CESKA A SLOVENSKA
FEDERATIVNI
REPUBLIKA

(19)

FEDERALNI URAD
PRO VYNALEZY

ZVEREJNENA PRIHLASKA
B VYNALEZU (12)

]
i

(22) 04.04.91
(32) 04.04.90
(31) 90/504910 ,

(33) Us

(40) 18.03.92

(21) 00932-91.Y
(13) A3

5(51) G 06 F 9/00,
G 06 F 9/30
//G 06 F 13/00

(71) Tuternational Business Machines Corporation, Armonk, New York, US

(72) Blaner Barlholonew, Newark Valley, New York, US

Vasgsiliadis Stamatis, Vestal, New York, US
Phillips James Fdward, Binghamton, New York, US

{(54) Hardwavrové zatrfzenf pro pfekonAvan{ datové zdvis-

losti v portfLaci

(57) Hardwarové zatrfzeni pro pFekondvani datové
zavislosti v pocitadi s architekturou pro sériové
vykondvant sledu skaldrnich instrukci obsahuje
instrukd¢n{ registr (50) s nejmén& dvéma
panéfovymi poli (52, 54), nejméné& tEi
univerzadlni registry (63, 63B, 63C), kaZdy pro

jeden operand,

prvek vzdjemného spojenf (64),

ktery je spojen se spolednym vystupem

univerzalnfch

registri, dekdédovaci a Efdict

logiku (60) majicf{ své vstupy ptipojené k vystupu
instruk&niho registru (50) a majfci{ vyvoléavaci
cystup (62) registrd spojeny s prvkem (64)
vzajemndho spojeni a majfcf{ svaj vyvolévact
vystup (66) funkci spojeny s aritmetickou a
logickou jednotkou (65). Aritmeticka a logickda
jednotka (65) je dale opatFena tfemi operandovymi
vslapy (ATQ, ATL, AI2) spojenymi s prvkem (64)
pticndho -spojenf a m&d jeden vystup (67).

: J ' ,

PV 432-941Y
) s

Hardwarové zatizeni pro prekondvédni datové zavislosti

v po¢itaci.

Oblast techniky

Vynélez se tyk& hardwarového za¥izeni pro vykonévani
skaldrnich instrukci v politaldi s architekturou pro sériové
vykondvani jejich sledu. Konkrétnéji se vyndlez vztahuje
na paralelni vykondvéni skaldrnich instrukci, kdyZz jedna
z instrukci vyZaduje jako operand vysledek ziskdvany p¥i

soubdzZnd vykondvané instrukci.

Stav techniky

z¥et8zené zpracovavéni je standardni postup pouZivany
ndvrha¥i poditadt pro zlepseni vykonu po&itacovych systémil.
P¥i z¥et&zeném zpracovdvani je instrukce dé&lena do nékolika
krok@ nebo stupnl, pro né&% je pfidélen jediny hardware pro
vykonévani instrukce pfifazené tomuto stupni. Rychlost toku
instrukci ztetdzenim z&visi na rychlosti, s niZ nové instruk-
ce vstupuji do zYet&zeni, a to spife, neZ na délce z¥etézeni.
P¥i idealizované struktufe zfetdzeni, kde je maximum jedné
instrukce zavaddno do z¥etdzeni b&hem jednoho cyklu, je pro-
pustnost z¥et&zeni, kterd je mirou poltu instrukci vykonéva-
nych na jednotku &asu, z&vislad pouze na dob& cyklu. Je-1li do-
ba cyklu n-stupné& implementace zfet&zeného zpracovdvéni p¥edpo-
klédéna jako %, kde m je doba cyklu odpovidajici implementace
nepou¥ivajici postupl z¥et&zeného zpracovdvéni, potom je
maximélni potencielni udokonaleni poskytované zfet&zenym

zpracovévadnim rovno n.

I kdy? z vy3e uvedeného vyplyva, Ze zfet&zené zpracové-
véni poskytuje moZnost n-né&sobného zlep$eni vykonu pocitaco-
vého systému, Yada praktickych omezeni maji za nésledek,

e skutedny zisk vykonu je mendi, neZ plati pro idedlni p¥i-
pad. Tato omezeni vyplyvaji z existence hazardd p¥i zfetéze-
ném zpracovavani. Hazard ve zfet&zeném zpracovdvéni je defi-
novédn jakymkoli aspektem struktury z¥etdzeného zpracovévéani,

ktery,

if! %?"{"“7‘**1"’ Jm‘ _\ N

'hbréni prichodu strukturou pri max1mé1ni rychlostl. Hazardy

. zFetgzeného zpracovévéni mohou byt zpisobeny. datovymi zé-

7?‘vislostmi strukturdlnfmi konflikty /vyplyvaaiciml z harda
.waru/, ¥{dicfmi zdvislostmi a Jinymi faktory.
Hazerdy datové zdvislosti jsou gasto nazyviny hazardy
zéznam,cteni /write-read hazards/, protoze prvni instrukce
mus{ zaznamendvat svij vysledek dfive, neZ druhd instrukce

miZe &fist a ndslednd poufivat tento vysledek., Aby se dovolil

tento zéznam pred &tenim, provédéni &teni musi byt blokoveno
do té doby, ne¥ do¥lo k zaznamenéni. Toto blokovéni zavédi
cyklus neélnnostl, casto nazyvany "bublina" nebo "uvéznuti"
do wykonu blokovené instrukce. 'Bublina piiddvé jeden cyklus

do celkového provédéciho %asu uvézlé instrukee a tak sniZuje
propustnost zietézeného zpracovévéni. Pri provédeni v hard-
warn miZe zjid¥ovéni a rozlidovéni hazardd strukturdlni a da-

tové zdvislosti mit za nésledek nejen ztrity vykonu vzhledem
k nedostatednému vyuZiti hardwaru, ale mi¥e se také stét
kritickou cestou stroje. Tento hardware bude potom omezovat

dosafitelné doby cykld stroje. Hazardy proto mohou negativné
ovlivnit. dva fektory, které pPrispivejf k prostupnosti zreté-
zeni: podet instruked vykonenych v jednom cyklu a dobu cyklu
- stroje. - SN

Exlstenca'hazardﬁ ukazuje, Ze rozvfhbvéni nebo sefazo-

véni 1nstrukci kdy% vstupujil do struktury zretézeni je vel- -

mi_daleZité pPi pokusu dosdhnout efektivniho wyuZiti zhet&-
zeného hardwaru. Efektivni vyuZit{ hardwaru se potom proje-

vuje ve wvykonovych ziscich., V podstaté& je zhet&zené rozvrho-

véni pokud vyuZzivat zretézeni na jeho meximdlni potencidl
tim, Ze se pokouéime;vyhnout se. hazardim. Rozvrhovéni miZe

.byt‘dosahovéno staticky, dynemicky nebo s kombinaci obou po-

stupd. Statické rozvrhovéni se dosghuje preskupovénim sledu
instruked pfed vykonénim na ekvivalentni proud.lnstrukci
ktery plnéji vyuZije herdware ne? v dr{véjdim p¥ipad¥. Jeko

| fgﬁﬁlkaflxi L |
%4dnd instrukee .

1

3

B

e X2 § %4and ins;tm'km‘e) ‘ S
- ADD R4,R2 3 R4 =R4+R2 - - |
" 10AD R1,/Y/ ; zaved Rl z' pem&tového msta ¥ o i
. L0AD Ri1, /X [®1] / 5 zaved R z pemsfového mfsta X do funkee R
ADD - R3,R1 ; R3=R3 +R
ICMP © R1,R4 - ; zaved dvogkovy komplement /R4/ do RI
. 'SUB _R1,R2 ;R =R -R
~ COMP' R1,R3 ; sronej Rt a R3
X}' . | ; Jjekékoli slulovatelns 1nstrukce
X4 ; aakékoll sludovatelnd instrukce
- Tabulka II
F aakékoli 1nstrukce S T
: ‘jgigakékoll instrukee o e
jv 'R1,/Y/ ; zaved R1.z paméfového mista 14 e
D R4,R2 - ;Re=R4+ R .7
R1 W/X CRI] /- ¥ zaveai Rtz pame"ﬁového m:[sta X do funkce R1
 R3,R ' 3 R3=R3+ Rl L »
R1,R4 }.zavea dvoakovy komplement /R4/ do R
RI,R2 - ;R =R =R | -
R1,R3 ; srovnej R1 a R3 o . &
S ; Z8dnd sluéovatelné 1nstrukce .]
4 3 éédné sluéovatelné 1nstrukce‘i-" R
T I,kdyz rozvrhovaci postupy mohou odstranlt ndkteré ha— y
zardy a prinést tek zlep¥eni vykonu, ne vSechny hazardy mohoun)
byt odstranény. Byla navriena feéeni»pro datové zdvislosti,

BB O

" instrukef analyzovén,na zékladé pouélti hardwaru a je sesku-

"("’ ke S e R e e e Y e A

&

'které nemohou byt odstranény rozvrhovénim. Tyto névrhy'vyko—

névajl vice. operaci paralelné Podie aednoho ngvrhu je proud

povén do sloudené instrukece uréené k tomu, aby byla vydévéna
jako jeding jednotka. Tento pristup se odliduje od "superska-
14rniho stroje", v n&mZ je rada 1nstruk01 seskupovéna pPisné
na zdkladé metody"prvni zarazen, prvni vybrén" pro soulasny
vystup. Predpoklédéme -1i, Ze hardware je uréen pro podporova-
ni soudasného vystupu dvou instrukeci, stroj se sloudenymi in-
strukcemi by péroval sled 1nstruﬁc1 z tabulky II nasledovne
/-X1/ /X2 LOAD/ /ADD LOAD/ /ADDLCMP/ /SUB COMP/ /X3, X4/,
¢{m% se: vylouci datova zdvislost mezi druhou 1nstrukci LOAD
a druhou instrukei ADD. Srovnatelny superskalarni stroj by
vEak vydal ndsledujici dvojiee instrukei: /X1,X2/ /LOAD, ADD/
/LOAS,ADD/ /LCMP SUB/ /COMP X3/ /X4 -/, vytvéiejici nevy-
hodu datové zdvislosti LOAD-ADD.
Druhé tredeni vypomoci proti vzéjemnému blokovéni datovou

zav1slosti bylo navrieno Vv Computer.Archltectural News, March

' 1988, .v &¢ldnku nazveném "The. WM Computer Archltecture", W.A.

Wulfa. Tento clének WM Computer Archltecture navrhuae

1. sestavenl souboru 1nstrukci ktery vklédé vice neZ aednu
: operacl do jedné instrukee . , .

2. pripudtént vzdjemného blokovéni reglstrﬁ v-sestavené in-
. strukei a .

3. zietdzeni dvou aritmeticko-logickych jednotek dle'obr'1
pro piekondni /collap51ng/ vz4jemného blokovéni v rémci
Jjedné instrukee.

Ve Wulfové ndvrhu musi byt samozreame sestaveny jiné in-

" strukce pro viechny sledové péry instrukei, jejichZ vzdjemnd

blokovéni se maji potladit. To mé za ndsledek bud: v tom, Ze
se definuje pro novy soubor 1nstrukci prohibitivni polet ope-
radnich kodd, enebo %e se podet operacnich sledd, jejichZ
vzéjemna blokovéni se maji prekonat, opatii mezi, yymezenou

poc¢tem operalnich kodu, které jsou k dispozici. Krom& toho

toto schema nemusi byt cilovy kéd sluditelny s d¥ivéj&imi
implementacemi architektury. Jiné nedostatky tohoto schematu
zahrnuji poZadavek na dvé aritmeticko-logické jednotky, je-

jichZ zfetézeni miZe mit za nisledek vykonévani nésobnych -
instrukci, vyZadujicich p¥ibliZné& dvoﬁnésobek ¢asu na vyko-

ndvéni jediné instrukce. Takovy vzrlst vvkondvaciho &dasu .
by se projevil ve vzristu doby cyklu stroje a nepot¥ebné

by znevyhodnil vSechny vykonévdni instrukci.

V pfipad&, kde byl existujici stroj postaven pro postup-
né vydévéni a vykondvani daného souboru instrukci, bylo by
prospé&sné vyuZit paralelnosti ve vydédvéni a vvkonévdni in-
strukci. Paralelni vyddvédni a vykondvédni instrukci by zvysi-
lo propustnost stroje. Dé&le je mozné prospésnost takové pa-
ralelnosti maximalizovat minimalizovanim &ekaci doby na vvko-
nédvéni instrukci vyplyvajici z hazardd datové zdvislosti
ve z¥et&zeném zpracovdvéni instrukci. Adaptace na paralel-
nost by tak umoZnila redukovat takové &ekaci doby p¥ekond&nim
vzédjemného blokovéni vyplyvajiciho z téchto hazardd. Tyto
kladné znaky je vsak t¥eba mit moZnost vyuZivat, aniZ by
bylo nutné platit cenu zmény architektury v existujicich
strojich} vytvé¥eni nového souboru instrukci pro vytvoreni
vSech moznych instrukénich dvojic a jejich kombinaci majicich
vzdjemné blokovédni a p¥idéni znadéné &4sti hardwaru. Dale
by adaptace mé€la vykazovat jen velmi maly nebo vibec Z&dny

dopad na dobu cyklu stroje.

