(43) International Publication Date

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Ny
Organization é
International Bureau -,

=

\

8 October 2015 (08.10.2015)

(10) International Publication Number

WO 2015/152747 A2

WIPOIPCT

(51
eay)

(22)

(25)
(26)
(30)

1

(72)
1

74

31

International Patent Classification: Not classified

International Application Number:
PCT/R0O2014/000018

International Filing Date:
2 July 2014 (02.07.2014)

Filing Language: English
Publication Language: English
Priority Data:

61/847,538 17 July 2013 (17.07.2013) US
14/289,163 28 May 2014 (28.05.2014) US

Applicant (for all designated States except US): BITDE-
FENDER IPR MANAGEMENT LTD [CY/CY]; Kreon-
tos 12, Nicosia, PC 1076 (CY).

Inventor; and

Applicant (for US only): LUTAS, Andrei-Vlad
[RO/RO]; Bld. Clogcanr.111, Satu Mare, Judet Satu Mare
(RO).

Agent: TULUCA, Doina; Bd. Lacul Tei 56, bl. 19, sc. B,
ap. 52, sector 2, R-020392 Bucuresti (RO).

Designated States (unless otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,
BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,
DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,

(84)

HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR,
KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME,
MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ,
OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA,
SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM,
TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM,
ZW.

Designated States (uniess otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ,
UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,
TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
EE, ES, FL, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM,
TR), OAPI (BF, BJ, CF, CG, CIL, CM, GA, GN, GQ, GW,
KM, ML, MR, NE, SN, TD, TG).

Declarations under Rule 4.17:

as to applicant'’s entitlement to apply for and be granted a
patent (Rule 4.17(i1))

as to the applicant's entitlement to claim the priority of the
earlier application (Rule 4.17(iii))

Published:

without international search report and to be republished
upon receipt of that report (Rule 48.2(g))

20157152747 A2 I 000 0T OO0 O A 0

(54) Title: PAGE FAULT INJECTION IN VIRTUAL MACHINES

32a 32b
Guest virtual machine Guest virtual machine
42a 42¢
/42b 42d
App. App. 34a App. App. 34b
Guest OS Guest OS
30 N
40
Hypervisor . Mc“.““y .
introspection engine
10 Host system hardware

FIG. 1

(57) Abstract: Described systems and methods allow protecting a host system from malware using virtualization technology. In
some embodiments, a memory introspection engine operates below a virtual machine (VM) executing on the host system. The en-
gine is configured to analyze the content of a virtual memory page used by software executing within the VM, and/or to protect the

o respective content from unauthorized modification, for instance by malware. When the respective content is swapped out of memory,

W

the memory introspection engine injects a page fault into the respective VM, to force a swap-in of the respective content.



10

15

20

25

WO 2015/152747 PCT/RO2014/000018

Page Fault Injection in Virtual Machines

RELATED APPLICATIONS
[0001] This application claims the benefit of the filing date of U.S. provisional patent application
No. 61/847,538, filed on July 17, 2013, entitled “Page Fault Injection In Virtual Machines”, the

entire contents of which are incorporated by reference herein.

BACKGROUND
[0002] The invention relates to systems and methods for protecting computer systems from

malware.

[0003] Malicious software, also known as malware, affects a great number of computer systems
worldwide. In its many forms such as computer viruses, worms, rootkits, and spyware, malware
presents a serious risk to millions of computer users, making them vulnerable to loss of data and

sensitive information, identity theft, and loss of productivity, among others.

[0004] Hardware virtualization technology allows the creation of. simulated computer
environments commonly known as virtual machines, which behave in many ways as physical
computer systems. In typical applications such as server consolidation and infrastructure-as-a-
service (IAAS), several virtual machines may run simultaneously on the same physical machine,
sharing the hardware resources among them, thus reducing investment and operating costs. Each
virtual machine may run its own operating system and/or software applications, separately from
other virtual machines. Due to the steady proliferation of malware, each virtual machine

operating in such an environment potentially requires malware protection.

[0005] A virtualization solution commonly used in the art comprises a hypervisor, also known as
a virtual machine monitor, consisting of a layer of software operating between the computing
hardware and the operating system (OS) of a virtual machine, and having more processor
privileges than the respective OS. Anti-malware operations may be conducted at the privilege
level of the hypervisor. Although such configurations may increase security, they introduce an

extra layer of complexity and may carry significant computational costs.



10

15

20

25

WO 2015/152747 PCT/RO2014/000018

[0006] There is considerable interest in developing efficient, robust, and scalable anti-malware

solutions for hardware virtualization platforms.

SUMMARY
[0007} According to one aspect, a host system comprises a hardware processor configured to
operate a hypervisor and a memory introspection engine. The hypervisor is configured to expose
a virtual machine comprising a virtualized processor and a virtualized memory, the virtual
machine configured to employ the virtualized processor to execute a target process. The
memory introspection engine executes outside the virtual machine and is configured to determine
according to a page table of the virtual machine whether a target page of a virtual memory space
of the target process is swapped out of the virtualized memory, and in respons€, when the target
page is swapped out of the virtualized memory, to directly inject a page fault into the virtual
machine, the page fault causing an operating system of the virtual machine to map the target

page to a page of the virtualized memory.

[0008] According to another aspect, a method comprises employing at least one hardware
processor of a host system to execute a hypervisor, the hypervisor configured to expose a virtual
machine comprising a virtualized processor and a virtualized memory, the virtual machine
further configured to employ the virtualized processor to execute a target process. The method
further comprises employing the at least one hardware processor to determine whether a target
page of a virtual memory space of the target process is swapped out of the virtualized memory,
and in response, when the page is swapped out of the virtualized memory, employing the at least
one hardware processor to directly inject a page fault into the virtual machine, the page fault
causing an operating system of the virtual machine to map the target page to a page of the

virtualized memory.

