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TITLE: HAFNIA PHYTASE

SEQUENCE LISTING AND DEPOSITED MICROORGANISMS
Sequence listing

The present application contains a paper copy and computer readable form of a
sequence listing. The contents of the computer readable form are fully incorporated herein by

reference.

Deposit of biological material

A phytase producing bacterial strain was isolated from Danish soil. The strain was
demonstrated to produce a phytase with acidic pH optimum and high thermostability. The
strain was identified as Hafnia alvei and it was deposited on March 21, 2007, under the terms
of the Budapest Treaty with Deutsche Sammlung von Mikroorganismen und Zellkulturen

(DSMZ) and given the following accession number:

Deposit Accession Number Date of Deposit
Hafnia alvei NN020125 DSM 19197 March 21, 2007

FIELD OF THE INVENTION

The present invention relates to isolated polypeptides having phytase activity and
isolated polynucleotides encoding the polypeptides. The polypeptides are related to a phytase
derived from Hafnia alvei, the amino acid sequence of which is shown in the appended
sequence listing as SEQ ID NO: 10. The invention also relates to nucleic acid constructs,
vectors, and host cells comprising the polynucleotides as well as methods for producing and

using the polypeptides, in particular within animal feed.

BACKGROUND OF THE INVENTION

Phytases are well-known enzymes, as are the advantages of adding them to
foodstuffs for animals, including humans. Phytases have been isolated from very many
sources, including a number of fungal and bacterial strains.

It is an object of the present invention to provide alternative polypeptides having
phytase activity and polynucleotides encoding the polypeptides. The polypeptides of the
invention are preferably of amended, more preferably improved, properties, for example of a
different substrate specificity, of a higher specific activity, of an increased stability (such as
acid-stability, heat-stability, and/or protease stability, in particular pepsin stability), of an
altered pH optimum (such as a lower, or higher pH optimum) and/or of an improved

performance in animal feed (such as an improved release and/or degradation of phytate).
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SUMMARY OF THE INVENTION

The present invention relates to polypeptides having phytase activity, selected from
the group consisting of: (a) a polypeptide having an amino acid sequence which has at least
75% identity with (i) amino acids 1 to 413 of SEQ ID NO: 10, and/or (ii) the mature
polypeptide part of SEQ ID NO: 10; (b) a variant comprising a deletion, insertion, and/or
conservative substitution of one or more amino acids of (i) amino acids 1 to 413 of SEQ ID
NO: 10, and/or (ii) the mature polypeptide part of SEQ ID NO: 10; and/or (c) a fragment of (i)
amino acids 1 to 413 of SEQ ID NO: 10, and/or (ii) the mature polypeptide part of SEQ ID
NO: 10.

The invention also relates to isolated polynucleotides encoding a polypeptide having
phytase activity, selected from the group consisting of: (a) a polynucleotide encoding a
polypeptide having an amino acid sequence which has at least 75% identity with amino acids
1 to 413 of SEQ ID NO: 10; and (b) a polynucleotide having at least 75% identity with
nucleotides 100 to 1338 of SEQ ID NO: 9.

The invention also relates to nucleic acid constructs, recombinant expression vectors,
and recombinant host cells comprising the polynucleotides.

The invention also relates to methods for producing such polypeptides having phytase
activity comprising (a) cultivating a recombinant host cell comprising a nucleic acid construct
comprising a polynucleotide encoding the polypeptide under conditions conducive for
production of the polypeptide; and (b) recovering the polypeptide.

The invention further relates to a nucleic acid construct comprising a gene encoding a
protein operably linked to a nucleotide sequence encoding a signal peptide consisting of (i)
nucleotides 1 to 99 of SEQ ID NO: 11.

The invention also relates to methods of using the phytases of the invention in animal
feed, as well as animal feed and animal feed additive compositions containing the
polypeptides.

The invention also relates to methods of using the phytases of the invention in
producing a fermentation product, such as, e.g., ethanol, beer, wine, wherein the fermentation
is carried out in the presence of a phytase of the present invention.

The present invention relates to methods for treating proteins, including vegetable

proteins, with the phytases of the present invention.

BRIEF DESCRIPTION OF FIGURES

Fig. 1 shows the residual inositol-phosphate bound phosphorous after in vitro incubation in a

comparison between the Hafnia alvei phytase and a Citrobacter braakii phytase dosed from
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125 to 500 FYT/kg Feed.

Fig. 2 shows a comparison of the residual inositol-phosphate bound phosphorous after in vitro
incubation between the Hafnia alvei phytase and a Peniophora lycii phytase phytase dosed at
250 FYT/kg Feed and 500 FYT/kg Feed.

Fig. 3 shows the Appendix of the structural coordinates for the solved crystal three

dimensional structure of the Hafnia alvei phytase.

DEFINITIONS

Phytase activity: In the present context a polypeptide having phytase activity (a
phytase) is an enzyme which catalyzes the hydrolysis of phytate (myo-inositol hexakis-
phosphate) to (1) myo-inositol and/or (2) mono-, di-, tri-, tetra- and/or penta-phosphates
thereof and (3) inorganic phosphate.

The ENZYME site at the internet (www.expasy.ch/enzyme/) is a repository of
information relative to the nomenclature of enzymes. It is primarily based on the
recommendations of the Nomenclature Committee of the International Union of Biochemistry
and Molecular Biology (IUB-MB) and it describes each type of characterized enzyme for
which an EC (Enzyme Commission) number has been provided (Bairoch A. The ENZYME
database, 2000, Nucleic Acids Res 28:304-305). See also the handbook Enzyme
Nomenclature from NC-IUBMB, 1992).

According to the ENZYME site, three different types of phytases are known: A 3-
phytase (myo-inositol hexaphosphate 3-phosphohydrolase, EC 3.1.3.8), a 6-phytase (myo-
inositol hexaphosphate 6-phosphohydrolase, EC 3.1.3.26), and a 5-phytase (EC 3.1.3.72).
For the purposes of the present invention, all types are included in the definition of phytase.

In a particular embodiment, the phytases of the invention belong to the family of acid
histidine phosphatases, which includes the Escherichia coli pH 2.5 acid phosphatase (gene
appA) as well as fungal phytases such as Aspergillus awamorii phytases A and B (EC:
3.1.3.8) (gene phyA and phyB). The histidine acid phosphatases share two regions of
sequence similarity, each centered around a conserved histidine residue. These two
histidines seem to be involved in the enzymes' catalytic mechanism. The first histidine is
located in the N-terminal section and forms a phosphor-histidine intermediate while the
second is located in the C-terminal section and possibly acts as proton donor.

In a further particular embodiment, the phytases of the invention have a conserved
active site motif, viz. R-H-G-X-R-X-P, wherein X designates any amino acid (see amino acids
18 to 24 of the mature phytase shown in SEQ ID NO: 10).

For the purposes of the present invention the phytase activity is determined in the
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unit of FYT, one FYT being the amount of enzyme that liberates 1 micro-mol inorganic ortho-

phosphate per min. under the following conditions: pH 5.5; temperature 37°C; substrate:
sodium phytate (Ce HsO24PsNay;) in a concentration of 0.0050 mol/l. Suitable phytase assays
are the FYT and FTU assays described in Example 1 of WO 00/20569. FTU is for
determining phytase activity in feed and premix. Phytase activity may also be determined
using the phytase assays of the examples herein.

pH optimum: The pH-optimum of a polypeptide of the invention is determined by
incubating the phytase at various pH-values, using a substrate in a pre-determined
concentration and a fixed incubation temperature. The pH-optimum is then determined from a
graphical representation of phytase activity versus pH. In a particular embodiment, the FYT
assay is used, viz. the substrate is 5mM sodium phytate, the reaction temperature 37°C, and
the activity is determined in FYT units at various pH-values, as done in the examples below.
In another particular embodiment, the phytase assay of any one of the examples is used. A
relatively low pH-optimum means a pH-optimum below pH 5.0, for example below pH 4.5,
4.0, 3.5, 3.0, 2.5, or even below 2.0. A relatively high pH-optimum means a pH-optimum
above pH 5.0, for example above pH 5.5, 6.0, 6.5, 7.0, 7.5, 8.0, 8.5, or even above 9.0.

Isolated polypeptide: The term “isolated polypeptide” as used herein refers to a
polypeptide which is at least 20% pure, preferably at least 40% pure, more preferably at least
60% pure, even more preferably at least 80% pure, most preferably at least 90% pure, and
even most preferably at least 95% pure, as determined by SDS-PAGE.

Substantially pure polypeptide: The term “substantially pure polypeptide” denotes
herein a polypeptide preparation which contains at most 10%, preferably at most 8%, more
preferably at most 6%, more preferably at most 5%, more preferably at most 4%, at most 3%,
even more preferably at most 2%, most preferably at most 1%, and even most preferably at
most 0.5% by weight of other polypeptide material with which it is natively associated. It is,
therefore, preferred that the substantially pure polypeptide is at least 92% pure, preferably at
least 94% pure, more preferably at least 95% pure, more preferably at least 96% pure, more
preferably at least 96% pure, more preferably at least 97% pure, more preferably at least 98%
pure, even more preferably at least 99%, most preferably at least 99.5% pure, and even most
preferably 100% pure by weight of the total polypeptide material present in the preparation.

The polypeptides of the present invention are preferably in a substantially pure form.
In particular, it is preferred that the polypeptides are in “essentially pure form”, i.e., that the
polypeptide preparation is essentially free of other polypeptide material with which it is
natively associated. This can be accomplished, for example, by preparing the polypeptide by
means of well-known recombinant methods or by classical purification methods.

Herein, the term “substantially pure polypeptide” is synonymous with the terms
“isolated polypeptide” and “polypeptide in isolated form.”
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Identity: The relatedness between two amino acid sequences or between two

nucleotide sequences is described by the parameter “identity”.

For purposes of the present invention, the degree of identity between two amino acid
sequences, as well as the degree of identity between two nucleotide sequences, is
determined by the program "align" which is a Needleman-Wunsch alignment (i.e. global
alignment), useful for both protein and DNA alignments. The default scoring matrix
BLOSUM5S0 and the default identity matrix are used for protein and DNA alignments
respectively. The penalty for the first residue in a gap is -12 for proteins and -16 for DNA.
While the penalties for additional residues in a gap are -2 for proteins and -4 for DNA.

"Align" is part of the FASTA package version v20u6 (see W. R. Pearson and D. J.
Lipman (1988), "Improved Tools for Biological Sequence Analysis", PNAS 85:2444-2448, and
W. R. Pearson (1990) "Rapid and Sensitive Sequence Comparison with FASTP and FASTA,"
Methods in Enzymology 183:63-98). FASTA protein alignments use the Smith-Waterman
algorithm with no limitation on gap size (see "Smith-Waterman algorithm”, T. F. Smith and M.
S. Waterman (1981) J. Mol. Biol. 147:195-197).

The Needleman-Wunsch algorithm is described in Needleman, S.B. and Wunsch,
C.D., (1970), Journal of Molecular Biology, 48: 443-453, and the align program by Myers and
W. Miller in "Optimal Alignments in Linear Space" CABIOS (computer applications in the
biosciences) (1988) 4:11-17.

The degree of identity between the target (or sample, or test) sequence and a
specified sequence (e.g. amino acids 1 to 413 of the mature phytase shown in SEQ ID NO:
10) may also be determined as follows: The sequences are aligned using the program “align.”
The number of perfect matches ("N-perfect-match") in the alignment is determined (a perfect
match means same amino acid residue in same position of the alignment, usually designated

with a

"|" in the alignment). The length of the specified sequence (the number of amino acid
residues) is determined (“N-specified”, in the example mentioned above = 413). The degree
of identity is calculated as the ratio between "N-perfect-match" and “N-specified” (for
conversion to percentage identity, multiply by 100).

In an alternative embodiment, the degree of identity between a target (or sample, or
test) sequence and the specified sequence (e.g. amino acids 1 to 413 of SEQ ID NO: 10) is
determined as follows: The two sequences are aligned using the program “align.” The number
of perfect matches ("N-perfect-match") in the alignment is determined (a perfect match means
same amino acid residue in same position of the alignment, usually designated with a "|" in
the alignment). The common length of the two aligned sequences is also determined, viz. the
total number of amino acids in the overlapping part of the alignment ("N-overlap"). The
degree of identity is calculated as the ratio between "N-perfect-match" and “N-overlap” (for
conversion to percentage identity, multiply by 100). In one embodiment, N-overlap includes
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trailing and leading gaps created by the alignment, if any. In another embodiment, N-overlap

excludes trailing and leading gaps created by the alignment, if any.

In another alternative embodiment, the degree of identity between a target (or
sample, or test) sequence and a specified sequence (e.g. amino acids 1 to 413 of SEQ ID
NO: 10) is determined as follows: The sequences are aligned using the program “align.” The
number of perfect matches ("N-perfect-match") in the alignment is determined (a perfect
match means same amino acid residue in same position of the alignment, usually designated
with a "|" in the alignment). The length of the target sequence (the number of amino acid
residues) is determined (“N-target”). The degree of identity is calculated as the ratio between
"N-perfect-match" and “N-target” (for conversion to percentage identity, multiply by 100).

Preferably, the overlap is at least 20% of the specified sequence (“N-overlap” as
defined above, divided by the number of the amino acids in the specified sequence (“N-
specified”), and multiplied by 100), more preferably at least 25%, 30%, 35%, 40%, 45%, 50%,
55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, or at least 95%. This means that at least 20%
(preferably 25-95%) of the amino acids of the specified sequence end up being included in
the overlap, when the sample sequence is aligned to the specified sequence.

In the alternative, the overlap is at least 20% of the target (or sample, or test)
sequence (“N-overlap” as defined above, divided by “N-target’” as defined above, and
multiplied by 100), more preferably at least 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%,
65%, 70%, 75%, 80%, 85%, 90%, or at least 95%. This means that at least 20% (preferably
25-95%) of the amino acids of the target sequence end up being included in the overlap,
when aligned against the specified sequence).

Polypeptide Fragment: The term “polypeptide fragment” is defined herein as a
polypeptide having one or more amino acids deleted from the amino and/or carboxyl terminus
of the mature peptide part of the specified sequence, e.g. SEQ ID NO: 10, or a homologous
sequence thereof, wherein the fragment has phytase activity. In particular embodiments, the
fragment contains at least 350, 360, 370, 380, 390, 400, 405, or at least 410 amino acid
residues.

Subsequence: The term “subsequence” is defined herein as a nucleotide sequence
having one or more nucleotides deleted from the 5' and/or 3' end of the mature peptide
encoding part of the specified sequence, e.g. SEQ ID NO: 9, or a homologous sequence
thereof, wherein the subsequence encodes a polypeptide fragment having phytase activity. In
particular embodiments, the subsequence contains at least 1050, 1080, 1110, 1140, 1170,
1200, 1215, 1230, 1245, 1260, 1275, 1290, 1305, 1320, or at least 1335 nucleotides.

Allelic variant: The term “allelic variant” denotes herein any of two or more
alternative forms of a gene occupying the same chromosomal locus. Allelic variation arises
naturally through mutation, and may result in polymorphism within populations. Gene
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mutations can be silent (no change in the encoded polypeptide) or may encode polypeptides

having altered amino acid sequences. An allelic variant of a polypeptide is a polypeptide
encoded by an allelic variant of a gene.

Substantially pure polynucleotide: The term “substantially pure polynucleotide” as
used herein refers to a polynucleotide preparation free of other extraneous or unwanted
nucleotides and in a form suitable for use within genetically engineered protein production
systems. Thus, a substantially pure polynucleotide contains at most 10%, preferably at most
8%, more preferably at most 6%, more preferably at most 5%, more preferably at most 4%,
more preferably at most 3%, even more preferably at most 2%, most preferably at most 1%,
and even most preferably at most 0.5% by weight of other polynucleotide material with which
it is natively associated. A substantially pure polynucleotide may, however, include naturally
occurring 5’ and 3’ untranslated regions, such as promoters and terminators. It is preferred
that the substantially pure polynucleotide is at least 90% pure, preferably at least 92% pure,
more preferably at least 94% pure, more preferably at least 95% pure, more preferably at
least 96% pure, more preferably at least 97% pure, even more preferably at least 98% pure,
most preferably at least 99%, and even most preferably at least 99.5% pure by weight. The
polynucleotides of the present invention are preferably in a substantially pure form. In
particular, it is preferred that the polynucleotides disclosed herein are in “essentially pure
form”, i.e., that the polynucleotide preparation is essentially free of other polynucleotide
material with which it is natively associated. Herein, the term “substantially pure
polynucleotide” is synonymous with the terms “isolated polynucleotide” and “polynuclectide in
isolated form.” The polynucleotides may be of genomic, cDNA, RNA, semisynthetic, synthetic
origin, or any combinations thereof.

Nucleic acid construct: The term "nucleic acid construct” as used herein refers to a
nucleic acid molecule, either single- or double-stranded, which is isolated from a naturally
occurring gene or which is modified to contain segments of nucleic acids in a manner that
would not otherwise exist in nature. The term nucleic acid construct is synonymous with the
term “expression cassette” when the nucleic acid construct contains the control sequences
required for expression of a coding sequence of the present invention.

Control sequence: The term “control sequences” is defined herein to include all
components, which are necessary or advantageous for the expression of a polynucleotide
encoding a polypeptide of the present invention. Each control sequence may be native or
foreign to the nucleotide sequence encoding the polypeptide. Such control sequences
include, but are not limited to, a leader, polyadenylation sequence, propeptide sequence,
promoter, signal peptide sequence, and transcription terminator. At a minimum, the control
sequences include a promoter, and transcriptional and translational stop signals. The control
sequences may be provided with linkers for the purpose of introducing specific restriction
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sites facilitating ligation of the control sequences with the coding region of the nucleotide

sequence encoding a polypeptide.

Operably linked: The term “operably linked” denotes herein a configuration in which
a control sequence is placed at an appropriate position relative to the coding sequence of the
polynucleotide sequence such that the control sequence directs the expression of the coding
sequence of a polypeptide.

Coding sequence: When used herein the term “coding sequence” means a
nucleotide sequence, which directly specifies the amino acid sequence of its protein product.
The boundaries of the coding sequence are generally determined by an open reading frame,
which usually begins with the ATG start codon or alternative start codons such as GTG and
TTG. The coding sequence may a DNA, cDNA, or recombinant nucleotide sequence.

