Abstract: The present invention relates to methods for identifying, assessing, preventing, and treating cancer (e.g., head, neck, and/or lung cancers in humans). A variety of PD-L1 isoform biomarkers are pro vided, wherein alterations in the copy number of one or more of the biomarkers and/or alterations in the amount, structure, and/or activity of one or more of the biomarkers is associated with cancer status and indicates amenability to treatment or prevention by modulating PD-L1 and/or PD-L2 levels.
COMPOSITIONS AND METHODS FOR IDENTIFICATION, ASSESSMENT, PREVENTION, AND TREATMENT OF CANCER USING PD-L1 ISOFORMS

Cross-Reference to Related Applications

This application claims the benefit of U.S. Provisional Application No. 61/831,894, filed on 6 June 2013; the entire contents of said application is incorporated herein in its entirety by this reference.

Statement of Rights

This invention was made with government support under Grant NIH U24CA143867 awarded by the National Institutes of Health. The U.S. government has certain rights in the invention. This statement is included solely to comply with 37 C.F.R. § 401.14(a)(f)(4) and should not be taken as an assertion or admission that the application discloses and/or claims only one invention.

Background of the Invention

The CD80 (B7-1) and CD86 (B7-2) proteins, expressed on APCs, are critical costimulatory polypeptides (Freeman et al. (1991) J. Exp. Med. 174:625; Freeman et al. (1989) J. Immunol 143:2714; Azuma et al. (1993) Nature 366:76; Freeman et al. (1993) Science 262:909). B7-2 appears to play a predominant role during primary immune responses, while B7-1, which is upregulated later in the course of an immune response, may be important in prolonging primary T cell responses or costimulating secondary T cell responses (Blue-stone (1.995) Immunity 2:555).

The importance of the B7;CD28/CTLA4 costimulatory pathway has been demonstrated in vitro and in several in vivo model systems-. Blockade of this costimulatory pathway results in the development of antigen specific tolerance in murine and human

Inhibitory receptors that bind to costimulatory polypeptides have also been identified on immune cells. Activation of CTLA4, for example, transmits a negative signal to a T cell. Engagement of CTLA4 inhibits IL-2 production and can induce cell cycle arrest (Krummel and Allison (1996) J. Exp. Med, 183:2533). In addition, mice that lack CTLA4 develop lymphoproliferative disease (Ttvci et al. (1995) Immunology 3:541; Waterhouse et al. (1995) Science 270:985). The blockade of CTLA4 with antibodies may remove an inhibitory signal, whereas aggregation of CTLA4 with antibody transmits an inhibitory signal. Therefore, depending upon the receptor to which a costimulatory polypeptide binds (i.e., a costimulatory receptor such as CD28 or an inhibitory receptor such as CTLA4), certain B7 polypeptides can promote T cell costimulation or inhibition.

PD-1 has been identified as a receptor which binds to PD-L1 and PD-L2. PD-1 is a member of the immunoglobulin gene superfamily. PD-1 (ishida et al. (1992) EMBOJ. 11:3887; Shinohara et al. (1994) Genomics 23:704; U.S. Patent 5,698,520) has an extracellular region containing immunoglobulin superfamily domain, a transmembrane domain, and an intracellular region including an immunoreceptor tyrosine-based inhibitory motif (HIM). These features also define a larger family of polypeptides, called the immunoinhibitory receptors, which also includes gp49B, PIR-B, and the killer inhibitory receptors (KIRs) (Vivier and Daeron (1997) Immunol. Today 18:286). It is often assumed that the tyrosyl phosphotyiated ITIM motif of these receptors interacts with SH2-domain containing phosphatases, which leads to inhibitory signal. A subset of these immunoinhibitory receptors bind to MHC polypeptides, for example the KIRs, and CTLA4 bind to B7-1 and B7-2. It has been proposed that there is a phylogenetic relationship between the MHC and B? genes (Henry et al. (1999) Immunol. Today 20(6):28S-8).

PD-1 was previously identified using a subtraction cloning based approach to select for proteins involved in apoptotic cell death. Like CTLA4, PD-1 is rapidly induced on the surface of T-cells in response to anti-CD3 (Agata et al. (1996) *Int. Immunol.* 8:765). In contrast to CTLA4, however, PD-1 is also induced on the surface of B-cells (in response to anti-IgM). PD-1 is also expressed on a subset of thymocytes and myeloid cells (Agata et al. (1996) supra; Nishimura et al. (1996) *Int. Immunol.* 8:773).

Two types of human PD-1 ligand polypeptides have been identified. PD-1 ligand proteins comprise a signal sequence, and an IgV domain, an IgC domain, a transmembrane domain, and a short cytoplasmic tail. Both PD-L1 (Freeman et al. (2000)* J. Exp. Med.* 192:1027) and PD-L2 (Laflachman et al (2001)* Nat. Immunol.* 2:261) are members of the B7 family of polypeptides. Both PD-L1 and PD-L2 are expressed in placenta, spleen, lymph nodes, thymus, and heart. Only PD-L2 is expressed in pancreas, lung and liver while only PD-L1 is expressed in fetal liver. Both PD-1 ligands are upregulated on activated monocytes and dendritic cells. PD-Li can bind to either PD-1 or B7-1.

The fact that PD-1 binds to PD-L1 and PD-L2 places PD-1 in a family of inhibitory receptors with CTLA4. While engagement of a costimulatory receptor results in a costimulatory signal in an immune cell engagement of an inhibitory receptor, e.g., CTLA4 or PD-i (for example by crosslinking or by aggregation), leads to the transmission of an inhibitory signal in an immune cell, resulting in downmodulation of immune cell responses and/or in immune cell anergy. While transmission of an inhibitory signal leads to downmodulation in immune cell responses (and a resulting downmodulation in the ovcaii immune response), the prevention of an inhibitory signal (e.g., by using a non-activating antibody against PD-1) in immune cells leads to upmodulation of immune cell responses (and a resulting upmodulation of an immune response).

Despite the fact that PD-i ligands, such as PD-L1, are usually membrane-bound polypeptides expressed on professional immunological cells, it is known that such ligands can naturally be expressed in a soluble form (i.e., lacking a cellular membrane retention domain, such as a hydrophobic transmembrane domain) and can be expressed by a variety of cells, such as cancer cells. For example, Frigoia et al. (2011) *Clin. Cancer Res.* 17:1915 describes the association of a soluble form of PD-L1 with aggressive renal cell carcinoma. Such soluble versions of PD-1 ligand (e.g., soluble PD-L1) provide new biomarkers associated with the detection of maladies and allow for a more non-invasive evaluation of cancer status due to easier detection of the biomarker in a bodily fluid as opposed to
cancerous or pre-cancerous tissue. However, such protein isoforms are thought to be cleavage products of membrane-bound PD-L1, as opposed to products of alternative splicing antisense transcript variants. Accordingly, there is a great need to identify additional PD-L1 ligand (e.g., soluble PD-L1)-based biomarkers associated with deleterious conditions in subjects, including the generation of diagnostic, prognostic, and therapeutic agents to effectively control such disorders in subjects.

Summary of the Invention

The present invention is based, at least in part, on the discovery that PD-L1 isoforms, particularly those encoding soluble forms of PD-L1, are overexpressed by specific cancers (e.g., head, neck, and lung cancers) and maintain the ability to transmit inhibitory signals to immune cells to thereby inhibit immune responses (e.g., T cell activation, proliferation, and cytotoxic function). Such PD-L1 isoforms and the encoded PD-L1 variants are useful as biomarkers for the identification, assessment, prevention, and/or treatment of such cancers.

In one aspect, a method of determining whether a subject is afflicted with a head, neck, or lung cancer or at risk for developing a head, neck, or lung cancer is provided, wherein the method comprises: a) obtaining a biological sample from the subject, b) determining the copy number, level of expression, or level of activity of one or more biomarkers listed in Table 1 or a fragment thereof in the subject sample; c) determining the copy number, level of expression, or level of activity of one or more biomarkers in a control; and d) comparing the copy number, level of expression, or level of activity of said one or more biomarkers detected in steps b) and c); wherein a significant increase in the copy number, level of expression, or level of activity of one or more biomarkers in the subject sample relative to the control copy number, level of expression, or level of activity of the one or more biomarkers indicates that the subject is afflicted with the head, neck, or lung cancer or is at risk for developing the head, neck, or lung cancer.

In another aspect, a method of determining whether a subject afflicted with a head, neck, or lung cancer or at risk for developing a head, neck, or lung cancer would benefit from modulating PD-L1 and/or PD-L1 levels is provided, wherein the method comprises: a) obtaining a biological sample from the subject; b) determining the copy number, level of expression, or level of activity of one or more biomarkers listed in Table 1 or a fragment thereof in the subject sample; c) determining the copy number, level of expression, or level
of activity of the one or more biomarkers in a control; and d) comparing the copy number, level of expression, or level of activity of said one or more biomarkers detected in steps b) and c); wherein a significant increase in the copy number, level of expression, or level of activity of the one or more biomarkers in the subject sample relative to the control copy number, level of expression, or level of activity of the one or more biomarkers indicates that the subject afflicted with the head, neck, or lung cancer or at risk for developing the head, neck, or lung cancer would benefit from modulating PD-L1 and/or PD-L1 levels.

In still another aspect, a method for monitoring the progression of a head, neck, or lung cancer in a subject is provided, wherein the method comprises: a) detecting in a subject sample at a first point in time the copy number, level of expression, or level of activity of one or more biomarkers listed in Table 1 or a fragment thereof; b) repeating step a) at a subsequent point in time; and c) comparing the copy number, level of expression, or level of activity of said one or more biomarkers detected in steps a) and b) to monitor the progression of the head, neck, or lung cancer, wherein the one or more biomarkers comprises soluble PD-L1, optionally wherein the soluble PD-L1 a) comprises an amino acid sequence of SEQ ID NO: 13 or 15 or an amino acid sequence that is at least 80% identical to SEQ ID NO: 13 or 15; or b) comprises a nucleic acid molecule comprising a nucleic acid sequence encoding an amino acid sequence of SEQ ID NO: 13 or 15 or an amino acid sequence that is at least 80% identical to SEQ ID NO: 13 or 15.

In one embodiment of any aspect of the present invention, an at least twenty percent increase or an at least twenty percent decrease between the copy number, level of expression, or level of activity of the one or more biomarkers in the subject sample at a first point in time relative to the copy number, level of expression, or level of activity of the one or more biomarkers in the subject sample at a subsequent point in time indicates progression of the head, neck, or lung cancer; or wherein less than a twenty percent increase or less than a twenty percent decrease between the copy number, level of expression, or level of activity of the one or more biomarkers in the subject sample at a first point in time relative to the copy number, level of expression, or level of activity of the one or more biomarkers in the subject sample at a subsequent point in time indicates a lack of significant progression of the head, neck, or lung cancer. In another embodiment, the subject has undergone treatment to modulate PD-1 and/or PD-L1 levels between the first point in time and the subsequent point in time.
in yet another aspect, a method for stratifying subjects afflicted with a head, neck, or lung cancer according to predicted clinical outcome of treatment with one or more modulators of PD-1 and/or PD-L1 levels is provided, wherein the method comprises: a) determining the copy number, level of expression, or level of activity of one or more biomarkers listed in Table 1 or a fragment thereof in a subject sample; b) determining the copy number, level of expression, or level of activity of the one or more biomarkers in a control sample; and e) comparing the copy number, level of expression, or level of activity of said one or more biomarkers detected in steps a) and b); wherein a significant modulation in the copy-number, level of expression, or level of activity of the one or more biomarkers in the subject sample relative to the normal copy number, level of expression, or level of activity of the one or more biomarkers in the control sample predicts the clinical outcome of the patient to treatment with one or more modulators of PD-1 and/or PD-L1 levels, in one embodiment, the predicted clinical outcome is (a) cellular growth, (b) cellular proliferation, or (c) survival time resulting from treatment with one or more modulators of PD-1 and/or PD-L1 levels. In another embodiment, the one or more biomarkers comprises soluble PD-L1, optionally wherein the soluble PD-L1 a) comprises an amino acid sequence of SEQ ID NO: 13 or 15 or an amino acid sequence that is at least 80% identical to SEQ ID NO: 13 or 15; or b) comprises a nucleic acid molecule comprising a nucleic acid sequence encoding an amino acid sequence of SEQ ID NO: 13 or 15 or an amino acid sequence that is at least 80% identical to SEQ ID NO: 1. In still another embodiment, an at least twenty percent increase or an at least twenty percent decrease between the copy number, level of expression, or level of activity of the one or more biomarkers in the subject sample compared to the control sample predicts that the subject has a poor clinical outcome; or wherein less than a twenty percent increase or less than a twenty percent decrease between the copy number, level of expression, or level of activity of the one or more biomarkers in the subject sample compared to the control sample predicts that the subject has a favorable clinical outcome. In yet another embodiment, the method further comprises treating the subject with a therapeutic agent that specifically modulates the copy number, level of expression, or level of activity of the one or more biomarkers. In another embodiment, the method further comprises treating the subject with one or more modulators of PD-1 and/or PD-L1 levels.

In another aspect, a method of determining the efficacy of a test compound for inhibiting a head, neck, or lung cancer in a subject is provided, wherein the method
comprises: a) determining the copy number, level of expression, or level of activity of one or more biomarkers listed in Table 1 or a fragment thereof in a first sample obtained from the subject and exposed to the test compound; b) determining the copy number, level of expression, or level of activity of the one or more biomarkers in a second sample obtained from the subject, wherein the second sample is not exposed to the test compound, and c) comparing the copy number, level of expression, or level of activity of the one or more biomarkers in the first and second samples, wherein a significantly modulated copy number, level of expression, or level of activity of the biomarker, relative to the second sample, is an indication that the test compound is efficacious for inhibiting the head, neck, or lung cancer in the subject. In one embodiment, the one or more biomarkers comprises soluble PD-L1, optionally wherein the soluble PD-L1 a) comprises an amino acid sequence of SEQ ID NO: 13 or 15 or an amino acid sequence that is at least 80% identical to SEQ ID NO: 13 or 15; or b) comprises a nucleic acid molecule comprising a nucleic acid sequence encoding an amino acid sequence of SEQ ID NO: 13 or 15 or an amino acid sequence that is at least 80% identical to SEQ ID NO: 1. In another embodiment, the first and second samples are portions of a single sample obtained from the subject or portions of pooled samples obtained from the subject.

In still another aspect, a method of determining the efficacy of a therapy for inhibiting a head, neck, or lung cancer in a subject is provided, wherein the method comprises: a) determining the copy number, level of expression, or level of activity of one or more biomarkers listed in Table 1 or a fragment thereof in a first sample obtained from the subject prior to providing at least a portion of the therapy to the subject; b) determining the copy number, level of expression, or level of activity of the one or more biomarkers in a second sample obtained from the subject following provision of the portion of the therapy; and c) comparing the copy number, level of expression, or level of activity of the one or more biomarkers in the first and second samples, wherein a significantly decreased copy number, level of expression, or level of activity of the one or more biomarkers in the second sample, relative to the first sample, is an indication that the therapy is efficacious for inhibiting the head, neck, or lung cancer in the subject, in one embodiment, the one or more biomarkers comprises soluble PD-L1, optionally wherein the soluble PD-L1 a) comprises an amino acid sequence of SEQ ID NO: 13 or 15 or an amino acid sequence that is at least 80% identical to SEQ ID NO: 13 or 15; or b) comprises a nucleic acid molecule
comprising a nucleic acid sequence encoding an amino acid sequence of SEQ ID NO: 13 or 15 or an amino acid sequence that is at least 80% identical to SEQ ID NO: 1.

In yet another aspect, a method for identifying a compound which inhibits a head, neck, or lung cancer is presented, wherein the method comprises: a) contacting one or more biomarkers listed in Table 1 or a fragment thereof with a test compound; and b) determining the effect of the test compound on the copy number, level of expression, or level of activity of the one or more biomarkers to thereby identify a compound which inhibits the head, neck, or lung cancer. In one embodiment, the one or more biomarkers comprises soluble PD-L1, optionally wherein the soluble PD-L1 a) comprises an amino acid sequence of SEQ ID NO: 13 or 15 or an amino acid sequence that is at least 80% identical to SEQ ID NO: 13 or 15; or b) comprises a nucleic acid molecule comprising a nucleic acid sequence encoding an amino acid sequence of SEQ ID NO: 13 or 15 or an amino acid sequence that is at least 80% identical to SEQ ID NO: 1. In another embodiment, the one or more biomarkers is expressed on or in a cell (e.g., cells isolated from an animal model of a head, neck, or lung cancer or cells from a subject afflicted with a head, neck, or lung cancer).

In another aspect, a method for inhibiting a head, neck, or lung cancer is provided, wherein the method comprises contacting a cell with an agent that modulates the copy number, level of expression, or level of activity of one or more biomarkers listed in Table 1 or a fragment thereof to thereby inhibit the cancer. In one embodiment, the one or more biomarkers comprises soluble PD-L1, optionally wherein the soluble PD-L1 a) comprises an amino acid sequence of SEQ ID NO: 13 or 15 or an amino acid sequence that is at least 80% identical to SEQ ID NO: 13 or 15; or b) comprises a nucleic acid molecule comprising a nucleic acid sequence encoding an amino acid sequence of SEQ ID NO: 13 or 15 or an amino acid sequence that is at least 80% identical to SEQ ID NO: 1. In another embodiment, the copy number, level of expression, or level of activity of the one or more biomarkers is downmodulated. In still another embodiment, the step of contacting occurs in vivo, ex vivo, or in vitro. In yet another embodiment, the method further comprises contacting the cell with an additional agent that inhibits the head, neck, or lung cancer.

In still another aspect, a method for treating a subject afflicted with a head, neck, or lung cancer is provided, wherein the method comprises administering an agent that downregulates the copy number, level of expression, or level of activity of one or more biomarkers listed in Table 1 or a fragment thereof such that the head, neck, or lung cancer
is treated. In one embodiment, the one or more biomarkers comprises soluble PD-L1,
optionally wherein the soluble PD-L1 a) comprises an amino acid sequence of SEQ ID NO: 13 or 15 or an amino acid sequence that is at least 80% identical to SEQ ID NO: 13 or 15; or b) comprises a nucleic acid molecule comprising a nucleic acid sequence encoding an amino acid sequence of SEQ ID NO: 13 or 15 or an amino acid sequence that is at least 80% identical to SEQ ID NO: L in another embodiment, the method further comprises administering one or more additional agents that treats the cancer. In still another embodiment, the agent is one or more modulators of PD-I levels and/or one or more modulators of PD-L1 levels.

In yet another aspect, a pharmaceutical composition is provided comprising an antisense polynucleotide that specifically binds to a polynucleotide of one or more biomarkers listed in Table 1 or a fragment thereof useful for treating a head, neck, or lung cancer in a pharmaceutically acceptable carrier. In one embodiment, the antisense polynucleotide further comprises an expression vector. In another embodiment, a method of using such pharmaceutical composition for treating a head, neck, or lung cancer in a subject is provided.

In another aspect, a kit comprising one or more biomarkers listed in Table 1 or a fragment thereof and instructions for use. In one embodiment, the agent is selected from the group consisting of polynucleotides and antibodies.

In still another aspect, a biochip is provided comprising a solid substrate, said substrate comprising one or more probes capable of detecting one or more biomarkers listed in Table 1 or a fragment thereof wherein each probe is attached to the substrate at a spatially defined address. In one embodiment, the probes are complementary to a genomic or transcribed polynucleotide associated with the one or more biomarkers.

Certain embodiments can apply to one, more than one, or all aspects of the present invention. For example, in one embodiment of any aspect of the present invention, the one or more biomarkers comprises soluble PD-L1, optionally wherein the soluble PD-L1 a) comprises an amino acid sequence of SEQ ID NO: 13 or 15 or an amino acid sequence that is at least 80% identical to SEQ ID NOT 3 or 15; or b) comprises a nucleic acid molecule comprising a nucleic acid sequence encoding an amino acid sequence of SEQ ID NO: 13 or 15 or an amino acid sequence that is at least 80% identical to SEQ ID NO: 1. In another embodiment, the control is determined from a non-cancerous sample from the subject or
member of the same species to which the subject belongs. In still another embodiment, the sample consists of or comprises body fluid, cells, cell lines, histological slides, paraffin embedded tissue, fresh frozen tissue, fresh tissue, biopsies, blood, plasma, serum, buccal scrape, saliva, cerebrospinal fluid, urine, stool, mucus, or bone marrow, obtained from the subject. In yet another embodiment, the body fluid is selected from group consisting of amniotic fluid, aqueous humor, bile, blood and blood plasma, cerebrospinal fluid, cerumen and ear wax, cowper's fluid or pre-ejaculatory fluid, chyle, chyme, stool, female ejaculate, interstitial fluid, intracellular fluid, lymph, menses, breast milk, mucus, pleural fluid, peritoneal fluid, piss, saliva, sebum, semen, serum, sweat, synovial fluid, tears, urine, vaginal lubrication, vitreous humor, and vomit. In another embodiment, the copy number is assessed by microarray, quantitative PGR (qPCR), high-throughput sequencing, comparative genomic hybridization (CGH), or fluorescent in situ hybridization (FISH). In still another embodiment, the expression level of die one or more biomarkers is assessed by detecting the presence in the samples of a polynucleotide molecule encoding the biomarker or a portion of said polynucleotide molecule (e.g., a mRNA, cDNA, or functional variants or fragments thereof and, optionally, wherein the step of detecting further comprises amplifying die polynucleotide molecule). In yet another embodiment the expression level of the one or more biomarkers is assessed by annealing a nucleic acid probe with the sample of the polynucleotide encoding the one or more biomarkers or a portion of said polynucleotide molecule under stringent hybridization conditions.