[0009] According to another aspect, a non-transitory computer-readable medium stores
instructions which, when executed by at least one hardware processor of a host system, cause the
host system to form a memory introspection engine, wherein the host system is further
configured to execute a hypervisor exposing a virtual machine comprising a virtualized processor

and a virtualized memory, the virtual machine configured to employ a virtualized processor to



10

15

20

25

WO 2015/152747 PCT/RO2014/000018

execute a target process. The memory introspection engine executes outside the virtual machine
and is configured to determine according to a page table of the virtual machine whether a target
page of a virtual memory space of the target process is swapped out of the virtualized memory,
and in response, when the target page is swapped out of the virtualized memory, directly inject a
page fault into the virtual machine, the page fault causing an operating system of the virtual

machine to map the target page to a page of the virtualized memory.

BRIEF DESCRIPTION OF THE DRAWINGS
[0010] The foregoing aspects and advantages of the present invention will become better
understood upon reading the following detailed description and upon reference to the drawings

where:

[0011] Fig. 1 shows an exemplary set of virtual machines exposed by a hypervisor executing on
a host system, and a memory introspection engine protecting the set of virtual machines from

malware according to some embodiments of the present invention.

[0012] Fig. 2 shows an exemplary hardware configuration of the host system according to some

embodiments of the present invention.

[0013] Fig. 3 shows an exemplary configuration of virtualized hardware exposed to a guest

virtual machine according to some embodiments of the present invention.

[0014] Fig. 4 illustrates an exemplary hierarchy of software objects executing on the host system

at various processor privilege levels, according to some embodiments of the present invention.

[0015] Fig. 5 shows an exemplary mapping of memory addresses and an exemplary swapping of
a memory page in and out of virtualized memory according to some embodiments of the present

invention.

[0016] Fig. 6 shows an exemplary sequence of steps executed by the memory introspection
engine to protect a virtual machine from malware according to some embodiments of the present

invention.



10

15

20

25

WO 2015/152747 PCT/RO2014/000018

[0017] Fig. 7 shows an exemplary sequence of steps performed by the memory introspection to

carry out a direct page fault injection according to some embodiments of the present invention.

[0018] Fig. 8 shows an exemplary sequence of steps illustrating an application of the methods of

Figs. 6-7, according to some embodiments of the present invention.

.[0019] Fig. 9 shows an exemplary sequence of steps illustrating another application. of the

methods of Figs. 6-7, according to some embodiments of the present invention.

[0020] Fig. 10 illustrates an exemplary determination of a set of virtual addresses of memory
pages containing data of a target process, according to some embodiments of the present

invention.

DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS
[0021] In the following description, it is understood that all recited connections between
structures can be direct ‘operative connections or indirect operative connections through
intermediary structures. A set of elements includes one or more elements. Any recitation of an
element is understood to refer to at least one element. A plurality of elements includes at least
two elements. Unless otherwise required, any described method steps need not be necessarily
performed in a particular illustrated order. A first element (e.g. data) derived from a second
element encompasses a first element equal to the second element, as well as a first element
generated by processing the second element and optionally other data. Making a determination
or decision according to a parameter encompasses making the determination or decision
according to the parameter and optionally according to other data. Unless otherwise specified,
an indicator of some quantity/data may be the quantity/data itself, or an indic‘ator different from
the quantity/data itself. Unless otherwise specified, a process is an instance of a computer
program, such as an application or a part of an operating system, and is characterized by having
at least an execution thread and a section of virtual memory assigned to it by the operating
system, the respective section comprising executable code. Unless otherwise specified, a page
represents the smallest unit of virtual memory individually mapped to a physical memory of a
host system. Unless otherwise specified, directly injecting a page fault into a virtual machine

comprises inducing a page fault event within a virtualized processor of the respective virtual

4



10

15

20

25

WO 2015/152747 PCT/RO2014/000018

machine without assistance from an operating system or other software executing within the
respective virtual machine. Such direct injection does not exclude the operating system or other
software from taking action in response to the injected page fault, for instance to handle the page
fault. Computer readable media encompass non-transitory media such és magnetic, optic, and
semiconductor storage media (e.g. hard drives, optical disks, flash memory, DRAM);, as well as
communication links such as conductive cables and fiber optic links. According to some
embodiments, the present invention provides, inter alia, computer systems comprising hardware
(e.g. one or more processors) programmed to perform the methods described herein, as well as

computer-readable media encoding instructions to perform the methods described herein.

[0022] The following description illustrates embodiments of the invention by way of example

and not necessarily by way of limitation.

[0023] Fig. 1 shows an exemplary configuration of a host system 10 employing hardware
virtualization for malware protection according to some embodiments of the present invention.
Host system 10 may represent a corporate computing device such as an enterprise server, or an
end-user device such as a personal computer or a smartphone. Other exemplary host systems
include entertainment devices such as TVs and game consoles, or any other device having a
memory and a processor, and requiring malware protection. In the example of Fig. 1, host
system 10 executes a set of guest virtual machines 32a-b, exposed by a hypervisor 30. A virtual
machine (VM) comprises an abstraction, e.g., a software emulation, of an actual physical
machine/computer system, the VM capable of running an operating system and other
applications. Hypervisor 30 includes software configured to create a plurality of virtualized
devices, such as a virtual processor and a virtual memory controller, and to present such
virtualized devices to software, in place of the real, physical devices of host system 10. In some
embodiments, hypervisor 30 allows a multiplexing (sharing) by multiple virtual machines of
hardware resources of host system 10. Hypervisor 30 may further manage such multiplexing so
that each VM operates independently and is unaware of other VMs executing concurrently
executing on host system 10. Examples of popular hypervisors include the VMware vSphere™

from VMware Inc. and the open-source Xen hypervisor, among others.



