Title: APPARATUS FOR TESTING DRILLING RIG AND METHOD THEREFORE

Abstract: The present invention provides an apparatus for testing a drilling rig used in a deep-sea environment, comprising: a test chamber formed inside which target test equipment can be inserted; a pressurised container in the test chamber storing a liquid for submerging the target test equipment; and an external pressure supply unit for pressurising the liquid such that the pressure of the liquid stored in the test chamber can reach the pressure of the deep sea.

요약서:
본 발명은, 심해 환경에서 사용되는 시추 장비를 데스트하는 시추 장비 태스트 장치에 있어서, 내부에 테스트 대상 장비가 탑재될 수 있도록 테스트 챠버가 형성되고, 상기 테스트 챠버에는 상기 테스트 대상 장비가 장착될 수 있도록 액체가 저장되는 압력 용기가 있으며, 상기 테스트 챠버에 저장된 액체의 압력이 심해 압력에 도달하도록 액체의 압력을 상승시키는 외압 공급 유닛을 포함하는 것을 특징으로 하는 시추 장비 테스트 장치를 제공한다.
명세서
발명의 명칭: 시추 장비 테스트 장치 및 방법

기술분야

[1] 본 발명은 시추 장비 테스트 장치 및 방법에 관한 것이다. 보다 상세하게는 BOP 장비와 같은 심해 환경에서 사용되는 시추 장비들을 심해 환경과 유사한 조건에 노출시켜 각종 테스트를 수행할 수 있도록 함으로써, 시추 장비에 대한 문제를 사전에 예방 및 관리할 수 있어 심해와 같은 실제 설치 현장에서 시추 장비의 설치 및 작동 과정을 원활하고 신속하게 수행할 수 있는 시추 장비 테스트 장치 및 방법에 관한 것이다.

배경기술

[3] 이러한 이유로 최근에는 지금까지 경제성이 없어 무시되어 왔던 근소한 한계 유전(marginal field)이나 심해 유전의 개발이 경제성을 가지게 되었다. 따라서, 최근에는 해저 체굴 기술의 발달로 더불어 심해 유전의 개발이 더욱 활발하게 이루어지고 있다.

[4] 중해의 해저 시추에는 근해의 일 지점에 정박하여 시추 작업을 하는 고정식 플랫폼이 주로 사용되었으나, 최근에는 3,000m 이상의 심해에서 시추 작업이 가능한 부유식 시추 설비가 개발되어 해저 시추에 이용되고 있다.

[6] 심해 유전의 개발에서는 안전이 최우선 목표가 되어야 하는데, 유전의 폭발 사고를 방지할 수 있는 최후 안전수단으로 BOP(Blowout Preventer) 장비가 해저 유전의 상황에 설치된다. BOP 장비는 해상에 부유하는 시추선의 라이저에 연결되어 해저 유전의 상단 웰헤드에 안착 결합되는데, 유전 내부로부터 오일 또는 가스가 분출되는 것을 방지할 수 있도록 다수개의 헬 장치 및 애놀라가 장착되어 있다.

[7] 이러한 BOP 장비는 심해 환경에 적합한 형태로 수심 3,000 m (4,300 psi) 이상의 고압의 환경에서 내압으로는 15,000 psi 압력을 견디도록 설계된다. 그러나, 실제 심해 유전에 설치되기 전까지 설계와 같은 환경에서의 테스트 과정을 거치지 않기 때문에, 실제 설치 현장 작업시 여러가지 문제가 발생한다.

[8] 일반적으로 BOP 장비에 대한 테스트는 BOP 장비를 이루는 각 부품에 대해 각각 별도로 외압을 가하거나 내압을 가하는 방식으로 부분적인 테스트가 이루어지고 전체 조립된 상태에서는 이러한 테스트를 수행할 수 있는 장치가
전무한 상대로서, 실제 환경과 같은 조건에서 다양한 방식의 테스트를 수행할 수 있는 장치가 절실히 요구되고 있다.

특히, BOP 장비에 대한 일반적인 테스트가 실제 심해 환경에서 진행되는 것이 아니라 단순히 시추선 내에서 또는 지상에서 수행되고 있기 때문에, 테스트 결과에 대한 정확도 및 신뢰도가 크게 저하된다면 문제가 있었다.

신형기술로는 국내등록특허 제10-1185286호가 있다.

발명의 상세한 설명

기술적 과제

본 발명의 목적은 BOP 장비와 같은 심해 환경에서 사용되는 시추 장비들을 심해 환경과 유사한 조건에 노출시켜 각종 테스트를 수행할 수 있도록 함으로써, 시추 장비에 대한 문제를 사전에 예방 및 관리할 수 있어 심해와 같은 실제 설치 현장에서 시추 장비의 설치 및 작동 과정을 원활하고 신속하게 수행할 수 있도록 하는 시추 장비 테스트 장치 및 방법을 제공하는 것이다.

본 발명의 다른 목적은 시추 장비가 투입되는 압력 용기를 해저에 위치시킴으로써, 시추 장비에 대한 실제 설치 작업과 동일한 방식으로 시추 장비를 설치할 수 있고, 이에 따라 시추 장비에 대한 다양한 테스트를 더욱 정확하게 수행할 수 있는 시추 장비 테스트 장치 및 방법을 제공하는 것이다.

본 발명의 또 다른 목적은 시추 장비가 투입되는 압력 용기를 욕상에 위치시킴으로써, 시추 장비의 설치 작업을 욕상의 크레인 등을 이용하여 편리하게 수행할 수 있고, 특히, 각종 설치 작업 및 테스트 작업을 욕상에서 수행할 수 있기 때문에 더욱 편리하고 신속한 테스트 작업을 가능하게 하는 시추 장비 테스트 장치 및 방법을 제공하는 것이다.

본 발명의 또 다른 목적은 시추 장비가 투입되는 압력 용기를 안벽에 인접한 해저에 위치시키고, 시추 장비를 투입 및 작동시키기 위한 부유식 시추 설비를 안벽에 인접한 해상에 위치시킴으로써, 부유식 시추 설비를 안벽과 연결된 제거 장치를 통해 용이하게 위치 고정시킬 수 있고, 이에 따라 부유식 시추 설비의 위치 고정을 위한 별도의 DP 시스템 등을 작동하지 않더라도 안정적인 상태에서 더욱 편리하고 신속하게 시추 장비에 대한 테스트 작업을 수행할 수 있는 시추 장비 테스트 장치 및 방법을 제공하는 것이다.

본 발명의 다른 목적은 테스트 채비가 형성된 압력 용기에 대해 수평 이동 방식으로 시추 장비가 테스트 채비에 투입될 수 있도록 구성함으로써, 별도의 크레인 장비 없이도 시추 장비를 단순히 수평 이동시키는 방식으로 편리하고 신속하게 테스트 채비에 투입할 수 있고, 이에 따라 시추 장비를 고공 높이로 들어올릴 필요가 없어 더욱 안전하게 테스트 작업을 진행할 수 있고, 수직 높이에 대한 공간 효율을 향상시킬 수 있는 시추 장비 테스트 장치 및 방법을 제공하는 것이다.

본 발명의 또 다른 목적은 시추 장비를 투입하는 압력 용기를 해상에 부유하는
부유식 플랫폼에 설치함으로써, 사용자의 필요에 따라 부유식 플랫폼을 이동하는 방식으로 테스트 장소를 어느 하나의 장소에 고정시키지 않고 편리하게 변경할 수 있고, 시추선의 위치 또는 해상 조건 등을 고려하여 다양한 장소로 이동하여 테스트를 진행할 수 있는 시추 장비 테스트 장치 및 방법을 제공하는 것이다.

본 발명의 또 다른 목적은 압력 용기의 내부에 대형 장비와의 경계를 넘으며, 다중 장비 구조를 이용하여 내부 용기 외부에 고정된 챔버를 형성하고, 테스트 챔버와 완충 챔버의 압력을 서로 다르게 형성함으로써, 다중 챔버에 전달되는 압력의 크기를 테스트 챔버와 완충 챔버의 압력을 이용하여 감소시킬 수 있어 고압력에도 안정적인 구조를 유지할 수 있고, 전력 제어 장치를 감소시킬 수 있고 제조 선정의 다양성을 확보할 수 있도록 하여 더욱 안정적인 압력 용기를 제작할 수 있는 시추 장비 테스트 장치 및 방법을 제공하는 것이다.

과제 해결 수단

본 발명은, 실내 환경에서 사용되는 시추 장비를 테스트하는 시추 장비 테스트 장치에 있어서, 내부 챔버 대형 장비를 투입할 수 있도록 테스트 챔버가 형성되고, 상기 챔버에서 챔버는 상기 테스트 챔버 대형 장비가 잠기도록 액체가 저장되는 압력 용기에, 또는 상기 테스트 챔버에 저장된 액체의 압력이 상층 액체에 도달하도록 액체의 압력을 상층시키는 외압 공급 유닛을 포함하는 것을 특징으로 하는 시추 장비 테스트 장치를 제공한다.

이때, 상기 테스트 대형 장비는 BOP 장비로 적용될 수 있다.

또한, 상기 압력 용기의 내부 공간 하부에는 상기 BOP 장비가 상기 테스트 챔버에 투입되어 절합되도록 테스트 웨이드가 고정 장착될 수 있다.

또한, 상기 시추 장비 테스트 장치는, 상기 테스트 웨이드를 통해 상기 BOP 장비에 내압이 전달되도록 상기 테스트 웨이드에 고압의 유체를 공급하는 내압 공급 유닛을 더 포함하여 구성될 수 있다.

또한, 상기 압력 용기의 내부에는 상기 테스트 챔버에 고정 장착된 테스트 대형 장비에 대한 테스트 보조 작업이 가능하도록 로봇암이 장착될 수 있다.

또한, 상기 압력 용기의 내측면에는 가이드 레일이 장착되고, 상기 레일은 상기 가이드 레일을 따라 이동 가능하게 결합될 수 있다.

또한, 상기 시추 장비 테스트 장치는, 상기 BOP 장비, 외압 공급 유닛 및 내압 공급 유닛의 동작을 제어하고 테스트 상태를 모니터링할 수 있는 별도의 제어와 관련하여 구성될 수 있다.

또한, 상기 내압 공급 유닛은 상기 테스트 웨이드에 해수를 고압으로 공급하는 내압 공급 펌프를 포함하여 구성될 수 있다.

또한, 상기 외압 공급 유닛은 상기 압력 용기의 테스트 챔버에 해수를 고압으로 공급하는 외압 공급 펌프를 포함하여 구성될 수 있다.

또한, 상기 압력 용기는 무식 방지를 위해 음극 전원에 연결될 수 있다.
한편, 상기 압력 용기는 해저에 배치될 수 있다. 또한, 상기 압력 용기는 언벽에 인접한 해저에 배치될 수 있다. 또한, 상기 압력 용기는 해저 바닥에 일부 매립되어 고정되거나 또는 별도의 해저 구조물에 장착되어 고정되거나 또는 별도의 재료 장치를 통해 해저에 고정되는 형태로 고정될 수 있다. 또한, 상기 BOP 장치는 해상에 배치되는 별도의 시추 설비로부터 해저로 연장되는 라이저의 하단에 연결된 상태로 상기 압력 용기 내부로 투입되어 상기 테스트 웰헤드에 결합될 수 있다. 또한, 상기 압력 용기는 육상에 배치될 수 있다. 한편, 상기 압력 용기는 육상에 매립되어 고정되거나 또는 별도의 육상 구조물에 장착되어 고정될 수 있다.

이때, 상기 BOP 장지는 별도의 크레인을 통해 운반되어 상기 압력 용기 내부의 테스트 웰헤드에 결합될 수 있다. 또한, 상기 압력 용기는 상기 테스트 대상 장비가 수평 이동하여 투입될 수 있도록 형성될 수 있다.

한편, 상기 압력 용기는 내부에 상기 테스트 채비가 형성되고 일측면에 투입홀이 형성되는 용기 본체와, 상기 용기 본체의 투입홀에 밀봉 결함되는 용기 커버로 분리 형성되고, 상기 테스트 대상 장비는 상기 투입홀을 통해 상기 테스트 채비로 투입될 수 있다.

이때, 상기 시추 장비 테스트 장치는, 상기 BOP 장지를 상기 테스트 채비에 수평 이동시키는 수평 이송 수단을 더 포함하여 구성될 수 있다. 이때, 상기 수평 이송 수단은, 상기 BOP 장비가 상기 테스트 채비 외부로부터 내부 공간으로 슬라이드 이동할 수 있도록 상기 BOP 장비의 이동 경로를 가이드하는 수평 이동 레일, 및 상기 BOP 장비를 상기 수평 이동 레일을 따라 상기 테스트 채비 내부 공간으로 이동시키는 트렌스포터를 포함하여 구성될 수 있다.

또한, 상기 수평 이송 수단은 상기 BOP 장비가 수평 방향으로 길게 배치되도록 상기 BOP 장비의 배치 상태를 조절할 수 있는 자세 조절 유닛을 더 포함하여 구성될 수 있다.

또한, 상기 용기 커버는 상기 수평 이송 수단에 의해 수평 이동하여 상기 투입홀에 밀봉 결합될 수 있다. 한편, 상기 시추 장비 테스트 장치는, 해상에 부유할 수 있도록 설치되는 부유식 플랫폼을 더 포함하고, 상기 압력 용기는 상기 부유식 플랫폼에 설치될 수 있다. 이때, 상기 압력 용기는 내부에 상기 테스트 채비가 형성되도록 상기 부유식 플랫폼으로부터 하향 불충계하게 형성되며 상면에 투입홀이 형성되는 용기 본체와, 상기 용기 본체의 투입홀에 밀봉 결합되는 용기 커버로 분리 형성되고, 상기 BOP 장지는 상기 용기 커버의 하단에 결합되어 상기 용기 커버가 상기 용기 본체에 결합되는 과정에서 상기 테스트 채비에 투입될 수 있다.
또한, 상기 온기 커버는 상기 BOP 장비와 함께 별도의 크레인을 통해 운반되어 상기 BOP 장비가 상기 테스트 캐버에 투입되도록 상기 온기 본체에 결합될 수 있다.

