disturbed or abnormal skin formation). When a substance is discovered to modulate or normalize keratinization, the substance is reasonably expected or predicted to improve those conditions or disorders which are caused by a common cause of disturbed keratinization.

Therefore, disturbed keratinization covers, but is not limited to dry skin; dryness or looseness of skin, nail and hair; xerosis; ichthyosis; calluses; keratoses; acne; rosacea; blemished skin; dandruff; uneven skin tone; uneven and rough surface of skin; abnormal skin texture and pores; flakiness and redness; and to improve or make skin soft, smooth, fresh, balanced, and visibly clear.

2. **Aging related changes of skin, nail and hair (AG).** Skin aging including wrinkles is due mainly to progressive degeneration of dermal components; namely, glycosammoglycans (GAGs), collagen and elastic fibers in the dermis. When a substance is found to stimulate biosynthesis of new dermal components or to plump the skin by increasing the skin thickness, the substance is reasonably expected or predicted to improve fine lines, wrinkles, photoaging. and to provide younger-looking skin.

Therefore, aging related skin changes covers, for example, fine lines; wrinkles; age spots; blotches; cellulite; elastosis; lentigine; mottled skin; photoaging and photodamage; stretch marks; thinning of skin, nail plate and hair; warts; wrinkles; breakdown, defective synthesis or repair of dermal components; abnormal or diminished synthesis of collagen, glycosaminoglycans, proteoglycans and elastin, as well as diminished levels of such components in the dermis; loss or reduction of skin, nail and hair resiliency, elasticity and recoilability; laxity; lack of skin, nail and hair lubricants and luster; fragility and splitting of nail and hair; yellowing skin; and dull and older-looking skin, nail and hair, even-toned and brighter; to increase skin fullness and plumpness.
(3) Deranged immune disorders and Inflammation (DI). The deranged or disturbed immune disorders can cause inflammation, pain, itch, swelling, edema, dermatitis, eczema, psoriasis, dermatoses, joint disorders, and arthritis. When a substance is found to modulate or normalize activities of immune cells by reducing inflammation, the substance is reasonably expected or predicted to improve the related indications or disorders.

Therefore, the deranged immune disorders cover, for example, inflammatory disorders; inflammation, dermatitis, or eczema; psoriasis; dermatoses; painful joints; arthritis; infections; Type 1 diabetes; viral hepatitis; inflammatory bowel disease; allergic food reactions; nephritis; vasculitis; vitiligo; multiple sclerosis; HIV and AIDS.

(4) Tumors and cancers (CA). Most tumors and cancers are caused by unregulated proliferation of cells due to loss of normal controls, resulting in abnormal growth, lack of differentiation, local tissue invasion, and often, metastasis. When a substance is found to normalize the control of cell growth, the substance is reasonably expected or predicted to improve or eradicate most types of tumors and cancers including skin tumors and cancers, breast cancer, lung carcinoma, liver cancer, pancreatic cancer, colon cancers, and brain tumors.

(5) Nerve disorders (ND). Nervous system is very complex, initiating from the brain and controlling almost all the body functions. Only the dead cells or dead tissues such as nails, hair and stratum corneum do not contain nerve fibers. Loss or malfunction of nerve cells can result in various nerve disorders, symptoms and syndromes.

Therefore, nerve disorders cover: nervousness, dementia, Alzheimer's disease: progressive loss of memory, carpal tunnel syndrome, weakness, pain, tingling, numbness, burning in palm and fingers, encephalitis, headache, migraine, meningitis, neuralgia, peripheral neuropathy, sciatica, Parkinson's disease, tremor, amnesia, Bell's palsy, epilepsy, multiple sclerosis, paralysis and headache.

In view of the present disclosure, standard procedures can be performed to evaluate the effect of the administration of a composition to a subject, thus allowing a skilled artisan to determine the therapeutically effective amount of the compound.

The clinically observable beneficial effect can be a situation that, when a composition of the present invention is administered to a subject after symptoms to be treated are observable,
the symptoms are prevented from further development or aggravation, or develop to a lesser
degree than without administration of the specified composition according to embodiments of the
present invention. The clinically observable beneficial effect can also be that, when a
composition of the present invention is administered to a subject before symptoms to be treated
are observable, the symptoms are prevented from occurring or subsequently occur to a lesser
degree than without administration of the composition of the present invention.

[0089] In one embodiment, a therapeutically effective amount of the N-acylpeptide
derivative will reduce a syndrome or a condition of discomfort of the subject to be treated by at
least about 20%, for example, by at least about 30%, about 40%, about 50%, about 60%, about
70%, about 80%, about 90%, or about 100%.

[0090] In another embodiment, a therapeutically effective amount of the N-acylpeptide
derivative will prevent a syndrome or a condition of discomfort of the subject to be treated, or
reduce the probability of its onset by at least about 20%, for example, by at least about 30%,
about 40%, about 50%, about 60%, about 70%, about 80%, about 90%, or about 100%.

[0091] Dosages and dosing frequency will be determined by a trained medical professional
depending on the activity of the compounds used, the characteristics of the particular topical
formulation, and the identity and severity of the dermatologic disorder to be treated or prevented.

[0092] Administration Routes and General Preparations
[0093] Another general aspect of the present invention relates to a composition for systemic
or topical administration to a subject, the composition comprising a therapeutically effective
amount of an N-acylpeptide derivative according to an embodiment of the present invention and
a pharmaceutically or cosmetically acceptable carrier. Compositions according to embodiments
of the present invention can be formulated in any manner suited for topical or systemic
administration to a subject.

[0094] Compositions comprising an N-acylpeptide derivative of the present invention can be
administered to a subject in need by topical application, systemic or other routes. The topical
application includes administration to skin, eye, mucous membranes of the conjunctiva,
nasopharynx, oropharynx, vagina, urethra, rectum, and anus. The systemic administration
includes oral (enteral) administration and parenteral injections. The parenteral injections include
intravenous injection or infusion, intra-arterial injection, subcutaneous injection, intramuscular
injection, and intra-articular injection. Other routes of administration include sublingual
administration, under the tongue, from oral mucosa bypassing the portal circulation, and
pulmonary adsorption by inhaling and absorbing through the respiratory tract.
For topical application, the composition comprising an N-acylpeptide derivative of the present invention can be formulated as a solution, gel, lotion, cream, oil-in-water emulsion, water-in-oil emulsion, ointment, shampoo, spray, stick, powder, mask, pad, mouth rinse or wash, vaginal gel or suppository, rectal gel or suppository, urethral gel or suppository or other form acceptable for use on skin, nail, hair, oral mucosa, vaginal or anal mucosa, mouth or gums. The concentration of an active ingredient can be about 0.001% to about 99.9% by weight or volume of the total composition, with a preferred concentration of about 0.01% to about 30%, and with a more preferred concentration of about 0.1% to about 10% by weight or by volume (solution composition) of the total composition.

A typical gel composition can be formulated by the addition of a gelling agent, such as chitosan, methyl cellulose, ethyl cellulose, polyvinyl alcohol, polyquaterniums, hydroxyethylcellulose, hydroxypropylcellulose, hydroxypropylmethylcellulose, carbomer or ammoniated glycyrrhizinate to a solution comprising an N-acylpeptide derivative of the present invention. The preferred concentration of the gelling agent may range from 0.1 to 4 percent by weight of the total composition. In the preparation of shampoo, the N-acylpeptide derivative can first be dissolved in water or propylene glycol, and the solution thus obtained can be mixed with a shampoo base. Concentrations of the N-acylpeptide derivative used in gel or shampoo form are the same as described above.

To prepare a solution composition, at least one N-acylpeptide derivative of the present invention is dissolved in a solution prepared from water, ethanol, propylene glycol, butylene glycol, or other topically acceptable solvent. To prepare a topical composition in another form, an N-acylpeptide derivative can be incorporated as a fine powder form without dissolving, or is first dissolved in water, ethanol, propylene glycol or other solvent, and the solution thus obtained is mixed with a topically acceptable base or vehicle including a gel, lotion, cream, oil-in-water emulsion, water-in-oil emulsion, ointment, shampoo, spray, stick, powder, mask, pads, mouth rinse or wash, vaginal gel or suppository, and rectal gel or suppository. Contemplated embodiments of the present invention include concentration ranges of 0.001% to 0.01%, 0.01% to 0.1%, 0.1% to 0.2%, 0.2% to 0.3%, 0.3% to 0.4%, 0.4% to 0.5%, 0.5% to 0.6%, 0.6% to 0.7%, 0.7% to 0.8%, 0.8% to 0.9%, 0.9% to 1%, 1% to 2%, 2% to 3%, 3% to 4%, 4% to 5%, 5% to 6%, 6% to 7%, 7% to 8%, 8% to 9%, 9% to 10%, 10% to 14%, 14% to 18%, 18% to 22%, 22% to 26%, 26% to 30%, 30% to 35%, 35% to 40%, 40% to 45%, 45% to 50%, 50% to 60%, 60% to 70%, 70% to 80%, 80% to 90%, and 90% to 99.9% by weight or volume of the total composition.
The choice of topically administrable composition will depend on several factors, including the nature of the symptoms to be treated or prevented, the physiochemical characteristics of the particular compound to be administered and of other excipients present, their stability in the formulation, available manufacturing equipment, and cost constraints. For systemic use or other routes of administration, an N-acylpeptide derivative of the present invention can be formulated for oral administration, parenteral injections or other routes including but not limited to oral mucosa, under the tongue administration with or without pharmaceutically acceptable vehicle or carrier. In oral preparations, an N-acylpeptide derivative of the present invention is formulated in powder, tablet form, gelatin capsules with or without mixing with gelatin powder, or in other forms including a liquid or suspension form. Each tablet, capsule or unit dosage contains about 0.01 mg to about 100 mg, preferably about 0.1 mg to about 50 mg, and more preferably about 1 mg to about 25 mg of the N-acylpeptide derivative. As an illustrative example, 1 mg of N-acylpeptide derivative powder can be placed under the tongue without swallowing for a short time to achieve systemic administration. The daily dosage for a subject can vary, however in general is about 0.001 mg/kg to about 10 mg/kg, preferably about 0.01 mg to about 5 mg/kg, and more preferably about 0.1 mg to about 2 mg/kg body weight of the subject. For parenteral injections, an N-acylpeptide derivative is prepared in a solution or suspension under sterilized conditions in concentration from about 0.01% to about 10%, preferably about 0.1% to about 5%, more preferably about 0.2% to about 2% weight by volume in water, propylene glycol, glycerol, polyethylene glycol, a mixture thereof, or in other vehicle or carrier. The other vehicle or carrier includes peanut oil, soybean oil, mineral oil, sesame oil, and the like. A thickener can optionally be added into an injection composition to increase the viscosity, so that the composition has a comparable viscosity with the body fluid in the knee joints or other joints. As an illustration, but not limitation, the thickener can be selected from the group consisting of carboxymethylcellulose, sodium carboxymethylcellulose, casein, cellulose, gelatin, sodium hyaluronate, methylcellulose, PEG 200, PEG 300, PEG 400, PEG 600, PEG 3350, PEG 4000, polyglactin, polylactide, polypropylene glycol, polyvinyl alcohol, protamine sulfate, povidone, starch, captisol, dextran, dextrose, fructose, albumin, and lactose. In another embodiment, the composition can further comprise an additional cosmetic, pharmaceutical, or other agent to achieve synergetic or synergistic effects. To prepare a topical combination composition, a cosmetic, pharmaceutical or other agent is incorporated into any one of the above compositions by dissolving or mixing the agent into the formulation. Other forms of
compositions for delivery of the N-acylpeptide derivative of the present invention are readily recognized by those skilled in the art.

[00103] A composition comprising the N-acylpeptide derivative can be taken orally one to three times, preferably twice daily, for prevention or treatment of disorders and diseases associated with tumors, cancers, immune, nervous, vascular, musculoskeletal, cutaneous, other tissues or systems. The oral administration may continue until the symptom or disease has been eradicated or substantially improved. The symptoms or disorders include, for example, pains, pruritus, tremor, inflammation, erythema, dermatitis, acne, eczema, dementia, Alzheimer's disease, joint pain or swelling, and arthritis.

[00104] The N-acylpeptide derivatives of the present invention are therapeutically effective to alleviate or improve conditions, disorders, diseases, symptoms or syndromes associated with immune, nervous, vascular, musculoskeletal, cutaneous, other tissues or systems, and for regulation and treatment of abnormal cell growth including tumors and cancers. The composition containing an N-acylpeptide derivative of the present invention can be administered alone or in combination with another active agent. The composition and the other active agent can be administered simultaneously or sequentially.

[00105] Other forms of compositions for delivery of the compound of the present invention are readily blended, prepared or formulated by those skilled in the art.

[00106] A composition comprising an N-acylpeptide derivative of the present invention is administered to a subject in various means that are acceptable for the conditions to be treated.

[00107] In one embodiment, the composition was topically applied to the skin. For example, a solution or cream containing 0.1% to 1% by weight of an N-acylpeptide derivative, such as N-Ac-L-Tyr-L-Tyr-L-Tyr-NH2 or N-Ac-L-Tyr-L-Tyr-L-Tyr-OEt was topically applied to an involved skin once or twice daily for several weeks or until a desired therapeutic effect had been achieved.

[00108] The composition can also be administered systemically or by other routes, such as via oral administration or parenteral injection. For example, N-Ac-L-Tyr-L-Tyr-L-Tyr-NH2 0.2% (w/v) in water, 1 ml (2 mg) can be injected intra-articularly into a knee of a subject to relieve the arthritis pain and inflammation.

[00109] The composition can be administered alone or optionally in combination with another active ingredient. For example, a corticosteroid, hydrocortisone-17-valerate 0.2% (w/v) can be incorporated into a topical composition containing 0.5% (w/v) N-Ac-L-Tyr-L-Tyr-L-Tyr-NH2 to rapidly improve chronic eczema lesions. The composition and the other active ingredient can be administered topically, systemically, simultaneously or sequentially. Under such cooperative
actions, the N-acylpeptide derivative and other active ingredient can mutually provide synergetic, synergistic, or enhancing effects for the intended treatment.

[00110] For synergetic, synergistic, additive, enhancing, or other mutually cooperative beneficial effects, a cosmetic, pharmaceutical, or other agent can be incorporated into the composition of the present invention or administered independently at the same time or different time. These agents include but are not limited to hydroxyacids, ketoacids and related compounds; phenyl alpha acyloxyalkanoic acids and derivatives; N-acyl-aldosamines, N-acylamino acids and related N-acyl compounds; local analgesics and anesthetics; anti-acne agents; anti-bacterial agents; anti-fungal agents; anti-viral agents; anti-infective agents; anti-dandruff agents; anti-dermatitis agents; anti-eczema agents; anti-histamine agents; anti-pruritic agents; anti-emetics; anti-motion sickness agents; anti-inflammatory agents; anti-hyperkeratotic agents; antiperspirants; anti-psoriatic agents; anti-rosacea agents; anti-seborrhoeic agents; hair conditioners and hair treatment agents; anti-aging and anti-wrinkle agents; anti-anxiety agents; anti-convulsant agents; anti-depressant agents; antineoplastic agents; sunscreen and sunblock agents; skin lightening agents; depigmenting agents; astringents; cleansing agents; corn, callus and wart removing agents; skin plumping agents; skin volumizing agents; skin firming agents; matrix metalloproteinase (MMP) inhibitors; topical cardiovascular agents; wound-healing agents; gum disease or oral care agents; amino acids; tripeptides; oligopeptides; polypeptides; carbohydrates; aminocarbohydrates; vitamins; corticosteroids; tanning agents; hormones; retinoids; peroxides; peracids; superoxides, ozonides, persulfates, and active agents.