Charakteristika vyndlezu

Uvedené cile dosazhuje vvndlez hardwarového za¥izeni
pro prekondvéni datové z&vislosti v politac¢i s architektu- .
rou pro sériové vykondvédni sledu skaldrnich instrukci, je-
hoZ podstatou je, Ze obsahuje instrukéni registr s nejméné -

dvéma pamétovymi poli, nejmén& t¥i univerzdlni registry,

¢

kaZzdy pro jeden operadéni prvek pf¥i¢ného spojeni, ktery je
spojen se spole&nym vystupem univerz&lnich registrt, deko-

dovaci a ¥idici logiku majici své vstupy pf¥ipojené k vystu-

pu instrukéniho registru a majici vyvolovaci vystup retistrl

spojeny s prvkem vzéjemného spojeni a majici svaj vyvolova-
ci vystup funkci spojeny s aritmetickou a logickou jednot-
kou, kterd je ddle opatfena tfemi operandovymi vstupy spoje-

nymi s uvedenym prvkem vzédjemného spojeni a mé jeden vystup.

za¥izeni podle vynédlezu, uspofidané vyse uvedenym zpu-
sobem, zaji¥tuje p¥i souCasném vykondvéni vice skaldrnich
instrukci mo¥nost prijiméni vice skaldrnich instrukci pro
soub&%né vykondvani instrukci, p¥idemZ druhd ze skaldrnich
instrukci pou?ivd jako operand vysledek ziskany vykondnim
prvni skaldrni instrukce. ga¥izeni je uzptsobeno pro p¥iji-
mani t¥i operandu, které jsou pouzivdny prvni a druhou ska-
14rni instrukci a m& ¥idici slofku pripojenou k opat¥eni
pro p¥ijfmdni instrukei, které generuji ¥idici signdly, in-
dikujici operace, které vykondvaji vice skaldrnich instrukci
a které indikuji po¥adi jejich vykon4vani. Vicefunk&ni ari-
tmeticko-logick4 jednotka je p¥ipojena k operandim a ¥idicim
opat¥enim a reaguje na ¥{dici signdly a na operandy tim,
e vytva¥i, paralelné s vykonavénim prvni instrukce, jediny

vysledek odpovidajici vykondni druhé instrukce.

Z jiného hlediska vytvafi vynélez za¥izeni, které pod-
poruje soulasné vykondvéni vice skaldrnich instrukci, kde
v§sledek ziskany prvni ze soudasnd provadénych instrukci
je pouZit jako operand ve druhé ze soufasné& provadénych in-
strukcich. Za¥izeni vykondv4 druhou instrukci paralelné s
vykondvénim prvni instrukce tim, Ze obsahuje aritmeticko-lo-
gickou jednotku pfekondvajici datovou z4vislost, kterd je
uzpisobena pro p¥ijimani t¥i operandd, které jsou pouZiva-
ny prvni a druhou instrukci pro poskytnuti vysledku druhé

instrukce soulasn& s vysledkem prvni instrukce.

Vynélez proto p¥inds{ stroj, ktery usnadnuje paralel-
ni provaddéni instrukci pro zvySeni vykonu stdvajiciho po-
&itade. Vyznamnou vyhodu za¥fizeni podle vyndlezu je reduk-

ce &ekaci doby na vykondvéni instrukci, vyplyvajici z ha-

zardl datové zdvislosti, existujicich ve vykondvanych in-
strukcich. Zaf¥izeni podle vyndlezu umo?fuje pfekonat vza-
jemn& blokovani vyplyvajici z hazardd datové z4dvislosti,
existujicich mezi instrukcemi vykondvanymi paraleln&. Tyto
GCinky a vyhody jsou dosahovdny se zdokonalenim vykonu a
provadéni instrukci, jaké z toho vyplyvaji, pomoci zafize-
ni sluditelného se skaldrnim po&itadem urdenym pro postupné

vykondvdni instrukci.

Podle vyhodného provedeni vyndlezu aritmetickd a lo-
gickd jednotka obsahuje s¢itadku opat¥enou t¥emi operando-
vymi vstupy, pfipojenou k operandovym vstuplm aritmetické
a logické jednotky a jednim vysledkovym vystupem, spojenym
s vystupem aritmetické a logické jednotky. S&itadka s vyho-
dou zahrnuje s&itac¢ku s uchovidvanymi p¥enosy opatfenou t¥emi
vstupy spojenymi s operandovymi vstupy a se soudtovym vystu-
pem a pfenosovym vystupem, a déle s&italku s predikci pre-
nosu, opatfenou dvéma vstupy p¥ipojenymi k p¥isluinému sou-
¢tovému vystupu a p¥enosovému vystupu s&itadky a uchovavi-

im p¥enosh a s vystupem spojenym s vysledkovym vystupem

o]

s¢itaclky.

Podle dalSiho znaku vyndlezu jsou dva ze t¥{ vstupul
aritmetické a logické jednotky p¥ipojeny ke t¥em logickym
funk&nim obvodim, které jsou ddle spojeny s jednim z uvede-
nych t¥{i operandovych vstupl s&itadky. Jeden z uvedenych
tfi vstupl aritmetické a logické jednotky a vysledkovy vys-
tup sc¢itacky mohou byt ddle p¥ipojeny ke t¥em logickym funk&-
nim obvodim, které jsou spojeny s vystupem aritmetické a

logické jednotky.

Prvni logické obvody na vstupni a vystupni strané sdéi-
taCky mohou byt soudinové obvody, druhé logické obvody mo-
hou byt soudtové obvody a t¥eti logické obvody mohou byt
obvody vylu¢ného soultu. Dva ze t¥i vstupd aritmetické a
logické jednotky mohou byt pfipojeny k multiplexoru, ktery
miZe byt ddle p¥ipojen ke t¥em logickym funkénim obvodum.

Cargeme i g
S AR

.

T¥i logické funk&ni obvody mohou byt pfipojeny k multiple-

xoru, ktery miZe byt ddle spojen s jednim ze t¥{ operando-
vych vstupl s¢itacky.
Podle dal$iho znaku vyndlezu mohou byt t¥i logické fun-

k&éni obvody spojeny s multiplexorem, ktery miZe byt dale

spojen s vystupem aritmetické a logické jednotky.

Prvek vzédjemného spojeni miZe kone&né obsahovat multi-
plexor pro zavddéni obsahl t¥f univerzdlnich registrd na

t¥i operandové vstupy aritmetické a logické jednotky.

P¥ehled obrézku na vykresech

Vyndlez je bli%e vysvétlen v nésledujicim popise na pri-
kladech provedeni s odvoldnim na p¥ipojené vykresy, ve kte-
rych znézorfiuje obr. 1 stavbu podle zndmého stavu techniky
pro vykon&védni instrukce padrujici operace, obr. 2 soubor
asovych sledd ilustrujicich z¥e§dzené vykondvani sklalédrnich
instrukci, obr. 3 blokové schema s&italky, kterd pfijima az
t¥i operandy a vytva¥i jediny vysledek, obr. 4A, 4B katego-
rizaci instrukci vykondvanych existujicim skaldrnim strojem,
obr. 5 tabulku funkci vytvo¥enych v pfipadech vz&djemného
blikovéni, kde instrukce jsou kombinovény typu "logical"

a typu "add" v kategorii 1 z obr. 4A, obr. 6A a 6B specifika-
ci operaci, ktéré maji byt provddény na operandech aritmetic-
ko-logickou jednotkou podle vyndlezu pro podporovéni instruk-
ci ve sludovatelnych kategoriich na obr. 4A a 4B, obr. 7A

a 7B shrnuti sm&rovéni operandl do aritmeticko-logické jed-
notky definované na obr. 6A a 6B, obr. 8 blokové schema uka-
zujici, jak je vyndlez pouZivén pro vykondvani paralelniho
provédd&ni dvou navzéjem blikovangych instrukeci, obr. 9 blo-
kové schema vicefunk&ni aritmeticko-logické jednotky defi-
nované obr. 6A, 6B, 7A a 7B, obr. 10 tabulku schematicky
ilustrujici funkce vyfadujici implementaci pro poruSeni vza-
jemnych blokovéni vyplyvajicich z hazardd vyskytujicich se

p¥i generovéni adres, obr. 11 logicky diagram

”izlustruaici vicefunkéni aritmeticko-logickou Jgdnotku z obr._

;.in, obr.12 schema uspofédéni funked{ podporbvanych.anltmeticko-

 ~log1ckou Jednotkou pro pFekonéni vzégemnych¢blokovéni ve slou--’
genych instrukefch v&tveni, obr.13 logicky diagrem zndzoriu-
jict aritmeticko-logickou jednotku podle obr.12. a obr:i4
‘schema uspo¥dddni s&{tadky potfebné pro pfekdnévéni vzdjem~
nych blokovédni pro instrukce zahrnujici devét operandd.

Provedeni vyndlezu

V‘nésledualcim.poplse Jje pojem "stroaovy cyklus" pouZivén pro
kroky zpracovévéni zietézenim, potiebné pro vykondwvéni in-
. strukee. Strojovy cyklus zahrnuje jednotlivé intervaly, které
odpovidaji stuﬁﬁﬁm zpracovavéni zfetézenimi "Skaldrn{ in-
strukce" Jje instrukce, kterd je:vykenévéﬁa pPi pouZiti skalsr-
nich operandi. Skaldrni operandy jsou operandy reprezentujici
jednohodnotové veliéiﬁy. Pojem "slulovéni" se vztahuje na se-
_ skupovédni instruked obsaZenych ve sledu instrukeif, pridemZ
toto séskupovéni se provddf za,idelem soub&Zného nebo para-
~ . lelntho vykondvéni seskupenych instrukef.. v mlnlmélnim.pri- 1
padd je sludovdni reprezentovéno "pérovénlm" dvou instrukef ?
'pro soulasné vykonévéni \ poplsovaném vynélezu Jsou sloude-
né instrukce nezménény vzhledem ke tvarum, které. maai kdyZz -
. jsou predklédddny pro vykondvéni skaldrnich operaei, Jak je
‘vysvétleno ni¥e, jsou sludované instrukce dopravézeny . "p¥i-
znaky", t.j. bity pripojenymi k seskupenym instrukeim, které’
‘oznaguji seskupovéni instrukel pro paraleln1 vykonavéni Bi-
ty tak ukazuji zaddtek a konec sloudené instrukce.

v dalsim popise bude popséno FeSeni hardwaru pro poskyt-
nuti{ pomoei proti vykonévani vzéjemnych blokovéni jednotek,
kterd nemohou byt prekondna p¥i pouZiti postupd dle zndmého
stavu techniky. Cilem je minimalizovat ‘hardware potTebny
pro prekondni td&chto vzidjemnych blokovéni a vyvolat pritom
jen malou nebo vibec ¥ddnou zét&% na dobu cyklu z pridaného

hardwaru. Zédné zm&ny architektury neasou poéadovény pro im-

' ;>f‘plementac1 tohoto. reéeni SluEitelnost cilového .kodu pro ex1—

'stuaici archltektunu ae proto dodrzovéna S 2
Prikladem ex1stugici archltektury je . sekvenéni skalérni o

stroj, jako je System/370, dodévany spolednost{ International i

Business Machines Corporation, t.j. prihlaSovatelem vynélezu.

Z tohoto hlediska takovy systém miZe zehrnovat stavbu typu

~ "System/370 extended architecture" /370-XA/ a "System/370

enterprise’ systems,archltectureﬁ /370-ESA/. Je zde moZné se

odvolat na publikaci "prin01p1es of Operation of the IBM Sys- -

tem/370" &, GA22-7000-10,1987 a "the Principples of Opera-

tionm, IBM Enterprise: Systems. Architecture/370", €. SA22-7200-0,

1988.. ' : . ‘ '

Instrukéni soubor pro tyto existujicd skaldrn{ stavby

systému System/370 je dobfe zndm. Tyto instrukce jsou skaldr-

ni instrukce, pfidemZ jsou vykonévény operacemi provadénymi

na skaldrnich opersendech. 0dvolévky, &in&né niZe na obzvl43- .

tni instrukce V'souborw,lnstrukni vykondvanych vyse uvedeny-

‘mi stroji jsow uvadény ¥ obvyklé symbolické formé&.
Predpoklddejme, Ze se md vykonat ndsledujici sled in-.

struked pomoci superskalérniho stroje schopného vykonévat

'étyrl 1nstrukce na cyklus. '

Tabulka e

J1/ 1oaD R1,X zaved obssh X do Rl -
/2/ ADD Ri,R2 pri&ti Rl k R2 a vloZ vysledek do R
/3/ SUB RI,R3 odeSti R3 od Rl a vlo vysledek do R

/4/ STORE. R1,Y uloZ vjsledek do paméfového mista Y-

Pres)schopnost vicenésobného provadéni instrukci'behem ‘
cyklu bude superskaldrni stroj vykonévat vyde ‘uvedeny sled&
sériové vzhledem ke vzéaemnému blokovéni instrukedi. piedpo-
k14d4 se, na zdklad® analyzy sledovacich programi, Ze vza- '
jemné blokovéni nastdvaji po pribliZng jednu tietinu doby.
Tolik superskaldrnich zdrojd by bylo vyplytvéno, coZ by vedlo

10

o k degradaci vykonu superskalérniho stroae Chovéni superska—

:°>fPlérniho stroje p¥i vzéaemné blokovanych skalérnich instruk-.