또한, 상기 두유식 플랫폼에는 상기 두유식 플랫폼의 자세 및 위치를 고정할 수 있도록 DPS 시스템이 장착될 수 있다.

한편, 상기 압력을 유지하는 내부에 BOP 장비가 투입될 수 있도록 테스트 캐버가 밀봉되게 형성되는 내부 용기; 및 상기 내부 용기의 외부 공간에 완충 캐버가 밀봉되게 형성되도록 상기 내부 용기의 외부 공간을 이격하게 감싸는 외부 용기를 포함하고, 상기 테스트 캐버에는 고압의 액체가 저장되고, 상기 완충 캐버에는 고압의 액체 또는 가스가 저장되도록 구성될 수 있다.

또한, 상기 내부 용기는 내부에 상기 테스트 캐버가 형성되고 상면이 개방된 형태로 형성되는 내부 용기 본체와, 상기 내부 용기 본체의 개방된 상면에 밀봉 결합되는 내부 용기 커버로 분리 형성되고, 상기 외부 용기는 내부 공간에 상기 내부 용기가 수용되도록 상면이 개방된 형태로 형성되는 외부 용기 본체와, 상기 외부 용기 본체의 개방된 상면에 밀봉 결합되는 외부 용기 커버로 분리 형성될 수 있다.

또한, 상기 내부 용기는 내부에 상기 테스트 캐버가 형성되고 일면이 개방된 형태로 형성되는 내부 용기 본체와, 상기 내부 용기 본체의 개방된 일면에 밀봉 결합되는 내부 용기 커버로 분리 형성되고, 상기 외부 용기는 상기 내부 용기 커버가 상기 외부 용기의 외부로 노출되도록 형성될 수 있다.

이때, 상기 내부 용기 본체에는 상기 외부 용기의 외부로 줄출되게 연장되는 목부가 개방된 형태로 형성되고, 상기 내부 용기 커버는 상기 목부에 밀봉 결합될 수 있다.

또한, 상기 목부는 해당 위치에 따라 내압력의 크기가 서로 다른 특성을 갖도록 형성될 수 있다.

또한, 상기 내부 용기 커버는 상기 내부 용기 본체보다 내압력이 더 강한 특성을 갖도록 형성될 수 있다.

또한, 상기 내부 용기에는 상기 테스트 캐버에 액체를 공급할 수 있도록 일측에 내부 유입 포트가 형성되고, 상기 외부 용기에는 상기 완충 캐버에 액체 또는 가스를 공급할 수 있도록 일측에 외부 유입 포트가 형성될 수 있다.

또한, 상기 내부 유입 포트 및 외부 유입 포트가 상기 외압 공급 유닛과 연결되고, 상기 외압 공급 유닛에 의해 상기 테스트 캐버에는 일정 압력이 공급되고, 상기 완충 캐버에는 상기 테스트 캐버의 압력보다 낮은 압력이 공급될 수 있다.

이때, 상기 외압 공급 유닛에 의해 상기 테스트 캐버에 공급되는 압력은 4,300 psi 이상의 압력으로 적용될 수 있다.

또한, 상기 BOP 장비는 상기 내부 용기 커버의 하단에 결합되어 상기 내부 용기 커버가 상기 내부 용기 본체에 결합되는 과정에서 상기 테스트 캐버로 투입될 수
있다.

[55] 또한, 상기 내부 유입 포트 및 외부 유입 포트는 각각 외압 연결 라인을 통해 상기 외압 공급 유닛에 연결되고, 상기 외압 연결 라인에는 상기 외압 공급 유닛에 의한 압력 공급을 차단할 수 있도록 각 각 개체 버브가 장착될 수 있다.

[56] 또한, 상기 외부 용기는 상기 완충 캔버스 순차적으로 다수개 형성되도록 내부에 위치한 외부 용기의 외부 공간을 이격되게 감싸는 형태로 순차적으로 다수개 구비될 수 있다.

[57] 이때, 상기 내부 유입 포트 및 외부 유입 포트가 상기 외압 공급 유닛과 연결되고, 상기 외압 공급 유닛에 의해 상기 테스트 캔버스는 일정 압력이 공급되고, 다수개의 상기 완충 캔버스는 상기 테스트 캔버스의 압력보다 낮은 압력이 공급되며, 외부측 완충 캔버스로 감수록 순차적으로 더 낮은 압력이 공급될 수 있다.

[58] 한편, 상기 압력 용기는 내압력이 보강될 수 있도록 압력을 균질한 굴착부에 밀착 삽입되는 형태로 상기 압력에 빠릴 수 있다.

[59] 이때, 상기 압력 용기는 내부 공간에 상기 테스트 캔버스가 형성되도록 상면이 개방된 용기 본체와, 상기 용기 본체의 개방된 상면에 밀봉 결합되는 용기 커버를 포함하고, 상기 용기 본체가 상기 굴착부에 밀착 삽입되도록 메립될 수 있다.

[60] 또한, 상기 압력 용기의 외주면과 상기 굴착부의 내주면 사이에는 별도의 보강재가 총정될 수 있다.

[61] 한편, 본 발명은, 심해 환경에서 사용되는 시추 장비를 테스트하는 시추 장비 테스트 방법에 있어서, (a) 내부에 테스트 캔버스가 형성되는 압력 용기를 준비하는 단계; (b) 상기 테스트 캔버스에 액체를 저장하는 단계; (c) 상기 테스트 캔버스에 테스트 대상 장비를 두입하는 단계; 및 (d) 상기 테스트 캔버스에 저장된 액체의 압력이 심해 압력에 도달하도록 외압 공급 유닛을 통해 액체의 압력을 상승시키는 단계를 포함하는 것을 특징으로 하는 시추 장비 테스트 방법을 제공한다.

[62] 이때, 상기 테스트 대상 장비를 BOP 장비로 적용하고, 상기 압력 용기의 내부 공간 하부에는 상기 BOP 장비가 안착 결합되도록 테스트 홀드가 고정 장착되며, 상기 시추 장비 테스트 방법은, (e) 상기 테스트 홀드를 통해 상기 BOP 장비의 액체가 펌프될 수도 있도록 별도의 내압 공급 유닛을 통해 상기 테스트 홀드에 고압의 유체를 공급하는 단계를 더 포함하여 구성될 수 있다.

[63] 이때, 상기 (a) 단계는 상기 압력 용기를 해저에 배치하도록 구성될 수 있다.

[64] 또한, 상기 (a) 단계는 상기 압력 용기를 육상에 배치하도록 구성될 수 있다.

[65] 또한, 상기 (a) 단계는 상기 압력 용기를 안벽에 인접한 해저에 배치하도록 구성될 수 있다.

[66] 또한, 상기 (a) 단계는 상기 압력 용기를 상기 BOP 장비가 수평 이동하여 상기 테스트 캔버스로 투입될 수 있도록 배치하고, 상기 (c) 단계는 상기 BOP 장비를
수평 이동시키는 다시 테스트 채비로 투입시키도록 구성될 수 있다.

또한, 상기 (a) 단계는 상기 압력 용기를 해상에 부유할 수 있는 부유식 플랫폼에 설치하도록 구성될 수 있다.

발명의 효과

BOP 장비와 같은 실제 환경에서 사용되는 시추 장비들을 실제 환경과 유사한 조건에 노출시키는 각각 테스트를 수행할 수 있도록 함으로써, 시추 장비에 대한 문제를 사전에 예방 및 관리할 수 있어 실해와 같은 실험 설치 현장에서 시추 장비의 설치 및 작업 과정을 완료하고 신속하게 수행할 수 있도록 하는 효과가 있다.

또한, 시추 장비가 투입되는 압력 용기를 해저에 위치시킴으로써, 시추 장비에 대한 실제 설치 작업과 동일한 방식으로 시추 장비를 설치할 수 있고, 이에 따라 시추 장비에 대한 다양한 테스트를 더욱 정확하게 수행할 수 있는 효과가 있다.

또한, 시추 장비가 투입되는 압력 용기를 욕상에 위치시킴으로써, 시추 장비의 설치 작업을 욕상의 크레인 등을 이용하여 편리하게 수행할 수 있고, 특히, 각종 설치 작업 및 테스트 작업을 욕상에서 수행할 수 있기 때문에 더욱 편리하고 신속한 테스트 작업을 가능하게 하는 효과가 있다.

또한, 시추 장비가 투입되는 압력 용기를 안벽에 인접한 해저에 위치시키고, 시추 장비를 투입 및 작동시키기 위한 부유식 시추 설비를 안벽에 인접한 해상에 위치시키킴으로써, 부유식 시추 설비를 안벽과 연결된 켜아 장치를 통해 용이하게 위치 고정시킬 수 있고, 이에 따라 부유식 시추 설비의 위치 고정을 위한 별도의 DP 시스템 등을 작동하지 않더라도 안정적인 상태에서 더욱 편리하고 신속하게 시추 장비에 대한 테스트 작업을 수행할 수 있는 효과가 있다.

또한, 테스트 채비가 형성된 압력 용기에 대해 수평 이동 방식으로 시추 장비가 테스트 채비에 투입될 수 있도록 구성함으로써, 별도의 크레인 장비 없이도 시추 장비를 단순히 수평 이동시키는 방식으로 편리하고 신속하게 테스트 채비에 투입할 수 있고, 이에 따라 시추 장비를 고공 높이로 들어올릴 필요가 없어 더욱 안전하게 테스트 작업을 진행할 수 있고, 수직 높이에 대한 공간 효율을 향상시킬 수 있는 효과가 있다.

또한, 시추 장비를 투입하는 압력 용기를 해상에 부유하는 부유식 플랫폼에 설치함으로써, 사용자의 필요에 따라 부유식 플랫폼을 이동하는 방식으로 테스트 장소를 어느 하나의 장소에 고정시키지 않고 편리하게 변경할 수 있고, 시추선의 위치 또는 해상 조건 등을 고려하여 다양한 장소로 이동하여 테스트를 진행할 수 있는 효과가 있다.

또한, 압력 용기에 대해 내부 용기에 외부 용기를 갖는 다중 격벽 구조를 이용하여 내부 용기 외부에 완충 채비를 형성하고, 테스트 채비와 완충 채비의 압력을 서로 다르게 형성함으로써, 다중 격벽에 전달되는 압력의 크기를 테스트 채비와 완충 채비의 압력 차이를 이용하여 감소시킬 수 있어 고압력에도
안정적인 구조를 유지할 수 있고, 각각 제작 두께를 감소시킬 수 있고 재료 선정의 다양성을 확보할 수 있도록 하여 더욱 안정적인 압력 용기를 제작할 수 있는 효과가 있다.

도면의 간단한 설명

[75] 도 1 내지 도 3은 본 발명의 일 실시예에 따른 시추 장비 테스트 장치의 구성을 개략적으로 도시한 개념도,
[76] 도 4는 본 발명의 일 실시예에 따른 압력 용기의 내부 구성 및 시추 장비 투입 과정을 개략적으로 도시한 동작 상태도,
[77] 도 5는 본 발명의 또 다른 일 실시예에 따른 시추 장비 테스트 장치의 구성을 개략적으로 도시한 개념도,
[78] 도 6은 도 5에 도시된 압력 용기의 내부 구성 및 시추 장비 투입 과정을 개략적으로 도시한 동작 상태도,
[79] 도 7은 본 발명의 또 다른 일 실시예에 따른 시추 장비 테스트 장치의 구성을 개략적으로 도시한 개념도,
[80] 도 8은 도 7에 도시된 압력 용기의 내부 구성 및 시추 장비 투입 과정을 개략적으로 도시한 동작 상태도,
[81] 도 9는 본 발명의 또 다른 일 실시예에 따른 시추 장비 테스트 장치의 구성을 개략적으로 도시한 개념도,
[82] 도 10은 도 9에 도시된 압력 용기의 내부 구성 및 시추 장비 투입 과정을 개략적으로 도시한 동작 상태도,
[83] 도 11 및 도 12는 본 발명의 또 다른 일 실시예에 따른 압력 용기의 구성을 개략적으로 도시한 개념도,
[84] 도 13은 본 발명의 또 다른 일 실시예에 따른 압력 용기의 구성을 개략적으로 도시한 개념도
[85] 도 14는 본 발명의 또 다른 일 실시예에 따른 압력 용기의 구성을 개략적으로 도시한 개념도이다.

발명의 실시에 기초한 최선의 형태

이하, 본 발명의 바람직한 실시예를 첨부된 도면들을 참조하여 상세히 설명한다. 우선 각 도면의 구성요소들에 참조부호를 부과함에 있어서, 동일한 구성요소들에 대해서는 비록 다른 도면상에 표시되더라도 가능한 동일한 부호를 가지도록 하고 있음에 유의하여야 한다. 또한, 본 발명을 설명함에 있어, 관련된 공지 구성 또는 기능에 대한 구체적인 설명이 본 발명의 요지를 흐리거나 판단되는 경우에는 그 상세한 설명은 생략한다.

[87] 도 1 내지 도 3은 본 발명의 일 실시예에 따른 시추 장비 테스트 장치의 구성을 개략적으로 도시한 개념도이고, 도 4는 본 발명의 일 실시예에 따른 압력 용기의 내부 구성 및 시추 장비 투입 과정을 개략적으로 도시한 동작 상태도이다.

[88] 본 발명의 일 실시예에 따른 시추 장비 테스트 장치는 심해 환경에서 사용되는
시추 장비를 통해 환경과 유사한 환경 조건에 노출시켜 다양한 방식의 테스트를 수행할 수 있는 장치로서, 압력 용기(100)와, 외압 공급 유닛(400)을 포함하여 구성된다.

