Abstract:
The use of methotrexate, e.g., repeated dosing or sustained-release formulations of methotrexate, for treating or reducing risk of proliferative vitreoretinopathy (PVR) or epiretinal membranes (ERM), e.g., after surgical vitrectomy to treat retinal detachment.
METHOTREXATE FOR PROLIFERATIVE VITREORETINOPATHY

CLAIM OF PRIORITY
This application claims the benefit of U.S. Patent Application Serial No. 62/030,778, filed on July 30, 2014. The entire contents of the foregoing are hereby incorporated by reference.

TECHNICAL FIELD
This invention relates to the use of methotrexate, e.g., repeated dosing or sustained-release formulations of methotrexate, for reducing risk of proliferative vitreoretinopathy (PVR) or epiretinal membranes (ERM) after surgical vitrectomy and/or scleral buckle to treat retinal detachment.

BACKGROUND
Retinal detachment (RD) is an important cause of sudden visual loss in the United States, with approximately 40,000 cases occurring annually. Permanent visual loss will result if treatment is delayed.

A retinal detachment is defined as the separation of the neurosensory retina from the retinal pigment epithelium (RPE). In the nonpathologic state, the retinal pigment epithelium is a continuous epithelial monolayer occluded by tight junctions, which maintain a strict separation of the underlying choroidal capillary beds from the photoreceptors of the sensory retina, thus forming the outer blood-retina barrier. Its functions include the nourishment of photoreceptors, elimination of waste products, and reabsorption of subretinal fluid.

The definitive treatment of retinal detachment is surgical repair. Multiple operative techniques are available to the treating retinologist, but the principles underlying treatment of retinal detachment remain the same: removal of fluid from the subretinal space, relief of any existing traction, and treatment and prophylaxis against the underlying cause for the ingression of fluid, whether it be due to a retinal break or an exudative process.

Proliferative vitreoretinopathy (PVR) is the most common cause for failure of retinal detachment surgery, a complication which occurs in 5-10% of all retinal detachment surgeries. PVR can also occur spontaneously in the absence of surgery.
PVR is most likely to develop following repeated surgical instrumentation of the eye, following significant physiologic insult to the eye such as in trauma, as well as in retinal detachments complicated by multiple tears, giant tears, vitreous hemorrhage, or in eyes with uveitis.

A milder form of PVR, called macular pucker or epiretinal membrane (ERM), complicates the post-operative course of 20-30% of RD surgeries and half of these are so visually distorting that patients will require surgery. In addition, autopsy studies show that close to 75-80% of patients with RD surgery have histological evidence of proliferative membranes. This may explain why many patients do not achieve perfect vision postoperatively after RD surgery, yet do not have any clinically obvious ERMs. In addition, ERMs can also develop spontaneously.

No treatments to date have been found to be preventive against PVR or ERMs. Once PVR or ERMs develop, surgery is the only treatment.

SUMMARY

The present invention is based, at least in part, on the development of methods to treat and to reduce the risk of developing PVR or ERM.

Thus, in a first aspect the invention provides methods for treating or reducing the risk of proliferative vitreoretinopathy (PVR) or epiretinal membranes (ERM) in a subject. The methods include administering a plurality, e.g., ten or more, intravitreal injections of methotrexate over a period of at least one, two, three, or more months, given no more frequently than weekly.

In some embodiments, each injection provides a dose of 400 meg in 0.1 ml methotrexate.

In some embodiments, the methotrexate is administered posterior to the limbus.

In some embodiments, the subject is undergoing an ocular surgical procedure that increases the subject’s risk of developing ERM or PVR, e.g., a pars plana vitrectomy (PPV), Retinal Detachment (RD) surgery; ERM surgery; scleral buckle surgery; or a procedure in the other eye. In some embodiments, the subject requires a PPV to treat a rhegmatogenous retinal detachment secondary to trauma; preexisting proliferative vitreoretinopathy (e.g., grade C or higher); or for other indications associated with high risk condition for PVR development, e.g., giant retinal tears (giant retinal tears are defined as tears involving 90° or more of the circumference of
the globe), retinal breaks larger than 3 disc areas, long-standing retinal detachments, or detachments associated with hemorrhage.

In some embodiments, a first injection is given at conclusion of the surgical procedure; eight weekly injections are given until postoperative month two; and a final tenth injection is given at postoperative month three.

In some embodiments, the methods include administering nine consecutive weekly injections, and a tenth injection three months after the first injection.

In some embodiments, the methods include administering additional injections monthly after the final, e.g., tenth, injection.

In some embodiments, the methods include administering one, two, three, four, five, six, seven, eight, or nine additional injections, e.g., monthly, after the tenth injection.

In another aspect, the invention provides methods for treating or reducing the risk of PVR or ERM in a subject. The methods include intravitreally administering a sustained release formulation of methotrexate over at least a three-month period.

In some embodiments, the sustained release formulation is or comprises a lipid-encapsulated formulation; multivesicular liposome (MVL) formulations of methotrexate (MTX); nano- or microparticles; polyion complex (PIC) micelles; or bioadhesive polymers. In some embodiments, the bioadhesive polymers comprise one or more of hydroxypropyl methylcellulose (HPMC), carboxymethylcellulose (CMC), polyacrylic acid (PAA), or hyaluronic acid (HA).

In a further aspect, the invention provides methods for treating or reducing the risk of PVR or ERM in a subject. The methods include implanting a device for sustained release of methotrexate over at least a three-month period into the eye of the subject.

In some embodiments, the device is non-biodegradable.