10

15

20

25

WO 2015/152747 PCT/RO2014/000018

[0024] Each VM 32a-b may execute a guest operating system (OS) 34a-b, respectively. A set of
exemplary applications 42a-d generically represent any software application, such as word
processing, image processing, media player, database, calendar, personal contact management,
browser, gaming, voice communication, data communication, and anti-malware applications,
among others. Operating systems 34a-b may comprise any widely available operating system
such as Microsoft Windows®, MacOS®, Linux®, iOS®, or Android™, among others. Each OS
provides an interface between applications executing within a virtual machine and the virtualized
hardware devices of the respective VM. In the following description, software executing on a
virtual processor of a virtual machine is said to execute within the respective virtual machine.
For instance, in the \éxample of Fig. 1, applications 42a-b are said to execute within guest
VM 32a, while applications 42¢c-d are said to execute within guest VM 32b. In contrast,

hypervisor 30 is said to execute outside, or below, guest VMs 32a-b.

[0025] In some embodiments, hypervisor 30 includes a memory introspection engine 40,
configured to perform anti-malware operations as described further below. Engine 40 may be
incorporated into hypervisof 30, or may be delivered as a software component distinct and
independent from hypervisor 30, but executing at substantially similar processor privilege level
as hypervisor 30. A single engine 40 may be configured to malware-protect multiple VMs

executing on host system 10.

[0026] Fig. 2 shows an exemplary hardware configuration of a host system 10. System 10
comprises a set of physical devices, including a processor 12, a memory unit 14, a set of input
devices 16, a set of output devices 18, a set of storage devices 20, and a set of network
adapters 22, all connected by a controller hub 24. In some embodiments, processor 12 comprises
a physical device (e.g. multi-core integrated circuit formed on a semiconductor substrate)
configured to execute computational and/or logical operations with a set of signals and/or data.
In some embodiments, such logical operations are delivered to processor 12 in the form of a
sequence of processor instructions (e.g. machine code or other type of software). Memory
unit 14 may comprise volatile computer-readable media (e.g. RAM) storing data/signals

accessed or generated by processor 12 in the course of carrying out instructions.



10

15

20

25

WO 2015/152747 PCT/RO2014/000018

[0027] Input devices 16 may include computer keyboards, mice, and microphones, among
others, including the respeétive hardware interfaces and/or adapters allowing a user to introduce
data and/or instructions into host system 10. Output devices 18 may include display devices
such as monitors and speakers among others, as well as hardware interfaces/adapters such as
graphic cards, allowing host system 10 to communicate data to a user. In some embodiments,
input devices 16 and output devices 18 may share a common piece of hardware, as in the case of
touch-screen devices. Storage devices 20 include computer-readable media enabling the non-
volatile storage, reading, and writing of software instructions and/or data. Exemplary storage
devices 20 include magnetic and optical disks and flash memory devices, as well as removable
media such as CD and/or DVD disks and drives. The set of network adapters 22 enables host
system 10 to connect to a computer network and/or to other devices/computer systems.
Controller hub 24 represents the plurality of system, peripheral, and/or chipset buses, and/or all
other circuitry enabling the communication between processor 12 and devices 14, 16, 18, 20 and
22. For instance, controller hub 24 may include a memory controller, an input/output (I/O)
controller, and an interrupt controller, among others. In another example, controller hub 24 may
comprise a northbridge connecting processor 12 to memory 14 and/or a southbridge connecting

processor 12 to devices 16, 18, 20, and 22.

[0028] To enable configurations as shown in Fig. 1, hypervisor 30 may create a plurality of
virtualized devices, each emulating a physical hardware device of system ‘10. Hypervisor 30
may further assign a set of virtualized devices to each VM 32a-b, and control scheduling,
signaling, and communication so that VMs 32a-b can use processor 12 and other hardware
devices concurrently. Performing such operations is also known in the art as exposing VMs 32a-

b.

[0029] Fig. 3 shows an. exemplary configuration of a virtual machine 32, as exposed by
hypervisor 30. VM 32 may represent, for instance, any of VMs 32a-b of Fig. 1. VM 32 includes
a virtualized processor 112, a virtualized memory unit 114, virtualized input devices 116,
virtualized output devices 118, virtualized storage 120, virtualized network adapters 122, and a
virtualized controller hub 124. Virtualfzed processor 112 comprises an emulation of at least

some of the functionality of processor 12, and is configured to receive for execution processor

7



10

15

20

25

WO 2015/152747 PCT/RO2014/000018

instructions forming part of software, such as the operating system and other applications.
Software using processor 112 for execution is deemed to execute within virtual machine 32. In
some embodiments, virtualized memory unit 114 comprises addressable spaces for storing and
retrieving data used by virtualized processor 112. Other virtualized devices (e.g., virtualized
input, output, storage, etc.) emulate at least some of the functionality of the respective physical
devices of host system 10. Virtualized processor 112 may be configured to interact with such
devices as it would with the corresponding physical devices. For instance, software executing
within VM 32 may send and/or receive network traffic via virtualized network adapter(s) 122. In
some embodiments, hypervisor 30 may expose only a subset of virtualized devices to VM 32 (for
instance, only virtualized processor 112, virtualized memory 114, and parts of hub 124).
Hypervisor 30 may also give a selected VM exclusive use of some hardware devices of host
system 10. In one suéh example, VM 32a (Fig. 1) may have exclusive use of input devices 16
and output devices 18, but lack a virtualized network adapter. Meanwhile, VM 32b may have

exclusive use of network adapter(s) 22.