In some embodiments, the expression level of the biomarker is assessed by detecting the presence in the samples of a protein of the biomarker, a polypeptide, or protein fragment thereof comprising said protein, such as by using a reagent which specifically binds with said protein, polypeptide or protein fragment thereof (e.g., an antibody, an antibody derivative, and an antibody fragment). In still another embodiment, the activity level of the biomarker is assessed by determining the magnitude of modulation of the activity or expression level of downstream targets of the one or more biomarkers. In yet another embodiment, the agent or test compound modulates PD-1, PD-L1, or soluble PD-L1 levels (e.g., compound inhibits the expression and/or activity of soluble PD-L1, optionally wherein the soluble PD-L1 a) comprises an amino acid sequence of SEQ ID NO: 13 or 15 or an amino acid sequence that is at least 80% identical to SEQ ID NO: J3 or 15; or b) comprises a nucleic acid molecule comprising a nucleic acid sequence encoding
an amino acid sequence of SEQ ID NO: 13 or 15 or an amino acid sequence that is at least 80% identical to SEQ ID NO: 1.

Examples of such agents include a) an antibody against soluble PD-L1, optionally wherein the soluble PD-L1 comprises an amino acid sequence of SEQ ID NO: 13 or 15 or an amino acid sequence that is at least 80% identical to SEQ ID NO: 13 or 15; b) a small molecule inhibitor of soluble PD-L1, optionally wherein the soluble PD-LS comprises an amino acid sequence of SEQ ID NO: 13 or 15 or an amino acid sequence that is at least 80% identical to SEQ ID NO: 13 or 15; and e) an anti-PD-L1 inhibitor selected from the group consisting of a small molecule, antisense nucleic acid, interfering RNA, shRNA, siRNA, aptamer, bozymc, and dominant-negative protein binding partner.

In some embodiments, the head or neck cancer is squamous cell carcinomas of the head and neck (SCCEIN) or associated with human papillomavirus infection. In another embodiment, the lung cancer is small-cell lung carcinoma (SCLC) or non-smal-ccil lung carcinoma (NSCLC). In still another embodiment, the subject is a mammal. In yet another embodiment, the mammal is a human.

Brief Description of Figures

Figures 1-2 show a schematic of a mutational landscape of head and neck cancers from The Cancer Genome Atlas (TCGA; Figure 1) project or an independent cohort of HPV- (left half) and HPV+ (right half) head and neck cancers (Figure 2).

Figure 3 shows a representation of sites of HPV integration in the host genome h1 head and neck cancers analyzed as part of the TCGA project described in Figure 1.

Figures 4 and 5 show sequencing reads for the CD274 (PD-L1) gene in a tumor (CV-5433) with a detected HPV integration in PD-L1. Figure 5 shows a zoomed in view of Figure 4 according to a log scale.

Figure 6 shows a consolidation of the sequencing read data of Figures 4 and 5 into a schematic showing the HPV integration within the PD-L1 gene of tumor CV-5433.

Figure 7 shows the predicted protein product following HPV integration in tumor CV-5433.

Figure 8 shows expression of each exon of full-length, membrane-bound PD-L1 on a log scale from the CV-5433 sample and demonstrates a dramatic drop in exons following exon 4 which is the site of HPV integration.
Figures 9-10 show transcript variants of PD-Li expressed by head, neck; and lung cancers.

Figures 11A-11J show expression of short PD-L1 forms among various cancers from the TCGA (The Cancer Genome Atlas) database.

Figures 12 shows expression of short PD-L1 forms among various cancers from the Cancer Cell Line Encyclopedia database.

Figures 13-14 show Western blot results 293T cells transfected with expression vectors encoding the full-length or short PD-L1 forms.

Figure 15 shows the protein expression of short PD-L1 forms from various cell lines.

Figure 16 shows T cell viability in response to exposure to short PD-L1 forms.

Figure 17-18 shows that the short form of PD-L1 can differentially kill proliferating T cells.

Detailed Description of the Invention

The present invention is based, at least in part, on the novel discovery of gene profiles useful for distinguishing among cancer subtypes (e.g., head, neck, and/or lung cancers) and for predicting the clinical outcome of such cancer subtypes to therapeutic regimens, particularly to modulators of PD-L1 and/or PD-LL. Thus, agents such as miRNAs, miRNA analogues, small molecules, RNA interference, aptamer, peptides, peptidomimetics, antibodies that specifically bind to one or more biomarkers of the invention (e.g., biomarkers listed in Table 1) and fragments thereof can be used to identify, diagnose, prognose, assess, prevent, and treat cancers (e.g., head, neck, and/or lung cancers) or other conditions that would benefit from modulating immune responses.

1. Definitions

The articles "a" and "an" are used herein to refer to one or to more than one (i.e., to at least one) of the grammatical object of the article. By way of example, "an element" means one element or more than one element.

The term "allogeneic" refers to deriving from, originating in, or being members of the same species, where the members are genetically related or genetically unrelated but genetically similar. An "allogeneic transplant" refers to transfer of cells or organs from a donor to a recipient, where the recipient is the same species as the donor. The term
"mismatched allogeneic" refers to deriving from, originating in, or being members of the same species having non-identical major histocompatibility complex (MHC) antigens (i.e., proteins) as typically determined by standard assays used in the art, such as serological or molecular analysis of a defined number of MHC antigens. A "partial mismatch" refers to partial match of the MHC antigens tested between members, typically between a donor and recipient. For instance, a "half mismatch" refers to 50% of the MHC antigens tested as showing different MHC antigen type between two members. A "full" or "complete" mismatch refers to all MHC antigens tested as being different between two members. These terms contrast with the term "xenogeneic," which refers to deriving from, originating in, or being members of different species, e.g., human and rodent, human and swine, human and chimpanzee, etc. A "xenogeneic transplant" refers to transfer of cells or organs from a donor to a recipient where the recipient is a species different from that of the donor. The term "syngeneic" refers to deriving from, originating in, or being members of the same species that are genetically identical particularly with respect to antigens or immunological reactions. These include identical twins having matching MHC types. Thus, a "syngeneic transplant" refers to transfer of cells or organs from a donor to a recipient who is genetically identical to the donor.

The term "altered amount" of a marker or "altered level" of a marker refers to increased or decreased copy number of the marker and/or increased or decreased expression level of a particular marker gene or genes in a cancer sample, as compared to the expression level or copy number of the marker in a control sample. The term "altered amount" of a marker also includes an increased or decreased protein level of a marker in a sample, e.g., a cancer sample, as compared to the protein level of the marker in a normal, control sample.

The "amount" of a marker, e.g., expression or copy number of a marker or minimal common region (MCR), or protein level of a marker, in a subject is "significantly" higher or lower than the normal amount of a marker, if the amount of the marker is greater or less, respectively, than the normal level by an amount greater than the standard error of the assay employed to assess amount, and preferably at least twice, and more preferably three, four, five, ten or more times that amount. Alternatively, the amount of the marker in the subject can be considered "significantly" higher or lower than the normal amount if the amount is at least about two, and preferably at least about three, four, or five times, higher or lower, respectively, than the normal amount of the marker. In some embodiments, the amount of the marker in the subject can be considered "significantly" higher or lower than the normal
amount if the amount is 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50% or more, higher or lower, respectively, than the normal amount of the marker.

The term "altered level of expression" of a marker refers to an expression level or copy number of a marker in a test sample e.g., a sample derived from a subject suffering from cancer, that is greater or less than the standard error of the assay employed to assess expression or copy number, and is preferably at least twice, and more preferably three, four, five or ten or more times the expression level or copy number of the marker or chromosomal region in a control sample (e.g., sample from a healthy subject not having the associated disease) and preferably, the average expression level or copy number of the marker or chromosomal region in several control samples. The altered level of expression is greater or less than the standard error of the assay employed to assess expression or copy number, and is preferably at least twice, and more preferably three, four, five or ten or more times the expression level or copy number of the marker in a control sample (e.g., sample from a healthy subject not having the associated disease) and preferably, the average expression level or copy number of the marker in several control samples.

The term "altered activity" of a marker refers to an activity of a marker which is increased or decreased in a disease state, e.g., in a cancer sample, as compared to the activity of the marker in a normal, control sample. Altered activity of a marker may be the result of, for example, altered expression of the marker, altered protein level of the marker, altered structure of the marker, or, e.g., an altered interaction with other proteins involved in the same or different pathway as the marker, or altered interaction with transcriptional activators or inhibitors. For example, the term "PD-1 ligand (e.g., soluble PD-L1) activity" includes the ability of a PD-1 ligand (e.g., soluble PD-L1) polypeptide to bind its natural receptor(s) (e.g., PD-1 or B7-1), the ability to modulate immune cell costimulatory or inhibitory signals, and the ability to modulate the immune response. With respect to PD-1, the term: "activity" includes the ability of a PD-1 polypeptide to modulate an inhibitory signal in an activated immune cell, e.g., by engaging a natural PD-1 ligand (e.g., soluble PD-L1,0) on an antigen presenting cell. PD-1 transmits an inhibitory signal to an immune cell in a manner similar to CTLA4. Modulation of an inhibitory signal in an immune cell results in modulation of proliferation of, and/or cytokine secretion by, an immune cell.

Thus, the term "PD-1 activity" includes the ability of a PD-1 polypeptide to bind its natural ligand(s), the ability to modulate immune cell costimulatory or inhibitory signals, and the ability to modulate the immune response.
The term "altered structure" of a marker refers to the presence of mutations or allelic variants within the marker gene or marker protein, e.g., mutations which affect expression or activity of the marker, as compared to the normal or wild-type gene or protein. For example, mutations include, but are not limited to substitutions, deletions, or addition mutations. Mutations may be present in the coding or non-coding region of the marker.

The term "altered subcellular localization" of a marker refers to the mislocalization of the marker within a cell relative to the normal localization within the cell, e.g., within a healthy and/or wild-type cell. An indication of normal localization of the marker can be determined through an analysis of subcellular localization motifs known in the field that are harbored by marker polypeptides.

Unless otherwise specified herein, the terms "antibody" and "antibodies" broadly encompass naturally-occurring forms of antibodies (e.g., IgG, IgA, IgM, IgE) and recombinant antibodies such as single-chain antibodies, chimeric and humanized antibodies and multi-specific antibodies, as well as fragments and derivatives of all of the foregoing, which fragments and derivatives have at least an antigenic binding site. Antibody derivatives may comprise a protein or chemical moiety conjugated to an antibody.

The term "antibody" as used herein also includes an "antigen-binding portion" of an antibody (or simply "antibody portion"). The term "antigen-binding portion", as used herein, refers to one or more fragments of an antibody that retain the ability to specifically bind to an antigen. It has been shown that the antigen-binding function of an antibody can be performed by fragments of a full-length antibody. Examples of binding fragments encompassed within the term "antigen-binding portion" of an antibody include (i) a Fab fragment, a monovalent fragment consisting of the VL, VH, CL and CH1 domains; (ii) a F(ab')2 fragment, a bivalent fragment comprising two Fab fragments linked by a disulfide bridge at the hinge region; (iii) a Fd fragment consisting of the VH and CH1 domains; (iv) a Fv fragment consisting of the VL and VH domains of a single arm of an antibody, (v) a dAb fragment (Ward edit., (1989) Nature 341:544-546), which consists of a VH domain; and (vi) an isolated complementarity determining region (CDR). Furthermore, although the two domains of the Fv fragment, VL and VH, are coded for by separate genes, they can be joined, using recombinant methods, by a synthetic linker that enables them to be made as a single protein chain in which the VL and VH regions pair to form monovalent polypeptides (known as single chain Fv (scFv); see e.g., Bird et al, (1988) Science 242:423-426; and
The composition of antibodies can be used in the generation of Fab, Fv or other fragments of immunoglobulins using either protein chemistry or recombinant DNA technology. Other forms of single chain antibodies, such as diabodies are also encompassed. Diabodies are bivalent, bispecific antibodies in which VH and VL domains are expressed on a single polypeptide chain, but using a linker that is too short to allow for pairing between the two domains on the same chain, thereby forcing the domains to pair with complementary domains of another chain and creating two antigen binding sites (see e.g., Holliger, P., et al. (1993) Proc. Natl Acad. Sci. USA 90:6444-6448; Poljak, R. J., et al. (1994) Structure 2:1121-1123).

Still further, an antibody or antigen-binding portion thereof may be part of larger immunoadhesin polypeptides, formed by covalent or noncovalent association of the antibody or antibody portion with one or more other proteins or peptides. Examples of such immunoadhesin polypeptides include use of the streptavidin core region to make a tetrameric scFv polypeptide (Kipriyanov, S.M., et al. (1995) Human Antibodies and Hybridomas 6:93-101) and use of a cysteine residue, a marker peptide and a C-terminal polyhistidine tag to make bivalent and biotinylated scFv polypeptides (Kipriyanov, S.M., et al. (1994) Mol. Immunol. 31:1047-1058). Antibody portions, such as Fab and F(ab)2 fragments, can be prepared from whole antibodies using conventional techniques, such as papain or pepsin digestion, respectively, of whole antibodies. Moreover, antibodies, antibody portions and immunoadhesion polypeptides can be obtained using standard recombinant DNA techniques, as described herein.

Antibodies may be polyclonal or monoclonal; xenogeneic, allogeneic, or syngeneic; or modified forms thereof (e.g., humanized, chimeric, etc.). Antibodies may also be fully human. The terms "monoclonal antibodies" and "monoclonal antibody composition", as used herein, refer to a population of antibody polypeptides that contain only one species of an antigen binding site capable of immunoreacting with a particular epitope of an antigen, whereas the term "polyclonal antibodies" and "polyclonal antibody composition" refer to a population of antibody polypeptides that contain multiple species of antigen binding sites.
capable of interacting with a particular antigen. A monoclonal antibody composition typically displays a single binding affinity for a particular antigen with which it immunoreacts.

The term "antisense" nucleic acid polypeptide comprises a nucleotide sequence which is complementary to a "sense" nucleic acid encoding a protein, e.g., complementary to the coding strand of a double-stranded cDNA polypeptide, complementary to an mRNA sequence or complementary to the coding strand of a gene. Accordingly, an antisense nucleic acid polypeptide can hydrogen bond to a sense nucleic acid polypeptide.

The term "autologous" refers to deriving from or originating in the same subject or patient. An "autologous transplant" refers to the harvesting and reinfusion or transplant of a subject's own cells or organs. Exclusive or supplemental use of autologous cells can eliminate or reduce many adverse effects of administration of the cells back to the host, particular graft versus host reaction.

The term "biochip" refers to a solid substrate comprising an attached probe or plurality of probes of the invention, wherein the probe(s) comprise at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 150, 200 or more probes. The probes may be capable of hybridizing to a target sequence under stringent hybridization conditions. The probes may be attached at spatially defined address on the substrate. More than one probe per target sequence may be used, with either overlapping probes or probes to different sections of a particular target sequence. The probes may be capable of hybridizing to target sequences associated with a single disorder. The probes may be attached to the biochip in a wide variety of ways, as will be appreciated by those in the art. The probes may either be synthesized first, with subsequent attachment to the biochip, or may be directly synthesized on the biochip. The solid substrate may be a material that may be modified to contain discrete individual sites appropriate for the attachment or association of the probes and is amenable to at least one detection method. Representative examples of substrates include glass and modified or fmettonalized glass, plastics (including acryliacs, polystyrene and copolymers of styrene and other materials, polypropylene, polyethylene, polybutylene, polyurethanes, Teflon, etc.), polysaccharides, nylon or nitrocellulose, resins, silica or silica-based materials including silicon and modified silicon, carbon, metals, inorganic glasses and plastics. The substrates may allow optical detection without appreciably fluorescing. The substrate may be planar, although other configurations of substrates may be used as well. For example, probes may...
be placed on the inside surface of a tube, for flow-through sample analysis to minimize sample volume. Similarly, the substrate may be flexible, such as a flexible foam, including dosed cell foams made of particular plastics. The biochip and the probe may be derivatized with chemical functional groups for subsequent attachment of the two. For example, the biochip may be derivatized with a chemical functional group including, but not limited to, amino groups, carboxylic groups, oxo groups or thiol groups. Using these functional groups, the probes may be attached using functional groups on the probes either directly or indirectly using a linker. The probes may be attached to the solid support by either the 5' terminus, 3' terminus, or via an internal nucleotide. The probe may also be attached to the solid support non-covalently. For example, biotinylated oligonucleotides can be made, which may bind to surfaces covalently coated with streptavidin, resulting in attachment. Alternatively, probes may be synthesized on the surface using techniques such as photopolymerization and photolithography.

The term "body fluid" refers to fluids that are excreted or secreted from the body as well as fluids that are normally not (e.g., amniotic fluid, aqueous humor, bile, blood and blood plasma, cerebrospinal fluid, cerumen and cannavx, cowpe.Cs fluid or pre-ejaculatory fluid, chyle, chyme, stool, female ejaculate, interstitial fluid, intracellular fluid, lymph, menses, breast milk, mucus, pleural fluid, peritoneal fluid, pus, saliva, sebnum, semen, serum, sweat, synovial fluid, tears, urine, vaginal lubrication, vitreous humor, vomit).

The terms "cancer" or "tumor" or "hyperproliferation disorder" refer to the presence of cells possessing characteristics typical of cancer-causing cells, such as uncontrolled proliferation, immortality, metastatic potential, rapid growth and proliferation rate, and certain characteristic morphological features. Cancer cells are often in the form of a tumor, but such cells may exist alone within an animal, or may be a non-tumorigenic cancer cell, such as a leukemia cell. Cancers include, but are not limited to, B cell cancer, e.g., multiple myeloma, Waldenstrom's macroglobulinemia, the heavy chain diseases, such as, for example, alpha chain disease, gamma chain disease, and rau chain disease, benign monoclonal gammopathy, and immunocytcic amyloidosis, melanomas, breast cancer, lung cancer, bronchus cancer, colorectal cancer, prostate cancer, pancreatic cancer, stomach cancer, ovarian cancer, urinary bladder cancer, brain or central nervous system cancer, peripheral nervous system cancer, esophageal cancer, cervical cancer, uterine or endometrial cancer, cancer of the oral cavity or pharynx, liver cancer, kidney cancer, testicular cancer, biliary tract cancer, small bowel or appendix cancer, salivary gland
cancer, thyroid gland cancer, adrenal gland cancer, osteosarcoma, chondrosarcoma, cancer of hematological tissues, and the like. Other non-limiting examples of types of cancers applicable to the methods encompassed by the present invention include human sarcomas and carcinomas, e.g., fibrosarcoma, myxosarcoma, liposarcoma, chondrosarcoma, osteosarcoma, chondrosarcoma, cancer of hematological tissues, e.g., fibrosarcoma, myxosarcoma, liposarcoma, chondrosarcoma, osteosarcoma, chondrosarcoma, lymphangiosarcoma, lymphangioendotheliosarcoma, synovioma, mesothelioma, Ewing's tumor, leiomyosarcoma, rhabdomyosarcoma, colon carcinoma, colorectal cancer, pancreatic cancer, breast cancer, ovarian cancer, prostate cancer, squamous cell carcinoma, basal cell carcinoma, adenocarcinoma, sweat gland carcinoma, sebaceous gland carcinoma, papillary carcinoma, papillary adenocarcinomas, cystadenocarcinoma, medullary carcinoma, bronchogenic carcinoma, renal cell carcinoma, hepatoma, bile duct carcinoma, liver cancer, choriocarcinoma, seminoma, embryonal carcinoma, Wilms' tumor, cervical cancer, bone cancer, brain tumor, testicular cancer, lung carcinoma, small cell lung carcinoma, bladder carcinoma, epithelial carcinoma, glioma, astrocytoma, medulloblastoma, craniopharyngioma, ependymoma, pinealoma, hemangioblastoma, acoustic neuroma, oligodendrogloma, meningioma, melanoma, neuroblastoma, retinoblastoma; leukemias, e.g., acute lymphocytic leukemia and acute myelocytic leukemia (myeloblastte, promyelocytic, myelomonocytic, monocytic and erythroieukemia); chronic leukemia (chronic myelocytic (granulocytic) leukemia and chronic lymphocytic leukemia); and polycythemia vera, lymphoma (Hodgkin's disease and non-Hodgkin's disease), multiple myeloma, Waldenstrom's macroglobulinemia, and heavy chain disease. In some embodiments, the cancer whose phenotype is determined by the method of the invention is an epithelial cancer such as, but not limited to, bladder cancer, breast cancer, cervical cancer, colon cancer, gynecologic cancers, renal cancer, laryngeal cancer, lung cancer, oral cancer, head and neck cancer, ovarian cancer, pancreatic cancer, prostate cancer, or skin cancer. In other embodiments, the cancer is breast cancer, prostate cancer, lung cancer, or colon cancer. In still other embodiments, the epithelial cancer is non-small-cell lung cancer, nonpapillary renal cell carcinoma, cervical carcinoma, ovarian carcinoma (e.g., serous ovarian carcinoma), or breast carcinoma. The epithelial cancers may be characterized in various other ways including, but not limited to, serous, endometrioid, mucinous, clear cell, breuner, or undifferentiated. In some embodiments, the present invention is used in the treatment, diagnosis, and/or prognosis of lymphoma or its subtypes, including, but not limited to, lymphocyte-rich classical Hodgkin lymphoma, mixed

The term: "classifying" includes "to associate" or "to categorize" a sample with a disease state. In certain instances, "classifying" is based on statistical evidence, empirical evidence, or both. In certain embodiments, the methods and systems of classifying use of a so-called training set of samples having known disease states. Once established, the training data set serves as a basis, model, or template against which the features of an unknown sample are compared, in order to classify the unknown disease state of the sample. In certain instances, classifying the sample is akin to diagnosing the disease state of the sample. In certain other instances, classifying the sample is akin to differentiating the disease state of the sample from another disease state.