[89] 압력 용기(100)는 내부에 테스트 대상 장비가 투입될 수 있도록 내부 공간에 테스트 챔버(C)가 형성되고, 테스트 챔버(C)에는 테스트 대상 장치가 잡기도록 적에(L)가 저장된다. 이때, 테스트 대상 장치는 섬해 환경에서 사용되는 장비로서, 예를 들면, 해저 유정의 내부 가스 폭발을 방지하기 위해 해저 유정의 상단 웅헤드에 레칭(Latching) 결합되는 BOP 장비(200)가 적용될 수 있다. 이하에서는 설명의 편의를 위해 테스트 대상 장치로서 BOP 장비(200)가 적용된 경우를 예로 들어 설명한다.

[90] 이러한 압력 용기(100)는 내부에 테스트 챔버(C)가 형성된 다양한 형상의 용기 형태로 형성될 수 있는데, 압력 용기(100)의 내부 압력에 대한 지지 강도를 고려할 때 원통 형상으로 형성되는 것이 바람직하다. 또한, 압력 용기(100)는 부식 방지를 위해 음극 전위에 연결되는 방식으로 구성될 수 있다.

[91] 또한, 압력 용기(100)는 내부 공간에 테스트 챔버(C)가 형성되도록 상단면 일부가 개방된 용기 본체(110)와, 용기 본체(110)의 개방된 부분에 밀봉 결합되는 용기 커버(120)로 분리 형성될 수 있다. 이러한 구조를 통해 용기 커버(120)를 개방한 상태로 용기 본체(110)의 테스트 챔버(C)에 액체(L)를 투입하여 저장할 수 있고, 용기 커버(120)를 개방한 상태에서 BOP 장비(200)를 액체(L)에 잡기도록 테스트 챔버(C)에 투입할 수 있다. 용기 본체(110)에는 후속하는 외압 공급 유닛(400)과 내압 공급 유닛(500)으로부터 압력을 제공받을 수 있도록 외압 공급 포트(111)와 내압 공급 포트(112)가 형성될 수 있다. 또한, 용기 본체(110)와 용기 커버(120)는 내부 테스트 챔버(C)에 저장된 액체(L)가 외압 공급 유닛(400)에 의한 압력 공급을 통해 고압 상태로 유지될 수 있도록 상호 밀봉되기 결합되는 것이 바람직하다.

[92] 외압 공급 유닛(400)은 압력 용기(100)의 테스트 챔버(C)에 저장된 액체(L)의 압력이 섬해 조건에서의 압력, 예를 들면 4,300 psi 이상의 압력에 도달하도록 액체의 압력을 상승시키도록 구성된다.

[93] 이러한 외압 공급 유닛(400)은 압력 용기(100)의 테스트 챔버(C)에 유체를 고압으로 공급하도록 작동하는 외압 공급 펌프(410)와, 고압의 유체가 외압 공급 펌프(410)로부터 테스트 챔버(C)로 공급되도록 외압 공급 펌프(410)와 테스트 챔버(C)를 연결하는 외압 연결 라인(420)을 포함하여 구성될 수 있다. 외압 공급 펌프(410)는 일반적으로 액체를 공급하며, 가스를 공급하는 펌프로서 형태로 적용될 수도 있다. 외압 연결 라인(420)은 외압 공급 펌프(410)로부터 압력 용기(100)의 외압 공급 포트(111)에 연결되도록 설치될 수 있다. 압력 용기(100)의 내부 공간 또는 외압 연결 라인(420)의 내부 유로에 너무 높은 고압이 형성되는 경우, 압력을 조절할 수 있도록 별도의 압력 안전 장치가 구비될 수 있는데, 예를 들면, 도 1에 도시된 바와 같이 외압 연결 라인(420)에
필도의 릴리프 밸브(401)가 장착되는 형태로 구성될 수 있다. 물론, 릴리프 밸브(401)는 암력 용기(100)의 일측에 장착될 수도 있다.

이때, 암력 용기(100)는 도 1에 도시된 바와 같이 해저에 배치되는데, 테스트가 용이하도록 친해 영역, 예를 들면 수심이 20m 내지 40m 정도의 해저 영역에 배치될 수 있다. 또한, 도 3에 도시된 바와 같이 후속하는 시추 설비의 고정 및 안정성을 위해 안벽(11)에 인장한 해저에 배치될 수 있다. 이 경우, 암력 용기(100)는 도 1에 도시된 바와 같이 해저 바닥에 일부 매립되어 고정된 형태로 설치될 수 있다. 물론, 도시되지 않는 것이 아니라, 필도의 해저 구조물에 장착되어 고정되거나 또는 필도의 계류 장치를 통해 해저에 계류되는 형태로 고정될 수도 있다.

이와 같이 암력 용기(100)가 해저에 배치되면, 암력 용기(100)의 용기 본체(110)를 먼저 해저에 위치시킴으로써 테스트 캐버(C)에 압체인 흐수를 가득 채울 수 있고, 이 상태에서 BOP 장비(200)를 테스트 캐버(C)에 투입한 후 용기 커버(120)를 밀봉함으로서 공간을 폐쇄한다. 또한, 외압 공급 루닛(400)의 외압 공급 캐버(410) 또한 도 1에 도시된 바와 같이 흐수를 고압 상태로 공급하는 방식으로 구성될 수 있으며, 이 경우 외압 공급 캐버(410)는 필도의 해상 구조물(P)에 고정 설치될 수 있다.

또한, 도 3에 도시된 바와 같이 암력 용기(100)가 안벽(11)에 인장한 해저에 배치된 경우에는, 외압 공급 캐버(410)는 안벽(11)에 설치되는 필도의 육상 구조물(P)에 고정 설치될 수 있다. 물론, 해상 구조물에 고정 설치될 수도 있으나, 작업의 편의성 등을 고려하여 육상 구조물(P)에 고정 설치되는 것이 바람직하다.

또한, 암력 용기(100)는 본 발명의 일 실시예에 따라 육상에 배치될 수 있으며, 도 2에 도시된 바와 같이 육상에 일부 또는 전부 매립되어 고정되거나 또는 도시되지 않은 육상 구조물에 장착되어 고정되는 방식으로 구성될 수 있다.

이와 같이 암력 용기(100)가 육상에 고정 설치되며, 해상과 비교하여 그 설치 작업이 용이할 뿐만 아니라 BOP 장비(200)에 대한 테스트 작업 또한 육상에서 실시할 수 있기 때문에 테스트 작업 또한 용이하고 신속하게 수행할 수 있다. 특히, BOP 장비(200)를 암력 용기(100) 내부로 투입하는 과정에서 육상 크레인을 이용하여 BOP 장비(200)를 운반할 수 있으므로, BOP 장비(200)의 투입 과정을 더욱 신속하고 단순화할 수 있다.

한편, 암력 용기(100)의 내부 공간 하부에는 BOP 장비(200)가 테스트 캐버(C)에 투입된 상태에서 BOP 장비(200)의 하단이 안쪽 결합도록 테스트 율체드(300)가 고정 장착되며, 이러한 테스트 율체드(300)는 전술한 내압 공급 포트(111)와 연결되도록 장착될 수 있다. 테스트 율체드(300)는 해저 유언의 상단에 결합되는 율체드와 동일한 것으로, 본 발명의 일 실시예에서는 BOP 장비(200)에 대한 테스트를 위해 암력 용기(100) 내부에 고정 장착된다. 따라서, BOP 장비(200)와 테스트 율체드(300)는 상호 배정 결합한 상태에서 내부 공간이
이 경우, 테스트 웰헤드(300)를 통해 BOP 장비(200)에 내압이 전달되도록 테스트 웰헤드(300)에 고압의 유체를 공급하는 내압 공급 유닛(500)이 더 구비되는 것이 바람직하다. 내압 공급 유닛(500)은 BOP 장비(200)에 대한 내압이 심해 주정에서 가스 폭발 발생하는 압력, 예를 들면 15,000 psi 이상의 압력에 도달하도록 고압 유체를 공급하는 형태로 구성된다.

이러한 내압 공급 유닛(500)은 테스트 웰헤드(300)에 고압의 유체를 공급하도록 작동하는 내압 공급 펌프(510)와, 고압의 유체가 내압 공급 펌프(510)로부터 테스트 웰바이(C)로 공급되도록 내압 공급 펌프(510)와 테스트 웰헤드(300)를 연결하는 내압 연결 라인(520)을 포함하여 구성될 수 있다. 내압 공급 펌프(510)는 액체를 공급하는 펌프의 형태로 작동할 수도 있고, 유정 내고압의 가스 발생 상황을 재현하기 위해 액체와 가스를 동시에 공급할 수 있는 다상 펌프(multi-phase pump) 형태로 작동될 수도 있다. 이때, 테스트 웰헤드(300)의 내부 공간 또는 내압 연결 라인(520)의 내부 유로에 너무 높은 고압이 형성되는 경우, 압력을 조절할 수 있도록 별도의 압력 안전 장치가 구비될 수 있는데, 예를 들면, 도 1 내지 도 3에서 도시된 바와 같이 내압 연결 라인(520)에 별도의 멀리프 밸브(401)가 장착되는 형태로 구성될 수 있다.

도 1 내지 도 3에서는 압력 용기(100)의 용기 본체(110)에 내압 공급 포트(112)가 형성되고, 테스트 웰헤드(300)에는 압력 용기(100)의 바닥면에 고정 장착되어 내압 공급 포트(112)에 직접 연결 결합되는 형태가 도시되는바, 이 경우, 내압 연결 라인(520)은 내압 공급 포트(112)와 연결될 수 있다.

이때, 테스트 웰헤드(300)는 도 4에 도시된 바와 같이 별도의 웰헤드 서포트(310)를 통해 지지되거나 또는 별도의 프레임(미도시)에 의해 압력 용기(100)의 내부 바닥면으로부터 이격되게 고정 배치될 수도 있는바, 이와 같이 배치되는 테스트 웰헤드(300)에는 내압 공급 유닛(500)으로부터 고압의 유체가 공급될 수 있도록 내압 공급 포트(112)와 테스트 웰헤드(300)를 연결하는 별도의 플렉서블 유압 호스(미도시)가 구비될 수 있다. 플렉서블 유압 호스는 도 4에 도시된 바와 같이 테스트 웰헤드(300)의 상하 위치가 변경됨에 따라 곡선 형태로 변형될 수 있도록 유연성을 갖도록 형성될 뿐만 아니라 내압 공급 유닛(500)으로부터 공급된 15,000 psi 압력을 전달할 수 있도록 형성된다.

또한, 내압 공급 유닛(500)의 내압 공급 펌프(510)는 도 1에 도시된 바와 같이 외압 공급 펌프(410)와 같이 해수를 고압 상태로 공급하는 방식으로 구성을될 수 있으며, 이 경우 내압 공급 펌프(510)는 별도의 해상 구조물(P)에 고정 설치될 수 있다. 물론, 도 3에 도시된 바와 같이 별도의 용상 구조물(P)에 고정 설치될 수도 있다.

또한, 외압 공급 펌프(410)와 내압 공급 펌프(510)는 도 2에 도시된 바와 같이 해상과 인접하게 설치되는 용상 구조물(P)에 장착되어 각각 해수를 공급하여 외압 공급 포트(111) 및 내압 공급 포트(112)로 각각 공급하는 형태로 구성될 수
있다.

[106] 이와 같은 구성에 따라 본 발명의 일 실 시례에 따른 시주 장비 테스트 장치는
별도의 압력 용기(100) 내부 액체(L)의 압력을 외압 공급 유닛(400)에 의해 해져
3,000 m 이상의 심한 압력을 상대로 상승 시킴으로써, BOP 장비(200)에 대해 외압
테스트를 수행할 수 있다. 즉, BOP 장비(200)가 심한 압력에 노출될 경우
구조적으로 안정적이지 않아 또는 정상적으로 작동하지지 않아 또는
누출(Leakage)이 발생하지는 여부 등을 테스트할 수 있다.

[107] 또한, 내압 공급 유닛(500)을 통해 BOP 장비(200)에 15,000 psi 이상의 내부
압력을 제공함으로써, BOP 장비(200)에 대한 심한 환경의 내압 테스트를 수행할
수 있다. 예를 들면, BOP 장비(200)를 구성하는 램(Ram), 애널러(Annular) 및 각종
벨브 등에 대한 내압 압력 테스트를 수행할 수 있다.

[108] 한편, 이상에서 설명한 바와 같이 압력 용기(100)가 해져 위치하는 경우, BOP
장비(200)를 실제 시추 현장에서 설치하는 것과 마찬가지 방식으로 압력
용기(100) 내부에 설치할 수 있다. 즉, BOP 장비(200)는 도 1에 도시된 바와 같이
그림과 같은 별도의 시추 설비(210)로부터 해져로 연장되는 라이저(220)의
하단에 연결되고, 라이저(220)와 함께 하향 이동하여 압력 용기(100) 내부로
투입되며, 압력 용기(100) 내부에서 테스트 웨이드(300)에 결합하는 방식으로
설치될 수 있다.

[109] 이때, 도 3에 도시된 바와 같이 압력 용기(100)가 안벽에 인접한 해져에
설치되는 경우, 시추 설비(210)는 부유식 시추 설비로서, 별도의 제류
장치(211)를 통해 안벽(H)에 인접한 해상에 제류되도록 구성된다. 따라서, 파도
및 바람이 강해 헌들림이나 움직임이 크게 나타나는 근해 영역에서 시추
설비(210)에 대한 고정 작업을 제류 장치(211)를 통해 용이하게 수행할 수 있어
테스트 장치의 설치 작업 시간을 단축시킬 수 있고 더욱 편리하고 신속하게 설치
작업 및 테스트 작업을 수행할 수 있다. 특히, 압력 용기(100) 및 시추 설비(210)가
안벽(H)로부터 먼 해상에 위치하는 경우, 파도에 의한 시추 설비(210)의
움직임으로 인해 테스트에 제약 사항이 발생하며, 시추 설비(210)를 위치
고정시키기 위해 별도의 DP(Dynamic Positioning) 시스템을 가동시키야 하는
등의 불편함이 있으나, 본 발명에서는 압력 용기(100) 및 시추 설비(210)가
안벽(H)에 인접하게 배치되기 때문에, 안벽과 시추 설비(210)를 연결하는 제류
장치(211)를 통해 용이하게 시추 설비(210)의 위치를 고정시킬 수 있어 더욱
편리하게 테스트 작업을 진행할 수 있다.