[0030] ‘Fig. 4 illustrates a hierarchy of software objects executing on host system 10 according to
some embodiments of the present invention. Fig. 4 is represented from the perspective of

processor privilege levels, also known in the art as layers or protection rings. In some

“embodiments, hypervisor 30 takes control of processor 12 at the most privileged level (e.g.,

VMXroot on Intel® platforms supporting virtualization, also known as ring -1, or root mode),
thus creating a hardware virtualization platform exposed as virtual machine 32 to other software
executing on host system 10. An operating system 34, such as OSs 34a-b in Fig. 2, executes
within the virtual environment of VM 32, OS 34 having lesser processor privilege than
hypervisor 30 (e.g., ring 0 on Intel platforms, or kernel mode). A set of applications 42e-f
execute at lesser processor privilege than OS 34 (e.g., ring 3, or user rﬁode). Parts of
applications 42e-f may execute at kernel privilege level (for instance, driver 36 installed by
application 42f; an exemplary driver 36 performs anti-malware operations such as detecting
malware-indicative behavior of software objects and/or detecting malware-indicative signatures

within software objects). Similarly, parts of OS 34 may execute in user mode (ring 3).



10

15

20

25

30

WO 2015/152747 PCT/RO2014/000018

[0031] In some embodiments, introspection engine 40 executes substantially at the same
processor privilege level as hypervisor 30, and is configured to perform introspection of virtual
machines executing on host system 10, such as VM 32. Introspection of a VM or of a software
object executing within the respective VM may comprise analyzing a behavior of the respective
software object, for instance, identifying a set of operations performed by the object (for
instance, issuing a system call, accessing a registry of the OS, downloading a file from a remote
location, writing data to a file, etc.). Introspection may further comprise determining addresses
of memory sections containing parts of the software object, accessing the respective memory
sections, and analyzing a content stored within the respective memory sections. Other examples
of introspection include intercepting and/or restricting access of certain processes such memory
sections, e.g., preventing a process from over-writing code or data used by another process. In
some embodiments, objects selected for introspection by engine 40 comprise processes, '
instruction streams, registers, and data structures such as page tables and driver objects of the

respective VM, among others.

[0032] To perform introspection of VM 32 in a configuration as illustrated in Fig. 1 (i.e., from
outside the respective VM), some embodiments of engine 40 employ memory mapping
structures and mechanisms of processor 12. Virtual machines typically operate with a virtualized
physical memory, e.g., memory 114 in Fig. 3, also known in the art as guest-physical memory.
Virtualized physical memory comprises an abstract representation of the actual physical
memory 14, for instance as a contiguous space of virtualized addresses specific to each guest
VM, with parts of said space mapped to addresses within physical memory 14 and/or physical
storage devices 20. In systems configured to support virtualization, such mapping is typically
achieved by dedicated data structures controlled by processor 12, known a second level address
translation (SLAT). Popular SLAT implementations include extended page tables (EPT, on
Intel® platforms), and nested page tables (NPT, on AMD® platforms). In such systems,

virtualized physical memory may be partitioned in units known in the art as pages, a page

representing the smallest unit of virtualized physical memory individually mapped to physical

memory via mechanisms such as EPT and/or NPT, i.e., mapping between physical and
virtualized physical memory is performed with page granularity. All pages typically have a

predetermined size, e.g., 4 kilobytes, 2 megabytes, etc. The partitioning of virtualized physical
9



10

15

20

25

WO 2015/152747 PCT/RO2014/000018

- memory into pages is usually configured by hypervisor 30. In some embodiments, hypervisor 30

also configures the EPT/NPT and therefore the mapping between physical memory and
virtualized physical memory. The actual mapping (translation) of a virtualized physical memory
address to a physical memory address may comprise looking up the physical memory address in
a translation lookaside buffer (TLB) of host system 10. In some embodiments, address
translation corhprises performing a page walk, which includes a set of successive address look-
ups in a set of page tables and/or page directories, and performing calculations such as adding an

offset of a page to an address relative to the respective page.

[0033] Some hardware configurations allow hypervisor 30 to selectively control access to data
stored within eéch page of physical memory 14, e.g., by setting read, write, and/or.execute
access rights to the respective page. Such rights may be set, for instance, by modifying an entry
of the respective page within the EPT or NPT. Hypervisor 30 may thus select which software
object may access data stored at the addresses within each page, and may indicate which
operations are allowed with the respective data, e.g., read, write, execute. An attempt by a
software object executing within a VM to perform an operation, such as writing data to a page to
which the object does not have the réspective right, or executing code from a page marked as

non-executable, may trigger a virtual machine exit event (e.g. a VMEXit event on Intel

.platforms). In some embodiments, virtual machine exit events transfer control of the processor

from the VM executing the respective software object to hypervisor 30. Such transfers may
allow software executing at the processor privilege level of hypervisor 30 to intercept the
unauthorized write or execute attempt. In some embodiments, introspection engine 40 performs

such interceptions as part of anti-malware operations.

[0034] In some embodiments, OS 34 configures a virtual memory space for a process such as
applications 42e-f in Fig.4, by maintaining a mapping (address translation) between the
respective virtual memory space and the virtualized physical memory of VM 32, for instance
using a page table mechanism. In some embodiments, the process virtual memory space is also
partitioned into pages, such pages representing the smallest unit of virtual memory individually
mapped to virtualized physical memory by OS 34, i.e., virtual to virtualized-physical memory

mapping is performed with page granularity.

10



10

15

20

25

WO 2015/152747 PCT/RO2014/000018

[0035] Fig. 5 illustrates an exemplary mapping of memory addresses in an embodiment as
shown in Fig. 4. A software object, such as an application, a process, or a part the operating
system executing within guest VM 32, is assigned a virtual memory space 214a by guest OS 34.
When the software object attempts to access a content of an exemplary memory page 60a of
space 214a, an address of page 60a is translated by the virtualized processor of guest VM 32 into
an address of a page 60b of virtualized physical memory space 114 of VM 32, according to page
tables configured and controlled by guest OS 34. Hypervisor 30, which configures and controls
virtualized physical memory 114, then maps the address of page 60b to an address of a page 60¢
within physical memory 14 of host system 10, for instance using SLAT means as discussed

above.