The term "coding region" refers to regions of a nucleotide sequence comprising codons which are translated into amino acid residues, whereas the term “noncoding region” refers to regions of a nucleotide sequence that are not translated into amino acids (e.g., 5' and 3' untranslated -regions).

The term "complementary" refers to the broad concept of sequence complementarity between regions of two nucleic acid strands or between two regions of the same nucleic acid strand. It is known that an adenine residue of a first nucleic acid region is capable of forming specific hydrogen bonds ("base pairing") with a residue of a second nucleic acid region which is antiparallel to the first region if the residue is thymine or uracil. Similarly, it is known that a cytosine residue of a first nucleic acid strand is capable of base pairing with a residue of a second nucleic acid strand which is antiparallel to the first strand if the residue is guanine. A first region of a nucleic acid is complementary to a second region of the same or a different nucleic acid if, when the two regions are arranged in an antiparallel fashion, at least one nucleotide residue of the first region is capable of base pairing with a residue of the second region. Preferably, the first region comprises a first portion and the second region comprises a second portion, whereby, when the first and second portions are arranged in an antiparallel fashion, at least about 50%, and preferably at least about 75%, at least about 90%, or at least about 95% of the nucleotide residues of the first portion are capable of base pairing with nucleotide residues in the second portion.
More preferably, all nucleotide residues of the first portion are capable of base pairing with nucleotide residues in the second portion.

The term "control" refers to any reference standard suitable to provide a comparison to the expression products in the test sample. In one embodiment, the control comprises obtaining a "control sample" from which expression product levels are detected and compared to the expression product levels from the test sample. Such a control sample may comprise any suitable sample, including but not limited to a sample from a control cancer patient (can be stored sample or previous sample measurement) with a known outcome; normal tissue or cells isolated from a subject, such as a normal patient or the cancer patient, cultured primary cells/tissues isolated from a subject such as a normal subject or the cancer patient, adjacent normal cells/tissues obtained from the same organ or body location of the cancer patient, a tissue or cell sample isolated from a normal subject, or a primary cells/tissues obtained from a depository. In another preferred embodiment, the control may comprise a reference standard expression product level from any suitable source, including but not limited to housekeeping genes, an expression product level range from normal tissue (or other previously analyzed control sample), a previously determined expression product level -range within a test sample from a group of patients, or a set of patients with a certain outcome (for example, survival for one, two, three, four years, etc.) or receiving a certain treatment. It will be understood by those of skill in the art that such control samples and reference standard expression product levels can be used in combination as controls in the methods of the present invention. In one embodiment, the control may comprise normal or non-cancerous cell/tissue sample. In another preferred embodiment, the control may comprise an expression level for a set of patients, such as a set of cancer patients, or for a set of cancer patients receiving a certain treatment, or for a set of patients with one outcome versus another outcome. In the former case, the specific expression product level of each patient can be assigned to a percentile level of expression, or expressed as either higher or lower than the mean or average of the reference standard expression level. In another preferred embodiment, the control may comprise normal cells, cells from patients treated with combination chemotherapy and cells from patients having benign cancer. In another embodiment, the control may also comprise a measured value for example, average level of expression of a particular gene in a population compared to the level of expression of a housekeeping gene in the same population. Such a population may comprise normal subjects, cancer patients who have not undergone any treatment (i.e., treatment naive),
cancer patients undergoing therapy, or patients having benign cancer. In another preferred embodiment, the control comprises a ratio \textit{transformation} of expression product levels, including but not limited to determining a ratio of expression product levels of two genes in the test sample and comparing it to any suitable ratio of the same two genes in a reference standard; determining expression product levels of the two or more genes in the test sample and determining a difference in expression product levels in any \textit{suitable control}; and determining \textit{expression product} levels of the two or more genes in the test sample, normalizing their expression to expression of housekeeping genes in the test sample, and comparing to any suitable control. In particularly preferred embodiments, the control \textit{comprises} a control sample which \textit{is of the same} lineage and/or type as the test sample. In another \textit{embodiment}, the control may comprise expression product levels \textit{grouped} as percentiles within or based on a set of patient samples, such as all patients with cancer. In one embodiment a \textit{control expression product} level is \textit{established} wherein higher or lower levels of \textit{expression product} relative to, for instance, a particular percentile, are used as the basis for predicting outcome. In another preferred embodiment, a control expression product level is established using expression product levels from cancer control patients with a known outcome, and the expression product levels from the test sample are compared to the control expression product level as the basis for predicting outcome. As demonstrated by the data below, the methods of the invention are not limited to use of a specific cut-point in comparing the level of expression product in the test sample to the control.

As used herein, the term "\textit{costimulate}" with reference to activated immune cells includes the ability of a costimulatory molecule to provide a second, non-activating receptor mediated signal (a "costimulatory signal") that induces proliferation or effector function. For example, a costimulatory signal can result in cytokine secretion, \textit{e.g.}, in a T cell that has received a T cell-receptor-mediated signal. Immune cells that have received a cell-receptor mediated signal, \textit{e.g.}, via an activating receptor are referred to herein as "activated immune cells."

The term "\textit{diagnosing cancer}" includes the use of the methods, systems, and code of the present invention to determine the presence or absence of a cancer or subtype thereof in an individual. The term also includes methods, systems, and code for assessing the level of disease \textit{activity} in an individual.
As used herein, the term "diagnostic marker" includes markers described herein which are useful in the diagnosis of cancer, e.g., over- or under- activity, emergence, expression, growth, remission, recurrence or resistance of tumors before, during or after therapy. The predictive functions of the marker may be confirmed by, e.g., (1) increased or decreased copy number (e.g., by FISH, FISH plus SKY, single-molecule sequencing, e.g., as described in the art at least at J. Biotechnol. 86:289-301, or qPCR), overexpression or underexpression (e.g., by ISH, Northern Blot, or qPCR), increased or decreased protein level (e.g., by IHC), or increased or decreased activity (determined by, for example, modulation of a pathway in which the marker is involved), e.g., in more than about 5%, 6%, 7%, 8%, 9%, 10%, 11%, 12%, 13%, 14%, 15%, 20%, 25%, or more of human cancers types or cancer samples; (2) its presence or absence in a biological sample, e.g., a sample containing tissue, whole blood, serura, plasma, buccal scrape, saliva, cerebrospinal fluid, urine, stool, or boric marrow, from a subject, e.g., a human, afflicted with cancer; (3) its presence or absence in clinical subset of subjects with cancer (e.g., those responding to a particular therapy or those developing resistance). Diagnostic markers also include "surrogate markers," e.g., markers which are indirect markers of cancer progression. Such diagnostic markers may be useful to identify populations of subjects amenable to treatment with modulators of PD-1 and/or PD-L; levels and to thereby treat such stratified patient populations.

A molecule is "fixed" or "affixed" to a substrate if it is covalently or non-covalently associated with the substrate such the substrate can be rinsed with a fluid (e.g., standard saline citrate, pH 7.4) without a substantial fraction of the molecule dissociating from the substrate.

The term "gene expression data" or "gene expression level" as used herein refers to information regarding the relative or absolute level of expression of a gene or set of genes in a cell or group of cells. The level of expression of a gene may be determined based on the level of RNA, such as mRNA, encoded by the gene. Alternatively, the level of expression may be determined based on the level of a polypeptide or fragment thereof encoded by the gene. Gene expression data may be acquired for an individual cell, or for a group of cells such as a tumor or biopsy sample. Gene expression data and gene expression levels can be stored on computer readable media, e.g., the computer readable medium used in conjunction with a microarray or chip reading device. Such gene expression data can be manipulated to generate gene expression signatures.
The term "gene expression signature" or "signature" as used herein refers to a group of coordinately expressed genes. The genes making up this signature may be expressed in a specific cell lineage, stage of differentiation, or during a particular biological response. The genes can reflect biological aspects of the tumors in which they are expressed, such as the cell of origin of the cancer, the nature of the non-malignant cells in the biopsy, and the oncogenic mechanisms responsible for the cancer.

The term "head cancer" and 'neck cancer" refer to cancers arising from head or neck region or tissue, respectively. In general, it is a group of cancers originating from the upper aerodigestive tract, including the lip, oral cavity, nasal cavity, paranasal sinuses, salivary glands, pharynx, and larynx.

Cancers of the head and neck are further identified by the area in which they begin: cancers of the oral cavity, cancers of the salivary glands, cancer of the paranasal sinuses and nasal cavity, cancers of the pharynx and cancers of the larynx. The term "oral cavity" includes the lips, the pharynx, the tongue, the gums (gingiva), the lining inside the cheeks and lips (buccal mucosa), the bottom (floor) of the mouth under the tongue, the bony top of the mouth (hard palate), the soft palate and the small area behind the wisdom teeth (retromolar area). The salivary glands include the glands under the tongue lower jaw (submandibular and sublingual), in front of the ears (parotid gland), as well as in other parts of the upper digestive tract-minor salivary glands. The term "paranasal sinuses" refers to the small hollow spaces in the bones of the head surrounding the nose. The term "nasal cavity" refers to the hollow space inside the nose. The term "pharynx" refers to the hollow tube that starts behind the nose and leads to the esophagus and the trachea. The pharynx has three parts: "nasopharynx," the upper part of the pharynx, behind the nose; "oropharynx," the middle part of the pharynx, which includes the soft palate, the base of the tongue and the tonsils; and "hypopharynx," the lower part of the pharynx. The term "larynx" is also known as the voicebox, and is the passageway formed by cartilage below the pharynx in the neck. It contains the vocal cords and the epiglottis. Thus, the term "oral cancer" encompasses all malignancies that originate in the oral tissues, in particular to cancers located in any part of the mouth, including the hps, gum tissue (gingival), tongue, cheek lining (buccal mucosa) and the soft or hard palate, and floor of the mouth. Sometimes, squamous cancer cells are also found in the lymph nodes of the upper neck.
Most head and neck cancers begin in the squamous cells that line the structures found in the head and neck and are therefore termed squamous cell carcinomas (SCCHN). Because of this, head and neck cancers are often referred to as squamous cell carcinomas. Some head and neck cancers begin in other types of cells. For example, cancers originating from glandular cells are called adenocarcinomas. With approximately 500,000 new cases annually, squamous cell carcinomas of the head and neck, the vast majority of which arise in the oral cavity, represent the sixth most common cancers in the world. This disease results in nearly about 11,000 deaths each year in the United States alone. The five-year survival rate after diagnosis for HNSCC remains considerably low (approximately 50%).

This poor prognosis of squamous cell carcinoma patients is likely due to the fact that most patients are diagnosed at advanced disease stages, and often fail to respond to available treatment options. As used herein a "squamous cell carcinoma" is a cancer arising, at least in part, from a squamous cell population and/or containing, at least in part, a squamous cell population including, without limitation, cancers of the cervix; penis; head and neck, including, without limitation cancers of the oral cavity, salivary glands, paranasal sinuses and nasal cavity, pharynx and larynx; lung; esophageal; skin other than melanoma; vulva and bladder.

The term "homologous" as used herein, refers to nucleotide sequence similarity between two regions of the same nucleic acid strand or between regions of two different nucieic acid strands. When a nucleotide residue position in both regions is occupied by the same nucleotide residue, then the regions are homologous at that position. A first region is homologous to a second region if at least one nucleotide residue position of each region is occupied by the same residue. Homology between two regions is expressed in terms of the proportion of nucleotide residue positions of the two regions that are occupied by the same nucleotide residue. By way of example, a region having the nucleotide sequence 5'-ATTGCC-3' and a region having the nucleotide sequence 5'-TATGCC-3' share 50% homology. Preferably, the first region comprises a first portion and the second region comprises a second portion, whereby, at least about 50%, and preferably at least about 75%, at least about 90%, or at least about 95% of the nucleotide residue positions of each of the portions are occupied by the same nucleotide residue. More preferably, all nucleotide residue positions of each of the portions are occupied by the same nucleotide residue.

The term "host cell!" is intended to refer to a cell into which a nucleic acid of the invention, such as a recombinant expression vector of the invention, has been introduced.
The terms "host cell" and "recombinant host cell" are used interchangeably herein. It should be understood that such terms refer not only to the particular subject cell but to the progeny or potential progeny of such a cell. Because certain modifications may occur in succeeding generations due to either mutation or environmental influences, such progeny may not, in fact, be identical to the parent cell, but are still included within the scope of the term as used herein.

The term "humanized antibody," as used herein, is intended to include antibodies made by a non-human cell having variable and constant regions which have been altered to more closely resemble antibodies that would be made by a human cell, for example, by altering the non-human antibody amino acid sequence to incorporate amino acids found in human germline immunoglobulin sequences. Humanized antibodies may include amino acid residues not encoded by human germline immunoglobulin sequences (e.g., mutations introduced by random or site-specific mutagenesis in vitro or by somatic mutation in vivo), for example in the CDRs. The term "humanized antibody", as used herein, also includes antibodies in which CDR sequences derived from the germline of another mammalian species, such as a mouse, have been grafted onto human framework sequences.

As used herein, the term "immune cell" refers to cells that play a role in the immune response, immune cells are of hematopoietic origin, and include lymphocytes, such as 8 cells and T cells; natural killer cells; myeloid cells, such as monocytes, macrophages, eosinophils, mast cells, basophils, and granulocytes.

As used herein, the term "immune response" includes T cell mediated and/or B cell mediated immune responses. Exemplary immune responses include T cell responses, e.g., cytokine production and cellular cytotoxicity. In addition, the term immune response includes immune responses that are indirectly effected by T cell activation, e.g., antibody production (humoral responses) and activation of cytokine responsive cells, e.g., macrophages.

As used herein, the term "inhibit" includes the decrease, limitation, or blockage, of, for example a particular action, function, or interaction. For example, cancer is "inhibited" if at least one symptom of the cancer, such as hyperproliferative growth, is alleviated, terminated, slowed, or prevented. As used herein, cancer is also "inhibited" if recurrence or metastasis of the cancer is reduced, slowed, delayed, or prevented.

As used herein, the term "inhibitory signal" refers to a signal transmitted via an inhibitory receptor (e.g., CTLA4 or PD-1) for a polypeptide on a immune cell. Such a...
signal antagonizes a signal via an activating receptor (e.g., via a TCR, CD3, BCR, or Fc polypeptide) and can result in, e.g., inhibition of second messenger generation; an inhibition of proliferation; an inhibition of effecter function in the immune cell, e.g., reduced phagocytosis, reduced antibody production, reduced cellular cytotoxicity, the failure of the immune cell to produce mediators, (such as cytokines (e.g., IL-2) and/or mediators of allergic responses); or the development of atiery.

As used herein, the term "interaction," when referring to an interaction between two molecules, refers to the physical contact (e.g., binding) of the molecules with one another. Generally, such an interaction results in an activity (which produces a biological effect) of one or both of said molecules. The activity may be a direct activity of one or both of the molecules. Alternatively, one or both molecules in the interaction may be prevented from binding their ligand, and thus be held inactive with respect to ligand binding activity (e.g., binding its ligand and triggering or inhibiting an immune response). To inhibit such an interaction results in the disruption of the activity of one or more molecules involved in the interaction. To enhance such an interaction is to prolong or increase the likelihood of said physical contact, and prolong or increase the likelihood of said activity.

An "isolated antibody," as used herein, is intended to refer to an antibody that is substantially free of other antibodies having different antigenic specificities. Moreover, an isolated antibody may be substantially free of other cellular material and/or chemicals.

As used herein, an "isolated protein" refers to a protein that is substantially free of other proteins, cellular material, separation medium, and culture medium when isolated from cells or produced by recombinant DNA techniques, or chemical precursors or other chemicals when chemically synthesized. An "isolated" or "purified" protein or biologically active portion thereof is substantially free of cellular material or other contaminating proteins from the cell or tissue source from which the antibody, polypeptide, peptide or fusion protein is derived, or substantially free from chemical precursors or other chemicals when chemically synthesized. The language "substantially free of cellular material" includes preparations, in which compositions of the invention are separated from cellular components of the cells from which they are isolated or recombinantly produced. In one embodiment, the language "substantially free of cellular material" includes preparations of having less than about 30%, 20%, 10%, or 5% (by dry weight) of cellular material. When an antibody, polypeptide, peptide or fusion protein or fragment thereof, e.g., a biologically active fragment thereof, is recombinantly produced, it is also preferably substantially free of
culture medium, i.e., culture medium represents less than about 20%, more preferably less than about 10%, and most preferably less than about 5% of the volume of the protein preparation.

A "kit" is any manufacture (e.g., a package or container) comprising at least one reagent, e.g., a probe, for specifically detecting or modulating the expression of a marker of the invention. The kit may be promoted, distributed, or sold as a unit for performing the methods of the present invention.

As used herein, the term "lung cancer" refers to the collection of cancers affecting lung tissue. Non-small cell lung cancer (NSCLC) represents approximately 87% of all lung cancers. The remaining 13% of all lung cancers are small cell lung cancers, although mixed-cell lung cancers do occur. Because small cell lung cancer is rare and rapidly fatal, the opportunity for early detection is small. There are three main types of NSCLC: squamous cell carcinoma, large cell carcinoma, and adenocarcinoma. Adenocarcinoma is the most common form of lung cancer (30%-40% and reported to be as high as 50%) and is the lung cancer most frequently found in both smokers and non-smokers. Squamous cell carcinoma accounts for 25-30% of all lung cancers and is generally found in a proximal bronchus. Early stage NSCLC tends to be localized, and if detected early it can often be treated by surgery with a favorable outcome and improved survival. Other treatment options include radiation treatment, drug therapy, and a combination of these methods.

NSCLC is staged by the size of the tumor and its presence in other tissues including lymph nodes, in the occult stage, cancer cells are found in sputum samples or lavage samples and no tumor is detectable in the lungs. In stage 0, only the innermost lining of the lungs exhibit cancer cells and the tumor has not grown through the lining. In stage IA, the cancer is considered invasive and has grown deep into the lung tissue but the tumor is less than 3 cm across. In this stage, the tumor is not found in the bronchus or lymph nodes. In stage IB, the tumor is either larger than 3 cm across or has grown into the bronchus or pleura, but has not grown into the lymph nodes. In stage OA, the tumor is more than 3 cm across and has grown into the lymph nodes. In stage II B, the tumor has either been found in the lymph nodes and is greater than 3 cm across or grown into the bronchus or pleura; or the cancer is not in the lymph nodes but is found in the chest wall, diaphragm, pleura, bronchus, or tissue that surrounds the heart, in stage III A, cancer cells are found in the lymph nodes near the lung and bronchi and in those between the lungs but on the side of the chest where the tumor is located. In stage III B, cancer cells are located on the opposite side of the chest.
from the tumor and in the neck. Other organs near the lungs may also have cancer cells and multiple tumors may be found in one lobe of the lungs. In stage IV, tumors are found in more than one lobe of the same lung or both lungs and cancer cells are found in other parts of the body. Current methods of diagnosis for lung cancer include testing sputum for cancerous cells, chest x-ray, fiber optic evaluation of airways, and low dose spiral computed tomography (CT). Sputum cytology has a very low sensitivity. Chest X-ray is also relatively insensitive, requiring lesions to be greater than 1 cm in size to be visible. Bronchoscopy requires that the tumor is visible inside Airways accessible to the bronchoscope. The most widely recognized diagnostic method is CT, but in common with X-ray, the use of CT involves ionizing radiation, which itself can cause cancer. CT also has significant limitations: the scans require a high level of technical skill to interpret and many of the observed abnormalities are not in fact lung cancer and substantial healthcare costs are incurred in following up CT findings. The most common incidental finding is a benign lung nodule. Lung nodules are relatively round lesions, or areas of abnormal tissue, located within the lung and may vary in size. Lung nodules may be benign or cancerous, but most are benign. If a nodule is below 4 mm the prevalence is only 1.5%, if 4-8 mm the prevalence is approximately 6%, and if above 20 mm the incidence is approximately 20%. For small and medium-sized nodules, the patient is advised to undergo a repeat scan within three months to a year. For many large nodules, the patient receives a biopsy (which is invasive and may lead to complications) even though most of these are benign.