In general, in the methods described herein, the subject does not have cancer, e.g., does not have an ocular cancer, e.g., does not have ocular or B cell lymphoma. In some embodiments, the subject does not have uveitis. In some embodiments, the methods include determining that a subject has or is at risk of developing PVR or ERM, or is about to undergo a procedure with a high risk of PVR or ERM as a side effect, and selecting the subject.

Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to
which this invention belongs. Methods and materials are described herein for use in
the present invention; other, suitable methods and materials known in the art can also
be used. The materials, methods, and examples are illustrative only and not intended
to be limiting. All publications, patent applications, patents, sequences, database
entries, and other references mentioned herein are incorporated by reference in their
entirety. In case of conflict, the present specification, including definitions, will
control.

Other features and advantages of the invention will be apparent from the
following detailed description and figures, and from the claims.

DESCRIPTION OF DRAWINGS

FIG. 1 is a flowchart showing an exemplary treatment protocol using the
present methods.

FIGs. 2A-2C are each sets of nine images of human PVR cells plated into 12
wells with 30,000 cells per well showing that methotrexate inhibited proliferation of
human proliferative vitreoretinopathy (PVR) cells in culture. The cells were treated
with 100 µM, 200 µM, or 400 µM Methotrexate (MTX) as indicated, and the images
were taken after 72 hours (2A), 1 week (2B) or 2 weeks (2C). At 72 hours (2A), the
photomicrograph showed similar epithelioid morphology and limited confluence
across the control plates (top row), as well as the three methotrexate concentrations
(rows 2-4). At 1 week (2B), the control plates (row 1) showed a uniform, confluent
acellular sheet whereas rows 2-4, which were exposed to methotrexate 400, 200, and
100 respectively, showed growth inhibition and lack of confluency, and were less
epithelioid in appearance. At 2 weeks, the control plates (row 1) continued to be a
uniform, confluent cellular sheet, whereas rows 2-4, exposed to methotrexate 400,
200, and 100 respectively, continued to have inhibited growth and lack of confluency.

DETAILED DESCRIPTION

Proliferative vitreoretinopathy (PVR) is a common occurrence after retinal
detachment surgery. PVR is a "scarring" condition that forms inside the eye after
surgery, significant trauma, or even spontaneously. Its pathogenesis is the disruption
of the retinal pigment epithelium layer, which is associated with inflammation,
migration, and proliferation of cells to the (neural) retinal surface. Over the next 4-12
weeks, membranes on the surface of the retina proliferate, contract, and apply traction
on the retina, which results in redetachment of the retina from the RPE. Once PVR is present and the retina detaches for a second time, it is unlikely that vision will be restored.

Pathobiology of Proliferative Vitreoretinopathy (PVR) and Epiretinal Membranes (ERM)

Epiretinal membranes (ERM) are caused by an abnormal proliferation of cells, e.g., retinal pigment epithelial (RPE) cells, glial cells, fibroblasts, and macrophages, on the surface of the retina, typically in response to ocular disease; the membranes tend to contract and cause puckering and thus distortion of the macula. See, e.g., Hiscott et al., Br J Ophthalmol. 68(10):708-15 (1984); Hiscott et al., Eye 16, 393-403 (2002); and Asato et al., PLoS One. 8(1): e54191 (2013).

Like ERM, PVR is an abnormal wound healing response of the vitreous and retina, a clinical syndrome where cells with proliferative capacity, driven by inflammatory mediators, multiply on the retinal surface, contract, and eventually cause recurrent retinal detachment (RD). The pathogenesis of PVR begins with the introduction of RPE cells into the vitreous cavity. These cells may be introduced at the time of the retinal tear itself or may be introduced iatrogenically such as through the use of cryotherapy or retinectomy. Studies from monkey eyes with PVR have also postulated that the introduction of Müller cells, as well as potentially fibrocytes, occur as well. Concomitant with the introduction of RPE cells is the introduction or upregulation of growth factors, including vascular endothelial growth factor (VEGF), platelet-derived growth factor (PDGF), fibronectin, transforming growth factor-beta (TGF-β), and other mediators. This process begins an autocrine loop where glial, RPE, and other cellular constituents proliferate and transdifferentiate into contractile myofibrocytes. On pathology, macrophages as well as fibroblasts are commonly identified in specimens of PVR.

It has also been proposed that, at this time of RPE disruption, inflammation plays an important role in the development of PVR. Cytokines IL-6, IL-1, TNF-alpha, and IFN-gamma have been identified in high concentrations in the vitreous in the early, proliferative stages of PVR, but they decrease to normal levels in the scarring phase. These cytokines are not present in eyes that do not develop PVR.

The use of a pharmacologic adjuvant to prevent PVR has been an elusive goal in ophthalmology. A general pharmacologic strategy employed in prior PVR studies
has been the single intravitreal, intraoperative administration of a variety of agents, such as duanoribcin, 5-fluorouracil (5-FU), triamcinolone, low-molecular weight heparin, and naproxen. Although the clearance of vitreally delivered drugs is dependent on a number of factors including the molecular weight of the drug, the status of the blood-retina barriers, contents of the vitreous cavity, etc., it is likely that those drugs used in these prior PVR studies were cleared from the eye within days after their administration. In contrast, PVR does not become a clinically appreciable, pathologic entity until at least 6-8 weeks after surgery.

Methotrexate

Methotrexate is a non-naturally occurring chemically also known as N-[4-
[(2,4-diamino-6-pteridinyl) methyl] methylamino] benzoyl]-L-glutamic acid. A folate analog, methotrexate is thought to act as an anti-proliferative agent by reversibly inhibiting dihydrofolate reductase, which prevents dihydrofolate from being reduced to tetrahydrofolate, which is used in the synthesis of purine nucleotides.