[0036] In some embodiments, hypervisor 30 sets up its own virtual memory space 214b
comprising a representation of physical memory 14, and employs a translation mechanism (for
instance, page tables) to map addresses in space 214b into addresses in physical memory 14. In
Fig. 5, such an exemplary mapping translates an address of page 60c into an address of a
page 60h. Such mappings allows hypervisor 30 to manage (e.g., read from, write to, and control
access to) memory pages belonging to software objects executing within various VMs running

on host system 10.

[0037] Fig. § further illustrates a page swapping operation performed by guest OS 34. Page

swapping is a common feature of modern operating systems, used to efficiently manage available

memory resources. In some embodiments, swapping a page out of memory comprises the OS
moving a content of the respective page from memory to a storage device (e.g., disk), so that the
respective page may be used to store other data. At a later time, the OS may perform a swap-in
of the page, by moving the respective content back from storage into memory, possibly at an
address distinct from address of the original page storihg the content. To complete the swap-in,
the OS may modify a page table entry of the respective page to reflect the address change. In the
example illustrated in Fig. 5, page 60c¢ is swapped out to a page 60d on a storage device. Since
OS 34 executes within a virtual machine, OS 34 sees virtualized physical memory 114 as its
physical memory, and virtualized storage device 120 as its physical storage. So swapping

page 60c out of memory effectively comprises moving a content of page 60c to virtualized

11



10

15

20

25

WO 2015/152747 PCT/RO2014/000018

storage device 120. Device 120 may comprise an abstraction created by hypervisor 30 of
physical storage device 20, so the content of page 60d may actually be redirected to a page 60k
on device 20. In some embodiments, hypervisor 30 may give guest VM 32 direct access to
stérage device 20, for instance using VT-d technology from Intel®. In such configurations,
virtualized storage device 120 may coincide with an actual physical storage device of host
system 10. To perform a swap-in, OS 34 may move the content of page 60d to a page 60e of
virtualized physical memory 114.  Guest OS 34 méy further modify a page table entry
corresponding to page 60a to indicate an address translation from page 60a to page 60e (dashed

arrow in Fig. §). Page 60e may be mapped to a page 60m in physical memory 14.

[0038] Fig. 6 shows an exemplary sequence of steps performed by memory introspection
engine 40 to protect a virtual machine from malware according to some embodiments of the

present invention. Such anti-malware protection include, for instance, identifying a page

| (hereafter deemed targét page) of a memory space of a selected process (hereafter deemed target

process) executing within the respective VM, and protecting the content of the respective page
from unauthorized modification, e.g., by a malicious software entity. In another example,
introspection engine 40 may determine whether the target page contains malicious code. The
target process may belong, for instance, to an application such as applications 42e-f, or to guest
OS 34 in Fig. 4. When the target process executes at user-level processor privilege (e.g., user
mode in Windows®), the content of the target page may not reside in memory at all times, but
instead may be occasionally swapped in and out of memory by the OS. By executing outside the
VM 32, memory introspection engine 40 may not have direct access to the content of such

swapped-out memory pages.

[0039] In a sequence of steps 302-304, engine 40 waits until the current execution context is that
of the target process, i.e., until the currently executing instructions belong to the target process.
Determining the current execution context may comprise, for instance, reading a content of a
CR3 register of the virtual processor of the respective VM (the CR3 register of x86 platforms
stores an address of a paging structure, which uniquely identifies each executing process). When
the execution context is that of the target process, in a sequence of steps 306-308, engine 40 may

determine whether the content of the target page is currently swapped out of memory. When the

12



10

15

20

25

WO 2015/152747 PCT/RO2014/000018

content of the target page is in memory, in a step 316, engine 40 may proceed to introspect the
target page, e.g., to analyze and/or protect the content df the target page. When the content of
the target page is currently swapped out, in a step 310, engine 40 directly injects a page fault into
the respective VM, to force a swap-in >of the target page as described in more detail below. Next,
in a sequence of steps 312-314, engine 40 waits until the target page is swapped in, i.e., until the
content of the respective page is mapped to the virtualized physical memory of the respective

VM, to perform introspection.

[0040] To determine whether the target page resides in memory (steps 306-308), as well as to
determine whether the target page has been swapped in (steps 312-314), memory introspection
engine 40 may access a content of a page table set up by OS 34. In some embodiments, a field
(e.g., a dedicated bit) of the page table entry of the target page indicates whether the respective

page is currently present in memory.

[0041] Fig. 7 illustrates an exemplary sequence of steps performed by engine 40 to directly
inject a page fault, thus forcing the swap-in of the target page (step 310 in Fig. 6). In a step
sequence 322-324, engine 40 evaluates a current state or virtual processor 112 to determine
whether a page fault exception can be safely injected into VM 32. Step 322 may comprise
evaluating the priority of interrupt requests currently under processing. In a Microsoft
Windows® system, such evaluation may comprise determining a current interrupt request level
(IRQL), for instance by looking up a content of a segment register of VM 32. Such exemplary
registers include thelFS and/or GS registers of the x86 processor architec{ure, storing a pointer to
a data structure including the IRQL. In an exemplary embodiment, when IRQL<2, injecting a
page fault is considered safe. When there are higher-priority interrupts in waiting (e.g.,

IRQL>2), steps 322-324 wait for the high-priority requests to be serviced.

[0042] In some embodiments, step 322 may include determining the privilege level (ring) that
virtual processor 112 is currently executing at. In host systems running Microsoft Windows®,
while the processor is executing in user mode (ring 3), IRQL is zero, so injection of a page fault

corresponding to a user-mode page may be considered safe. When processor 112 executes in

13



10

15

20

25

WO 2015/152747 PCT/RO2014/000018

kernel mode (ring 0), additional determinations may be needed to infer whether fault injection is

safe.