A "marker" or "biomarker" includes a nucleic acid or polypeptide whose altered level of expression in a tissue or cell from its expression level in a control (e.g., normal or healthy tissue or cell) is associated with a disease state, such as a cancer or subtype thereof (e.g., head, neck, and/or lung cancers). A "marker nucleic acid" is a nucleic acid (e.g., mRNA, cDNA, mature miRNA, pre-miRNA, pri-miRNA, miRNA*, anti-miRNA, or a miRNA binding site, or a variant thereof and other classes of small RNAs known to a skilled artisan) encoded by or corresponding to a marker of the invention. Such marker nucleic acids include DNA (e.g., cDNA) comprising the entire or a partial sequence of any of the nucleic acid sequences set forth in Table 1 and the Examples or the complement of such a sequence. The marker nucleic acids also include RNA comprising the entire or a partial sequence of any of the nucleic acid sequences set forth in the Sequence Listing or the complement of such a sequence, wherein all thymidine residues are replaced with uridine residues. A "marker protein" includes a protein encoded by or corresponding to a
marker of the invention. A marker protein comprises the entire or a partial sequence of any of the sequences set forth in Table 1 and the Examples. The terms "protein" and "polypeptide" are used interchangeably. In some embodiments, specific combinations of biomarkers are preferred. For example, a combination or subgroup of one or more of the biomarkers selected from the group shown in Table.

As used herein, the term "modulate" includes up-regulation and down-regulation, e.g., enhancing or inhibiting a response.

The "normal" or "control" level of expression of a marker is the level of expression of the marker in cells of a subject, e.g., a human patient, not afflicted with a cancer. An "over-expression" or "significantly higher level of expression" of a marker refers to an expression level in a test sample that is greater than the standard error of the assay employed to assess expression, and is preferably at least twice, and more preferably 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, 3, 3.5, 4, 4.5, 5, 5.5, 6, 6.5, 7, 7.5, 8, 8.5, 9, 9.5, 10, 10.5, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20 times or more higher than the expression activity or level of the marker in a control sample (e.g., sample from a healthy subject not having the marker associated disease) and preferably, the average expression level of the marker in several control samples. A "significantly lower level of expression" of a marker refers to an expression level in a test sample that is at least twice, and more preferably 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, 3, 3.5, 4, 4.5, 5, 5.5, 6, 6.5, 7, 7.5, 8, 8.5, 9, 9.5, 10, 10.5, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20 times or more lower than the expression level of the marker in a control sample (e.g., sample from a healthy subject not having the marker associated disease) and preferably, the average expression level of the marker in several control samples.

The term "pre-malignant lesions" as described herein refers to a lesion that, while not cancerous, has potential for becoming cancerous. It also includes the term "pre-malignant disorders" or "potentially malignant disorders." In particular this refers to a benign, morphologically and/or histologically altered tissue that has a greater than normal risk of malignant transformation, and a disease or a patient’s habit that does not necessarily alter the clinical appearance of local tissue but is associated with a greater than normal risk of precancerous lesion or cancer development in that tissue (leukoplakia, erythroplakia, erytroleukopiakia lichen planus (lichenoid reaction) and any lesion or an area which histological examination showed atypia of cells or dysplasia.
The term "probe" refers to any molecule which is capable of selectively binding to a specifically intended target molecule. For example, a nucleotide transcript or protein encoded by or corresponding to a marker. Probes can be either synthesized by one skilled in the art, or derived from appropriate biological preparations. For purposes of detection of the target molecule, probes may be specifically designed to be labeled, as described herein. Examples of molecules that can be utilized as probes include, but are not limited to, RNA, DNA, proteins, antibodies, and organic molecules.

The term "prognosis" includes a prediction of the probable course and outcome of cancer or the likelihood of recovery from the disease. In some embodiments, the use of statistical algorithms provides a prognosis of cancer in an individual. For example, the prognosis can be surgery, development of a clinical subtype of cancer (e.g., head, neck, and/or lung cancers), development of one or more clinical factors, development of intestinal cancer, or recovery from the disease.

The term "response to cancer therapy" or "outcome of cancer therapy" relates to any response of the hyperproliferative disorder (e.g., cancer) to a cancer therapy, preferably to a change in tumor mass and/or volume after initiation of neoadjuvant or adjuvant chemotherapy. Hyperproliferative disorder response may be assessed, for example for efficacy or in a neoadjuvant or adjuvant situation, where the size of a tumor after systemic intervention can be compared to the initial size and dimensions as measured by CT, PET, mammogram, ultrasound or palpation. Response may also be assessed by caliper measurement or pathological examination of the tumor after biopsy or surgical resection for solid cancers. Responses may be recorded in a quantitative fashion like percentage change in tumor volume or in a qualitative fashion like "pathological complete response" (pCR), "clinical complete remission" (cCR), "clinical partial remission" (cPR), "clinical stable disease" (cSD), "clinical progressive disease" (cPD) or other qualitative criteria.

Assessment of hyperproliferative disorder response may be done early after the onset of neoadjuvant or adjuvant therapy, e.g., after a few hours, days, weeks or preferably after a few months. A typical endpoint for response assessment is upon termination of neoadjuvant chemotherapy or upon surgical removal of residual tumor cells and/or the tumor bed. This is typically three months after initiation of neoadjuvant therapy. In some embodiments, clinical efficacy of the therapeutic treatments described herein may be determined by measuring the clinical benefit rate (CBR). The clinical benefit rate is measured by determining the sum of the percentage of patients who are in complete
remission (CR), the number of patients who are in partial remission (PR) and the number of patients having stable disease (SD) at a time point at least 6 months out from: the end of therapy. The shorthand for this formula is CBR=CR+PR+SD over 6 months. In some embodiments, the CBR for a particular cancer therapeutic regimen is at least 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, or more. Additional criteria for evaluating the response to cancer therapies are related to "survival," which includes all of the following: survival until mortality, also known as overall survival (wherein said mortality may be either irrespective of cause or tumor related); "recurrence-free survival" (wherein the term recurrence shall include both localized and distant recurrence); metastasis free survival; disease free survival (wherein the term disease shall include cancer and diseases associated therewith). The length of said survival may be calculated by reference to a defined start point (e.g., time of diagnosis or start of treatment) and end point (e.g., death, recurrence or metastasis). In addition, criteria for efficacy of treatment can be expanded to include response to chemotherapy, probability of survival, probability of metastasis within a given time period, and probability of tumor recurrence.

For example, in order to determine appropriate threshold values, a particular cancer therapeutic regimen can be administered to a population of subjects and the outcome can be correlated to copy number, level of expression, level of activity, etc, of one or more biomarkers listed in Table 1 and the Examples or the Examples that were determined prior to administration of any cancer therapy. The outcome measurement may be pathologic response to therapy given in the neoadjuvant setting. Alternatively, outcome measures, such as overall survival and disease-free survival can be monitored over a period of time for subjects following cancer therapy for whom the measurement values are known. In certain embodiments, the same doses of cancer therapeutic agents are administered to each subject, in related embodiments, the doses administered are standard doses known in the art for cancer therapeutic agents. The period of time for which subjects are monitored can vary. For example, subjects may be monitored for at least 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 25, 30, 35, 40, 45, 50, 55, or 60 months. Biomarker threshold values that correlate to outcome of a cancer therapy can be determined using methods such as those described in the Examples section. Outcomes can also be measured in terms of a "hazard ratio" (the ratio of death rates for one patient group to another; provides likelihood of death at a certain time point), "overall survival" (OS), and/or "progression free survival." In certain embodiments, the prognosis comprises likelihood of overall survival rate at 1 year, 2 years, 3 years, 4 years.
or any other suitable time point. The significance associated with the prognosis of poor outcome in all aspects of the present invention is measured by techniques known in the art. For example, significance may be measured with calculation of odds ratio, in a further embodiment, the significance is measured by a percentage. In one embodiment, a significant risk of poor outcome is measured as odds ratio of 0.8 or less or at least about 1.2, including by not limited to: 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0, 2.5, 3.0, 4.0, 5.0, 10.0, 15.0, 20.0, 25.0, 30.0 arid 40.0. In a further embodiment, a significant increase or reduction in risk is at least about 20%, including but not limited to about 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95% and 98%. In a further embodiment, a significant increase in risk is at least about 50%. Thus, the present invention further provides methods for making a treatment decision for a cancer patient, comprising carrying out the methods for prognosing a cancer patient according to the different aspects and embodiments of the present invention, and then weighing the results in light of other known clinical and pathological risk factors, in determining a course of treatment for the cancer patient. For example, a cancer patient that is shown by the methods of the invention to have an increased risk of poor outcome by combination chemotherapy treatment can be treated with more aggressive therapies, including but not limited to radiation therapy, peripheral blood stem cell transplant, bone marrow transplant, or novel or experimental therapies under clinical investigation.

The term: "resistance" refers to an acquired or natural resistance of a cancer sample or a mammal to a cancer therapy (i.e., being nonresponsive to or having reduced or limited response to the therapeutic treatment), such as having a reduced response to a therapeutic treatment by 25% or more, for example, 30%, 40%, 50%, 60%, 70%, 80%, or more, to 2-fold, 3-fold, 4-fold, 5-fold, 10-fold, 15-fold, 20-fold or more. The reduction in response can be measured by comparing with the same cancer sample or mammal before the resistance is acquired, or by comparing with a different cancer sample or a mammal who is known to have no resistance to the therapeutic treatment. A typical acquired resistance to chemotherapy is called "multidrug resistance." The multidrug resistance can be mediated by P-glycoprotein or can be mediated by other mechanisms, or it can occur when a mammal is infected with a multi-drug-resistant microorganism or a combination of microorganisms.

The determination of resistance to a therapeutic treatment is routine in the art and within the skill of an ordinarily skilled clinician, for example, can be measured by cell proliferative assays and cell death assays as described herein as "sensitizing." In some embodiments, the
The term "reverses resistance" means that the use of a second agent in combination with a primary cancer therapy (e.g., chemotherapeutic or radiation therapy) is able to produce a significant decrease in tumor volume at a level of statistical significance (e.g., p<0.05) when compared to tumor volume of untreated tumor in the circumstance where the primary cancer therapy (e.g., chemotherapeutic or radiation therapy) alone is unable to produce a statistically significant decrease in tumor volume compared to tumor volume of untreated tumor. This generally applies to tumor volume measurements made at a time when the untreated tumor is growing log rhythmically.

The term "sample" used for detecting or determining the presence or level of at least one biomarker is typically whole blood, plasma, serum, saliva, urine, stool (e.g., feces), tears, and any other bodily fluid (e.g., as described above under the definition of "body fluids"), or a tissue sample (e.g., biopsy) such as a small intestine, colon sample, or surgical resection tissue, in certain instances, the method of the present invention further comprises obtaining the sample from the individual prior to detecting or determining the presence or level of at least one marker in the sample.

The term "sensitize" means to alter cancer cells or tumor cells in a way that allows for more effective treatment of the associated cancer with a cancer therapy (e.g., chemotherapeutic or radiation therapy). In some embodiments, normal cells are not affected to an extent that causes the normal cells to be unduly injured by the cancer therapy (e.g., chemotherapy or radiation therapy). An increased sensitivity or a reduced sensitivity to a therapeutic treatment is measured according to a known method in the art for the particular treatment and methods described herein below, including, but not limited to, cell proliferative assays (Tanigawa N, Kern D H, Kikasa Y, Morton D L, Cancer Res 1982; 42: 2159-2164), cell death assays (Weisenthal L M, Shoemaker R H, Marsden J A, Dili P L, Baker J A, Moran E M, Cancer Res 1984; 94: 161-173; Weisenthal L M, Lippman M E, Cancer Treat Rep 1985; 69: 615-632; Weisenthal I, M, In: Kaspers G J L, Pieters R, Twentyman P R, Weisenthal L M, Veerman A J P, eds. Drug Resistance in Leukemia and Lymphoma. Langhome, P A: Harwood Academic Publishers, 1993: 415-432; Weisenthal L M, Contrib Gynecol Obstet 1994; 19: 82-90). The sensitivity or resistance may also be measured in animal by measuring the tumor size reduction over a period of time, for example, 6 month for human and 4-6 weeks for mouse. A composition or a method sensitizes response to a therapeutic treatment if the increase in treatment sensitivity or the reduction in resistance is 25% or more, for example, 30%, 40%, 50%, 60%, 70%, 80%, or
more, to 2-fold, 3-fold, 4-fold, 5-fold, 10-fold, 15-fold, 20-fold or more, compared to treatment sensitivity or resistance in the absence of such composition or method. The determination of sensitivity or resistance to a therapeutic treatment is routine in the art and within the skill of an ordinarily skilled clinician. It is to be understood that any method described herein for enhancing the efficacy of a cancer therapy can be equally applied to methods for sensitizing hyperproliferative or otherwise cancerous cells (e.g., resistant cells) to the cancer therapy.

The term "synergistic effect" refers to the combined effect of two or more anticancer agents or chemotherapy drugs can be greater than the sum of the separate effects of the anticancer agents or chemotherapy drugs alone.

The term "subject" refers to any healthy animal, mammal or human, or any animal, mammal or human afflicted with a condition of interest (e.g., cancer). The term: "subject" is interchangeable with "patient."

The language "substantially free of chemical precursors or other chemicals" includes preparations of antibody, polypeptide, peptide or fusion protein in which the protein is separated from chemical precursors or other chemicals which are involved in the synthesis of the protein. In one embodiment, the language "substantially free of chemical precursors or other chemicals" includes preparations of antibody, polypeptide, peptide or fusion protein having less than about 30% (by dry weight) of chemical precursors or non-antibody, polypeptide, peptide or fusion protein chemicals, more preferably less than about 20% chemical precursors or non-antibody, polypeptide, peptide or fusion protein chemicals, still more preferably less than about 10% chemical precursors or non-antibody, polypeptide, peptide or fusion protein chemicals, and most preferably less than about 5% chemical precursors or non-antibody, polypeptide, peptide or fusion protein chemicals.

The term "substantially pure cell population" refers to a population of cells having a specified cell marker characteristic and differentiation potential that is at least about 50%, preferably at least about 75-80%, more preferably at least about 85-90%, and most preferably at least about 95% of the cells making up the total cell population. Thus, a "substantially pure cell population" refers to a population of cells that contain fewer than about 50%, preferably fewer than about 20-25%, more preferably fewer than about 10-15%, and most preferably fewer than about 5% of cells that do not display a specified marker characteristic and differentiation potential under designated assay conditions.
As used herein, the term "survival" includes all of the following: survival until mortality, also known as overall survival (wherein said mortality may be either irrespective of cause or
unrelated); "recurrence-free survival" (wherein the term recurrence shall include both localized and distant recurrence); metastasis free survival; disease free survival (wherein the term disease shall include cancer and diseases associated therewith). The length of said survival may be calculated by reference to a defined start point (e.g., time of diagnosis or start of treatment) and end point (e.g., death, recurrence or metastasis). In addition, criteria for efficacy of treatment can be expanded to include response to chemotherapy, probability of survival, probability of metastasis within a given time period, and probability of tumor recurrence.

A "transcribed polynucleotide" or "nucleotide transcript" is a polynucleotide (e.g., an mRNA, hnRNA, cDNA, mature miRNA, pre-miRNA, pri-miRNA, miRNA*, anti-miRNA, or a miRNA binding site, or a variant thereof or an analog of such RNA or cDNA) which is complementary to or homologous with all or a portion of a mature mRNA made by transcription of a marker of the invention and normal posttranscriptional processing (e.g., splicing), if any, of the RNA transcript, and reverse transcription of the RNA transcript.

As used herein, the term "vector" refers to a nucleic acid capable of transporting another nucleic acid to which it has been linked. One type of vector is a "plasmid", which refers to a circular double stranded DNA loop into which additional DNA segments may be ligated. Another type of vector is a viral vector, wherein additional DNA segments may be ligated into the viral genome. Certain vectors are capable of autonomous replication in a host cell into which they are introduced (e.g., bacterial vectors having a bacterial origin of replication and episomal mammalian vectors). Other vectors (e.g., non-episomal mammalian vectors) are integrated into the genome of a host cell upon introduction into the host cell, and thereby are replicated along with the host genome. Moreover, certain vectors are capable of directing the expression of genes to which they are operatively linked. Such vectors are referred to herein as "recombinant expression vectors" or simply "expression vectors." In general, expression vectors of utility in recombinant DNA techniques are often in the form of plasmids. In the present specification, "plasmid" and "vector" may be used interchangeably as the plasmid is the most commonly used form of vector. However, the invention is intended to include such other forms of expression vectors, such as viral.
vectors (e.g., replication defective retroviruses, adenoviruses and adeno-associated viruses), which serve equivalent functions.

An "underexpression" or "significantly lower level of expression or copy number" of a marker refers to an expression level or copy number in a test sample that is greater than the standard error of the assay employed to assess expression or copy number, but is preferably at least twice, and more preferably three, four, five or ten or more times less than the expression level or copy number of the marker in a control sample (e.g., sample from a healthy subject not afflicted with cancer) and preferably, the average expression level or copy number of the marker in several control samples.

As used herein, the term "unresponsiveness" includes refractivity of immune cells to stimulation, e.g., stimulation via an activating receptor or a cytokine. Unresponsiveness can occur, e.g., because of exposure to immunosuppressants or exposure to high doses of antigen. As used herein, the term "anergy" or "tolerance" includes refractivity to activating receptor-mediated stimulation. Such refractivity is generally antigen-specific and persists after exposure to the tolerizing antigen has ceased. For example, anergy in T cells (as opposed to unresponsiveness) is characterized by lack of cytokine production, e.g., IL-2. T cell anergy occurs when T cells are exposed to antigen and receive a first signal (a T cell receptor or CD-3 mediated signal) in the absence of a second signal (a costimulatory signal). Under these conditions, reexposure of the cells to the same antigen (even if reexposure occurs in the presence of a costimulatory polypeptide) results in failure to produce cytokines and, thus, failure to proliferate. Anergic T cells can, however, proliferate if cultured with cytokines (e.g., IL-2). For example, T cell anergy can also be observed by the lack of IL-2 production by T lymphocytes as measured by ELISA or by a proliferation assay using an indicator cell line. Alternatively, a reporter gene construct can be used. For example, anergic T cells fail to initiate IL-2 gene transcription induced by a heterologous promoter under the control of the 5' IL-2 gene enhancer or by a multimer of the API sequence that can be found within the enhancer (Kang et al. (1992) Science 257:1134).

There is a known and definite correspondence between the amino acid sequence of a particular protein and the nucleotide sequences that can code for the protein, as defined by the genetic code (shown below). Likewise, there is a known and definite correspondence between the nucleotide sequence of a particular nucleic acid and the amino acid sequence encoded by that nucleic acid, as defined by the genetic code.
GENETIC CODE

Alanine (Ala, A) GCA, GCC, GCC, GCT
Arginine (Arg, R) AGA, ACG, CGA, GGC, CGG, CGT
Asparagine (Asn, N) AAC, AAT

Aspartic acid (Asp, D) GAC, GAT
Cysteine (Cys, C) TGC, TGT
Glutamic acid (Glu, E) GAA, GAG
Glutamine (Gln, Q) CAA, GAG
Glycine (Gly, G) GGA, GGC, GGG, GGT

Histidine (His, H) CAC, CAT

Isoleucine (Ile, I) ATA, ATG, ATT
Leucine (Leu, L) OTA, GCC, CTG, CTT, TTA, TTG
Lysine (Lys, K) AAA, AAG
Methionine (Met, M) ATG

Phenylalanine (Phe, F) TTC, TTT
Proline (Pro, P) CCA, CCC, CCG, COT
Serine (Ser, S) AGC, AGT, TCA, TCC, TCG, TCT
Threonine (Thr, T) ACA, ACC, ACG, ACT

Tryptophan (Trp, W) TG'G

Tyrosine (Tyr, Y) TAG, TAT
Valine (Val, V) GTA, GTC, GTG, GTT

Termination signal (end) TAA, TAG, TGA

An important and well known feature of the genetic code is its redundancy, whereby, for most of the amino acids used to make proteins, more than one coding nucleotide triplet may be employed (illustrated above). Therefore, a number of different nucleotide sequences may code for a given amino acid sequence. Such nucleotide sequences are considered functionally equivalent since they result in the production of the same amino acid sequence in all organisms (although certain organisms may translate some sequences more efficiently than they do others). Moreover, occasionally, a methylated variant of a purine or pyrimidine may be found in a given nucleotide sequence. Such trimethylations do not affect the coding relationship between the trinucleotide codon and the corresponding amino acid.