Mature polypeptide part: When used herein the terms “mature polypeptide part” or
“‘mature peptide part” refer to that part of the polypeptide which is secreted by a cell which
contains, as part of its genetic equipment, a polynucleotide encoding the polypeptide. In other
words, the mature polypeptide part refers to that part of the polypeptide which remains after
the signal peptide part is cleaved off once it has fulfilled its function of directing the encoded
polypeptide into the cell’s secretory pathway. The predicted signal peptide part of SEQ ID
NO: 10 is amino acids -33 to -1 thereof, which means that the predicted mature polypeptide
part of SEQ ID NO: 10 corresponds to amino acids 1 to 413 thereof. However, a slight
variation may occur from host cell to host cell, and therefore the expression mature
polypeptide part is preferred.

Mature polypeptide encoding part: When used herein the term “mature
polypeptide encoding part” or “mature polypeptide coding sequence” refers to that part of the
polynucleotide encoding the polypeptide which encodes the mature polypeptide part. For
example, for SEQ ID NO: 9, the predicted mature polypeptide encoding part corresponds to
nucleotides 100 to 1338 (encoding amino acids 1 to 413 of SEQ ID NO: 10).

Expression: The term “expression” includes any step involved in the production of
the polypeptide including, but not limited to, transcription, post-transcriptional modification,
translation, post-translational modification, and secretion.

Expression vector: The term “expression vector” is defined herein as a linear or
circular DNA molecule that comprises a polynucleotide encoding a polypeptide of the
invention, and which is operably linked to additional nucleotides that provide for its
expression.

Host cell: The term "host cell", as used herein, includes any cell type which is
susceptible to transformation, transfection, transduction, and the like with a nucleic acid
construct comprising a polynucleotide of the present invention.

Modification: The term “modification” means herein any chemical modification of the
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specified polypeptide, e.g. the polypeptide consisting of the amino acids 1 to 413 of SEQ ID

NO: 10, as well as genetic manipulation of the DNA encoding that polypeptide. The
modification(s) can be substitution(s), deletion(s) and/or insertions(s) of the amino acid(s) as
well as replacement(s) of amino acid side chain(s).

Artificial variant: When used herein, the term “artificial variant” means a
polypeptide having phytase activity produced by an organism expressing a modified
nucleotide sequence of mature phytase encoding part of SEQ ID NO: 9. The modified
nucleotide sequence is obtained through human intervention by modification of the mature

phytase encoding part of the nucleotide sequence disclosed in SEQ ID NO: 9.

DETAILED DESCRIPTION OF THE INVENTION
Polypeptides Having Phytase Activity

In a first aspect, the present invention relates to isolated polypeptides having
phytase activity and having an amino acid sequence which has a degree of identity to amino
acids 1 to 413 of SEQ ID NO: 10 (i.e., the mature polypeptide) of at least 75%.

In particular embodiments, the degree of identity is at least 76%, 77%, 78%, 79%,
80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%,
96%, 96.5%, 97%, 97.5%, 98%, 98.5%, 98.7%, 98.8%, 98.9%, 99%, 99.0%, 99.1%, 99.2%,
99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8%, or at least 99.9%, which have phytase activity
(hereinafter "homologous polypeptides™).

In other particular embodiments, the homologous polypeptides have an amino acid
sequence which differs by 20, 19, 18, 17, 16, 15, 14, 13,12, 11, 10,9, 8,7,6, 5,4, 3, 2, or 1
amino acid from amino acids 1 to 413 of SEQ ID NO: 10.

In particular embodiments, the polypeptide of the present invention comprises the
mature part of the amino acid sequence of SEQ ID NO: 10, or is an allelic variant thereof; or a
fragment thereof that has phytase activity. In still further particular embodiments, the
polypeptide comprises amino acids 1 to 413 of SEQ ID NO: 10, or an allelic variant thereof; or
a fragment thereof that has phytase activity.

In a second aspect, the present invention relates to isolated polypeptides having
phytase activity which are encoded by polynucleotides which hybridize under at least
medium, preferably medium, stringency conditions with (i) nucleotides 100 to 1338 of SEQ ID
NO: 9, (ii) the mature polypeptide encoding part of SEQ ID NO: 9, and/or (iii) a
complementary strand of any one of (i), and (ii), and/or (iv) a subsequence of (i), (ii), or (iii) (J.
Sambrook, E.F. Fritsch, and T. Maniatus, 1989, Molecular Cloning, A Laboratory Manual, 2d
edition, Cold Spring Harbor, New York). A subsequence of SEQ ID NO: 9 contains at least
100 contiguous nucleotides or preferably at least 200 contiguous nucleotides. Moreover, the

subsequence may encode a polypeptide fragment which has phytase activity.
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In particular embodiments, the hybridization takes place under at least medium-high,

at least high, or at least very high stringency conditions; preferably under medium-high, high,
or very high stringency conditions.

In alternative embodiments, the hybridization is conducted under very low, or low
stringency conditions.

The nucleotide sequence of SEQ ID NO: 9, or a subsequence thereof, as well as the
amino acid sequence of SEQ ID NO: 10, or a fragment thereof, may be used to design a
nucleic acid probe to identify and clone DNA encoding polypeptides having phytase activity
from strains of different genera or species according to methods well known in the art. In
particular, such probes can be used for hybridization with the genomic or cDNA of the genus
or species of interest, following standard Southern blotting procedures, in order to identify and
isolate the corresponding gene therein. Such probes can be considerably shorter than the
entire sequence, but should be at least 14, preferably at least 25, more preferably at least 35,
and most preferably at least 70 nucleotides in length. It is, however, preferred that the nucleic
acid probe is at least 100 nucleotides in length. For example, the nucleic acid probe may be
at least 200 nucleotides, preferably at least 300 nucleotides, more preferably at least 400
nucleotides, or most preferably at least 500 nucleotides in length. Even longer probes may be
used, e.g., nucleic acid probes which are at least 600 nucleotides, at least preferably at least
700 nucleotides, more preferably at least 800 nucleotides, or most preferably at least 900
nucleotides in length. Both DNA and RNA probes can be used. The probes are typically
labeled for detecting the corresponding gene (for example, with *P, ®H, %S, biotin, or avidin).
Such probes are encompassed by the present invention.

A genomic DNA library prepared from such other organisms may, therefore, be
screened for DNA which hybridizes with the probes described above and which encodes a
polypeptide having phytase activity. Genomic or other DNA from such other organisms may
be separated by agarose or polyacrylamide gel electrophoresis, or other separation
techniques. DNA from the libraries or the separated DNA may be transferred to and
immobilized on nitrocellulose or other suitable carrier material. In order to identify a clone or
DNA which is homologous with SEQ ID NO: 9, or a subsequence thereof, the carrier material
is used in a Southern blot.

For purposes of the present invention, hybridization indicates that the nucleotide
sequence hybridizes to a labeled nucleic acid probe corresponding to the nucleotide
sequence shown in SEQ ID NO: 9, the complementary strand thereof, or a subsequence
thereof, under very low to very high stringency conditions. Molecules to which the nucleic acid
probe hybridizes under these conditions can be detected using X-ray film.

In a particular embodiment, the nucleic acid probe is any one of SEQ ID NOs: 1-8. In

another particular embodiment, the nucleic acid probe is the complementary strand of
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nucleotides 100 to 450, nucleotides 450 to 900, or nucleotides 900 to 1338 of SEQ ID NO: 9.

In a further particular embodiment, the nucleic acid probe is a polynucleotide sequence which
encodes the mature part of the polypeptide of SEQ ID NO: 10, or a subsequence thereof. In a
still further particular embodiment, the nucleic acid probe is SEQ ID NO: 9, in particular any
one of the mature polypeptide coding regions thereof.

For long probes of at least 100 nucleotides in length, very low to very high stringency
conditions are defined as prehybridization and hybridization at 42°C in 5X SSPE, 0.3% SDS,
200 microgram/ml sheared and denatured salmon sperm DNA, and either 25% formamide for
very low and low stringencies, 35% formamide for medium and medium-high stringencies, or
50% formamide for high and very high stringencies, following standard Southern blotting
procedures for 12 to 24 hours optimally.

For long probes of at least 100 nucleotides in length, the carrier material is finally
washed three times each for 15 minutes using 2X SSC, 0.2% SDS preferably at least at 45°C
(very low stringency), more preferably at least at 50°C (low stringency), more preferably at
least at 55°C (medium stringency), more preferably at least at 60°C (medium-high
stringency), even more preferably at least at 65°C (high stringency), and most preferably at
least at 70°C (very high stringency).

For short probes which are about 15 nucleotides to about 70 nucleotides in length,
stringency conditions are defined as prehybridization, hybridization, and washing post-
hybridization at about 5°C to about 10°C below the calculated T, using the calculation
according to Bolton and McCarthy (1962, Proceedings of the National Academy of Sciences
USA 48:1390) in 0.9 M NaCl, 0.09 M Tris-HCI pH 7.6, 6 mM EDTA, 0.5% NP-40, 1X
Denhardt's solution, 1 mM sodium pyrophosphate, 1 mM sodium monobasic phosphate, 0.1
mM ATP, and 0.2 mg of yeast RNA per ml following standard Southern blotting procedures.

For short probes which are about 15 nucleotides to about 70 nucleotides in length,
the carrier material is washed once in 6X SCC plus 0.1% SDS for 15 minutes and twice each
for 15 minutes using 6X SSC at 5°C to 10°C below the calculated T,

Under salt-containing hybridization conditions, the effective T, is what controls the
degree of identity required between the probe and the filter bound DNA for successful
hybridization. The effective T, may be determined using the formula below to determine the
degree of identity required for two DNAs to hybridize under various stringency conditions.

Effective T, = 81.5 + 16.6(log M[Na']) + 0.41(%G+C) — 0.72(% formamide)

(See www.ndsu.nodak.edu/instruct/mcclean/plsc731/dna/dnab.htm)

“‘G+C” designates the content of nucleotides G and T in the probe. For medium
stringency, for example, the formamide is 35% and the Na" concentration for 5X SSPE is
0.75 M.

In one aspect, the present invention relates to isolated polypeptides having phytase
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activity, and the following physicochemical properties (as analyzed on the substantially pure

polypeptides):

(i)  a high specific activity, such as a specific activity on phytate of at least 50% of
the specific activity of E. coli appA (SPTREMBL:Q8GN88), the specific activity being
preferably measured in the units of FYT per mg phytase enzyme protein;

(i)  acid-stability; such as

(@) atleast 60%, preferably at least 65%, at least 70%, or at least 75%, residual
activity after incubation over night at 37°C in glycine/hydrochloric acid buffer pH 2.2, relative
to the residual activity after incubation over night at 37°C in HEPES buffer pH 7.0;

(b) at least 80%, preferably at least 85%, at least 90%, or at least 95%, residual
activity after incubation over night at 37°C in glycine/hydrochloric acid buffer pH 3.0, relative
to the residual activity after incubation over night at 37°C in HEPES buffer pH 7.0; and/or

(¢) aresidual phytase activity after 2 hours incubation at a temperature of 25, 30,
35, or 37°C, preferably 37°C, and a pH of 2.2, 24, 2.5, 2.6, 2.8, 3.0, 3.2, 3.4, or 3.5,
preferably glycine/hydrochloric acid buffers of pH 2.2, or 3.0, of at least 50%, compared to the
residual activity of E. coli appA (SPTREMBL:Q8GN88);

(i) heat-stability, such as a residual phytase activity after 0.5, 1, 1.5, or 2 hours,
preferably 0.5 hours, of incubation at a pH of 5.5 and a temperature of 55, 60, 65, 70, 75, 80,
85 or 95°C, preferably 70°C, of at least 50%, compared to the residual activity of E. coli appA
(SPTREMBL:Q8GN88);

In the alternative, Differential Scanning Calorimetry (DSC) measurements may be
used to determine the denaturation temperature, Td, of the purified phytase protein. The Td is
indicative of the heat-stability of the protein: The higher the Td, the higher the heat-stability.
DSC measurements may be performed at various pH values, e.g. using the VP-DSC from
Micro Cal. Scans are performed at a constant scan rate of 1.5°C/min from 20-90°C. Preferred
pH values are 4.0 and 5.5, preferably 4.0. Before running the DSC, the phytases are
desalted, e.g. using NAP-5 columns (Pharmacia) equilibrated in appropriate buffers (e.g.
25mM sodium acetate pH 4.0; 0.1M sodium acetate, pH5.5). Data-handling is performed
using the MicroCal Origin software (version 4.10), and the denaturation temperature, Td (also
called the melting temperature, Tm) is defined as the temperature at the apex of the peak in
the thermogram.

(iv) protease-stability, such as a residual phytase activity after 0.5, 1, 1.5, or 2
hours, preferably 1 hour, incubation at a temperature of 20, 25, 30, 35, or 37°C, preferably
37°C, and a pH of 5.5, in the presence of 0.1 mg/ml pepsin, of at least 50%, compared to the
residual activity of E. coli appA (SPTREMBL:Q8GN88); and/or

(v) a pH-optimum below pH 5.0, for example below pH 4.5, 4.0, 3.5, 3.0, 2.5, or
even below 2.0, determined using the FYT assay, and/or using the assay of Example 4, as
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described hereinbefore.

In particular embodiments of aspect (i) above, the specific activity is at least 60, 70,
80, 90, 100, 110, 120, 130, 140, or at least 150% of the specific activity of E. coli appA. In
particular embodiments of each of aspects (ii) to (iv) above, the residual activity is at least 60,
70, 80, 90, 100, 110, 120, 130, 140, or at least 150% of the residual activity of E. coli appA.

In a fifth aspect, the activity of the enzyme of the invention, at pH 5.0 and 37°C,
measured on the substrate pNP-phosphate is less than 11% of the activity of the enzyme
measured on the substrate phytate. Preferably, the ratio is less than 10%, 9%, 8%, 7%, 6%,
or less than 5%. The ratio of pNP to phytate hydrolysis is indicative of the true phytase nature
of the enzyme. A high ratio of activity on pNP relative to activity on phytate may indicate that
the enzyme in question is a phosphatase with relatively low substrate specificity, whereas a
low ratio indicates that this is an enzyme more specifically accepting phytate as a substrate.

In a sixth aspect, the phytase of the invention has a higher release of phosphorous
(P) in an in vitro model, as compared to the phytase from Peniophora lycii, preferably at least
110 % thereof, more preferably at least 120%, 130%, or at least 140% thereof. In one
embodiment, the phytase of the invention, dosed 0.25 FYT/g feed, releases at least 150%
phosphorous (P), relative to the phosphorous released by the phytase from Peniophora lycii,
also dosed 0.25 FYT/g feed, in the in vitro model. Preferably, the release is at least 155%,
160%, 165%, 170%, 175%, or at least 180%. In another embodiment, the phytase of the
invention, dosed 0.75 FYT/g feed, releases at least 150% phosphorous (P), relative to the
phosphorous released by the phytase from Peniophora lycii, also dosed 0.75 FYT/g feed, in
the in vitro model. Preferably, the release is at least 155%, 160%, 165%, 170%, 175%, 180%,
185%, or at least 190%.

In a seventh aspect, the phytase of the invention has a residual activity following
incubation at 37°C and in a 0.1M Glycine/HCI buffer, pH 2.0, for 4 hours of at least 20%, as
compared to the activity at time, t = 0, the activity (and the residual activity) being assayed at
37°C and pH 5.5 on 1% (w/v) Na-phytate, using a 0.25 M Na-acetate buffer pH 5.5, buffer
blind subtracted. In preferred embodiments, the residual activity is at least 25%, 30%, 35%,
40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, or at least 80%. In another embodiment, the
phytase of the invention has a residual activity following incubation at 37°C and in a 0.1M
Glycine/HCI buffer, pH 2.5, for 1 day (24 hours) of at least 20%, as compared to the activity at
time, t = 0, the activity (and the residual activity) being assayed at 37°C and pH 5.5 on 1%
(w/v) Na-phytate, using a 0.25 M Na-acetate buffer pH 5.5, buffer blind subtracted. In
preferred embodiments, the residual activity is at least 25%, 30%, 35%, 40%, 45%, 50%,
55%, 60%, 65%, 70%, 75%, or at least 80%.

In an eighth aspect, the present invention relates to artificial variants comprising a

conservative substitution, deletion, and/or insertion of one or more amino acids of SEQ ID
13



10

15

20

25

30

35

WO 2008/116878 PCT/EP2008/053561
NO: 10, or the mature polypeptide thereof. An insertion can be inside the molecule, and/or at

the N- and/or C-terminal end of the molecule in which case it is also designated extension.
Preferably, amino acid changes are of a minor nature, that is conservative amino acid
substitutions; small deletions, typically of one to about 30 amino acids; small amino- or
carboxyl-terminal extensions, such as an amino-terminal methionine residue; a small linker
peptide of up to about 20-25 residues; or a small extension that facilitates purification by
changing net charge or another function, such as a poly-histidine tract, an antigenic epitope
or a binding domain - in other words: Changes that do not significantly affect the folding
and/or activity of the protein.

Examples of conservative substitutions are within the group of basic amino acids
(arginine, lysine and histidine), acidic amino acids (glutamic acid and aspartic acid), polar
amino acids (glutamine and asparagine), hydrophobic amino acids (leucine, isoleucine and
valine), aromatic amino acids (phenylalanine, tryptophan and tyrosine), and small amino
acids (glycine, alanine, serine, threonine and methionine).

Other examples of conservative substitutions are substitutions of the 20 standard
amino acids with non-standard amino acids (such as 4-hydroxyproline, 6-N-methyl lysine, 2-
aminoisobutyric acid, isovaline, and alpha-methyl serine). Conservative substitutions may
also include a substitution into amino acids that are not encoded by the genetic code, and
unnatural amino acids. “Unnatural amino acids” have been modified after protein synthesis,
and/or have a chemical structure in their side chain(s) different from that of the standard
amino acids. Unnatural amino acids can be chemically synthesized, and preferably, are
commercially available, and include pipecolic acid, thiazolidine carboxylic acid,
dehydroproline, 3- and 4-methylproline, and 3,3-dimethylproline.

Alternatively, the amino acid changes are of such a nature that the physico-chemical
properties of the polypeptides are altered. For example, amino acid changes may improve the
thermal stability of the polypeptide, alter the substrate specificity, change the pH optimum,
and the like.