[0043] A sequence of steps 326-328 injects a page fault exception into VM 32, the exception
configured to trigger a swap-in of the target page. In an exemplary embodiment, in step 326,
engine 40 writes a virtual address of the target page into the CR2 register of the virtual processori
of the respective VM, indicating to OS 34 which virtual page to swap into memory. Next, in
step 328, engine 40 triggers the exception within virtualized processor 112, for instance by
writing to a set of control bits of a virtual machine control structure (VMCS) of VM 32, the
respective control bits configurable to trigger a page fault within the respective VM. On Intel®
processors configured to support virtualization, such control bits are part of the VM Entry Event

Injection field of the VMCS.

[0044] VM control structures are a special kind of data structures maintained by hypervisor 30 to

~ describe guest VMs executing on host system 10. The format of the VMCS may be

implementation- and/or platform-specific. For VMs comprising multiple virtualized
processors 112, hypervisor 30 may maintain a distinct VMCS for each virtual processor. In
some embodiments, each VMCS may comprise a guest state area and a host state area, the guest
state area storing data such as CPU state and/or content of control registers of the respective
virtual processor, and the host state area storing similar data for hypervisor 30. In some
embodiments, processor 12 associates a region in memory with each VMCS, named VMCS
region. Software may reference a specific VMCS using an address of the region (e.g., a VMCS
pointer). At any given time, at most one VMCS may be loaded on processor 12, representing the

VM currently having control of the processor.

[0045] Figs. 8-9 show exemplary applications of some embodiments of the present invention in a
Windows® environment. Fig. 8 illustrates a sequence of steps performed by engine 40 to
determine a virtual memory address of a main executable of a target process. In a step 332,
engine 40 may detect a launch of the target process. Step 332 may employ any method known in
the art, such as intercepting a mechanism of the OS that manages the list of active processes. For

instance, in Windows®, each time a process is created, an indicator of the respective process is

14



10

15

20

25

WO 2015/152747 PCT/RO2014/000018

inserted into the list of active processes; the indicator is removed from the list upon termination
of the respective process. In some embodiments, upon launching a process, OS 34 also sets up a
process-specific data structure known as a process environment block (PEB) comprising data
used by OS 34 to manage resources associated to the respective process. By intercepting (e.g.,
placing a hook on) an OS instruction to insert the target process into the list of active processes,
engine 40 may obtain information such as a memory address of the respective PEB, which
engine 40 may extract in a step 334. In Windows, the virtual address of the PEB is stored in a
data structure of the OS, known as the executive process block (EPROCESS). Fig. 10 shows an

illustrative diagram of such process-specific data structures.

[0046] Being a user-level data structure, the virtual memory page containing PEB data may or
may not currently reside in memory. In a step 336 engine 40 determines whether the respective
virtual memory page is swapped out, and if no, in a step 340 engine 40 proceeds to determine a
virtual address of the main executable of the target process, for instance by parsing the PEB data.
When the PEB data is currently swapped out of memory, a step 338 forces a swap-in of the
respective page containing PEB data, using for example, a mechanism as described above in

relation to Fig. 7.

[0047] Fig. 9 shows an exemplary sequence of steps carried out by engine 40 to perform
memory introspection of an executable module (such as a library) loaded by the target process.
Malware often uses DLLs as vectors for carrying malicious code, so analyzing the content of
such libréries may be important for anti-malware operations. After accessing the virtual page
containing PEB data in a step 342 (see e.g., steps 336-338 above), in a sequence of steps 344-
346-348 engine 40 identifies a target module, e.g., a dynamic-link library (DLL), used by the
target process, and determines whether the respective module has loaded. When the target
module has loaded, engine 40 may determine a virtual address of ‘the respective module in a
step 350, for instance according to a specific data field of the PEB (see e.g., Fig. 10). In a
step 352, engine 40 determines whether the virtual page containing module data and residing at
the address determined in step 350 is currently swapped out of memory, and when no, in a
step 356, proceeds to perform memory introspection of the respective module. When the virtual

page of the respective module is currently swapped out, in a step 354, engine 40 forces a swap-in

15



10

15

20

25

WO 2015/152747 PCT/RO2014/000018

of the respective virtual page using, for instance, the mechanism described above in relation to

Fig. 7.

[0048] Fig. 10 shows an exemplary determination of virtual addresses in a Windows®
environment. In some embodiments, OS 34 maintains a kernel virtual memory space 214d,
wherein a page located at virtual address 60p contains a part of the EPROCESS structure used by
OS 34 to manage execution of the target process. Address 60p may be determined, for instance,
by intercepting the launch of the target process (see, e.g., step 332 in Fig. 8). A field of the
EPROCESS data structure holds an indicator (e.g., a pointer) of the process environment block
(PEB) of the target process. The pointer indicates a virtual address 60q within a process virtual
memory 214e assigned to the target process by OS 34. The PEB structure further includes a
pointer to a structure (LDR data) containing information about executable modules (e.g.
libraries) loaded by the target process. The LDR data is located at an address 60r within
space 214e. By walking the hierarchy of process management data structures set up by OS 34,
introspection engine 40 may thus determine a plurality of virtual addresses of objects targeted for
introspection. When the content of memory pages located at such addresses is swapped out of
RAM, engine 40 may force OS 34 to swap the respective pages’ in using methods described

herein.

[0049] The exemplary systems and methods described above allow protecting a host system
from malware using virtualization technology. In some embodiments, a memory introspection
engine operates below the virtual machines executing on the host system. The memory
introspection engine may protect a virtual machine by analyzing the contents of a memory page
used by a process executing within the respective virtual machine. The introspection engine may
thus determine, from outside the respective VM, whether the code of the respective process

contains malware.

[0050] In some embodiments, the introspection engine may also prevent an unauthorized
modification (e.g., by malware) of some critical objects, such as certain drivers and page tables,

among others. To protect such an object, some embodiments may prevent changes by

16



10

15

20

25

WO 2015/152747 PCT/RO2014/000018

intercepting an attempt to write to a memory page allocated to the respective object. Such

interceptions may be performed from the level of the hypervisor.