In view of the foregoing, the nucleotide sequence of a DMA or RNA coding for a fusion protein or polypeptide of the invention (or any portion thereof) can be used to derive
the fusion protein or polypeptide amino acid sequence, using the genetic code to translate the DNA or RNA into an amino acid sequence. Likewise, for a fusion protein or polypeptide amino acid sequence, corresponding nucleotide sequences that can encode the fusion protein or polypeptide can be deduced from the genetic code (which, because of its redundancy, will produce multiple nucleic acid sequences for any given amino acid sequence). Thus, description and/or disclosure herein of a nucleotide sequence which encodes a fusion protein or polypeptide should be considered to also include description and/or disclosure of the amino acid sequence encoded by the nucleotide sequence. Similarly, description and/or disclosure of a fusion protein or polypeptide amino acid sequence herein should be considered to also include description and/or disclosure of all possible nucleotide sequences that can encode the amino acid sequence.

Finally, nucleic acid and amino acid sequence information for the loci and biomarkers of the present invention (e.g., biomarkers listed in Table 1 and the Examples) are well known in the art and readily available on publicly available databases, such as the National Center for Biotechnology Information (NCBI). For example, exemplary nucleic acid and amino acid sequences derived from publicly available sequence databases are provided below.

The nucleic acid and amino acid sequences of a representative hitman PD-1 biomarker is available to the public at the GenBank database under NM_005018.2 and NP_05009.2 (see also Ishida et al. (1992) EMBI J. 1:3887; Shinohara et al. (1994) Genomics 23:704; and U.S. Patent 5,698,520). Nucleic acid and polypeptide sequences of PD-1 orthologs in organisms other than humans are well known and include, for example, monkey PD-1 (NM_001144358.1 and NP_00107830.1), mouse PD-1 (NM_0077998.2 and NP_032824.1), rat PD-1 (NM_00106927.1 and NP_00100397.1), chicken PD-1 (XM_422723.3 and XP_422723.2), cow PD-1 (NM_001083506.1 and NP_001076975.1), and dog PD-1 (XM_543338.3 and XP143338.3).

At least five transcript (i.e., splice) variants encoding different human PD-L1 isoforms exist and are described herein. PD-L1 proteins generally comprise a signal sequence, an IgV domain, and an IgC domain. The sequence of hitman PD-L1 transcript variant 1 is the canonical sequence, all positional information described with respect to the remaining isoforms are determined from this sequence, and the sequences are available to the public at the GenBank database under NM_014143.3 and NP_054862.1. In this isoform, the signal sequence is shown from about amino acid 18, the
IgV domain is shown from about amino acid 19 to about amino acid 134, the IgC domain is shown from about amino acid 135 to about amino acid 227, the transmembrane domain is shown from about amino acids 239 to about amino acid 259, and the cytoplasmic domain is shown from about amino acid 260 to about amino acid 290.

The sequences of human PD-L1 transcript variant 2 can be found under NM_001267706.1 and NP_001254635.1 and the encoded protein lacks an alternate in-frame exon in the 5' coding region compared to variant 1 (i.e., missing amino acid residues 17-130) so as to result in a shorter protein.

The sequences of human PD-L1 transcript variant 3 is provided herein and encodes a naturally occurring B7-4 soluble polypeptide, i.e., having a short hydrophilic domain and no transmembrane domain. In this isoform, the signal sequence is shown from about amino acid 1 to about amino acid 18, the IgV domain is shown from about amino acid 19 to about amino acid 134, the IgC domain of SEQ ID NO:2 is shown from about amino acid 135 to about amino acid 227, and the hydrophilic tail is shown from about amino acid 228 to about amino acid 245.

In addition, another soluble PD-L1 isoform exists having the amino acid sequence shown herein. This fourth PD-L1 isoform differs from that of the first PD-L1 isoform in that there is a K to D substitution at amino acid position 178 and amino acid residues 179-290 are deleted.

Moreover, another soluble PD-L1 isoform exists having the amino acid sequence of residues 1-227 encoded by transcript variant 1 and thereby only comprising a signal sequence, the IgV domain, and the IgC domain.

In some embodiments, the soluble PD-L1 isoforms of the present invention do not contain the signal sequence as such a sequence is usually cleaved prior to secretion of the polypeptide from the cell. In other embodiments, the soluble PD-L1 isoforms of the invention consist of the IgV domain and the IgC domain (i.e., the extracellular portion of the full-length, membrane-bound PD-L1) and can further comprise heterologous sequences, such as Fe domains, protein tags, conjugated therapeutics, and the like. Such soluble PD-L1 isoforms can be generated by alternative splicing in a number of ways well known to the skilled artisan involving the elimination of exons 4, 5, and 6 of full-length, membrane-bound PD-L1 cDNA.

Nucleic acid and polypeptide sequences of PD-L1 orthologs in organisms other than humans are well known and include, for example, monkey PD-L1 (NM_001083889.1) and
chimpanzee PD-L1 (XM_001140705.2 and XP_0140705.1), mouse PD-L1 (NM_121893.3 and NP_068693.1), rat PD-L1 (NM_001191954.1 and NP_001178883.1), chicken PD-L1 (XM_424811.3 and XP_424811.3), cat PD-L1 (NM_01163412.1 and NP_001156884.1), and dog PD-L1 (XM_541302.3 and XP_841302.3).

Antibodies for the detection of PD-L1 and methods for making them are known in the art.

Table 1: Nucleic Acid and Amino Acid Sequences of the Present Invention

<table>
<thead>
<tr>
<th>SEQ ID NO: 1</th>
<th>Hainan PD-1 cDNA Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>atgcaagatccc caaggcccct ctgctgaggcc ggtgctggccg tgcctacact gggctggccg</td>
</tr>
<tr>
<td>61</td>
<td>ccagattgct ttgtagaccc cccgagaagg cccctgaggct cccctgacact ctagcactc</td>
</tr>
<tr>
<td>121</td>
<td>ctctctctgg ggcacgctgc accttcaccc gcatctcct gcacccactg accttcaccc</td>
</tr>
<tr>
<td>181</td>
<td>gagagtctcg tgcaccaactg gattcagagc agccggaagc aaggctgagc ccaagtggcc</td>
</tr>
<tr>
<td>241</td>
<td>ggcctccggg agggagcgcag cagcggcagct ggcctgcctg cagcggcagc gatggccagt</td>
</tr>
<tr>
<td>301</td>
<td>ccgcaagggcc gcagttcctga gatggtggct gcagggccgc ggcgcactga cagcgcaccc</td>
</tr>
<tr>
<td>361</td>
<td>taccctctgg ggcacagcct ccctggcccc aagcgccaga tcaacagagc ccctccggcc</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SEQ ID NO: 2</th>
<th>Human PD-1 Amino Acid Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>mpqpaapwv pvavaglqwr pgxfldspdr pvilepr.fspa lliwertegnna tfccsnts</td>
</tr>
<tr>
<td>61</td>
<td>esfrylgvpxs sqsnsqdkkl aepserqaggg qrdcrivtvg pgwdfhmsw vrrnrdscyt</td>
</tr>
<tr>
<td>121</td>
<td>ylgcaigslap qaklkerla elrvteresa vptahpspsp pqqgqftlvgv vgvyggglgs</td>
</tr>
<tr>
<td>181</td>
<td>ilvlylvilv iciaaargti garrctggplk edxaspvplsvydgeidfqu rektpepypvp</td>
</tr>
<tr>
<td>241</td>
<td>cvpeqthnyat lvfprpgmt8 sparrsaddg prsgqplrpe dgichsspl</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SEQ ID NO: 3</th>
<th>Mouse PD-1 cDNA Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>atgtgggtggc ggcaggtacc cattgctactg acctgggtgct tgcctacact ggccttgcca</td>
</tr>
<tr>
<td></td>
<td>tta.f.aggag cccaaagtgg cccttgaggct cccctgacact ctagcactc</td>
</tr>
<tr>
<td>121</td>
<td>ggctcacagc agagcgctgc aaccttcactg gcacccactg accttcaccc gcatctcct</td>
</tr>
<tr>
<td>181</td>
<td>gagagtctcg ttcgcttgctg gacccgaggt aggcggacag aagcgtgact</td>
</tr>
<tr>
<td>241</td>
<td>ggcctccggg agggagcgcag cagcggcagct ggcctgcctg cagcggcagc gatggccagt</td>
</tr>
<tr>
<td>301</td>
<td>ccgcaagggcc gcagttcctga gatggtggct gcagggccgc ggcgcactga cagcgcaccc</td>
</tr>
<tr>
<td>361</td>
<td>taccctctgg ggcacagcct ccctggcccc aagcgccaga tcaacagagc ccctccggcc</td>
</tr>
<tr>
<td>421</td>
<td>gagagtctcg ttcgcttgctg gacccgaggt aggcggacag aagcgtgact</td>
</tr>
<tr>
<td>481</td>
<td>ccgcaagggcc gcagttcctga gatggtggct gcagggccgc ggcgcactga cagcgcaccc</td>
</tr>
</tbody>
</table>
SEQ ID NO: 4 Mouse PP-1 Amino Acid Sequence

SEQ ID NO: 5 Human PD-L1 Variant cDNA Sequence

SEQ ID NO: 6 Human PD-L1 Isoform 1 Amino Acid Sequence

SEQ ID NO: 7 Human PD-L1 Variant 2 cDNA Sequence
Human PD-L1 isoform 2 Protein and DNA Sequence

SEQ ID NO.: 1

Human PD-L1 Isoform 2 DNA Sequence

gccctcagag cacccggccct gcagccgctct gctgcctgcttg cagagagag s8

SEQ ID NO.: 2

Human PD-L1 Isoform 3 DNA Sequence

ggcgtgcctg cacccggccct gcagccgctct gctgcctgcttg cagagagag s8

SEQ ID NO.: 3

Human PD-L1 Isoform 4 DNA Sequence

ggcgtgcctg cacccggccct gcagccgctct gctgcctgcttg cagagagag s8

SEQ ID NO.: 4

Human PD-L1 Isoform 5 DNA Sequence

ggcgtgcctg cacccggccct gcagccgctct gctgcctgcttg cagagagag s8
SEQ ID NO: 10 Human PD-L1 Isoform 3 Amino Acid Sequence

Met Arg Ile Phe Ala Val Phe Ile Phe Met Thr Tyr Trip His Leu Leu
1 5 10 15

Asn Ala Phe Thr Val Thr Val Pro Lys Asp Let Tyr Vai Val Gliu Tyr
20 25 30

Gly Ser Asn Met Thr Ile Gliu Cys Lys Phe Pro Val Gliu Lys Gln Leu
35 40 45

Asp Leu Ala Ala Leu Ile Val Tyr Trip Gliu Met Gliu Asp Lys Asn Ile
50 55 60

Ile Gin Phe Vai Sis Gin Gliu Gin Asp Leu Lys Val Gin His Ser Ser
65 70 75 80

Tyr Arc Gin Arg Ala Arg Leu Leu Lys Asp Gin Leu Ser Lea Gin Asn
85 90 95

Ala Ala Leu Git Ile Thr Ash Vai Lys Leu Git Ash Ala Gin Vai Tyr
100 105 110

Arg Cys Met Ile Ser Tyr Gin Gin Gin Gin Gin Gin Gin Gin Gin Gin
115 120 125

Lys Val Asn Ala Pro Tyr Ash Gin Tie Asn Gin Arg Gin gin Gin Gin Gin
130 135 140

Asp Pro Vai Thr Ser Gliu His Gliu Leu Thr Cys Gin Ala Gin Gin Tyr
145 150 155 160

Pro Lys Ala Gin Vai Ile Trip Thr Ser Ser Asp His Gin Val Leu Ser
165 170 175

Gly Gin Thr Thx Thr Thr Ash Ser Gin Gin Gin Gin Gin Gin Gin Gin Gin
180 185 190 195

Val Thr Ser Thr Leu Arg Gin Thr Thr Thr Gin Gin Gin Gin Gin Gin
200 205

- 45 -
SEQ ID NO: 11 Human PP-L,1 Isoform 4 Amino Acid Sequence

MRIFAVPPFYHHLFAFPTYTVKVRLTVYYGLSMTLCEKFLVERQQLDLRALLLVMEME
61 DFXNITGGNEEDLNVHQSHSYFQPARLKLQLGLNAAALQITDQVQLDAGYVCYRCKYSGG
121ADVKTGKYNAPYNKINGIRILVVDGDFSPELTCQAEYGPKAEVEPEEENI*

SEQ ID NO: 12 Human PD-L1 Isoform 5 cDNA Sequence

ATGAGGATAATTCGCTCTTTTATACATGACCTGGCATTTGCAAGCCGATTCTCTGTCGCTCCTGCAAGCTGGCTACTGTTCTCGGCG

SEQ ID NO: 13 Human PD-L1 Isoform 5 Amino Acid Sequence (Soluble 1)

MRIFAVPPFYHHLFAFPTYTVKVRLTVYYGLSMTLCEKFLVERQQLDLRALLLVMEME
61 DFXNITGGNEEDLNVHQSHSYFQPARLKLQLGLNAAALQITDQVQLDAGYVCYRCKYSGG
121ADVKTGKYNAPYNKINGIRILVVDGDFSPELTCQAEYGPKAEVEPEEENI*

SEQ ID NO: 14 Human PD-L1 Isoform 6 cDNA Sequence

ATGAGGATAATTCGCTCTTTTATACATGACCTGGCATTTGCAAGCCGATTCTCTGTCGCTCCTGCAAGCTGGCTACTGTTCTCGGCG

SEQ ID NO: 15 Human PD-L1 Isoform 6 Amino Acid Sequence (Soluble 2)

MRIFAVPPFYHHLFAFPTYTVKVRLTVYYGLSMTLCEKFLVERQQLDLRALLLVMEME
61 DFXNITGGNEEDLNVHQSHSYFQPARLKLQLGLNAAALQITDQVQLDAGYVCYRCKYSGG
121ADVKTGKYNAPYNKINGIRILVVDGDFSPELTCQAEYGPKAEVEPEEENI*

SEQ ID NO: 16 Mouse PD-L1 cPNA Sequence
Novel agents and compositions of the present invention are provided herein and can be used for the diagnosis, prognosis, prevention, and treatment of cancer (e.g., head, neck, and/or lung cancers) and cancer subtypes thereof. Such agents and compositions can detect and/or modulate, e.g., up- or down-regulate, expression and/or activity of gene products or fragments thereof encoded by biomarkers of the invention, including the biomarkers listed in Table 1 and the Examples. Exemplary agents include antibodies, small molecules, peptides, peptidomimetics, natural ligands, and derivatives of natural ligands, that can either bind and/or activate or inhibit protein biomarkers of the invention, including the biomarkers listed in Table 1 and the Examples, or fragments thereof; RNA interference, antisense, nucleic acid aptamers, etc. that can downregulate the expression and/or activity of the biomarkers of the invention, including the biomarkers listed in Table 1 and the Examples, or fragments thereof.

In one embodiment, isolated nucleic acid molecules that specifically hybridize with or encode one or more biomarkers listed in Table 1 and the Examples or biologically active portions thereof are presented. As used herein, the term "nucleic acid molecule" is intended to include DNA molecules (i.e., cDNA or genomic DNA) and RNA molecules (i.e.,
mRNA) and analogs of the DNA or RNA generated using nucleotide analogs. The nucleic acid molecule can be single-stranded or double-stranded, but preferably is double-stranded DNA. An "isolated" nucleic acid molecule is one which is separated from other nucleic acid molecules which are present in the natural source of the nucleic acid. Preferably, an “isolated” nucleic acid is free of sequences which naturally flank the nucleic acid (i.e., sequences located at the 5' and 3' ends of the nucleic acid) in the genomic DNA of the organism from which the nucleic acid is derived. For example, in various embodiments, the isolated nucleic acid molecules corresponding to the one or more biomarkers listed in Table 1 and the Examples can contain less than about 5 kb, 4 kb, 3 kb, 2 kb, 1 kb, 0.5 kb or 0.1 kb of nucleotide sequences which naturally flank the nucleic acid molecule in genomic DNA of the cell from which the nucleic acid is derived (i.e., a head and neck or lung cancer cell). Moreover, an "isolated" nucleic acid molecule, such as a cDNA molecule, can be substantially free of other cellular material, or culture medium when produced from recombinant techniques, or chemical precursors or other chemicals when chemically synthesized.

A nucleic acid molecule of the present invention, e.g., a nucleic acid molecule having the nucleotide sequence of one or more biomarkers listed in Table 1 and the Examples or a nucleotide sequence which is at least about 50%, preferably at least about 60%, more preferably at least about 70%, yet more preferably at least about 80%, still more preferably at least about 90%, and most preferably at least about 95% or more (e.g., about 98%) homologous to the nucleotide sequence of one or more biomarkers listed in Table 1 and the Examples or a portion thereof (i.e., 100, 200, 300, 400, 450, 500, or more nucleotides), can be isolated using standard molecular biology techniques and the sequence information provided herein. For example, a hitman cDNA can be isolated from a human cell line (from Stratagene, La Jolla, CA, or Clontech, Palo Alto, CA) using all or portion of the nucleic acid molecule, or fragment thereof, as a hybridization probe and standard hybridization techniques (i.e., as described in Sambrook, J., Fritsh, E.P., and Maniatis, T. Molecular Cloning: A Laboratory Manual 2nd, ed., Cold Spring Harbor Laboratory, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 1989). Moreover, a nucleic acid molecule encompassing all or a portion of the nucleotide sequence of one or more biomarkers listed in Table 1 and the Examples or a nucleotide sequence which is at least about 50%, preferably at least about 60%, more preferably at least about 70%, yet more preferably at least about 80%, still more preferably at least about 90%, and most preferably
at least about 95% or more homologous to the nucleotide sequence, or fragment thereof, can be isolated by the polymerase chain reaction using oligonucleotide primers designed based upon the sequence of the one or more biomarkers listed in Table 1 and the Examples, or fragment thereof, or the homologous nucleotide sequence. For example, mRNA can be isolated from muscle cells (i.e., by the guanidinium-thiocyanate extraction procedure of Chirgwin et al. (1979) Biochemistry 18: 5294-5299) and cDNA can be prepared using reverse transcriptase (i.e., Moloney MLV reverse transcriptase, available from Gibco/BRL, Bethesda, MD; or AMV reverse transcriptase, available from Seikagaku America, Inc., St. Petersburg, FL). Synthetic oligonucleotide primers for PGR amplification can be designed according to well-known methods in the art. A nucleic acid of the invention can be amplified using cDNA or, alternatively, genomic DNA, as a template and appropriate oligonucleotide primers according to standard PCR amplification techniques. The nucleic acid so amplified can be cloned into an appropriate vector and characterized by DNA sequence analysis. Furthermore, oligonucleotides corresponding to the nucleotide sequence of one or more biomarkers listed in Table 1 and the Examples can be prepared by standard synthetic techniques, i.e., using an automated DNA synthesizer.

Probes based on the nucleotide sequences of one or more biomarkers listed in Table 1 and the Examples can be used to detect transcripts or genomic sequences encoding the same or homologous proteins. In preferred embodiments, the probe further comprises a label group attached thereto, i.e., the label group can be a radioisotope, a fluorescent compound, an enzyme, or an enzyme co-factor. Such probes can be used as a part of a diagnostic test kit for identifying cells or tissue which express one or more biomarkers listed in Table 1 and the Examples, such as by measuring a level of nucleic acid in a sample of cells from a subject, i.e., detecting mRNA levels of one or more biomarkers listed in Table 1 and the Examples.

Nucleic acid molecules encoding proteins corresponding to one or more biomarkers listed in Table 1 and the Examples from different species are also contemplated. For example, rat or monkey cDNA can be identified based on the nucleotide sequence of a human and/or mouse sequence and such sequences are well known in the art. In one embodiment, the nucleic acid moieukis) of the invention encodes a protein or portion thereof which includes an amino acid sequence which is sufficiently homologous to an amino acid sequence of one or more biomarkers listed in Table 1 and the Examples, such that the protein or portion thereof modulates (e.g., enhance), one or more of the following
biological activities: a) binding to the biomarker; b) modulating the copy number of the biomarker; c) modulating the expression level of the biomarker; and d) modulating the activity level of the biomarker.