Mechanisms of anti-inflammatory action are less clear, although mechanisms that have been proposed include its ability to enhance the extracellular concentration of adenosine, suppression of pro-inflammatory cytokines, inducement of apoptosis of activated T cells, and suppression of intracellular adhesion by activated T cells.

In some embodiments, the methotrexate is formulated for repeated injection, e.g., in Balanced Salt Solution from 25 mg vials to a sterile, single-use dose of 400 mcg/0.1 ml.

In some embodiments, the methotrexate is formulated for sustained release. A number of sustained release formulations of methotrexate are known in the art, including but not limited to biodegradable implants such as lipid-encapsulated formulations, e.g., Depo/Methotrexate, as described in Bonetti et al., Cancer Chemother Pharmacol 33:303-306 (1994) and Chatelut et al., J Pharm Sci. 1994 Mar;83(3):429-32; multivesicular liposome (MVL) formulations of methotrexate (MTX), e.g., as described in WO2011 1143484; nano- or microparticles, e.g., alpha-lactalbumin microparticles, e.g., as described in Vijayaragavan et al., Int J Pharm Res 3(1):39-44 (2011) or nanoparticles of conjugated methotrexate-human serum albumin as described in Taheri et al., JNanomaterials 2011 (dx.doi.org/10.1155/2011/768201); polyion complex (PIC) micelles; bioadhesive polymers such as hydroxypropyl methylcellulose (HPMC), carboxymethylcellulose (CMC) and polyacrylic acid (PAA)
derivatives, as well as hyaluronic acid (HA), e.g., Lacrisert (Aton Pharma), which is a soluble hydroxy propyl cellulose ocular insert.

Alternatively or in addition, sustained release can be achieved using a sustained-release device such as intravitreal implants, e.g., as described in Palakurthi et al., Current Eye Research, 35(12): 1105-1115 (2010) or similar to the Retisert (Bausch & Lomb), Ozurdex (Allergan); or non-biodegradable implants, e.g., similar to Iluvien (Alimera) or Vitrasert (Bausch & Lomb) implants; the I-vation platform (SurModics Inc.). See also Lee et al., Pharm Res. 27(10):2043-53 (2010); Haghjou et al., J Ophthalmic Vis Res. 6(4):317-329 (2011); Kim et al., Invest. Ophthalmol. Vis. Sci. 45(8):2722-2731 (2004); and Velez and Whitcup, Br J Ophthalmol 83: 1225-1229 (1999).

Subjects

The methods described herein can be used to prevent (reduce the risk of) PVR or ERM in patients, e.g., in patients requiring pars plana vitrectomy (PPV), e.g., for rhegmatogenous retinal detachment secondary to trauma; for patients requiring PPV for preexisting proliferative vitreoretinopathy grade C or higher; and/or for patients with retinal detachments requiring PPV for other indications associated with high risk condition for PVR development, e.g., giant retinal tears (giant retinal tears are defined as tears involving 90° or more of the circumference of the globe), retinal breaks larger than 3 disc areas, long-standing retinal detachments, or detachments associated with hemorrhage.

Other uses of sustained methotrexate in the eye in addition to PVR include the following:

Prevention of Epiretinal Membranes after Retinal Detachment (RD) surgery

Approximately 20-30% of RD cases develop clinically perceptible ERMs. Half of these are so visually distorting that patients will require surgery. In addition, autopsy studies show that close to 75-80% of patients with RD surgery have some degree of proliferative of membranes. This may explain why many patients do not achieve perfect vision postoperatively after RD surgery, yet do not have any ERMs grossly perceptible to the human eye.
Prevention of ERM that develop spontaneously

EPvMs can develop spontaneously, which then requires surgery. If a subject developed an ERM in one eye, implanting a device to prevent ERMs in the other eye could prevent development in that eye.

Prevention of secondary ERM after ERM surgery

For patients who develop ERMs, these can be removed but some reoccur and require reoperation. Leaving an implant could prevent the recurrent ERM.

The methods described herein can include identifying and/or selecting a subject who is in need of treatment to prevent the development of PVR or ERM as a result of a condition listed above (e.g., selecting the subject on the basis of the need of treatment as a result of a condition listed above, e.g., an increased risk of developing PVR or ERM as a result of a condition listed above). In some embodiments, the subjects treated with a method described herein do not have ocular cancers, e.g., do not have lymphoma (e.g., B cell lymphoma), and/or do not have uveitis.

The presentation of PVR clinically encompasses a wide phenotype. PVR can vary from a mild cellular haze (Grade A) to thick, fibrous membranes that cause the characteristic stiffened funnel of the detached retina (Grade D). A number of grading systems are in use, see, e.g., Ryan, Retina, 5th ed (Elsevier 2013); Retina Society Terminology Committee. The classification of retinal detachment with proliferative vitreoretinopathy. Ophthalmology 1983;90:121-5 (1983); Machemer R, Aaberg TM, Freeman HM, et al. Am J Ophthalmol 112: 159-65 (1991); Lean J, Irvine A, Stern W, et al. Classification of proliferative vitreoretinopathy used in the silicone study. The Silicone study group. Ophthalmology 1989;96:765 - 771. In some embodiments the methods include identifying, selecting, and/or treating a subject who has a low grade (e.g., Grade A or Grade 1) PVR, or who has ERM. In some embodiments, the methods include monitoring the subject for early signs of the development of PVR or ERM, i.e., the presence of a "vitreous haze" indicating a cellular proliferation (which may eventually develop into an organized sheet), and administering one or more doses of MTX as described herein. Although early Grade A PVR vs. an early ERM may be difficult to distinguish from one another, eventually untreated PVR will progress; ERMs will cause a mild traction on the macula resulting in metamorphopsia but will not cause detachment of the retina, whereas untreated PVR will cause detachment and eventually result in a tunneled, atrophic retina. The methods can also be used to treat subjects without present signs of PVR but who are at risk for PVR or ERMs.
Methods of Treating or Reducing Risk of PVR or ERM