[00111] The above agents include, but are not limited to, the following:
abacavir, abciximab, abelcet, acamprosate, acarbose, acebutolol, acetaminophen, acetaminosalol, acetazolamide, acetic acid, acetic peracid, acetic peroxide, acetohydroxamic acid, acetylcysteine, acetylsalicylic acid, N-acylglutathione esters, acitretin, aclovate, acrivastine, acethrel, acetidose, actigall, actiq, acyclovir, adalimumab, adapalene, adefovir dipivoxil, adenosine, agalsidase, albendazole, albumin, albuterol, alclometasone dipropionate, aldesleukin, adeflasept, alemtuzumab, alendronate, alfuzosin, alitretinoin, allantoin, allium, allopurinol, alloxanthine, almotriptan, alosertin, alpha tocopheral, alpha l-proteinase, alprazolam, alprenolol, alprostadil, alteplase, altretamine, aluminum acetate, aluminum chloride, aluminum chlorohydroxide, aluminum hydroxide, amantadine, amifostine, amiloride, aminacrine, amino acid, aminobenzoate, p-aminobenzoic acid, aminocaproic acid, aminohippurate, aminolevulinic acid, aminosalicylic acid, amiodarone, amitriptyline, amlodipine, amocarzine, amodiaquin, amorolfine, amoxapine, amoxicillin, amphetamine, amphotericin, ampicillin, amprenavir, anagrelide, anakinra, anastrozole, anisindione, anthralin, antihemophilic, antithrombin, anti-
thymocyte, antivenin, apoθ hine, apreptant, aprotinin, arbutin, argatroban, aripiprazole, ascorbic acid, ascorbyl palmitate, aspirin, atazanavir, atenolol, atomoxetine, atorvastatin, atovaquone. atropine, azathioprine, azelaic acid, azelastine, azithromycin, baclofen, bacitracin, balsalazide, balsam, basiliximab, beclomethasone dipropionate, bemegride, benazepril, bendroflumethiazide, benzocaine, benzoic acid, benzonatate, benzophenone, benzoyl peroxide, benzotriazine, bepridil, beta carotene, betamethasone dipropionate, betamethasone valerate, betaxolol, betacyclom, bevacizumab, bexarotene, bicalutamide, bimatoprost, bioflavonoids, biotin, biperiden, bisacodyl, bisoprolol, bivalirudin, bortezomib, bosentan, botulinum, bupivacaine, brinzolamide, bromocriptine, brompheniramine, budesonide, bumetanide, buprenorphine, bupropion, burimamide, buspirone, busulfan, butabarbital, butalbital, butenafine, calcium lacosamide, calcium lignocaine, carbidopa, carbinoxamine, cefadroxil, cefpodoxime proxetil, celecoxib, cetirizine, ceftriaxone, chlorhexidine, chloroquine, chlorothiazide, chlorpyrifos, chlorpropamide, ciclopirox, cimetidine, cinacalcet, ciprofloxacin, citalopram, citric acid, cladribine, clarithromycin, clemastine, clindamycin, clofibrate, clofazimine, clofazimine, clofibrate, clofazimine, clofibr...
gefitinib, gemcitabine, gemifloxacin, glucarolactone, gluconic acid, gluconolactone, glucuronic acid, glucuronolactone, glutathione, glycolic acid, griseofulvin, guaifenesin, guanethidine, N-guanyllhistamine, haloperidol, haloprogin, hexylresorcinol, homatropine, homosalate, hormone, hydralazine, hydrochlorothiazide, hydrocortisone, hydrocortisone 21-acetate, hydrocortisone 17-butyrate, hydrocortisone 17-valerate, hydrogen peroxide, hydromorphone, hydroquinone, hydroquinone monoether, hydroxyzine, hyoscyamine, imatinib, imipramine, imiquimod, indinavir, indomethacin, infliximab, irbesartan, irinotecan, isoproterenol, itraconazole, kanamycin, ketamine, ketanserin, ketoconazole, ketoprofen, ketotifen, kojic acid, lamivudine, lamotrigine, lansoprazole, letrozole, leuprolide, levamisole, levamisole hydrochloride, levamisole hydrochloride succinate, levamisole hydrochloride succinate hemihydrate, levamisole hydrochloride succinate monohydrate, levamisole hydrochloride succinate octahydrate, levamisole hydrochloride succinate pentahydrate, levamisole hydrochloride succinate tetrahydrate, levamisole hydrochloride succinate trihydrate, levamisole hydrochloride succinate dihydrate, levamisole hydrochloride succinate monohydrate, levamisole hydrochloride succinate hemihydrate, levamisole hydrochloride succinate octahydrate, levamisole hydrochloride succinate pentahydrate, levamisole hydrochloride succinate trihydrate, levamisole hydrochloride succinate dihydrate, levamisole hydrochloride succinate monohydrate, levamisole hydrochloride succinate hemihydrate, levamisole hydrochloride succinate octahydrate, levamisole hydrochloride succinate pentahydrate, levamisole hydrochloride succinate trihydrate, levamisole hydrochloride succinate dihydrate, levamisole hydrochloride succinate monohydrate, levamisole hydrochloride succinate hemihydrate, levamisole hydrochloride succinate octahydrate, levamisole hydrochloride succinate pentahydrate, levamisole hydrochloride succinate trihydrate, levamisole hydrochloride succinate dihydrate, levamisole hydrochloride succinate monohydrate, levamisole hydrochloride succinate hemihydrate, levamisole hydrochloride succinate octahydrate, levamisole hydrochloride succinate pentahydrate, levamisole hydrochloride succinate trihydrate, levamisole hydrochloride succinate dihydrate, levamisole hydrochloride succinate monohydrate, levamisole hydrochloride succinate hemihydrate, levamisole hydrochloride succinate octahydrate, levamisole hydrochloride succinate pentahydrate, levamisole hydrochloride succinate trihydrate, levamisole hydrochloride succinate dihydrate, levamisole hydrochloride succinate monohydrate, levamisole hydrochloride succinate hemihydrate, levamisole hydrochloride succinate octahydrate, levamisole hydrochloride succinate pentahydrate, levamisole hydrochloride succinate trihydrate, levamisole hydrochloride succinate dihydrate, levamisole hydrochloride succinate monohydrate, levamisole hydrochloride succinate hemihydrate, levamisole hydrochloride succinate octahydrate, levamisole hydrochloride succinate pentahydrate, levamisole hydrochloride succinate trihydrate, levamisole hydrochloride succinate dihydrate, levamisole hydrochloride succinate monohydrate, levamisole hydrochloride succinate hemihydrate, levamisole hydrochloride succinate octahydrate, levamisole hydrochloride succinate pentahydrate, levamisole hydrochloride succinate trihydrate, levamisole hydrochloride succinate dihydrate, levamisole hydrochloride succinate monohydrate, levamisole hydrochloride succinate hemihydrate, levamisole hydrochloride succinate octahydrate, levamisole hydrochloride succinate pentahydrate, levamisole hydrochloride succinate trihydrate, levamisole hydrochloride succinate dihydrate, levamisole hydrochloride succinate monohydrate, levamisole hydrochloride succinate hemihydrate, levamisole hydrochloride succinate octahydrate, levamisole hydrochloride succinate pentahydrate, levamisole hydrochloride succinate trihydrate, levamisole hydrochloride succinate dihydrate, levamisole hydrochloride succinate monohydrate, levamisole hydrochloride succinate hemihydrate, levamisole hydrochloride succinate octahydrate, levamisole hydrochloride succinate pentahydrate, levamisole hydrochloride succinate trihydrate, levamisole hydrochloride succinate dihydrate, levamisole hydrochloride succinate monohydrate, levamisole hydrochloride succinate hemihydrate, levamisole hydrochloride succinate octahydrate, levamisole hydrochloride succinate pentahydrate, levamisole hydrochloride succinate trihydrate, levamisole hydrochloride succinate dihydrate, levamisole hydrochloride succinate monohydrate, levamisole hydrochloride succinate hemihydrate, levamisole hydrochloride succinate octahydrate, levamisole hydrochloride succinate pentahydrate, levamisole hydrochloride succinate trihydrate, levamisole hydrochloride succinate dihydrate, levamisole hydrochloride succinate monohydrate, levamisole hydrochloride succinate hemihydrate, levamisole hydrochloride succinate octahydrate, levamisole hydrochloride succinate pentahydrate, levamisole hydrochloride succinate trihydrate, levamisole hydrochloride succinate dihydrate, levamisole hydrochloride succinate monohydrate, levamisole hydrochloride succinate hemihydrate, levamisole hydrochloride succinate octahydrate, levamisole hydrochloride succinate pentahydrate, levamisole hydrochloride succinate trihydrate, levamisole hydrochloride succinate dihydrate, levamisole hydrochloride succinate monohydrate, levamisole hydrochloride succinate hemihydrate, levamisole hydrochloride succinate octahydrate, levamisole hydrochloride succinate pentahydrate, levamisole hydrochloride succinate trihydrate, levamisole hydrochloride succinate dihydrate, levamisole hydrochloride succinate monohydrate, levamisole hydrochloride succinate hemihydrate, levamisole hydrochloride succinate octahydrate, levamisole hydrochloride succinate pentahydrate, levamisole hydrochloride succinate trihydrate, levamisole hydrochloride succinate dihydrate, levamisole hydrochloride succinate monohydrate, levamisole hydrochloride succinate hemihydrate, levamisole hydrochloride succinate octahydrate, levamisole hydrochloride succinate pentahydrate, levamisole hydrochloride succinate trihydrate, levamisole hydrochloride succinate dihydrate, levamisole hydrochloride succinate monohydrate, levamisole hydrochloride succinate hemihydrate, levamisole hydrochloride succinate octahydrate, levamisole hydrochloride succinate pentahydrate, levamisole hydrochloride succinate trihydrate, levamisole hydrochloride succinate dihydrate, levamisole hydrochloride succinate monohydrate, levamisole hydrochloride succinate hemihydrate, levamisole hydrochloride succinate octahydrate, levamisole hydrochloride succinate pentahydrate, levamisole hydrochloride succinate trihydrate, levamisole hydrochloride succinate dihydrate, levamisole hydrochloride succinate monohydrate, levamisole hydrochloride succinate hemihydrate, levamisole hydrochloride succinate octahydrate, levamisole hydrochloride succinate pentahydrate, levamisole hydrochloride succinate trihydrate, levamisole hydrochloride succinate dihydrate, levamisole hydrochloride succinate monohydrate, levamisole hydrochloride succinate hemihydrate, levamisole hydrochloride succinate octahydrate, levamisole hydrochloride succinate pentahydrate, levamisole hydrochloride succinate trihydrate, levamisole hydrochloride succinate dihydrate, levamisole hydrochloride succinate monohydrate, levamisole hydrochloride succinate hemihydrate, levamisole hydrochloride succinate octahydrate, levamisole hydrochloride succinate pentahydrate, levamisole hydrochloride succinate trihydrate, levamisole hydrochloride succinate dihydrate, levamisole hydrochloride succinate monohydrate, levamisole hydrochloride succinate hemihydrate, levamisole hydrochloride succinate octahydrate, levamisole hydrochloride succinate pentahydrate, levamisole hydrochloride succinate trihydrate, levamisole hydrochloride succinate dihydrate, levamisole hydrochloride succinate monohydrate, levamisole hydrochloride succinate hemihydrate, levamisole hydrochloride succinate octahydrate, levamisole hydrochloride succinate pentahydrate, levamisole hydrochloride succinate trihydrate, levamisole hydrochloride succinate dihydrate, levamisole hydrochloride succinate monohydrate, levamisole hydrochloride succinate hemihydrate, levamisole hydrochloride succinate octahydrate, levamisole hydrochloride succinate pentahydrate, levamisole hydrochloride succinate trihydrate, levamisole hydrochloride succinate dihydrate, levamisole hydrochloride succinate monohydrate, levamisole hydrochloride succinate hemihydrate, levamisole hydrochloride succinate octahydrate, levamisole hydrochloride succinate pentahydrate, levamisole hydrochloride succinate trihydrate, levamisole hydrochloride succinate dihydrate, levamisole hydrochloride succinate monohydrate, levamisole hydrochloride succinate hemihydrate, levamisole hydrochloride succinate octahydrate, levamisole hydrochloride succinate pentahydrate, levamisole hydrochloride succinate trihydr
quetiapine, quinapril, quinethazone, quinidine, quinupristin, rabeprazole, reserpine, rcsorcinol, retinal, 13-cis-retinoic acid, retinoic acid, retinol, retinyl acetate, retinyl palmitate, ribavirin, ribonic acid, ribonolactone, rifampin, rifapentine, rifaximin, riluzole, rimantadine, risedronic acid, risperidone, ritodrine, rivastigmine, rizatriptan, ropinirole, ropivacaine, salicylamide, salicylic acid, salmeterol, scopolamine, selegiline, selenium sulfide, serotonin, sertaconazole, sertindole, sertraline, shale tar, sibutramine, sildenafil, sotalol, streptomycin, strychnine, sulconazole, sulfacetamide, sulfabenz, sulfabenzamid, sulfabromomethazine, sulfacetamide (sodium sulfacetamide), sulfachlorpyridazine, sulfacytine, sulfadiazine, sulfadimethoxine, sulfadoxine, sulfaguanole, sulfaflume, sulfamethizole, sulfanilamide, sulfapyrazine, sulfapyridine, sulfasalazine, sulfasonizole, sulfathiazole, sulfisoxazole, sulfur, tacrolimus, tadalaflil, tamsulosin, tartaric acid, tazarotene, tegaserol, telithromycin, telmisartan, temozolomide, tenofovir disoproxil, terazosin, terbinafine, terbutaline, terconazole, terfenadine, tetracaine, tetracycline, tetrahydrozoline, thalidomide, theobromine, theophylline, thia bendazole, thieiphylperazine, thioctic acid (lipoic acid), thioridazine, thiothixene, thymol, tiagabine, timolol, imidazole, tioconazole, tirofiban, tizanidine, tobramycin, tocanide, tolazoline, tolbutamide, tolnaftate, tolterodine, tramadol, tranylcypromine, trazodone, triamcinolone acetonide, triamcinolone diacetate, triamcinolone hexacetonide, triamterene, triazolam, triclosan, triflupromazine, trimethoprim, trimipramine, tri propenamine, tripolidine, tromethamine, tropic acid, tyramine, undecylenic acid, urea, urocanic acid, ursodiol, valacyclovir, vardenafil, venlafaxine, verapamil, vitamin, vitamin E acetate, voriconazole, warfarin, wood tar, xanthine, zafirlukast, zaleplon, zinc pyrithione, ziprasidone, zolmitriptan and Zolpidem.

[00112] It will be appreciated by those skilled in the art that changes could be made to the embodiments described above without departing from the broad inventive concept thereof. It is understood, therefore, that this invention is not limited to the particular embodiments disclosed, but it is intended to cover modifications within the spirit and scope of the present invention as defined by the appended claims.