Essential amino acids in the parent polypeptide can be identified according to
procedures known in the art, such as site-directed mutagenesis or alanine-scanning
mutagenesis (Cunningham and Wells, 1989, Science 244: 1081-1085). In the latter
technique, single alanine mutations are introduced at every residue in the molecule, and the
resultant mutant molecules are tested for biological activity (i.e., phytase activity) to identify
amino acid residues that are critical to the activity of the molecule. See also, Hilton et al.,
1996, J. Biol. Chem. 271: 4699-4708. The active site of the enzyme or other biological
interaction can also be determined by physical analysis of structure, as determined by such
techniques as nuclear magnetic resonance, crystallography, electron diffraction, or
photoaffinity labeling, in conjunction with mutation of putative contact site amino acids. See,
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for example, de Vos et al., 1992, Science 255: 306-312; Smith et al., 1992, J. Mol. Biol. 224

899-904; Wlodaver et al., 1992, FEBS Lett. 309:59-64. The identities of essential amino acids
can also be inferred from analysis of identities with polypeptides which are related to a
polypeptide according to the invention.

Single or multiple amino acid substitutions can be made and tested using known
methods of mutagenesis, recombination, and/or shuffling, followed by a relevant screening
procedure, such as those disclosed by Reidhaar-Olson and Sauer, 1988, Science 241: 53-57;
Bowie and Sauer, 1989, Proc. Natl. Acad. Sci. USA 86: 2152-2156; WO 95/17413; or WO
95/22625. Other methods that can be used include error-prone PCR, phage display (e.g.,
Lowman et al., 1991, Biochem. 30:10832-10837; U.S. Patent No. 5,223,409; WO 92/06204),
and region-directed mutagenesis (Derbyshire et al., 1986, Gene 46:145; Ner et al., 1988,
DNA 7:127).

Mutagenesis/shuffling methods can be combined with high-throughput, automated
screening methods to detect activity of cloned, mutagenized polypeptides expressed by host
cells. Mutagenized DNA molecules that encode active polypeptides can be recovered from
the host cells and rapidly sequenced using standard methods in the art. These methods allow
the rapid determination of the importance of individual amino acid residues in a polypeptide of
interest, and can be applied to polypeptides of unknown structure.

The total number of amino acid substitutions (preferably conservative substitutions),
deletions and/or insertions in the sequence of amino acids 1 to 413 of SEQ ID NO: 10 is at
most 10, preferably at most 9, more preferably at most 8, more preferably at most 7, more
preferably at most 6, more preferably at most 5, more preferably at most 4, even more
preferably at most 3, most preferably at most 2, and even most preferably 1.

The total number of amino acid substitutions, deletions and/or insertions of amino
acids 1 to 413 of SEQ ID NO: 10 is 10, preferably 9, more preferably 8, more preferably 7,
more preferably at most 6, more preferably at most 5, more preferably 4, even more
preferably 3, most preferably 2, and even most preferably 1. In the alternative, the total
number of amino acid substitutions (preferably conservative substitutions), deletions and/or
insertions in the sequence of amino acids 1 to 413 of SEQ ID NO: 10 is at most 50, 45, 40,
35, 30, 25, 20, 19, 18, 17, 16, 15, 14, 13, 12, or at most 11.

In a specific embodiment, the polypeptide of the invention is a low-allergenic variant,
designed to invoke a reduced immunological response when exposed to animals, including
man. The term immunological response is to be understood as any reaction by the immune
system of an animal exposed to the polypeptide. One type of immunological response is an
allergic response leading to increased levels of IgE in the exposed animal. Low-allergenic
variants may be prepared using techniques known in the art. For example the polypeptide

may be conjugated with polymer moieties shielding portions or epitopes of the polypeptide
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involved in an immunological response. Conjugation with polymers may involve in vitro

chemical coupling of polymer to the polypeptide, e.g. as described in WO 96/17929,
WQ098/30682, WO098/35026, and/or WO99/00489. Conjugation may in addition or
alternatively thereto involve in vivo coupling of polymers to the polypeptide. Such conjugation
may be achieved by genetic engineering of the nucleotide sequence encoding the
polypeptide, inserting consensus sequences encoding additional glycosylation sites in the
polypeptide and expressing the polypeptide in a host capable of glycosylating the
polypeptide, see e.g. WO00/26354. Another way of providing low-allergenic variants is
genetic engineering of the nucleotide sequence encoding the polypeptide so as to cause the
polypeptide to self-oligomerize, effecting that polypeptide monomers may shield the epitopes
of other polypeptide monomers and thereby lowering the antigenicity of the oligomers. Such
products and their preparation is described e.g. in WO96/16177. Epitopes involved in an
immunological response may be identified by various methods such as the phage display
method described in WO 00/26230 and WO 01/83559, or the random approach described in
EP 561907. Once an epitope has been identified, its amino acid sequence may be altered to
produce altered immunological properties of the polypeptide by known gene manipulation
techniques such as site directed mutagenesis (see e.g. WO 00/26230, WO 00/26354 and/or
WO00/22103) and/or conjugation of a polymer may be done in sufficient proximity to the

epitope for the polymer to shield the epitope.

Three Dimensional Structure of a Hafnia alvei Phytase

The three-dimensional structure of a Hafnia alvei phytase (amino acids 1 to 413 of
SEQ ID NO:10) is provided in the Appendix. The structure was solved in accordance with the
principles for x-ray crystallographic methods, for example, as given in X-Ray Structure
Determinations, Stout, G. K. and Jensen, L. H., John Wiley and Sons, Inc. NY 1989. The
structural coordinates for the solved crystal structure of Hafnia alvei phytase are given in
standard PDB format (Protein Database Bank, Brookhaven National Laboratory, Brookhaven,
Conn.) as set forth in the Appendix. It is to be understood that the Appendix forms part of the
present application. The Appendix provides the coordinates of the heavy atoms, excluding
the hydrogen atoms. The first three residues of the enzyme were not visible in the crystal
structure as well as the amino acid residues between amino acids 180 and 189. However,
the structure between 180 and 189 was built using modelling combining the homology
modelling (see, for example, Marti-Renom et al., 2000) program NEST from the JACKAL
package (wiki.c2b2.columbia.edu/honiglab_public/index.php/Software:Jackal) and the
simulation  software called CHARMm (//accelrys.com/products/scitegic/component-

collections/charmm.html).
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Sources of Polypeptides Having Phytase Activity

A polypeptide of the present invention may be obtained from microorganisms of any
genus. For purposes of the present invention, the term “obtained from” as used herein in
connection with a given source shall mean that the polypeptide encoded by a nucleotide
sequence is produced by the source or by a strain in which the nucleotide sequence from the
source has been inserted. In a preferred aspect, the polypeptide obtained from a given
source is secreted extracellularly.

A polypeptide of the present invention may be a bacterial polypeptide. For example,
the polypeptide may be a gram positive bacterial polypeptide such as a Bacillus polypeptide,
or a Streptomyces polypeptide; or a gram negative bacterial polypeptide, e.g., an Escherichia
coli, Yersinia, Klebsiella, Citrobacter, or a Pseudomonas polypeptide. In a particular
embodiment, the polypeptide is derived from Proteobacteria, such as Gammaproteobacteria,
for example Enterobacteriales, such as Enterobacteriaceae.

In a particular aspect, the polypeptide derived from Enterobacteriaceae is a Hafnia
polypeptide, such as a Hafnia alvei species polypeptide.

A polypeptide of the present invention may also be a fungal polypeptide, such as a
yeast polypeptide or a filamentous fungal polypeptide.

Strains of the above microorganisms are readily accessible to the public in a number
of culture collections, such as the American Type Culture Collection (ATCC), Deutsche
Sammlung von Mikroorganismen und Zellkulturen GmbH (DSM), Centraalbureau Voor
Schimmelcultures (CBS), and Agricultural Research Service Patent Culture Collection,
Northern Regional Research Center (NRRL).

Furthermore, such polypeptides may be identified and obtained from other sources
including microorganisms isolated from nature (e.g., soil, composts, water, etc.) using the
above-mentioned probes. Techniques for isolating microorganisms from natural habitats are
well known in the art. The polynucleotide may then be obtained by similarly screening a
genomic or cDNA library of another microorganism. Once a polynucleotide sequence
encoding a polypeptide has been detected with the probe(s), the polynucleotide can be
isolated or cloned by utilizing techniques which are well known to those of ordinary skill in the
art (see, e.g., Sambrook et al., 1989, supra).

Polypeptides of the present invention also include fused polypeptides or cleavable
fusion polypeptides in which another polypeptide is fused at the N-terminus or the C-terminus
of the polypeptide or fragment thereof. A fused polypeptide is produced by fusing a nucleotide
sequence (or a portion thereof) encoding another polypeptide to a nucleotide sequence (or a
portion thereof) of the present invention. Technigues for producing fusion polypeptides are
known in the art, and include ligating the coding sequences encoding the polypeptides so that
they are in frame and that expression of the fused polypeptide is under control of the same
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promoter(s) and terminator.

Polynucleotides

The present invention also relates to isolated polynucleotides having a nucleotide
sequence which encodes a polypeptide of the present invention. In a preferred aspect, the
nucleotide sequence is set forth in SEQ ID NO: 9. In another preferred aspect, the nucleotide
sequence is the mature polypeptide coding region of SEQ ID NO: 9. The present invention
also encompasses nucleotide sequences which encode a polypeptide having the amino acid
sequence of SEQ ID NO: 10, or the mature polypeptides thereof, which differ from SEQ ID
NO: 9, by virtue of the degeneracy of the genetic code. The present invention also relates to
subsequences of SEQ ID NO: 9, which encode fragments of SEQ ID NO: 10, that have
phytase activity.

The present invention also relates to mutant polunucleotides comprising at least one
mutation in the mature polypeptide coding sequence of any one of SEQ ID NO: 9, in which
the mutant nucleotide sequence encodes a polypeptide which consists of amino acids 1 to
413 of SEQ ID NO: 10.

The technigues used to isolate or clone a polynucleotide encoding a polypeptide are
known in the art and include isolation from genomic DNA, preparation from cDNA, or a
combination thereof. The cloning of the polynucleotides of the present invention from such
genomic DNA can be effected, e.g., by using the well known polymerase chain reaction
(PCR) or antibody screening of expression libraries to detect cloned DNA fragments with
shared structural features. See, e.g., Innis et al., 1990, PCR: A Guide to Methods and
Application, Academic Press, New York. Other nucleic acid amplification procedures such as
ligase chain reaction (LCR), ligated activated transcription (LAT) and nucleotide sequence-
based amplification (NASBA) may be used. The polynucleotides may be cloned from a strain
of Hafnia, or another or related organism and thus, for example, may be an allelic or species
variant of the polypeptide encoding region of the nucleotide sequence.

The present invention also relates to polynucleotides having nucleotide sequences
which have a degree of identity to the mature polypeptide coding sequence of SEQ ID NO: 9
(i.e., nucleotides 100 to 1338) of at least 75%, and which encode a polypeptide having
phytase activity. In particular embodiments, the degree of identity is at least In particular
embodiments, the degree of identity is at least 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%,
84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 96.5%, 97%,
97.5%, 98%, 98.5%, 98.7%, 98.8%, 98.9%, 99%, 99.0%, 99.1%, 99.2%, 99.3%, 99.4%,
99.5%, 99.6%, 99.7%, 99.8%, or at least 99.9%. In alternative embodiments, the degree of
identity is at least 75%, 80%, 85%, 90%, 94, 97, 98, 98.0, 98.1, 98.2, or at least 98.3%.

Modification of a nucleotide sequence encoding a polypeptide of the present
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invention may be necessary for the synthesis of polypeptides substantially similar to the

polypeptide. The term “substantially similar” to the polypeptide refers to non-naturally
occurring forms of the polypeptide. These polypeptides may differ in some engineered way
from the polypeptide isolated from its native source, e.g., artificial variants that differ in
specific activity, thermostability, pH-optimum, or the like. The variant sequence may be
constructed on the basis of the nucleotide sequence presented as the polypeptide encoding
region of SEQ ID NO: 9, e.g., a subsequence thereof, and/or by introduction of nucleotide
substitutions which do not give rise to another amino acid sequence of the polypeptide
encoded by the nucleotide sequence, but which correspond to the codon usage of the host
organism intended for production of the polypeptide, or by introduction of nucleotide
substitutions which may give rise to a different amino acid sequence. For a general
description of nucleotide substitution, see, e.g., Ford et al., 1991, Protein Expression and
Purification 2: 95-107.

It will be apparent to those skilled in the art that such substitutions can be made
outside the regions critical to the function of the molecule and still result in an active
polypeptide. Amino acid residues essential to the activity of the polypeptide encoded by an
isolated polynucleotide of the invention, and therefore preferably not subject to substitution,
may be identified according to procedures known in the art, such as site-directed
mutagenesis or alanine-scanning mutagenesis (see, e.g., Cunningham and Wells, 1989,
Science 244: 1081-1085). In the latter technique, mutations are introduced at every positively
charged residue in the molecule, and the resultant mutant molecules are tested for phytase
activity to identify amino acid residues that are critical to the activity of the molecule. Sites of
substrate-polypeptide interaction can also be determined by analysis of the three-dimensional
structure as determined by such techniques as nuclear magnetic resonance analysis,
crystallography or photoaffinity labelling (see, e.g., de Vos et al., 1992, Science 255: 306-312;
Smith et al., 1992, Journal of Molecular Biology 224: 899-904; Wlodaver et al., 1992, FEBS
Letters 309: 59-64).

The present invention also relates to isolated polynucleotides encoding a polypeptide
of the present invention, which hybridize under medium stringency conditions, more
preferably medium-high stringency conditions, even more preferably high stringency
conditions, and most preferably very high stringency conditions with (i) nucleotides 100 to
1338 of SEQ ID NO: 9, (ii) the mature polypeptide encoding part of SEQ ID NO: 9, and/or (iii)
a complementary strand of any one of (i), and/or (ii); or allelic variants and subsequences
thereof (Sambrook et al., 1989, supra), as defined herein. In alternative embodiments the
hybridization is conducted under very low, or low, stringency conditions.

The present invention also relates to isolated polynucleotides obtained, or
obtainable, by (a) hybridizing a population of DNA under very low, low, medium, medium-
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high, high, or very high stringency conditions with (i) nucleotides 100 to 1338 of SEQ ID NO:

9, (ii) the mature polypeptide encoding part of SEQ ID NO: 9, and/or (iii) a complementary
strand of any one of (i), and/or (ii); and (b) isolating the hybridizing polynucleotide, which

encodes a polypeptide having phytase activity.

Nucleic Acid Constructs

The present invention also relates to nucleic acid constructs comprising an isolated
polynucleotide of the present invention operably linked to one or more control sequences
which direct the expression of the coding sequence in a suitable host cell under conditions
compatible with the control sequences.

An isolated polynucleotide encoding a polypeptide of the present invention may be
manipulated in a variety of ways to provide for expression of the polypeptide. Manipulation of
the polynucleotide’'s sequence prior to its insertion into a vector may be desirable or
necessary depending on the expression vector. The techniques for modifying polynucleotide
sequences utilizing recombinant DNA methods are well known in the art.

The control sequence may be an appropriate promoter sequence, a nucleotide
sequence which is recognized by a host cell for expression of a polynucleotide encoding a
polypeptide of the present invention. The promoter sequence contains transcriptional control
sequences which mediate the expression of the polypeptide. The promoter may be any
nucleotide sequence which shows transcriptional activity in the host cell of choice including
mutant, truncated, and hybrid promoters, and may be obtained from genes encoding
extracellular or intracellular polypeptides either homologous or heterologous to the host cell.

Examples of suitable promoters for directing the transcription of the nucleic acid
constructs of the present invention, especially in a bacterial host cell, are the promoters
obtained from the E. coli lac operon, Streptomyces coelicolor agarase gene (dagA), Bacillus
subtilis levansucrase gene (sacB), Bacillus licheniformis alpha-amylase gene (amyL), Bacillus
stearothermophilus maltogenic amylase gene (amyM), Bacillus amyloliquefaciens alpha-
amylase gene (amyQ), Bacillus licheniformis penicillinase gene (penP), Bacillus subtilis xylA
and xylB genes, and prokaryotic beta-lactamase gene (Villa-Kamaroff et al., 1978,
Proceedings of the National Academy of Sciences USA 75: 3727-3731), as well as the tac
promoter (DeBoer et al., 1983, Proceedings of the National Academy of Sciences USA 80:
21-25). Further promoters are described in "Useful proteins from recombinant bacteria" in
Scientific American, 1980, 242: 74-94; and in Sambrook et al., 1989, supra.

Examples of suitable promoters for directing the transcription of the nucleic acid
constructs of the present invention in a filamentous fungal host cell are promoters obtained
from the genes for Aspergillus oryzae TAKA amylase, Rhizomucor miehei aspartic

proteinase, Aspergillus niger neutral alpha-amylase, Aspergillus niger acid stable alpha-
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amylase, Aspergillus niger or Aspergillus awamori glucoamylase (glaA), Rhizomucor miehei

lipase, Aspergillus oryzae alkaline protease, Aspergillus oryzae triose phosphate isomerase,
Aspergillus nidulans acetamidase, Fusarium venenatum amyloglucosidase (WO 00/56900),
Fusarium venenatum Daria (WO 00/56900), Fusarium venenatum Quinn (WO 00/56900),
Fusarium oxysporum trypsin-like protease (WO 96/00787), Trichoderma reesei beta-
glucosidase, Trichoderma reesei cellobiohydrolase |, Trichoderma reesei endoglucanase |,
Trichoderma reesei endoglucanase |l, Trichoderma reesei endoglucanase lll, Trichoderma
reesei endoglucanase |V, Trichoderma reesei endoglucanase V, Trichoderma reesei
xylanase |, Trichoderma reesei xylanase Il, Trichoderma reesei beta-xylosidase, as well as
the NA2-tpi promoter (a hybrid of the promoters from the genes for Aspergillus niger neutral
alpha-amylase and Aspergillus oryzae triose phosphate isomerase); and mutant, truncated,
and hybrid promoters thereof.

In a yeast host, useful promoters are obtained from the genes for Saccharomyces
cerevisiae enolase (ENO-1), Saccharomyces cerevisiae galactokinase (GAL1),
Saccharomyces cerevisiae alcohol dehydrogenase/glyceraldehyde-3-phosphate
dehydrogenase (ADH1,ADH2/GAP), Saccharomyces cerevisiae triose phosphate isomerase
(TPI), Saccharomyces cerevisiae metallothionine (CUP1), Saccharomyces cerevisiae 3-
phosphoglycerate kinase, and Pichia pastoris alcohol oxidase (AOX1). Other useful
promoters for yeast host cells are described by Romanos et al., 1992, Yeast 8: 423-488.