[110] 이 경우, BOP 장비(200)는 도 4에 도시된 바와 같이 용기 커버(120)의 하단에
결합된 상태로 장착되어 용기 커버(120)를 용기 본체(110)의 상면에 밀봉
결합하는 과정에서 이 외 동시에 테스트 커버(300)에 투입 바도록 구성될 수 있다.
즉, 용기 커버(120)와 BOP 장비(200)가 일체로 운반되도록 상호 결합되고,
이러한 용기 커버(120)와 BOP 장비(200)를 라이저(220)에 의해 하향
이동시킴으로써 용기 커버(120)가 용기 본체(110)에 밀봉 결합되고 이와 동시에
BOP 장비(200)가 테스트 챔버(300)에 투입되도록 구성될 수 있다. 또한, 이때 BOP 장비(200)는 테스트 챔버(300)로 투입되며 동시에 용기 본체(110)의 내부 공간 하부에 위치한 테스트 웰헤드(300)에 안착 결합되도록 구성될 수 있다. 따라서, 용기 커버(120)를 용기 본체(110)에 밀봉 결합시키는 작업, BOP 장비(200)의 투입 작업 및 테스트 웰헤드(300)의 결합 작업이 동시에 이루어질 수 있으며, 이를 통해 작업이 단순화되어 편리하고 신속하게 수행될 수 있다.

[111] 한편, 압력 용기(100)가 도 2에 도시된 바와 같이 웅상에 배치되는 경우에 대해 살펴보면, 먼저, 압력 용기(100)의 용기 본체(110)를 욕상에 설치한 후, 테스트 챔버(300)에 액체(L)를 저장한다. 테스트 챔버(300)에 액체(L)를 저장하는 과정은 외압 공급 유닛(400)을 통해 해수를 공급하는 방식으로 수행될 수도 있으나, 별도의 펌프를 이용할 수도 있을 것이다. 이와 같이 테스트 챔버(300)에 액체(L)가 저장된 상태에서 크레이인(크로스)을 이용하여 BOP 장비(200)를 액체에 잠기도록 테스트 챔버(300)에 투입한 후, 용기 커버(120)를 밀봉 결합한다.

[112] 이때, BOP 장비(200)는 전술한 바와 마찬가지로 용기 커버(120)의 하단에 결합된 상태로 장착되어 용기 커버(120)의 밀봉 과정에서 이와 동시에 테스트 챔버(300)에 투입되도록 구성될 수 있으며, 용기 커버(120)는 크레이인에 의해 용기 본체(110)의 상면에 결합된다.

[113] 이 경우, 용기 커버(120)와 함께 BOP 장비(200)를 압력 용기(100)의 내부 공간으로 투입시키는 과정에서, BOP 장비(200)의 상하 이동 경로를 가이드할 수 있도록 압력 용기(100)의 내부 공간에는 도 4에 도시된 바와 같이 별도의 이동 가이드부(130)가 장착될 수 있다.

[114] 또한, 테스트 웰헤드(300)는 도 4에 도시된 바와 같이 별도의 웰헤드 서포트(310)에 의해 지지되는 형태로 배치될 수도 있는데, 웰헤드 서포트(310)는 테스트 웰헤드(300)를 상하 지지할 수 있도록 유압에 의해 작동하는 셀린더 형태 또는 탄성 스프링 형태로 구성될 수 있다. 따라서, 도 4의 (a)에 도시된 바와 같이 BOP 장비(200)가 테스트 웰헤드(300)에 안착되지 않은 상태에서는 테스트 웰헤드(300)가 웰헤드 서포트(310)에 의해 상하 이동할 상태로 유지되고, 도 4의 (b)에 도시된 바와 같이 BOP 장비(200)가 압력 용기(100) 내부로 투입되어 테스트 웰헤드(300)에 안착됨에 따라 테스트 웰헤드(300)가 웰헤드 서포트(310)에 의해 지지된 상태로 하상 이동하게 된다. 이러한 구조에 따라 BOP 장비(200)와 테스트 웰헤드(300)의 결합 과정이 더욱 정확하고 안정적으로 이루어질 수 있다.

[115] 또한, 시추 설비(210)에는 BOP 장비(200), 외압 공급 유닛(400) 및 내압 공급 유닛(500)의 동작을 제어함과 동시에 BOP 장비(200)의 작동 상태를 모니터링할 수 있는 별도의 제어실(600)이 구비될 수 있다. 이러한 제어실(600)은 라이저(220)를 통해 BOP 장비(200) 및 압력 용기(100)와 연결될 수 있으며, 별도의 케이블 라인을 통해 외압 공급 유닛(400) 및 내압 공급 유닛(500)과 연결될 수 있다. 이때, 제어실(600)은 시추 설비(210)에 배치될 수도 있으나, 별도의 해상 구조물 또는 해상에 연결한 육상, 안녕 등 다양한 곳에 배치될 수
있다.

[116] 재어설(600)에서 BOP 장비(200)를 제어하기 위해, 전기 신호를 공급하는 믹스케이블(Mux Cable)이 재어설로부터 BOP 장비로 2개 연결되며, HPU(Hydraulic Power Unit)와 같은 유압 공급 장치로부터 BOP 장비에 귀속된 2개의 유압라인(conduit line)을 통해 BOP 장비로 유압을 공급할 수 있도록 구성된다. 즉, 믹스케이블을 통해 전력 및 밸브 조작 신호가 전달되며, BOP 장비의 렌 및 애널다는 공급된 유압을 사용하여 닫히고 열리는 동작이 수행된다. 다시 말하면, 재어설(600)은 재어 명령을 전달하기 위한 믹스케이블과 유압을 공급하기 위한 유압라인으로 BOP 장비와 연결되어 BOP 장비를 동작 제어할 수 있으며, 이러한 전기 케이블과 유압 라인은 라이저(220)의 외관에 배치될 수 있다.

[117] 이와 같은 구조에 따라 BOP 장비(200)에 대한 외압 및 내압 테스트 이외에도 BOP 장비(200)의 설치 과정이 정상적으로 이루어지는지 여부 등을 테스트할 수 있다. 예를 들어, BOP 장비(200)가 테스트 웰헤드(300)에 정상적으로 태정결합하는지 여부를 테스트할 수 있다. 또한, BOP 장비(200)를 동작 제어할 수 있는 재어설(600)을 통해 BOP 장비(200)에 대한 각종 재어 테스트 및 실제 해저유정에서 일어나는 모든 동작에 대한 테스트가 가능하다.

[118] 이때, 압력 용기(100) 내부에는 압력 용기(100)의 내부 상태 및 BOP 장비(200)의 작동 상태 등을 모니터링할 수 있도록 다양한 센서 및 영상 장비 등이 추가로 장착될 수 있으며, 이러한 센서 및 영상 장비들이 재어설(600)과 연결되어 재어설(600)을 통해 BOP 장비(200)에 대한 작동 상태를 모니터링하도록 할 수 있다.

[119] 예를 들면, 도 4에 도시된 바와 같이 압력 용기(100)의 내부 상태를 관찰할 수 있도록 수중 카메라(150) 및 조명(미도시)이 압력 용기(100) 내부에 장착될 수 있으며, 압력 용기(100)의 내부 상태를 측정할 수 있도록 센서 모듈(140)이 압력용기(100)의 내부에 장착될 수 있다. 센서 모듈(140)은 압력 센서, 온도 센서, 스테레인 게이저, 수평계 등을 포함할 수 있다. 스테레인 게이저를 통해 BOP장비(200)의 렌 장치에 대한 변형량을 측정할 수 있고, 압력 센서 및 온도 센서를 통해 압력 용기(100)의 내부 공간에 대한 압력 및 온도 등의 환경 조건을 측정할 수 있다. 또한, 수중 카메라(150)를 통해 BOP 장비와 테스트 웰헤드의 렌정결합 과정을 관찰할 수 있고, 장비의 파손 여부 등을 확인할 수 있다.

[120] 한편, 압력 용기(100) 내부에는 도 4에 도시된 바와 같이 재어설(600)과 정보를 송수신하는 이쿠스틱 제어부(160)가 장착될 수 있으며, 이쿠스틱 제어부(160)는 이쿠스틱 제어명령 유닛, 트랜스듀서, 트랜시버 등으로 구성된다. 이쿠스틱 제어명령 유닛을 통해 BOP 장비의 동작 재어 기능을 수행할 수 있고, 트랜스듀서 및 트랜시버를 통해 BOP 장비 재어 정보의 수신 및 모니터링 정보의 송신을 수행할 수 있다.

[121] 한편, 압력 용기(100) 내부에는 테스트 캔버스(C) 내부에 고정 장착된 BOP장비(200)에 대한 테스트 보조 작업이 가능하도록 별도의 로봇압(700)이 장착될
수 있다. 로봇암(700)은 다양한 형태로 제작될 수 있는데, 일반적인 ROV(Remotely Operated Vehicle)에 사용되는 로봇암이 적용될 수 있다. 이러한 로봇암(700)은 BOP 장비(200)와 테스트 캡버(300)의 결합 과정을 보조하거나 또는 BOP 장비에 대한 작동 테스트 기능, 압력 테스트 보조 기능, 유지 보수 기능 등 다양한 작업을 수행하도록 구성될 수 있으며, 이에 대한 동작 제어는 제어실(600)을 통해 수행될 수 있다.

또한, 로봇암(700)의 위치 이동을 위해 압력 용기(100)의 내측면에는 가이드 레일(710)이 장착되며, 로봇암(700)은 가이드 레일(710)을 따라 이동 가능하도록 결합될 수 있다. 이때, 가이드 레일(710)은 압력 용기(100)의 내측면에 상하 방향으로 길게 형성될 수도 있고, 이에 더하여 압력 용기(100)의 내측면에 원주 방향을 따라 길게 형성될 수도 있는 등 다양한 형태로 형성될 수 있다.

이상에서는 테스트 대상 장비로서 BOP 장비(200)만을 대상으로 설명하였으나, BOP 장비(200)의 이외에도 크리스마스 트리 등 심해 환경에서 사용되는 다양한 시추 장비가 적용될 수 있으며, 다양한 시추 장비들을 적용하는 방식으로 확장하여 머드 이송 및 머드 순환 테스트, 크리스마스 트리 장비 시험 등을 포함한 통합 운용 테스트 또한 할 수 있을 것이다. 여기서, 통합 운용 테스트는 출항부터 미션 수행후 복귀까지의 모든 시스템 운용을 포함한다. 또한, 테스트 대상 장비는 시추 장비 뿐만 아니라 심해에서 작업하거나 설치되는 모든 종류의 장비가 적용될 수 있으며, 이들에 대한 외압 테스트 및 내압 테스트가 가능하다.

도 5는 본 발명의 또 다른 일 실시예에 따른 시추 장비 테스트 장치의 구성 및 개략적으로 도시한 개념도이고, 도 6은 도 5에 도시된 압력 용기의 내부 구성 및 시추 장비 투입 과정을 개략적으로 도시한 동작 상태도이다.

본 발명의 또 다른 일 실시예에 따른 시추 장비 테스트 장치의 압력 용기(100)는 BOP 장비(100)가 수평 이동하여 테스트 캡버(300)에 투입될 수 있도록 형성되는데, 여기에서는 도 1 내지 도 4에서 설명한 구성과의 차이점을 중심으로 간략하게 설명한다.

압력 용기(100)는도 5 및 도 6에 도시된 바와 같이 내부 공간에 테스트 캡버(300)가 형성되도록 일측면에 투입홀(113)이 형성되는 용기 본체(110)와, 용기 본체(110)의 투입홀(113)에 밀봉 결합되는 용기 커버(120)로 분리 형성될 수 있다. 이러한 구조에 따라 BOP 장비(200)를 투입환(113)을 통해 테스트 캡버(300)로 투입할 수 있으며, BOP 장비(200)를 투입한 이후에는 용기 커버(120)를 용기 본체(110)의 투입홀(113)에 밀봉 결합한 후, BOP 장비(200)가 잠기도록 테스트 캡버(300)에 익체를 투입하여 저장할 수 있다.

이때, 압력 용기(100)는 용상에 배치될 수 있으며, 도 5에 도시된 바와 같이 용상에 일부 매립되어 고정되는 방식으로 설치될 수 있다. 이에 따라, BOP 장비(200)가 용상의 지면상에서 수평 이동하여 압력 용기(100)의 테스트 캡버(300)에 투입되어도록 구성될 수 있다.
[129] 한편, 압력 용기(100) 내부 공간에는 BOP 장비(200)가 테스트 챔버(C)에 투입된 상태에서 BOP 장비(200)가 안착 결합되도록 테스트 웅헤드(300)가 고정 장착되는데, BOP 장비(200)가 용기 본체(110)의 투임홀(113)을 통해 수평 이동하여 투입되기 때문에, 테스트 웅헤드(300)는 이에 대응하여 용기 본체(110)의 투임홀(113)에 대량되는 타측면에 고정 장착되는 것이 바람직하다.

[130] 이 경우, BOP 장비(200)에 대한 테스트 과정은, 먼저, 압력 용기(100)의 용기 본체(110)를 용상에 설치한 후, BOP 장비(200)를 수평 이동시키고 투입홀(113)을 통해 테스트 챔버(C)에 투입시킨다. BOP 장비(200)를 투입한 후, 용기 커버(120)를 투입홀(113)에 밀봉 결합하여 테스트 챔버(C)를 밀봉시킨다. 이 상태에서 테스트 챔버(C)에 액체(L)를 저장한다. 테스트 챔버(C)에 액체(L)를 저장하는 과정은 외압 공급 유닛(400)을 통해 해수를 공급하는 방식으로 수행되기도 있으나, 별도의 레바를 이용할 수도 있을 것이다.