[0013] Example 1

[00114] In one of the studies related to skin changes associated with aging, skin thickness was measured by micrometer calipers as follows.

[00115] The skin was grasped with a 2 X 6 cm metal hinge; the internal faces of which were coated with emery cloth to prevent slippage, and manually squeezed to threshold subject discomfort. Combined thickness of two whole-skin layers including thickness of the two hinge leaves was measured with micrometer calipers. Thickness of the two hinge leaves was
subtracted to determine the actual thickness of two whole-skin layers. Triplicate measurements on treated sites were done and an average number was used for calculation of the skin thickness. In other studies, test sites of skin 17 mm in diameter were used, the circular sites were marked with permanent ink. Intervening control sites were also 17 mm in diameter. Thickness of skin of all sites was measured directly by means of an electronic digital caliper. In this instance the jaws of the caliper were opened to 17 mm, applied with pressure to the skin sites and then closed to firm tightness. Thickness of skin was then read off the screen of the calipers. Measurements of all sites were made in triplicates.

Example 2

Solution compositions containing an N-acylpeptide derivative of the present invention were formulated as follows.

N-Ac-L-Tyr-L-Tyr-L-Tyr-NH₂, 0.3 g was dissolved in 99.7 ml solution prepared from water 40 parts, ethanol 40 parts and propylene glycol 20 parts by volume (hereinafter referred to as WEP442). Other proportion such as WEP721 refers to water 70 parts, ethanol 20 parts and propylene glycol 10 parts by volume. The clear solution thus prepared had pH 5.9 and contained N-Ac-L-Tyr-L-Tyr-L-Tyr-NH₂, 0.3% (w/v) in WEP442. Under the same conditions, N-Ac-L-Tyr-L-Tyr-L-Tyr-NH₂, 0.1 to 1% (w/v) in WEP442 was readily formulated. EP73 indicates ethanol 70 parts and propylene glycol 30 parts by volume.

N-Ac-L-Tyr-L-Tyr-L-Tyr-OEt, 0.4 g was dissolved in 99.6 ml solution prepared from ethanol 80 parts and propylene glycol 20 parts by volume (hereinafter referred to as EP82). The clear solution thus prepared contained N-Ac-L-Tyr-L-Tyr-L-Tyr-OEt, 0.4% (w/v) in EP82.

Under the same procedures, the following solution compositions were prepared:

N-Ac-L-Tyr-L-Tyr-L-Tyr-OEt: 0.4-1% (w/v) in WEP442, pH 5.6; 1-2% (w/v) in EP73;
N-Ac-L-Ser-L-Ser-L-Ser-NH₂: 0.3% (w/v) in WEP442, pH 2.9; 0.5% (w/v) in WEP721;
N-Ac-L-Arg-L-Arg-L-Arg-NH₂: 0.3% (w/v) in WEP 442, pH 3.0; 0.5% (w/v) in WEP721;
N-Ac-L-Tyr-L-Tyr-L-Tyr-OH: 0.2-1% (w/v) in WEP442, pH 4.8; 0.5-1% (w/v) in WEP721;
N-Ac-L-Val-L-Val-L-Ala-NH₂: 0.2% (w/v) in WEP442, pH 4.9;
N-Ac-L-Val-L-Tyr-L-Tyr-NH₂: 0.2% (w/v) in WEP 442, pH 4.0;
N-Ac-L-Tyr-L-Tyr-L-Tyr-NH₂: 0.5% (w/v) in WEP 721, pH 5.2;
N-Ac-L-Val-L-Ala-L-Tyr-NH₂: 0.3% (w/v) in WEP 442, pH 5.5;
N-Ac-L-Ala-L-Leu-L-Lys-L-His-L-Arg-NH₂(SEQ ID NO: 51): 0.2% (w/v) in WEP442, pH 3.4; 0.5%(w/v) in WEP721;
N-Pr-L-Ala-L-Leu-L-Lys-L-His-1-Arg-NH₂(SEQ ID NO: 58): 0.2% (w/v) in WEP442, pH 3.8; 0.5%(w/v) in WEP721; and
The solution compositions containing N-acylpeptide derivatives of the present invention are therapeutically effective for topical treatment of disorders, diseases, symptoms or syndromes associated with tumors, cancers, immune, nervous, vascular, musculoskeletal or cutaneous system, or other tissues or systems.

Example 3

Creams or oil-in-water emulsions containing an acylpeptide derivative were formulated as follows:

10 N-Ac-L-Tyr-L-Tyr-L-Tyr-OEt, 0.2 g was dissolved in warm propylene glycol 20 ml and oleyl lactate 10 ml, and the solution thus obtained was mixed with a cream or oil-in-water emulsion 69.8 g. The composition thus formulated contained N-Ac-L-Tyr-L-Tyr-L-Tyr-OEt, 0.2% (w/w) in cream or oil-in-water emulsion.

15 N-Ac-L-Tyr-L-Tyr-L-Tyr-NH₃, 0.2 g was dissolved in warm propylene glycol 15 ml and water 15 ml, and the solution thus obtained was mixed with a cream or oil-in-water emulsion 69.8 g. The composition thus formulated contained N-Ac-L-Tyr-L-Tyr-L-Tyr-NH₃, 0.2% (w/w) in cream or oil-in-water emulsion.

20 N-Ac-L-Arg-T-Arg-L-Arg-NH₂, 0.2 g was dissolved in warm propylene glycol 6 ml and water 24 ml, and the solution thus obtained was mixed with a cream or oil-in-water emulsion 69.8 g. The composition thus formulated contained N-Ac-T-Arg-L-Arg-L-Arg-NH₂, 0.2% (w/w) in cream or oil-in-water emulsion.

Under the same procedures, the following cream or oil-in-water compositions were formulated:

N-Ac-L-Ser-L-Ser-L-Ser-NH₂: 0.2% (w/w) in cream or oil-in-water emulsion;

N-Ac-T-Tyr-T-Tyr-L-Tyr-OEt: 1% (w/w) in cream or oil-in-water emulsion;

N-Ac-L-Ala-L-Leu-L-Lys-L-His-L-Arg-NH₂ (SEQ ID NO: 51): 0.5% (w/w) in cream or oil-in-water emulsion; and

N-Pr-L-Ala-L-Leu-L-Lys-L-His-L-Arg-NH₂ (SEQ ID NO: 58): 0.5%(w/w) in cream or oil-in-water emulsion.

The cream or oil-in-water emulsion compositions containing N-acylpeptide derivatives of the present invention can be therapeutically effective for topical treatment of disorders, diseases, symptoms or syndromes associated with tumors, cancers, immune, nervous, vascular, musculoskeletal or cutaneous system, or other tissues or systems.

Example 4
A typical solution composition containing N-acylpeptide derivative of the present invention for systemic injection administration was prepared as follows.

A composition can be prepared with or without a thickening agent, such as methyl cellulose. Methyl cellulose 1% (w/v) in water solution was prepared by adding methyl cellulose 1 g in water 90 ml, and the mixture was gently homogenized. More water was added to make the final volume of 100 ml. The vehicle composition thus prepared contained 1% (w/v) methyl cellulose as a thickener in injection solution.

N-Ac-L-Tyr-L-Tyr-L-Tyr-OH, 100 mg was dissolved in water, 10 ml, and the solution thus obtained in an injection bottle was sterilized for 30 minutes in boiling water bath. The injection composition thus prepared contained N-Ac-L-Tyr-L-Tyr-L-Tyr-OH, 1% (w/v) in water.

N-Ac-L-Tyr-L-Tyr-L-Tyr-OEt, 20 mg was dissolved in water, 10 ml, and the solution thus obtained in an injection bottle was sterilized for 30 minutes in boiling water bath. The injection composition thus prepared contained N-Ac-L-Tyr-L-Tyr-L-Tyr-OEt, 0.2% (w/v) in water. Under the same procedure, the injection composition containing N-Ac-L-Tyr-L-Tyr-L-Tyr-OEt, 0.2% (w/v) and methyl cellulose 1% (w/v) in water was prepared by dissolving N-Ac-L-Tyr-L-Tyr-L-Tyr-OEt, 20 mg in 10 ml water containing 1% (w/v) methyl cellulose.

N-Ac-L-Ala-L-Leu-L-Lys-L-His-L-Arg-NH$_2$ (SEQ ID NO: 51), 40 mg was dissolved in 2 ml water containing 1% methyl cellulose as prepared above in an injection bottle, and the vial was sterilized at 100°C for 30 minutes. The solution compositions thus obtained contained 2% (w/v) or 20 mg/ml N-Ac-L-Ala-L-Leu-L-Lys-L-His-L-Arg-NH$_2$ (SEQ ID NO: 51) which was suitable for intra-articular, intrallesional, or subcutaneous injection, or other systemic administration.

Under the same procedures, the following solution compositions for injection were prepared:

N-Ac-L-Ala-L-Leu-L-Lys-L-His-L-Arg-NH$_2$ (SEQ ID NO: 51), 1% (w/v) in water;
N-Bz-L-Ala-L-Leu-L-Lys-L-His-L-Arg-NH$_2$ (SEQ ID NO: 65), 1% (w/v) in water; and
N-Ac-(EEASPEAVAGVGFESK)-NH$_2$ (SEQ ID NO: 126) 0.4% (w/v) or 4 mg/ml in water.

The solution compositions containing N-acylpeptide derivatives of the present invention can be therapeutically effective for systemic treatment of disorders, diseases, symptoms or syndromes associated with tumors, cancers, immune, nervous, vascular, musculoskeletal or cutaneous system, or other tissues or systems.

Example 5
A typical in vitro screen for anti-tumor or anti-cancer effects was carried out as follows.

An aliquot of 2,000 MB231 breast cancer cells (breast carcinoma cells) in 100 µl DMEM complete media (Sigma Chemical Co.) was plated in a 96 well plate containing at a concentration of 20 µg/ml a test substance or control water. To measure proliferation of the cancer cells, an aliquot of 20 µl of MTS reagent (Promega Co.) was added to each well and the cells were incubated at 37°C for a total of three days. The cells rapidly metabolized MTS reagent and the metabolized MTS reagent was measured at 490 nm at the end of days 1, 2 and 3. The reading was proportional to the number of cancer cells. The decrease in absorbance at each time point indicated fewer cancer cells. At the end of day 3, the decrease in absorbance with respect to the control indicated the inhibition by the test substance.

Using the above procedure, N-Ac-(EEASPEAVAGVGBESK)-NH₂ (SEQ ID NO: 145) at the concentration, 20 µg/ml was found to have 9% inhibition of breast cancer cells at the end of three day incubation.

The following N-acylpeptide derivatives of the present invention can also inhibit the growth of breast cancer cells.

N-Ac-L-Arg-L-Arg-L-Arg-NH₂, N-Ac-L-Tyr-L-Tyr-L-Tyr-NH₂,
N-Ac-L-Val-L-Val-L-Ala-NH₂, N-Ac-L-Val-L-Tyr-L-Tyr-NH₂,
N-Ac-(EASPEAVAGVGFESK)-NH₂ (SEQ ID NO: 105), N-Ac-(EEASPEAVAGVGFESK)-NH₂ (SEQ ID NO: 126), and N-Ac-(CKKEASPEAVAGVGFESK)-NH₂ (SEQ ID NO: 149).

Thus, N-acylpeptide derivatives of the present invention can be used for treating breast cancers.

Example 6

A typical skin plump or skin thickness test was carried out as follows.

A female subject, age 42, selected 5 skin test spots, each with 17 mm in diameter on her distal extensor left forearm, marked A, B, C, D, and E. The subject topically applied three times daily to test skin spots:

A. N-Ac-L-Arg-L-Arg-L-Arg-NH₂, 0.5%(w/v) in WEP721
B. N-Ac-L-Tyr-L-Tyr-L-Tyr-NH₂, 0.5%(w/v) in WEP721
C. N-Ac-L-Tyr-L-Tyr-L-Tyr-OH 0.5%(w/v) in WEP721
D. N-Ac-L-Ala-L-Leu-L-Lys-L-His-L-Arg-NH₂ (SEQ ID NO: 51), 0.5%(w/v) in WEP721
E. Vehicle control, WEP721
The topical applications were continued for 7 days, and the skin thickness was measured by the electronic digital caliper as described in Example 1. At the end of 7 days, while the skin in the vehicle control spot E was still loose, relatively thin and wrinkled, the skins in spots A, B, C and D were palpably raised, smooth, less wrinkled and moderately increased in skin thickness. While there was no change in skin thickness of the control spot, the treated skins in spots A, B, C and D had approximately 5-10% increase in skin thickness as measured by the electronic micrometer caliper.

This result indicates that N-acylpeptide derivatives of the present invention can be used for topical treatment of disturbed keratinization and aging related changes of skin, nail and hair including fine lines, wrinkles, photoaging, age spots, blotches, mottled skin, stretch marks and for younger-looking skin and skin lightening.

Example 7

A female subject, age 51, selected 5 skin test spots, each with 17 mm in diameter on her distal extensor left forearm, marked A, B, C, D, and E. The subject topically applied three times daily to test skin spots:

A. N-Ac-L-Arg-L-Arg-L-Arg-NH₂, 0.5%(w/v) in WEP721
B. N-Ac-L-Tyr-L-Tyr-L-Tyr-NH₂, 0.5%(w/v) in WEP721
C. N-Ac-L-Tyr-L-Tyr-L-Tyr-NH 0.5%(w/v) in WEP721
D. N-Ac-L-Ala-L-Leu-L-Lys-L-His-L-Arg-NH₂ (SEQ ID NO: 51), 0.5%(w/v) in WEP721
E. Vehicle control, WEP721

The topical applications were continued for 7 days, and the skin thickness was measured by the electronic digital caliper as described in Example 1. At the end of 7 days, while the skin in the vehicle control spot E was still loose, relatively thin and wrinkled, the skins in spots A, B, C and D were palpably raised, smooth, less wrinkled and moderately increased in skin thickness. While there was no change in skin thickness of the control spot, the treated skins in spots A, B, C and D had approximately 5-10% increase in skin thickness as measured by the electronic micrometer caliper.

This result indicates that N-acylpeptide derivatives of the present invention can be used for topical treatment of disturbed keratinization and aging related changes of skin, nail and hair including fine lines, wrinkles, photoaging, age spots, blotches, mottled skin, stretch marks, and for younger-looking skin and skin lightening.

Example 8
A female subject, age 74, had severe photodamage on her skins of both arms. The subject topically applied three times daily N-Ac-L-Tyr-L-Tyr-L-Tyr-NH$_2$, 0.5%(w/v) in WEP721 to the skin over right wrist distal, and vehicle control WEP721 to left wrist distal for 7 days. At the end of 7 days, while the skin over the left wrist distal of the control was still loose, relatively thin and wrinkled, the skins over the right wrist distal was palpably raised, smooth, less wrinkled and moderately increased in skin thickness. While there was no change in skin thickness of the control skin over the left wrist distal, the skin of the treated right wrist distal had approximately 5-10% increase in skin thickness as measured by the electronic micrometer caliper. This result indicates that N-acylpeptide derivatives of the present invention can be used for topical treatment of disturbed keratinization and aging related changes of skin, nail and hair including fine lines, wrinkles, photoaging, age spots, blotches, mottled skin, stretch marks, and for younger-looking skin and skin lightening.