The methods described herein include the use of methotrexate in subjects who are at risk of developing a first or recurring PVR or ERM, e.g., a subject who is undergoing RD surgery or ERM surgery, as described above, and in subjects who have PVR or ERM or who are at risk for developing PVR or ERMs. In some embodiments, the methods described herein include the use of methotrexate in subjects who have undergone, are undergoing, or will undergo a pars plana vitrectomy (PPV) or scleral buckle (SB). In some embodiments, the methods include performing a PPV, RD surgery, or ERM surgery. Methods for performing these surgeries are known in the art; for example, typically, PPV is performed under local or general anesthesia using three, 23 or 20 gauge sclerotomy ports. Any present epiretinal membranes can be dissected, e.g., using a membrane pick and forceps. Intraoperative tissue staining, perfluorocarbons, cryopexy, endolaser, scleral buckling, and lensectomy can also be performed as needed. Standard tamponading agents can be used, e.g., silicone oil or gas.

The methods described herein include the use of an effective amount of methotrexate. An "effective amount" is an amount sufficient to effect beneficial or desired results, e.g., the desired therapeutic effect (i.e., a prophylactically effective amount that reduces the risk of developing PVR or ERM). An effective amount can be administered in one or more administrations, applications or dosages. A therapeutically effective amount of methotrexate can be, e.g., 40C^g/0.1 ml per injection, e.g., with at least ten injections, giving a cumulative dose of 4,000 µg over ten injections; in some embodiments, the methods include giving more than ten injections, for a cumulative dose of more than 4,000 µg. In some embodiments, the methods include giving fewer than ten injections, for a cumulative does of less than 4,000 ug. The compositions can be administered one from one or more times per day to one or more times per week to one or more times per month; including once every other day. The skilled artisan will appreciate that certain factors may influence the dosage and timing required to effectively treat a subject, including but not limited to the severity of the disease or disorder, previous treatments, the general health and/or age of the subject, and other diseases present.

In some embodiments, intravitreal methotrexate injections are performed aseptically after the topical application of anaesthesia and an antiseptic agent, e.g., 5% povidone iodine, to the conjunctival sac. In some embodiments, each subject receives
an intravitreal injection of methotrexate, e.g., 400 mcg/0.1 ml methotrexate, 3.0 to 3.5 mm posterior to the limbus, depending on lens status, with a 30-gauge needle.

In some embodiments, the subjects receive multiple intravitreal injections of methotrexate during their post-operative period. The first injection can be administered intraoperatively; subsequently, injections can be administered on post-operative (post-op) weeks 1, 2, 3, 4, 5, 6, 7, and 8, and on post-op month 3, for a total of 10 injections. See, e.g., Figure 1. In some embodiments, the methods include administering the methotrexate in ten doses, or ten or more doses, or less than ten doses, over a three-month period or longer, and injections would be given no more frequently than weekly. In some embodiments, the methods include additional doses at weekly, biweekly, or monthly frequency thereafter for an additional one, two, three, four, five, six, seven, eight, nine, ten, 11, or 12 months thereafter. In some embodiments the methods include ten doses over three months as shown in Fig. 1, with an optional additional one or more doses at monthly intervals thereafter for an additional one, three, six, or more months thereafter.

In some embodiments, the subjects receive a sustained release implant, e.g., as described above, that will release MTX over time, e.g., over a week, two weeks, a month, two months, three months, six months, or a year. In some embodiments, the methods include administering subsequent implants to provide MTX administration for at least six months, one year, two years, or more.

EXAMPLES

The invention is further described in the following examples, which do not limit the scope of the invention described in the claims.

Example 1. Sustained methotrexate in the silicone filled postoperative eye at high risk for proliferative vitreoretinopathy

We hypothesized that the administration of multiple, intravitreal methotrexate injections into eyes with high-risk features for post-operative proliferative vitreoretinopathy (PVR) development will have improved visual outcomes, higher anatomic final reattachment rates, decreased reoperation rates, and decreased occurrence of PVR at 4 months postoperatively.

We have performed a small pilot study in 10 patients with retinal detachment whom had high-risk clinical factors for developing PVR.
Patients 18 years to 89 years old of both genders were eligible for this study if they required pars plana vitrectomy (PPV) for rhegmatogenous retinal detachment secondary to trauma, PPV for preexisting proliferative vitreoretinopathy grade C or higher, or if they had retinal detachments requiring PPV for other indications associated with high risk condition for PVR development, i.e.: giant retinal tears (Giant retinal tears are defined as tears involving 90° or more of the circumference of the globe), retinal breaks larger than 3 disc areas, long-standing retinal detachments, detachments associated with hemorrhage.

The PPV was performed under local or general anesthesia using three, 23 or 20 gauge sclerotomy ports. Any present epiretinal membranes were dissected using a membrane pick and/or forceps. Intraoperative tissue staining, perfluorocarbons, cryopexy, endolaser, scleral buckling, and lensectomy were performed as needed. Either silicone oil or gas was used as the tamponading agent.

Routine post-operative visits, which involve a dilated funduscopic examination, occurred on post-operative day 1, 7, month 1, month 2, and month 3. Patients return to the operating room after three months for silicone oil removal and were seen in clinic 4 months after the original surgery.