The control sequence may also be a suitable transcription terminator sequence, a
sequence recognized by a host cell to terminate transcription. The terminator sequence is
operably linked to the 3’ terminus of the nucleotide sequence encoding the polypeptide. Any
terminator which is functional in the host cell of choice may be used in the present invention.

Preferred terminators for filamentous fungal host cells are obtained from the genes
for Aspergillus oryzae TAKA amylase, Aspergillus niger glucoamylase, Aspergillus nidulans
anthranilate synthase, Aspergillus niger alpha-glucosidase, and Fusarium oxysporum trypsin-
like protease.

Preferred terminators for yeast host cells are obtained from the genes for
Saccharomyces cerevisiae enolase, Saccharomyces cerevisiae cytochrome C (CYC1), and
Saccharomyces cerevisiae glyceraldehyde-3-phosphate dehydrogenase. Other useful
terminators for yeast host cells are described by Romanos et al., 1992, supra.

The control sequence may also be a suitable leader sequence, a nontranslated
region of an mMRNA which is important for translation by the host cell. The leader sequence is
operably linked to the 5’ terminus of the nucleotide sequence encoding the polypeptide. Any
leader sequence that is functional in the host cell of choice may be used in the present
invention.

The control sequence may also be a suitable leader sequence, a nontranslated

21



10

15

20

25

30

35

WO 2008/116878 PCT/EP2008/053561
region of an mRNA which is important for translation by the host cell. The leader sequence is

operably linked to the 5’ terminus of the nucleotide sequence encoding the polypeptide. Any
leader sequence that is functional in the host cell of choice may be used in the present
invention.

Preferred leaders for filamentous fungal host cells are obtained from the genes for
Aspergillus oryzae TAKA amylase and Aspergillus nidulans triose phosphate isomerase.

Suitable leaders for yeast host cells are obtained from the genes for Saccharomyces
cerevisiae enolase (ENO-1), Saccharomyces cerevisiae 3-phosphoglycerate kinase,
Saccharomyces cerevisiae alpha-factor, and Saccharomyces cerevisiae alcohol
dehydrogenase/glyceraldehyde-3-phosphate dehydrogenase (ADH2/GAP).

The control sequence may also be a polyadenylation sequence, a sequence
operably linked to the 3’ terminus of the nucleotide sequence and which, when transcribed, is
recognized by the host cell as a signal to add polyadenosine residues to transcribed mRNA.
Any polyadenylation sequence which is functional in the host cell of choice may be used in
the present invention.

Preferred polyadenylation sequences for filamentous fungal host cells are obtained
from the genes for Aspergillus oryzae TAKA amylase, Aspergillus niger glucoamylase,
Aspergillus nidulans anthranilate synthase, Fusarium oxysporum trypsin-like protease, and
Aspergillus niger alpha-glucosidase.

Useful polyadenylation sequences for yeast host cells are described by Guo and
Sherman, 1995, Molecular Cellular Biology 15: 5983-5990.

The control sequence may also be a signal peptide coding region that codes for an
amino acid sequence linked to the amino terminus of a polypeptide and directs the encoded
polypeptide into the cell's secretory pathway. The 5 end of the coding sequence of the
nucleotide sequence may inherently contain a signal peptide coding region naturally linked in
translation reading frame with the segment of the coding region which encodes the secreted
polypeptide. Alternatively, the 5’ end of the coding sequence may contain a signal peptide
coding region which is foreign to the coding sequence. The foreign signal peptide coding
region may be required where the coding sequence does not naturally contain a signal
peptide coding region. Alternatively, the foreign signal peptide coding region may simply
replace the natural signal peptide coding region in order to enhance secretion of the
polypeptide. However, any signal peptide coding region which directs the expressed
polypeptide into the secretory pathway of a host cell of choice may be used in the present
invention.

Effective signal peptide coding regions for bacterial host cells are the signal peptide
coding regions obtained from the genes for Bacillus NCIB 11837 maltogenic amylase,
Bacillus stearothermophilus alpha-amylase, Bacillus licheniformis subtilisin, Bacillus
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licheniformis beta-lactamase, Bacillus stearothermophilus neutral proteases (nprT, nprS,

nprM), and Bacillus subtilis prsA. Further signal peptides are described by Simonen and
Palva, 1993, Microbiological Reviews 57: 109-137.

Effective signal peptide coding regions for filamentous fungal host cells are the
signal peptide coding regions obtained from the genes for Aspergillus oryzae TAKA amylase,
Aspergillus niger neutral amylase, Aspergillus niger glucoamylase, Rhizomucor miehei
aspartic proteinase, Humicola insolens cellulase, and Humicola lanuginosa lipase.

Useful signal peptides for yeast host cells are obtained from the genes for
Saccharomyces cerevisiae alpha-factor and Saccharomyces cerevisiae invertase. Other
useful signal peptide coding regions are described by Romanos et al., 1992, supra, and by
Xiong et al in Journal of Applied Microbiology 2005, 98, 418-428.

In a preferred aspect, the signal peptide coding region is nucleotides 1 to 99 of SEQ
ID NO: 9, which encode amino acids 1 to 33 of SEQ ID NO: 10. In another preferred aspect,
the signal peptide coding region is nucleotids 1 to 81 of SEQ ID NO: 11, which encode amino
acids 1 to 27 of SEQ ID NO: 12.

The control sequence may also be a propeptide coding region that codes for an
amino acid sequence positioned at the amino terminus of a polypeptide. The resultant
polypeptide is known as a propolypeptide or propolypeptide (or a zymogen in some cases). A
propolypeptide is generally inactive and can be converted to a mature active polypeptide by
catalytic or autocatalytic cleavage of the propeptide from the propolypeptide. The propeptide
coding region may be obtained from the genes for Bacillus subtilis alkaline protease (aprE),
Bacillus subtilis neutral protease (nprT), Saccharomyces cerevisiae alpha-factor, Rhizomucor
miehei aspartic proteinase, and Myceliophthora thermophila laccase (WO 95/33836).

Where both signal peptide and propeptide regions are present at the amino terminus
of a polypeptide, the propeptide region is positioned next to the amino terminus of a
polypeptide and the signal peptide region is positioned next to the amino terminus of the
propeptide region.

It may also be desirable to add regulatory sequences which allow the regulation of
the expression of the polypeptide relative to the growth of the host cell. Examples of
regulatory systems are those which cause the expression of the gene to be turned on or off in
response to a chemical or physical stimulus, including the presence of a regulatory
compound. Regulatory systems in prokaryotic systems include the lac, tac, and trp operator
systems. In yeast, the ADHZ2 system or GAL1 system may be used. In filamentous fungi, the
TAKA alpha-amylase promoter, Aspergillus niger glucoamylase promoter, and Aspergillus
oryzae glucoamylase promoter may be used as regulatory sequences. Other examples of

regulatory sequences are those which allow for gene amplification.
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Expression Vectors

The present invention also relates to recombinant expression vectors comprising a
polynucleotide of the present invention, a promoter, and transcriptional and translational stop
signals. The various nucleic acids and control sequences described above may be joined
together to produce a recombinant expression vector which may include one or more
convenient restriction sites to allow for insertion or substitution of the nucleotide sequence
encoding the polypeptide at such sites. Alternatively, a nucleotide sequence of the present
invention may be expressed by inserting the nucleotide sequence or a nucleic acid construct
comprising the sequence into an appropriate vector for expression. In creating the expression
vector, the coding sequence is located in the vector so that the coding sequence is operably
linked with the appropriate control sequences for expression.

The recombinant expression vector may be any vector (e.g., a plasmid or virus)
which can be conveniently subjected to recombinant DNA procedures and can bring about
expression of the nucleotide sequence. The choice of the vector will typically depend on the
compatibility of the vector with the host cell into which the vector is to be introduced. The
vectors may be linear or closed circular plasmids.

The vector may be an autonomously replicating vector, i.e., a vector which exists as
an extrachromosomal entity, the replication of which is independent of chromosomal
replication, e.g., a plasmid, an extrachromosomal element, a minichromosome, or an artificial
chromosome. The vector may contain any means for assuring self-replication. Alternatively,
the vector may be one which, when introduced into the host cell, is integrated into the
genome and replicated together with the chromosome(s) into which it has been integrated.
Furthermore, a single vector or plasmid or two or more vectors or plasmids which together
contain the total DNA to be introduced into the genome of the host cell, or a transposon may
be used.

The vectors of the present invention preferably contain one or more selectable
markers which permit easy selection of transformed cells. A selectable marker is a gene the
product of which provides for biocide or viral resistance, resistance to heavy metals,
prototrophy to auxotrophs, and the like.

A conditionally essential gene may function as a non-antibiotic selectable marker.
Non-limiting examples of bacterial conditionally essential non-antibiotic selectable markers
are the dal genes from Bacillus subtilis, Bacillus licheniformis, or other Bacilli, that are only
essential when the bacterium is cultivated in the absence of D-alanine. Also the genes
encoding enzymes involved in the turnover of UDP-galactose can function as conditionally
essential markers in a cell when the cell is grown in the presence of galactose or grown in a
medium which gives rise to the presence of galactose. Non-limiting examples of such genes
are those from B. subtilis or B. licheniformis encoding UTP-dependent phosphorylase (EC
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2.7.7.10), UDP-glucose-dependent uridylyltransferase (EC 2.7.7.12), or UDP-galactose

epimerase (EC 5.1.3.2). Also a xylose isomerase gene such as xylA, of Bacilli can be used as
selectable markers in cells grown in minimal medium with xylose as sole carbon source. The
genes necessary for utilizing gluconate, gntK, and gntP can also be used as selectable
markers in cells grown in minimal medium with gluconate as sole carbon source. Other
examples of conditionally essential genes are known in the art. Antibiotic selectable markers
confer antibiotic resistance to such antibiotics as ampicillin, kanamycin, chloramphenicol,
erythromycin, tetracycline, neomycin, hygromycin or methotrexate.

Suitable markers for yeast host cells are ADE2, HIS3, LEU2, LYS2, MET3, TRP1,
and URA3. Selectable markers for use in a filamentous fungal host cell include, but are not
limited to, amdS (acetamidase), argB (ornithine carbamoyltransferase), bar (phosphinothricin
acetyltransferase), hph (hygromycin phosphotransferase), niaD (nitrate reductase), pyrG
(orotidine-5’-phosphate decarboxylase), sC (sulfate adenyltransferase), and trpC (anthranilate
synthase), as well as equivalents thereof. Preferred for use in an Aspergillus cell are the
amdS and pyrG genes of Aspergillus nidulans or Aspergillus oryzae and the bar gene of
Streptomyces hygroscopicus.

The vectors of the present invention preferably contain an element(s) that permits
integration of the vector into the host cell's genome or autonomous replication of the vector in
the cell independent of the genome.

For integration into the host cell genome, the vector may rely on the polynucleotide’s
sequence encoding the polypeptide or any other element of the vector for integration into the
genome by homologous or nonhomologous recombination. Alternatively, the vector may
contain additional nucleotide sequences for directing integration by homologous
recombination into the genome of the host cell at a precise location(s) in the chromosome(s).
To increase the likelihood of integration at a precise location, the integrational elements
should preferably contain a sufficient number of nucleic acids, such as 100 to 10,000 base
pairs, preferably 400 to 10,000 base pairs, and most preferably 800 to 10,000 base pairs,
which have a high degree of identity with the corresponding target sequence to enhance the
probability of homologous recombination. The integrational elements may be any sequence
that is homologous with the target sequence in the genome of the host cell. Furthermore, the
integrational elements may be non-encoding or encoding nucleotide sequences. On the other
hand, the vector may be integrated into the genome of the host cell by non-homologous
recombination.

For autonomous replication, the vector may further comprise an origin of replication
enabling the vector to replicate autonomously in the host cell in question. The origin of
replication may be any plasmid replicator mediating autonomous replication which functions

in a cell. The term “origin of replication” or “plasmid replicator’ is defined herein as a
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nucleotide sequence that enables a plasmid or vector to replicate in vivo.

Examples of bacterial origins of replication are the origins of replication of plasmids
pBR322, pUC19, pACYC177, and pACYC184 permitting replication in E. coli, and pUB110,
pE194, pTA1060, and pAMM1 permitting replication in Bacillus.

Examples of origins of replication for use in a yeast host cell are the 2 micron origin
of replication, ARS1, ARS4, the combination of ARS1 and CEN3, and the combination of
ARS4 and CENG.

Examples of origins of replication useful in a filamentous fungal cell are AMA1 and
ANS1 (Gems et al., 1991, Gene 98:61-67; Cullen et al., 1987, Nucleic Acids Research 15:
9163-9175; WO 00/24883). Isolation of the AMA1 gene and construction of plasmids or
vectors comprising the gene can be accomplished according to the methods disclosed in WO
00/24883.

More than one copy of a polynucleotide of the present invention may be inserted into
the host cell to increase production of the gene product. An increase in the copy number of
the polynucleotide can be obtained by integrating at least one additional copy of the
sequence into the host cell genome or by including an amplifiable selectable marker gene
with the polynucleotide where cells containing amplified copies of the selectable marker gene,
and thereby additional copies of the polynucleotide, can be selected for by cultivating the cells
in the presence of the appropriate selectable agent.

The procedures used to ligate the elements described above to construct the
recombinant expression vectors of the present invention are well known to one skilled in the

art (see, e.g., Sambrook et al., 1989, supra).

Host Cells

The present invention also relates to recombinant host cells, comprising a
polynucleotide of the present invention, which are advantageously used in the recombinant
production of the polypeptides. A vector comprising a polynucleotide of the present invention
is introduced into a host cell so that the vector is maintained as a chromosomal integrant or
as a self-replicating extra-chromosomal vector as described earlier. The term "host cell"
encompasses any progeny of a parent cell that is not identical to the parent cell due to
mutations that occur during replication. The choice of a host cell will to a large extent depend
upon the gene encoding the polypeptide and its source.

The host cell may be a unicellular microorganism, e.g., a prokaryote, or a non-
unicellular microorganism, e.g., a eukaryote.

Useful unicellular microorganisms are bacterial cells such as gram positive bacteria
including, but not Ilimited to, a Bacillus cell, e.g., Bacillus alkalophilus, Bacillus

amyloliquefaciens, Bacillus brevis, Bacillus circulans, Bacillus clausii, Bacillus coagulans,
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Bacillus lautus, Bacillus lentus, Bacillus licheniformis, Bacillus megaterium, Bacillus

stearothermophilus, Bacillus subtilis, and Bacillus thuringiensis; or a Streptomyces cell, e.g.,
Streptomyces lividans and Streptomyces murinus, or gram negative bacteria such as E. coli
and Pseudomonas sp. In a preferred aspect, the bacterial host cell is a Bacillus lentus,
Bacillus licheniformis, Bacillus stearothermophilus, or Bacillus subtilis cell. In another
preferred aspect, the Bacillus cell is an alkalophilic Bacillus.

The introduction of a vector into a bacterial host cell may, for instance, be effected by
protoplast transformation (see, e.g., Chang and Cohen, 1979, Molecular General Genetics
168: 111-115), using competent cells (see, e.g., Young and Spizizin, 1961, Journal of
Bacteriology 81: 823-829, or Dubnau and Davidoff-Abelson, 1971, Journal of Molecular
Biology 56: 209-221), electroporation (see, e.g., Shigekawa and Dower, 1988, Biotechniques
6: 742-751), or conjugation (see, e.g., Koehler and Thorne, 1987, Journal of Bacteriology
169: 5771-5278).

The host cell may also be a eukaryote, such as a mammalian, insect, plant, or fungal
cell.

In a preferred aspect, the host cell is a fungal cell. “Fungi” as used herein includes
the phyla Ascomycota, Basidiomycota, Chytridiomycota, and Zygomycota (as defined by
Hawksworth et al., In, Ainsworth and Bisby’s Dictionary of The Fungi, 8th edition, 1995, CAB
International, University Press, Cambridge, UK) as well as the Oomycota (as cited in
Hawksworth et al., 1995, supra, page 171) and all mitosporic fungi (Hawksworth et al., 1995,
supra).

In a more preferred aspect, the fungal host cell is a yeast cell. “Yeast” as used herein
includes ascosporogenous yeast (Endomycetales), basidiosporogenous yeast, and yeast
belonging to the Fungi Imperfecti (Blastomycetes). Since the classification of yeast may
change in the future, for the purposes of this invention, yeast shall be defined as described in
Biology and Activities of Yeast (Skinner, F.A., Passmore, S.M., and Davenport, R.R., eds,
Soc. App. Bacteriol. Symposium Series No. 9, 1980).

In an even more preferred aspect, the yeast host cell is a Candida, Hansenula,
Kluyveromyces, Pichia, Saccharomyces, Schizosaccharomyces, or Yarrowia cell.

In a most preferred aspect, the yeast host cell is a Pichia pastoris, Pichia
methanolica, Saccharomyces carlsbergensis, Saccharomyces cerevisiae, Saccharomyces
diastaticus, Saccharomyces douglasii, Saccharomyces kluyveri, Saccharomyces norbensis or
Saccharomyces oviformis cell. In another most preferred aspect, the yeast host cell is a
Kluyveromyces lactis cell. In another most preferred aspect, the yeast host cell is a Yarrowia
lipolytica cell.

In another more preferred aspect, the fungal host cell is a filamentous fungal cell.

“Filamentous fungi” include all filamentous forms of the subdivision Eumycota and Oomycota
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(as defined by Hawksworth et al., 1995, supra). The filamentous fungi are generally

characterized by a mycelial wall composed of chitin, cellulose, glucan, chitosan, mannan, and
other complex polysaccharides. Vegetative growth is by hyphal elongation and carbon
catabolism is obligately aerobic. In contrast, vegetative growth by yeasts such as
Saccharomyces cerevisiae is by budding of a unicellular thallus and carbon catabolism may
be fermentative.

In an even more preferred aspect, the filamentous fungal host cell is an
Acremonium, Aspergillus, Aureobasidium, Bjerkandera, Ceriporiopsis, Coprinus, Coriolus,
Cryptococcus, Filobasidium, Fusarium, Humicola, Magnaporthe, Mucor, Myceliophthora,
Neocallimastix, Neurospora, Paecilomyces, Penicillium, Phanerochaete, Phlebia, Piromyces,
Pleurotus, Schizophyllum, Talaromyces, Thermoascus, Thielavia, Tolypocladium, Trametes,
or Trichoderma cell.