S ich Je: znézorn¥no éasovjm sledem. 8 na obr;Z ‘Fa tomto: obréz-
a se struktura. zfetézeni pro 1nstruk¢e z tabulky ITI pfed—
poklé&é nésledovné
-/ LOAD:ID AG CA PA

/2/ a /3/ ADD and SUBTRACT:ID EX. PA
kde ID dekodovéni a pr¥{stup k registru, AG Jje generovéni ad-
resy opersndu, CA pFedstavuje p¥istup k rychlé vyrovndvact
pem&ti, EX predstavuje vykonej a. PA /put. away/ predstavuje
zaznamenéni vysledku do registru. Pro zjednoduSeni vykladu
se predpoklédé u vS8ech prikledi uvédénych v tomto popise, po-
| kud to neni wyslovn¥ uvedeno, Ze se nelmplementuge obchédzeni,
v superskalérnim.stroal se vykonévani toku instruket’ provédi |
sériovd vzhledem k tomu, Ze vzdjemnd blokovéni instrukei sni-
Zuji vykon superskalérniho stroje na vykon skaldrnfho stroje.

Na obr.2 nevy¥adujf{ instrukee /2/ a /3/ Z4dné generovéni
adresy /AG/. Tento stupen viak musi byt ve ztet&zeni zohled-
_nén. Z toho vyplyveji necznafené intervaly 7 a 9. Tato kon- ’
vence se také tykd ostatnich t#{ sledd na obr.2.
_ Vyée,uvedeny piiklad demonstruje, e vzéaemné blokovani
- instrukef{ mohou omezit peralelnost, 3aké je k dispozici na
'Vlnstrukéni drovni. pro vyuZitd superskalérniho stroje. Vykon
~ je moZné ziskat zretezovénim.a obchézenim,vysledkﬁ aedné
vzdjemnd blokované instrukeci ke druhé. Vykonévéni vzdjemné .
blokovanych.lnstrukci viak musi{ byt nicmén& provédéno sériové,

Mé-1i se vylouéit ztréta vykondvacich cykld v ddsledku
vzéaemného blokovénf, musi byt vzdjemné blokované instrukce

“»provédény "paralelne" a povazovény za jedinou instrukeci. To

vede ke koncepci sludované vzdjemné blokované instrukce, t.j.

souboru skaldrnich instrukeif, se kterymi se mé zachdzet jako T
s jedinou instrukci p¥es vyskyt vzédjemnych blokovéni. Zédou-
cim znekem hardwaru vykondvajiciho sloudenou instrukei Je, Ze’

jeji vykondvani nevyZaduje vice cykld, neZ jakych je zapotte-

bi jednou ze sludovanych instrukci. Jako disledek sludovani
instrukci a jeho %&doucich znakl musi stroj na soubor sluco-
vanych instrukci sledovat skaldrni instrukce uzivdnim hard-

waru spife ne? na z&klad& popisu operaénich kodd.

My3lenka sludovanych vzédjemné blokovanych instrukci
mi%e byt objasnéna pouZitfm instrukci ADD a SUB v tabulce III.
Tuto dvé& instrukce mohou byt povaZovdny za typ jediné instruk-
ce, protofe pouZivaji stejny hardware. V disledku toho jsou
kombinovdny a vykondvadny jako jedna instrukce. Pro vyuziti

paralelnosti jejich vykondni vyZaduje provedeni
Rl = Rl + R2 - R3

v jednom cyklu spiSe neZ vykondvani sledu:
Rl = R1 + R2
Rl = R1 - R3

ktery vyZzaduje vykonat vice neZ jeden cyklus. vVzédjemné bloko-
véni mife byt eliminovdno, protoZe séiténi a ode&itédni pouzi-
vé totofny hardwere. Kromé toho miZe byt kombinovand instruk-
ce Rl + R2 - R3 vykonéna p¥i pouziti aritmeticko-logické
jednotky obsahujici s&itadku s uchovdvanymi pfenosy CSA (carry
save adder) a s&itadku s predikci p¥enosi CLA (carry look~-
ahead adder), jak je zndzornéno na obr. 3,za podminky, Ze

aritmeticko-logické jednotka ALU byla navrZena pro vykonédvéani

séitadi/ode&itaci funkce t¥i na jedna.

Jak by m&lo byt z¥ejmé, odpovida kombinovany tvar
(R+ + R2 - R3) prepséni dvou operandl druhé instrukce v pod-
minkdch t¥i operandd, z &ehoZ vyplyvad poZadavek s¢itacky,
kterd mi¥e vykonat druhou instrukci na zdkladé t¥{ operandil.
Na obr. 3 je zndzornéna s&itatka s uchovdvanymi pfenosy (CSA)
jako s&ita&ka 10. S&itadka 10 CSA (carry save adder) je b&%-
n& ze viech hledisek a p¥ijim4 t¥i operandy pro vytvofeni
dvou vysledkd, a to soudtu (S) na soultovém vystupu 12 a

pfenosu (C) na prenosovém vystupu l4. Ve vySe uvedeném pii-

- 12 -

kladé jsou vstupy do s&itadky 10 CSA operandy obsaZené ve

t¥ech registrech R1, R2 a R3 (komplementované). Vystupy s&i-
tacky 10 CSA jsou vyndSeny v prvcich 16 a 17 pro dod&ni zal4- £
teCni "1" nebo "O" ("horkad" 1 nebo 0) na hodnotu p¥enosu i
pfes vstup 20. Hodnota na vstupu 20 je nastavena obvykle . S
podle funkce, kterd md& byt vykondvédna s&italkou 10 CSA.

Vystupy séitacky 10 CSA s uchovdvanymi pfenosy (s p¥i-
psanou jedniCkou nebo nulou) jsou upraveny jako dva vstupy
sC¢italky 22 CIA s predikci pY¥enost. S&itadka 22 CLA ta-

obvykle dostavéd "horkou" jednidku nebo nulu na vstupu

lN?T‘QJ
& Ov O

podle poZadované operace a vytvd¥i vysledek na vystupu

26. Na obr. 3 je vysledek vytvofeny s&itadkou 22 CLA kombina-

ci obsahl t¥{i registrd R2, R2 a R3 (komplementovanych).

S¢itacky s uchovdvanymi p¥enosy (carry save adder CSA)
a s¢itaCky s predikci p¥enosl (carry look-shead adder CLA)
jsou bézné souldstky, jejichZ struktury a funkce jsou dob¥fe
zndméd. Hwang popisuje ve svych "Computer Arithmetic: Princi-
ples, Architecture and Design, 1979" s¢italky s predikci
pfenost na str. 88 aZ 93 a s&italky s uchovdvanymi p¥enosy
na str. 97 aZz 100.

PfestoZe s¢itdni t¥i na jedna vyZaduje p¥idavny stupen,
takovy stupen nemd negativni vliv na dobu cyklu stroje, pro-
toZe délka jinych drah obvykle p¥esahuje délku drdhy aritme-
ticko-logické jednotky. Tyto kritické cesty lze obvykle na-
1ézt na drah&ch majicich p¥istup poli, a generovadni adres
vyzadujici jednotku ALU t¥i na jedna a p¥echod &ipu. ZpoZ-
déni vyplyvajici z p¥idavného stupné neni proto na zavadu
a navrzené schema bude mit za nésledek zlepSeni vykonu p¥i
srovndni se skaldrnimi a superskaldrnimi stroji. ZlepSeni
vykonu je zndzornéno na obr. 2 souborem z¥eté&zenych schema-
tickych grafickych ¢ar oznalenym sledem 26. Tyto schema-

tické grafické C4ry ukazuji provddéni uvaZovaného sledu

e B T TR e e ST S T

A e AT MR RN E1 353 470, LA S L T L S R

- 13 -

instrukci pomoci stroje se souborem sludovanych instrukci,
ktery obsahuje aritmeticko-logickou jednotku ALU se s&itac-

kou upravenou podle obr. 3.

Jak je zndzorn&no Casovymi sledy 8 a 26 na obr. 2, vy-
konani sledu strojem se souborem sloufenych instrukci vyZa-
duje osm cykld nebo dva cykly na instrukci (CPI) p¥i srovnéa-
ni{ s jedendcti cykly nebo 2,75 CPI dosaZitelnymi pomoci ska-
l4rnich a superskaldrnich stroji. Pokud se predpoklddé, Ze

ve viech strojich je moZné zabezpelit obchazeni, ukazuji

gérkové grafy sledd 28 a 30 z obr. 2 popis vykondvani in-
strukci, dosaZ?itelného se skaldrnimi nebo superskaldrnimi
stroji. Z t&chto souboru je patrné, %e superskaldrni stroj
vyzaduje osm cykll nebo 2 CPI pro vykonéni p¥ikladového kodu,
zatimco stroj se souborem sluovanych instrukci vyZaduje

gest cykld nebo 1,5 CPI. Tato vyhoda stroje se sluovénim vi-
¢i jak superskaldrnim, tak i skaldrnim strojim je patrnd spo-
lu s malou vyhodnosti superskaldrniho stroje vagi skaldrnimu

stroji pro uvafovany instruk&ni sled.

' gludovéni instrukci s jejich souasnym vykondvénim hard-
warem neni omezeno na aritmetické operace. Napfiklad vétsi-
na logickych operaci miZe byt sludovéna zplisobem analogickym
s aritmetickymi operacemi. Slu€ovani ndkterych instrukci
by v8ak mohlo mit za nésledek protahovdni doby cyklu, proto-
e musi byt pro vykondvani slucované funkce zpisobovana ne-
pr¥ijatelnd zpoZdéni. Napiiklad soufend instrukce ADD-SHIFT
mi%e protdhnout dobu cyklu ne¥4ddoucim zpisobem, coZ by poka-
zilo vedkery vykonovy zisk. Castost vzéjemného blokovani
mezi tdmito instrukcemi je vSak nizkd vzhledem k nizké cas-
tosti vyskytu posouvacich instrukci, a proto mohou byt vyko-

ndvany sériové bez podstatné ztraty vykonu.

Jak bylo popséno vyZe, vyskytuji se datové hazardy vzé-
jemného blokovéni, kdyz je zaznamendvin registr nebo pamé-

tové misto a potom &ten p¥i ndsledujici instrukeci. NavrZené

' védént instrukef, jejichZ operandy pfinééaai datowé hazariy;

-

. zaf{zent podle: vyndlezu piekondvajl tato vzéjemnd blokovéni
' ”odvozovénim.novych funkei, které vznlkaai 2z kombinovéni pro-

pii souéasném,dodriowéni provédént funked vlastnich soubord ~ "

- instrukef, I kdyz u n&kterych kombanaci instrukef a operandﬁ

se neoéekévé Jjejich vyskyt ve funk&nim progremu, asou zvaZo- .
vény vSechny kombinace. VSeobecn& vSechny funkce odvozené z

vySe uvedené analyzy jako¥ i funkce vyplyvajici ze skaldrni
implementace souboru instrukei by mohly byt vykonény. V pra-

xi se v8ak vyskytuji uréité funkce, jejichZ implementace se

dob¥e nehodd pro schema navrZené pro toto zarizeni. Nésledu- e
jilct vyklad objasfiuje tyto koncepce probrénim toho, jak tyto e
nové funkce vznikajf z kombinovéni provadéni dvou instrukef.,
Pr{klady sledi instrukef, které se dajf dobfe zpracovdvat-
podle‘vynélezu, jsou uvddény spolu s ndkterymi sledy, které
nejsou dobie zpracovdvény. Je rovnéZ zndézornéno logické sche
" ma vyhodného provedeni vyndlezu, '

Zarizeni podle vyndlezu je:navréeho pro usnadn&ni para-
.lelnfho vyd4véni a vykondvéni instrukef. Priklad paralelniho .
vyddvdni instrukei jJe mo¥né nalézt v superskaldrnim stroji .
podle znémého stavﬁ fechniky Vyﬁélez piitom umofniuje usnad-
"nlt paralelni vyddvéni instrukei, které obsahual vzéaemné
blokovénl. PouZiti hardWEru podle vynélezu pro prekondni da—t
tové zdvislosti vBak neni omezen na Zddnou obzvlddtni archi-
tekturu vyddvéni a vykondévéni, ale md véeobecnou pouzmvtel—
nost pro schemata, kterd vydévaal vicenasobné 1nstrukce bé-

-« A

hem cyklu.
Pro poskytnuti{ hardwarové zékladny pro tuto diskusi se
predpoklédé architektura s ‘instrukéni drovni systému System
/370 v-ni% se mohou vyddvat a% dv¥ instrukce na cyklus. Po-
uZiti tdchto predpokladd v3ak eni neomezuje tyto koncepce.na = #
stavbu systému System/370 ani na dvoucestnou paralelnost. R
Diskuse je rozddlena do sekef pro pokryti operaci aritmeticko-

T T T T
: «":,'?‘J‘?- PR S i R NN SR b

A DRI

15

—loglcké aednotky, generovéni pamé{ovych adres a uréovénl vét-
L vendl, - : - N

_:'i” Véeobecné miZe. byt soubor 1nstrukci systému System/370
rozdélen ‘do kategorli 1nstrukci ‘které ‘moBou’ byt vykonévény
»paralelne. Instrukce v rémei téchto kategorii mohou byt slu-
govény pro vytvdreni sloudenych instrukef. NiZe popsané zalf{-
zeni podle vynédlezu podporuje provadéni sloudenyech instruked
paralelnd a zajistuje, Ze vzéjemnd blokovéni existujfcd mezi
&leny sloudené instrukce budou pokryta, zatimeco se instrukce
soudasn& vykondvaji. Nepriklad miZe byt architektura Systemu
/370 rozdé&lena do kategorli znézornénych na obr. 4A a 4B,

74kladni princip pro tuto. kategor1zac1 byl zaloZen na

© funkénich pozadavc1ch instrukeil systému System/370 a jejich
hardwarového pouZiti. Zbytek instrukel systému System/370 ne-
n{ uvaZovén pro .to, aby byly sludovény pro vykondvéni v této
diskusi. Toto vSek nebréni rtomu, aby byly sloudeny ne ‘budou-
¢im stroji pro vykondvéni slulovanych instruked = pro mozné
pou21ti téchto zévérd pro "vyloudeni vyskytu" vzéaemnych za-~
blokovéni, jak je vysvetlovén v tomto spise.