In addition to receiving the above-described standard of care, patients received multiple intravitreal methotrexate injections during their post-operative period. The first injection was administered intraoperatively and subsequently was injected on post-op week 1,2,3,4,5,6,7,8 and on post-op month 3, for a total of 10 injections. Intravitreal methotrexate injections were performed aseptically after the topical application of anaesthesia and 5% povidone iodine to the conjunctival sac. Each patient received an intravitreal injection of 400mcg/0.1ml methotrexate, 3.0 to 3.5 mm posterior to the limbus, depending on lens status, with a 30-gauge needle.

After injection, patients were monitored for adverse events, including a full-dilated funduscopic examination.

Demographics and pre-operative vision

Eight men and two women enrolled into the study (Table 1). The age of patients ranged from 18 to 63. Two patients (#4 & #9) were enrolled with traumatic retinal detachment (total retinal detachment, 360 degree giant retinal tear, and retina incarcerated in scleral wound after open globe injury). The remaining 8 patients had had multiple (average 2.5) prior retinal detachments secondary to proliferative membranes. One patient (MTX08M) had significant baseline retinal comorbidity with
high pathologic myopia, staphyloma, atrophy, lattice and paving stone in the operative eye. The median pre-operative visual acuity was Hand Motions at 2 feet.

Operative details

Operative details of each patient are provided in Table 2. Operative time was recorded as a surrogate for surgical complexity. All patients underwent vitrectomy, extensive membrane peeling, relaxing retinectomy, perfluorocarbon liquid, endolaser, and silicone oil injection. The four subjects previously surgically intervened on had buckles that were still providing adequate indentation of the globe and were therefore left in place.

Visual and anatomical results

Despite the extremely poor visual and anatomic prognosis of all the subjects enrolled in the study, no subjects developed PVR while receiving methotrexate during the three-month treatment protocol. Interestingly, one of the trauma patients (#4) experienced massive PVR two weeks after completion of the injection protocol (at 3 ½ months postoperatively), but weekly examination during the study had shown no evidence of proliferating cells; this is extremely unusual and may be accounted for by the presence of methotrexate for three months and its subsequent absence. This patient required re-operation. Two other subjects developed reaccumulation of fluid under the retina requiring re-operation, but no membranes were appreciated.

Safety and adverse events

Adverse events observed are reported in Table 3. All subjects experienced a degree of conjunctival hyperemia, consistent with the use of silicone oil. Superficial punctate keratopathy (SPK) was observed in one asymptomatic patient at a single clinical exam. Examination one week later showed a normal corneal surface and no further sequelae were observed. Follow up duration in our 10 patients ranged from 4 months to 39 months, with a median follow up time of 25 months. Even after months to years of follow up data, no significant adverse events were observed. Visual acuity and intraocular pressure at the last follow up visit was similar in all patients to the visual acuity and pressure observed at post-operative month 4, at the conclusion of the study period, suggesting good long term safety.

In addition, in the same patient who experienced SPK, elevated intraocular pressure was documented (44 mm Hg by Goldmann Tonometry) at a single examination. Per patient report, she had been taking Flonase (fluticasone nasal) "many times per day" and had been taking Pred Forte drops QID, although she had
been instructed to take Pred Forte BID. Her pressure was normalized in the exam
room with topical therapy. The intravitreal injection was administered as scheduled,
and she was discharged from clinic with normal pressure. She was given a
prescription for Alphagan and Xalatan with plans to follow up with the Glaucoma
service. No further elevated pressures were observed during the course of the study or
in follow up, suggesting that her transient elevated pressure was most likely due to
excessive steroid use as suspected. Patient MTX08M ended the study with NLP
vision. He had a history in the operative eye of pathological myopia, staphyloma,
atrophy, lattice, and pavesstoning. One month after his surgery (his third intravitreal
surgery in that eye and the study surgery date), disc pallor was noted. Optical
coherence tomographic pictures of that retina before and after had noted disorganized
laminae, secondary to his underlying retinal disease. His vision at this was noted to be
LP. He continued to receive injection with limited improvement in his vision and
noted to be NLP at the final visit.

In addition to the excellent anatomical results seen, with virtually no PVR
developing during the study protocol, the protocol was associated with excellent
visual results. The median post-operative visual acuity was 20/200. This is notable
because although one other group has used methotrexate in eyes with a wide variety
of conditions, including PVR, no one has previously demonstrated improved
outcomes. Hardwig et al. injected methotrexate intravitreally of varying doses into 5
patients, however, only one patient had any improved vision and there was no change
in visual acuity for the group (Hardwig et al., Retina 28:1082-1086 (2008)). In
addition, this study did not attempt to validate efficacy. Also, in 2006 Hardwig et al.
 injected 1 dose of methotrexate into the anterior chamber of one patient with PVR,
but not into the intravitreal space as described herein (Hardwig et al., Am J
Ophthalmol 2006;142:883-885 (2006)).

The present results are very encouraging and are unlikely explained by chance.
The patients who have received 10 intravitreal methotrexate injections have done
remarkably well given the severity of their condition, as we intentionally selected
patients who were at the highest risk for PVR.
Example 2. Sustained methotrexate inhibits the growth of proliferative vitreoretinopathy *in vitro*

We hypothesized that methotrexate would inhibit human proliferative vitreoretinopathy (PVR) cells in culture. PVR membranectomy was performed in patients undergoing retinal detachment repair secondary to PVR. Using cellular separation techniques, cellular constituents of the PVR membranes were separated from the extracellular matrix membranes. 30,000 cells per well were placed into a standard 12 welled plate. All 12 wells received endothelial cell growth medium with supplemental growth factors. Four arms were designated consisting of three wells each. The first arm served as a control receiving the standard growth medium but no other intervention. The remaining wells were designated as treatment arms. The second arm of three wells served as the first treatment arm and exposed the cells to 400 micrograms of methotrexate. The third and fourth arms of three wells each exposed the cultured cells to 200 and 100 micrograms, respectively, of methotrexate.