In a most preferred aspect, the filamentous fungal host cell is an Aspergillus
awamori, Aspergillus fumigatus, Aspergillus foetidus, Aspergillus japonicus, Aspergillus
nidulans, Aspergillus niger or Aspergillus oryzae cell. In another most preferred aspect, the
filamentous fungal host cell is a Fusarium bactridioides, Fusarium cerealis, Fusarium
crookwellense, Fusarium culmorum, Fusarium graminearum, Fusarium graminum, Fusarium
heterosporum, Fusarium negundi, Fusarium oxysporum, Fusarium reticulatum, Fusarium
roseum, Fusarium sambucinum, Fusarium sarcochroum, Fusarium sporotrichioides,
Fusarium sulphureum, Fusarium torulosum, Fusarium trichothecioides, or Fusarium
venenatum cell. In another most preferred aspect, the filamentous fungal host cell is a
Bjerkandera adusta, Ceriporiopsis aneirina, Ceriporiopsis aneirina, Ceriporiopsis caregiea,
Ceriporiopsis gilvescens, Ceriporiopsis pannocinta, Ceriporiopsis rivulosa, Ceriporiopsis
subrufa, or Ceriporiopsis subvermispora, Coprinus cinereus, Coriolus hirsutus, Humicola
insolens, Humicola lanuginosa, Mucor miehei, Myceliophthora thermophila, Neurospora
crassa, Penicillium purpurogenum, Phanerochaete chrysosporium, Phlebia radiata, Pleurotus
eryngii, Thielavia terrestris, Trametes villosa, Trametes versicolor, Trichoderma harzianum,
Trichoderma koningii, Trichoderma longibrachiatum, Trichoderma reesei, or Trichoderma
viride strain cell.

Fungal cells may be transformed by a process involving protoplast formation,
transformation of the protoplasts, and regeneration of the cell wall in a manner known per se.
Suitable procedures for transformation of Aspergillus and Trichoderma host cells are
described in EP 238 023 and Yelton et al., 1984, Proceedings of the National Academy of
Sciences USA 81: 1470-1474. Suitable methods for transforming Fusarium species are
described by Malardier et al., 1989, Gene 78: 147-156, and WO 96/00787. Yeast may be
transformed using the procedures described by Becker and Guarente, In Abelson, J.N. and

Simon, M.l., editors, Guide to Yeast Genetics and Molecular Biology, Methods in
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Enzymology, Volume 194, pp 182-187, Academic Press, Inc., New York; Ito et al., 1983,

Journal of Bacteriology 153: 163; and Hinnen et al., 1978, Proceedings of the National
Academy of Sciences USA 75: 1920.

Methods of Production

The present invention also relates to methods for producing a polypeptide of the
present invention, comprising (a) cultivating a cell, which in its wild-type form is capable of
producing the polypeptide, under conditions conducive for production of the polypeptide; and
(b) recovering the polypeptide. Preferably, the cell is of the genus Hafnia, and more
preferably Hafnia alvei.

The present invention also relates to methods for producing a polypeptide of the
present invention, comprising (a) cultivating a host cell under conditions conducive for
production of the polypeptide; and (b) recovering the polypeptide.

The present invention also relates to methods for producing a polypeptide of the
present invention, comprising (a) cultivating a host cell under conditions conducive for
production of the polypeptide, wherein the host cell comprises a mutant nucleotide sequence
having at least one mutation in the mature polypeptide coding region of any one of SEQ ID
NO: 9, wherein the mutant nucleotide sequence encodes a polypeptide which consists of
amino acids 1 to 413 of SEQ ID NO: 10, and (b) recovering the polypeptide.

In the production methods of the present invention, the cells are cultivated in a
nutrient medium suitable for production of the polypeptide using methods well known in the
art. For example, the cell may be cultivated by shake flask cultivation, and small-scale or
large-scale fermentation (including continuous, batch, fed-batch, or solid state fermentations)
in laboratory or industrial fermentors performed in a suitable medium and under conditions
allowing the polypeptide to be expressed and/or isolated. The cultivation takes place in a
suitable nutrient medium comprising carbon and nitrogen sources and inorganic salts, using
procedures known in the art. Suitable media are available from commercial suppliers or may
be prepared according to published compositions (e.g., in catalogues of the American Type
Culture Collection). If the polypeptide is secreted into the nutrient medium, the polypeptide
can be recovered directly from the medium. If the polypeptide is not secreted, it can be
recovered from cell lysates.

The polypeptides may be detected using methods known in the art that are specific
for the polypeptides. These detection methods may include use of specific antibodies,
formation of a polypeptide product, or disappearance of an polypeptide substrate. For
example, an polypeptide assay may be used to determine the activity of the polypeptide as
described herein.

The resulting polypeptide may be recovered using methods known in the art. For
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example, the polypeptide may be recovered from the nutrient medium by conventional

procedures including, but not limited to, centrifugation, filtration, extraction, spray-drying,
evaporation, or precipitation.

The polypeptides of the present invention may be purified by a variety of procedures
known in the art including, but not limited to, chromatography (e.g., ion exchange, affinity,
hydrophobic, chromatofocusing, and size exclusion), electrophoretic procedures (e.g.,
preparative isoelectric focusing), differential solubility (e.g., ammonium sulfate precipitation),
SDS-PAGE, or extraction (see, e.g., Protein Purification, J.-C. Janson and Lars Ryden,
editors, VCH Publishers, New York, 1989).

Transgenic Plants

The present invention also relates to a transgenic plant, plant part, or plant cell which
has been transformed with a nucleotide sequence encoding a polypeptide having phytase
activity of the present invention so as to express and produce the polypeptide in recoverable
quantities. The polypeptide may be recovered from the plant or plant part. Alternatively, the
plant or plant part containing the recombinant polypeptide may be used as such for improving
the quality of a food or feed, e.g., improving nutritional value, palatability, and rheological
properties, or to destroy an antinutritive factor.

In a particular embodiment, the polypeptide is targeted to the endosperm storage
vacuoles in seeds. This can be obtained by synthesizing it as a precursor with a suitable
signal peptide, see Horvath et al in PNAS, Feb. 15, 2000, vol. 97, no. 4, p. 1914-1919.

The transgenic plant can be dicotyledonous (a dicot) or monocotyledonous (a
monocot) or engineered variants thereof. Examples of monocot plants are grasses, such as
meadow grass (blue grass, Poa), forage grass such as Festuca, Lolium, temperate grass,
such as Agrostis, and cereals, e.g., wheat, oats, rye, barley, rice, sorghum, triticale (stabilized
hybrid of wheat (Triticum) and rye (Secale), and maize (corn). Examples of dicot plants are
tobacco, legumes, such as sunflower (Helianthus), cotton (Gossypium), lupins, potato, sugar
beet, pea, bean and soybean, and cruciferous plants (family Brassicaceae), such as
cauliflower, rape seed, and the closely related model organism Arabidopsis thaliana. Low-
phytate plants as described e.g. in US patent no. 5,689,054 and US patent no. 6,111,168 are
examples of engineered plants.

Examples of plant parts are stem, callus, leaves, root, fruits, seeds, and tubers, as
well as the individual tissues comprising these parts, e.g. epidermis, mesophyll, parenchyma,
vascular tissues, meristems. Also specific plant cell compartments, such as chloroplast,
apoplast, mitochondria, vacuole, peroxisomes, and cytoplasm are considered to be a plant
part. Furthermore, any plant cell, whatever the tissue origin, is considered to be a plant part.

Likewise, plant parts such as specific tissues and cells isolated to facilitate the utilisation of
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the invention are also considered plant parts, e.g. embryos, endosperms, aleurone and seed

coats.

Also included within the scope of the present invention are the progeny of such
plants, plant parts and plant cells.

The transgenic plant or plant cell expressing a polypeptide of the present invention
may be constructed in accordance with methods known in the art. Briefly, the plant or plant
cell is constructed by incorporating one or more expression constructs encoding a
polypeptide of the present invention into the plant host genome and propagating the resulting
modified plant or plant cell into a transgenic plant or plant cell.

Conveniently, the expression construct is a nucleic acid construct which comprises a
nucleic acid sequence encoding a polypeptide of the present invention operably linked with
appropriate regulatory sequences required for expression of the nucleic acid sequence in the
plant or plant part of choice. Furthermore, the expression construct may comprise a
selectable marker useful for identifying host cells into which the expression construct has
been integrated and DNA sequences necessary for introduction of the construct into the plant
in guestion (the latter depends on the DNA introduction method to be used).

The choice of regulatory sequences, such as promoter and terminator sequences
and optionally signal or transit sequences are determined, for example, on the basis of when,
where, and how the polypeptide is desired to be expressed. For instance, the expression of
the gene encoding a polypeptide of the present invention may be constitutive or inducible, or
may be developmental, stage or tissue specific, and the gene product may be targeted to a
specific cell compartment, tissue or plant part such as seeds or leaves. Regulatory
sequences are, for example, described by Tague et al., 1988, Plant Physiology 86: 506.

For constitutive expression, the following promoters may be used: The 35S-CaMV
promoter (Franck et al., 1980, Cell 21: 285-294), the maize ubiquitin 1 (Christensen AH,
Sharrock RA and Quail 1992. Maize polyubiquitin genes: structure, thermal perturbation of
expression and transcript splicing, and promoter activity following transfer to protoplasts by
electroporation), or the rice actin 1 promoter (Plant Mo. Biol. 18, 675-689.; Zhang W, McElroy
D. and Wu R 1991, Analysis of rice Act1 5’ region activity in transgenic rice plants. Plant Cell
3, 1155-1165). Organ-specific promoters may be, for example, a promoter from storage sink
tissues such as seeds, potato tubers, and fruits (Edwards & Coruzzi, 1990, Ann. Rev. Genet.
24: 275-303), or from metabolic sink tissues such as meristems (Ito et al., 1994, Plant Mol.
Biol. 24: 863-878), a seed specific promoter such as the glutelin, prolamin, globulin, or
albumin promoter from rice (Wu et al., 1998, Plant and Cell Physiology 39: 885-889), a Vicia
faba promoter from the legumin B4 and the unknown seed protein gene from Vicia faba
(Conrad et al., 1998, Journal of Plant Physiology 152: 708-711), a promoter from a seed oil
body protein (Chen et al., 1998, Plant and Cell Physiology 39: 935-941), the storage protein
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napA promoter from Brassica napus, or any other seed specific promoter known in the art,

e.g., as described in WO 91/14772. Furthermore, the promoter may be a leaf specific
promoter such as the rbcs promoter from rice or tomato (Kyozuka et al., 1993, Plant
Physiology 102: 991-1000, the chlorella virus adenine methyltransferase gene promoter
(Mitra and Higgins, 1994, Plant Molecular Biology 26: 85-93), or the aldP gene promoter from
rice (Kagaya et al.,, 1995, Molecular and General Genetics 248: 668-674), or a wound
inducible promoter such as the potato pin2 promoter (Xu et al., 1993, Plant Molecular Biology
22: 573-588). Likewise, the promoter may be inducible by abiotic treatments such as
temperature, drought or alterations in salinity or inducible by exogenously applied substances
that activate the promoter, e.g. ethanol, oestrogens, plant hormones like ethylene, abscisic
acid, gibberellic acid, and/or heavy metals.

A promoter enhancer element may also be used to achieve higher expression of the
polypeptide in the plant. For instance, the promoter enhancer element may be an intron which
is placed between the promoter and the nucleotide sequence encoding a polypeptide of the
present invention. For instance, Xu et al., 1993, supra disclose the use of the first intron of the
rice actin 1 gene to enhance expression.

Still further, the codon usage may be optimized for the plant species in question to
improve expression (see Horvath et al referred to above).

The selectable marker gene and any other parts of the expression construct may be
chosen from those available in the art.

The nucleic acid construct is incorporated into the plant genome according to
conventional techniques known in the art, including Agrobacterium-mediated transformation,
virus-mediated transformation, microinjection, particle bombardment, biolistic transformation,
and electroporation (Gasser et al., 1990, Science 244: 1293; Potrykus, 1990, Bio/Technology
8: 535; Shimamoto et al., 1989, Nature 338: 274).

Presently, Agrobacterium tumefaciens-mediated gene transfer is the method of
choice for generating transgenic dicots (for a review, see Hooykas and Schilperoort, 1992,
Plant Molecular Biology 19: 15-38), and it can also be used for transforming monocots,
although other transformation methods are more often used for these plants. Presently, the
method of choice for generating transgenic monocots, supplementing the Agrobacterium
approach, is particle bombardment (microscopic gold or tungsten particles coated with the
transforming DNA) of embryonic calli or developing embryos (Christou, 1992, Plant Journal 2:
275-281; Shimamoto, 1994, Current Opinion Biotechnology 5: 158-162; Vasil et al., 1992,
Bio/Technology 10: 667-674). An alternative method for transformation of monocots is based
on protoplast transformation as described by Omirulleh et al., 1993, Plant Molecular Biology
21: 415-428.

Following transformation, the transformants having incorporated therein the
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expression construct are selected and regenerated into whole plants according to methods

well-known in the art. Often the transformation procedure is designed for the selective
elimination of selection genes either during regeneration or in the following generations by
using e.g. co-transformation with two separate T-DNA constructs or site specific excision of
the selection gene by a specific recombinase.

The present invention also relates to methods for producing a polypeptide of the
present invention comprising (a) cultivating a transgenic plant or a plant cell comprising a
nucleic acid sequence encoding a polypeptide having phytase activity of the present invention
under conditions conducive for production of the polypeptide; and (b) recovering the

polypeptide.

Transgenic Animals

The present invention also relates to a transgenic, non-human animal and products
or elements thereof, examples of which are body fluids such as milk and blood, organs, flesh,
and animal cells. Techniques for expressing proteins, e.g. in mammalian cells, are known in
the art, see e.g. the handbook Protein Expression: A Practical Approach, Higgins and Hames
(eds), Oxford University Press (1999), and the three other handbooks in this series relating to
Gene Transcription, RNA processing, and Post-translational Processing. Generally speaking,
to prepare a transgenic animal, selected cells of a selected animal are transformed with a
nucleic acid sequence encoding a polypeptide having phytase activity of the present invention
s0 as to express and produce the polypeptide. The polypeptide may be recovered from the
animal, e.g. from the milk of female animals, or the polypeptide may be expressed to the
benefit of the animal itself, e.g. to assist the animal’s digestion. Examples of animals are
mentioned below in the section headed Animal Feed.

To produce a transgenic animal with a view to recovering the polypeptide from the
milk of the animal, a gene encoding the polypeptide may be inserted into the fertilized eggs of
an animal in question, e.g. by use of a transgene expression vector which comprises a
suitable milk protein promoter, and the gene encoding the polypeptide. The transgene
expression vector is is microinjected into fertilized eggs, and preferably permanently
integrated into the chromosome. Once the egg begins to grow and divide, the potential
embryo is implanted into a surrogate mother, and animals carrying the transgene are
identified. The resulting animal can then be multiplied by conventional breeding. The
polypeptide may be purified from the animal's milk, see e.g. Meade, H.M. et al (1999):
Expression of recombinant proteins in the milk of transgenic animals, Gene expression
systems: Using nature for the art of expression. J. M. Fernandez and J. P. Hoeffler (eds.),
Academic Press.

In the alternative, in order to produce a transgenic non-human animal that carries in
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the genome of its somatic and/or germ cells a nucleic acid sequence including a heterologous

transgene construct including a transgene encoding the polypeptide, the transgene may be
operably linked to a first regulatory sequence for salivary gland specific expression of the
polypeptide, as disclosed in WO 00/064247.

Compositions and Uses

In still further aspects, the present invention relates to compositions comprising a
polypeptide of the present invention, as well as methods of using these.

The polypeptide compositions may be prepared in accordance with methods known
in the art and may be in the form of a liquid or a dry composition. For instance, the
polypeptide composition may be in the form of granulates or microgranulates. The
polypeptide to be included in the composition may be stabilized in accordance with methods
known in the art.

The phytase of the invention can be used for degradation, in any industrial context,
of, for example, phytate, phytic acid, and/or the mono-, di-, tri-, tetra- and/or penta-
phosphates of myo-inositol. It is well known that the phosphate moieties of these compounds
chelates divalent and trivalent cations such as metal ions, i.a. the nutritionally essential ions
of calcium, iron, zinc and magnesium as well as the trace minerals manganese, copper and
molybdenum. Besides, the phytic acid also to a certain extent binds proteins by electrostatic
interaction.

Accordingly, preferred uses of the polypeptides of the invention are in animal feed
preparations (including human food) or in additives for such preparations.

In a particular embodiment, the polypeptide of the invention can be used for
improving the nutritional value of an animal feed. Non-limiting examples of improving the
nutritional value of animal feed (including human food), are: Improving feed digestibility;
promoting growth of the animal; improving feed utilization; improving bio-availability of
proteins; increasing the level of digestible phosphate; improving the release and/or
degradation of phytate; improving bio-availability of trace minerals; improving bio-availability
of macro minerals; eliminating the need for adding supplemental phosphate, trace minerals,
and/or macro minerals; and/or improving egg shell quality. The nutritional value of the feed is
therefore increased, and the growth rate and/or weight gain and/or feed conversion (i.e. the
weight of ingested feed relative to weight gain) of the animal may be improved.

Furthermore, the polypeptide of the invention can be used for reducing phytate level

of manure.

Animals, Animal Feed, and Animal Feed Additives
The term animal includes all animals, including human beings. Examples of animals
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are non-ruminants, and ruminants. Ruminant animals include, for example, animals such as

sheep, goats, horses, and cattle, e.g. beef cattle, cows, and young calves. In a particular
embodiment, the animal is a non-ruminant animal. Non-ruminant animals include mono-
gastric animals, e.g. pigs or swine (including, but not limited to, piglets, growing pigs, and
sows); poultry such as turkeys, ducks and chicken (including but not limited to broiler chicks,
layers); young calves; and fish (including but not limited to salmon, trout, tilapia, catfish and
carps; and crustaceans (including but not limited to shrimps and prawns).

The term feed or feed composition means any compound, preparation, mixture, or
composition suitable for, or intended for intake by an animal.

In the use according to the invention the polypeptide can be fed to the animal before,
after, or simultaneously with the diet. The latter is preferred.

In a particular embodiment, the polypeptide, in the form in which it is added to the
feed, or when being included in a feed additive, is substantially pure. In a particular
embodiment it is well-defined. The term “well-defined” means that the phytase preparation is
at least 50% pure as determined by Size-exclusion chromatography (see Example 12 of WO
01/58275). In other particular embodiments the phytase preparation is at least 60, 70, 80, 85,
88, 90, 92, 94, or at least 95% pure as determined by this method.