[131] 이때, BOP 장비(200)를 테스트 챔버(C) 내부로 수평 이동시키기 위해 별도의 수평 이송 수단(800)이 구비되는데, 수평 이송 수단(800)은 BOP 장비(200)가 테스트 챔버(C) 내부로부터 내부공간으로 슬라이드 이동할 수 있도록 BOP 장비(200)의 이동 경로를 가이드하는 수평 이동 레일(810)과, BOP 장비(200)를 수평 이동 레일(820)을 따라 테스트 챔버(C) 내부 공간으로 이동시키는 트랜스포트(820)를 포함하여 구성될 수 있다. 이때, 트랜스포트(820)는 단순한 유압 실린더 형태로 구성될 수도 있고, 중량물을 운반하는 차량 형태로 구성될 수도 있는 등 다양한 방식으로 구성될 수 있다. 또한, 수평 이동 레일(810)은 용상의 지면상에 설치되며, 투입홀(113)을 통해 압력 용기(100)의 내부부를 판독하도록 길게 형성될 수 있다.

[132] 한편, 이러한 수평 이송 수단(800)은 BOP 장비(200)가 수평 방향으로 길게 배치되도록 BOP 장비(200)의 배치 상태를 조절할 수 있는 자세 조절 유닛(미도서)을 더 포함하여 구성될 수 있으며, 이를 통해 BOP 장비(200)의 수평 이동 과정에서 BOP 장비(200)의 배치 상태를 테스트 웅헤드(300)에 접합 가능한 형태로 변경 조절할 수 있다. 즉, BOP 장비(200)는 도 5 및 도 6의 도시된 바와 같이 일반적으로 일측 방향으로 길게 형성되는데, BOP 장비(200)가 압력 용기(100)의 테스트 챔버(C) 내부 공간으로 수평 이동하는 과정에서 BOP 장비(200)는 일반이 테스트 웅헤드(300)와 결합될 수 있도록 수평 방향으로 길게 배치되는 것이 바람직하다. 이때, BOP 장비(200)가 수직 방향으로 길게 배치된 상태로 별도의 장소로부터 수평 이송 수단(800)에 공급될 수 있으므로, BOP 장비(200)를 자세 조절 유닛을 통해 수평 방향으로 길게 배치되도록 그 자세를 변경시킬 수 있다. 이와 같은 수평 방향으로의 자세 변경 이후, 수평 이동 레일(810) 및 트랜스포트(820)를 이용하여 BOP 장비(200)를 수평 이동시킬 수 있다. 이러한 자세 조절 유닛은 BOP 장비(200)가 안착 고정될 수 있는 가동 프레임(미도서)과, 가동 프레임을 현저히 중심으로 수직 또는 수평 방향으로 회전 구동하는 구동부(미도서)를 포함하는 형태로 구성될 수 있으며, 구동부는
유압 시스템을 이용한 방식으로 구성될 수 있다. 물론, 자세 조절 유닛은 이러한 구성 이외에도 다양한 기계 요소를 이용하여 다양한 형태로 구성될 수 있다.

이와 같은 구조에 따라 BOP 장비(200)를 상하 이동하지 않고 단순히 육상 지면에서 수평 이동 레일(810)을 따라 수평 이동시키는 방식으로 테스트 챠바(C)에 투입시킬 수 있기 때문에, BOP 장비(200)를 상하 이동시키기 위한 크레인 등의 장비가 불필요하고, BOP 장비(200)를 고공 높이로 들어올리지 않아도 되므로 BOP 장비의 투입 과정이 매우 용이하고 신속하게 진행될 수 있을 뿐만 아니라 안전 사고의 위험 또한 방지될 수 있다.

한편, 용기 커버(120)를 용기 본체(110)에 밀봉 결합하는 과정은, BOP 장비(200)를 테스트 챠바(C)에 투입 완료한 상태에서 진행되는데, 이때, 용기 커버(120)는 전술한 수평 이송 수단(800), 즉, 수평 이동 레일(810) 및 트렌스포터(820)를 이용하여 수평 이동하는 방식으로 용기 본체(110)의 투입홀(113)에 밀봉 결합하도록 구성될 수 있다. 특히, 도 2에 도시된 바와 같이 용기 커버(120)와 BOP 장비(200)를 상호 결합한 상태에서 이들을 동시에 수평 이송 수단(800)을 통해 수평 이동시키는 방식으로 구성될 수도 있다. 이때, BOP 장비(200)는 테스트 챠바(C)로 투입됨과 동시에 용기 본체(110)의 내부 공간 하부에 위치한 테스트 웹하드(300)에 안착결합되도록 구성된다. 따라서, 용기 커버(120)를 용기 본체(110)에 밀봉 결합시키는 작업을 통해 BOP 장비(200)의 투입 작업 및 테스트 웹하드(300)와의 결합 작업이 이루어질 수 있다. 이를 통해 작업이 단순화되어 편리하고 신속하게 수행될 수 있다.

한편, 압력 용기(100)와 제이시(600)의 육상에 설치되는 반면, 시추 작업에 사용되는 시추선(210)이 별도로 해상에 배치될 수 있는데, 이러한 시추선(210)은 테스트 장치와 인접하게 위치하도록 안벽에 인접한 위치에 별도의 제류 장치를 통해 제류되는 형태로 배치될 수 있다.

시추선(210) 내에는 일반적으로 BOP 장비(200)를 동작 제어할 수 있는 원격 조종실(211)이 구비되는데, 전술한 제이시(600)은 이러한 원격 조종실(221)과 동일한 기능을 수행할 수 있도록 구성된다. 따라서, 제이시(600)를 통해 BOP 장비(200)에 대한 각종 제어 테스트 및 실제 해저 유정에서 일어나는 모든 동작에 대한 테스트가 가능하며, 이때, 제이시(600)는 전술한 바와 같이 머스 케이블을 통해 유선 통신 방식으로 BOP 장비(200)와 정보 신호를 송수신한다.

또한, 제이시(600) 및 원격 조종실(211)에는 도 5에 도시된 바와 같이 상호 무선 통신이 가능하도록 각각 무선 송수신부(610,212)가 구비될 수 있으며, 이를 통해 제이시(600)는 시추선(210)의 원격 조종실(211)과 무선 통신 방식으로 정보 신호를 송수신할 수 있다. 따라서, 시추선(210) 내의 원격 조종실(211)을 통해 실제 BOP 장비(200) 설치 현장과 마찬가지 방식으로 BOP 장비(200)에 대한 동작을 제어하고 테스트 상태를 모니터링할 수 있다.

즉, BOP 장비(200)에 대한 테스트 과정에서, BOP 장비(200), 의압 공급 유닛(400) 및 내압 공급 유닛(500)의 동작 제어 및 테스트 상태 모니터링 작업은
압력 용기(100)와 인접하게 욕상에 배치되는 케어실(600)을 통해 수평될 수 있을 뿐만 아니라 시추관(210) 내의 원심 조종실(211)을 통해 원심으로 수평될 수도 있다.

[139]
[140] 도 7은 본 발명의 또 다른 일 실시예에 따른 시추 장비 테스트 장치의 구성을 개략적으로 도시한 개념도이고, 도 8은 도 7에 도시된 압력 용기의 내부 구성 및 시추 장비 투입 과정을 개략적으로 도시한 동작 상태도이고, 도 9는 본 발명의 또 다른 일 실시예에 따른 시추 장비 테스트 장치의 구성을 개략적으로 도시한 개념도이고, 도 10은 도 9에 도시된 압력 용기의 내부 구성 및 시추 장비 투입 과정을 개략적으로 도시한 동작 상태도이다.

[141] 본 발명의 또 다른 일 실시예에 따른 시추 장비 테스트 장치의 압력 용기(100)는 부유식 플랫폼(101)에 설치되는데, 여기에서는 도 1 내지 도 6에서 설명한 구성과의 차이점을 중심으로 간략하게 설명한다.

[142] 부유식 플랫폼(101)은 자체 부력에 의해 해상에 부유할 수 있는 형태로 형성되는데, 단순한 바지선 형태 등 다양한 형태로 형성될 수 있으며, 상면에는 넓은 작업 공간이 형성되도록 평평한 형태로 형성될 수 있다. 또한, 부유식 플랫폼(101)에는 파도, 바람 등과 같은 해상 환경으로부터 자세를 고정할 수 있도록 DPS(Dynamic Positioning System)가 설치될 수 있다. 이러한 DPS는 위치 탐지 시스템을 이용하여 부유식 플랫폼(101)의 수평면 내에서의 변위를 탐지할 수 있고, 위치 제어 시스템을 통해 프로펠러, 트리스터 등의 추진 시스템을 구동하여 부유식 플랫폼(101)을 목표 지점에 유지시킬 수 있다.

[143] 압력 용기(100)는 이러한 부유식 플랫폼(101)에 설치되는데, 도 7 및 도 8에 도시된 바와 같이 내부에 테스트 캡버(C)가 형성되도록 부유식 플랫폼(101)으로부터 하향 돌출되기 형성되며 상면에 두입홀(113)이 형성되는 용기 본체(110)와, 용기 본체(110)의 두입홀(113)에 달봉 결합되는 용기 커버(120)로 분리 형성될 수 있다.

[144] 이와 같이 압력 용기(100)의 용기 본체(110)가 부유식 플랫폼(101)으로부터 하향 돌출되기 형성되어 해저에 배치되도록 구성될 수 있다. 이에 따라, 압력 용기(100)의 테스트 캡버(C)에 BOP 장비(200)를 투입하는 과정에서 압력 용기(100)의 높이만큼 BOP 장비(200)를 들어올릴 필요가 없어 더욱 용이하게 BOP 장비(200)를 투입할 수 있다. 또한, 압력 용기(100)가 부유식 플랫폼(101)에 설치되기 때문에, 별도의 견인선 등을 이용하여 부유식 플랫폼(101)을 이동하는 방식으로 해상에서 테스트 장소를 손쉽게 변경할 수 있으며, 시추선의 위치 또는 해상 조건 등을 고려하여 다양한 장소로 이동하여 테스트를 진행할 수 있다.

[145] 또한, 본 발명의 또 다른 일 실시예에 따른 압력 용기(100)는 부유식 플랫폼(101)의 상면에 돌출되기 설치되고, BOP 장비(200)가 부유식 플랫폼(101) 상에서 수평 이동하여 투입될 수 있도록 형성될 수 있다.

[146] 예를 들면, 도 9 및 도 10에 도시된 바와 같이 내부 공간에 테스트 캡버(C)가
항성되도록 일측면에 투입홀(113)이 형성되는 용기 본체(110)와, 용기 본체(110)의 투입홀(113)에 밀봉 결합되는 용기 커버(120)로 분리 형성될 수 있다. 이러한 구조에 따라 BOP 장비(200)를 투입홀(113)을 통해 테스트 챔버(C)로 투입할 수 있으며, BOP 장비(200)를 투입한 이후에는 용기 커버(120)를 용기 본체(110)의 투입홀(113)에 밀봉 결합한 후, BOP 장비(200)가 잔기도록 테스트 챔버(C)에 액체를 투입하여 저장할 수 있다.

[147]
도 11 및 도 12는 본 발명의 또 다른 일 실시예에 따른 압력 용기의 구성을 개략적으로 도시한 개념도이다.

[149]
본 발명의 일 실시예에 따른 BOP 장비 테스트용 압력 용기(100)는 BOP 장비(200)를 심해 환경과 유사한 환경에서 테스트하기 위해 내부 공간에 BOP 장비(200)를 투입할 수 있도록 형성되는데, 내부 용기(101)와, 내부 용기(101)의 외부 공간을 감싸는 외부 용기(102)를 포함하는 다중 격벽 구조로 형성된다.

[150]
내부 용기(101)는 내부에 BOP 장비(200)가 투입될 수 있도록 테스트 챔버(C)가 밀봉되게 형성되며, 테스트 챔버(C)에는 고압의 액체가 저장된다.

[151]
또한, 내부 용기(101)는 내부의 테스트 챔버(C)에 BOP 장비(200) 및 각종 부품이나 장비 등을 투입할 수 있도록 내부에 테스트 챔버(C)가 형성되고 상면이 개방된 형태로 형성되는 내부 용기 본체(101-1)와, 내부 용기 본체(101-1)의 개방된 상면에 밀봉 결합되는 내부 용기 커버(101-2)로 분리 형성될 수 있다.

[152]
외부 용기(102)는 내부 용기(101)의 외부 공간에 완층 챔버(C1)가 밀봉되게 형성되도록 내부 용기(101)의 외부 공간을 이격되기 위해 감싸는 형태로 형성된다. 이때, 완층 챔버(C1)에는 테스트 챔버(C)와 마찬가지로 고압의 액체가 저장될 수 있으나, 이와 달리 고압의 가스가 저장될 수도 있다.

[153]
이러한 외부 용기(102)는 내부 공간 내부 용기(101)가 수용되도록 상면이 개방된 형태로 형성되는 외부 용기 본체(102-1)와, 외부 용기 본체(102-1)의 개방된 상면에 밀봉 결합되는 외부 용기 커버(102-2)로 분리 형성될 수 있다.

[154]
따라서, 내부 용기(101)의 테스트 챔버(C)에 BOP 장비(200)를 투입하는 작업은 외부 용기 커버(102-2) 및 내부 용기 커버(101-2)를 모두 개방한 상태에서 진행되어야 할 것이다.

[155]
한편, 내부 용기(101)에는 테스트 챔버(C)에 액체(L)을 공급할 수 있도록 일측에 내부 유입 포트(101-3)가 형성되고, 외부 용기(102)에는 완층 챔버(C1)에 액체 또는 가스를 공급할 수 있도록 일측에 외부 유입 포트(102-3)가 형성된다. 내부 유입 포트(101-3)는 도 11에 도시된 바와 같이 외부 용기(102)의 외부로 노출되도록 형성될 수 있다.