As used herein, the language "sufficiently homologous" refers to proteins or portions thereof which have amino acid sequences which include a minimum number of identical or equivalent (e.g., an amino acid residue which has a similar side chain as an amino acid residue in one or more biomarkers listed in Table 1 and the Examples, or fragment thereof) amino acid residues to an amino acid sequence of the biomarker, or fragment thereof such that the protein or portion thereof modulates (e.g., enhance) one or more of the following biological activities: a) binding to the biomarker; b) modulating the copy number of the biomarker; c) modulating the expression level of the biomarker; and d) modulating the activity level of the biomarker.

In another embodiment, the protein is at least about 50%, preferably at least about 60%, more preferably at least about 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more homologous to the entire amino acid sequence of the biomarker, or a fragment thereof.

Portions of proteins encoded by nucleic acid molecules of the one or more biomarkers listed in Table 1 and the Examples are preferably biologically active portions of the protein. As used herein, the term "biologically active portion" of one or more biomarkers listed in Table 1 and the Examples is intended to include a portion, e.g., a domain/motif, that has one or more of the biological activities of the full-length protein.

Standard binding assays, e.g., immunoprecipitations and yeast two-hybrid assays, as described herein, or functional assays, e.g., RNAi or overexpression experiments, can be performed to determine the ability of the protein or a biologically active fragment thereof to maintain a biological activity of the full-length protein.

The invention further encompasses nucleic acid molecules that differ from the nucleotide sequence of the one or more biomarkers listed in Table 1 and the Examples, or fragment thereof due to degeneracy of the genetic code and thus encode the same protein as that encoded by the nucleotide sequence, or fragment thereof. In another embodiment, an isolated nucleic acid molecule of the invention has a nucleotide sequence encoding a protein having an amino acid sequence of one or more biomarkers listed in Table 1 and the Examples, or fragment thereof, or a protein having an amino acid sequence which is at least about 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or
more homologous to the amino acid sequence of the one or more biomarkers listed in Table 1 and the Examples, or fragment thereof. In another embodiment, a nucleic acid encoding a polypeptide consists of nucleic acid sequence encoding a portion of a full-length fragment of interest that is less than 195, 190, 185, 180, 175, 170, 165, 160, 155, 150, 145, 140, 135, 130, 125, 120, 115, 110, 105, 100, 95, 90, 85, 80, 75, or 70 amino acids in length.

It will be appreciated by those skilled in the art that DNA sequence polymorphisms that lead to changes in the amino acid sequences of the one or more biomarkers listed in Table 1 and the Examples may exist within a population (e.g., a mammalian and/or human population). Such genetic polymorphisms may exist among individuals within a population due to natural allelic variation. As used herein, the terms "gene" and "recombinant gene" refer to nucleic acid molecules comprising an open reading frame encoding one or more biomarkers listed in Table 1 and the Examples, preferably a mammalian, e.g., human, protein. Such natural allelic variations can typically result in 1-5% variance in the nucleotide sequence of the one or more biomarkers listed in Table 1 and the Examples.

Any and all such nucleotide variations and resulting amino acid polymorphisms in the one or more biomarkers listed in Table 1 and the Examples that are the result of natural allelic variation and that do not alter the functional activity of the one or more biomarkers listed in Table 1 and the Examples are intended to be within the scope of the invention. Moreover, nucleic acid molecules encoding one or more biomarkers listed in Table 1 and the Examples from other species.

In addition to naturally-occurring allelic variants of the one or more biomarkers listed in Table 1 and the Examples sequence that may exist in the population, the skilled artisan will further appreciate that changes can be introduced by mutation into the nucleotide sequence, or fragment thereof, thereby leading to changes in the amino acid sequence of the encoded one or more biomarkers listed in Table 1 and the Examples, without altering the functional ability of the one or more biomarkers listed in Table 1 and the Examples. For example, nucleotide substitutions leading to amino acid substitutions at "non-essential" amino acid residues can be made in the sequence, or fragment thereof. A "non-essential" amino acid residue is a residue that can be altered from the wild-type sequence of the one or more biomarkers listed in Table 1 and the Examples without altering the activity of the one or more biomarkers listed in Table 1 and the Examples, whereas an "essential" amino acid residue is required for the activity of the one or more biomarkers listed in Table 1 and the Examples. Other amino acid residues, however, (e.g., those that
are not conserved or only semi-conserved between mouse and human) may not be essential for activity and thus are likely to be amenable to alteration without altering the activity of the one or more biomarkers listed in Table 1 and the Examples.

The term "sequence identity or homology" refers to the sequence similarity between two polypeptide molecules or between two nucleic acid molecules. When a position in both of the two compared sequences is occupied by the same base or amino acid monomer sub-unit, e.g., if a position in each of two DNA molecules is occupied by adenine, then the molecules are homologous or sequence identical at that position. The percent of homology or sequence identity between two sequences is a function of the number of matching or homologous identical positions shared by the two sequences divided by the number of positions compared. For example, if 9 of 10 of the positions in two sequences are the same then the two sequences are 90% homologous or have 90% sequence identity. By way of example, the DNA sequences ATTGCC and TATGGC share 50% homology or sequence identity. Generally, a comparison is made when two sequences are aligned to give maximum homology. Unless otherwise specified "loop out regions", e.g., those arising from, from deletions or insertions in one of the sequences are counted as mismatches.

The comparison of sequences and determination of percent homology between two sequences can be accomplished using a mathematical algorithm.

Preferably, the alignment can be performed using the Clustal Method. Multiple alignment parameters include GAP Penalty = 10, Gap Length Penalty = 10. For DNA alignments, the pairwise alignment parameters can be Htuple=2, Gap penalty^\rightarrow, Window=4, and Diagonal saved=4. For protein alignments, the pairwise alignment parameters can be Ktup=3, Gap penalty=3, Window=5, and Diagonals saved=5.

In a preferred embodiment, the percent identity between two amino acid sequences is determined using the Needleman and Wunseh (J Mol, Biol. (48):444-453 (1970)) algorithm which has been incorporated into the GAP program in the GCG software package (available online), using either a Blossom 62 matrix or a PAM250 matrix, and a gap weight of 16, 14, 12, 10, 8, 6, or 4 and a length weight of 1, 2, 3, 4, 5, or 6. In yet another preferred embodiment, the percent identity between two nucleotide sequences is determined using the GAP program in the GCG software package (available online), using a NWSgapdna.CMP matrix and a gap weight of 40, 50, 60, 70, or 80 and a length weight of 10, 8, 6, or 4 and a length weight of 1, 2, 3, 4, 5, or 6.
In another embodiment, the percent identity between two amino acid or nucleotide sequences is determined using the algorithm of E. Meyers and W. Miller (CABIOS, 4:11-17 (1989)) which has been incorporated into the ALIGN program (version 2.0) (available online), using a PAM.120 weight residue table, a gap length penalty of 12 and a gap penalty of 4.

An isolated nucleic acid molecule encoding a protein homologous to one or more biomarkers listed in Table 1 and the Examples, or fragment thereof, can be created by introducing one or more nucleotide substitutions, additions or deletions into the nucleotide sequence, or fragment thereof, or a homologous nucleotide sequence such that one or more amino acid substitutions, additions or deletions are introduced into the encoded protein. Mutations can be introduced by standard techniques, such as site-directed mutagenesis and PCR-mediated mutagenesis. Preferably, conservative amino acid substitutions are made at one or more predicted non-essential amino acid residues. A "conservative amino acid substitution" is one in which the amino acid residue is replaced with an amino acid residue having a similar side chain. Families of amino acid residues having similar side chains have been defined in the art. These families include amino acids with basic side chains (e.g., lysine, arginine, histidine), acidic side chains (e.g., aspartic acid, glutamic acid), uncharged polar side chains (e.g., glycine, asparagine, guanidine, serine, threonine, tyrosine, cysteine), nonpolar side chains (e.g., alanine, valine, leucine, isoleucine, proline, phenylalanine, methionine, tryptophan), branched side chains (e.g., threonine, valine, isoleucine) and aromatic side chains (e.g., tyrosine, phenylalanine, tryptophan, histidine). Thus, a predicted nonessential amino acid residue in one or more biomarkers listed in Table 1 and the Examples is preferably replaced with another amino acid residue from the same side chain family. Alternatively, in another embodiment, mutations can be introduced randomly along all or part of the coding sequence of the one or more biomarkers listed in Table 1 and the Examples, such as by saturation mutagenesis, and the resultant mutants can be screened for an activity described herein to identify mutants that retain desired activity. Following mutagenesis, the encoded protein can be expressed recombinantly according to well-known methods in the art and the activity of the protein can be determined using, for example, assays described herein.

The levels of one or more biomarkers listed in Table 1 and the Examples levels may be assessed by any of a wide variety of well-known methods for detecting expression of a transcribed molecule or protein. Non-limiting examples of such methods include
immunological methods for detection of proteins, protein purification methods, protein function or activity assays, nucleic acid hybridization methods, nucleic acid reverse transcription methods, and nucleic acid amplification methods.

In preferred embodiments, the levels of one or more biomarkers listed in Table 1 and the Examples levels are ascertained by measuring gene transcript (e.g., mRNA), by a measure of the quantity of translated protein, or by a measure of gene product activity. Expression levels can be monitored in a variety of ways, including by detecting mRNA levels, protein levels, or protein activity, any of which can be measured using standard techniques. Detection can involve quantification of the level of gene expression (e.g., genomic DNA, cDNA, mRNA, protein, or enzyme activity), or, alternatively, can be a qualitative assessment of the level of gene expression, in particular in comparison with a control level. The type of level being detected will be clear from the context.

In a particular embodiment, the mRNA expression level can be determined both by in situ and by in vitro formats in a biological sample using methods known in the art. The term "biological sample" is intended to include tissues, cells, biological fluids and isolates thereof, isolated from a subject, as well as tissues, cells and fluids present within a subject. Many expression detection methods use isolated RNA. For in vitro methods, any RNA isolation technique that does not select against the isolation of mRNA can be utilized for the purification of RNA from cells (see, e.g., Ausubel et al., ed., Current Protocols in Molecular Biology, John Wiley & Sons, New York 1987-1999). Additionally, large numbers of tissue samples can readily be processed using techniques well known to those of skill in the art, such as, for example, the single-step RNA isolation process of Chomczynski (1989, U.S. Patent No. 4,843,155).

The isolated mRNA can be used in hybridization or amplification assays that include, but are not limited to, Southern or Northern analyses, polymerase chain reaction analyses and probe arrays. One preferred diagnostic method for the detection of mRNA levels involves contacting the isolated mRNA with a nucleic acid molecule (probe) that can hybridize to the mRNA encoded by the gene being detected. The nucleic acid probe can be, for example, a full-length cDNA, or a portion thereof, such as an oligonucleotide of at least 7, 15, 30, 50, 100, 250 or 500 nucleotides in length and sufficient to specifically hybridize under stringent conditions to a mRNA or genomic DNA encoding one or more biomarkers listed in Table 1 and the Examples. Other suitable probes for use in the diagnostic assays of
the invention are described herein. Hybridisation of an mRNA with the probe indicates that one or more biomarkers listed in Table 1 and the Examples is being expressed.

In one format, the mRNA is immobilized on a solid surface and contacted with a probe, for example by running the isolated mRNA on an agarose gel and transferring the mRNA from the gel to a membrane, such as nitrocellulose. In an alternative format, the probe(s) are immobilized on a solid surface and the mRNA is contacted with the probe(s), for example, in a gene chip array, e.g., an Affymetrix™ gene chip array. A skilled artisan can readily adapt known mRNA detection methods for use in detecting the level of the One or more biomarkers listed in Table 1 and the Examples mRNA expression levels.

An alternative method for determining mRNA expression level in a sample involves the process of nucleic acid amplification, e.g., by RT-PCR (the experimental embodiment set forth in Mullis, 1987, U.S. Patent No. 4,683,202), ligase chain reaction (Barany, 1991, Proc. Natl Acad. Sci. USA, 88:189-193), self-sustained sequence replication (Gnatulati et al., 1990, Proc. Natl. Acad. Sci. USA 87:1874-1878), transcriptional amplification system (Kwoh et al., 1989, Proc. Natl Acad. Sci. USA 86:1173-1177), Q-Beta RepHcase (Lazardi et al., 1988, Biochemistry 6:1197), rolling circle replication (Lazardi et al., U.S. Patent No. 5,854,033) or any other nucleic acid amplification method, followed by the detection of the amplified molecules using techniques well-known to those of skill in the art. These detection schemes are especially useful for the detection of nucleic acid molecules if such molecules are present in very low numbers. As used herein, amplification primers are defined as being a pair of nucleic acid molecules that can anneal to 5’ or 3’ regions of a gene (plus and minus strands, respectively, or vice-versa) and contain a short region in between. In general, amplification primers are from about 10 to 30 nucleotides in length and flank a region from about 50 to 200 nucleotides in length. Under appropriate conditions and with appropriate reagents, such primers permit the amplification of a nucleic acid molecule comprising the nucleotide sequence flanked by the primers.

For in situ methods, mRNA does not need to be isolated from the cells prior to detection. In such methods, a cell or tissue sample is prepared/processed using known histological methods. The sample is then immobilized on a support, typically a glass slide, and then contacted with a probe that can hybridize to the One or more biomarkers listed in Table 1 and the Examples mRNA.

As an alternative to making determinations based on the absolute expression level, determinations may be based on the normalized expression level of one or more biomarkers
listed in Table 1 and the Examples. Expression levels are normalized by correcting the absolute expression level by comparing its expression to the expression of a non-biomarker gene, e.g., a housekeeping gene that is constitutively expressed. Suitable genes for normalization include housekeeping genes such as the actin gene, or epithelial cell-specific genes. This normalization allows the comparison of the expression level in one sample, e.g., a subject sample, to another sample, e.g., a normal sample, or between samples from different sources.

The level or activity of a protein corresponding to one or more biomarkers listed in Table 1 and the Examples can also be detected and/or quantified by detecting or quantifying the expressed polypeptide. The polypeptide can be detected and quantified by any of a number of means well known to those of skill in the art. These may include analytic biochemical methods such as electrophoresis, capillary electrophoresis, high performance liquid chromatography (HPLC), thin layer chromatography (TLC), immunodiffusion, and the like, or various immunological methods such as fluid or gel precipitin reactions, immunodiffusion (single or double), Immunoelectrophoresis, radioimmunoassay (RIA), enzyme-linked immunosorbent assays (ELISAs), immunofluorescent assays. Western blotting, and the like. A skilled artisan can readily adapt known protein/antibody detection methods for use in determining whether cells express the biomarker of interest.

The present invention further provides soluble, purified and/or isolated polypeptide forms of one or more biomarkers listed in Table 1 and the Examples, or fragments thereof. In addition, it is to be understood that any and all attributes of the polypeptides described herein, such as percentage identities, polypeptide lengths, polypeptide fragments, biological activities, antibodies, etc. can be combined in any order or combination with respect to any biomarker listed in Table 1 and the Examples and combinations thereof.

In one aspect, a polypeptide may comprise a full-length amino acid sequence corresponding to one or more biomarkers listed in Table 1 and the Examples or a full-length amino acid sequence with 1 to about 20 conservative amino acid substitutions. An amino acid sequence of any described herein can also be at least 55, 55, 60, 65, 70, 75, 80, 85, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, or 99.5% identical to the full-length sequence of one or more biomarkers listed in Table 1 and the Examples, which is either described herein, well known in the art, or a fragment thereof. In another aspect, the present invention contemplates a composition comprising an isolated polypeptide corresponding to
one or more biomarkers listed in Table 1 and the Examples polypeptide and less than about 25%, or alternatively 15%, or alternatively 5%, contaminating biological macromolecules or polypeptides.

The present invention further provides compositions related to producing, detecting, characterizing, or modulating the level or activity of such polypeptides, or fragment thereof, such as nucleic acids, vectors, host cells, and the like. Such compositions may serve as compounds that modulate the expression and/or activity of one or more biomarkers listed in Table 1 and the Examples. For example, anti-PD-L1 antibodies that may bind specifically to PD-L1 or soluble PD-L1 can be used to reduce soluble PD-L1 (i.e., both forms of PD-L1 contain an extracellular domain typically targeted by antibodies) and thereby a) stop the titration of such therapeutic agents from binding to membrane-bound forms of PD-L1 and/or b) inhibit the inhibition of immunological responses promoted by the soluble forms of PD-L1.

An isolated polypeptide or a fragment thereof (or a nucleic acid encoding such a polypeptide) corresponding to one or more biomarkers of the invention, including the biomarkers listed in Table 1 and the Examples or fragments thereof, can be used as an immunogen to generate antibodies that bind to said immunogen, using standard techniques for polyclonal and monoclonal antibody preparation according to well-known methods in the art. An antigenic peptide comprises at least 8 amino acid residues and encompasses an epitope present in the respective full length molecule such that an antibody raised against the peptide forms a specific immune complex with the respective full length molecule. Preferably, the antigenic peptide comprises at least 10 amino acid residues. In one embodiment such epitopes can be specific for a given polypeptide molecule from one species, such as mouse or human (i.e., an antigenic peptide that spans a region of the polypeptide molecule that is not conserved across species is used as immunogen; such non-conserved residues can be determined using an alignment such as that provided herein).

For example, a polypeptide immunogen typically is used to prepare antibodies by immunizing a suitable subject (e.g., rabbit, goat, mouse or other mammal) with the immunogen. An appropriate immunogenic preparation can contain, for example, a recombinantly expressed or chemically synthesized molecule or fragment thereof to which the immune response is to be generated. The preparation can further include an adjuvant, such as Freud's complete or incomplete adjuvant, or similar immunostimulatory agent.
Immunization of a suitable subject with an immunogenic preparation induces a polyclonal antibody response to the antigenic peptide contained therein.

Polyclonal antibodies can be prepared as described above by immunizing a suitable subject with a polypeptide immunogen. The polypeptide antibody titer in the immunized subject can be monitored over time by standard techniques, such as with an enzyme linked immunosorbent assay (ELISA) using immobilized polypeptide. If desired, the antibody directed against the antigen can be isolated from the mammary (e.g., from the blood) and further purified by well-known techniques, such as protein A chromatography, to obtain the IgG fraction. At an appropriate time after immunization, e.g., when the antibody titers are highest, antibody-producing cells can be obtained from the subject and used to prepare monoclonal antibodies by standard techniques, such as the hybridoma technique (originally described by Kohler and Milstein (1975) Nature 256:495-497) (see also Brown et al. (1981) J. Immunol. 127:539-46; Brown et al. (1980) J. Biol. Chem. 255:4980-83; Yen et al. (1976) Proc. Natl. Acad. Sci. 76:2927-31; Yeh et al. (1982) Int. J. Cancer 29:269-75), the more recent human B cell hybridoma technique (Kozbor et al. (1983) Immunol. Today 4:72), the EBV-hybridoma technique (Cole et al. (1985) Monoclonal Antibodies and Cancer Therapy, Alan R. Liss, Inc., pp. 77-96) or various techniques. The technology for producing monoclonal antibody hybridomas is well known (see generally Kenneth, R. H. in Monoclonal Antibodies: A New Dimension In Biological Analyses, Plenum Publishing Corp., New York, New York (1980); Lerner. E. A. (1981) Yale J. Biol. Med. 54:387-402; Gefter, M. L. et al. (1977) Somatic Cell Genet. 3:231-36). Briefly, an immortal cell line (typically a myeloma) is fused to lymphocytes (typically splenocytes) from a mammal immunized with an immunogen as described above, and the culture supernatants of the resulting hybridoma cells are screened to identify a hybridoma producing a monoclonal antibody that binds to the polypeptide antigen, preferably specifically.

Any of the many well-known protocols used for fusing lymphocytes and immortalized cell lines can be applied for the purpose of generating a monoclonal antibody against one or more biomarkers of the invention, including the biomarkers listed in Table 1 and the Examples, or a fragment thereof (see, e.g., Gaifre, G. et al. (1977) Nature 266:550-52; Gefter et al. (1977) supra; Lerner (1981) supra: Kenneth (1980) supra). Moreover, the ordinary skilled worker will appreciate that there are many variations of such methods which also would be useful. Typically, the immortal cell line (e.g., a myeloma cell line) is derived from the same mammalian species as the lymphocytes. For example, murine
hybridomas can be made by fusing lymphocytes from a mouse immunized with an immunogenic preparation of the present invention with an immortalized mouse cell line. Preferred immortal cell lines are mouse myeloma cell lines that are sensitive to culture medium containing hypoxanthine, aminopterin and thymidine ("HAT medium"). Any of a number of myeloma cell lines can be used as a fusion partner according to standard techniques, e.g., the P3-NS1/1-Ag4-1, P3-x63-Ag8.653 or Sp2/0-Ag14 myeloma lines. These myeloma lines are available from the American Type Culture Collection (ATCC), Rockville, MD. Typically, HAT-sensitive mouse myeloma cells are fused to mouse splenocytes using polyethylene glycol ("PEG"). Hybridoma cells resulting from the fusion are then selected using HAT medium, which kills unfused and unproductively fused myeloma cells (unfused splenocytes die after several days because they are not transformed). Hybridoma cells producing a monoclonal antibody of the invention are detected by screening the hybridoma culture supernatants for antibodies that bind a given polypeptide, e.g., using a standard ELISA assay.