A substantially pure, and/or well-defined polypeptide preparation is advantageous.
For instance, it is much easier to dose correctly to the feed a polypeptide that is essentially
free from interfering or contaminating other polypeptides. The term dose correctly refers in
particular to the objective of obtaining consistent and constant results, and the capability of
optimising dosage based upon the desired effect.

For the use in animal feed, however, the phytase polypeptide of the invention need
not be that pure; it may e.g. include other polypeptides, in which case it could be termed a
phytase preparation.

The phytase preparation can be (a) added directly to the feed (or used directly in a
treatment process of proteins), or (b) it can be used in the production of one or more
intermediate compositions such as feed additives or premixes that is subsequently added to
the feed (or used in a treatment process). The degree of purity described above refers to the
purity of the original polypeptide preparation, whether used according to (a) or (b) above.

Polypeptide preparations with purities of this order of magnitude are in particular
obtainable using recombinant methods of production, whereas they are not so easily obtained
and also subject to a much higher batch-to-batch variation when the polypeptide is produced
by traditional fermentation methods.

Such polypeptide preparation may of course be mixed with other polypeptides.

The polypeptide can be added to the feed in any form, be it as a relatively pure

polypeptide, or in admixture with other components intended for addition to animal feed, i.e. in
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the form of animal feed additives, such as the so-called pre-mixes for animal feed.

In a further aspect the present invention relates to compositions for use in animal
feed, such as animal feed, and animal feed additives, e.g. premixes.

Apart from the polypeptide of the invention, the animal feed additives of the invention
contain at least one fat-soluble vitamin, and/or at least one water soluble vitamin, and/or at
least one trace mineral. The feed additive may also contain at least one macro mineral.

Further, optional, feed-additive ingredients are colouring agents, e.g. carotenoids
such as beta-carotene, astaxanthin, and lutein; aroma compounds; stabilisers; antimicrobial
peptides; polyunsaturated fatty acids; reactive oxygen generating species; and/or at least one
other polypeptide selected from amongst phytase (EC 3.1.3.8 or 3.1.3.26); xylanase (EC
3.2.1.8); galactanase (EC 3.2.1.89); alpha-galactosidase (EC 3.2.1.22); protease (EC 3.4.-.-),
phospholipase A1 (EC 3.1.1.32); phospholipase A2 (EC 3.1.1.4); lysophospholipase (EC
3.1.1.5); phospholipase C (3.1.4.3); phospholipase D (EC 3.1.4.4); amylase such as, for
example, alpha-amylase (EC 3.2.1.1); and/or beta-glucanase (EC 3.2.1.4 or EC 3.2.1.6).

In a particular embodiment these other polypeptides are well-defined (as defined
above for phytase preparations).

In a particularly preferred embodiment, the phytase of the invention having a
relatively low pH-optimum is combined with at least one phytase having a higher pH-optimum.
Preferred examples of phytases of higher pH-optimum are Bacillus phytases, such as the
phytases from Bacillus licheniformis and Bacillus subtilis, as well as derivatives, variants, or
fragments thereof having phytase activity.

The phytase of the invention may also be combined with other phytases, for example
ascomycete phytases such as Aspergillus phytases, for example derived from Aspergillus
ficuum, Aspergillus niger, or Aspergillus awamori; or basidiomycete phytases, for example
derived from Peniophora lycii, Agrocybe pediades, Trametes pubescens, or Paxillus
involutus; or derivatives, fragments or variants thereof which have phytase activity.

Thus, in preferred embodiments of the use in animal feed of the invention, and in
preferred embodiments of the animal feed additive and the animal feed of the invention, the
phytase of the invention is combined with such phytases.

The above-mentioned ascomycete and basidiomycete phytases, in particular the
RONOZYME P phytase derived from Peniophora lycii as well as derivatives, variants, and
fragments thereof, may also be combined with Bacillus phytases, in particular the B.
licheniformis phytase as well as with a derivative, fragment or variant thereof, in particular for
animal feed purposes.

Examples of antimicrobial peptides (AMP’s) are CAP18, Leucocin A, Tritrpticin,
Protegrin-1, Thanatin, Defensin, Lactoferrin, Lactoferricin, and Ovispirin such as Novispirin

(Robert Lehrer, 2000), Plectasins, and Statins, including the compounds and polypeptides
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disclosed in WO 03/044049 and WO 03/048148, as well as variants or fragments of the

above that retain antimicrobial activity.

Examples of antifungal polypeptides (AFP’s) are the Aspergillus giganteus, and
Aspergillus niger peptides, as well as variants and fragments thereof which retain antifungal
activity, as disclosed in WO 94/01459 and WO 02/090384.

Examples of polyunsaturated fatty acids are C18, C20 and C22 polyunsaturated fatty
acids, such as arachidonic acid, docosohexaenoic acid, eicosapentaenoic acid and gamma-
linoleic acid.

Examples of reactive oxygen generating species are chemicals such as perborate,
persulphate, or percarbonate; and polypeptides such as an oxidase, an oxygenase or a
syntethase.

Usally fat- and water-soluble vitamins, as well as trace minerals form part of a so-
called premix intended for addition to the feed, whereas macro minerals are usually
separately added to the feed. Either of these composition types, when enriched with a
polypeptide of the invention, is an animal feed additive of the invention.

In a particular embodiment, the animal feed additive of the invention is intended for
being included (or prescribed as having to be included) in animal diets or feed at levels of
0.01 to 10.0%; more particularly 0.05 to 5.0%; or 0.2 to 1.0% (% meaning g additive per 100 g
feed). This is so in particular for premixes.

The following are non-exclusive lists of examples of these components:

Examples of fat-soluble vitamins are vitamin A, vitamin D3, vitamin E, and vitamin K,
e.g. vitamin K3.

Examples of water-soluble vitamins are vitamin B12, biotin and choline, vitamin B1,
vitamin B2, vitamin B6, niacin, folic acid and panthothenate, e.g. Ca-D-panthothenate.

Examples of trace minerals are manganese, zinc, iron, copper, iodine, selenium, and
cobalt.

Examples of macro minerals are calcium, phosphorus and sodium.

The nutritional requirements of these components (exemplified with poultry and
piglets/pigs) are listed in Table A of WO 01/58275. Nutritional requirement means that these
components should be provided in the diet in the concentrations indicated.

In the alternative, the animal feed additive of the invention comprises at least one of
the individual components specified in Table A of WO 01/58275. At least one means either of,
one or more of, one, or two, or three, or four and so forth up to all thirteen, or up to all fifteen
individual components. More specifically, this at least one individual component is included in
the additive of the invention in such an amount as to provide an in-feed-concentration within
the range indicated in column four, or column five, or column six of Table A.

The present invention also relates to animal feed compositions. Animal feed
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compositions or diets have a relatively high content of protein. Poultry and pig diets can be

characterised as indicated in Table B of WO 01/58275, columns 2-3. Fish diets can be
characterised as indicated in column 4 of this Table B. Furthermore such fish diets usually
have a crude fat content of 200-310 g/kg.

WO 01/58275 corresponds to US 09/779334 which is hereby incorporated by
reference.

An animal feed composition according to the invention has a crude protein content of
50-800 g/kg, and furthermore comprises at least one polypeptide as claimed herein.

Furthermore, or in the alternative (to the crude protein content indicated above), the
animal feed composition of the invention has a content of metabolisable energy of 10-30
MJ/kg; and/or a content of calcium of 0.1-200 g/kg; and/or a content of available phosphorus
of 0.1-200 g/kg; and/or a content of methionine of 0.1-100 g/kg; and/or a content of
methionine plus cysteine of 0.1-150 g/kg; and/or a content of lysine of 0.5-50 g/kg.

In particular embodiments, the content of metabolisable energy, crude protein,
calcium, phosphorus, methionine, methionine plus cysteine, and/or lysine is within any one of
ranges 2, 3, 4 or 5in Table B of WO 01/58275 (R. 2-5).

Crude protein is calculated as nitrogen (N) multiplied by a factor 6.25, i.e. Crude
protein (g/kg)= N (g/kg) x 6.25. The nitrogen content is determined by the Kjeldahl method
(A.O.A.C., 1984, Official Methods of Analysis 14th ed., Association of Official Analytical
Chemists, Washington DC).

Metabolisable energy can be calculated on the basis of the NRC publication Nutrient
requirements in swine, ninth revised edition 1988, subcommittee on swine nutrition,
committee on animal nutrition, board of agriculture, national research council. National
Academy Press, Washington, D.C., pp. 2-6, and the European Table of Energy Values for
Poultry Feed-stuffs, Spelderholt centre for poultry research and extension, 7361 DA
Beekbergen, The Netherlands. Grafisch bedrijf Ponsen & looijen bv, Wageningen. ISBN 90-
71463-12-5.

The dietary content of calcium, available phosphorus and amino acids in complete
animal diets is calculated on the basis of feed tables such as Veevoedertabel 1997, gegevens
over chemische samenstelling, verteerbaarheid en voederwaarde van voedermiddelen,
Central Veevoederbureau, Runderweg 6, 8219 pk Lelystad. ISBN 90-72839-13-7.

In a particular embodiment, the animal feed composition of the invention contains at
least one protein. The protein may be an animal protein, such as meat and bone meal, and/or
fish meal; or it may be a vegetable protein. The term vegetable proteins as used herein refers
to any compound, composition, preparation or mixture that includes at least one protein
derived from or originating from a vegetable, including modified proteins and protein-

derivatives. In particular embodiments, the protein content of the vegetable proteins is at least
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10, 20, 30, 40, 50, or 60% (w/w).

Vegetable proteins may be derived from vegetable protein sources, such as legumes
and cereals, for example materials from plants of the families Fabaceae (Leguminosae),
Cruciferaceae, Chenopodiaceae, and Poaceae, such as soy bean meal, lupin meal and
rapeseed meal.

In a particular embodiment, the vegetable protein source is material from one or
more plants of the family Fabaceae, e.g. soybean, lupine, pea, or bean.

In another particular embodiment, the vegetable protein source is material from one
or more plants of the family Chenopodiaceae, e.g. beet, sugar beet, spinach or quinoa.

Other examples of vegetable protein sources are rapeseed, sunflower seed, cotton
seed, and cabbage.

Soybean is a preferred vegetable protein source.

Other examples of vegetable protein sources are cereals such as barley, wheat, rye,
oat, maize (corn), rice, triticale, and sorghum.

In still further particular embodiments, the animal feed composition of the invention
contains 0-80% maize; and/or 0-80% sorghum; and/or 0-70% wheat; and/or 0-70% Barley;
and/or 0-30% oats; and/or 0-40% soybean meal; and/or 0-25% fish meal; and/or 0-25% meat
and bone meal; and/or 0-20% whey.

Animal diets can e.g. be manufactured as mash feed (non pelleted) or pelleted feed.
Typically, the milled feed-stuffs are mixed and sufficient amounts of essential vitamins and
minerals are added according to the specifications for the species in question. Polypeptides
can be added as solid or liquid polypeptide formulations. For example, a solid polypeptide
formulation is typically added before or during the mixing step; and a liquid polypeptide
preparation is typically added after the pelleting step. The polypeptide may also be
incorporated in a feed additive or premix.

The final polypeptide concentration in the diet is within the range of 0.01-200 mg
polypeptide protein per kg diet, for example in the range of 0.1-10 mg/kg animal diet (typical
dosage is in the range of 250 to 2000 FYT/kg animal diet).

The phytase of the invention should of course be applied in an effective amount, i.e.
in an amount adequate for improving solubilisation and/or improving nutritional value of feed.
It is at present contemplated that the polypeptide is administered in one or more of the
following amounts (dosage ranges): 0.01-200; 0.01-100; 0.5-100; 1-50; 5-100; 10-100; 0.05-
50; or 0.10-10 — all these ranges being in mg phytase polypeptide protein per kg feed (ppm).

For determining mg phytase polypeptide protein per kg feed, the phytase is purified
from the feed composition, and the specific activity of the purified phytase is determined using
a relevant assay. The phytase activity of the feed composition as such is also determined

using the same assay, and on the basis of these two determinations, the dosage in mg
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phytase protein per kg feed is calculated.

The same principles apply for determining mg phytase polypeptide protein in feed
additives. Of course, if a sample is available of the phytase used for preparing the feed
additive or the feed, the specific activity is determined from this sample (no need to purify the

phytase from the feed composition or the additive).

Methods For Producing Fermentation Products

Yet another aspect of the present invention relates to the methods for producing a
fermentation product, such as, e.g., ethanol, beer, wine, distillers dried grains (DDG), wherein
the fermentation is carried out in the presence of a phytase of the present invention.
Examples of fermentation processes include, for example, the processes described in WO
01/62947. Fermentation is carried out using a fermenting microorganism, such as, yeast.

In a particular embodiment, the present invention provides methods for producing
fermentation product, comprising (a) fermenting (using a fermenting microorganism, such as
yeast) a carbohydrate containing material (e.g., starch) in the presence of a phytase of the
present invention and (b) producing the fermentation product from the fermented
carbohydrate containing material.

In a particular embodiment, the present invention provides methods for producing
ethanol, comprising fermenting (using a fermenting microorganism, such as yeast) a
carbohydrate containing material (e.g., starch) in the presence of a phytase of the present
invention and producing or recovering ethanol from the fermented carbohydrate containing
material.

In another embodiment, the present invention provides methods for producing
ethanol comprising a) hydrolyzing starch, e.g., by a liquefaction and/or saccharification
process, a raw starch hydrolysis process, b) fermenting the resulting starch in the presence of
a phytase of the present invention, and c) producing ethanol.

The phytase may be added to the fermentation process at any suitable stage and in
any suitable composition, including alone or in combination with other enzymes, such as, one
or more alpha-amylases, glucoamylases, proteases, and/or cellulases.

In another embodiment, the present invention provides methods for producing
ethanol comprising hydrolyzing biomass, and fermenting (using a fermenting microorganism,

such as yeast) the resulting biomass in the presence of a phytase of the present invention.

Signal Peptide
The present invention also relates to nucleic acid constructs comprising a gene
encoding a protein operably linked to a first nucleotide sequence consisting of nucleotides 1

to 99 of SEQ ID NO: 9, encoding a signal peptide consisting of amino acids 1 to 33 of SEQ ID
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NO: 10, wherein the gene is foreign to the first nucleotide sequences.

The present invention also relates to recombinant expression vectors and
recombinant host cells comprising such nucleic acid constructs.

The present invention also relates to methods for producing a protein comprising (a)
cultivating such a recombinant host cell under conditions suitable for production of the
protein; and (b) recovering the protein.

The first nucleotide sequences may be operably linked to foreign genes individually
with other control sequences or in combination with other control sequences. Such other
control sequences are described supra.

The protein may be native or heterologous to a host cell. The term “protein” is not
meant herein to refer to a specific length of the encoded product and, therefore,
encompasses peptides, oligopeptides, and proteins. The term “protein” also encompasses
two or more polypeptides combined to form the encoded product. The proteins also include
hybrid polypeptides which comprise a combination of partial or complete polypeptide
sequences obtained from at least two different proteins wherein one or more may be
heterologous or native to the host cell. Proteins further include naturally occurring allelic and
engineered variations of the above mentioned proteins and hybrid proteins.

Preferably, the protein is a hormone or variant thereof, polypeptide, e.g., enzyme,
receptor or portion thereof, antibody or portion thereof, or reporter. In a more preferred
aspect, the protein is an oxidoreductase, transferase, hydrolase, lyase, isomerase, or ligase.
In an even more preferred aspect, the protein is an aminopeptidase, amylase, carbohydrase,
carboxypeptidase, catalase, cellulase, chitinase, cutinase, cyclodextrin glycosyltransferase,
deoxyribonuclease, esterase, alpha-galactosidase, beta-galactosidase, glucoamylase, alpha-
glucosidase, beta-glucosidase, invertase, laccase, lipase, mannosidase, mutanase, oxidase,
pectinolytic polypeptide, peroxidase, phytase, polyphenoloxidase, proteolytic polypeptide,
ribonuclease, transglutaminase or xylanase.

The gene may be obtained from any prokaryotic, eukaryotic, or other source.

Various embodiments

The following are additional embodiments of the present invention. Also included
herein are the corresponding aspects relating to nucleic acid sequences, nucleic acid
constructs, recombinant expression vectors, recombinant host cells, methods for production
of the polypeptides, transgenic plants and animals, and the various uses, methods of use and
feed compositions/additives, all as claimed.

An isolated polypeptide having phytase actvity and a residual activity following
incubation at 37°C and in a 0.1M Glycine/HCI buffer, pH 2.0, for 4 hours of at least 20%, as
compared to the activity at time, t = 0, the activity being assayed at 37°C and pH 5.5 on 1%
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(w/v) Na-phytate, using a 0.25 M Na-acetate buffer pH 5.5, buffer blind subtracted;

preferably with an identity to i) amino acids 1 to 413 of SEQ ID NO: 10, of at least
75%, preferably at least 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%,
88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 96.5%, 97%, 97.5%, 98%, 98.5%, 98.7%,
98.8%, 98.9%, 99%, 99.0%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8%, or
at least 99.9%.

An isolated polypeptide having phytase activity and a residual activity following
incubation at 37°C and in a 0.1M Glycine/HCI buffer, pH 2.5, for 24 hours of at least 20%, as
compared to the activity at time, t = 0, the activity being assayed at 37°C and pH 5.5 on 1%
(w/v) Na-phytate, using a 0.25 M Na-acetate buffer pH 5.5, buffer blind subtracted;

preferably with an identity to i) amino acids 1 to 413 of SEQ ID NO: 10, of at least
75%, preferably at least 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%,
88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 96.5%, 97%, 97.5%, 98%, 98.5%, 98.7%,
98.8%, 98.9%, 99%, 99.0%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8%, or
at least 99.9%.

An isolated polypeptide having phytase activity, wherein the activity of the
polypeptide, at pH 5.0 and 37°C, measured on the substrate pNP-phosphate is less than 11%
of the activity of the polypeptide measured on the substrate phytate; preferably with an
identity to i) amino acids 1 to 413 of SEQ ID NO: 10, of at least 75%, preferably at least 76%,
77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%,
93%, 94%, 95%, 96%, 96.5%, 97%, 97.5%, 98%, 98.5%, 98.7%, 98.8%, 98.9%, 99%, 99.0%,
99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8%, or at least 99.9%.