Uvazuame nyni instrukee obsaZené V'kategorll 1 sludované

s instrukecemi ze stejné kategorle, aak ae pfikladné uvedeno: v
nésleduaicim.sledu instrukes:

AR R1,R2
SR R3 R4

Tento sled, ktery Jje prosty datovych hazardd vzéaemného bloko-
véni, pFind3i vysledky:
R1 = R1 + R2
R3 = R3 + R4 ,
S které zahrnuai dvé nezév1slé 1nstrukce,spec1f1kované architek-
" turou instruk&ni drowvnd systému 370. Provdddni tekového sledu
by vyzadovalo dvé nezdvislé a paralelni aritmeticko logické
jednotky dv& na jedna, navrZené pro architekturu instrukéni
Yrovnd. Tyto vysledky mohou byt generalizovéany do vSech dvojic

16

¢ sledu instrukci které asou prosﬁé datovjch hazardﬁ vzéaemné-
| ,ho blokovéni V'nichﬁ ob&: instrukce spealfikuai operaei arit-

d ;meticko-logické aednotky. Dv& aniﬁmeticko-logické gednotky

asoutdostaﬁuaici k vykondwéni instruked wydévanych ve. dvoai-x\
cieh. JelikoZ kaZdd instrukece: specifikuae nenejvyse jednu ope-
raci aritmetlcko—loglcké Jednotky.

Mnoho sledd instrukef wSak neni prosté vzégemného bloko-
véni s datovymi hazerdy. Tato vzdjemné blokovéni s datovymi
hazardy vedou k "bublindm" zret&zenf, které degradujf vykon
typického ziet&zeného Yedeni, Refenim pro zvySeni vykonu pro-
cesoru je eliminovat tyto "bubliny" ze zretézeni pouZitim -
.jediné aritmeticko-logické jednotky, kterd miZe pokryt vzdjem-

né blokovéni s datovymi hazardy. Pro vyloudeni téchto vzdjem-
nych,blokovéni mus{ aritmeticko-logickéd jednotka vykonat né&-
kolik funkef vznikajfcich z pédrovédn{ instrukef a z konfliktd
operandd. Funkce, které wvznikaji, zdvisi na specifikovanych
~ operacich aritmeticko-logické jednotky, sledu t&chto operaci

a "konflikti" opersndd mezi operacemi /vyznem pojmu konflikty
,'operandu budou patrné z nésleduaicl diskuze/. VSechny sledy-
‘1nstrukci které mohou byt vytvoleny pérovénim instrukef,
které jsou obsaéeny uvnit# vyse uvedeného sluovatelného. se~
- - znamu a které budou SpGlelkOV&t operaci arltmetlcko-logické
i"?aednotky, mus{ byt analyzovény pro véechny moZné konfllkty

- operandd. ‘ .
' V3eobecné zdsady prekonévanl vzéjemného blokovéni podle
, vynélezu byly uvedeny vySe. y Ndsledujici popis poskytuge kon—
krétné&jsi priklad analyz, které je tieba vykonat pro uréeni
po%adavkﬁ aritmeticko-logické jednotky prekondvajiel vzdjemné
blokovéni. Predpoklédeame existenci s¥fitadky t¥i na jedna,
aak’ae popséna. vyée, s odvolénim na obr.3. OP1 a.OP2 predsta-
vuji odpovidaaici prvni a druhou ze dvou operacf, které se
maji vykonavat Napriklad pro nésledujici sled 1nstruk01

NR R1,R2

k Gk
TS

Y

- . ARR3,R4 o , |

" “OP1 odpovidé. operaci MR, zatimco 0P2 odpovidd operaci AR /viz
f;nfieéﬁfdepopis,ﬁéchfo opéraci/)}Pfédpokiédéjme, Ye AIO, AIl a
AT2 pfé&stavuji‘vstdpy odpovidajied /Ri/,’/RZ/ a /R3/ odpovi-
daji¢1m¢v3tupﬁm.ééitaéky t#1 na jedna z obr.3§'0vaéujmefana-
1yzu sludovéni souboru instrukei /NR,OR, XR, AR, AIR, SIR, SR/,
podsouboryrkategorie'1, jak je definovend na obr.4A a 4B. ‘
Operace tohoto souboru instrukef jsou specifikovény:

NR - po slabikdch logické.AND reprezentovensd N

OR po slabikdch logické OR reprezentovend v

X® po slabikéch EXCLUSIVE OR reprezentovend ®

AR 32 bitovd sediténi oznalené zneménkem, reprezento#ané +
AIR 32 bitové sCiténi neoznadené znaménkem, reprezentovené +
SR 32 bitové odediténi oznafené znaménkem reprezentované -
SLR 32 bitové'édeéiténi neoznadené znaménkem reprezentované --

Tento Soubor instrukci mbZe byt_rozdélen.do dvou soubort
instrukef pro dalsi dvahy. Prvni soubor by zahrnoval logické
_instrukee NR, OR & XR, 2 druhy soubor by zehrnoval aritmetické
instrukce AR, ALR, SR a SIR. Seskupovéni‘aritmetickjch,instruk-
of miZe byt odgvodnéro nésledovnd. AR a ALR mohou byt ob& po-
vaZoviny 2za implicitni priditéni 33 bitoﬁého,dVOjkového.kom;v
plementu p¥i pouZiti rozdifovént zneménka pro AR a rozdifovd-
. ni nuly prb ALR a pii privedeni "horké" nuly do sé{talky. I
kdy% nastaveni stavového ‘kddu a preplnéni jsou jedinelné pro
ka¥dou. instrukci, operace vykondvéna s¥italkou, t.j. bindrni
- s&{iténi, Je spolednd pro ob& instrukce. Podobné SR a SIR mo-
nou byt povaZovény za implicitni s&{tdni 33 bitového dvojko-
 vého dopliku p¥i pouZitdi rozéiYovéni znaménka pro SR a roz-
'-éifbvéni ﬁu1y pro SRL, invertovéni mensitele a pii p¥ivedeni
‘whorké {" do s&itglky. Invertovéni menditele je povaZovéno
jeko dkon vné s¥italky. ProtoZe uvedené gtyri aritmetické
operace v podstaté vykondvaji tutéz operaci, t.j. bindrni

18

"fiﬁiténi 7budouﬁoznaéovény aako instrukce,typu ADD;/séiténi/ it

L Jeko vy ledek redukce vyée uvedeného souboru 1nstrukci
- na dvé operace geetfeba uvazovat nésleduaici sledy operaci
pro analyzovéni 'tﬁohoto souboru 1nstrukc:(
' LOGICAL nésledovand ADD
ADD nésledovend LOGICAL
LOGICAL nésledovend LOGICAL
. S ADD ndsledované ADD

1

B I Pro kazdy Z ﬁéchto sledd je nutno uvazovat vSechny kombinace

reglstrﬁ. Komblnace;zahrnuai pripady, kdy véechny Etyri re-
, g;stry Jsou rozdilné, plus. poéet cest ven ze gtybech moénych
‘ Speelﬂlkaai reg;strﬁ. 14 dva asou steané 3/ tfi Jjsou stejné,
a 3/ Etyfl jsou steané” Poéet kombanaci proto miZe byt vyjé-
dfen aako.

A 4 o
Podet: kombineef = 1 + & 401,
- e i=2
- kde C neprezentuae,n kombinovéno s i Prltom o
c._n'/((n_r) 1 r !)’ |) ” .\.

,,‘3_;flprléemé Z.. tohoto vzorce ae mozno odvodlt poéet komblnaci aako

7vi&12 Téchto 12 komblnaci reglstrﬁ ae'

4

1.R1 #R2 £ B3 £ R4
2,.R1 =R2#R3;£R4
3. R2 = R3 # Rl # R4
4. R2 = R4 # Rl # B3
SEmemsm iR
6. R2 = R3 # R4 # RI
7. Rl = R3 # R2 # R4
8. Rl = R4 # R2 # R3
9. Rt = R2 = R3 # R4

Ca
N

19

= B2 = R4 # B3
=R3I=R4AR2 :
R1”= R2 =.R3 = R4};’_.

Z téchto komblnaci pouze sedm z dvanéctl dévé vznlk vzé—
‘aemnému blakovént ‘s datovou. zévislostf. Funkce vytvofené vyse

‘ uvedenymi, piipady vzdjemného blokovéni pro vySe uvedené sle-

dy’ LOGICAL-ADD jsou uvedeny na obr.5. Na tomto obrédzku jsou

’ operace typu LOGICAL oznaéeny 'P a operace typu ADD asou ozna-

éeny’&' . -

, Zatimco: obr.5 udava operace, které musi byt vykonény na

operandech 1nstrukci typu ADD a typu,LOGICAL pTo prekonéni

- vzgjemného blokovéni, obr.6A a 6B uddvaji operace anltmetlcko-
18kicke jeanotky, které je t¥eba vykonat ne vstupech ATO, AIi
a AIZ pro podporovéni véech instrukei, _které jsou obsaZeny ve
sludovatelnych kategorli 'z obr.4A a 4B. Na obr.6A a 6B jed-
no&len - oznaduje dvoakovy komplement,a /x/ oznaduje absolut-
ni hodnotu x. Tento obrézek byl odvozen p¥i pouZit{ analyzy

1totdzné s- tou, jekd byla udéna vyse, . prlcemz viak byla uvazo-

. .-Vvéna vﬁechna sludovéni kategorif. Pro operace z obr.5, které
7~maai byt vykonény arltmetlcko—loglckou aednotkou, musi gednot- -

R kové P{zeni vykonévéni operaci sm&rovat pozadované obsahy re-
;ﬁ?glstrﬁ na odpovidaaici vstupy arltmetlcko—loglcké aednotky.\~‘

. "Obr.T7A a 7B shrnuai smérovéni operandﬁ které se musi obaev1tf
‘ pro arltmetlcko—loglckou 3ednotku deflnovanou podle obr.6A a
16B pro vykonévéni operaci z obr.5. Spolu s témito smé&rovénimi .

jsou udédvény instrukce typu LOGICAL a.ADD pro usnadnéni ma-

,'povéni téchto vysledkﬁ na obr.6A a 6B, Sm&rovani slouéenych

;operaci ADD-ADD nebyla zahrnuta, protoze tyto operace vyzadu-,

~"fai étyrvstupovou arltmetlcko-loglckou gednotku /viz "1d10— <

synkrasie"/ a jsou tak vzaty na zFetel. ,
I kdyZ popis byl a% dosud zem&Fen na uvaZovani analyzy
sludovenych instrukei na gtyfech konkrétnich uvedenych re-

P

- 20 -

gistrech R1, R2, R3 a R4, je z¥ejmé, Ze praktické pouZiti

vyndlezu neni omezeno na &ty¥i urdité registry. Volba té&chto

oznaCeni je spiSe pouze pomickou pro analyzu a porozumé&ni.
Naopak by m&lo byt z¥ejmé, %e analyza mije byt zevSeobecné&-

na, jak vyplyvd z vySe uvedenych rovnic.