At 72 hours, similar growth of PVR cells with typical epithelioid morphology and limited confluence was observed (Figure 2a). One week after seeding (Figure 2b) the PVR control cells demonstrated a confluent cellular sheet whereas cells exposed to methotrexate at all concentrations demonstrated growth inhibition, lack of confluency, and were less epithelioid in appearance. At two weeks (Figure 2C), inhibition of cellular confluency continued whereas the control plates continued to proliferate.
<table>
<thead>
<tr>
<th>studyId</th>
<th>Age</th>
<th>Male</th>
<th>Race</th>
<th>Criteria for entry</th>
<th>Childbearing potential</th>
<th>Ocular comorbidities</th>
<th>Previous number of surgeries attempted to repair RD</th>
</tr>
</thead>
<tbody>
<tr>
<td>MTX01F</td>
<td>47</td>
<td>No</td>
<td>White</td>
<td>PVR Grade C</td>
<td>No</td>
<td>none</td>
<td>3</td>
</tr>
<tr>
<td>MTX02M</td>
<td>60</td>
<td>Yes</td>
<td>White</td>
<td>PVR Grade C</td>
<td>No</td>
<td>none</td>
<td>3</td>
</tr>
<tr>
<td>MTX03M</td>
<td>56</td>
<td>Yes</td>
<td>White</td>
<td>PVR Grade C</td>
<td>No</td>
<td>lattice, mild cataract</td>
<td>3</td>
</tr>
<tr>
<td>MTX04M</td>
<td>25</td>
<td>Yes</td>
<td>White</td>
<td>RD associated with open globe injury</td>
<td>No</td>
<td>Marginal lid laceration of right lower lid with canicular involvement</td>
<td>0</td>
</tr>
<tr>
<td>MTX05M</td>
<td>29</td>
<td>Yes</td>
<td>White</td>
<td>PVR Grade C</td>
<td>No</td>
<td>subluxated lens OS, lens removal age 4, diagnosed glaucoma age 11, post capsule removal age 17 subluxated lens OD, lens removal age 17</td>
<td>2</td>
</tr>
<tr>
<td>MTX06M</td>
<td>54</td>
<td>YES</td>
<td>White</td>
<td>PVR Grade C</td>
<td>No</td>
<td>none</td>
<td>3</td>
</tr>
<tr>
<td>MTX07M</td>
<td>57</td>
<td>YES</td>
<td>White</td>
<td>PVR Grade C</td>
<td>No</td>
<td>none</td>
<td>2</td>
</tr>
<tr>
<td>MTX08M</td>
<td>63</td>
<td>Yes</td>
<td>White</td>
<td>PVR Grade C</td>
<td>No</td>
<td>High Pathologic myopia; staphyloma OU; atrophy OU; lattice and paving stone OS</td>
<td>2</td>
</tr>
<tr>
<td>MTX09M</td>
<td>53</td>
<td>Yes</td>
<td>White</td>
<td>RD associated with open globe injury</td>
<td>No</td>
<td>none</td>
<td>0</td>
</tr>
<tr>
<td>MTX10F</td>
<td>18</td>
<td>NO</td>
<td>White</td>
<td>PVR Grade C</td>
<td>Yes, 2 methods of contraception + pregnancy test prior to every injection</td>
<td>s/p 5 prior strabismus surgeries</td>
<td>2</td>
</tr>
<tr>
<td>Study ID</td>
<td>Visual Acuity, initial</td>
<td>Visual Acuity, Post-op month 4</td>
<td>Initial IOP</td>
<td>Final IOP</td>
<td>Injections</td>
<td>Detachments</td>
<td>Last follow up date</td>
</tr>
<tr>
<td>----------</td>
<td>------------------------</td>
<td>--------------------------------</td>
<td>-------------</td>
<td>-----------</td>
<td>------------</td>
<td>-------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>MTX01F</td>
<td>HM</td>
<td>20/200</td>
<td>22</td>
<td>13</td>
<td>10</td>
<td>0</td>
<td>7/9/15</td>
</tr>
<tr>
<td>MTX02M</td>
<td>640</td>
<td>20/320</td>
<td>12</td>
<td>12</td>
<td>10</td>
<td>0</td>
<td>5/20/15</td>
</tr>
<tr>
<td>MTX03M</td>
<td>HM</td>
<td>20/200</td>
<td>9</td>
<td>12</td>
<td>10</td>
<td>0</td>
<td>7/14/15</td>
</tr>
<tr>
<td>MTX04M</td>
<td>LP</td>
<td>20/160</td>
<td>10</td>
<td>9</td>
<td>10</td>
<td>0*</td>
<td>7/1/15</td>
</tr>
<tr>
<td>MTX05M</td>
<td>600</td>
<td>20/200</td>
<td>11</td>
<td>10</td>
<td>10</td>
<td>0</td>
<td>12/3/12</td>
</tr>
<tr>
<td>MTX06M</td>
<td>LP</td>
<td>20/252</td>
<td>soft</td>
<td>8</td>
<td>10</td>
<td>0</td>
<td>7/1/15</td>
</tr>
<tr>
<td>MTX07M</td>
<td>HM</td>
<td>20/200</td>
<td>12</td>
<td>12</td>
<td>10</td>
<td>0</td>
<td>4/8/15</td>
</tr>
<tr>
<td>MTX08M</td>
<td>CF</td>
<td>NLP</td>
<td>14</td>
<td>15</td>
<td>10</td>
<td>0</td>
<td>9/17/14</td>
</tr>
<tr>
<td>MTX09M</td>
<td>LP</td>
<td>20/65</td>
<td>soft</td>
<td>9</td>
<td>10</td>
<td>0</td>
<td>4/29/15</td>
</tr>
<tr>
<td>MTX10F</td>
<td>HM</td>
<td>CF</td>
<td>15</td>
<td>13</td>
<td>9</td>
<td>0</td>
<td>3/24/15</td>
</tr>
</tbody>
</table>

*Massive PVR membranes developed two weeks after the final injection of methotrexate, despite there being no PVR in the preceding three months.