[156]
내부 유입 포트(101-3) 및 외부 유입 포트(102-3)는 별도의 외압 공급 유닛(400)과 연결되며, 외압 공급 유닛(400)에 의해 테스트 챔버(C)에는 일정 압력을, 액체를 들여 심해 압력인 경우 4,300 psi 이상의 압력이 공급되고, 완층 챔버(C1)에는 이러한 테스트 챔버(C)의 압력보다 낮은 압력이 공급될 수 있다.
외압 공급 유닛(400)은 테스트 챔버(C) 및 완충 챔버(C1)에 유체를 고압으로 공급하도록 작동하는 외압 공급 펌프(410)와, 외압 공급 펌프(410)로부터 내부 유입 포트(101-3) 및 외부 유입 포트(102-3)를 연결하는 외압 연결 라인(420)을 포함하여 구성될 수 있다. 이때, 도 11에 도시된 바와 같이 하나의 외압 공급 펌프(410)를 통해 테스트 챔버(C) 및 완충 챔버(C1) 모두에 대해 유체를 공급하도록 구성될 수도 있으나, 이와 달리 내부 유입 포트(101-3) 및 외부 유입 포트(102-3)가 각각 서로 다른 외압 공급 펌프(410)에 연결되도록 하여 각각 별도로 유체를 공급하도록 구성될 수도 있다. 외압 공급 펌프(410)는 일반적으로 엑체를 공급하도록 구성되는데, 외부 유입 포트(102-3)와 연결되는 외압 공급 펌프(410)는 가스를 공급하는 컴프레서 형태로 작동될 수도 있으며, 이를 통해 완충 챔버(C1)에 가스를 공급할 수도 있다.

또한, 내부 유입 포트(101-3) 및 외부 유입 포트(102-3)는 전술한 외압 연결 라인(420)을 통해 외압 공급 유닛(400)에 연결되는데, 이때, 외압 연결 라인(420)에는 외압 공급 유닛(400)에 의한 압력 공급을 차단할 수 있도록 각각 개폐 벨브(431, 432)가 장착될 수 있다. 이러한 개폐 벨브(431, 432)의 개폐 작동을 통해 테스트 챔버(C) 및 완충 챔버(C1)에 형성되는 유체의 압력을 조절할 수 있다.

이와 같은 구조에 따라 본 발명의 일 실시예에 따른 압력 용기(100)는 내부 용기(101)와 외부 용기(102)의 2중 격벽 구조로 그 사이 공간에 완충 챔버(C1)가 형성되므로써, 자체 내압력이 상향되어 BOP 장비(200)의 테스트를 위해 테스트 챔버(C)에 실해 환경과 같은 고압이 형성되더라도 상대적으로 안정적인 구조를 유지할 수 있다.

즉, 도 11에 도시된 바와 같이 완충 챔버(C1)에 제 1 압력(P1)이 공급된 상태에서 테스트 챔버(C)에 제 1 압력보다 더 높은 제 2 압력(P2)이 공급되는 경우, 내부 용기(101)의 격벽에는 단일 격벽 구조와는 달리 P2 압력 전체가 전달되는 것이 아니라 P2-P1의 압력이 전달되므로, 단일 격벽의 압력 용기와 비교하여 상대적으로 더 낮은 설계 압력으로 설계할 수 있고, 이에 따라 격벽의 두께 또는 재료 선정과 같은 압력 용기에 대한 설계 자유도를 증가시킬 수 있다.

다시 말하면, 단중 격벽 구조를 통해 압력 용기(100)에 완충 챔버(C1)를 형성함으로써, 테스트 챔버(C)와 완충 챔버(C1)의 압력 차이를 이용하여 내부 용기(101)의 격벽에 작동하는 압력을 상대적으로 감소시킬 수 있고, 이에 따라 테스트 챔버(C)에 실해 압력, 예를 들면 4,300 psi 이상의 압력이 공급되는 경우에도 안정적인 구조를 유지할 수 있으며, 특히, 격벽의 제작 두께를 얇게 형성할 수 있으며, 재료 선정에 있어서도 다양한을 확보할 수 있다.

이러한 압력 용기(100)의 테스트 챔버(C) 및 완충 챔버(C1)에 압력을 공급하는 방식을 살펴보면, 먼저, 개폐 벨브(431, 432)를 개방 작동기간 상태로 외압 공급 유닛(400)을 작동시켜 테스트 챔버(C) 및 완충 챔버(C1)에 액체(L)를 고압으로 공급하며, 이때, 테스트 챔버(C) 및 완충 챔버(C1)의 내부 압력이 제 1 압력(P1)에
도달하도록 압력을 공급한다. 이후, 외부 유입 포트(102-3)에 연결된 외압 연결 라인(420)의 개폐 밸브(432)를 콤마 작동시키고, 외압 공급 유닛(400)을 계속 작동시켜 테스트 챔버(C) 내부 압력이 제 1 압력(P1)보다 높은 제 2 압력(P2)에 도달하도록 압력을 공급한다. 이때, 제 2 압력(P2)은 이하 압력으로 설정될 수 있다.

[163] 이러한 방식을 통해 압력 용기(100)에 압력을 공급함으로써, 압력 공급 과정에서 내부 용기(101)의 작목에는 P2 압력 전체가 전달되는 것이 아니라 P2-P1 압력이 전달되므로, 압력 용기(100)는 압력에 대해 항상 안정적인 구조를 유지할 수 있다.

[164] 한편, 이상에서는 압력 용기(100)의 구조에 대해 도 11에 도시된 바와 같이 내부 용기(101)를 감싸는 외부 용기(102)가 하나 있는 구조로 설명하였으나, 본 발명의 또 다른 일 실시예에 따른 압력 용기(100)는 도 12에 도시된 바와 같이 다수개의 완충 챔버(C1,C2)가 형성되도록 다수개의 외부 용기(102,103)가 구비되는 형태로 구성될 수 있다.

[165] 즉, 외부 용기(103)는 완충 챔버(C1,C2)가 순차적으로 다수개 형성되도록 내부에 위치한 외부 용기(102)의 외부 공간을 이격하게 감싸는 형태로 순차적으로 다수개 구비될 수 있다.

[166] 예를 들면, 도 12에 도시된 바와 같이 내부 용기(101)의 외부 공간을 이격하게 감싸도록 제 1 외부 용기(102)가 배치되고, 그 외부에는 제 1 외부 용기(102)의 외부 공간을 이격하게 감싸도록 제 2 외부 용기(103)가 배치될 수 있다. 물론, 제 2 외부 용기(103)의 외부 공간에 더 많은 다수개의 외부 용기가 순차적으로 배치될 수 있다. 이러한 구조에 따라 내부 용기(101)와 제 1 외부 용기(102) 사이 공간에는 제 1 완충 챔버(C1)가 형성되고, 제 1 외부 용기(102)와 제 2 외부 용기(103) 사이 공간에는 제 2 완충 챔버(C2)가 형성된다.

[167] 제 2 외부 용기(103) 또한 마찬가지로 외부 용기 본체(103-1)와 외부 용기 커버(103-2)로 분리 형성된다. 또한, 제 2 외부 용기(103)에도 외부 유입 포트(103-3)가 형성되어 외압 공급 유닛(400)의 외압 연결 라인(420)에 연결되고, 해당 외압 연결 라인(420)에 개폐 밸브(420)가 장착된다.

[168] 이와 같이 다수개의 외부 용기(102,103)를 통해 다수개의 완충 챔버(C1,C2)가 형성되고, 다수개의 완충 챔버(C1,C2)에는 외부측 완충 챔버로 갈수록 순차적으로 더 낮은 압력이 공급되도록 구성된다. 즉, 테스트 챔버(C)에는 일정 압력, 예를 들면 실험 압력이 공급되고, 다수개의 완충 챔버(C1,C2)에는 이러한 테스트 챔버(C)의 압력보다 낮은 압력이 공급되며, 외부측 완충 챔버로 갈수록 순차적으로 더 낮은 압력이 공급된다.

[169] 이러한 압력 용기(100)의 테스트 챔버(C) 및 완충 챔버(C1,C2)에 압력을 공급하는 방식을 살펴보면, 먼저, 테스트 챔버(C)와 다수개의 완충 챔버(C1,C2)에 모두 제 1 압력(P1)을 동일하게 공급하고, 이후, 외부에 위치한 완충 챔버(C2)의 압력을 유지한 상태에서 그 내부에 위치한 모든 완충 챔버(C1)
및 테스트 챔버(C)에 상대적으로 더 높은 압력(P1-1)을 공급하는 과정을 순차적으로 반복하는 과정을 통해, 최외판의 완충 챔버(C2)의 압력을 제1 압력(P1)으로 유지한 상태에서 최내판의 완충 챔버(C1)로 갑수록 순차적으로 더 높은 압력(P1-1)을 공급한다. 이후, 테스트 챔버(C)에 제2 압력(P2)를 공급하는 방식으로 진행될 수 있다.

[170] 따라서, 최내판에 위치한 완충 챔버(C1)의 압력(P1-1)이 다수개의 완충 챔버(C1,C2) 중 가장 높은 압력을 갖게 되는데, 이는 제2 압력(P2)보다 낮게 형성되며, 제2 압력은 심해 압력으로 적용될 수 있다.

[171] 이러한 구조에 따라 내부 용기(101)의 격벽에는 P2-(P1-1)의 압력이 전달되므로, 더 작은 두께의 격벽을 통해 더욱 안정적인 구조의 압력 용기(100)를 형성할 수 있다. 즉, 테스트 챔버(C)와 완충 챔버(C1)의 압력 차이를 더욱 미세하게 형성할 수 있어 압력 용기(100)의 구조를 더욱 안정적으로 유지시킬 수 있다.

[172] 한편, 내부 용기(101)에는 BOP 장비(200)가 투입되어 안착 결합될 수 있도록 별도의 테스트 웰헤드(300)가 고정 장착될 수 있으며, 내부 용기(101)에는 테스트 웰헤드(300)와 연결되는 내압 공급 포트(101-4)가 형성될 수 있다. 내압 공급 포트(101-4)는 테스트 웰헤드(300)를 통해 BOP 장비(200)에 내압이 공급될 수 있도록 별도의 내압 공급 유닛(500)과 연결 가능하게 형성된다.

[173] 내압 공급 유닛(500)은 테스트 웰헤드(300)에 고압의 유체를 공급하도록 작동하는 내압 공급 펌프(510)와, 고압의 유체가 내압 공급 펌프(510)로부터 테스트 웰헤드(300)로 공급되도록 내압 공급 펌프(510)와 테스트 웰헤드(300)를 연결하는 내압 연결 라인(520)을 포함하여 구성될 수 있다. 내압 공급 펌프(510)는 액체를 공급하는 펌프의 형태로 작용될 수도 있고, 유압 내고압의 가스 발생 상황을 제외하기 위해 액체와 가스를 동시에 공급할 수 있는 다상 펌프(multi-phase pump) 형태로 작용될 수도 있다.

[174] 또한, BOP 장비(200)는 내부 용기 커버(101-2)의 하단에 결합되어 내부 용기 커버(101-2)가 내부 용기 본체(101-1)에 결합되는 과정에서 테스트 챔버(C)에 투입되도록 구성될 수 있다. 즉, 내부 용기 커버(101-2)와 BOP 장비(200)가 일체로 운반되도록 상호 결합되고, 크레인에 의해 내부 용기 커버(101-2)를 내부 용기 본체(101-1)의 상면에 결합시킴으로써, 이와 동시에 BOP 장비(200)가 테스트 챔버(C)로 투입되도록 구성될 수 있다. 또한, 이때 BOP 장비(200)는 테스트 챔버(C)를 투입되며 동시에 내부 용기 본체(101-1)의 내부 공간 하부에 위치한 테스트 웰헤드(300)에 안착 결합되도록 구성된다. 따라서, 내부 용기 커버(101-2)를 내부 용기 본체(101-1)에 밀봉 결합시키는 작업을 통해 BOP 장비(200)의 투입 작업 및 테스트 웰헤드(300)와의 결합 작업이 동시에 이루어질 수 있다.

[175] 한편, BOP 장비(200)는 실제 해저 유정에 설치되는 경우, 라이저를 통해 해상의 시추 설비와 연결되므로, 테스트 챔버(C)에 투입되는 BOP 장비(200)에는 별도의
라이저(220)를 연결하고, 이는 별도의 제어실(미도시)과 연결되도록 구성될 수 있다.

이러한 구조에 따라 BOP 장비(200)를 액체(L)에 잡기도록 테스트 챔버(C)에 투입하고, 이 상태에서 외압 공급 유닛(400)을 통해 테스트 챔버(C)에 일정 압력을 제공함으로써, BOP 장비(200)에 대한 외압 테스트를 수행할 수 있다. 또한, 이 상태에서 내압 공급 유닛(500)을 통해 BOP 장비(200)에 내압을 제공함으로써, BOP 장비(200)에 대한 내압 테스트를 수행할 수 있다. 또한, 이러한 테스트 과정에서 제어실을 통해 BOP 장비(200)에 대한 동작 상태를 제어할 수 있을 뿐만 아니라 외압 공급 유닛(400) 및 내압 공급 유닛(500)의 동작 상태 또한 제어할 수 있어 환경 조건 또한 다양하게 조절할 수 있다.

도 13은 본 발명의 또 다른 일 실시예에 따른 압력 용기의 구성을 간략적으로 도시한 개념도이다.

본 발명의 또 다른 일 실시예에 따른 압력 용기(100)는 내부 용기 커버(101-2)가 외부 용기(102)의 외부에 노출되도록 형성되는데, 여기에서는 도 11 및 도 12에서 설명한 구조의 차이점을 중심으로 간략하게 설명한다.