Logické blokové schema zndzornujici za¥izeni pro imple-
mentaci vicefunk&ni aritmeticko-logické jednotky popsané v za-
sadé na obr. 5, 6A, 6B, 7A a 7B, je na obr. 8. Na obr. 8
dostdvd instrukéni registr 50 sloudenou instrukci zahrnujici
instrukce pamétovych poli 52 a 54. Sloucené instrukce jsou
opatfeny p¥iznaky 56 a 58. Instrukce a jejich p¥iznaky jsou
vedeny do dekddovaci a ¥idici{ logiky 60, kterd dekdduje in-
strukce a informaci obsaZenou v jejich p¥iznacich pro vytvo¥e-
ni signdld volby registr@l na vyvolovacim vystupu 62 a signély
volby funkce na vyvolovacim vystupu 66. Signdly volby retis-
tru na vyvolovacim vystupu 62 konfiguruji prvek 64 vz&jemné-
ho spojeni, ktery je p¥ipojen k nejméné& t¥em univerzdlnim

registrim 63A, 63B, 63C souboru 63 univerz&lnich registrtu

pro dodévani obsahl a% t¥{ registrd na t#¥i operandové vstupy
AIO, AIl a AI2 aritmeticko-logické jednotky 65 pro prekondvé-

ni datové zdvislosti. Aritmeticko-logick& jednotka 65 je
vicefunkéni aritmeticko-logickd jednotka, jeji¥ funk&nost se
voli signdly volby funkce p¥{tomnymi na vystupu 66 dekdodovaci
a ¥fdici logiky 60. S operandy dod4vanymi z registrd p¥ipo-
jenych pfes prvek 64 vzdjemného spojeni bude aritmeticko-lo-
gickd jednotka 65 vykondvat funkce udivané signdly volby
funkce pro dosaZeni vysledku na vystupu 67.

Paralelné s vySe uvedenym za¥izenim s aritmetickou a
logickou jednotkou pracuje druhé za¥izeni s aritmeticko—lof
gickou jednotkou, obsahujici dekddovaci a ¥idici logiku 70,
které dekdduje prvni instrukci v instrukdnim pam&fovém poli -
52 pro poskytovéni signdll volby registru p¥es vystup 710
do obvyklého prvku 720 vz&djemného spojeni, ktery je také
pfipojen k univerzdlnim registrtm 63A, 63B, 63C. Logika 70

také poskytuje signdly volby funkce na vystupu 74 do béZné

SN (O

B b ey SN FroF

- 21 -

dvouoperandové aritmeticko-logické jednotky 65. Jak je popi-
sovéno ni¥e, aritmeticko-logicka jednotka 65 miZe vykonévat
druhou instrukci v obou p¥ipadech, tj. kdy jeden z jejich
operandl zévisi nebo nezévisi na vyslednych datech vytvé¥e-
nych vykondvanim prvni instrukce. Obé aritmeticko-logické
jednotky pracujl paralelné pro zajigténi soub&zného vykoné-

vani dvou instrukci, sluovanych ¢i nikoliv.

Pokud jde o sluované instrukce pam&tovych poli 52 a
54 a instrukéni registr 50, pfedpokladd se existence sluéova-
Ge. Predpoklddéd se, Ze sludova& péruje nebo sluluje instrukce
z toku instrukci zahrnujiciho sled skaldrnich instrukci p¥i-
v4d&nych do skalérniho po&itage, v némZ je sludovadé umistén.
gludoval seskupuje instrukce podle vySe uvedenych zésad.
Nap¥iklad instrukce kategorie 1 (obr. 5) jsou seskupovany
do LOGICAL/ADD, ADD/LOGICAL, LOGICAL/LOGICAL a ADD/ADD dvojic
v souladu s tabulkou 5. Ke kaydé instrukci sludovaného soubo-
ru je pripojen priznak obsahujici ¥idici informaci. Tento
pr¥iznak obsahuje sludovaci bity, které se tykaji C&sti pri-
znaku pouZité specificky pro identifikovéni skupin slucova-
ngch instrukci. S vyhodou v p¥ipadé slucovénl dvou instrukci
se pouzije nésledujlcl postup pro 1nd1kovanl, kde dochézi

ke sludovéni.

Ve strojich systému/370 jsou viechny instrukce uspofé-
d4ny na plilslovové mezi a jejich délky jsou bud 2,4 nebo
6 bitd. V tomto p¥ipadé Jje sludovaci p¥iznak zapot¥febi pro
ka?dé pulslovo. Jednobitovy ptiznak je dostate&ny pro indi-
kovéani, zda instrukce je nebo neni sludovéna. S vyhodou "1"
znadi, Ze instrukce, kterd zadind v uvaZované slabice, je
sludovéna s nésledujici instrukeci. "O" ozna&uje, %Ze nedocha-
2{ k 3&dnému sludovéni. Slulovaci bit sdrufeny s pulslovy,
které neobsahuji prvni byte instrukce je zanedbdvan. Sluco-
vaci bit pro prvni byte druhé instrukce ve slufované dvojici
se také zanedb&vé. V diisledku toho je zapot¥ebi pouze jeden
bit informace pro identifikovani a vhodné vykonévani sluo-

vanych instrukci. Bity p¥iznakd 56 a 58 jsou tak dostatec-

- 22 -

né pro informovdni dekddovaci a ¥idici logiky 60 o tom, Ze
instrukce v pam&tovych polich 52 a 54 instrukéniho registru
maji byt sludovény, tj. vykondvény paralelné&. Dekddovaci

a ¥idici logika 60 potom vySetfuje instrukce paméfovych poli
22 a 54 pro uréeni, jaky je jejich sled vykondvéni, jaké
‘jsou podminky vz&jemného blokovani, pokud existuji, a jaké
funkce jsou poZadovany. Toto urdovani je znédzornéno pro in-
strukce kategorie 1 na obr. 5. Dekddovaci a ¥idici logika
také urduje funkce vyZadované pro p¥ekonini jakychkoli vz&-
jemnych blokovdni s datovymi hazardy, jako je na obr. 6A a
6B.

Tato urCeni jsou konzolidovéna na obr. 7A a 7B. Podle
obr. 7A a 7B, pf¥i p¥edpokladu, %e dekdédovaci a ¥idici logika
60 urcila na zdklad& p¥iznakovych bitd, e instrukce v pamé-
Eovych polich 52 a 54 se maji sludovat, vy&le logika 60 sig-
nal volby funkce na vystupu 66 uddvajici poZadovanou opera-
ci podle levého krajniho sloupce na obr. 7A. Operadni kody
instrukci jsou explicitn& dekodovény pro zjifténi na vystupu
sign&ld volby funkce konkrétnich operaci ve sloupcich se
zdhlavim OP1 a OP2 na obr. 7A a 7B. Signdly volby registru
na vystupu 62 sméruji{ registry na obr. 8 pomoci prvku 64
vzédjemného spojeni, jak je po¥adovdno ve sloupcich vstupa
AIO, AIl a AI2 na obr. 7A a 7B. P¥edpoklddejme tak nap¥iklad,
Ze prvni instrukce v pam&tovém poli 52 je ADD R1, R2 a Ze
druhé& instrukce je ADD Rl, R4. Osmndctd ¥adka na obr. 7A

ukazuje operaci aritmeticko-lotické jednotky, které dekddovaci

a fidici obvod indikuje pomoci OP1 = + a OP2 = +, zatimco
registr R2 je smérovdn na vstup operandovy AIO, registr R4

na operandovy vstup AIl a registr Rl na operandovy vstup AI2.

Obr. 9 slouZi pro objasnéni struktury a &innosti aritme-
ticko-logické jednotky 65 pro p¥ekondvini datové zdvislosti.
Na obr. 9 je zndzornéna s&itatka 70 se tfemi operandy a s je-
dinym vysledkem, odpovidajici s&ita&ce z obr. 3. S&italka

70 dostava vstupy pres obvody mezi vstupy 70A, 70B, 70C s&i-

tacky a operandové vstupy AIO, AIl a AIl aritmeticko-logické

- 23 -

jednotky. Z operandového vstupu AI2 je operand smérovan pres
t¥i logické funk&ni obvody 71, 72 a 73 odpovidajici logic-
kym operacim AND, OR a EXCLUSIVE-OR. Tento operand je kombi-
novédn v t&chto logickych funkénich obvodech s jednim z dru-
hych operandd a je smérovan do operandového vstupu AIO nebo
AIl podle nastaveni multiplexoru 80. Multiplexor 75 voli

bud nezm&n&ny -operand pripojeny k operandovému vstupu AI2
nebo vystup jednoho z logickych funk&nich obvodd 71, 72 nebo
73. Vstup zvoleny multiplexorem 75 je veden do invertoru

77, a multiplexor 78 p¥ipojuje k jednomu vstupu 70C s¢italky
70 bud vystup invertoru 77 nebo neinvertovany vystup multi-
plexoru 75. Druhy vstup 70B s&italky 70 je ziskdvadn z ope-
randového vstupu AIl aritmeticko-logické jednotky multiple-
xorem 82, ktery voli bud "O" nebo operand pf¥ipojeny k ope-
randovému vstupu AIl aritmeticko-logické jednotky. Vystup
multiplexoru je invetovédn invertorem 84 a multiplexor 85
vol{ bud neinvertovany nebo invertovany vystup multiplexoru
82 jako druhy vstup operandld do s¢italky 70. Tfeti vstup
70A do s&italky 70 se ziské z operandového vstupu AIO, ktery
je invertovan invertorem 87. Multiplexor 88 voli bud "O",
vstup operandu do vstupu AIO, nebo jeho inverzni hodnotu
vedenou jako t¥eti vstup do s&itacky 70. Vystup aritmeticko-
logické jednotky se zisk& multiplexorem 95, ktery voli vystup
70D s&itadky 70 nebo vystup jednoho z logickych funk&nich
obvodl 90, 92 nebo 93. Logické funk&ni obvody 90, 92 a 93
kombinuji v¢stup s&itadky pomoci indikované logické operace

vstupem operandu operandového vstupu AIl.

M&lo by byt z¥ejmé, Ze signdl volby funkce spoliva v
podstat& v signdlech volby A B C D E F G multiplexoru a vstu-
pu voleb "horké" 1/0 do s&italky 70. Bude z¥ejmé, Ze multi-
plexor voli rozmezi signdld x od jediného bitu pro signaly

A, B, E a F do dvoubitovych signdld pro C, D a G.

Stavy komplexniho ¥idiciho signdlu (A B C D E F G 1/0
1/0) je mo¥no snadno odvodit z obr. 7A a 7B. Napfiklad pro
ADD R1, R2 ADD R1l, R4 z vySe uvedeného p¥ikladu, by signal

- 24 -

OP1 nastavil signdl C multiplexoru pro volbu signdlu pritom-
ného na AI2, zatimco signdl F by 2zvolil neinvertovany vystup
multiplexoru 75, ¢imZ by poskytl operand v registru R1 do
vstupu s&ita&ky 70 nejdédle vpravo. Podobné by signdly B a

E multiplexoru byly nastaveny pro poskytnuti operandu, ktery
je k dispozici na vstupu AIl v neinvertované formé do pro-
st¥edniho vstupu s&italky 70, zatimco signdl D multiplexoru
by byl nastaven pro poskytnuti operandu na vstup AIO s&itacky
70 nejvice vlevo bez inverze. Kone¢n&, oba "1/0" vstupy Jjsou
nastaveny pfim&¥ené pro obé séitaci operace. S témito vstupy
se vystup sé&itadky 70 jednoduSe soulet t¥i operandl, ktery
odpovid4d pofadovanému vystupu aritmeticko-logické jednotky.
Ridic{ signdl G by proto m&l byt nastaven tak, Ze multiple-
xor 95 by vydal na vystupu vysledek dosaZeny s¢itadékou 70,
ktery by byl soulet operanddi v registrech R1, R2 a R3.

P¥i sludovéni sledu instrukci LOGICAL/ADD by logické
funkce byla zvolena multiplexorem 75 a poskytnuta multiple-
xorem 78 do s&itadky 70, zatimco operand, ktery se md pti-
&itat k logické operaci, by byl veden jednim z multiplexoru
85 nebo 88 na jeden ze druhych vstupd s¢itaCky 70, pfi pri-
vdd&ni O na t¥eti vstup. V tomto p¥ipadé by multiplexor 95

byl nastaven pro volbu vystupu s&italky 70 jako vysledku.

Koheéné pfi sledu ADD/LOGICAL by dva operandy, které
by m&ly byt nejprve pficitédny, vedeny na dva ze vstupl s&i-
tadky 70, zatimco O by byla vedena na tfeti vstup. Vystup
sditadky je okamZit& kombinovédn s nezvolenym operandem Vv lo-
gickych funk&nich obvodech 90, 92 a 93. Ridici signdl bude
nastaven na volbu vystupu prvku, jeho? operace odpovid4d dru-

hé instrukci sluéovaného souboru.