Example 9

A male subject, age 90, having severe photodamage of the skin in both forearms selected 5 skin test spots on his forearms, marked A, B, C, D, and E. The subject topically applied four times daily to test skin spots for 10 days.

- A. N-Ac-L-Tyr-L-Tyr-L-Tyr-OEt, 0.5%(w/v) in WEP442
- B. N-Ac-L-Tyr-L-Tyr-L-Tyr-OH, 0.5%(w/v) in WEP721
- C. N-Pr-L-Ala-L-Leu-L-Lys-L-His-L-Arg-NH$_2$ (SEQ ID NO: 58), 0.5%(w/v) in WEP721
- D. N-Bz-L-Ala-L-Leu-L-Lys-L-His-L-Arg-NH$_2$ (SEQ ID NO: 65), 0.5%(w/v) in WEP721
- E. Vehicle control, WEP721

At the end of 10 days, while the skin in the vehicle control spot E was still loose, relatively thin and wrinkled, the skins in spots A, B, C and D were palpably raised, smooth, less wrinkled and increased in skin thickness. While there was no change in skin thickness of the control spot, the treated skins in spots B, C and D had approximately 10-20% increase in skin thickness as measured by the electronic micrometer caliper. The treated skin in spot A had approximately 20-30% increase in skin thickness as measured by the electronic micrometer caliper.

The above results indicate that N-acylpeptide derivatives of the present invention can be used for topical treatment of disturbed keratinization and aging related changes of skin, nail and hair including fine lines, wrinkles, photoaging, age spots, blotches, mottled skin, stretch marks, and for younger-looking skin and skin lightening.
Example 10

A male subject, age 80, having chronic inflammation, erythema, eczema with thick scales and itch on his legs for more than 10 years, failed to respond with conventional treatments including topical corticosteroids. The involved skin was divided into two lesions for testing.

The subject topically applied twice daily to one lesion, N-Ac-L-Tyr-L-Tyr-L-Tyr-NH₂, 0.3% (w/v) in WEP442, pH 5.9 solution composition, prepared according to Example 2, and to second lesion, N-Ac-L-Tyr-L-Tyr-L-Tyr-OEt, 0.5% (w/v) in WEP 442, pH 6.0, prepared according to Example 2. The itch stopped within a few minutes, and the thick scales of both lesions started to disappear in the next few days. At the end of 2 weeks, the erythema and thick scales of both lesions disappeared almost completely and the treated skin sites were smooth, soft, even-toned, brighter and more elastic when the skin was stretched. The treated skin appeared much lighter in skin color as compared to the surrounding untreated skin site. The treated skin had 90-95% improvement as judged by clinical evaluation.

The result shows that N-acyltri-peptide derivatives of the present invention can be used for providing therapeutic effects for topical treatment of symptoms or syndromes associated with nerve disorders, disturbed keratinization, aging skin, wrinkles, age spots, hyperpigmentation, inflammation, deranged immune system, and for skin lightening.

Example 11

A male subject, age 80, having chronic dermatoses with scaly skin and itch on his right leg, failed to respond with conventional treatments including topical corticosteroids. The subject topically applied twice daily a pentapeptide derivative, N-Ac-L-Ala-L-Leu-L-Lys-L-His-T-Arg-NH₂ (SEQ ID NO: 51) 0.2% (w/v) in WEP442, pH 3.4, as prepared in Example 2. The itch stopped within a few minutes, and the scales started to disappear in the next few days. At the end of 2 weeks, the erythema and the scales disappeared almost completely and the treated skin sites were smooth, soft, even-toned, brighter and more elastic when the skin was stretched. The treated skin appeared much lighter in skin color as compared to the surrounding untreated skin site. The treated skin had 80-90% improvement as judged by clinical evaluation.

The result shows that N-acylpentapeptide derivative of the present invention can be used for providing therapeutic effects for topical treatment of symptoms or syndromes associated with nerve disorders, disturbed keratinization, aging skin, wrinkles, age spots, hyperpigmentation, inflammation, deranged immune system, and for skin lightening.

Example 12

A male subject, age 41, having normal and regular eating habit, topically applied once N-Ac-L-Tyr-L-Tyr-L-Tyr-NHb, 0.3% (w/v) in WEP442, pH 5.9 prepared according to Example
2 on his forehead one hour before the regular dinner time. After about 50-60 minutes of the
topical application, the subject started to feel loss of appetite for food. At the dinner time, the
subject lost the desire to eat food, but managed to eat only half the amount of food he usually
would consume.

[00166] The above result shows that N-acyltri peptide derivative of the present invention can
be used for providing therapeutic effects for reducing or losing appetite for food, and for
controlling body weight.

[00167] Example 13

[00168] A male subject, age 36, having plaque psoriasis, topically applied twice daily N-Ac-
L-Tyr-L-Tyr-L-Tyr-NH₂ 0.2% (w/w) in cream to plaque lesions for 3 weeks. The treated lesions
started to improve after a few days of topical application. At the end of 3 weeks, the silvery
scales disappeared almost completely, the intense erythema diminished substantially, and the
thick skin became palpably thinner and also in appearance. The treated lesions had 40-50%
improvement as judged by clinical evaluation.

[00169] The above result shows that N-acylpeptide derivative of the present invention can be
used for topical treatment of psoriasis, inflammatory diseases and disorders associated with
deranged immune system.

[00170] Example 14

[00171] A typical preparation of gelatin capsules for systemic administration was carried out
as follows.

[00172] N-Ac-L-Tyr-L-Tyr-L-Tyr-OEt powder 1g was mixed thoroughly with gelatin powder
14 g, and this powder mixture was filled into gelatin No. 3 capsules. Each capsule thus filled
contained approximately 10 mg N-Ac-L-Tyr-T-Tyr-L-Tyr-OEt and 140 mg gelatin.

[00173] Under the same procedures, the following capsules can be readily prepared:

10 mg N-Ac-T-Tyr-L-Tyr-L-Tyr-OH and 140 mg gelatin
10 mg N-Ac-L-Tyr-L-Tyr-T-Tyr-NH₂ and 140 mg gelatin
30 mg N-Ac-L-Tyr-L-Tyr-L-Tyr-NH₂ and 120 mg gelatin
50 mg N-Ac-L-Tyr-L-Tyr-L-Tyr-NH₂ and 100 mg gelatin
10 mg N-Ac-L-Arg-L-Arg-L-Arg-NH₂ and 140 mg gelatin
30 mg N-Ac-L-Ser-T-Ser-L-Ser-NH₂ and 140 mg gelatin
10 mg N-Ac-L-Tyr-L-Tyr-L-Tyr-OH and 140 mg gelatin
20 mg N-Ac-L-Val-L-Tyr-L-Tyr-NH₂ and 130 mg gelatin
20 mg N-Ac-T-Val-T-Val-L-Ala-NH₂ and 130 mg gelatin
5 mg N-Ac-T-Alpha-L-Leu-L-Lys-L-His-L-Arg-NH₂ (SEQ ID NO: 51) and 145 mg gelatin
10 mg N-Pr-L-Ala-L-Leu-L-Lys-L-His-L-Arg-NH₂ (SEQ ID NO: 58) and 140 mg gelatin
10 mg N-Bz-L-Ala-L-Leu-L-Lys-L-His-L-Arg-NH₂ (SEQ ID NO: 65) and 140 mg gelatin
5 mg N-Ac-(EEASPEAVAGVGFESK)-NH₂ (SEQ ID NO: 126) and 145 mg gelatin
5 mg N-Ac-(EEASPEAVAGVGBESK)-NH₂ (SEQ ID NO: 145) and 145 mg gelatin

[00174] A subject can take orally the above capsules on the daily basis. The daily dosage for
a subject can vary, however in general is about 0.001 mg/kg to about 10 mg/kg, preferably about
0.01 mg to about 5 mg/kg, and more preferably about 0.1 mg to about 2 mg/kg body weight of
the subject.

[00175] The capsule compositions containing N-acylpeptide derivatives of the present
invention can be therapeutically effective for orally treatment of disorders, diseases, symptoms
or syndromes associated with tumors, cancers, immune, nervous, vascular, musculoskeletal or
cutaneous system, or other tissues or systems.

[00176] Example 15

[00177] A typical systemic administration by intradermal injection was carried out as follows.

A male subject, age 90, injected intradermally on the forearms the following N-acylpeptide
derivative of the present invention:
(a). N-Ac-L-Tyr-L-Tyr-L-Tyr-OH, 0.05 ml (0.5 mg) of 1% in water, after 8 days, there was 10-
20% increase in skin thickness of 6 mm size skin at the injection site: effective for aging skin.
(b). N-Ac-L-Ala-L-Leu-L-Lys-L-His-L-Arg-NH₂ (SEQ ID NO: 51), 0.05 ml (0.5 mg) of 1% in
water.
(c). N-Bz-L-Ala-L-Leu-L-Lys-L-His-L-Arg-NH₂ (SEQ ID NO: 65), 0.05 ml (0.5 mg) of 1% in
water.
(d). N-Ac-(EEASPEAVAGVGFESK)-NH₂ (SEQ ID NO: 126), 0.1 ml (0.4 mg) of 0.4% in
water.

[00178] The intradermal injection of a composition containing an N-acylpeptide derivative of
the present invention can be therapeutically effective for systemic treatment of disorders,
diseases, symptoms or syndromes associated with tumors, cancers, immune, nervous, vascular,
musculoskeletal or cutaneous system, or other tissues or systems.

[00179] Example 16

[00180] A male subject, age 41, had mild forms of anxiety, stress and mood disorders which
provoked restlessness, lack of concentration, and mild depression. The subject topically applied
a control solution WEP442 on his forehead, but he did not notice any signs of mood changes for
the ensuing several hours. The subject then topically applied N-Ac-L-Val-L-Tyr-L-Tyr-NH₂, 0.2
% in WEP442 on his forehead. After two hours, he noticed that the anxiety, stress and mood
disorders started to disappear, and he felt wonderful in feelings and very optimistic about routine
events and life style.

[00181] The above result shows that N-acylpeptide derivatives of the present invention can be
used for topical treatment of anxiety, stress and mood changes including nervousness and
depression.

[00182] Example 17

[00183] A male subject, age 41, topically applied a control solution WEP442 on his forehead,
but he did not notice any signs of changes for the ensuing several hours. The subject then
topically applied N-Ac-L-Tyr-L-Tyr-L-Tyr-OH, 0.2 % in WEP442 on his forehead. After about
one hour later, he had an urge for urination, and resulted in discharge of full amount of urine.
The subject repeated the same procedure the next day, and obtained the same result.

[00184] The N-acylpeptide derivative of the present invention appears to be a diuretic
substance, and can be used for treatment of high blood pressure, obesity, overweight or for
weight control.

[00185] Example 18

[00186] N-Acylpeptide derivative of the present invention can be administered for treatment
of knee osteoarthritis by intra-articular injections.

[00187] A male subject, age 90, had severe osteoarthritis of both knees for more than four
years. Prior therapy had included intra-articular injections of corticosteroids and hyaluronic acid
as well as celecoxib (Celebrex) orally (200 mg) twice daily. Such therapy had provided only
mild transitory relief of knee pain and edema, and edema of lower legs.

[00188] Intra-articular injections of 1% (w/v) N-Ac-L-Tyr-L-Tyr-L-Tyr-OH in water, 0.1 ml
(1 mg) as prepared in Example 4 were administered to each knee. The pains in both knees
disappeared about 20-30 minutes after the injections, and the relief of pains lasted for 24 hours.

Edema and inflammation of the knees and lower legs had diminished for approximately the same
24 hour period. Repeat injections of the same composition were administered once a week for
several weeks to provide continued relief of pain, edema and inflammation.

[00189] In another trial, intra-articular injections of 0.2% (w/v) N-Ac-L-Tyr-L-Tyr-L-Tyr-OEt
with 1% (w/v) methyl cellulose in water, 0.5 ml (1 mg) as prepared in Example 4 were also
administered to each knee at different times. The pains in both knees disappeared about 20-30
minutes after the injections, and the relief of pains lasted for 24 hours. Edema and inflammation
of the knees and lower legs had diminished for approximately the same 24 hour period.
The above results show that N-acylpeptide derivatives of the present invention can be used for treating inflammation, arthritis, pain, other immune and nerve disorders via systemic administration.

Example 19

A female subject, age 42, selected a 5 cm x 5 cm skin site on each of her extensor forearms. The subject topically applied three times daily the control vehicle WEP442 on her left extensor forearm, and N-Ac-L-Tyr-L-Tyr-L-Tyr-OEt, 0.8% (w/v) in WEP442 on her right extensor forearm for four weeks. At the end of four weeks, while the skin site in the vehicle control left forearm was still loose, relatively thin and wrinkled, the skin site in the right forearm was palpably raised, smooth, less wrinkled and substantially increased in skin thickness. While there was no change in the skin site of vehicle control left forearm, the skin site of right forearm treated with N-Ac-L-Tyr-L-Tyr-L-Tyr-OEt had approximately 33% increase in skin thickness as measured by the electronic micrometer caliper.

The above result indicates that N-acylpeptide derivatives of the present invention can be used for topical treatment of disturbed keratinization and aging related changes of skin, nail and hair including fine lines, wrinkles, photoaging, age spots, blotches, mottled skin, stretch marks and for younger-looking skin and skin lightening.

Example 20

A female subject, age 51, having photoaging skin on her forearms selected 5 skin test sites with approximately 4 cm x 4 cm in each size, and marked A, B, C, D, and E. The subject topically applied three times daily to test skin sites for four weeks:

A. N-Ac-L-Tyr-L-Tyr-L-Tyr-OEt, 0.5%(w/v) in WEP442
B. N-Ac-L-Tyr-L-Tyr-L-Tyr-OEt, 1%(w/v) in WEP442
C. N-Ac-L-Tyr-L-Tyr-L-Tyr-OEt, 0.8%(w/v) in WEP442
D. N-Ac-L-Tyr-L-Tyr-NH₃, 1%(w/v) in WEP442
E. Vehicle control, WEP442

At the end of four weeks, while the skin in the vehicle control site, E was still loose, relatively thin and wrinkled, the skins in test sites A, B, C and D were palpably raised, smooth, less wrinkled and increased in skin thickness. While there was no change in skin thickness of the control site, the treated skins in sites B, C and D had approximately 12%, 15%, and 28% respectively in increased skin thickness as measured by the electronic micrometer caliper.

The above results indicate that N-acylpeptide derivatives of the present invention can be used for topical treatment of disturbed keratinization and aging related changes of skin, nail
and hair including fine lines, wrinkles, photoaging, age spots, blotches, mottled skin, stretch marks, and for younger-looking skin and skin lightening.

Example 21

A female subject, age 52, having sun damaged skin on her forearms selected 3 skin sites with approximately 5 cm x 5 cm in each size, and marked A,B,C. The subject topically applied three times daily to skin sites for one week:

A. N-Ac-L-Tyr-L-Tyr-L-Tyr-OH, 1%(w/v) in WEP442
B. N-Ac-L-Tyr-L-Tyr-L-Tyr-OH, 1%(w/v) in WEP442
C. Vehicle control, WEP442

At the end of one week, while the skin in the vehicle control site C was still loose, relatively thin and wrinkled, the skins in test sites A and B were palpably raised, smooth, less wrinkled and increased in skin thickness. While there was no change in skin thickness of the control site, the treated skins in sites A and B had approximately 29% and 24% respectively in increased skin thickness as measured by the electronic micrometer caliper.