An isolated polypeptide having phytase activity, wherein the polypeptide has a higher
release of phosphorous (P), as compared to the phytase from Peniophora lycii; preferably as
measured in the in vitro model; and/or, wherein the polypeptide preferably has an identity to i)
amino acids 1 to 413 of SEQ ID NO: 10, of at least 75%, preferably at least 76%, 77%, 78%,
79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%,
95%, 96%, 96.5%, 97%, 97.5%, 98%, 98.5%, 98.7%, 98.8%, 98.9%, 99%, 99.0%, 99.1%,
99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8%, or at least 99.9%.

An isolated polypeptide having phytase activity, wherein the polypeptide, dosed 0.25
FYT/g feed, releases at least 150% phosphorous (P), relative to the phosphorous released by
the phytase from Peniophora lycii, also dosed 0.25 FYT/g feed; and/or, wherein the
polypeptide preferably has an identity to i) amino acids 1 to 413 of SEQ ID NO: 10, of at least
75%, preferably at least 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%,
88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 96.5%, 97%, 97.5%, 98%, 98.5%, 98.7%,
98.8%, 98.9%, 99%, 99.0%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8%, or
at least 99.9%.
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An isolated polypeptide having phytase activity, wherein the polypeptide, dosed 0.75

FYT/g feed, releases at least 150% phosphorous (P), relative to the phosphorous released by
the phytase from Peniophora lycii, also dosed 0.75 FYT/g feed; and/or, wherein the
polypeptide preferably has an identity to i) amino acids 1 to 413 of SEQ ID NO: 10, of at least
75%, preferably at least 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%,
88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 96.5%, 97%, 97.5%, 98%, 98.5%, 98.7%,
98.8%, 98.9%, 99%, 99.0%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8%, or
at least 99.9%.

I. An isolated polypeptide having phytase activity, selected from the group
consisting of: (a) a polypeptide having an amino acid sequence which has at least 75%
identity with (i) amino acids 1 to 413 of SEQ ID NO: 10, and/or (ii) the mature polypeptide part
of SEQ ID NO: 10, (b) a polypeptide which is encoded by a polynucleotide which hybridizes
under at least medium stringency conditions with (i) nucleotides 100 to 1338 of SEQ ID NO:
9, (ii) the mature polypeptide encoding part of SEQ ID NO: 9, and/or (iii) a complementary
strand of any one of (i), or (ii); (c) a variant of any one of the polypeptides of (a)(i)-(a)(ii),
comprising a conservative substitution, deletion, and/or insertion of one or more amino acids;
and (d) a fragment of any one of the polypeptides of (a)(i)-(a)(ii).

II. An isolated polynucleotide comprising a nucleotide sequence which
encodes the polypeptide of section I.

[ll. An isolated polynucleotide encoding a polypeptide having phytase activity,
selected from the group consisting of: (a) a polynucleotide encoding a polypeptide having an
amino acid sequence which has at least 75% identity, preferably at least 76%, 77%, 78%,
79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%,
95%, 96%, 96.5%, 97%, 97.5%, 98%, 98.5%, 98.7%, 98.8%, 98.9%, 99%, 99.0%, 99.1%,
99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8%, or at least 99.9% identity with amino
acids 1 to 413 of SEQ ID NO: 10; (b) a polynucleotide having at least 75% identity, preferably
at least 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%,
90%, 91%, 92%, 93%, 94%, 95%, 96%, 96.5%, 97%, 97.5%, 98%, 98.5%, 98.7%, 98.8%,
98.9%, 99%, 99.0%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8%, or at least
99.9% identity with nucleotides 100 to 1338 of SEQ ID NO: 9; and (c) a polynucleotide which
hybridizes under at least medium stringency conditions with (i) nucleotides 100 to 1338 of
SEQ ID NO: 9, (ii) the mature polypeptide encoding part of SEQ ID NO: 9, (ii) a
complementary strand of any one of (i), or (ii).

IV. The isolated polynucleotide of any one of sections Il and Ill, having at least
one mutation in the mature polypeptide coding sequence of SEQ ID NO: 9, in which the
mutant nucleotide sequence encodes a polypeptide comprising amino acids 1 to 413 of SEQ

ID NO: 10.
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V. A nucleic acid construct comprising the polynucleotide of any one of

sections |I-1V operably linked to one or more control sequences that direct the production of
the polypeptide in an expression host.

VI. A recombinant expression vector comprising the nucleic acid construct of
section V.

VII. A recombinant host cell comprising the nucleic acid construct of section V.

VIIl. A method for producing the polypeptide of section | comprising (a)
cultivating a cell, which in its wild-type form is capable of producing the polypeptide, under
conditions conducive for production of the polypeptide; and (b) recovering the polypeptide.

IX. A method for producing the polypeptide of section | comprising (a)
cultivating a recombinant host cell comprising a nucleic acid construct comprising a
nucleotide sequence encoding the polypeptide under conditions conducive for production of
the polypeptide; and (b) recovering the polypeptide.

X. A transgenic plant, plant part or plant cell, which has been transformed with
a polynucleotide encoding the polypeptide of section I.

Xl. A transgenic, non-human animal, or products, or elements thereof, being
capable of expressing the polypeptide of section I.

XIl. Use of at least one polypeptide of section | in animal feed.

Xlll. Use of at least one polypeptide of section | in the preparation of a
composition for use in animal feed.

XIV. A method for improving the nutritional value of an animal feed, wherein at
least one polypeptide of section | is added to the feed.

XV. An animal feed additive comprising (a) at least one polypeptide of section
I; and (b) at least one fat soluble vitamin, (c) at least one water soluble vitamin, and/or (d) at
least one trace mineral.

XVI. The animal feed additive of section XV, which further comprises at least
one amylase, at least one additional phytase, at least one xylanase, at least one galactanase,
at least one alpha-galactosidase, at least one protease, at least one phospholipase, and/or at
least one beta-glucanase.

XVII. The animal feed additive of section XVI, wherein the additional phytase
has a pH-optimum which is higher than the pH-optimum of the polypeptide having the amino
acid sequence of amino acids 1 to 413 of SEQ ID NO: 10.

[IXX. An animal feed composition having a crude protein content of 50 to 800
g/kg and comprising at least one polypeptide of section I.

A polypeptide having phytase activity which comprises, preferably has or
consists of, an amino acid sequence which has at least 75% identity, preferably at least 76%,
77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%,
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93%, 94%, 95%, 96%, 96.5%, 97%, 97.5%, 98%, 98.5%, 98.7%, 98.8%, 98.9%, 99%, 99.0%,
99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8%, or at least 99.9% identity with
amino acids 1 to 413 of SEQ ID NO: 10.

A polypeptide having phytase activity which comprises, preferably has, the
sequence of
(i)  amino acids 1 to 413 of SEQ ID NO: 10, and/or
(i)  the mature polypeptide part of SEQ ID NO: 10; or which polypeptide
(a) is a variant of any one of the polypeptides of (i)-(ii), comprising a deletion,
insertion, and/or conservative substitution of one or more amino acids; or

(b) is a fragment of any one of the polypeptides of (i)-(ii).

The present invention is further described by the following examples which should

not be construed as limiting the scope of the invention.

EXAMPLES
Example 1. Cloning of a Hafnia alvei phytase gene

A multiple alignment was made of the following histidine acid phosphatases (HAP):
appA Escherichia coli (SPTREMBL:Q8GN88), Citrobacter gillenii DSM 13694 phytase
(geneseqp:aeh04533), Citrobacter amalonaticus ATCC 25407 phytase
(geneseqp:aeh04535), Citrobacter braakii phytase (geneseqp:aech04827), and ypo1648
Yersinia pestis CO92 (SPTREMBL:Q8ZFP6). Two degenerate oligonucleotide primers were
designed on the basis of consensus sequences:

2123fw: 5- CATGGTGTGCGNGCNCCNACNAA -3" (SEQ ID NO:1)

2065rev: 5'- CCCACCAGGNGGNGTRTTRTCNGGYTG -3 (SEQ ID NO:2),

wherein Y designates T or C, R designates A or G, and N designates A, C, G or T.

The primers were used for PCR screening of a number of bacterial species at
annealing temperatures between 40 and 50°C but typical as touch down program starting
with 50°C and then reduced the annealing temperature with 1°C for each cycle over the next
10 cycles before conducting standard PCR.

A partial phytase gene in the form of an approximately 950 bp PCR fragment was
identified in Hafnia alvei (DSM 19197).

The PCR fragment was isolated from agarose gel and the fragment was sequenced
using the same PCR primers the fragment was generated with. By translation of the
nucleotide sequence, it was confirmed that the DNA fragment was part of a HAP phytase
gene.
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For obtaining the full length nucleotide sequence of the gene, the DNA WALKING

SPEEDUP™ Kit (DWSK-V102 from Seegene, Inc., 2nd Fl., Myungji Bldg., 142-21, Samsung-
dong, Kangnam-gu, Seoul, 135-090, Korea) was used, which is designed to capture unknown
target sites. For this purpose, 6 specific oligonucleotides were designed and used with the kit.

2328 TSP1dw: 5- ACTTGCATCGACGTTGGCTG (SEQ ID NO: 3)

2329 TSP2dw: 5- ACTGAGCAGCAATGGAACTCTCTG (SEQ ID NO: 4)

2330 TSP3dw: 5- ACTGGGTTCCAATATCACGAGTC (SEQID NO: 5)

2331 TSP1up: 5- ATGGTGGATCGCTAAATCACACTG (SEQ ID NO: 6)

2332 TSP2up: 5- ACGTCTGCCCAAACATACACG (SEQID NO: 7)

2333 TSP3up: 5- ACCGCCCATCAGGCTAATC (SEQ ID NO: 8)

The full length nucleotide sequence encoding the phytase from Hafnia alvei DSM
19197 is shown in the sequence listing as SEQ ID NO: 9, and the corresponding encoded
amino acid sequence is shown in SEQ ID NO: 10. The first 33 amino acids of SEQ ID NO:10
(i.e. amino acids -33 to -1) are a signal peptide, as predicted by the software Signal P V3.0

(see www.cbs.dtu.dk/services/SignalP/).

Example 2. Expression of the Hafnia alvei phytase gene

A 27 amino-acid signal peptide encoding polynucleotide of a native protease,
Savinase™, from Bacillus licheniformis was fused by PCR in frame to the gene encoding the
mature phytase from from Hafnia alvei. The signal peptide coding sequence is shown in SEQ
ID NO: 11, encoding the signal peptide of SEQ ID NO: 12.

The DNA coding for the fusion polypeptide was integrated by homologous
recombination on a Bacillus subfilis host cell genome. The gene construct was expressed
under the control of a triple promoter system (as described in WO 99/43835), consisting of
the promoters from Bacillus licheniformis alpha-amylase gene (amyl), Bacillus
amyloliquefaciens alpha-amylase gene (amyQ), and the Bacillus thuringiensis crylllA
promoter including the mRNA stabilizing sequence. The gene coding for Chloramphenicol
acetyl-transferase was used as marker, as described in, e.g., Diderichsen et al., A useful
cloning vector for Bacillus subtilis. Plasmid, 30, p. 312, 1993.

Chloramphenicol resistant transformants was cultured in PS-1 medium (10%
sucrose, 4% soybean flour, 1% NazPO4-12H,0, 0.5% CaCO;, and 0.01% pluronic acid)
shaken at 250 RPM at 30°C. After 2-5 days of incubation the supernatant was removed and
the phytase activity was identified by applying 20 microliter of the supernatant into 4 mm
diameter holes punched out in 1% LSB-agarose plates containing 0.1M Sodium acetate pH
4.5 and 0.1% Inositol hexaphosphoric acid. The plates were left over night at 37°C and a
buffer consisting of 0.25M CaCl, and 500mM MES (adjusted to pH 6.5 with 4N NaOH) was
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poured over the plates. The plates were left at room temperature for 1h and the

inositolphosphate phosphatase, or phytase, activity was then identified as a clear zone.
Several phytase positive transformants were analyzed by DNA sequencing to ensure

the correct DNA sequence of the constructs. One correct clone was selected.

Example 3. Fermentation of the Hafnia NN020125 phytase host

The selected clone of Bacillus subtilis, which was harboring the Hafnia alvei phytase
construct and was capable of expressing the phytase (mature part) was cultivated at 30°C
and with 250rpm for 6 days in SK-1M medium (Sodium Caseinate (Miprodan 30 from Arla)
40g, Maltodextrin 01 (Glucidex 6, catalogue no. 332203 from Roquette), 200g, Soybean Meal
50g, Dowfax 63N10 (a non-ionic surfactant from Dow) 0.1ml, tap water up to 1000 ml, CaCO;
tablet 0.5g/100 ml).

Example 4. Purification of Hafnia alvei phytase

The fermentation supernatant with the phytase was first centrifuged at 7200rpm and
5°C for one hour and filtered through a sandwich of four Whatman glass microfibre filters
(2.7, 1.6, 1.2 and 0.7 micrometer). Following this the solution was sterile filtered through a
Seitz-EKS depth filter using pressure. Next, the filtered supernatant was pre-treated as
follows:

The sample solution was washed with water and concentrated using an ultrafiltration
unit (Filtron, from Filtron Technology Corporation) equipped with a 10kDa cut-off ultrafiltration
membrane. Then pH was adjusted to 4.5 with 10% (w/v) acetic acid, which caused a minor
precipitation. No activity was found in the precipitate and it was removed by filtration through
a Fast PES bottle top filter with a 0.22 micrometer cut-off.

After pretreatment the phytase was purified by chromatography on S Sepharose,
approximately 50 ml in a XK26 column, using as buffer A 50 mM sodium acetate pH 4.5, and
as buffer B 50 mM sodium acetate + 1 M NaCl pH 4.5. The fractions from the column were
analyzed for activity using the phosphatase assay (see below) and fractions with activity were
pooled.

The solution was added solid ammonium sulfate giving a final concentration of 1.5 M
and the pH was adjusted to 6.0 using 6 M HCI. The phytase-containing solution was applied
to a butyl-sepharose column, approximately 30 ml in a XK26 column, using as buffer A 25
mM bis-tris (Bis-(2-hydroxyethyl)imino-tris(hydroxymethyl)methan)) + 1.5 M ammonium
sulfate pH 6.0, and as buffer B 25 mM bis-tris pH 6.0. The fractions from the column were
analyzed for activity using the phosphatase assay (see below) and fractions with activity were
pooled. Finally, the solution containing the purified phytase was buffer-changed into 50 mM
sodium acetate + 0.1 M NaCl, pH 4.5 and concentrated using an Amicon ultra-15 filtering
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device with a 30 kDa cut-off membrane.

The molecular weight, as estimated from SDS-PAGE, was approximately 40 kDa and

the purity was > 95%.

Example 5. Activity assays

Determination of phosphatase activity

75 microliter phytase-containing enzyme solution is dispensed in a microtiter plate
well, e. g. NUNC 269620 and 75 microliter substrate is added (for preparing the substrate,
two 5 mg p-nitrophenyl phophate tablets (Sigma, Cat.No. N-9389) are dissolved in 10 ml 0.1
M Na-acetate buffer, pH 5.5). The plate is sealed and incubated 15 min., shaken with 750
rpm at 37°C. After the incubation time 75 microliter stop reagent is added (the stop reagent is
0.1 M di-sodiumtetraborate in water) and the absorbance at 405 nm is measured in a

microtiter plate spectrophotometer.

Determination of phytase activity

75 microliter phytase-containing enzyme solution, appropriately diluted in 0.25M
sodium acetate, 0.005% (w/v) Tween-20. pH5.5, is dispensed in a microtiter plate well, e. g.
NUNC 269620, and 75 microliter substrate is added (prepared by dissolving 100mg sodium
phytate from rice (Aldrich Cat.No. 274321) in 10ml 0.25M sodium acetate buffer, pH5.5). The
plate is sealed and incubated 15min. shaken with 750rpm at 37°C. After incubation, 75
microliter stop reagent is added (the stop reagent being prepared by mixing 10 ml molybdate
solution (10% (w/v) ammonium hepta-molybdate in 0.25% (w/v) ammonia solution), 10ml
ammonium vanadate (0.24% commercial product from Bie&Berntsen, Cat.No. LAB17650),
and 20ml 21.7% (w/v) nitric acid), and the absorbance at 405nm is measured in a microtiter
plate spectrophotometer. The phytase activity is expressed in the unit of FYT, one FYT being
the amount of enzyme that liberates 1 micromole inorganic ortho-phosphate per minute under
the conditions above. An absolute value for the measured phytase activity may be obtained
by reference to a standard curve prepared from appropriate dilutions of inorganic phosphate,
or by reference to a standard curve made from dilutions of a phytase enzyme preparation with
known activity (such standard enzyme preparation with a known activity is available on

request from Novozymes A/S, Krogshoejvej 36, DK-2880 Bagsvaerd).

Determination of specific phytase activity

The specific activity of the phytase was determined in sodium acetate buffer, pH 5.5.
The phytase was highly purified as described above, i.e. only one component was identified
on an SDS poly acryl amide gel.

The protein concentration was determined by amino acid analysis as follows: An
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aliquot of the sample was hydrolyzed in 6M HCI, 0.1% phenol for 16h at 110°C in an

evacuated glass tube. The resulting amino acids were quantified using an Applied
Biosystems 420A amino acid analysis system operated according to the manufacturer’s
instructions. From the amounts of the amino acids the total mass - and thus also the
concentration - of protein in the hydrolyzed aliquot was calculated.

The phytase activity was determined in the units of FYT as described above and the
specific activity was calculated as the phytase activity measured in FYT units per mg phytase
enzyme protein.

The resulting specific activity was 980 FYT/mg protein. The specific activity was
determined on sodium phytate at pH5.5 and 37°C.

Example 6. Determination of the phytase pH profile

The pH profile was determined at 37°C in the pH range of 2.0 to 7.5 (in 0.5 pH-unit
steps) as described above in the section “Determination of phytase activity”, except that a
buffer cocktail (50mM glycine, 50mM acetic acid and 50mM Bis-Tris was used instead of the
0.25M sodium acetate pH5.5 buffer. The results are summarized in table 1 below. The values
given for each pH in the range of 2.0 - 7.5 are the relative activity in % normalized to the

value at optimum.

Table 1: pH profile

Phytase pH
|2.o | 2.5 | 3.0 | 3.5| 4.0 | 4.5 |5.o | 5.5 | 6.0 | 6.5 | 7.0 | 7.5
Hafniaalvei| 46| 61| 83| 95|100|100| 88| 71 | 43| 18| 3| 0

Example 7. Determination of the phytase isoelectric point
The isoelectric point, pl, for the phytase was determined using isoelectric focusing
gels (Novex pH 310 IEF gel from Invitrogen, catalog number EC6655A2) run as described by

the manufacturer. The pl for the Hafnia alvei phytase is about 7.4.