Véeobécnéji Yeleno predstavuje obr. 9 logické zndzorné-
ni aritmeticko-logické jednotky 65 pro p¥ekondvdni datové
z4vislosti. P¥i odvozovani tohoto proudu dat je &inéno roz-
hodnuti nepodporujic{ vz&djemnd blokovdni, v nichZ se vy-

sledek prvni instrukce pouzivd jako oba operandy druhé in-

- 25 =

strukce. Podrobn&jsi rozbor je moZné nalézt v sekci "Idiosyn-
kracie". Skute&nost, Ze toto zndzorndni implementuje ostatni
operace po¥adované sludovdnim LOGICAL-AND, je moZno vidét
ze srovndni datového toku s funkénim sloupcem z obr. 5. V tom-
to sloupci je operace typu LOGICAL na dvou operandech ndsle-
dovana operaci typu ADD mezi vysledkem LOGICAL a t¥fetim ope-
randem. Toto je provdd&no sm&rovdnim operandd tak, aby byly
logicky kombinovdny na operandovych vstupech AIO a AI2 z obr.
9 vhodnym blokem z logickych funkénich obvodd 71, 72 nebo
73, sm&rovanim tohoto vysledku do s&¢italky 70 a smérovénim
t¥etiho operandu pfes operandovy vstup AIl s¢itaclky. Inverze
a poskytnuti "horké" jednilky nebo nuly jsou zajiStovéany
jako &A&st signdlu volby funkce, jak je pozadovédno specifi-
kovanou aritmetickou operaci. V jinych pY¥ipadech je operace
typu ADD mezi dvéma operandy ndsledovédna operaci typu LOGICAL
mezi vysledkem operace ADD a t¥etim operandem. Toto je vyko-
ndvédno sm&rovidnim operandl pro operaci typu ADD na operando-
vy vstup AIO a AI2, smérovidnim t&chto vstupd do s&itacky,
smérovanim vystupld s&itadky do logickych funkénich obvodl
90, 92 a 93 za sCitackou a smérovdnim t¥etiho operandu pfes
AI3 do téchto logickych blokld za s&italkou. Operace typu
LOGICAL sledované operaci typu LOGICAL jsou vykondvény smeéro-
védnim dvou operandd pro prvni operaci typu LOGICAL na vstup
AIO a AI2, které jsou sm&rovény do logickych obvodid pfed
s&itadkou, smérovinim vysledkld z logickych obvodld pfed s&i-
tadkou pfes aritmeticko-logickou jednotku mez modifikace
ptidtenim nuly do logického obvodu umist&ného za scitackou,
a smd&rovénim t¥etiho operandu do logického obvodu umisténé-
ho za s&fitalkou. Pro operaci typu ADD ndsledovanou operaci
typu ADD jsou t¥i operandy smérovédny na vstupy scitalky a
vystup s&itadky je predkldddn na vystup aritmeticko-logické
jednotky.

Operace aritmeticko-logické jednotky 65 pro vykondni

druhé instrukce v instruk&nim paméfovém poli 54, kdyZ neni

datovéd zavislost mezi prvni a druhou instrukci, je pfimolara.

- 26 -

V tomto p¥ipadé& jsou do aritmeticko-logické jednotky privédé-
ny pouze dva operandy. Je-li druhd instrukce instrukce typu
ADD, budou proto oba operandy vedeny na séitadku 70 spolu

s nulou na misté& t¥etiho operandu, p¥iemZ vystup s&italky
bude zvolen multiplexorem 95 jako vystup aritmeticko-logické
jednotky. Je-1i druhd& instrukce logick& instrukce, miZe byt
logickd instrukce vykonédna smé&rovénim dvou operandd do lo-
gickych funk&nich obvodd 71, 72 a 73 p¥i volb& volného vystu-
pu, a potom se nechd vysledek projit s&italkou 70, pricemi

se na oba ostatni vstupy sc¢italky zavedou nuly. V tomto p¥i-
padé by byl vystup sCitacky rovny logickému vysledku a byl

by zvolen multiplexorem 95 jako vystup aritmeticko-logické
jednotky. Alternativné miZe byt jeden operand veden sc¢itac-
kou p¥i pricteni dvou nul, takZe ze s¢itadky 70 na vystupu
vyjde tentyz operand. Tento operand je kombinovén s druhym
operandem v logickych funkénich obvodech 90, 92 a 93, pZ¥i-
¢emZz vhodny vystup logického obvodu se multiplexorem 95 zvoli

jako vystup aritmeticko~logické jednotky.

Jsou-1li instrukce slulovédny jak je zndzornéno na obr.
8, bez ohledu na to, zda éévislost neexistuje ¢i ano, in-
strukce v instrukénim pamé&tovém poli 52 instrukéniho regis-
tru 50 bude s vyhodou vykondna dekddovdnim instrukce p¥es
sé¢itadku 70 a vystup 74, volbou jejich operandl pfes s&itac-
ku 70, vystup 710 a prvek 720 vzédjemného spojeni a vykoné-
nim zvolené operace na zvolenych operantech v aritmeticko-
logické jednotce 75. JelikoZ aritmeticko-logick& jednotka
75 je urcena pro provédéni jediné instrukce, jsou dva ope-
randy p¥ivad&ny ze zvoleného registru p¥es operandové vstu-
py AIO, AIl, p¥ifemZ indikovany vysledek je poskytovan na
vystupu 77.

P¥i uspo¥dddni zndzornéném na obr. 8 tak aritmeticko-
logick& jednotka 65 pro pfekondvani datové zévislosti, v
kombinaci s bé&Znou aritmeticko-logickou jednotkou 75, pod-
poruje soub&iné (nebo paralelni) vykondvéni dvou instrukci,

i kdyZ existuje datovd zdvislost mezi instrukcemi.

- 27 -

Generovani adres miZe byt také ovlivhovéno datovymi
hazardy, které mohou byt oznaleny jako adresové hazardy AHAZ.
Nésledujici sled pfedstavuje sludovany sled instrukci systé-

mu System/370, ktery je prosty adresovych hazardd:

AR R1, R2
S R3, D/R4, RS

kde instrukce AR zhamené "sedti" (ADD), instrukce S znamend
"odedti" (SUBTRACT) a D predstavuje posun O t¥i &ty¥bitova
slova. Neexistuje zadny hazard AHAZ, jelikoZ R4 a R5, které
se pouzivaji ve vypoltu adres, nebyly zménény p¥edchézejici
instrukci. Adresové hazardy existuji v nésledujicich sle-
dech:

AR R1, R2
S R3, D/R1, R5)

AR R1, R2
S R3, D/R4, R1l/

vy$e uvedené sledy demonstruji sludovédni instrukce RR (kate-
gorie 1 na obr. 5) s instrukcemi RX (kategorie 9) vykazuji-
cimi AHAZ. Jiné kombinace zahrnuji instrukce RR sludované

s instrukcemi RS a SI.

Pro aritmeticko-logickou jednotku pro prekondvéni vza-
jemného blokovéni musi byt odvozeny nové operace vznikajici
z prekondvani vzdjemnych blokovéni s hazardy AHAZ, a to ana-
lyzovadnim vSech kombinaci sledd instrukci a konflikth adre-
sovych operandd. Analyza ukazuje, e spole&nd vzédjemnd blo-
kovani, jak& jsou obsa¥ena ve vy$e uvedenych sledech instruk-
ci, mohou byt p¥ekondvéna pomoci aritmeticko-logické Jjednotky
éty¥i na jedna.

Funkce, které by bylo t¥eba podporovat aritmeticko-lo-
gickou jednotkou pro p¥ekondni vSech vzéjemnych blokovani
s hazardy AHAZ pro architekturu instruk&ni drovné& systému
System/370 jsou zaznamendny na obr. 10. Pro tyto pripady,
kde nejsou uvedeny &ty¥i vstupy, je t¥eba pou¥it implicitni

nuly. Logicky diagram aritmeticko-logické jednotky pro pfreko-

- 28 -

navani vzadjemného blokovdni s hazardy AHAZ je poskytnut na
obr. 11. Velky dil&i soubor, ale nikoliv vSechny z funkci
uvedenych na obr. 10, je podporovidn zn&zorn&nou aritmeticko-
logickou jednotkou. Tento dil&{ soubor sestdvd z funkci uve-
denych v fddcich jedna a¥ dvacet jedna na obr. 10. Rozhodnu-
ti, jaké funkce zahrnout, je implementa&ni rozhodnuti, jehoZ

rozbor je odsunut do sekce "Idiosynkracie".

Jak ukazuje obr. 11, zahrnuje zndzornénd aritmeticko-lo-
gickd jednotka s¢itacku 100 v niZ jsou kaskadovit& usporada-
ny t¥ivstupové a dvouvstupové s&italky 101 a 102 s uchovava-
nymi p¥enosy s dvouvstupovou a jednovystupovou s&itadkou
103 s predikci pfenosd takovym zpusobem, Ze s&itadka 100
je skute&né& Ctyfoperandovd s&¢itatka s jednim vysledkem pro

C¢innost aritmeticko-logické jednotky na obr. 11.

P¥i generovéni obrdzku 10 byla sloXitost struktury arit-
meticko-logické jednotky zjednoduena na dlet ¥idici logiky.
Toto je nejlépe vysvétleno p¥ikladem. UvaZujme dva ndsledu-

jici sledy instrukci Systému/370:

NR R1, R2 (4)
S R3, D/R1,R5/

NR R1,R2 (5)
S R3,D/R4,R1/

kde NR znad¢i instrukci "AND" a S znadi instrukci "odedti"
(subtract). '
Necht je obecny z&znam pro tento sled

NR R1,R2
S R3,D/R4,R5/

Pro tento prvni sled je adresa operandu:
OA =D + (R1/\R2) + R5

zatimco pro druhy sled je
OA = D + R4 + (R1 /\R2)

kde OA znaci "adresa operandu" (operand address).

Pro zjednoduSeni ¥izen{ provddéni na dlet sloZitosti aritme-

- 29 -

ticko-logické jednotky, by bylo zapotfebi, aby aritmeticko-
logickd jednotka vykonala nésledujici dvé operace:

OA AGIO + (AGI1 A AGI2) + AGI3
OA = AGIO + AGI2 + (AGI1 A\ AGI3)

kde D je p¥ivad&no na vstup AGIO, R2 je pfivédéno na vstup
AGI1, R4 je p¥ivadd&no na vstup AGI2 a R5 je pfivéddéno na
vstup AGI3. Smysl oznafeni vstupd AGIO, AGI1, AGI2 a AGI3

je z¥ejmy z analogie provedeni na obr. 11, s provedenim z obr.
9, které je vysvétleno niZe. Aritmeticko-logické Jjednotka

by vSak mohla byt zjednodusSena, jestliZe ¥idici jednotky
zjisti, které z R4 a R5 maji hazard s Rl a dynamicky sm&ruji
tento registr na AGI2. Druhy registr by byl veden do AGI3.

Pro tento predpoklad musi aritmeticko-logick& jednotka pouze

podporovat operaci:
OA = AGIO + (AGI1/\ AGI2) + AGI3

74m&ny jako tyto jsou provedeny za UCelem sniZeni{ sloZitosti
aritmeticko-logické jednotky pro generovéni adres, jakoz
i aritmeticko-logickych jednotek pro vykondvéni instrukci

a urceni vétveni.

Aritmeticko-logickd jednotka z obr. 1l miZe nahradit
aritmeticko-logickou jednotku na obr. 8 a 9. V tomto p¥ipadé
by dekdodovaci a ¥idici logika 60 pfimé¥ené odrdZela funkce
z obr. 10.

Podobné analyzy, jaké byly provedeny pro aritmeticko-lo-
gické jednotky, p¥ekondvajici vzadjemné blokovani, pro vyko-
nédvani instrukci a generovadni adres, musi byt provedeny pro
odvozovéni po%adavkd sluCovéni na aritmeticko-logické jed-
notce s urdovénim vétveni, jak je uvedeno na obr. 12 a 13.
Aritmeticko-logickd jednotka pro ur&ovani vétveni pokryvé
funkce poZadované instrukcemi srovndvajicimi hodnoty regist-
ri. To zahrnuje instrukce v&tveni BXLE, BXH, BCT a BCTR,

v nichZ je hodnota registru zvySovdna o obsah druhého regist-
ru (BXLE a BXH) nebo je sniZovédna o jednu (BCT a BCTR) pfed

tim, ne? je srovndvéna s hodnotou registru (BXLE a BXH) nebo

- 30 -

nulou (BCT a BCTR) pro urdeni vysledku v&tveni. Podmin&nd
vétveni nejsou vykonivéna touto aritmeticko-logickou jednot-
kou.

Aritmeticko-logick& jednotka zndzorné&nid na obr. 13 obsa-
huje vicestupnovou s&itadku 110, v ni% jsou dvé s¢itadky
111 a 112 s uchovdvanymi p¥enosy kask&dovitd& uspo¥édény,
se dvéma vystupy s&italky 112 s uchovdvanymi p¥enosy zajistu-
jicimi dva vstupy pro s&itadku 113 s predikci p¥enost. Tato
kombinace u¢inné zaji$tuje &tyFvstupovou s&itadku s jedinym
vysledkem, pouZitou pro aritmeticko-logickou jednotku z obr.
13.