The above results indicate that N-acylpeptide derivatives of the present invention can be used for topical treatment of disturbed keratinization and aging related changes of skin, nail and hair including fine lines, wrinkles, photoaging, age spots, blotches, mottled skin, stretch marks, and for younger-looking skin and skin lightening.

Example 22

A female subject, age 59, had rosacea on her face with erythema, inflammation and dilated blood vessels, described as telangiectatic rosacea. The subject topically applied twice daily N-Ac-L-Tyr-L-Tyr-L-Tyr-OEt, 1%(w/v) in WEP442 for two weeks. At the end of two weeks, the erythema and inflammation had diminished, and improvement in reduced size of telangiectatic blood vessels was discernible. The rosacea lesions had approximately 25% improvement as judged by clinical evaluation.

The above result indicates that N-acylpeptide derivative of the present invention can be used for topical treatment of rosacea, acne, inflammation and vascular disorders.

Example 23

A male subject, age 90, had bilateral inter-metacarpal atrophy of both hands with certain restrictions of hand movements. The subject topically applied two to three times daily N-Ac-L-Tyr-L-Tyr-L-Tyr-OEt, 2%(w/v) in EP73 on the back of his left hand, and vehicle control EP73 on the back of his right hand for three weeks. At the end of three weeks, while there was no discernible improvement on his right hand, the inter-metacarpal atrophy of his left hand disappeared almost completely, and the left hand had free movement without restrictions.
The subject now, topically applied twice daily N-Ac-L-Tyr-L-Tyr-L-Tyr-NH₂, 1% (w/v) in WEP442 on the back of his left hand as a maintenance therapy. The left hand continued to improve with no signs of inter-metacarpal atrophy.

The above result indicates that N-acylpeptide derivative of the present invention can be used for topical treatment of rosacea, acne, inflammation and vascular disorders.

Example 24

Skin thickness study can also be carried out as follows. A male subject, age 90, had moderate photoaging on backs of both hands for many years. Before the study, the skin thickness of his left back hand averaged 1.70 mm, and that of right hand averaged 1.68 mm as measured by the electronic micrometer caliper. The subject topically applied two to three times daily N-Ac-L-Tyr-L-Tyr-L-Tyr-OEt, 2% (w/v) in EP73 on the back of his left hand, and vehicle control EP73 on the back of his right hand for six weeks. At the end of six weeks, while the control skin on the back of his right hand was still loose, relatively thin and wrinkled, the skin on the back of his left hand was palpably raised, smooth, less wrinkled and increased in skin thickness. While the skin thickness on the control back of right hand averaged 1.71 mm, the skin on the back of left hand averaged 2.59 mm; an increase of 52% over the starting skin thickness.

The above result indicates that N-acylpeptide derivative of the present invention can be used for topical treatment of disturbed keratinization and aging related changes of skin, nail and hair including fine lines, wrinkles, photoaging, age spots, blotches, mottled skin, stretch marks, and for younger-looking skin and skin lightening.

Example 25

A male subject, age 90, had osteoarthritis of both knees for more than four years. For over the past 3 years, repeated courses of intra-articular injections of products containing hyaluronic acid had failed to provide any sustained benefits nor to arrest the progression of symptoms. Intra-articular injections of each knee with N-Ac-L-Tyr-L-Tyr-L-Tyr-OH, 7-13 mg in aqueous solution had provided substantial relief of pain in the joints for 2-3 days.

For maintenance therapy, continued topical applications 2-3 times daily of N-Ac-L-Tyr-L-Tyr-L-Tyr-OEt, 1% (w/v) in EP73 on the skin covering the knee areas had provided continued relief of knee joint pains.

The above results show that N-acyldipeptide derivatives of the present invention can be used for treating inflammation, arthritis, pain, other immune and nerve disorders via systemic or topical administration.

Supplementary Test Results and Summary
In addition or complementary to the above Examples, additional test results and summary are described in the following sections.

Volunteer Subjects: In these studies, the participating subjects are as follows:

Subject 1. Male, age 78, had multiple red and itchy inflammation, dermatitis, or eczema lesions, which were resistant to conventional treatments including corticosteroids.

Subject 2. Female, age 31, had small red and itchy lesions which were resistant to topical corticosteroid treatment.

Subject 3. Female, age 43, had multiple red and itchy inflammation, dermatitis, or eczema lesions over the body for many years, which were resistant to conventional treatments including corticosteroids.

Subject 4. Female, age 50, had red and itchy inflammation, dermatitis, or eczema lesions for many years, which were resistant to topical corticosteroid treatment.

Subject 5. Female, age 41, had early stage of aging related skin changes on both forearms as indicated by age spots and wrinkled skin caused by solar damage.

Subject 6. Female, age 52, had age spots, keratoses and wrinkles on both forearms caused by intrinsic and extrinsic aging.

Subject 7. Female, age 51, had age spots, and wrinkles on both forearms caused by intrinsic and extrinsic aging.

Subject 8. Male, age 90, had osteoarthritis of both knees with inflammation and pain for more than 4 years, and had only mild transitory relief from conventional treatments.

Subject 9. Female, age 41, had sensitive skin with inflammatory lesions on the body.

Subject 12. Male, age 41, had dermatitis and inflammatory lesions on the left palm.

Subject 14. Female, age 73, had multiple age spots including lentigines and keratoses on her face.

Subject 15. Male, age 36, had psoriasis

Subject 16. Male, age 80, had sensitive skin and eczema for more than 40 years

Other subjects with various skin and medical conditions and disorders also participated in the present tests and studies.

Test Methods.

In one embodiment, the test compositions containing N-acylpeptide derivatives of the present invention were tested in vitro screen for their biological efficacy in cell cultures as described in Example 5.

In another embodiment, the volunteer subject topically applied the test compositions containing N-acylpeptide derivatives of the present invention on involved skin or lesions once or
twice daily for several weeks or until the involved lesions completely cleared and clinically changed to normal skin. As a control study, the subject also topically applied a vehicle control composition on the involved skin or lesions twice daily for the same period.

[00222] In yet another embodiment, the volunteer subject topically applied once or twice daily the test compositions containing N-acylpeptide derivatives of the present invention on the skin site above arthritic joints or painful muscles to provide therapeutic effects for the systemic disorders via topical administration.

[00223] In yet another embodiment, the volunteer subject injected intra-articularly into a knee joint a test composition containing a N-acylpeptide derivative of the present invention to improve and reduce arthritic inflammation and pain of the joint.

[00224] Some test results are summarized as follows.

<table>
<thead>
<tr>
<th>Tripeptide Derivative</th>
<th>DK</th>
<th>AG</th>
<th>DI</th>
<th>ND</th>
</tr>
</thead>
<tbody>
<tr>
<td>N-Ac-L-Tyr-L-Tyr-L-Tyr-OH</td>
<td>2+</td>
<td>2+</td>
<td>3+</td>
<td>3+</td>
</tr>
<tr>
<td>N-Ac-L-Tyr-L-Tyr-L-Tyr-OEt</td>
<td>3+</td>
<td>3+</td>
<td>3+</td>
<td>4+</td>
</tr>
<tr>
<td>N-Ac-L-Ser-L-Ser-L-Ser-NH₂</td>
<td>4+</td>
<td>4+</td>
<td>4+</td>
<td>4+</td>
</tr>
<tr>
<td>N-Ac-L-Arg-L-Arg-L-Arg-NH₂</td>
<td>2+</td>
<td>2+</td>
<td>2+</td>
<td>2+</td>
</tr>
<tr>
<td>N-Ac-L-Val-L-Val-L-Ala-NH₂</td>
<td>2+</td>
<td>2+</td>
<td>2+</td>
<td>3+</td>
</tr>
<tr>
<td>N-Ac-L-Val-L-Tyr-L-Tyr-NH₂</td>
<td>2+</td>
<td>3+</td>
<td>2+</td>
<td>4+</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pentapeptide Derivative</th>
<th>DK</th>
<th>AG</th>
<th>DI</th>
<th>ND</th>
</tr>
</thead>
<tbody>
<tr>
<td>N-Ac-L-Ala-L-Leu-L-Lys-L-His-L-Arg-NH₂ (SEQ ID NO: 51)</td>
<td>3+</td>
<td>3+</td>
<td>4+</td>
<td>3+</td>
</tr>
<tr>
<td>N-Pr-L-Ala-L-Leu-L-Lys-L-His-L-Arg-NH₂ (SEQ ID NO: 58)</td>
<td>2+</td>
<td>2+</td>
<td>2+</td>
<td>2+</td>
</tr>
<tr>
<td>N-Bz-L-Ala-L-Leu-L-Lys-L-His-L-Arg-NH₂ (SEQ ID NO: 65)</td>
<td>3+</td>
<td>4+</td>
<td>3+</td>
<td>2+</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Hexadecapeptide Derivative</th>
<th>CA</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>N-Ac-(EEASPEAVAGVGBESK)-NH₂ (SEQ ID NO: 126)</td>
<td></td>
<td>9% Inhibition</td>
</tr>
</tbody>
</table>
The N-acylpeptide derivative of the present invention can be topically administered to provide topical effects or to exert therapeutic effects for systemic diseases. The compositions containing N-acylpeptide derivatives can be used to improve arthritis and pain of joints and muscles, or to reduce, control or lose appetite via topical application. The N-acylpeptide derivative of the present invention can also be given by systemic administration to improve systemic diseases.

As shown in the Examples, the composition containing the N-acylpeptide derivative can be used to improve arthritis of knee joints via intra-articular injection.

The increased skin thickness or plump as shown in the Examples was not due to increased water retention or edema of the skin because the thickness maintained for many months after discontinuation of the treatment. In a publication by Ditre et al. J. Amer Acad Dermatol, 1996, pages 187-195, under "Effects of a-hydroxy acids on photoaged skin: A pilot clinical, histologic, and ultrastructural study", histologic and ultrastructural studies show that skin plump or increased skin thickness caused by topical application of a substance results from a combination of epidermal and dermal changes. In epidermal changes, the epidermis increases in thickness, and the melanin pigmentation shows less clumping of melanin resulting in lighter skin color and improved age spots. In dermal changes, there are increased amounts of both glycosaminoglycans (GAGs) and collagen fibers, and elastic fibers tend to be longer and thicker.

When a substance is found to plump or increase the skin thickness, those skilled in the art will consider that the substance is reasonably expected or predicted to improve aging related skin changes including fine lines, wrinkles, photoaging, age spots, blotches, mottled skin, and for younger-looking skin and skin lightening. Therefore, a composition containing N-acylpeptide derivatives of the present invention can be used for topical treatment of aging related skin changes including fine lines, wrinkles, photoaging, age spots, blotches, mottled skin, and for younger-looking skin and skin lightening.

It will be appreciated by those skilled in the art that changes could be made to the embodiments described above without departing from the broad inventive concept thereof. It is understood, therefore, that this invention is not limited to the particular embodiments disclosed, but it is intended to cover modifications within the spirit and scope of the present invention as defined by the appended claims.
CLAIMS

We claim:

1. A peptide derivative having the following generic Formula (I):

 \[\text{Ri-AAB-(AAA)}_n^\text{AAC-R}_2 \]

 or an isomer, free acid, base, salt, lactone, amide, hydroxylamide, hydrazide, or ester thereof, wherein \(\text{R}_i \) is an acyl radical having up to 19 carbon atoms; \(\text{AAB} \) is an amino-terminal amino acid residue; \(\text{(AAA)}_n \) is a peptide having n amino acid residues, each of the amino acid residues is independently selected from any amino acid; \(n \) is an integer from 3-18; \(\text{AAC} \) is a carboxyl-terminal amino acid residue; \(\text{R}_2 \) is \(\text{OR}_3, \text{NHR}_4 \) or \(\text{NFNHR}_5 \); \(\text{R}_3 \) is \(\text{H} \), an alkyl, aralkyl or aryl radical having up to 19 carbon atoms; \(r_4 \) or \(\text{R}_5 \) is independently \(\text{H} \), \(\text{OH} \), an alkyl, aralkyl, aryl or acyl radical having up to 19 carbon atoms; a side chain of each of the \(\text{AAB} \), \(\text{AAA} \) and \(\text{AAC} \) optionally and independently has an extra functional radical selected from the group consisting of \(\text{OH}, \text{SH}, \text{NHCONH}_2, \text{NHC} (=\text{NH})\text{NH}_2, \text{N}^4, \text{COOH}, \text{CONH}_2, \text{imidazolyl}, \text{pyrrolidinyl}, \text{and indolyl}; \) and the \(\text{H} \) or \(\text{OH} \) of the extra functional radical is optionally substituted by \(\text{NH}_2 \), an acyl, alkyl, aralkyl, or aryl radical having up to 19 carbon atoms.

2. The peptide derivative of claim 1, wherein the peptide derivative is present as an amide form.

3. The peptide derivative of claim 1, wherein \(n = 3 \) such that the peptide derivative is an N-acylpentapeptide derivative selected from the group consisting of:

\begin{align*}
\text{N-Ac-Tyr-Tyr-Tyr-Tyr-OH}, & \quad \text{N-Ac-Tyr-Tyr-Tyr-Tyr-OEt}, \quad \text{N-Ac-Tyr-Tyr-Tyr-Tyr-NH}_2, \\
\text{N-Ac-Tyr-Tyr-Tyr-Tyr-NHAc}, & \quad \text{N-Ac-Tyr-Tyr-Tyr-Tyr-NHNH}_2, \quad \text{N-Ac-Tyr-Tyr-Tyr-Tyr-NHOH}, \\
\text{N-Pr-Tyr-Tyr-Tyr-Tyr-ÖEt}, & \quad \text{N-Pr-Tyr-Tyr-Tyr-Tyr-NF}_{12}, \quad \text{N-Pr-Tyr-Tyr-Tyr-Tyr-NHPr}, \\
\text{N-Pr-Tyr-Tyr-Tyr-Tyr-NHNH}_2, & \quad \text{N-Pr-Tyr-Tyr-Tyr-Tyr-NHNHPr}, \quad \text{N-Pr-Tyr-Tyr-Tyr-Tyr-NHOH}, \\
\text{N-Pr-Tyr-Tyr-Tyr-Tyr-NHNH}_2, & \quad \text{N-Pr-Tyr-Tyr-Tyr-NHPr}, \quad \text{N-Pr-Tyr-Tyr-Tyr-NHNH}_2, \\
\text{N-Pr-Tyr-Tyr-Tyr-Tyr-NHOH}, & \quad \text{N-Pr-Tyr-Tyr-Tyr-Tyr-NHNH}, \quad \text{N-Pr-Tyr-Tyr-Tyr-Tyr-NHNHPr}, \\
\text{N-Pr-Tyr-Tyr-Tyr-Tyr-NHNHAc}, & \quad \text{N-Pr-Tyr-Tyr-Tyr-Tyr-NHNHAc}, \quad \text{N-Pr-Tyr-Tyr-Tyr-Tyr-NHNHAc}, \\
\text{N-Pr-Tyr-Tyr-Tyr-Tyr-NHNHAc}, & \quad \text{N-Pr-Tyr-Tyr-Tyr-Tyr-NHNHAc}, \quad \text{N-Pr-Tyr-Tyr-Tyr-Tyr-NHNHAc},
\end{align*}

4. The peptide derivative of claim 1, wherein n=T3 such that the peptide derivative is an N-acylpentadecapeptide derivative selected from the group consisting of:

N-Ac-(EASPEAVAGVGFSK)-OH, N-Ac-(EASPEAVAGVGFSK)-OEt, N-Ac-(EASPEAVAGVGFSK)-NH₂, N-Ac-(EASPEAVAGVGFSK)-NHAc, N-Ac-(EASPEAVAGVGFSK)-NHNH₂, N-Ac-(EASPEAVAGVGFSK)-NHNHAc, N-Ac-(EASPEAVAGVGFSK)-NHOH, N-Pr-(EASPEAVAGVGFSK)-OH, N-Pr-(EASPEAVAGVGFSK)-OEt, N-Pr-(EASPEAVAGVGFSK)-NH₂, N-Pr-(EASPEAVAGVGFSK)-NHPr, N-Pr-(EASPEAVAGVGFSK)-NHNH₂, N-Pr-(EASPEAVAGVGFSK)-NHNHPr, N-Pr-(EASPEAVAGVGFSK)-NHOH, N-Bz-(EASPEAVAGVGFSK)-OH, N-Bz-(EASPEAVAGVGFSK)-OEt, N-Bz-(EASPEAVAGVGFSK)-NH₂, N-Bz-(EASPEAVAGVGFSK)-NHBz, N-Bz-(EASPEAVAGVGFSK)-NHNH₂, N-Bz-(EASPEAVAGVGFSK)-NHNHBz, and N-Bz-(EASPEAVAGVGFSK)-NHOH (SEQ ID NOs: 103-123, respectively).