본 발명의 일 실시예에 따른 압력 용기(100)는 내부에 고압의 유체를 저장할 수 있는 용기로서, 내부 용기(101)와, 내부 용기(101)의 외부 공간을 감싸는 외부 용기(102)를 포함하는 다중 격벽 구조로 형성된다.

내부 용기(101)는 내부에 유체를 저장할 수 있도록 테스트 챔버(C)가 형성되고 일면이 개방된 형태로 형성되는 내부 용기 본체(101-1)와, 내부 용기 본체(101-1)의 개방된 일면에 밀봉 결합되는 내부 용기 커버(101-2)로 분리 형성된다.

외부 용기(102)는 내부 용기(101)의 외부 공간에 완충 챔버(C1)가 밀봉되게 형성되도록 내부 용기(101)의 외부 공간을 이격되게 감싸도록 형성된다. 이때, 외부 용기(102)는 내부 용기(101)의 내부 용기 커버(101-2)가 외부 용기(102)의 외부에 노출되도록 형성된다.

따라서, 본 발명의 일 실시예에 따른 압력 용기(100)는 내부 용기(101)와 외부 용기(102) 사이에 완충 챔버(C1)가 형성되는 다중 격벽 구조를 통해 실질적으로 고압의 유체가 저장되는 테스트 챔버(C)에 대한 내압력이 형성된다. 또한, 테스트 챔버(C)를 개폐할 수 있는 내부 용기 커버(101-2)를 외부 용기(102)의 외부에 노출되게 형성함으로써, 다중 격벽 구조에도 불구하고 하나의 커버만 구비되어 더욱 편리하게 테스트 챔버에 대한 개폐 작업을 수행할 수 있고, 더욱 안정적인 구조를 이룰 수 있다.

이때, 내부 용기 커버(101-2)는 외부 공간에 완충 챔버(C1)가 존재하지 않고 외부에 노출되기 때문에, 상대적으로 내부 용기 본체(101-1)보다 내압력이 더 강한 특성을 갖도록 형성되는 것이 바람직하다. 예를 들면, 내부 용기 커버(101-2)는 내부 용기 본체(101-1)의 제조보다 더 두껍거나 강도가 강한 제절
등을 사용하여 제작될 수 있다.

[185] 한편, 내부 용기 본체(101-1)에는 외부 용기(102)의 외부로 돌출되게 연결되는 목부(101-5)가 개방형 형태로 형성되고, 내부 용기 커버(101-2)는 이러한 목부(101-5)의 개방된 꼭단에 밀봉 결합될 수 있다. 이때, 목부(101-5)는 해당 위치에 따라 내압력의 크기가 서로 다른 특성을 갖도록 형성되는 것이 바람직하다. 즉, 목부(101-5)는 그 형태상 외부 용기(102)의 외부에 노출되는 부분이 발생하므로, 외부 용기(102)의 외부에 노출되는 부분은 내부 용기 커버(101-2)와 마찬가지로 내압력이 더 강한 특성을 갖도록 형성되는 것이 바람직하다. 예를 들면, 더 두껍거나 강도가 강한 재질 등을 사용하여 제작될 수 있다.

[186] 이때, 테스트 채비(C)는 테스트 대상인 BOP 장비(200)가 투입되도록 형성되며, 이러한 테스트 채비(C)에는 심해 환경과 유사한 환경에서 BOP 장비(200)에 대한 테스트를 수행할 수 있도록 내부에 고압의 액체(L)가 저장되고, 완충 채비(C1)에는 내부 용기(101)의 격벽에 대한 내압력을 보완할 수 있도록 고압의 액체(L) 또는 가스가 저장된다. 이 경우, 완충 채비(C1)의 압력이 테스트 채비(C)의 압력보다 낮게 설정된다.

[187] 또한, 내부 용기(101)에는 테스트 채비(C)에 액체(L)를 공급할 수 있도록 일측에 내부 유입 포트(101-3)가 형성되고, 외부 용기(102)에는 완충 채비(C1)에 액체 또는 가스를 공급할 수 있도록 일측에 외부 유입 포트(102-3)가 형성된다.

[188] 내부 유입 포트(101-3) 및 외부 유입 포트(102-3)는 별도의 외압 공급 유닛(400)과 연결되며, 외압 공급 유닛(400)에 의해 테스트 채비(C)에는 일정 압력, 에를 들면, 심해 압력인 경우 4,300 psi 이상의 압력이 공급되고, 완충 채비(C1)에는 이러한 테스트 채비(C) 압력보다 낮은 압력이 공급된다.

[189] 한편, 내부 용기(101)에는 BOP 장비(200)가 투입되어 안착 결합될 수 있도록 별도의 테스트 연결 관(300)과 고정 장착될 수 있으며, 내부 용기(101)에는 테스트 연결 관(300)과 연결되는 내압 공급 포트(101-4)가 형성될 수 있다. 내압 공급 포트(101-4)는 테스트 연결 관(300)을 통해 BOP 장비(200)에 내압이 공급될 수 있도록 별도의 내압 공급 유닛(500)과 연결 가능하게 형성된다.

[190]

[191] 도 14는 본 발명의 또 다른 일 실시예에 따른 압력 용기의 구성을 개략적으로 도시한 개념도이다.

[192] 본 발명의 또 다른 일 실시예에 따른 압력 용기(100)는 양반(E)에 매립되는 형태로 형성되는데, 여기서는 도 1 내지 도 4에서 설명한 구조와의 차이점을 중심으로 간략하게 설명한다.

[193] 압력 용기(100)는 내압력의 보강될 수 있도록 양반(E)을 굽착한 굽착부(E1)에 밀착 삽입되는 형태로 양반(E)에 매립될 수 있다.

[194] 이때, 압력 용기(100)는 내부 공간에 테스트 채비(C)가 형성되도록 상면에 개방된 용기 본체(110)와, 용기 본체(110)의 개방된 상면에 밀봉 결합되는 용기
커버(120)를 포함하고, 용기 본체(110)가 굴착부(E1)에 밀착 삽입되도록 매립된다.

또한, 압력 용기(100), 콘 moreover 구체적으로는 용기 본체(110)의 외주면과 굴착부(E1)의 내주면 사이에는 벨도의 보강재(170)가 충전될 수 있으며, 보강재(170)는 콘크리트가 적용될 수 있다.

압력 용기(100)의 테스트 챔버(C)에는 전술한 바와 같이 BOP 장비(200)에 대한 외압 테스트를 위해 4,300 psi 압력 이상의 심해 압력이 공급될 수 있는데, 이러한 압력을 받으기 위해서는 압력 용기(100)의 내부이 매우 두꺼거나 강도가 큰 재질로 형성되어야 하므로, 제작이 매우 어렵지만, 도 14에 도시된 바와 같이 압박(E)에 굴착부(E1)를 형성하고 굴착부(E1)에 밀착 접촉되게 압력 용기(100)를 매립함으로써, 내압력을 보완할 수 있고, 이에 따라 상대적으로 좀 더 많은 판재 또는 좀 더 강도가 높은 재질로 압력 용기(100)를 제작할 수 있어 압력 용기에 대한 제작을 더욱 편리하게 수행할 수 있다.

이상의 설명은 본 발명의 기술 사상의 예시적으로 설명한 것에 불과한 것으로서, 본 발명이 축하는 기술 분야에서 통상의 지식을 가진 자라면 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 다양한 수정 및 변형이 가능할 것이다. 따라서, 본 발명의 개시된 실시예들은 본 발명의 기술 사상을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시예에 의하여 본 발명의 기술 사상의 범위가 한정되는 것은 아니다. 본 발명의 보호 범위는 아래의 정구범위에 의하여 해석되어야 하며, 그 외 동등한 범위 내에 있는 모든 기술 사상은 본 발명의 권리범위에 포함되는 것으로 해석되어야 할 것이다.
청구범위

[청구항 1] 심해 환경에서 사용되는 시추 장비를 테스트하는 시추 장비 테스트 장치에 있어서,
내부에 테스트 대상 장비가 투입될 수 있도록 테스트 챔버가 형성되고, 상기 테스트 챔버에는 상기 테스트 대상 장비가 잠기도록 액체가 저장되는 압력 용기; 및
상기 테스트 챔버에 저장된 액체의 압력이 심해 압력에 도달하도록 액체의 압력을 상승시키는 외압 공급 유닛을 포함하는 것을 특징으로 하는 시추 장비 테스트 장치.

[청구항 2] 상기 테스트 대상 장비는 BOP 장비인 것을 특징으로 하는 시추 장비 테스트 장치.

[청구항 3] 제 2 항에 있어서,
상기 압력 용기의 내부 공간 하부에는 상기 BOP 장비가 상기 테스트 챔버에 투입되어 결합되도록 테스트 웰헤드가 고정 장착되는 것을 특징으로 하는 시추 장비 테스트 장치.

[청구항 4] 제 3 항에 있어서,
상기 테스트 웰헤드를 통해 상기 BOP 장비에 내압이 전달되도록 상기 테스트 웰헤드에 고압의 유체를 공급하는 내압 공급 유닛을 더 포함하는 것을 특징으로 하는 시추 장비 테스트 장치.

[청구항 5] 제 4 항에 있어서,
상기 압력 용기의 내부에는 상기 테스트 챔버에 고정 장착된 테스트 대상 장비에 대한 테스트 보조 작업이 가능하도록 로봇암이 장착되는 것을 특징으로 하는 시추 장비 테스트 장치.

[청구항 6] 제 4 항에 있어서,
상기 BOP 장비, 외압 공급 유닛 및 내압 공급 유닛의 동작을 제어하고 테스트 상태를 모니터링할 수 있는 별도의 제어실을 더 포함하는 것을 특징으로 하는 시추 장비 테스트 장치.

[청구항 7] 제 4 항에 있어서,
상기 압력 용기는 해저에 배치되는 것을 특징으로 하는 시추 장비 테스트 장치.

[청구항 8] 제 4 항에 있어서,
상기 압력 용기는 안벽에 인접한 해저에 배치되는 것을 특징으로 하는 시추 장비 테스트 장치.

[청구항 9] 제 7 항 또는 제 8 항에 있어서,
상기 BOP 장비는 해상에 배치되는 별도의 시추 설비로부터 해저로 연장되는 라이저의 하단에 연결된 상태로 상기 압력 용기
내부로 투입되어 상기 테스트 웰헤드에 결합되는 것을 특징으로 하는 시추 장비 테스트 장치.

[청구항 10]
제 4 항에 있어서,
상기 압력 용기는 욕상에 배치되는 것을 특징으로 하는 시추 장비 테스트 장치.

[청구항 11]
제 10 항에 있어서,
상기 BOP 장비는 볼도의 크레인을 통해 운반되어 상기 압력 용기 내부의 테스트 웰헤드에 결합되는 것을 특징으로 하는 시추 장비 테스트 장치.

[청구항 12]
제 4 항에 있어서,
상기 압력 용기는 상기 테스트 대상 장비가 수평 이동하여 투입될 수 있도록 형성되는 것을 특징으로 하는 시추 장비 테스트 장치.

[청구항 13]
제 12 항에 있어서,
상기 압력 용기는
내부에 상기 테스트 캘버가 형성되고 일측면에 투입홀이 형성되는 용기 본체와, 상기 용기 본체의 투입홀에 밀봉 결합되는 용기 커버로 분리 형성되고,
상기 테스트 대상 장비는 상기 투입홀을 통해 상기 테스트 캘버로 투입되는 것을 특징으로 하는 시추 장비 테스트 장치.

[청구항 14]
제 13 항에 있어서,
상기 BOP 장비를 상기 테스트 캘버에 수평 이동시키는 수평 이송 수단을 더 포함하는 것을 특징으로 하는 시추 장비 테스트 장치.

[청구항 15]
제 14 항에 있어서,
상기 수평 이송 수단은
상기 BOP 장비가 상기 테스트 캘버 외부로부터 내부 공간으로 슬라이드 이동할 수 있도록 상기 BOP 장비의 이동 경로를 가이드하는 수평 이동 레일 및
상기 BOP 장비를 상기 수평 이동 레일을 따라 상기 테스트 캘버 내부 공간으로 이동시키는 트랜스포터
를 포함하는 것을 특징으로 하는 시추 장비 테스트 장치.

[청구항 16]
제 4 항에 있어서,
해상에 부유할 수 있도록 설치되는 부유식 플랫폼을 더 포함하고,
상기 압력 용기는 상기 부유식 플랫폼에 설치되는 것을 특징으로 하는 시추 장비 테스트 장치.

[청구항 17]
제 16 항에 있어서,
상기 압력 용기는
내부에 상기 테스트 캘버가 형성되도록 상기 부유식 플랫폼으로부터 하향 돌출되게 형성되며 상면에 투입홀이
형성되는 용기 본체와, 상기 용기 본체의 투입홀에 밀봉 결합되는 용기 커버로 분리 형성되고,
상기 BOP 장비는 상기 용기 커버의 하단에 결합되어 상기 용기 커버가 상기 용기 본체에 결합되는 과정에서 상기 테스트 챔버에 투입되는 것을 특징으로 하는 시추 장비 테스트 장치.

[청구항 18]
제 17 항에 있어서,
상기 용기 커버는 상기 BOP 장비와 함께 별도의 크레인을 통해 운반되어 상기 BOP 장비가 상기 테스트 챔버에 투입되도록 상기 용기 본체에 결합되는 것을 특징으로 하는 시추 장비 테스트 장치.

[청구항 19]
제 16 항에 있어서,
상기 부유식 플랫폼에는 상기 부유식 플랫폼의 자세 및 위치를 고정할 수 있도록 DPS 시스템이 장착되는 것을 특징으로 하는 시추 장비 테스트 장치.

[청구항 20]
제 4 항에 있어서,
상기 압력 용기는
내부에 BOP 장비가 투입될 수 있도록 테스트 챔버가 밀봉되게 형성되는 내부 용기; 및
상기 내부 용기의 외부 공간에 완충 챔버가 밀봉되게 형성되도록 상기 내부 용기의 외부 공간을 이격하게 갑싸는 외부 용기
를 포함하고, 상기 테스트 챔버에는 고압의 액체가 저장되고, 상기 완충 챔버에는 고압의 액체 또는 가스가 저장되는 것을 특징으로 하는 시추 장비 테스트 장치.