[0051] In conventional anti-malware systems, security applications execute at a processor
privilege level similar to that of the operating system or of common applications. Such systems
may be vulnerable to advanced malware also operating at the privilege level of the operating
system. In contrast, in some embodiments of the present invention, a hypervisor executes at the
most privileged level (e.g., root mode or ring -1), displacing the operating system to a vfrtual
machine. The memory introspection engine may execute at the same processor privilege level as
the hypervisor. Anti-malware operations may thus be conducted from a processor privilege level
higher than that of the operating system. In some embodiments, a single memory introspection
engine may protect multiple virtual machines executing concurrently on the respective computer

system.

[0052] Although the memory introspection engine executes outside the virtual machine targeted
for protection, the engine may determine virtual addresses used by software objects running
within the protected VM. However, when such virtual addresses point to content of pages which
are currently swapped out of memory by the operating system, the memory introspection engine
does not have access to the respective content. In some embodiments of the present invention,
when a page is currently swapped out, memory introspection engine may force the OS to swap
the respective page in, making the content of fhe respective page available for analysis and/or
protection. To force the swap-in, the memory introspection engine may trigger a processor
event, such as a page fault exception, within the virtualized processor of the respective virtual
machine, the processor event configured to cause the operating system to bring the swapped-out
page back to memory. Triggering the processor event may comprise, for instance, writing to a
set of control bits of a virtual machine control structure used by the respective virtual machine.
The memory introspection engine may thus inject a page fault into the respective virtual machine

without assistance from the OS or from other software executing within the respective VM.

17



WO 2015/152747 PCT/RO2014/000018

[0053] 1t will be clear to a skilled artisan that the above embodiments may be altered in many
ways without departing from the scope of the invention. Accordingly, the scope of the invention

should be determined by the following claims and their legal equivalents.

18



10
11
12
13

WO 2015/152747 PCT/RO2014/000018

CLAIMS

What is claimed is:

1. A host system comprising a hardware processor configured to operate:

a hypervisor configured to expose a virtual machine comprising a virtualized processor
and a virtualized memory, the virtual machine configured to employ the
virtualized processor to execute a target process; and

a memory introspection engine executing outside the virtual machine and configured to:
determine according to a page table of the virtual machine whether ‘a target page

| of a virtual memory space of the target process is swapped out of the
virtualized memory; and

in response, when the target page is swapped out of the virtualized memory,

directly inject a page fault into the virtual machine, the page fault causing

an operating system of the virtual machine to map the target page to a

page of the virtualized memory.

2. The host system of claim 1, wherein directly injecting the page fault comprises

modifying a data structure used by the hypervisor to operate the virtualized processor.

3. The host system of claim 2, wherein the data structure comprises a virtual

machine control structure (VMCS) assigned to the virtualized processor.

4. The host system of claim 1, wherein directly injecting the page fault comprises the
memory introspection engine writing a virtual address of the target page to a register

of the virtualized processor.

5. The host system of claim 1, wherein the memory introspection engine is further

configured to:

19



WO 2015/152747 PCT/RO2014/000018

10.

11.

in preparation for directly injecting the page fault, determine whether an injection
condition is satisfied according to a current state of the virtualized
processor; and

in response, directly inject the page fault when the injection condition is satisfied.

The host system of claim 5, wherein determining whether the event injection
condition is satisfied comprises determining an interrupt request level (IRQL) of

the virtualized processor.

The host system of claim 5, wherein determining whether the event injection
condition is satisfied comprises determining a privilege level that the virtualized

processor is currently executing at.

The host system of claim 5, wherein determining whether the event injection
condition is satisfied comprises determining a current execution context of the

virtualized processor.

The host system of claim 1, wherein the memory introspection engine is further

configured, in response to directly injecting the page fault, to:

detect a modification of a page table entry of the target page; and
in response, determine whether the target page was mapped to the page of the

virtualized memory according to the modification.

The host system of claim 1, wherein the memory introspection engine is further
configured to determine whether the target process is malicious according to a content

of the target page.

The host system of claim 1, wherein the memory introspection engine is further

configured to intercept an attempt to modify a content of the target page'.

20



10
11
12
13

WO 2015/152747 PCT/RO2014/000018

12.

13.

14.

16.

The host system of claim 1, wherein the memory introspection engine is further
configured, in preparation for determining whether the target page is swapped out of
the virtualized memory, to:
detect an event of the virtualized processor, the event indicative of a launch of the
target process within the virtual machine; and

in response, determine a virtual address of the target page according to the event.

A method comprising:

employing at least one hardware processor of a host system to execute a hypervisor, the
hypervisor configured to expose a virtual machine comprising a virtualized
processor and a virtualized memory, the virtual machine further configured to
employ the virtualized processor to execute a target process;

employing the at least one hardware processor to determine whether a target page of a
virtual memory space of the target process is swapped out of the virtualized
memory; and

in response, when the page is swapped out of the virtualized memory, employing the at
least one hardware processor to directly inject a page fault into the virtual
machine, the page fault causing an operating system of the virtual machine to map

the target page to a page of the virtualized memory.

The method of claim 13, wherein difectly injecting the page fault comprises

modifying a data structure used by the hypervisor to operate the virtualized processor.

15. - The method of claim 14, wherein the data structure comprises a virtual

machine control structure (VMCS) assigned to the virtualized processor.

The method of claim 13, wherein directly injecting the page fault comprises writing a

virtual address of the target page to a register of the virtualized processor.

21



WO 2015/152747 PCT/RO2014/000018

17.  The method of claim 13, further comprising, in preparation for directly injecting the
page fault:
employing the at least one hardware processor to determine whether an injection
condition is satisfied according to a current state of the virtualized
processor; and
in response, employing the at least one hardware processor to directly inject the

page fault when the injection condition is satisfied.