Jako priklad datovych hazardl, které se mohou vyskytnout,

je moZno uvaZovat ndsledujici sled instrukci:

AL R1,D/R2,R3/
BCT R1,D/R2,R3/,

kde AL zna&i instrukci "ADD LOGICAL" a BCT instrukci "BRANCH
ON COUNT".
Necht (x) oznaluje obsah pam&fového mista x. Vysledky nésle-

dujici provedeni jsou

Rl =Rl + (D+ R2 + R3) -1
vétvi, jestli%e (R1 + (D + R2 + R3) - 1 =0

Toto porovnani je moZno provést vykondnim operace:
Rl + (D+ R2 + R3) -~ 1 -0

Vysledky analyz pro aritmeticko-logickou jednotku s urdovinim
vétveni jsou uvedeny v obr. 12 a 13 bez dal$iho rozboru.
Funkce podporované proudem dat zahrnuji ty, které byly speci-
fikovany Yadami 1 aZ 25 na obr. 12. Aritmeticko-logickd jed-
notka z obr. 13 miZe nahraZovat aritmeticko-logickou jednot-
ku 65 z obr. 8. V tomto p¥ipadé by dekddovaci a ¥idici logika

60 priméf¥ené odrdZela funkce z obr. 12.

N&které z funkci, které vznikaji z konfliktd operandiy,

jsou sloZit&js$i neZ ostatni. Nap¥iklad sled instrukci:

AR R1,R2
AR R1,R1

- 31 -

kde AR znaCi instrukci "secti" (add), vyZaduje aritmeticko
logickou jednotku Cty¥i na jedna, spolu se z toho vyplyvaji-
ci sloZitosti, pro pfekondni datového vzadjemného blokovéni,

protoZe jeji vykondvadni md za nésledek:
Rl = (R1 + R2) + (R1 + R2).

Jiné sledy maji za né&sledek operace, které vyZaduji, aby
do aritmeticko-logické jednotky bylo zadlenéno pr¥idavné zpoi-
déni za Glelem p¥ekondni vzédjemného blokovéni. Sled, ktery

ilustruje toto zvySené zpoidéni je:

SR R1,R2
LPR R1,R1

kde S znadi instrukci "odedti" a LP instrukci "zaved kladné"

(load positive), coz mé& za nésledek operaci
Rl = (Rl = R2).

Tato operace se nehodi k paralelnimu provéddéni, protoZe vysled-
ky odeditdni jsou zapot¥ebi k nastaveni vypoltu absolutni
hodnoty.

Misto pfekondni vSech vzadjemnych blokovidni v aritmeticko-
logické jednotce je moZné pouZit logiku vydavajici instrukce
nebo p¥edprocesor, ktery je urden pro zjiStovdni sledd instruk-
ci, které vedou k témto sloZitéjsim funkcim. Detekce p¥edpro-
cesorem odstranuje pot¥ebu p¥iddvat zpoZdéni k logice vyda-
vajici instrukce, kterd je fasto v blizkosti kritické cesty.
KdyZz se zjisti takovy sled, logika vyd&vajici instrukce nebo
pfedprocesor se pfepnou na vyddvdni sledu ve skaldrnim modu
p¥i vyloudeni pot¥feby p¥ekondvat vzdjemné blokovdni. Rozhod-
nuti pokud jde o to, které instrukéni sledy maji nebo nemaji
mit jejich vzdjemnd blokovadni p¥ekondvéna, je implementadni
rozhodovéni, které je z4dvislé na faktorech nad rémec vynédle-
zu. Je vSak t¥eba upozornit na moZnost kompromist mezi slo-
Zitosti realizace aritmeticko-logické jednotky a sloZitosti

logiky pro vydavéni instrukci.

Hazardy pfitomné v generovdni adres také dévaji vznik

- 32 -

implementaci kompromistG. Napfiklad vétS$ina ze vzadjemnych
blokovéni p¥i generovéni adres miZe byt pfekondna pouZitim
aritmeticko-logické jednotky &ty¥i na jedna, jakd byla rozebra-

na vyse. Nésledujici sled

AR R1,R2
S R3,D/R1,R1/,

kde AR znadi instrukci "sedti" a S instrukci "odedéti", vSak
nezapadd do této kategorie. Pro tento p¥ipad je zapotfebi
aritmeticko-logické jednotky p&t na jedna pro prekondni vza-
jemného blokovdni s hazardem AHAZ, protcZe vyslednd operace
je:

OA =D + (R1 + R2) + (Rl + R2),
kde OA je adresa vysledného operandu. Jako drive, je viazeni
této funkce do aritmeticko-logické jednotky implementalni
rozhodnuti, které z&visi na Castosti vyskytu takového vzdjem-
ného blokovéni. Podobné vysledky se také vztahuji na aritme-

ticko-logickou jednotku pro urovéni veétveni.

Analyzy podobné t&m, jaké byly pfedvedeny vySe, mohou
byt provedeny pro odvozeni hardwaru pro pfekondvani vzajem-
ného blokovéni pro nejobecn&jsi p¥ipad n vzédjemnych blokové-
ni. Pro tento rozbor je moZno se odvolat na obr. 14. p¥edpo-

kl4déme jednoduchd datova vzdjemnd blokovdni, jako:

AR R1,R2
AR R3,R1

kde AR znad&i instrukci "sedti"

kde se zm&ndny registr z prvni instrukce pouZije jako pouze
jediny z operandd druhé instrukce, p¥i&emZ pro prekonéni
vz4jemného blokovdni by bylo zapot¥ebi aritmeticko-logické
jednotky (n+1l) na jedna. Pro p¥ekoné&ni nap¥iklad t¥{ vzédjem-
nych blokovéni p¥i pouziti vySe uvedeného pfedpokladu by
byla zapotfebi aritmeticko-logické jednotka &ty¥i na jedna.
To by vyZadovalo p¥idavny stupen se sc¢itackou s uchovavanymi

p¥enosy v aritmeticko-logické jednotce.

EI
.{-’";.o ' w ~
f °<,C-£ = o3
| Eé?i”] g = o
- 3 _gr;;_]"b ° —
—— |
PATENTOVE NAROKY

1. Hardwarové zaY¥izeni pro prekondvdni datové zdvislos-
ti v po&itadi s architekturou pro sériové vykondvani sledu
skaldrnich instrukci, vyznalené tim, Ze obsahuje instrukéni
registr (50) s nejméné dvéma pamétovymi poli (52, 54), nejmé-
né tf¥i univerzdlni registry (63A, 63B, 63C), ka?dy pro jeden
operand, prvek (64) vz&djemného spojeni, ktery je spojen se
spoleénym vystupem univerzdlnich registrd, dekodovaci a ¥i-
dici logiku (60) majici své vstupy pY¥ipojené k vystupu instruk-
¢niho registru (50) a majici svij vyvolovaci vystup (62)
registri spojeny s prvkem (64) vzdjemného spojeni a majici
sviij vyvolovaci vystup (66) funkci spojeny s aritmetickou
a logickou jednotkou (65), kteréd je ddle opat¥ena t¥emi ope-
randovymi vstupy (AIO, AIl, AI2), spojenymi s uvedenym prv-
kem (64)y;§ybméLo spojeni a m& jeden vystup (67).

2. Hardwarové zaY¥izeni podle ndroku 1 vyzna&ené tim,
Ze aritmetickd a logick& jednotka (65) obsahuje s&itadku
(70) opatfenou t¥emi operandovymi vstupy (70A, 70B, 70C) p¥i-
pojenou k operandovym vstupim (AIO, AIl, AI2) aritmetické
a logické jednotky (65) a jednim vysledkovym vystupem (70D)
spojenym s vystupem /67) aritmetické a logické jednotky (65).

3. Hardwarové zaY¥izeni podle ndroku 2 vyznadené tim,

Ze sCitacka (70) zahrnuje s&itadku (10) a uchovdvanymi p¥eno-
sy, opatfenou t¥emi vstupy spojenymi s operandovymi vstupy
(70a, 70B, 70C) sc&itadky (70) a se soudtovym vystupem (12)

a prenosovym vystupem (14), a ddle s&itadku (22) s predikci
pfenosti, opat¥enou dvéma vstupy p¥ipojenymi k p¥isludnému
souC¢tovému vystupu (12) a pFenosovému vystupu (14) sd&itadky
(10) s uchovavadnim p¥enosd a s vystupem (26) spojenym s vy-

sledkovym vystupem (70D) s&itadky (70).

4. Hardwarové zat¥izeni podle ndroku 2 nebo 3 vyznalené

tim, Ze dva ze t¥i operandovych vstupd (AIO, AIl, AI2) arit-

PV 432-14Y

- 34 -

metické a logické jednotky (65) jsou p¥ipojeny ke t¥em lo-
gickym funkénim obvodim (71, 72, 73), které jsou ddle spojeny
s jednim z uvedenych t¥{i operandovych vstupl (70C) s&ita&ky
(70) .

5. Hardwarové zarizeni podle kteréhokoli z nérokt 2
aZz 4 vyznaCené tim, Ze jeden z uvedenych t¥i operandovych
vstupl (AIO, AIl, AI2) aritmetické a logické jednotky (65)
a vysledkovy vystup (70D) s&itadky (70) jsou pfipojeny ke
tfem logickym funk&énim obvodim (90, 92, 93), které jsou dale

spojeny s vystupem /67) aritmetické a logické jednotky (65).

6. Hardwarové za¥izeni podle ndroku 4 nebo 5 vyznadené
tim, Ze prvni logické funkéni obvody (71, 90) na vstupni
a vystupni strané s¢itacky (70) jsou soudinové obvody, dru-
hé logické funkéni obvody (72, 92) jsou soudtové obvody a

t¥eti logické obvody (73, 90) jsou obvody vylu&ného soultu.

7. Hardwarové zarizeni podle ndroku 6 vyznacené tim,
Zze dva (AIO, AIl) ze t¥i operandovych vstupu (AIO, AIl, AI2)
aritmetické a logické jednotky (65) jsou pfipojeny k multi-
plexoru (80), ktery je ddle pripojen ke t¥em logickym funk<-
nim obvodim (71, 74, 73).

8. Hardwarové zafrizeni podle ndroku 7 vyznaclené tim,
Ze t¥i logické funkéni obvody (71, 72, 73) jsou pfipojeny
k multiplexoru (75), ktery je ddle spojen s jednim (70C)
ze t¥i operandovych vstupl (70A, 70B, 70C) scéitacky (70).

9. Hardwarové za¥izeni podle kteréhokoli z ndrokl 6
aZ 8 vyznalené tim, Ze t¥i logické funkéni obvody (90, 92,
93) jsou spojeny s multiplexorem (95), ktery je dadle spojen
s vystupem (67) aritmetické a logické jednotky (65).

10. Hardwarové za¥izeni podle kteréhokoli z ndroki 1
az 9 vyznatené tim, Ze prvek (64) vzédjemného spojeni obsa-
huje multiplexor pro zavddéni obsahd t¥i univerzdlnich re-
gistrd (63A, 63B, 63C) na t¥i operandové vstupy (AIO, AIl,
AI2) aritmetické a logické jednotky (65).

iIBM — EN 990014 . ' —

T e

N
1 ;
_o
(v

™

i
—i)
SN
—~Z

Y S EPYREN
ENT- 90-014 - ey
Vassilia 4t s etal m SU .’9.&(}

Ry R2 -R3

csA 10

14N 12

\Jo — m——l S qu3

7

772

\[o
24 CLA

16
REMLT= RY) +(22) = (R3)
Alg Al 22
(5]

\o

Yo

SHEET 3/13
EN9-90-014
VASSILIADIS ETAL

1. RR-FORMAT LOADS, LOGICALS, ARITHMETICS, COMPARES
. LCR - LOAD COMPLEMENT
LPR ~ LOAD POSITIVE
LNR - LOAD NEGATIVE
LR — LOAD REGISTER
LTR - LOAD AND TEST S
NR — AND .
OR — OR » onERCY
XR — EXCLUSIVE OR oL

AR — ADD el e

SR — SUBTRACT

. ALR - ADD LOGICAL

. SLR — SUBTRACT LOGICAL
CLR — COMPARE LOGICAL

CR — COMPARE

2. RS-FORMAT SHIFTS (NO STORAGE ACCESS)

. SRL - SHIFT RIGHT LOGICAL

. SLL - SHIFT LEFT LOGICAL

. SRA - SHIFT RIGHT ARITHMETIC
SLA — SHIFT LEFT ARITHMETIC
SRDL - SHIFT RIGHT LOGICAL

. SLDL — SHIFT LEFT LOGICAL

. SRDA — SHIFT RIGHT ARITHMETIC
SLDA — SHIFT LEFT ARITHMETIC

3. BRANCHES — ON COUNT AND INDEX
BCT — BRANCH ON COUNT (RX-FORMAT)
BCTR — BRANCH ON COUNT (RR-FORMAT)
BXH — BRANCH ON INDEX HIGH (RS-FORMAT)
BXLE — BRANCH ON INDEX LOW (RS-FORMAT)

4. BRANCHES — ON CONDITION
BC — BRANCH ON CONDITION (RX-FORMAT)
BCR — BRANCH ON CONDITION (RR-FORMAT)

5. BRANCHES — AND LINK ,
BAL - BRANCH AND LINK (RX-FORMAT)
BALR — BRANCH AND LINK (RR-FORMAT)
BAS - BRANCH AND SAVE (RX-FORMAT)
BASR — BRANCH AND SAVE (RR—-FORMAT)