Additionally, fully human antibodies could be made against biomarkers of the invention, including the biomarkers listed in Table 1 and the Examples, or fragments thereof. Fully human antibodies can be made in mice that are transgenic for human immunoglobulin genes, e.g., according to Flaherty, et al., "Manipulating the Moose Embryo; A Laboratory Manual," Cold Spring Harbor Laboratory. Briefly, transgenic mice are immunized with purified immunogen. Spleen cells are harvested and fused to myeloma cells to produce hybridomas. Hybridomas are selected based on their ability to produce antibodies which bind to the immunogen. Fully human antibodies would reduce the immunogenicity of such antibodies in a human.

In one embodiment, an antibody for use in the instant invention is a bispecific antibody. A bispecific antibody has binding sites for two different antigens within a single antibody polypeptide. Antigen binding may be simultaneous or sequential. Triomas and hybrid hybridomas are two examples of cell lines that can secrete bispecific antibodies. Examples of bispecific antibodies produced by a hybrid hybridoma or a trioma are disclosed in U.S. Patent 4,474,893. Bispecific antibodies have been constructed by chemical means (Staerz et al. (1985) Nature 314:628, and Perez et al. (1985) Nature 316:354) and hybridoma technology (Staerz and Sevan (1986) Proc. Natl. Acad. Set. USA, 83:1453, and Staerz and Bevan (1986) Immunol. Today 7:241). Bispecific antibodies are also described in U.S. Patent 5,959,084. Fragments of bispecific antibodies are described in U.S. Patent 5,798,229.

Bispecific agents can also be generated by making heterohybridomas by fusing hybridomas or other cells making different antibodies, followed by identification of clones producing and co-assembling both antibodies. They can also be generated by chemical or genetic conjugation of complete immunoglobulin chains or portions thereof such as Fab and Fv sequences. The antibody component can bind to a polypeptide or a fragment thereof of one or more biomarkers of the invention, including one or more biomarkers listed in Table 1 and the Examples, or a fragment thereof. In one embodiment, the bispecific antibody
could specifically bind to both a polypeptide or a fragment thereof and its natural binding
partner(s) or a fragments) thereof.

In another aspect of the invention, peptides or peptide fragments can be used to
antagonize or promote the activity of one or more biomarkers of the invention, including
one or more biomarkers listed in Table 1 and the Examples, or a fragments) thereof. In
one embodiment, variants of one or more biomarkers listed in Table 1 and the Examples
which function as a modulating agent for the respective full length protein, can be identified
by screening combinatorial libraries of mutants, e.g., truncation mutants, for antagonist
activity. In one embodiment, a variegated library of variants is generated by combinatorial
mutagenesis at the nucleic acid level and is encoded by a variegated gene library. A
variegated library of variants can be produced, for instance, by enzymatically ligating a
mixture of synthetic oligonucleotides into gene sequences such that a degenerate set of
potential polypeptide sequences is expressible as individual polypeptides containing the set
of polypeptide sequences therein. There are a variety of methods which can be used to
produce libraries of polypeptide variants from a degenerate oligonucleotide sequence.

Chemical synthesis of a degenerate gene sequence can be performed in an automatic DNA
synthesizer, and the synthetic gene then ligated into an appropriate expression vector. Use
of a degenerate set of genes allows for the provision, in one mixture, of all of the sequences
encoding the desired set of potential polypeptide sequences. Methods for synthesizing
degenerate oligonucleotides are known in the art (see, e.g., Narang, S. A. (1983)

In addition, libraries of fragments of a polypeptide coding sequence can be used to
generate a variegated population of polypeptide fragments for screening and subsequent
selection of variants of a given polypeptide. In one embodiment, a library of coding
sequence fragments can be generated by treating a double stranded PCR fragment of a
polypeptide coding sequence with a nuclease under conditions wherein nicking occurs only
about once per polypeptide, denaturing the double stranded DNA, renaturing the DNA to
form double stranded DNA which can include sense/antisense pairs from different nicked
products, removing single stranded portions from reformed duplexes by treatment with S1
nuclease, and ligating the resulting fragment library into an expression vector. By this
method, an expression library can be derived which encodes N-terminal, C-terminal and
internal fragments of various sizes of the polypeptide.
Several techniques are known in the art for screening gene products of combinatorial libraries made by point mutations or truncation, and for screening cDNA libraries for gene products having a selected property. Such techniques are adaptable for rapid screening of the gene libraries generated by the combinatorial mutagenesis of polypeptides. The most widely used techniques, which are amenable to high through-put analysis, for screening large gene libraries typically include cloning the gene library into replicable expression vectors, transforming appropriate cells with the resulting library of vectors, and expressing the combinatorial genes under conditions in which detection of a desired activity facilitates isolation of the vector encoding the gene whose product was detected. Recursive ensemble mutagenesis (REM), a technique which enhances the frequency of functional mutants in the libraries, can be used in combination with the screening assays to identify variants of interest (Arkin and Yoorvan (1992) Proc. Nad. Acad. Set. (ISA 89:78) 1-7815; Deigavare et al. (1993) Protein Eng. 6(3):327-331). In one embodiment, cell based assays can be exploited to analyze a variegated polypeptide library. For example, a library of expression vectors can be transfected into a cell line which ordinarily synthesizes one or more biomarkers of the invention, including one or more bio-markers listed in Table 1 and the Examples, or a fragment thereof. The transfected cells are then cultured such that the full length polypeptide and a particular mutant polypeptide are produced and the effect of expression of the mutant on the full length polypeptide activity in cell supematants can be detected, e.g., by any of a number of functional assays. Plasmid DNA can then be recovered from the cells which score for inhibition, or alternatively, potentiation of full length polypeptide activity, and the individual clones further characterized.

Systematic substitution of one or more amino acids of a polypeptide amino acid sequence with a D-amino acid of the same type (e.g., D-lysine in place of L-lysine) can be used to generate more stable peptides. In addition, constrained peptides comprising a polypeptide amino acid sequence of interest or a substantially identical sequence variation can be generated by methods known in the art (Rizo and Coeraseh (1992) Annu. Rev. Biochem. 61:387, incorporated herein by reference); for example, by adding internal cysteine residues capable of forming intramolecular disulfide bridges which cyclize the peptide.

The amino acid sequences disclosed herein will enable those of skill in the art to produce polypeptides corresponding peptide sequences and sequence variants thereof.

Peptides can be produced, typically by direct chemical synthesis. Peptides can be produced as modified peptides, with nonpeptide moieties attached by covalent linkage to the N-terminus and/or C-terminus. In certain preferred embodiments, either the carboxy-terminaiss or the amino-terminus, or both, are chemically modified. The most common modifications of the terminal amino and carboxyl groups are acetylation and amidation, respectively. Amino-terminal modifications such as acylation (e.g., acetylation) or various embodiments of the invention. Certain amino-terminal and/or carboxy-terminal modifications and/or peptide extensions to the core sequence can provide advantageous physical, chemical, biochemical, and pharmacological properties, such as: enhanced stability, increased potency and/or efficacy, resistance to serum proteases, desirable pharmacokinetic properties, and others. Peptides disclosed herein can be used therapeutically to treat disease, e.g., by altering co-stimulation in a patient.

Peptidomimetics (Fauchere, J. (1996) \textit{Adv. Drug Res.} 15:29; Veber and Freidinger (1985.) \textit{TINS} p.392; and Evans \textit{et al.} (1987) \textit{J. Med. Chem.} 30:1229, which are incorporated herein by reference) are usually developed with the aid of computerized molecular modeling. Peptide mimetics that are structurally similar to therapeutically useful peptides can be used to produce an equivalent therapeutic or prophylactic effect. Generally, peptidomimetics are structurally similar to a paradigm polypeptide (i.e., a polypeptide that has a biological or pharmacological activity), but have one or more
peptide linkages optionally replaced by a linkage selected from the group consisting of: -CH2NH-, -CH2S-, -CH2-CH2-, ···. Addressable parallel solid phase or solution phase libraries; synthetic library methods requiring deconvolution;

and Hruhy, V. J. (1982) Life Sci. (1982) 31:189-199 (-CH2-S); each of which is incorporated herein by reference. A particularly preferred non-peptide linkage is -CH2NH-. Such peptide mimetics may have significant advantages over polypeptide embodiments, including, for example: more economical production, greater chemical stability, enhanced pharmacological properties (half-life, absorption, potency, efficacy, etc.), altered specificity (e.g., a broad-spectrum of biological activities), reduced antigenicity, and others. Labeling of peptidomimetics usually involves covalent attachment of one or more labels, directly or through a spacer (e.g., an amide group), to non-interfering position(s) on the peptidomimetic that are predicted by quantitative structure-activity data and/or molecular modeling. Such non-interfering positions generally are positions that do not form direct contacts with the macropolypeptides(s) to which the peptidomimetic binds to produce the therapeutic effect. Derivitization (e.g., labeling) of peptidomimetics should not substantially interfere with the desired biological or pharmacological activity of the peptidomimetic.

Also encompassed by the present invention are small molecules which can modulate (either enhance or inhibit) interactions, e.g., between biomarkers listed in Table 1 and the Examples and their natural binding partners, or inhibit activity. The small molecules of the present invention can be obtained using any of the numerous approaches in combinatorial library methods known in the art, including: spatially addressable parallel solid phase or solution phase libraries; synthetic library methods requiring deconvolution;

Libraries of compounds can be presented in solution (e.g., Houghten (1992) Biotechnology 13:41 2-42) or on beads (Lam (1991) Nature 354:82-84), chips (Fodor (1993) Nature 364:555-556), bacteria (Ladner USP 5,223,409), spores (Ladner USP 4,098), piasmids (Cull et al. (1992) Proc. Natl. Acad. Sci. USA 89:1865-1869) or on phage (Scott and Smith (1990) Science 249:386-390); (Devlin (1990) Science 249:404-406); (Cwiria et al. (1990) Proc. Natl. Acad. Sci. USA 87:6378-6382); (Felici (1991) J. Mol. Biol. 222:30 1-310); (Ladner supra.). Compounds can be screened in cell based or non-cell based assays. Compounds can be screened in pools (e.g., multiple compounds in each testing sample) or as individual compounds.

The invention also relates to chimeric or fusion proteins of the biomarkers of the invention, including the biomarkers listed in Table 1 and the Examples, or fragments thereof. As used herein, a "chimeric protein" or "fusion protein" comprises one or more biomarkers of the invention, including one or more biomarkers listed in Table 1 and the Examples, or a fragment thereof operatively linked to another polypeptide having an amino acid sequence corresponding to a protein which is not substantially homologous to the respective biomarker. In a preferred embodiment, the fusion protein comprises at least one biologically active portion of one or more biomarkers of the invention, including one or more biomarkers listed in Table 1 and the Examples, or fragments thereof. Within the fusion protein, the term "operatively linked" is intended to indicate that the biomarker sequences and the non-biomarker sequences are fused in-frame to each other in such a way as to preserve functions exhibited when expressed independently of the fusion. The "another 5 sequences can be fused to the N-terminus or C-terminus of the biomarker sequences, respectively.

Such a fusion protein can be produced by recombinant expression of a nucleotide sequence encoding the first peptide and a nucleotide sequence encoding the second peptide.
The second peptide may optionally correspond to a moiety that alters the solubility, affinity, stability or valency of the first peptide, for example, an immunoglobulin constant region, in another preferred embodiment, the first peptide consists of a portion of a biologically active molecule (e.g., the extracellular portion of the polypeptide or the ligand binding portion). The second peptide can include an immunoglobulin constant region, for example, a human Cγ1 domain or Cγ4 domain (e.g., the hinge, CH2 and CH3 regions of human IgCγ1, or human IgCγ4, see e.g., Capon et al. U.S. Patents 5J 16,964; 5,580,756; 5,844,095 and the like, incorporated herein by reference). Such constant regions may retain regions which mediate effector function (e.g., Fe receptor binding) or may be altered to reduce effector function. A resulting fusion protein may have altered solubility, binding affinity, stability and/or valency (i.e., the number of binding sites available per polypeptide) as compared to the independently expressed first peptide, and may increase the efficiency of protein purification. Fusion proteins and peptides produced by recombinant techniques can be secreted and isolated from a mixture of cells and medium containing the protein or peptide.

Alternatively, the protein or peptide can be retained cytoplasmically and the cells harvested, lysed and the protein isolated. A cell culture typically includes host cells, media and other byproducts. Suitable media for cell culture are well known in the art. Protein and peptides can be isolated from cell culture media, host cells, or both using techniques known in the art for purifying proteins and peptides. Techniques for transfecting host cells and purifying proteins and peptides are known in the art.

Preferably, a fusion protein of the invention is produced by standard recombinant DNA techniques. For example, DMA fragments coding for the different polypeptide sequences are ligated together in-frame in accordance with conventional techniques, for example employing blunt-ended or stagger-ended termini for ligation, restriction enzyme digestion to provide for appropriate termini, filling-in of cohesive ends as appropriate, alkaline phosphatase treatment to avoid undesirable joining, and enzymatic ligation. In another embodiment, the fusion gene can be synthesized by conventional techniques including automated DNA synthesizers. Alternatively, PCR amplification of gene fragments can be carried out using anchor primers which give rise to complementary overhangs between two consecutive gene fragments which can subsequently be annealed and reamplified to generate a chimeric gene sequence (see, for example, Current Protocols in Molecular Biology, eds. Ausubel et al, John Wiley & Sons: 1992).
in another embodiment, the fusion protein contains a heterologous signal sequence at its N-terminus. In certain host cells (e.g., mammalian host cells), expression and/or secretion of a polypeptide can be increased through use of a heterologous signal sequence.

The fusion proteins of the invention can be used as immunogens to produce antibodies in a subject. Such antibodies may be used to purify the respective natural polypeptides from which the fusion proteins were generated, or in screening assays to identify polypeptides which inhibit the interactions between one or more biomarkers polypeptide or a fragment thereof and its natural binding partner(s) or a fragments thereof.

Also provided herein are compositions comprising one or more nucleic acids or antisense oligonucleotides or derivatives thereof, wherein said small nucleic acids or antisense oligonucleotides or derivatives thereof in a cell specifically hybridize (e.g., bind) under cellular conditions, with cellular nucleic acids (e.g., small non-coding RNAs such as miRNAs, pre-miRNAs, pri-miRNAs, miRNA*, anti-miRNA, a miRNA binding site, a variant and/or functional variant thereof, cellular mRNAs or a fragments thereof). In one embodiment, expression of the small nucleic acids or antisense oligonucleotides or derivatives thereof in a cell can enhance or upregulate one or more biological activities associated with the corresponding wild-type, naturally occurring, or synthetic small nucleic acids. In another embodiment, expression of the small nucleic acids or antisense oligonucleotide* or derivatives thereof in a cell can inhibit expression or biological activity of cellular nucleic acids and/or proteins, e.g., by inhibiting transcription, translation and/or small nucleic acid processing of, for example, one or more biomarkers of the invention, including one or more biomarkers listed in Table 1 and the Examples, or fragments) thereof. In one embodiment, the small nucleic acids or antisense oligonucleotides or derivatives thereof are small RNAs (e.g., microRNAs) or complements of small RNAs. In another embodiment, the small nucleic acids or antisense oligonucleotides or derivatives thereof can be single or double stranded and are at least six nucleotides in length and are less than about 1000, 900, 800, 700, 600, 500, 400, 300, 200, 100, 50, 40, 30, 25, 24, 23, 22, 21, 20, 19, 18, 17, 16, 15, or 10 nucleotides in length. In another embodiment, a composition may comprise a library of nucleic acids comprising or capable of expressing small nucleic acids or antisense oligonucleotides or derivatives thereof, or pools of said small nucleic acids or antisense oligonucleotides or derivatives thereof. A pool of nucleic acids may comprise about 2-5, 5-10, 10-20, 10-30 or more nucleic acids comprising or
capable of expressing small nucleic acids or antisense oligonucleotides or derivatives thereof.

In one embodiment, binding may be by conventional base pair complementarity, or, for example, in the ease of binding to DNA duplexes, through specific interactions in the major groove of the double helix. In general, "antisense" refers to the range of techniques generally employed in the art, and includes any process that relies on specific binding to oligonucleotide sequences.

It is well known in the art that modifications can be made to the sequence of a miRNA or a pre-rntiRNA without disrupting miRNA activity. As used herein, the torn "functional variant" of a miRNA sequence refers to an oligonucleotide sequence that varies from the natural miRNA sequence, but retains one or more functional characteristics of the miRNA (e.g., cancer cell proliferation inhibition, induction of cancer cell apoptosis, enhancement of cancer cell susceptibility to chemotherapeutic agents, specific miRNA target inhibition). In some embodiments, a functional variant of a miRNA sequence retains all of the functional characteristics of the miRNA. In certain embodiments, a functional variant of a miRNA has a nuleobase sequence that is at least about 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% identical to the miRNA or precursor thereof over a region of about 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100 or more nucleobases, or that the functional variant hybridizes to the complement of the miRNA or precursor thereof under stringent hybridization conditions. Accordingly, in certain embodiments the nucleobase sequence of a functional variant is capable of hybridizing to one or more target sequences of the miRNA.

miRNAs and their corresponding stem-loop sequences described herein may be found in miRBase, an online searchable database of miRNA sequences and annotation, found on the world wide web at mirorna.sanger.ac.uk. Entries in the miRBase Sequence database represent a predicted hairpin portion of a miRNA transcript (the stem-loop), with information on the location and sequence of the mature miRNA sequence. The miRNA stem-loop sequences in the database are not strictly precursor raiRNAs (pre-miRNAs), and may in some instances include the pre-miRNA and some flanking sequence from the presumed primary transcript. The miRNA nucleobase sequences described herein encompass any version of the miRNA, including the sequences described in Release 10.0 of the miRBase sequence database and sequences described in any earlier Release of the
miRBase sequence database. A sequence database release may result in the re-naming of certain miRNAs. A sequence database release may result in a variation of a mature miRNA sequence.

In some embodiments, miRNA sequences of the invention may be associated with a second RNA sequence that may be located on the same RNA molecule or on a separate RNA molecule as the miRNA sequence. In such cases, the miRNA sequence may be referred to as the active strand, while the second RNA sequence, which is at least partially complementary to the miRNA sequence, may be referred to as the complementary strand. The active and complementary strands are hybridized to create a double-stranded RNA that is similar to a naturally occurring miRNA precursor. The activity of a miRNA may be optimized by maximizing uptake of the active strand and minimizing uptake of the complementary strand by a miRNA protein complex that regulates gene translation. This can be done through modification and/or design of the complementary strand.

In some embodiments, the complementary strand is modified so that a chemical group other than a phosphate or hydroxyl at its 5′ terminus. The presence of the 5′ modification apparently eliminates uptake of the complementary strand and subsequently favors uptake of the active strand by the miRNA protein complex. The 5′ modification can be any of a variety of molecules known in the art, including NH$_2$NHCOCH$_3$, and biotin. In another embodiment, the uptake of the complementary strand by the miRNA pathway is reduced by incorporating nucleotides with sugar modifications in the first 2-6 nucleotides of the complementary strand. It should be noted that such sugar modifications can be combined with the 5′ terminal modifications described above to further enhance miRNA activity.

In some embodiments, the complementary strand is designed so that nucleotides in the 3′ end of the complementary strand are not complementary to the active strand. This results in double-strand hybrid RNAs that are stable at the 3′ end of the active strand but relatively unstable at the 5′ end of the active strand. This difference in stability enhances the uptake of the active strand by the miRNA pathway, while reducing uptake of the complementary strand, thereby enhancing miRNA activity.

Small nucleic acid and/or antisense constructs of the methods and compositions presented herein can be delivered, for example, as an expression plasmid which, when transcribed in the cell produces RNA which is complementary to at least a unique portion of cellular nucleic acids (e.g., small RNAs, mRNA, and/or genomic DNA). Alternatively,
the small nucleic acid molecules can produce RNA which encodes rRNA, miRNA, pre-
miRNA, pri-miRNA, miRNA*, anti-miRNA, or a miRNA binding site, or a variant thereof. For example, selection of plasmids suitable for expressing the rmRNAs, methods for inserting nucleic acid sequences into the plasmid, and methods of delivering the recombinant plasmid to the cells of interest are within the skill in the art. See, for example, Zeag et al (2002), Molecular Cell 9:13274333; Tuschi (2002), Nat. Biotechnol, 20:446-

Alternatively, small nucleic acids and/or antisense constructs are oligonucleotide probes that are generated ex vivo and which, when introduced into the cell, results in hybridization with cellular nucleic acids. Such oligonucleotide probes are preferably modified oligonucleotides that are resistant to endogenous nucleases, e.g., exonucleases and/or endonucleases, and are therefore stable in vivo. Exemplary nucleic acid molecules for use as small nucleic acids and/or antisense oligonucleotides are phosphorothioate, phosphothioate and methylphosphonate analogs of DNA (see also U.S. Patents 5,176,996; 5,264,564; and 5,256,775). Additionally, general approaches to constructing oligomers useful in antisense therapy have been reviewed, for example, by Van der Krol et al. (1988) BioTechniques 6:958-976; and Stein et al. (1988) Cancer Res 48:2659-2668.