Injections: Total number of injections of methotrexate 400mcg/0.1ml

Detachments: Number of detachments due to PVR during study period.
<table>
<thead>
<tr>
<th>studyid</th>
<th>Conjunctival hyperemia</th>
<th>Superficial Punctate Keratopathy</th>
<th>Elevated intraocular pressure</th>
<th>NLP</th>
<th>Reoperations required</th>
<th>Date of reoperation</th>
<th>Indication for reoperation</th>
</tr>
</thead>
<tbody>
<tr>
<td>MTX01F</td>
<td>7</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>MTX02M</td>
<td>7</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>MTX03M</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>MTX04M</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>Post-op month 4</td>
<td>Outside the injection period (post-op month 3.5), significant PVR was seen. Patient was taken to the OR to peel membranes and remove traction from the retina.</td>
</tr>
<tr>
<td>MTX05M</td>
<td>7</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>Post-op month 2.5</td>
<td>Persistent sub-retinal fluid, no membranes</td>
</tr>
<tr>
<td>MTX06M</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>MTX07M</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>MTX08M</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>MTX09M</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>MTX10F</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
REFERENCES

OTHER EMBODIMENTS

It is to be understood that while the invention has been described in conjunction with the detailed description thereof, the foregoing description is intended to illustrate and not limit the scope of the invention, which is defined by the scope of the appended claims. Other aspects, advantages, and modifications are within the scope of the following claims.
WHAT IS CLAIMED IS:

1. A method of treating or reducing the risk of proliferative vitreoretinopathy (PVR) or epiretinal membranes (ERM) in a subject, the method comprising administering a plurality of intravitreal injections of methotrexate over a period of at least one, two, three, or more months, given no more frequently than weekly.

2. The method of claim 1, comprising administering ten or more intravitreal injections of methotrexate.

3. The method of claim 1, wherein each injection provides a dose of 400 meg in 0.1 ml methotrexate.

4. The method of claim 1, wherein the methotrexate is administered posterior to the limbus.

5. The method of claim 1, wherein the subject is undergoing an ocular surgical procedure that increases the subject's risk of developing ERM or PVR.

6. The method of claim 5, wherein the ocular surgical procedure is a pars plana vitrectomy (PPV), Retinal Detachment (RD) surgery; ERM surgery; scleral buckle surgery; or a procedure in the other eye.

7. The method of claim 6, wherein the subject requires a PPV to treat a rhegmatogenous retinal detachment secondary to trauma; preexisting proliferative vitreoretinopathy; or for other indications associated with high risk condition for PVR development.

8. The method of claim 7, wherein the indication associated with high risk condition for PVR development is a giant retinal tear, a retinal break larger than 3 disc areas, a long-standing retinal detachment, or a detachment associated with hemorrhage.

9. The method of claim 5, wherein:
 a first injection is given at conclusion of the surgical procedure;
eight weekly injections are given until postoperative month two; and a final tenth injection is given at postoperative month three.

10. The method of claim 1, comprising administering nine consecutive weekly injections, and a tenth injection three months after the first injection.

11. The method of claim 1, comprising administering additional injections monthly after the tenth injection.

12. The method of claim 11, comprising administering one, two, three, four, five, six, seven, eight, or nine additional injections after the tenth injection.

13. The method of claim 12, wherein the additional injections are administered monthly.

14. A method of treating or reducing the risk of PVR or ERM in a subject, the method comprising intravitreally administering a sustained release formulation of methotrexate over at least a three-month period.

15. The method of claim 14, wherein the sustained release formulation is or comprises a lipid-encapsulated formulation; multivesicular liposome (MVL) formulations of methotrexate (MTX); nano- or microparticles; polyion complex (PIC) micelles; or bioadhesive polymers.

16. The method of claim 14, wherein the bioadhesive polymers comprise one or more of hydroxypropyl methylcellulose (HPMC), carboxymethylcellulose (CMC), polyacrylic acid (PAA), or hyaluronic acid (HA).

17. A method of treating or reducing the risk of PVR or ERM in a subject, the method comprising implanting into the eye of the subject a device that provides sustained release of methotrexate over at least a three-month period.

18. The method of claim 17, wherein the device is non-biodegradable.

19. A composition comprising methotrexate for use in treating or reducing the risk of proliferative vitreoretinopathy (PVR) or epiretinal membranes (ERM) in a subject,
wherein the methotrexate is administered via a plurality of intravitreal injections over a period of at least one, two, three, or more months, given no more frequently than weekly.

20. The composition of claim 19, comprising administering ten or more intravitreal injections of methotrexate.

21. The composition of claim 19, wherein each injection provides a dose of 400 meg in 0.1 ml methotrexate.

22. The composition of claim 19, wherein the methotrexate is administered posterior to the limbus.

23. The composition of claim 19, wherein the subject is undergoing an ocular surgical procedure that increases the subject's risk of developing ERM or PVR.

24. The composition of claim 19, wherein the ocular surgical procedure is a pars plana vitrectomy (PPV), Retinal Detachment (RD) surgery; ERM surgery; scleral buckle surgery; or a procedure in the other eye.

25. The composition of claim 24, wherein the subject requires a PPV to treat a rhegmatogenous retinal detachment secondary to trauma; preexisting proliferative vitreoretinopathy; or for other indications associated with high risk condition for PVR development.