5. The peptide derivative of claim 1, wherein n=14 such that the peptide derivative is an N-acylhexadecapeptide derivative selected from the group consisting of:

N-Ac-(EEASPEAVAGVGFSK)-OH, N-Ac-(EEASPEAVAGVGFSK)-OEt, N-Ac-(EEASPEAVAGVGFSK)-NH₂, N-Ac-(EEASPEAVAGVGFSK)-NHAc, N-Ac-(EEASPEAVAGVGFSK)-NHNH₂, N-Ac-(EEASPEAVAGVGFSK)-NHNHAc, N-Ac-(EEASPEAVAGVGFSK)-NHOH, N-Pr-(EEASPEAVAGVGFSK)-OH, N-Pr-(EEASPEAVAGVGFSK)-OEt, N-Pr-(EEASPEAVAGVGFSK)-NH₂, N-Pr-(EEASPEAVAGVGFSK)-NHPr, N-Pr-(EEASPEAVAGVGFSK)-NHNH₂, N-Pr-(EEASPEAVAGVGFSK)-NHNHPr, N-Pr-(EEASPEAVAGVGFSK)-NHOH, N-Bz-(EEASPEAVAGVGFSK)-OH, N-Bz-(EEASPEAVAGVGFSK)-OEt, N-Bz-(EEASPEAVAGVGFSK)-NH₂, N-Bz-(EEASPEAVAGVGFSK)-NHBz, N-Bz-(EEASPEAVAGVGFSK)-NHNH₂, N-Bz-(EEASPEAVAGVGFSK)-NHNHBz, and N-Bz-(EEASPEAVAGVGFSK)-NHOH.
(EEASPEAVAGVGFESK)-NHOH, N-Ac-(EEASPEAVAGVGBESK)-NH₂ and N-Ac-(EEASPEAVAGVGBESK)-NHNII₂ (SEQ ID Nos: 124-146, respectively).

6. The peptide derivative of claim 1, wherein n=17 such that the peptide derivative is an N-acylnonadecapeptide derivative selected from the group consisting of:

5 N-Ac-(CKKEEASPEAVAGVGFESK)-OEt, N-Ac-(CKKEEASPEAVAGVGFESK)-NHOH, N-Ac-(CKKEEASPEAVAGVGFESK)-NH₂, N-Ac-(CKKEEASPEAVAGVGFESK)-NHNH₂, N-Ac-(CKKEEASPEAVAGVGFESK)-NHNHAc, and N-Ac-(CKKEEASPEAVAGVGFESK)-NHOH (SEQ ID Nos: 147-153, respectively).

7. The peptide derivative of claim 1, wherein n=18 such that the peptide derivative is an N-acyleicosapeptide derivative selected from the group consisting of:

10 N-Ac-(FCTGIRVAHLALKHRQGKNH)-OEt, N-Ac-(FCTGIRVAHLALKHRQGKNH)-NHOH, N-Ac-(FCTGIRVAHLALKHRQGKNH)-NH₂, N-Ac-(FCTGIRVAHLALKHRQGKNH)-NHNH₂, N-Ac-(FCTGIRVAHLALKHRQGKNH)-NHNHAc, N-Ac-(FCTGIRVAHLALKHRQGKNH)-NHNHAc, N-Ac-(FCTGIRVAHLALKHRQGKNH)-NHNHAc, N-Pr-(FCTGIRVAHLALKHRQGKNH)-NH₂, N-Pr-(FCTGIRVAHLALKHRQGKNH)-NHNH₂, N-Pr-(FCTGIRVAHLALKHRQGKNH)-NHNHAc, N-Pr-(FCTGIRVAHLALKHRQGKNH)-NHNHAc, N-Pr-(FCTGIRVAHLALKHRQGKNH)-NHNHAc, N-Pr-(FCTGIRVAHLALKHRQGKNH)-NHNHAc, N-Pr-(FCTGIRVAHLALKHRQGKNH)-NHNHAc, N-Bz-(FCTGIRVAHLALKHRQGKNH)-OEt, N-Bz-(FCTGIRVAHLALKHRQGKNH)-NHNH₂, N-Bz-(FCTGIRVAHLALKHRQGKNH)-NHNHAc, N-Bz-(FCTGIRVAHLALKHRQGKNH)-NHNHAc, and N-Bz-(FCTGIRVAHLALKHRQGKNH)-NHOH (SEQ ID Nos: 154-174, respectively).

8. A composition for topical or systemic administration to a mammal comprising a pharmaceutically or cosmetically acceptable carrier and a therapeutically effective amount of a peptide derivative having the following generic Formula (I):

R_i-AAB-(AAA)_n-AAC-R₂

Formula (I)

or an isomer, free acid, base, salt, lactone, amide, hydroxylamide, hydrazide, or ester thereof, wherein Rᵢ is an acyl radical having up to 19 carbon atoms; AAB is an amino-terminal amino acid residue; (AAA)ₙ is a peptide having n amino acid residues, each of the amino acid residues
is independently selected from any amino acid; \(n \) is an integer from 1-18; AAC is a carboxyl-terminal amino acid residue; \(R_2 \) is \(OR_3, NHR_4 \) or \(NHR_5 \); \(R_3 \) is \(H \), an alkyl, aralkyl or aryl radical having up to 19 carbon atoms; \(R_4 \) or \(R_5 \) is independently \(H \), \(OH \), an alkyl, aralkyl, aryl or acyl radical having up to 19 carbon atoms; a side chain of each of the AAB, AAA and AAC optionally and independently has an extra functional radical selected from the group consisting of \(OH \), \(SH \), \(NHCONH_2 \), \(NHC(=NH)NH_2 \), \(NH_2 \), \(COOH \), \(CONH_2 \), imidazolyl, pyrrolidinyl, and indolyl; and the \(H \) or \(OH \) of the extra functional radical is optionally substituted by \(NH_2 \), an acyl, alkyl, aralkyl, or aryl radical having up to 19 carbon atoms.

9. The composition of claim 8, wherein the peptide derivative is selected from the group consisting of: N-Ac-Tyr-Tyr-Tyr-OH, N-Ac-Tyr-Tyr-Tyr-OEt, N-Ac-Tyr-Tyr-Tyr-NH_2, N-Ac-Tyr-Tyr-Tyr-NHAc, N-Ac-Tyr-Tyr-Tyr-NHNH_2, N-Ac-Tyr-Tyr-Tyr-NHAc and N-Ac-Tyr-Tyr-Tyr-NHOH.

11. The composition of claim 8, wherein the peptide derivative is selected from the group consisting of: N-Ac-Tyr-Tyr-Tyr-Tyr-NH_2, N-Ac-Tyr-Tyr-Tyr-Tyr-NHAc, N-Ac-Tyr-Tyr-Tyr-Tyr-Tyr-NH_2, N-Ac-Tyr-Tyr-Tyr-Tyr-Tyr-NHAc, N-Ac-Ala-Leu-Lys-His-Arg-OH, N-Ac-Ala-
Leu-Lys-His-Arg-OEt, N-Ac-Ala-Leu-Lys-His-Arg-NH2, N-Ac-Ala-Leu-Lys-His-Arg-NHAc, N-Ac-Tyr-Tyr-Tyr-Tyr-Tyr-Tyr-NII2, N-Ac-(EASPEAVAGVGFSK)-OH, N-Ac-(EASPEAVAGVGFSK)-OEt, N-Ac-(EASPEAVAGVGFSK)-NH2, N-Ac-(EASPEAVAGVGFSK)-NHAc, N-Ac-(EASPEAVAGVGFSK)-NFTNH2, N-Ac-(EASPEAVAGVGFSK)-NHNOH, N-Ac-(EASPEAVAGVGFSK)-NFTNH2, and N-Ac-(EASPEAVAGVGFSK)-NFTNH2 (SEQ ID NOs: 9, 10, 30, 31, 49, 50, 51, 52, 72, 124, 125, 126, 127, 128, 129, 130, 145, and 146, respectively).

12. The composition of claim 8, wherein the peptide derivative is selected from the group consisting of: N-Ac-Tyr-Tyr-Tyr-NH2, N-Ac-Tyr-Tyr-Tyr-Tyr-NH2 (SEQ ID NO: 9), N-Ac-Tyr-Tyr-Tyr-Tyr-Tyr-NH2 (SEQ ID NO: 30), N-Ac-Ala-Leu-Lys-His-Arg-OH (SEQ ID NO: 49), N-Ac-Ala-Leu-Lys-His-Arg-OEt (SEQ ID NO: 50), N-Ac-Ala-Leu-Lys-His-Arg-NH2 (SEQ ID NO: 51), N-Ac-Tyr-Tyr-Tyr-Tyr-Tyr-Tyr-NH2 (SEQ ID NO: 72), N-Ac-(EASPEAVAGVGFSK)-OH (SEQ ID NO: 124), N-Ac-(EASPEAVAGVGFSK)-Oet (SEQ ID NO: 125), N-Ac-(EASPEAVAGVGFSK)-NH2 (SEQ ID NO: 126), and N-Ac-(EASPEAVAGVGFSK)-NH2 (SEQ ID NO: 145), N-Pr-L-Ala-L-Leu-L-Lys-L-His-L-Arg-NH2 (SEQ ID NO: 58), N-Bz-L-Ala-L-Leu-L-Lys-L-His-L-Arg-NH2 (SEQ ID NO: 65), N-Ac-(EASPEAVAGVGFSK)-NH2 (SEQ ID NO: 105), and N-Ac-(CKKEASPEAVAGVGFSK)-NH2 (SEQ ID NO: 149).

13. The composition of claim 8, wherein n=1 such that the peptide derivative is an N-acyltripeptide derivative selected from the group consisting of:

N-Bz-Dopa-Dopa-Tyr-N¾, N-Bz-Cys-Dopa-Tyr-NH₂, N-Bz-Cys-Tyr-Tyr-NH₂, N-Bz-Tyr-Tyr-Tyr-NH₂, N-Bz-Dopa-Dopa-Tyr-NHOH, N-Bz-Val-Val-Ala-NHOH, and N-Bz-Dopa-Dopa-Tyr-NHOH.

14. The composition of claim 8, wherein n=2 such that the peptide derivative is an N-acyltetrapeptide derivative selected from the group consisting of:
N-Ac-Tyr-Tyr-Tyr-Tyr-OH, N-Ac-Tyr-Tyr-Tyr-Tyr-OEt, N-Ac-Tyr-Tyr-Tyr-Tyr-NH₂, N-Ac-Tyr-Tyr-Tyr-Tyr-NHAc, N-Ac-Tyr-Tyr-Tyr-Tyr-NHOH, N-Pr-Tyr-Tyr-Tyr-Tyr-OH, N-Pr-Tyr-Tyr-Tyr-Tyr-OEt, N-Pr-Tyr-Tyr-Tyr-Tyr-NH₂, N-Pr-Tyr-Tyr-Tyr-Tyr-NHPr, N-Pr-Tyr-Tyr-Tyr-Tyr-NHNHPr, N-Pr-Tyr-Tyr-Tyr-Tyr-NHOH, N-Bz-Tyr-Tyr-Tyr-Tyr-OH, N-Bz-Tyr-Tyr-Tyr-Tyr-OEt, N-Bz-Tyr-Tyr-Tyr-Tyr-NH₂, N-Bz-Tyr-Tyr-Tyr-Tyr-NHBz, N-Bz-Tyr-Tyr-Tyr-Tyr-NHN₂, N-Bz-Tyr-Tyr-Tyr-Tyr-NHBz, and N-Bz-Tyr-Tyr-Tyr-Tyr-NHOH (SEQ ID NO:s: 7-27, respectively).