FIG. 4A

STORES

SHEET 4613
EN9-90-014
VASSILIADIS ETAL

P/ 43797

STCM — STORE CHARACTERS UNDER MASK (0-4-BYTE STORE, RS—FORMAT)
MVI — MOVE IMMEDIATE (ONE BYTE, SI-FORMAT)
ST - STORE (4 BYTES)

STC — STORE CHARACTER (ONE BYTE)

LOADS
LH — LOAD HALF (2

STH — STORE HALF (2 BYTES)

BYTES)

L - LOAD (4 BYTES)

LA — LOAD ADDRESS

A — ADD

AH - ADD HALF

AL - ADD LOGICAL
N — AND

0 -0R

S - SUBTRACT

SH — SUBTRACT HALF
SL - SUBTRACT LOGICAL

X — EXCLUSIVE OR

IC — INSERT CHARACTER
ICM — INSERT CHARACTERS UNDER MASK (0- TO 4-BYTE FETCH)

C — COMPARE
CH —~ COMPARE HALF

CL - COMPARE LOGICAL

CLI - COMPARE LOG

ICAL IMMEDIATE

CLM — COMPARE LOGICAL CHARACTER UNDER MASK

10. TM - TEST UNDER MASK

FIG. 4B
L1 | 1] L 1]
100 101 <102
143 104
o FIG.
\106
Ciog

. RX/SI/RS—FORMAT ARITHMETICS, LOGICALS, INSERTS, COMPARES

SHEET 5/13
ENG—-90—-014
VASSILIADIS ETAL

FUNCTIONS ARISING FROM LOGICAL($),

ADD(G) INSTRUCTION COMPOUNDINGS

SEQUENCE INTERLOCK CONDITION | FUNCTION
LOGICAL, ADD R1=R3#R2#R4 (R1pR2)¢ R4
LOGICAL, ADD R1=R4#R2#R3 R3¢(R1¢R2)
LOGICAL, ADD R1=R2=R3*R4 (R1¢R1){R4
LOGICAL, ADD R1=R2=R4#R3 R3¢(R1pR1)
LOGICAL, ADD R1=R3=R4=R2 (R1¢R2) ¢(R1¢R2)
LOGICAL, ADD R1=R2=R3=R4 (R1pR1){(R1pR1)
ADD, LOGICAL R1=R3#R2#R4 (R1ER2) R4
ADD, LOGICAL R1=R4#R2#R3 R3¢ R1{R2)
ADD, LOGICAL R1=R2=R3%R4 (R1¢R1)pR4
ADD, LOGICAL R1=R2=R4#R3 R3@(R1¢R1)
ADD, LOGICAL R1=R3=R4*R2 (R1¢R2)@(R1¢R2)
ADD, LOGICAL R1=R2=R3=R4 (R1{R1)p(RI1$R1)
LOGICAL, LOGICAL R1=R3#R2#R4 (R1pR2)¥R4
LOGICAL, LOGICAL R1=R4#R2%R3 R3¢(R1¢R2)
LOGICAL, LOGICAL R1=R2=R3*R4 (R1pR1)¢R4
LOGICAL, LOGICAL R1=R2=R4#R3 R3p(R1pR1)
LOGICAL, LOGICAL R1=R3=R4*R2 (R1pR2) ¢(R1¢R2)
LOGICAL, LOGICAL R1=R2=R3=R4 (R1pR1)¢E(R1pR1)
ADD, ADD R1=R3#R2*R4 (R1¢R2)¢R4
ADD, ~DD R1=R4#R2*R3 R3&(R1ER2)
ADD, ADD R1=R2=R3#R4 (R1¢R1)¢R4
ADD, ADD R1=R2=R3*R3 R3¢(R1{R1)
ADD, ADD R1=R3=R4#R2 (R1¢R2)¢(R1ER2)
ADD, ADD R1=R2=R3=R4 (R1¢R1)E(RIERT)
FIG.1O
i;ré . é‘ : 3o /

]
iy
|
f
]

brl - : .,
f "§;?§! = ;j e
BLE TR
S It o 6/13
i I
OP1 0P2

1 Al2

2 ~AI2

3 JA12/

4 ~/A12/

S Al1 OP1 Al2 AV, @+ -

6 AI1 OP1 (-Al2) AV, ®

7 Al1 OP1 /AI2/ AV, ®

8 Al1 OP1 (-/A12/) AV, ®

9 (-A12) OF1 (-~AI2) AV, @

10 /A12/ OP1 /A12/ AV ®

11 (-/A12/) OP1 (-/A12/) ANV, ®

12 AI0 OP1 Al2 -

13 /AI0/ OP1 Al2 ¥ -

14 (-/A10/) OP1 A12 + -

15 (-AI0) OF1 AI2 + -

16 /A10/ 0Pt /A12/ + -

17 (-/A10/) OP1 /AI2/ ¥ -

18 AI2 oP1 Al2 AV ®

19 ~(AI2 OP! AlIO) AV ®

20 Al2 OP1 AID AV, @

21 /AI2 OP1 AIO/ AV ®

22 ~/A12 0P AIO/ AV, ®

23 AI1 OP2 (AI2 OP1 AlIO) + - + -

24 -AI1 OP2 (AI2 OP1 AIO) + - +

25 (AI2 OP1 AIO) OP2 AIt AV, @ AV, @ + -

26 (AI2 OP1 AIO) OP2 Al + - AV ®

27 —(AI2 OP{ AIO) OP2 AIt AV, ® +

28 Al2- 1

29 (-A12) = ¢

FIG. 6A

IBM — EN 990014

30 JA12/ -1
. 31 (-/A12/) - 1

32 (Al2 OP1 AIO) - 1 AV, @+~
33 (AI2 - 1) OP1 AIl AV.®
34 AI2 OP1 (AIO - 1) + -
35 (AIO — 1) OP1 AI2 -
36 ~(AI2 - 1)
37 (AI2 - 1) OP1 (AI2 - 1) AV,®
38 JAl2 - 1/
39 -/A12 - 1/
40 /Al12 OP1 AIO/ + -
41 -/AI2 OP1 AIO/ +
42 (AI2 OP1 AIO) OP2 (AI2 OP1°AI0) |AV,® AV, ® + -
43 (AI2 OP1 AIO) OP2 (AI2 OP1 AIO) |+,- AV, @
44 AIO + AI1l + AI2 + AI3
45 ~AIO + AI1 — AI2 + AI3
46 (AI2 - 1) OP1 (AI2 - 1) +,=

r—-‘»I T T T e ————

| > %

. e e
' o ‘ bl -
(o N % <

! T &)

o=ty | F '

- ,

x":/
S C

IBM — EN 990014

V. DId

8/13

1Y £y 2y (01V 1d0 2IV) 2d0 11V (24914 ey
1Y 12 2y (0IV 1d0 21V) 2d0 1iv-
1Y vy 2y (01V 1d0 21V) 2d0 11V vy (2421Y)
(0IV 1d0 2IV) 2d0 (0IV 1d0 21V) | (2UAIY) (2¥A1Y)
14 £y (14=)2y 11V 240 (0IV 140 21V) (1918 YheY
1Y 12" (14=)2y 11V 240 (0IV 1d0 2IV) PUA(THATY)
1Y £y 2y 11V 240 (01V 1d0 21V) (2HA1Y JAEY
1y vy 2y 11V 240 (01V 1d0 2IV) YA (2uA1Y)
(01V 1d0 2I1Y) 240 (OIV 1d0 2IV) | (Qu31y)A(2y1y)
1Y €Y (14=)2y 11V 240 (0IV 1d0 21V) (1414 ey
1Y vy (14=)2y 11V 2d0 (01V 1d0 21V) YHA(1¥91Y)
1y £d ¢y 11V 2do (0IV 1d0 21V) (24914 YheY
1Y vy 2y €1V 2d0 (01V 1d0 2IV) YHA(2Y91Y)
(01V 1d0 2IV) 2d0 (01V 1d0 21V) | (2udry)(cudry)
1Y €Y (1y=)2y 1IV-2d0 (0IV 1d0 21V)~
1Y £y (14=)2y 11V 2d0 (01V 1d0 2IV) - (19414)3¢Y
18 Y (149=)2y 11V 240 (01V 1d0 21V) P42 (1841Y)
18Y £y 2y 11V 2d0 (01V 1d0 2IV)-
1Y £y 2y 11V 2d0 (0IV 1d0 21V) (2uP1Y) ey
1y vy 2y 11V 240 (0IV 140 2IV) yY3(24%1Y)
21y 11V 01y do Ny

— EN 990014

1BM

- »vn pd R S
o T S I R o
\[RN PP i “ | % RV e -]
- 1 ., ar X s . ~ ™ .N_
{ oo 4 -
oy M‘M\.ﬁ.ﬂ: : e -3
T ﬂ # > M h i
DII D - e de b s e ——— o o
)
® g/ DIld
-+ -+ €IV 2d0 11V + OIY 1d0 21V (2y414)2(2y91y)
1Y ed | (1y¥=)2y -+ -4 (01Y 1d0 21V) 2d0 L1V (14914)€Y
1y 12 (1¥=)2y + -+ (01Y 1d0 2IV) 2d0 11Iv-
1y ¥y (1¥=)2y + -+ (01V 1d0 21V) 2d0 L1V pa(1821Y)

IBM — EN 990 014

10/ 13

b~

~—

| 1)

N
———(
1ivl o1y ¢t I
1 o/ f
LL
ov AW)
VL
oY L9
59
99
@ v
2IV]_1Iv] OLV] 29
yo—}- -
\\,mm

~—1"

09

cl

1L

Tohr o

Lt R

MRS ey,

'

FAL AON N4 A

IDAR

11/13

iBM — EN 990014

0P1
> 1 AGI2
2 —AGI2
3 /AGI2/
4 -/AG12/
5 AGI1 OP1 AGI2 AV, @ + -
6 AGIO + AGI2
7 AGIO ~ AGI2
8 AGIO + AGI2 + AGI3
9 AGIO — AGI2 + AGI3
10 AGIO + AGI2 — AGI3
11 AGIO — AGI2 — AGI3
12 AGIO + /AGI2/
13 AGIO - /AGI2/
14 AGIO + /AGI2/ + AGI3
15 AGIO + AGI2 + /AGI3/
16 AGIO + /AGI2/ + /AGI3/
17 AGIO — /AGI2/ + AGI3
18 AGIO + AGI2 — /AGI3/
19 AGIO - /AGI2/ - /AGI3/
20 AGIO + (AGI1 OP1 AGI2). AV,® +,-
21 AGIO + (AGI1 OP1 AGI2) + AGI3 AV, ® +,-
. 22 AGIO + (AGI1 OP1 AGI2) + (AGI3 OP1 AGI4) AV, ® + -
FIG. 10
YT T
3 o ! C
— : &

F3l
l ':'};?) 3 .l
! lc<ct - =
i i“f,';‘.f’ Y |
| jmzoe 4
j 12513 2
N -
! o<

{
¥
!
I
4

FLT0gg

0P1
1 BDI1 + BDI2 — BDI3
. 2 'BDI1 + BDI2 + BDI3
i 3 BDI1 + BDI2 + /BDI3/
4 BDI1 + BDI2 — /BDI3/
5 BDI1 - BDI2 — BDI3
6 BDI1 + /BDI2/ - BDI3
7 BDI1 - /BDI2/ - BDI3
8 (-8DIO) + BDI2 - BDI3
9 (-BDIO) - BDI2 - BDI3
10 (-BDIO) + BDI2 + BDI3
11 BDIO + BDI2 - BDI3
12 /BD10/ + BDI2 - BDI3
13 /BD10/ + BDI2 - /BDI3/
14 (-/BDI0/) + BDI2 — BDI3
15 (-/BDI0/) + BDI2 + /BDI3/
16 (-/BD10/) — /BDI2/ - BDI3
17 | /8DIO/ + /BDI2/ - BDI3
18 (BDIO OP1 BDI3) + BDI1 - BDI2
19 | BDI1 + BDI2 - (BDI3 OP1 BDIO) AV,® +,-
20 | BDI1 — BDI2 + (BDI3 OP1 BDIO) AV ® +-
21 BDI3 =1 -0
22 (-8DI3) -1 - 0
23 /BDI3/ -1 -0
24 (-/BDI3)) -1 -0
s 25 (BDI3 OP1 BDIO) — 1 - 0 AV, ® + -
. 26 (BDI3 OP1 BDIO) + BDI2 - (BDI3 OP1 BDIO) AV, ® +-
i 27 (BDI3 OP1 BDIO) — BDI2 + (BDI3 OP1 BDIO) AV, ® + -

{BM — EN 9390014

FIG. 12

13/13

BDI0 BDI1 BDI2 BDI3

-

] 108

1
1 <111
112 110
113
Béo
~ FIG. 13
* | - —t

D D ARRIE
b e
e
0z 10 %
3103
T
FIG. 11

{BM — EN 990014

viud
TARRTIS i
AZ3VY i Jed .
| avyn §

-

“M

‘Exs‘xfgs i
b
| |
i_ILIﬁO;(’_-;
| 1

]

	BIBLIOGRAPHY
	DESCRIPTION
	CLAIMS
	DRAWINGS