26. The composition of claim 25, wherein the indication associated with high risk condition for PVR development is a giant retinal tear, a retinal break larger than 3 disc areas, a long-standing retinal detachment, or a detachment associated with hemorrhage.

27. The composition of claim 23, wherein:
 a first injection is given at conclusion of the surgical procedure;
 eight weekly injections are given until postoperative month two; and
 a final tenth injection is given at postoperative month three.
28. The composition of claim 19, comprising administering nine consecutive weekly injections, and a tenth injection three months after the first injection.

29. The composition of claim 19, comprising administering additional injections monthly after the tenth injection.

30. The composition of claim 29, comprising administering one, two, three, four, five, six, seven, eight, or nine additional injections after the tenth injection.

31. The composition of claim 30, wherein the additional injections are administered monthly.

32. A sustained release formulation of methotrexate for treating or reducing the risk of PVR or EPvM in a subject, wherein the methotrexate is intravitreally administered over at least a three-month period.

33. The formulation of claim 32, wherein the sustained release formulation is or comprises a lipid-encapsulated formulation; multivesicular liposome (MVL) formulations of methotrexate (MTX); nano- or microparticles; polyion complex (PIC) micelles; or bioadhesive polymers.

34. The formulation of claim 32, wherein the bioadhesive polymers comprise one or more of hydroxypropyl methylcellulose (HPMC), carboxymethylcellulose (CMC), polyacrylic acid (PAA), or hyaluronic acid (HA).

35. An implanted ocular device for sustained release of methotrexate for treating or reducing the risk of PVR or ERM in a subject, wherein the device releases methotrexate over at least a three-month period into the eye of the subject.

36. The device of claim 35, wherein the device is non-biodegradable.
Operative Day 0:
Experimental Care
Injection #1: Intraoperatively
Methotrexate 400mcg/0.1ml

Post-Op Week 1:
Injection #2:
Methotrexate 400mcg/0.1ml

Post-Op Week 2:
Injection #3:
Methotrexate 400mcg/0.1ml

Post-Op Week 3:
Injection #4:
Methotrexate 400mcg/0.1ml

Post-Op Week 4:
Injection #5:
Methotrexate 400mcg/0.1ml

Post-Op Week 5:
Injection #6:
Methotrexate 400mcg/0.1ml

Post-Op Week 6:
Injection #7:
Methotrexate 400mcg/0.1ml

Post-Op Week 7:
Injection #8:
Methotrexate 400mcg/0.1ml

Post-Op Month 2:
Injection #9:
Methotrexate 400mcg/0.1ml

Post-Op Month 3:
Injection #10
Methotrexate 400mcg/0.1ml

FIG. 1
<table>
<thead>
<tr>
<th></th>
<th>Well 1</th>
<th>Well 2</th>
<th>Well 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MTX 400μM</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MTX 200μM</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MTX 100μM</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

FIG. 2A
FIG. 2B
INTERNATIONAL SEARCH REPORT

International application No.
PCT/US 15/42951

A. CLASSIFICATION OF SUBJECT MATTER
IPC(8) ... Box 1450, Alexandria, Virginia 22313-1450
Facsimile No. 571-273-8300
Form PCT/ISA/210 (second sheet) (January 2015)

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
IPC(8) ... A61K 31/519; A61K 9/00; A61P 27/02 (2015.01)
CPC - A61K 31/519; A61K 9/00

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched
USPC - 514/249

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
PatBase, Google Patents, Google Scholar (without patents), Google (NLP), ProQuest Dialog (NLP)
Search terms: methotrexate, intravitreal, injection, vitreo-retinopathy, post-surgical treatment, retinal detachment, sustained release, implant device

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>US 2009/0061277 A1 (Robinson et al.) 26 March 2009 (26.03.2009) para[0023]; para[0061]; para[0067]; para[0072]; para[0075]; para[0085]; para[0088]; para[0090]; para[0092]; para[0096]; para[0100]; para[0017]</td>
<td>14-18, 32-36</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1-13, 19-31</td>
</tr>
<tr>
<td>Y</td>
<td>US 201 1/2006622 A1 (Glazier) 18 August 201 1(18.08.2001 1) para[0022]; para[0061]; para[0084]</td>
<td>1-13, 19-31</td>
</tr>
<tr>
<td>Y</td>
<td>Owen et al. "Preliminary Results Of Treatment With Intravitreal Methotrexate In Patients With Macula Oedema Secondary To Uveitis" Association for Research in Vision and Ophthalmology annual meeting, 2012, 1179-1286 Abstract</td>
<td>3, 21</td>
</tr>
<tr>
<td>A</td>
<td>Yeh et al. "Combination intravitreal rituximab and methotrexate for massive subretinal lymphoma" Eye (2010) 24, 1625-1627</td>
<td>3, 21</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of Box C.

"A" document defining the general state of the art which is not considered to be of particular relevance
"E" earlier application or patent but published on or after the international filing date
"L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
"O" document referring to an oral disclosure, use, exhibition or other means
"P" document published prior to the international filing date but later than the priority date claimed
"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

Date of the actual completion of the international search
28 September 2015 (28.09.2015)

Date of mailing of the international search report
0-Z NOV 2015

Name and mailing address of the ISA/US
Mail Stop PCT, Attn: ISA-US, Commissioner for Patents
P.O. Box 1450, Alexandria, Virginia 22313-1450
Facsimile No. 571-273-8300

Authorized officer: Lee W. Young
PCT Helpdesk: 571-272-4300
PCT OSP: 571-272-7774

Form PCT/ISA/210 (second sheet) (January 2015)