18.  The method of claim 17, wherein determining whether the event injection
condition is satisfied comprises determining an interrupt request level (IRQL) of

the virtualized processor.

19.  The method of claim 17, wherein determining whether the event injection
condition is satisfied comprises determining a privilege level that the virtualized

processor is currently executing at.

20.  The method of claim 17, wherein determining whether the event injection
condition is satisfied comprises determining a current execution context of the

virtualized processor.

21.  The method of claim 13, further comprising, in response to directly injecting the page
fault:
employing the at least one hardware processor to detect a modification of a page
table entry of the target page; and
in response, employing the at least one hardware processor to determine whether
the target page was mapped to the page of the virtualized memory

according to the modification.

22



10
11
12
13

14

25.

WO 2015/152747 PCT/R0O2014/000018

22.

23.

24.

The method of claim 13, further comprising employing the at least one hardware
processor to determine whether the target process is malicious according to a content

of the target page.

The method of claim 13, further comprising employing the at least one hardware

processor to intercept an attempt to modify a content of the target page.

The method of claim 13, further comprising, in preparation for determining whether
the target page is swapped out of the virtualized memory:
employing the at least one hardware processor to detect an event of the virtualized
processor, the event indicative of a launch of the target process within the
virtual machine; and ’
in response, employing the at least one hardware processor to determine a virtual

address of the target page according to the event.

A non-transitory computer-readable medium storing instructions which, when executed

~ by at least one hardware processor of a host system, cause the host system to form a

memory introspection engine, wherein the host system is further configured to execute a
hypervisor exposing a virtual machine comprising a virtualized processor and a
virtualized memory, the virtual machine configured to employ a virtualized processor to
execute a target process, wherein the memory introspection engine executes outside the
virtual machine, and wherein the memory introspection engine is configured to:
determine according to a page table of the virtual machine whether a target page
of a virtual memory space of the target process is swapped out of the
virtualized memory; and
in response, when the target page is swapped out of the virtualized memory,
directly inject a page fault into the virtual machine, the page fault causing
an operating system of the virtual machine to map the target page to a

page of the virtualized memory.

23



WO 2015/152747 PCT/RO2014/000018

1/7

32a 32b
Guest virtual machine Guest virtual machine
42a 42¢
42b | - 42d
App. App. 34a App. App. 3313
Guest OS Guest OS
30 ' -
40
Hypervisor . Mcrpory .
introspection engine
10 Host system hardware
FIG. 1
Y 12 24 —~ 14 ~
[ J /
Processor Memory
] N
16 . . 18
Input devices Controller Output devices
hub
/—!
20 . Network \
: Storage devices 22
‘ adapter(s)
Host system 7

—
o

FIG. 2



WO 2015/152747 PCT/RO2014/000018
2/7
/“ 112 124 ~ 114 ~
A L
Virtualized Virtualized
processor memory P
116 Virtualized Vlrmahﬁed Vittualized 118
i devices controter output devices
mnput hub p 4
— :
120 Virtualized Virtualized \
. 122
storage devices netw. adapter(s)
Guest VM j
32
FI1G. 3
Guest VM 42¢ 42f
Application Application
Uler teve/ PP PP
———————————— 4;——————————:’-_-——————
Kerned teved |
/) Guest OS '
34 . 36
Driver
Rot bered | T T T T
Hypervisor Memory introspection engine
32
30 40

FIG. 4




WO 2015/152747 PCT/R0O2014/000018
3/7
32
GuestvM T i
I I
[Guest O3 - T ) i
214a a
| N\ |
[]] Process virtual : |
l memory : :
I | I
! | 60e }
: : swap-in 60d =
| 114 60b |
(. |
I{ Virtualized ’ Virtualized |
: physical memory / storage device :
| |
L B R S <l B
swap-out
30 60g

r-————"—— _\\— ______ U VY 1

I |
i Hypervisor 60}\ l

I |
| {| Hypervisor : |
: virtual memory N ,
| ’ == |
! \214b |
I

| | Physical memory :

| ,

! 147 60f  N60c “—60m {
E 20 Physical storage device N E
I !
I 1



WO 2015/152747

306

4/7

Determine current
execution context

Context is
target process?

Determine whether target page
is swapped out

308

Target page
swapped out?

310

Inject page

304

fault into VM

302

PCT/RO2014/000018

312

Determine whether target page

was swapped in

314

Tatget page
swapped in?

YES 316

Perform memory
introspection of target page

|

FIG. 6




WO 2015/152747

336

5/7

PCT/RO2014/000018

Determine whether exception
can be safely injected

322

Injection
safe?

324

Write virtual address of

target page to CR2 of the VM

326

Write event injection
control bits to VMCS
of the VM

328

FIG. 7

~

332

Detect launch of
target process

Determine virtual address of

) 334
Process Environment Block

340

PEB page
currently swapped
out?

Determine virtual memory
address of main executable

Force swap-in of page

containing PEB

338

FIG. 8



WO 2015/152747

Access PEB
page

6/7

PCT/RO2014/000018

344

342

356

350

of target module

Perform memory introspection

348

NO

Identify a target
process module

Determine whether
target module has loaded

346

Target module
loaded?

Determine virtual address
of target module

Page of target
module swapped out?

FIG.9

Force swap-in of page
containing target module data

354

352



WO 2015/152747 PCT/RO2014/000018

1/7

60p

Kernel virtual
memory

214d PEB address

EPROCESS -

Kerwel! tovel

60q /\/ 60t User teve/

Process virtual / E
/]

memory 5

214e

LDR Data

: Module
|PEB Data

FIG. 10



	Page 1 - front-page
	Page 2 - description
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - claims
	Page 21 - claims
	Page 22 - claims
	Page 23 - claims
	Page 24 - claims
	Page 25 - drawings
	Page 26 - drawings
	Page 27 - drawings
	Page 28 - drawings
	Page 29 - drawings
	Page 30 - drawings
	Page 31 - drawings