[청구항 21]
제 20 항에 있어서,
상기 내부 용기는
내부에 상기 테스트 챔버가 형성되고 상면이 개방된 형태로 형성되는 내부 용기 본체와, 상기 내부 용기 본체의 개방된 상면에 밀봉 결합되는 내부 용기 커버로 분리 형성되고.
상기 외부 용기는
내부 공간에 상기 내부 용기가 수송되도록 상면이 개방된 형태로 형성되는 외부 용기 본체와, 상기 외부 용기 본체의 개방된 상면에 밀봉 결합되는 외부 용기 커버로 분리 형성되는 것을 특징으로 하는 시추 장비 테스트 장치.

[청구항 22]
제 20 항에 있어서,
상기 내부 용기는 내부에 상기 테스트 챔버가 형성되고 일면이 개방된 형태로 형성되는 내부 용기 본체와, 상기 내부 용기 본체의 개방된 일면에 밀봉 결합되는 내부 용기 커버로 분리 형성되고,
상기 외부 용기는 상기 내부 용기 커버가 상기 외부 용기의 외부로 노출되도록 형성되는 것을 특징으로 하는 시추 장비 테스트 장치.
제 22 항에 있어서,
상기 내부 용기 본체에는 상기 외부 용기의 외부로 돌출되게
연장되는 긴부가 개방된 형태로 형성되고, 상기 내부 용기 커버는
상기 목부에 밀봉 결합되는 것을 특징으로 하는 시추 장비 테스트
장치.

제 24 항에 있어서,
상기 내부 용기 커버는 상기 내부 용기 본체보다 내압력이 더 강한
특성을 갖고 있도록 형성되는 것을 특징으로 하는 시추 장비 테스트
장치.

제 25 항 내지 제 24 항 중 어느 한 항에 있어서,
상기 내부 용기에는 상기 테스트 챔버에 액체를 공급할 수 있도록
입측에 내부 유입 포트가 형성되고, 상기 외부 용기에는 상기 완충
챔버에 액체 또는 가스를 공급할 수 있도록 입측에 외부 유입
포트가 형성되는 것을 특징으로 하는 시추 장비 테스트 장치.

제 25 항에 있어서,
상기 내부 유입 포트 및 외부 유입 포트가 상기 외압 공급 유닛과
연결되고, 상기 외압 공급 유닛에 의해 상기 테스트 챔버에는 일정
압력이 공급되고, 상기 완충 챔버에는 상기 테스트 챔버의
압력보다 낮은 압력이 공급되는 것을 특징으로 하는 시추 장비
테스트 장치.

제 25 항에 있어서,
상기 BOP 장비는 상기 내부 용기 커버의 하단에 결합되어 상기
내부 용기 커버가 상기 내부 용기 본체에 결합되는 과정에서 상기
테스트 챔버로 투입되는 것을 특징으로 하는 시추 장비 테스트
장치.

제 25 항에 있어서,
상기 외부 용기는 상기 완충 챔버가 순차적으로 다수개
형성되도록 내부에 위치한 외부 용기의 외부 공간을 이격되게
감싸는 형태로 순차적으로 다수개 구비되고, 다수개의 상기 완충
챔버에는 상기 테스트 챔버의 압력보다 낮은 압력이 공급되며,
외부측 완충 챔버로 갈수록 순차적으로 더 낮은 압력이 공급되는
것을 특징으로 하는 시추 장비 테스트 장치.

제 29 항에 있어서,
상기 압력 용기는
내압력이 보강될 수 있도록 압받을 굽착한 굽착부에 밀착
삽입되는 형태로 상기 압받에 매립되는 것을 특징으로 하는 시추
장비 테스트 장치.

제 29 항에 있어서,
상기 압력 용기는
내부 공간에 상기 테스트 챔버가 형성되도록 상면이 개방된 용기
본체와, 상기 용기 본체의 개방된 상면에 밀봉 결합되는 용기
커버를 포함하고, 상기 용기 본체가 상기 굽착부에 밀착
삽입되도록 매립되는 것을 특징으로 하는 시추 장비 테스트 장치.
제 30 항에 있어서,
상기 압력 용기의 외주면과 상기 굽착부의 내주면 사이에는
벌도의 보강재가 충전되는 것을 특징으로 하는 시추 장비 테스트
장치.
대체용지 (규칙 제26조)
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

E21B 33/064(2006.01)i, G01M 99/00(2011.01)i

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

E21B 33/064; G01F 17/00; G01M 3/28; G01B 21/32; G01N 17/00; E21B 17/00; G01M 99/00

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Korean Utility models and applications for Utility models: IPC as above

Japanese Utility models and applications for Utility models: IPC as above

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

eKOMPASS (KIPO internal) & Keywords: drilling equipment, test chamber, pressure container, external pressure supply unit, Blowout Preventer, test wellhead

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>US 2012-0285222 A1 (HOWLETT, Paul) 15 November 2012 See abstract, paragraphs [0074]-[0081] and figures 1-2C.</td>
<td>1</td>
</tr>
<tr>
<td>A</td>
<td>US 2003-0062157 A1 (AHMED et al.) 03 April 2003 See abstract, paragraph [0022] and figure 5.</td>
<td>2-31</td>
</tr>
<tr>
<td>A</td>
<td>US 5209105 A (HASHA et al.) 11 May 1993 See abstract, column 9, line 62 - column 10, line 15 and figure 4A.</td>
<td>1-31</td>
</tr>
<tr>
<td>A</td>
<td>US 2007-0137285 A1 (JENNINGS, Scott Steven) 21 June 2007 See abstract, paragraphs [0040]-[0041] and figure 1.</td>
<td>1-31</td>
</tr>
<tr>
<td>A</td>
<td>US 8065929 B2 (YAKIMOSKI et al.) 29 November 2011 See abstract, column 3, line 58 - column 4, line 23 and figure 1.</td>
<td>1-31</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of Box C. See patent family annex.

Date of the actual completion of the international search

03 SEPTEMBER 2013 (03.09.2013)

Date of mailing of the international search report

04 SEPTEMBER 2013 (04.09.2013)

Name and mailing address of the ISA/KR

Korean Intellectual Property Office
Government Complex-Daejeon, 189 Seusaero, Dajeon 305-701,
Republic of Korea
Facsimile No. 82-42-472-7140

Authorized officer

Telephone No.
<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td>US 2012-0285222 A1</td>
<td>15/11/2012</td>
<td>GB 201107747 D0</td>
<td>22/06/2011</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GB 201122230 D0</td>
<td>01/02/2012</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GB 2490758 A</td>
<td>14/11/2012</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GB 2490758 B</td>
<td>10/07/2013</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2467313 A1</td>
<td>30/11/2004</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2467313 C</td>
<td>29/01/2005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2591619 A1</td>
<td>30/11/2004</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2591619 C</td>
<td>15/03/2011</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2724709 A1</td>
<td>30/11/2004</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GB 0222345 D0</td>
<td>06/11/2002</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GB 2352474 A</td>
<td>25/05/2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GB 2352474 B</td>
<td>10/12/2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GB 2402559 A</td>
<td>08/12/2004</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GB 2412340 A</td>
<td>28/09/2005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NO 200024733 A</td>
<td>04/04/2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NO 200024733 D0</td>
<td>02/10/2002</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NO 333455 B1</td>
<td>10/06/2013</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2005-0279442 A1</td>
<td>22/12/2005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 6936636 E2</td>
<td>03/05/2005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 6919512 E2</td>
<td>19/07/2005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 7216719 E2</td>
<td>15/05/2007</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 7340819 E2</td>
<td>11/03/2008</td>
</tr>
<tr>
<td>US 5209105 A</td>
<td>11/06/1993</td>
<td>NONE</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2005-065411 A2</td>
<td>21/07/2005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2005-065411 A3</td>
<td>15/12/2005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2635551 C</td>
<td>09/04/2013</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GB 0903692 D0</td>
<td>15/04/2009</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GB 2461138 A</td>
<td>30/12/2009</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GB 2461138 B</td>
<td>30/11/2011</td>
</tr>
</tbody>
</table>
A. 발명이 속하는 기술분야(국제특허분야)

E21B 33/064; G01F 17/00; G01M 3/28; G01B 21/32; G01N 17/00; E21B 17/00; G01M 99/00

B. 조사된 문헌

조사된 최소문헌(국제특허문헌을 기재)

E21B 33/064: G01F 17/00; G01M 3/28; G01B 21/32; G01N 17/00; E21B 17/00; G01M 99/00

조사된 기술분야에 속하는 최소문헌 이외의 문헌

한국특허심판원공보 및 한국공개실용신안공보: 조사된 최소문헌원에 기재된 IPC
일본특허심판원공보 및 일본공개실용신안공보: 조사된 최소문헌원에 기재된 IPC

국제조사에 이용된 전산 데이터베이스(데이터베이스의 명칭 및 검색어(해당하는 경우))

eKOMPASS(특허청 내부 검색시스템) & 키워드: 시구장비, 테스트 챔버, 압력용기, 외압공급유닛, DOP, 테스트 챔버

C. 관련 문헌

<table>
<thead>
<tr>
<th>카테고리</th>
<th>인용문헌명 및 관련 구절(해당하는 경우)의 기재</th>
<th>관련 참조항</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>US 2012-0285222 A1 (HOWLETT, PAUL) 2012.11.15 요약, 문단번호 [0004]-[0007] 및 도면 1-2 참조.</td>
<td>1</td>
</tr>
<tr>
<td>A</td>
<td>US 2009-0610215 A1 (AHMED 외) 2009.04.03 요약, 문단번호 [0002] 및 도면 5 참조.</td>
<td>2-31</td>
</tr>
<tr>
<td>A</td>
<td>US 5209105 A (HASHAJ 외) 1993.05.11 요약, 원문 5, 라인 02 - 원문 10, 라인 15 및 도면 4A 참조.</td>
<td>1-31</td>
</tr>
<tr>
<td>A</td>
<td>US 8085929 B2 (YAKIMOKI 외) 2011.11.29 요약, 원문 3, 라인 58 - 원문 47, 라인 23 및 도면 1 참조.</td>
<td>1-31</td>
</tr>
</tbody>
</table>

- 추가 문헌이 C(계속)에 기재되어 있습니다.
- 대원특허에 관한 별지를 참조하십시오.

* 인용문헌의 특별 카테고리:

 "A" 특별한 관련이 없는 것으로 보이는 일반적인 기술문헌을 정직한 문헌

 "B" 국제특허문헌보다 빠른 출원일 또는 우선권일 기준 국가출원일 이후에 공개된 출원일 또는 특허문헌

 "L" 우선권 주권이 의문을 가지는 문헌 또는 다른 인용문헌의 공개일 또는 다중 출원일의 이용국 명시를 위한 문헌

 "O" 구체, 정확, 품질의 다른 문헌을 인용하고 있는 문헌

 "P" 우선권이에 공개되었으나 국제출원일 이후에 공개된 문헌

 "T" 국제출원일 또는 우선일 후에 공개된 문헌으로, 출원과 상관없이 발명의 기초가 되는 원리나 이론을 이해하기 위해 인용된 문헌

 "X" 특별한 관련이 있는 문헌, 해당 문헌이 하나의 문헌만으로 정구한 발명의 신규성 또는 진보성이 없는 것으로 본다.

 "Y" 특별한 관련이 있는 문헌, 해당 문헌에 하나 이상의 다른 문헌과 조합하는 경우로 그 조합이 당연하게 진행한 경우 정구된 발명

 "&" 동일한 대원특허문헌에 속하는 문헌

국제조사의 실제 완료일

2013년 09월 03일 (03.09.2013)

국제조사보고서 발송일

2013년 09월 04일 (04.09.2013)
<table>
<thead>
<tr>
<th>국제조사보고서</th>
<th>공개일</th>
<th>다양한역현문</th>
<th>공개일</th>
</tr>
</thead>
<tbody>
<tr>
<td>US 2012-0285222 A1</td>
<td>2012/11/15</td>
<td>GB 201107747 D0</td>
<td>2011/06/22</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GB 201122330 D0</td>
<td>2012/02/01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GB 2490758 A</td>
<td>2012/11/14</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GB 2490758 B</td>
<td>2013/07/10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2467313 A1</td>
<td>2004/11/30</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2467313 C</td>
<td>2008/01/29</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2591619 A1</td>
<td>2004/11/30</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2591619 C</td>
<td>2011/03/15</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2724709 A1</td>
<td>2004/11/30</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GB 0222345 D0</td>
<td>2002/11/06</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GB 2382474 A</td>
<td>2003/05/28</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GB 2382474 B</td>
<td>2003/12/10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GB 2402559 A</td>
<td>2004/12/08</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GB 2412340 A</td>
<td>2005/09/28</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NO 20024738 A</td>
<td>2003/04/04</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NO 20024738 D0</td>
<td>2002/10/02</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NO 333455 B1</td>
<td>2013/06/10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2003-0192707 A1</td>
<td>2003/10/16</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 6886638 B2</td>
<td>2005/05/03</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 6913512 B2</td>
<td>2005/07/19</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 7216719 B2</td>
<td>2007/05/15</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 7340819 B2</td>
<td>2008/03/11</td>
</tr>
</tbody>
</table>

US 5209105 A	1993/05/11	없음	
		WO 2005-065411 A2	2005/07/21
		WO 2005-065411 A3	2005/12/15
		CA 2635551 C	2013/04/09
		GB 0003892 D0	2009/04/15
		GB 2461138 A	2009/12/30
		GB 2461138 B	2011/11/30
		US 2009-0314107 A1	2009/12/24

서식 PCT/ISA/210(대응특허 추가용지) (2009년 7월)