15. The composition of claim 8, wherein n=3 such that the peptide derivative is an N-acylpentapeptide derivative selected from the group consisting of:
N-Ac-Tyr-Tyr-Tyr-Tyr-Tyr-OH, N-Ac-Tyr-Tyr-Tyr-Tyr-Tyr-OEt, N-Ac-Tyr-Tyr-Tyr-Tyr-Tyr-NH₂, N-Ac-Tyr-Tyr-Tyr-Tyr-Tyr-NHAc, N-Ac-Tyr-Tyr-Tyr-Tyr-Tyr-NHOH, N-Pr-Tyr-Tyr-Tyr-Tyr-Tyr-OH, N-Pr-Tyr-Tyr-Tyr-Tyr-Tyr-OEt, N-Pr-Tyr-Tyr-Tyr-Tyr-Tyr-NH₂, N-Pr-Tyr-Tyr-Tyr-Tyr-Tyr-NHPr, N-Pr-Tyr-Tyr-Tyr-Tyr-Tyr-NHNHPr, N-Pr-Tyr-Tyr-Tyr-Tyr-Tyr-NHOH, N-Bz-Tyr-Tyr-Tyr-Tyr-Tyr-OH, N-Bz-Tyr-Tyr-Tyr-Tyr-Tyr-OEt, N-Bz-Tyr-Tyr-Tyr-Tyr-Tyr-NH₂, N-Bz-Tyr-Tyr-Tyr-Tyr-Tyr-NHBz, N-Bz-Tyr-Tyr-Tyr-Tyr-Tyr-NHN₂, N-Bz-Tyr-Tyr-Tyr-Tyr-Tyr-NHBz, and N-Bz-Tyr-Tyr-Tyr-Tyr-Tyr-NHOH (SEQ ID NO:s: 28-69, respectively).
16. The composition of claim 8, wherein \(n = 4 \) such that the peptide derivative is an N-acylhexapeptide derivative selected from the group consisting of:

N-Ac-Tyr-Tyr-Tyr-Tyr-Tyr-OH, N-Ac-Tyr-Tyr-Tyr-Tyr-Tyr-OEt, N-Ac-Tyr-Tyr-Tyr-Tyr-Tyr-NH₂, N-Ac-Tyr-Tyr-Tyr-Tyr-Tyr-NHAc, N-Ac-Tyr-Tyr-Tyr-Tyr-Tyr-NHNH₂, N-Ac-Tyr-Tyr-Tyr-Tyr-Tyr-NHNHAc, N-Ac-Tyr-Tyr-Tyr-Tyr-Tyr-NHOH, N-Pr-Tyr-Tyr-Tyr-Tyr-Tyr-OH, N-Pr-Tyr-Tyr-Tyr-Tyr-Tyr-OEt, N-Pr-Tyr-Tyr-Tyr-Tyr-Tyr-NH₂, N-Pr-Tyr-Tyr-Tyr-Tyr-Tyr-NHAc, N-Pr-Tyr-Tyr-Tyr-Tyr-Tyr-NHNH₂, N-Pr-Tyr-Tyr-Tyr-Tyr-Tyr-NHNHAc, N-Pr-Tyr-Tyr-Tyr-Tyr-Tyr-NHOH, N-Bz-Tyr-Tyr-Tyr-Tyr-Tyr-OH, N-Bz-Tyr-Tyr-Tyr-Tyr-Tyr-OEt, N-Bz-Tyr-Tyr-Tyr-Tyr-Tyr-NH₂, N-Bz-Tyr-Tyr-Tyr-Tyr-Tyr-NHAc, N-Bz-Tyr-Tyr-Tyr-Tyr-Tyr-NHNH₂, N-Bz-Tyr-Tyr-Tyr-Tyr-Tyr-NHNHAc, N-Bz-Tyr-Tyr-Tyr-Tyr-Tyr-NHOH, N-Ac-Cys-Ser-Val-Thr-Cys-Gly-OH, N-Ac-Cys-Ser-Val-Thr-Cys-Gly-OEt, N-Ac-Cys-Ser-Val-Thr-Cys-Gly-NH₂, N-Ac-Cys-Ser-Val-Thr-Cys-Gly-NHAc, N-Ac-Cys-Ser-Val-Thr-Cys-Gly-NHNH₂, N-Ac-Cys-Ser-Val-Thr-Cys-Gly-NHNHAc, N-Ac-Cys-Ser-Val-Thr-Cys-Gly-NHOH, N-Pr-Cys-Ser-Val-Thr-Cys-Gly-OH, N-Pr-Cys-Ser-Val-Thr-Cys-Gly-OEt, N-Pr-Cys-Ser-Val-Thr-Cys-Gly-NH₂, N-Pr-Cys-Ser-Val-Thr-Cys-Gly-NHAc, N-Pr-Cys-Ser-Val-Thr-Cys-Gly-NHNH₂, N-Pr-Cys-Ser-Val-Thr-Cys-Gly-NHNHAc, N-Pr-Cys-Ser-Val-Thr-Cys-Gly-NHOH, N-Bz-Cys-Ser-Val-Thr-Cys-Gly-OH, N-Bz-Cys-Ser-Val-Thr-Cys-Gly-OEt, N-Bz-Cys-Ser-Val-Thr-Cys-Gly-NH₂, N-Bz-Cys-Ser-Val-Thr-Cys-Gly-NHAc, N-Bz-Cys-Ser-Val-Thr-Cys-Gly-NHNH₂, N-Bz-Cys-Ser-Val-Thr-Cys-Gly-NHNHAc, N-Bz-Cys-Ser-Val-Thr-Cys-Gly-NHOH, N-Ac-(EASPEAVAGVGFSK)-OH, N-Ac-(EASPEAVAGVGFSK)-OEt, N-Ac-(EASPEAVAGVGFSK)-NH₂, N-Ac-(EASPEAVAGVGFSK)-NHNH₂, N-Ac-(EASPEAVAGVGFSK)-NHNHAc, N-Ac-(EASPEAVAGVGFSK)-NHOH, N-Pr-(EASPEAVAGVGFSK)-OH, N-Pr-(EASPEAVAGVGFSK)-OEt, N-Pr-(EASPEAVAGVGFSK)-NH₂, N-Pr-(EASPEAVAGVGFSK)-NHNH₂, N-Pr-(EASPEAVAGVGFSK)-NHNHAc, N-Pr-(EASPEAVAGVGFSK)-NHOH, N-Bz-(EASPEAVAGVGFSK)-OH, N-Bz-(EASPEAVAGVGFSK)-OEt, N-Bz-(EASPEAVAGVGFSK)-NH₂, N-Bz-(EASPEAVAGVGFSK)-NHNH₂, N-Bz-(EASPEAVAGVGFSK)-NHNHAc, N-Bz-(EASPEAVAGVGFSK)-NHOH, (SEQ ID NOs: 70-102, respectively).

17. The composition of claim 8, wherein \(n = 13 \) such that the peptide derivative is an N-acylpentadecapeptide derivative selected from the group consisting of:

N-Ac-(EASPEAVAGVGFSK)-OH, N-Ac-(EASPEAVAGVGFSK)-OEt, N-Ac-(EASPEAVAGVGFSK)-NH₂, N-Ac-(EASPEAVAGVGFSK)-NHNH₂, N-Ac-(EASPEAVAGVGFSK)-NHNHAc, N-Ac-(EASPEAVAGVGFSK)-NHOH, N-Pr-(EASPEAVAGVGFSK)-OH, N-Pr-(EASPEAVAGVGFSK)-OEt, N-Pr-(EASPEAVAGVGFSK)-NH₂, N-Pr-(EASPEAVAGVGFSK)-NHNH₂, N-Pr-(EASPEAVAGVGFSK)-NHNHAc, N-Pr-(EASPEAVAGVGFSK)-NHOH, N-Bz-(EASPEAVAGVGFSK)-OH, N-Bz-(EASPEAVAGVGFSK)-OEt, N-Bz-(EASPEAVAGVGFSK)-NH₂, N-Bz-(EASPEAVAGVGFSK)-NHNH₂, N-Bz-(EASPEAVAGVGFSK)-NHNHAc, N-Bz-(EASPEAVAGVGFSK)-NHOH, N-Ac-(EASPEAVAGVGFSK)-OH, N-Ac-(EASPEAVAGVGFSK)-OEt, N-Ac-(EASPEAVAGVGFSK)-NH₂, N-Ac-(EASPEAVAGVGFSK)-NHNH₂, N-Ac-(EASPEAVAGVGFSK)-NHNHAc, N-Ac-(EASPEAVAGVGFSK)-NHOH, N-Pr-(EASPEAVAGVGFSK)-OH, N-Pr-(EASPEAVAGVGFSK)-OEt, N-Pr-(EASPEAVAGVGFSK)-NH₂, N-Pr-(EASPEAVAGVGFSK)-NHNH₂, N-Pr-(EASPEAVAGVGFSK)-NHNHAc, N-Pr-(EASPEAVAGVGFSK)-NHOH, N-Bz-(EASPEAVAGVGFSK)-OH, N-Bz-(EASPEAVAGVGFSK)-OEt, N-Bz-(EASPEAVAGVGFSK)-NH₂, N-Bz-(EASPEAVAGVGFSK)-NHNH₂, N-Bz-(EASPEAVAGVGFSK)-NHNHAc, N-Bz-(EASPEAVAGVGFSK)-NHOH, (SEQ ID NOs: 103-123, respectively).

18. The composition of claim 8, wherein \(n = 14 \) such that the peptide derivative is an N-acylhexadecapeptide derivative selected from the group consisting of:
N-Ac-(EEASPEAVAGVGFESK)-OH, N-Ac-(EEASPEAVAGVGFESK)-OEt, N-Ac-(EEASPEAVAGVGFESK)-NH₂, N-Ac-(EEASPEAVAGVGFESK)-NHNH₂, N-Ac-(EEASPEAVAGVGFESK)-NHAc, N-Ac-(EEASPEAVAGVGFESK)-NHNH₂, N-Ac-(EEASPEAVAGVGFESK)-NHNHAc, N-Ac-(EEASPEAVAGVGFESK)-NHOH, N-Pr-(EEASPEAVAGVGFESK)-OH, N-Pr-(EEASPEAVAGVGFESK)-OEt, N-Pr-(EEASPEAVAGVGFESK)-NH₂, N-Pr-(EEASPEAVAGVGFESK)-NHNH₂, N-Pr-(EEASPEAVAGVGFESK)-NHNHAc, N-Pr-(EEASPEAVAGVGFESK)-NHNH₂, N-Pr-(EEASPEAVAGVGFESK)-NFIPr, N-Pr-(EEASPEAVAGVGFESK)-NHNFI₂, N-Bz-(EEASPEAVAGVGFESK)-OH, N-Bz-(EEASPEAVAGVGFESK)-OEt, N-Bz-(EEASPEAVAGVGFESK)-NH₂, N-Bz-(EEASPEAVAGVGFESK)-NHNH₂, N-Bz-(EEASPEAVAGVGFESK)-NHNHAc, N-Bz-(EEASPEAVAGVGFESK)-NHNH₂, N-Bz-(EEASPEAVAGVGFESK)-NHNHAc, N-Bz-(EEASPEAVAGVGFESK)-NHOH, N-Ac-(EEASPEAVAGVGFESK)-NH₂, and N-Ac-(EEASPEAVAGVGFESK)-NHNH₂ (SEQ ID NOs: 124-146, respectively).

19. The composition of claim 8, wherein n=17 such that the peptide derivative is an N-acylnonadecapeptide derivative selected from the group consisting of:

N-Ac-(CKKEEASPEAVAGVGFESK)-OH, N-Ac-(CKKEEASPEAVAGVGFESK)-OEt, N-Ac-(CKKEEASPEAVAGVGFESK)-NH₂, N-Ac-(CKKEEASPEAVAGVGFESK)-NHNH₂, N-Ac-(CKKEEASPEAVAGVGFESK)-NHAc, N-Ac-(CKKEEASPEAVAGVGFESK)-NHNH₂, N-Ac-(CKKEEASPEAVAGVGFESK)-NHNHAc, and N-Ac-(CKKEEASPEAVAGVGFESK)-NHOH (SEQ ID NOs: 147-153, respectively).

20. The composition of claim 8, wherein n=18 such that the peptide derivative is an N-acyleicosapeptide derivative selected from the group consisting of:

N-Ac-(FCTGIRVAHLALKHRQGKNH)-OH, N-Ac-(FCTGIRVAHLALKHRQGKNH)-OEt, N-Ac-(FCTGIRVAHLALKHRQGKNH)-NH₂, N-Ac-(FCTGIRVAHLALKHRQGKNH)-NHNH₂, N-Ac-(FCTGIRVAHLALKHRQGKNH)-NHAc, N-Ac-(FCTGIRVAHLALKHRQGKNH)-NHNH₂, N-Pr-(FCTGIRVAHLALKHRQGKNH)-OH, N-Pr-(FCTGIRVAHLALKHRQGKNH)-OEt, N-Pr-(FCTGIRVAHLALKHRQGKNH)-NH₂, N-Pr-(FCTGIRVAHLALKHRQGKNH)-NHNH₂, N-Pr-(FCTGIRVAHLALKHRQGKNH)-NFIPr, N-Pr-(FCTGIRVAHLALKHRQGKNH)-NHNFI₂, N-Pr-(FCTGIRVAHLALKHRQGKNH)-NHNH₂, N-Bz-(FCTGIRVAHLALKHRQGKNH)-OH, N-Bz-(FCTGIRVAHLALKHRQGKNH)-OEt, N-Bz-(FCTGIRVAHLALKHRQGKNH)-NH₂, N-Bz-(FCTGIRVAHLALKHRQGKNH)-NHNH₂, N-Bz-(FCTGIRVAHLALKHRQGKNH)-NHNHAc, N-Bz-(FCTGIRVAHLALKHRQGKNH)-NHNH₂, N-Bz-(FCTGIRVAHLALKHRQGKNH)-NFIPr, N-Bz-(FCTGIRVAHLALKHRQGKNH)-NHNFI₂, N-Bz-(FCTGIRVAHLALKHRQGKNH)-NHNH₂, N-Bz-(FCTGIRVAHLALKHRQGKNH)-NHNHAc, N-Bz-(FCTGIRVAHLALKHRQGKNH)-NHNH₂, N-Bz-(FCTGIRVAHLALKHRQGKNH)-NHNHAc, N-Bz-(FCTGIRVAHLALKHRQGKNH)-NHOH, N-Ac-(FCTGIRVAHLALKHRQGKNH)-NH₂, and N-Ac-(FCTGIRVAHLALKHRQGKNH)-NHNH₂ (SEQ ID NOs: 147-153, respectively).
N-Bz-(FCTGIRVAHLALKHRQGKNH)-NHNH₂, N-Bz-(FCTGIRVAHLALKHRQGKNH)-NHNHBz, and N-Bz-(FCTGIRVAHLALKHRQGKNH)-NHOH (SEQ ID NOs:154-174, respectively).

21. A method of treating a disorder, disease, symptom or syndrome associated with a tumor, cancer, immune, nervous, vascular, musculoskeletal or cutaneous system, or other tissues or systems in a subject, comprising systemically or topically administering to the subject a composition comprising a pharmaceutically or cosmetically acceptable carrier and a therapeutically effective amount of a peptide derivative having the following generic Formula (I):

\[
R_1\text{-AAB-(AAA)}_n\text{-AAC-R}_3
\]

Formula (I)

or an isomer, free acid, base, salt, lactone, amide, hydroxlamide, hydrazide, or ester thereof, wherein \(R_1 \) is an acyl radical having up to 19 carbon atoms; AAB is an amino-terminal amino acid residue; \((AAA)_n \) is a peptide having n amino acid residues, each of the amino acid residues is independently selected from any amino acid; n is an integer from 1-18; AAC is a carboxyl-terminal amino acid residue; \(R_2 \) is OR₃, NHR₄ or NHNHR₅; \(R_3 \) is H, an alkyl, aralkyl or aryl radical having up to 19 carbon atoms; \(R_4 \) or \(R_5 \) is independently H, OH, an alkyl, aralkyl, aryl or acyl radical having up to 19 carbon atoms; a side chain of each of the AAB, AAA and AAC optionally and independently has an extra functional radical selected from the group consisting of OH, SH, NHCONH₂, NHC(=NH)NH₂, NH₂, COOH, CONH₂, imidazolyl, pyrrolidinyl, and indolyl; and the H or OH of the extra functional radical is optionally substituted by NH₂, an acyl, alkyl, aralkyl, or aryl radical having up to 19 carbon atoms.

22. The method of claim 21, wherein the immune disorder, tumor or cancer is selected from the group consisting of lupus erythematosus, rheumatoid arthritis, systemic sclerosis, Graves' disease, Addison's disease, cirrhosis, hepatitis A, hepatitis B, hepatitis C, psoriasis, inflammation, dermatitis, eczema, psoriasis, dermatoses, painful joints, arthiritis, Type 1 diabetes, inflammatory bowel disease, allergic food reactions, nephritis, vasculitis, vitiligo, multiple sclerosis, HIV, AIDS, actinic keratosis, adrenal cancer, basal cell carcinoma, bladder cancer, brain tumor, breast cancer, cervical cancer, colon cancer, esophagus cancer, head and neck cancer, Hodgkin disease, Kaposi's sarcoma, larynx cancer, leukemia, lung carcinoma, liver cancer, melanoma, multiple myeloma, mesothelioma, ovarian cancer, pancreatic cancer, prostate
cancer, renal cancer, rectal cancer, stomach cancer, squamous cell carcinoma, thyroid cancer, testicular cancer, thyroid cancer, and uterine cancer.