Example 8. Phytase temperature profile
The temperature profile (phytase activity as a function of temperature) was
determined for the Hafnia alvei phytase in the temperature range of 20-90°C essentially as
described above (“Determination of phytase activity”). However, the enzymatic reactions (100
microliter phytase-containing enzyme solution + 100 microliter substrate) were performed in
PCR tubes instead of microtiter plates. After a 15 minute reaction period at desired
49



10

15

20

25

30

WO 2008/116878 PCT/EP2008/053561
temperature the tubes were cooled to 20°C for 20 seconds and 150 microliter of each

reaction mixture was transferred to a microtiter plate. 75 microliter stop reagent was added
and the absorbance at 405 nm was measured in a microtiter plate spectrophotometer. The
results are summarized in Table 2 below. The numbers given for each temperature are

relative activity (in %) normalized to the value at optimum.

Table 2: Temperature profile

Temperature°C| 20 | 30 | 40 | 50 | 55 | 60 | 65 | 70 | 80 |90
Relativeactivity| 17 | 27 | 45 | 69 | 79 | 85 |100 | 95 | 7 | 0

Example 9. Phytase Thermostability

Hafnia alvei phytase expressed in both Aspergillus oryzae and Bacillus subtilis were
subjected to thermostability measurements by Differential Scanning Calorimetry (DSC) and

compared to the E. coli phytase (commercially available as PHYZYME XP from Danisco A/S).

An aliquot of the protein sample of Hafnia alvei phytase (purified as described in
Example 4) was dialysed against 2 x 500 ml 20 mM Na-acetate, pH 4.0 at 4°C in a 2-3h step
followed by an overnight step. The sample was 0.45 ym filtered and diluted with buffer to
approx. 2 A280 units. The exact absorbance values measured are given in the results table
shown below. The dialysis buffer was used as reference in Differential Scanning Calorimetry
(DSC). The samples were degassed using vacuum suction and stirring for approx. 10
minutes. An aliquot of the E. coli phytase from the commercial product PHYZYME XP was

purified in a similar fashion as described in Example 4.

A DSC scan was performed at a constant scan rate of 1.5 °C/min from 20-80 °C.
Filtering period: 16 s. Before running the DSC, the phytases were dialyzed against the
appropriate buffers (e.g. 0.1M glycine-HCI, pH 2.5 or 3.0; 20mM sodium acetate pH 4.0; 0.1
M sodium acetate, pH 5.5; 0.1M Tris-HCI, pH 7.0). Data-handling was performed using the
MicroCal Origin software (version 4.10), and the denaturation temperature, Td (also called the
melting temperature, Tm) is defined as the temperature at the apex of the peak in the
thermogram. To probe the reversibility of the unfolding process, a second scan was
performed immediately after a short cooling phase. For the second scan the peak area (the
area between the peak and the baseline = enthalpy of unfolding which is compared) is
compared to the peak area of the first scan. A large peak (between 75-100 % of the peak

area of the first scan) is interpreted as a reversible unfolding/folding process.
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The results of DSC for Hafnia alvei phytase expressed in both Aspergillus oryzae and

Bacillus subtilis and the E. coli phytase are summarized in the Table 3 below.

Table 3. Comparative Thermostability of Hafnia alvei Phytase and E. coli Phytase

Phytase Buffer A280 Td 1st Scan | TD 2nd | Relative
(°C) Scan (°C) peak size
(actual area)
on 2 scans
Aspergillus 20 nM NaAc | 3.2 70.2 70.3 large
expressed ph 4.0
H. alvei
Bacillus 20 nM NaAc | 1.6 70.1 70.3 large
expressed pH 4.0
H. alvei
E. coli 20 nM NaAc | 2.4 62.6 62.9 medium
pH 4.0

As illustrated in the above table, the Hafnia alvei phytase had greater thermostability
than the E. coli phytase. Itis also clear that the thermostability of the Hafnia alvei phytase

was not affected by the expression host.

Example 10. Gastric Proteolytic Resistance of Hafnia alvei Phytase and E. coli Phytase

Samples of H. alvei phytase and E. coli phytase (PHYZYME XP, available from
Danisco) were treated with pepsin (Pepsin 1:60000 from Porcine Stomach Mucosa, Wako
162-18721, 2900 Units/mg, Lot SDK5232) in 250 mM glycine buffer pH 3.0 (approx. 1000
pepsin Units/mg phytase). Incubation for 30 minutes at 40 °C with shaking (750 rpm).
Following incubation with pepsin, the phytase activity was determined as described in
Example 5 and compared to the activity of a sample treated in the same way, but without

addition of pepsin. The results are summarized in Table 4 below.

TABLE 4. Gastric Proteolytic Resistance of Hafnia alvei Phytase and E. coli Phytase

Phytase Mean (res. act. %)

E. coli 96 result of two runs with
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results of 95% and 97%

residual activity.

H. alvei 95.5 result of two runs with
results of 97% and 94 %

residual activity.

Thus, the E. coli phytase and H. alvei phytase had very similar gastro proteolytic resistance

properties.

Example 11: Performance in animal feed in an in vitro model for the Hafnia alvei

phytase and Citrobacter braakii phytase

The performance in animal feed of the Hafnia alvei phytase was compared, in an in
vitro model, to the performance of a Citrobacter braakii phytase. The in vitro model simulates
gastro-intestinal conditions in a monogastric animal and correlates well with results obtained
in animal trials in vivo. Phytase activity in the sample is determined as described in Example

5 under “Determination of phytase activity’. The comparison was performed as follows:

Feed samples composed of 30% soybean meal and 70% maize meal with added
CaCl2 to a concentration of 5 g calcium per kg feed are then prepared and pre-incubated at
40°C and pH 3.0 for 30 minutes followed by addition of pepsin (3000 U/g feed) and suitable
dosages of the phytases (identical dosages are used for all phytases to be tested to allow
comparison), for example between 0.1 to 1.0 phytase units FYT/g feed. A blank with no
phytase activity was also included as reference. The samples was then incubated at 40°C

and pH 3.0 for 60 minutes followed by pH 4.0 for 30 minutes.

The reactions were stopped and phytic acid and inositol-phosphates extracted by
addition of HCI to a final concentration of 0.5 M and incubation at 40°C for 2 hours, followed

by one freeze-thaw cycle and 1 hour incubation at 40°C.

Phytic acid and inositol-phosphates were separated by high performance ion

chroma~tography as described by Chen et al in Journal of Chromatography A (2003) vol.
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1018, pp. 41-52 and quantified as described by Skog-lund et al in J. Agric. Food Chem.

(1997), vol. 45, pp. 431-436.

Figure 1 shows a dose-response of the Hafnia alvei phytase compared to a
Citrobacter braakii phytase at dosing of 125 FYT/kg feed, 250 FYT/kg feed and 500 FYT/kg
feed. The effects of phytases in vitro are shown as the residual inositol-phosphate bound
phosphorous (IP-P) remaining in a sample after in vitro incubation and compared to the
residual IP-P remaining in a control sample without phytase. All numbers given are average
and standard deviation of 4 or 5 replica (in vitro incubations). Dosing 250 FYT/kg of the
Hafnia phytase reduced the amount of residual IP-P in the in vitro sample to about the same

degree as 125 FYT/kg of the Citrobacter phytase.

Accordingly, the Hafnia phytase was able to obtain a very good reduction in the

amount of residual inositol-phosphate bound phosphorous.

Example 12: Performance in animal feed in an in vitro model for the Hafnia alvei

phytase and Peniophora lycii phytase phytase

The performance in animal feed of the Hafnia alvei phytase in an in vitro model was
also compared to the performance of a Peniophora lycii phytase at dosing of 250 FYT/kg and
500 FYT/kg feed. The results were obtained following the experimental protocol as described
in Example 11. As shown in Figure 2, the Hafnia alvei phytase reduced the amount of

residual IP-P in the in vitro sample better than the Peniophora lycii phytase.
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CLAIMS
1. An isolated polypeptide having phytase activity, selected from the group consisting of:
(@) a polypeptide comprising an amino acid sequence which has at least 75% identity with
(i) amino acids 1 to 413 of SEQ ID NO: 10, and/or
(i) the mature polypeptide part of SEQ ID NO: 10;
(b) a fragment of any one of the polypeptides of (a)(i) - (a)(ii).

2. An isolated polynucleotide comprising a nucleotide sequence which encodes the

polypeptide of claim 1.

3. An isolated polynucleotide encoding a polypeptide having phytase activity, selected
from the group consisting of:

(@) a polynucleotide encoding a polypeptide having an amino acid sequence which has at
least 75% identity with amino acids 1 to 413 of SEQ ID NO: 10; and

(b) a polynucleotide having at least 75% identity with nucleotides 100 to 1338 of SEQ ID
NO: 9.

4. A nucleic acid construct comprising the polynucleotide of any one of claims 2 or 3
operably linked to one or more control sequences that direct the production of the polypeptide

in an expression host.

5. A recombinant expression vector comprising the nucleic acid construct of claim 4.

6. A recombinant host cell comprising the nucleic acid construct of claim 5.

7. A method for producing the polypeptide of claim 1, the method comprising (a)
cultivating a cell, which in its wild-type form is capable of producing the polypeptide, under

conditions conducive for production of the polypeptide; and (b) recovering the polypeptide.

8. A method for producing the polypeptide of claim 1, the method comprising (a)
cultivating a recombinant host cell comprising a nucleic acid construct comprising a
nucleotide sequence encoding the polypeptide under conditions conducive for production of

the polypeptide; and (b) recovering the polypeptide.

9. A transgenic plant, plant part or plant cell, which has been transformed with a

polynucleotide encoding the polypeptide of claim 1.
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10. A transgenic, non-human animal, or products, or elements thereof, being capable of

expressing the polypeptide of claim 1.

11. Use of at least one polypeptide of claim 1 in animal feed.

12. Use of at least one polypeptide of claim 1 in the preparation of a composition for use

in animal feed.

13. A method for improving the nutritional value of an animal feed, wherein at least one

polypeptide of claim 1 is added to the feed.

14. An animal feed additive comprising
(@) at least one polypeptide of claim 1; and
(b) at least one fat soluble vitamin, at least one water soluble vitamin, at least one

trace mineral or combinations thereof.

15. The animal feed additive of claim 14, which further comprises at least one amylase, at
least one additional phytase, at least one xylanase, at least one galactanase, at least one
alpha-galactosidase, at least one protease, at least one phospholipase, and/or at least one

beta-glucanase.

16. An animal feed composition having a crude protein content of 50 to 800 g/kg and

comprising at least one polypeptide of claim 1.

17. A method for producing a fermentation product, comprising (a) fermenting using a
fermenting microorganism a carbohydrate containing material in the presence of a phytase of
claim 1 and (b) producing the fermentation product or fermentation coproduct from the

fermented carbohydrate containing material.

18. The method of claim 1, wherein the fermentation product is ethanol, beer, wine, or
distillers dried grains (DDG).

19. The polypeptide of claim 1, wherein the polypeptide comprises an amino acid
sequence which has at least 80% identity, at least 85% identity, at least 90% identity, at least

95% identity, or at least 99% identity with amino acids 1 to 413 of SEQ ID NO: 10.
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20. The polynucleotide of claim 3, wherein the polynucleotide comprises a polynucleotide

which has at least 80% identity, at least 85% identity, at least 90% identity, at least 95%
identity, or at least 99% identity with nucleotides 100 to 1338 of SEQ ID NO: 9.
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Figure 1
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Residual inositol-phosphate bound phosphorous (mg IP-P/g feed) after in vitro incubation. Comparison
of the Hafnia alvei phytase with a Citrobacter braakii phytases dosed from 125-500 FYT/kg feed.
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Figure 2
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Residual inositol-phosphate bound phosphorous (mg IP-P/g feed) after in vitro incubation. Comparison
of the Hafnia alvei phytase with a Peniophora lycii phytases dosed from 250 FYT/kg feed and 500
FYT/kg feed.
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Figure 3 cont.

ATOM 1530 O GLY 929 10.609 42.906 34.359 1.00 2.00 PROT
ATOM 1534 N GLU 100 9.051 44.449 33.784 1.00 2.00 PROT
ATOM 1535 CA GLU 100 9.460 45.396 34.826 1.00 2.05 PROT
ATOM 1536 C GLU 100 9.293 44.767 36.213 1.00 2.00 PROT
ATOM 1537 O GLU 100 10.219 44.802 37.024 1.00 2.00 PROT
ATOM 1538 CB GLU 100 8.719 46.721 34.703 1.00 2.00 PROT
ATOM 1539 CG GLU 100 9.125 47.507 33.444 1.00 3.36 PROT
ATOM 1540 CD GLU 100 8.469 48.865 33.348 1.00 6.20 PROT
ATOM 1541 OE1 GLU 100 8.580 49.652 34.303 1.00 10.98 PROT
ATOM 1542 OE2 GLU 100 7.853 49.169 32.307 1.00 13.47 PROT
ATOM 1549 N ALA 101 8.126 44.172 36.459 1.00 2.00 PROT
ATOM 1550 CA ALA 101 7.860 43.482 37.745 1.00 2.00 PROT
ATOM 1551 C ALA 101 8.811 42.304 38.036 1.00 2.00 PROT
ATOM 1552 O ALA 101 9.177 42.083 39.194 1.00 2.00 PROT
ATOM 1553 CB ALA 101 6.412 43.033 37.817 1.00 2.00 PROT
ATOM 1559 N PHE 102 9.205 41.557 37.004 1.00 2.00 PROT
ATOM 1560 CA PHE 102 10.183 40.463 37.165 1.00 2.00 PROT
ATOM 1561 C PHE 102 11.506 41.008 37.708 1.00 2.00 PROT
ATOM 1562 O PHE 102 12.078 40.461 38.651 1.00 2.00 PROT
ATOM 1563 CB PHE 102 10.413 39.688 35.845 1.00 2.00 PROT
ATOM 1564 CG PHE 102 11.708 38.891 35.801 1.00 2.00 PROT
ATOM 1565 CD1 PHE 102 11.805 37.638 36.417 1.00 2.31 PROT
ATOM 1566 CD2 PHE 102 12.813 39.37% 35.108 1.00 2.00 PROT
ATOM 1567 CE1 PHE 102 12.992 36.895 36.380 1.00 2.00 PROT
ATOM 1568 CEZ2 PHE 102 14.001 38.658 35.062 1.00 2.98 PROT
ATOM 1569 CZ PHE 102 14.090 37.405 35.677 1.00 2.00 PROT
ATOM 1579 N LEU 103 11.959 42.112 37.11%9 1.00 2.00 PROT
ATOM 1580 CA LEU 103 13.195 42.755 37.548 1.00 2.00 PROT
ATOM 1581 C LEU 103 13.104 43.264 38.992 1.00 2.00 PROT
ATOM 1582 O LEU 103 14.070 43.171 39.735 1.00 2.00 PROT
ATOM 1583 CB LEU 103 13.620 43.855 36.559 1.00 2.00 PROT
ATOM 1584 CG LEU 103 14.007 43.457 35.125 1.00 2.00 PROT
ATOM 1585 CD1 LEU 103 14.503 44.694 34.349 1.00 2.53 PROT
ATOM 1586 CD2 LEU 103 15.084 42.375 35.133 1.00 2.00 PROT
ATOM 1598 N ALA 104 11.926 43.759 39.378 1.00 2.00 PROT
ATOM 1599 CA ALA 104 11.671 44.317 40.709 1.00 2.00 PROT
ATOM 1600 C ALA 104 11.822 43.270 41.78% 1.00 2.00 PROT
ATOM 1601 O ALA 104 12.226 43.575 42.930 1.00 2.00 PROT
ATOM 1602 CB ALA 104 10.262 44.906 40.760 1.00 3.11 PROT
ATOM 1608 N GLY 105 11.474 42.039 41.425 1.00 2.00 PROT
ATOM 1609 CA GLY 105 11.554 40.915 42.325 1.00 2.35 PROT
ATOM 1610 C GLY 105 12.865 40.164 42.272 1.00 2.19 PROT
ATOM 1611 O GLY 105 13.355 39.725 43.304 1.00 2.00 PROT
ATOM 1615 N LEU 106 13.426 40.001 41.070 1.00 2.74 PROT
ATOM 1616 CA LEU 106 14.717 39.336 40.886 1.00 3.45 PROT
ATOM 1617 C LEU 106 15.858 40.160 41.457 1.00 4.64 PROT
ATOM 1618 O LEU 106 16.849 39.608 41.946 1.00 4.33 PROT
ATOM 1619 CB LEU 106 14.997 39.092 39.3%96 1.00 3.80 PROT
ATOM 1620 CG LEU 106 16.282 38.341 39.031 1.00 3.13 PROT
ATOM 1621 CD1 LEU 106 16.014 36.839 38.949 1.00 3.36 PROT
ATOM 1622 CD2 LEU 106 16.808 38.858 37.714 1.00 3.16 PROT
ATOM 1634 N ALA 107 15.722 41.478 41.384 1.00 5.01 PROT
ATOM 1635 CA ALA 107 16.807 42.366 41.747 1.00 6.45 PROT
ATOM 1636 C ALA 107 16.269 43.689 42.271 1.00 6.90 PROT
ATOM 1637 O ALA 107 16.396 44.715 41.605 1.00 6.73 PROT
ATOM 1638 CB ALA 107 17.720 42.583 40.543 1.00 6.01 PROT
ATOM 1644 N PRO 108 15.689 43.677 43.485 1.00 8.39 PROT
ATOM 1645 CA PRO 108 15.052 44.872 44.037 1.00 9.44 PROT
ATOM 1646 C PRO 108 16.064 45.979 44.282 1.00 10.34 PROT
ATOM 1647 O PRO 108 17.180 45.706 44.720 1.00 10.41 PROT
ATOM 1648 CB PRO 108 14.474 44.385 45.370 1.00 9.24 PROT
ATOM 1649 CG PRO 108 14.475 42.901 45.280 1.00 9.66 PROT
ATOM 1650 CD PRO 108 15.630 42.551 44.430 1.00 8.13 PROT
ATOM 1658 N GLN 109 15.671 47.215 43.982 1.00 11.29 PROT
ATOM 1659 CA GLN 109 16.546 48.387 44.132 1.00 12.67 PROT
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