23. The method of claim 21, wherein the nervous, vascular or musculoskeletal disorder is selected from the group consisting of nervousness, hypertension, dementia, Alzheimer's disease, carpal tunnel syndrome, encephalitis, headache, migraine, meningitis, neuralgia, nerve pain, peripheral neuropathy, sciatica, shingles, trigeminal neuralgia, Parkinson's disease, amnesia, Bell's palsy, epilepsy, multiple sclerosis, dermatitis, dermatosis, drug eruptions, inflammation, eczema, erythema, lupus erythematosus, mycosis fungoides, photoallergy, photosensitivity, pityriasis rosea, pityriasis rubra pilaris, rosacea, sclerosis, telangiectasia, urticaria, osteoporosis, osteoarthritis, rheumatoid arthritis, ankylosing spondylitis, bursitis, tendinitis, gout, pain; inflammation and arthritis of neck, shoulder, elbow, wrist, lower back, hip, knee and ankle.

24. The method of claim 21, wherein the cutaneous disorder is selected from the group consisting of disturbed keratinization; aging related skin changes; dry skin; dryness or looseness of skin, nail and hair; xerosis; ichthyosis; calluses; keratoses; acne; rosacea; blemished skin; dandruff; uneven skin tone; uneven and rough surface of skin; abnormal skin texture and pores; flakiness and redness; and to improve or make skin soft, smooth, fresh, balanced, visibly clear; fine lines; wrinkles; age spots; blotches; cellulite; elastosis; lentigine; mottled skin; photoaging and photodamage; stretch marks; thinning of skin, nail plate and hair; warts; wrinkles; breakdown, defective synthesis or repair of dermal components; abnormal or diminished synthesis of collagen, glycosaminoglycans, proteoglycans and elastin, as well as diminished levels of such components in the dermis; loss or reduction of skin, nail and hair resiliency, elasticity and recoilability; laxity; lack of skin, nail and hair lubricants and luster; fragility and splitting of nail and hair; yellowing skin; and dull and older-looking skin, nail and hair, even-toned and brighter; to increase skin fullness and plumpness, and to reduce or prevent underarm perspiration.

25. The method of claim 21, wherein the other tissue or system disorder is selected from the group consisting of tremor or shaking, vision disorders of eyes, vocal dysfunctions, gum and periodontal diseases, hearing loss, sexual dysfunctions, desired augmentation of breast and penis; to control, reduce or lose body weight or appetite for food; and to increase body strength.

26. The method of claim 21, wherein n=1 such that the peptide derivative is an N-acyltri peptide derivative selected from the group consisting of: N-Ac-Tyr-Tyr-Tyr-OH, N-Ac-
Tyr-Tyr-Tyr-OEt, N-Ac-Tyr-Tyr-Tyr-NH₂, N-Ac-Tyr-Tyr-Tyr-NH₂Ac, N-Ac-Tyr-Tyr-Tyr-
NHNH₂, N-Ac-Tyr-Tyr-Tyr-NHNH₂Ac, N-Ac-Cys-Cys-Tyr-NH₂, N-Ac-Cys-Cys-Tyr-NH₂, N-
Ac-Val-Val-Tyr-NH₂, N-Ac-Val-Val-Tyr-NH₂Ac, N-Ac-Dopa-Dopa-Tyr-NH₂, N-Ac-Dopa-Dopa-
Cys-Tyr-NH₂, N-Ac-Dopa-Dopa-Cys-NH₂, N-Ac-Tyr-Val-Ala-NH₂, N-Ac-Val-Ala-Tyr-NH₂,
N-Ac-Glu-Cys-Ala-NH₂, N-Ac-Glu-Cys-Gly-NH₂, N-Ac-Asp-Cys-Gly-NH₂, N-Ac-Asp-Cys-
Ala-NH₂, N-Ac-Val-Val-Ala-NHOH, N-Ac-Dopa-Dopa-Tyr-NHOH, N-Ac-Cys-Dopa-Tyr-NHOH,
N-Pr-Tyr-Tyr-Tyr-NH₂, N-Pr-Dopa-Dopa-Tyr-NH₂, N-Pr-Cys-Cys-Tyr-NH₂, N-Pr-Dopa-
Dopa-Tyr-NH₂, N-Pr-Cys-Dopa-Tyr-NH₂, N-Pr-Dopa-Dopa-Tyr-NH₂, N-Pr-Tyr-Tyr-
Tyr-NHOH, N-Pr-Val-Val-Ala-NHOH, N-Pr-Dopa-Dopa-Tyr-NHOH, N-Pr-Cys-Dopa-Tyr-NHOH,
N-Bz-Tyr-Tyr-Tyr-NH₂, N-Bz-Tyr-Tyr-Tyr-OEt, N-Bz-Tyr-Tyr-Tyr-NH₂Ac, N-Bz-Tyr-
Tyr-Tyr-Tyr-NHNH₂, N-Bz-Dopa-Dopa-Tyr-NH₂, N-Bz-Dopa-Dopa-Tyr-NH₂Ac, N-Bz-Cys-
Dopa-Tyr-NH₂, N-Bz-Cys-Dopa-Tyr-NH₂, N-Bz-Cys-Tyr-Tyr-NH₂, N-Bz-Tyr-Tyr-Tyr-NHOH,
N-Bz-Val-Ala-NHOH, N-Bz-Dopa-Dopa-Tyr-NHOH, N-Bz-Cys-Dopa-Tyr-NHOH.

27. The method of claim 21, wherein n=2 such that the peptide derivative is an N-
acyltetrapeptide derivative selected from the group consisting of:
N-Ac-Tyr-Tyr-Tyr-Tyr-OH, N-Ac-Tyr-Tyr-Tyr-Tyr-OEt, N-Ac-Tyr-Tyr-Tyr-Tyr-NH₂, N-Ac-
Tyr-Tyr-Tyr-Tyr-NH₂Ac, N-Ac-Tyr-Tyr-Tyr-Tyr-NHNH₂, N-Ac-Tyr-Tyr-Tyr-Tyr-NHNH₂Ac.
N-Ac-Tyr-Tyr-Tyr-Tyr-NHOH, N-Pr-Tyr-Tyr-Tyr-Tyr-OH, N-Pr-Tyr-Tyr-Tyr-Tyr-OEt, N-Pr-
Tyr-Tyr-Tyr-Tyr-NH₂, N-Pr-Dopa-Dopa-Tyr-NH₂, N-Pr-Cys-Dopa-Tyr-NHOH, N-Bz-Tyr-
Tyr-Tyr-Tyr-NH₂, N-Bz-Tyr-Tyr-Tyr-Tyr-NHNH₂, N-Bz-Tyr-Tyr-Tyr-Tyr-NHNH₂Ac, N-Bz-
Cys-Dopa-Tyr-NH₂, N-Bz-Dopa-Dopa-Tyr-NH₂, and N-Bz-Cys-Dopa-Tyr-NHOH (SEQ ID
NO: 7-27, respectively).

28. The method of claim 21, wherein n=3 such that the peptide derivative is an N-
acylpentapeptide derivative selected from the group consisting of:
N-Ac-Tyr-Tyr-Tyr-Tyr-Tyr-OH, N-Ac-Tyr-Tyr-Tyr-Tyr-Tyr-OEt, N-Ac-Tyr-Tyr-Tyr-Tyr-
Tyr-NH₂, N-Ac-Tyr-Tyr-Tyr-Tyr-Tyr-NH₂Ac, N-Ac-Tyr-Tyr-Tyr-Tyr-Tyr-NHNH₂, N-Ac-
Tyr-Tyr-Tyr-Tyr-Tyr-NHNH₂Ac, N-Ac-Tyr-Tyr-Tyr-Tyr-Tyr-NHOH, N-Pr-Tyr-Tyr-Tyr-
Tyr-Tyr-OH, N-Pr-Tyr-Tyr-Tyr-Tyr-OEt, N-Pr-Tyr-Tyr-Tyr-Tyr-NH₂, N-Pr-Dopa-Dopa-
Tyr-NH₂, N-Pr-Cys-Dopa-Tyr-NHOH, N-Pr-Dopa-Dopa-Tyr-NHOH, N-Pr-Cys-Dopa-Tyr-
NHOH, N-Bz-Tyr-Tyr-Tyr-Tyr-Tyr-OH, N-Bz-Tyr-Tyr-Tyr-Tyr-Tyr-OEt, N-Bz-Tyr-
Tyr-Tyr-Tyr-Tyr-NH₂, N-Bz-Tyr-Tyr-Tyr-Tyr-NHNH₂, N-Bz-Dopa-Dopa-Tyr-NH₂, N-Bz-
Dopa-Dopa-Tyr-NH₂Ac, N-Bz-Cys-Dopa-Tyr-NH₂, and N-Bz-Tyr-Tyr-Tyr-Tyr-NHOH.

30. The method of claim 21, wherein n=13 such that the peptide derivative is an N-acylpentadecapeptide derivative selected from the group consisting of: N-Ac-(EASPEAVAGVFESK)-OH, N-Ac-(EASPEAVAGVFESK)-OEt, N-Ac-(EASPEAVAGVFESK)-NHAc, N-Ac-(EASPEAVAGVFESK)-NHNHAc, N-Ac-(EASPEAVAGVFESK)-NH2, N-Ac-(EASPEAVAGVFESK)-NHOH, N-Ac-(EASPEAVAGVFESK)-NHNH Ac, N-Ac-(EASPEAVAGVFESK)-NHOH, N-Ac-(EASPEAVAGVFESK)-NHNH2, and N-Ac-(EASPEAVAGVFESK)-NHNHAc, respectively. (SEQ ID NO: 28-69, respectively).
The method of claim 21, wherein n=1 such that the peptide derivative is an N-acylhexadecapeptide derivative selected from the group consisting of:

N-Ac-(EEASPEAVAGVGFESK)-OH, N-Ac-(EEASPEAVAGVGFESK)-OEt, N-Ac-(EEASPEAVAGVGFESK)-NH₂, N-Ac-(EEASPEAVAGVGFESK)-NHAc, N-Ac-(EEASPEAVAGVGFESK)-NHNH₂, N-Ac-(EEASPEAVAGVGFESK)-NHNHAc, N-Ac-(EEASPEAVAGVGFESK)-NHOH, N-Pr-(EEASPEAVAGVGFESK)-OH, N-Pr-(EEASPEAVAGVGFESK)-OEt, N-Pr-(EEASPEAVAGVGFESK)-NH₂, N-Pr-(EEASPEAVAGVGFESK)-NHPr, N-Pr-(EEASPEAVAGVGFESK)-NHNH₂, N-Pr-(EEASPEAVAGVGFESK)-NHNHPr, N-Pr-(EEASPEAVAGVGFESK)-NHOH, N-Bz-(EEASPEAVAGVGFESK)-OH, N-Bz-(EEASPEAVAGVGFESK)-OEt, N-Bz-(EEASPEAVAGVGFESK)-NH₂, N-Bz-(EEASPEAVAGVGFESK)-NHBz, N-Bz-(EEASPEAVAGVGFESK)-NITNHBz, and N-Bz-(EEASPEAVAGVGFESK)-NHOH (SEQ ID NO: 103-123, respectively).

31. The method of claim 21, wherein n=4 such that the peptide derivative is an N-acylhexadecapeptide derivative selected from the group consisting of:

N-Ac-(EEASPEAVAGVGFESK)-OH, N-Ac-(EEASPEAVAGVGFESK)-OEt, N-Ac-(EEASPEAVAGVGFESK)-NH₂, N-Ac-(EEASPEAVAGVGFESK)-NHAc, N-Ac-(EEASPEAVAGVGFESK)-NHNH₂, N-Ac-(EEASPEAVAGVGFESK)-NHNHAc, and N-Ac-(EEASPEAVAGVGFESK)-NHOH (SEQ ID NO: 124-146, respectively).

32. The method of claim 21, wherein n=7 such that the peptide derivative is an N-acylnonadecapeptide derivative selected from the group consisting of:

N-Ac-(CKKEEASPEAVAGVGFESK)-OH, N-Ac-(CKKEEASPEAVAGVGFESK)-OEt, N-Ac-(CKKEEASPEAVAGVGFESK)-NH₂, N-Ac-(CKKEEASPEAVAGVGFESK)-NHAc, N-Ac-(CKKEEASPEAVAGVGFESK)-NHNH₂, N-Ac-(CKKEEASPEAVAGVGFESK)-NHNHAc, and N-Ac-(CKKEEASPEAVAGVGFESK)-NHOH (SEQ ID NO: 147-153, respectively).

33. The method of claim 21, wherein n=18 such that the peptide derivative is an N-acyleicosapeptide derivative selected from the group consisting of:

N-Ac-(FCTGIRVAHLALKHRQGKNH)-OH, N-Ac-(FCTGIRVAHLALKHRQGKNH)-OEt, N-Ac-(FCTGIRVAHLALKHRQGKNH)-NHOH, N-Pr-(FCTGIRVAHLALKHRQGKNH)-OH, N-Pr-(FCTGIRVAHLALKHRQGKNH)-OEt, N-Pr-(FCTGIRVAHLALKHRQGKNH)-NH₂, ... derivative selected from the group consisting of:

N-Ac-(FCTGIRVAHLALKHRQGKNH)-OH, N-Ac-(FCTGIRVAHLALKHRQGKNH)-OEt,
N-Ac-(FCTGIRVAHLALKHRQGKNH)-NH$_2$, N-Ac-(FCTGIRVAHLALKHRQGKNH)-NHAc,
N-Ac-(FCTGIRVAHLALKHRQGKNH)-NHNH$_2$, N-Ac-(FCTGIRVAHLALKHRQGKNII)-NHNHAc, N-Ac-(FCTGIRVAIIALALKHRQGKNH)-NHOH,
N-Pr-(FCTGIRVAFILALKHRQGKNH)-OH, N-Pr-(FCTGIRVAHLALKHRQGKNH)-OEt,
N-Pr-(FCTGIRVAHLALKHRQGKNH)-NH$_2$, N-Pr-(FCTGIRVAHLALKHRQGKNH)-NHP$_r$,
N-Pr-(FCTGIRVAHLALKHRQGKNH)-NHNH$_2$, N-Pr-(FCTGIRVAHLALKHRQGKNH)-NHNHP$_r$, N-Pr-(FCTGIRVAHLALKHRQGKNH)-NHOH,
N-Bz-(FCTGIRVAHLALKHRQGKNH)-OH, N-Bz-(FCTGIRVAHLALKHRQGKNH)-OEt,
N-Bz-(FCTGIRVAHLALKHRQGKNH)-NH$_2$, N-Bz-(FCTGIRVAHLALKHRQGKNH)-NFIBz,
N-Bz-(FCTGIRVAHLALKHRQGKNH)-NHNH$_2$, N-Bz-(FCTGIRVAHLALKHRQGKNH)-NHNHBz, and N-Bz-(FCTGIRVAHLALKHRQGKNH)-NHOH (SEQ ID NO: 154-174, respectively).