Antisense approaches may involve the design of oligonucleotides (either DNA or RNA) that are complementary to cellular nucleic acids (e.g., complementary to biomarkers listed in Table 1 and the Examples). Absolute complementarity is not required. In the case of double-stranded antisense nucleic acids, a single strand of the duplex DNA may thus be tested, or triplex formation may be assayed. The ability to hybridize will depend on both the degree of complementarity and the length of the antisense nucleic acid. Generally, the longer the hybridizing nucleic acid, the more base mismatches with a nucleic acid (e.g., RNA) it may contain and still form a stable duplex (or triplex, as the case may be). One skilled in the art can ascertain a toicrabie degree of mismatch by use of standard procedures to determine the melting point of the hybridized complex.

Oligonucleotides that are complementary to the 5'-end of the mRNA, e.g., the 5' untranslated sequence up to and including the AUG initiation codon, should work most efficiently at inhibiting translation. However, sequences complementary to the 3'
untranslated sequences of mRNAs have recently been shown to be effective at inhibiting translation of mRNAs as well (Wagner, R. (1994) Nature 372:333). Therefore, oligonucleotides complementary to either the 5’ or 3’ untranslated, non-coding regions of genes could be used in an antisense approach to inhibit translation of endogenous mRNAs.

Oligonucleotides complementary to the 5’-untranslated region of the mRNA may include the complement of the AUG start codon, Antisense oligonucleotides complementary to mRNA coding regions are less efficient inhibitors of translation but could also be used in accordance with the methods and compositions presented herein. Whether designed to hybridize to the S’, 3’ or coding region of cellular mRNAs, small nucleic acids and/or antisense nucleic acids should be at least six nucleotides in length, and can be less than about 1000, 900, 800, 700, 600, 500, 400, 300, 200, 100, 50, 40, 30, 25, 24, 23, 22, 21, 20, 19, 18, 17, 16, 15, or 10 nucleotides in length.

Regardless of the choice of target sequence, it is preferred that in vitro studies are first performed to quantitate the ability of the antisense oligonucleotide to inhibit gene expression. In one embodiment these studies utilize controls that distinguish between antisense gene inhibition and nonspecific biological effects of oligonucleotides. In another embodiment these studies compare levels of the target nucleic acid or protein with that of an internal control nucleic acid or protein. Additionally, it is envisioned that results obtained using the antisense oligonucleotide are compared with those obtained using a control oligonucleotide. It is preferred that the control oligonucleotide is of approximately the same length as the test oligonucleotide and that the nucleotide sequence of the oligonucleotide differs from the antisense sequence no more than is necessary to prevent specific hybridization to the target sequence.

Sinai! nucleic acids and/or antisense oligonucleotides can be DNA or RNA or chimeric mixtures or derivatives or modified versions thereof, single-stranded or double-stranded. Small nucleic acids and/or antisense oligonucleotides can be modified at the base moiety, sugar moiety, or phosphate backbone, for example, to improve stability of the molecule, hybridization, etc., and may include other appended groups such as peptides (e.g., for targeting host cell receptors), or agents facilitating transport across the cell membrane (see, e.g., Letsinger et al. (1989) Proc. Natl. Acad. Sci. U.S.A. 86:6553-6556; Lemaitre et al (1987) Proc. Natl. Acad. Sci. 84:648-652; PCX Publication No. W088/09810, published December 15, 1988) or the blood-brain barrier (see, e.g., PCX Publication No. W089/10134, published April 25, 1988), hybridization-triggered cleavage
agents. (See, e.g., Kro! el al. (1988) BioTechniques 6:958-976) or intercalating agents.
(See, e.g., Zon (1988), Pharm. Res. 5:539-549). To this end, small nucleic acids and/or
antisense oligonucleotides may be conjugated to another molecule, e.g., a peptide,
hybridization triggered cross-linking agent, transport agent, hybridization-triggered
cleavage agent, etc.

Small nucleic acids ami/or antisense oligonucleotides may comprise at least one
modified base moiety which is selected from the group including but not limited to 5-
fluorouracil, 5-bromouracil, 5-chlorouracil, 5-iodouracil, hypoxanthine, xantine, 4-
acetylcytosine, 5-(carboxyhydroxytiethyl) uracil, 5-carboxymethylaminomethyl-2-
10 thiouridine, 5-carboxyraethylaminitoraeluracil, ci hydouracil, beta-D-galaetosylqueostne,
inosine, N6-isopentenyladenem, -methylguanine, i-methylinosine, 2,2-dimethyguanine,
2-methyldadene, 2-methylguanine, 3-memylcytosine, 5-methyleytosine, N6-adenine,
7-methylguaninc, 2-thioguanine, 5-methoxyaminomethyl-2-thiouracil, beta-
15 D-mannosylqueosine- S’-methoxycarboxymethyljracil, 5-methoxyuracil, 2-methylhio-N6-
isopentenyladenem, uracil-5-oxyacetic acid (v), wybutoxosine, pseudouracil, queosine,
2-thiocytosme, 5-methyl-2-thiouracil, 2-thiouracil, 4-thiouracil, 5-methyl uracil, uracil-5-
ox yacetic acid inethylester, uracil-5-oxalettie acid (v), 5-methyl-2-thiouracil, 3-(3-amino-
3-N-3-carboxypropytj uracil, (ap3)w, and 2,6-diaiai:opurine. Small nucleic acids and/or
antisense oligonucleotides may also comprise at least one modified sugar moiety selected
from the group including but not limited to arabinose, 2-fluoroarabinose, xylulose, and
he xo e.

In certain embodiments, a compound comprises an oligonucleotide (e.g., a miRNA
or miRNA encoding oligonucleotide) conjugated to one or more moieties which enhance
the activity, cellular distribution or cellular uptake of the resulting oligonucleotide. In
certain such embodiments, the moiety is a cholesterol moiety (e.g., antagomirs) or a lipid
moiety or liposome conjugate. Additional moieties for conjugation include carbohydrates,
phospholipids, biotin, phenazine, folate, phenanthridine, anthraquinone, acridine,
fluoresceins, rhodamines, coumarins, and dyes. In certain embodiments, a conjugate group
is attached directly to the oligonucleotide. In certain embodiments, a conjugate group is
attached to the oligonucleotide by a linking moiety selected from amino, hydroxy!,
carboxylic acid, thiol unsaturations (e.g., double or triple bonds), S-amino-3,6-
dioxaactanoic acid (ADO), succinimidy! 4-(N-maleimidomethyl) cyclohexane-1-
carboxylate (SMCC), 6-aminohexanoic acid (AHEX or AHA), substituted Cl-C 10 alkyl,!
substituted or unsubstituted C2-C10 alkenyl, and substituted or unsubstituted C2-C10 alkynyl. In certain such embodiments, a substituent group is selected from hydroxy, amino, alkoxy, carboxy, benzyl phenyl, nitro, thiol, thioalkoxy, halogen, alkyl, aryl alkenyl and alkynyl.

In certain such embodiments, the compound comprises the oligonucleotide having one or more stabilizing groups that are attached to one or both termini of the oligonucleotide to enhance properties such as, for example, nuclease stability. Included in stabilizing groups are cap structures. These terminal modifications protect the oligonucleotide from exonuclease degradation, and can help in delivery and/or localization within a cell. The cap can be present at the 5'-terminus (5'-cap), or at the 3'-terminus (3'-cap), or can be present on both termini. Cap structures include, for example, inverted deoxy abasic caps.

Suitable cap structures include a 4',5'-methylca nucleotide, a 1-{beta-D-erythroruransyl} nucleotide, a 4'-thio nucleotide, a carbocycie nucleotide, a 1,5-anhydrohexitol nucleotide, an L-nucleotide, an alpha-nucleotide, a modified base nucleotide, a phosphorodiraiato linkage, a threo-pentofitranosyl nucleotide, an acyclic 3',4'-sco nucleotide, an acyclic 3,4-dihydroxybutyl nucleotide, an acyclic 3,5-dihydroxypropyl nucleotide, a 3'-3'-inverted nucleotide moiety, a 3'-3'-inverted abasic moiety, a 3'-2'-inverted nucleotide moiety, a 3'-2'-inverted abasic moiety, a 1,4-butane diol phosphate, a 3'-phosphoramidate, a hexylphosphate, an aminohexyl phosphate, a 3'-phospnate, a 3'-phosphoOihioate, a phosphorodithioate, a bridging methylphosphonate moiety, and a non-bridging methylphosphonate moiety 5'-aniino-alkyl phosphate, a 1,3-diammo-2-propy! phosphate, 3-aminopropyl phosphate, a 6-aminohexyl phosphate, a 1,2-aminododecyl phosphate, a hydroxypropyl phosphate, a 5'-5'-inverted nucleotide moiety, a 5'-5'-inverted abasic moiety, a 5'-phosphoramidate, a 5'-phosphorothioate, a 5'-ami no, a bridging and/or non-bridging 5'-phosphoramidate, a phosphorothioate, and a 5'-mercaptop moeity.

Small nucleic acids and/or antisense oligonucleotides can also contain a neutral peptide-like backbone. Such molecules are termed peptide nucleic acid (PNA>ofigomers and are described, e.g., in Perry-O'Keefe et al. (1996) Proe. Natl. Acad. Sci. U.S.A. 93:14670 and in Bgiom et al. (1993) Nature 365:566. One advantage of PNA oligomers is their capability to bind to complementary DNA essentially independently from the tonic strength of the medium due to the neutral backbone of the DNA. In yet another
embodiment, small nucleic acids and/or antisense oligonucleotides comprises at least one modified phosphate backbone selected from the group consisting of a phosphorothioate, a phosphorodithioate, a phosphoramide, a phosphoramidate, a phosphorodiamidate, a methylphosphonate, an alkyl phosphotriester, and a formacetai or analog thereof.

In a further embodiment, small nucleic acids and/or antisense oligonucleotides are a-anomeric oligonucleotides. An a-anomeric oligonucleotide forms specific double-stranded hybrids with complementary RNA in which, contrary to the usual b-units, the strands run parallel to each other (Gautier et al. (1987) Nucl. Acids Res. 15:6625-6641). The oligonucleotide is a 2M)-roethylribonucleotide (Inoue et al. (1987) Nucl. Acids Res. 15:6131-6148), or a chimeric RNA-DNA analogue (Inoue et al. (1987) FEBS Lett. 215:327-330).

Small nucleic acids and/or antisense oligonucleotides of the methods and compositions presented herein may be synthesized by standard methods known in the art, e.g., by use of an automated DNA synthesizer (such as arc commercially available from Biosearch, Applied Biosy stems, etc.). As examples, phosphorothioate oligonucleotides may be synthesized by the method of Stein et al (1988) Nucl. Acids Res. 16:3209, methylphosphonate oligonucleotides can be prepared by use of controlled pore glass polymer supports (Sarin et al, (1988) Proe. Natl, Acad. Sci. U.S.A. 85:7448-7451), etc. For example, an isolated miRNA can be chemically synthesized or recombinant! produced using methods known in the art. In some instances, miRNA are chemically synthesized using appropriately protected ribonucleoside phosphoraniidites and a conventional DNA/RNA synthesizer. Commercial suppliers of synthetic RNA molecules or synthesis reagents include, e.g., Proligo (Hamburg, Germany), Dharmacon Research (Lafayette, Colo., USA), Pierce Chemical (part of Perbio Science, Rockiord, III, USA), Glen Research (Sterling, Va., USA), ChemGenes (Ashland, Mass., USA), Cruachem (Glasgow, UK), and Exiqon (Vedhaek, Denmark).

Small nucleic acids and/or antisense oligonucleotides can be delivered to cells in vivo. A number of methods have been developed for delivering small nucleic acids and/or antisense oligonucleotides DNA or RNA to cells; e.g., antisense molecules can be injected directly into the tissue site, or modified antisense molecules, designed to target the desired cells (e.g., antisense linked to peptides or antibodies that specifically bind receptors or antigens expressed on the target cell surface) can be administered systematically.
In one embodiment, small nucleic acids and/or antisense oligonucleotides may comprise or be generated from double stranded small interfering RNAs (siRNAs), in which sequences fully complementary to cellular nucleic acids (e.g., mRNAs) sequences mediate degradation or in which sequences incompletely complementary to cellular nucleic acids (e.g., mRNAs) mediate translational repression when expressed within cells. In another embodiment, double stranded siRNAs can be processed into single stranded antisense RNAs that bind single stranded cellular RNAs (e.g., microRNAs) and inhibit their expression. RNA interference (RNAi) is the process of sequence-specific, post-transcriptional gene silencing in animals and plants, initiated by double-stranded RNA (dsRNA) that is homologous in sequence to the silenced gene. In vivo, long dsRNA is cleaved by ribonuclease (RNase) I to generate 21- and 22-nucleotide siRNAs. It has been shown that 21-nucleotide siRNA duplexes specifically suppress expression of endogenous and heterologous genes in different mammalian cells, including human embryonic kidney (293) and HeLa cells (Elbashir et al, 2001) Nature 411:494-498). Accordingly, translation of a gene in a cell can be inhibited by contacting the cell with short double stranded RNAs having a length of about 15 to 30 nucleotides or of about 18 to 21 nucleotides or of about 19 to 21 nucleotides. Alternatively, a vector encoding for such siRNAs or short hairpin RNAs (shRNAs) that are metabolized into siRNAs can be introduced into a target cell (see, e.g., MeManus et al. (2002) RNA 8:842; Xia et al. (2002) Nature Biotechnology 20:1006; and Bruramelkamp et al. (2002) Science 296:550). Vectors that can be used are commercially available, e.g., from OligoEngine under the name pSuper® RNAi System™.

Ribozyme molecules designed to catalytically cleave cellular mRNA transcripts can also be used to prevent translation of cellular mRNAs and expression of cellular polypeptides, or both (See, e.g., PCT international Publication WO90/11364, published October 4, 1990; Sarver et al. (1.990) Science 247:1222-1225 and U.S. Patent No. 5,093,246). While ribozymes that cleave mRNA at site specific recognition sequences can be used to destroy cellular mRNAs, the use of hammerhead ribozymes is preferred. Hammerhead ribozymes cleave mRNAs at locations dictated by flanking regions that form complementary base pairs with the target mRNA. The sole requirement is that the target mRNA have the following sequence of two bases: 5’-UG-3’. The construction and production of hammerhead ribozymes is well known in the art and is described more fully in Haseloff and Gerlach (1988) Nature 334:585-591. The ribozyme may be engineered so that the cleavage recognition site is located near the 5’ end of cellular mRNAs; i.e., to
increase efficiency and minimize the intracellular accumulation of non-functional mRNA transcripts.

The ribozymes of the methods and compositions presented herein also include RNA endonucleases (hereinafter "Cech-type ribozymes") such as the one which occurs naturally in Tetrahymena thermophila (known as the IVS, or L-19 IVS RNA) and which has been extensively described by Thomas Cech and collaborators (Zaug, et al. (1984) Science 224:574-578; Zaug, et al. (1986) Science 231:470-475; Zaug, et al. (1986) Nature 324:429-433; published international patent application No. WO88/04300 by University Patents Inc.; Been, et al. (1986) Cell 47:207-216). The Cech-type ribozymes have an eight base pair active site which hybridizes to a target RNA sequence whereafter cleavage of the target RNA takes place. The methods and compositions presented herein encompasses those Cech-type ribozymes which target eight base-pair active site sequences that are present in cellular genes.

As in the antisense approach, the ribozymes can be composed of modified oligonucleotides (e.g., for improved stability, targeting, etc.). A preferred method of delivery involves using a DNA construct "encoding" the ribozyme under the control of a strong constitutive pol II or pol I promoter, so that transfected cells will produce sufficient quantities of the ribozyme to destroy endogenous cellular messages and inhibit translation. Because ribozymes unlike antisense molecules, are catalytic, a lower intracellular concentration is required for efficiency.

Nucleic acid molecules to be used in triple helix formation for the inhibition of transcription of cellular genes are preferably single stranded and composed of deoxyribonucleotides. The base composition of these oligonucleotides should promote triple helix formation via Hoogsteen base pairing rules, which generally require sizable stretches of either purines or pyrimidines to be present on one strand of a duplex. Nucleotide sequences may be pyrimidine-based, which will result in TAT and CGC triplets across the three associated strands of the resulting triple helix. The pyriraibine-rich molecules provide base complementarity to a purine-rich region of a single strand of the duplex in a parallel orientation to that strand. In addition, nucleic acid molecules may be chosen that are purine-rich, for example, containing a stretch of G residues. These molecules will form a triple helix with a DNA duplex that is rich in GC pairs, in which the majority of the purine residues are located on a single strand of the targeted duplex, resulting in CGC triplets across the three strands in the triplex.
Alternatively, the potential sequences that can be targeted for triple helix formation may be increased by creating a so called "switchback" nucleic acid molecule. Switchback molecules are synthesized in an alternating 5'→3', 3'→5' manner, such that they base pair with first one strand of a duplex and then the other, eliminating the necessity for a sizable stretch of either purines or pyrimidines to be present on one strand of a duplex.

Small nucleic acids (e.g., miRNAs, pre-miRNAs, pri-miRNAs, miRNA*, anti-miRNA, or a miRNA binding site, or a variant thereof), antisense oligonucleotides, ribozymes, and triple helix molecules of the methods and compositions presented herein may be prepared by any method known in the art for the synthesis of DNA and RNA molecules. These include techniques for chemically synthesizing oligodeoxyribonucleotides and oligoribonucleotides well known in the art such as for example solid phase phosphoramidite chemical synthesis. Alternatively, RNA molecules may be generated by in vitro and in vivo transcription of DNA sequences encoding the antisense RNA molecule. Such DNA sequences may be incorporated into a wide variety of vectors which incorporate suitable RNA polymerase promoters such as the T7 or SP6 polymerase promoters. Alternatively, antisense cDNA constructs that synthesize antisense RNA constitutively or inducibly, depending on the promoter used, can be introduced stably into cell lines.

Moreover, various well-known modifications to nucleic acid molecules may be introduced as a means of increasing intracellular stability and half-life. Possible modifications include but are not limited to the addition of flanking sequences of ribonucleotides or deoxyribonucleotides to the 5' and/or 3' ends of the molecule or the use of phosphorothioate or 2'-O-methyl rather than phosphodiesterase linkages within the oligodeoxyribonucleotide backbone. One of skill in the art will readily understand that polypeptides, small nucleic acids, and antisense oligonucleotides can be further linked to another peptide or polypeptide (e.g., a heterologous peptide), e.g., that serves as a means of protein detection. Non-limiting examples of label peptide or polypeptide moieties useful for detection in the invention include, without limitation, suitable enzymes such as horseradish peroxidase, alkaline phosphatase, beta-galactosidase, or acetylcholinesterase; epitope tags, such as FLAG, MYC, HA, or HIS tags; fluorophores such as green fluorescent protein; dyes; radioisotopes; digoxigenin; biotin; antibodies; polymers; as well as others known in the art, for example, in Principles of Fluorescence Spectroscopy, Joseph R. Lakowicz (Editor), Plenum Pub Corp, 2nd edition (July 1999).
in addition to the agents described herein, additional agents are particularly useful for upregulating or downregulating immune responses according to the present invention. For example, modulation of the interaction between PD-1 and PD-L1 ligand (e.g., soluble PD-L1) (e.g., membrane-bound PD-L1 and/or soluble PD-L1), or between PD-1 ligand (e.g., soluble PD-L1) (e.g., membrane-bound PD-L1 and/or soluble PD-L1) and a B7 polypeptide, results in modulation of the immune response. In general, in embodiments where PD-L1 binds to inhibitory receptors such as PD-1, upregulation of PD-L1 activity results in downregulation of immune responses, whereas downregulation of PD-L1 activity results in downregulation of immune responses. In embodiments where PD-L1 binds to inhibitory receptors such as PD-1, upregulation of PD-L1 activity results in downregulation of immune responses, whereas downregulation of PD-L1 activity results in upregulation of immune responses, whereas it is also believed that soluble forms of PD-L1, whether naturally occurring or cleavage products of membrane-bound PD-L1, can still interact with PD-L1 receptors, such as B7-1 or PD-L1, to modulate immune responses as the membrane-bound version.

Non-limiting examples of how such agents can modify immune responses include the observation that the interaction between a B7 polypeptide and a PD-1 ligand (e.g., soluble PD-L1) polypeptide prevents PD-1 ligand (e.g., soluble PD-L1) from binding to PD-1 and, thus, inhibits delivery of an inhibitory immune signal. Thus, in one embodiment, agents which block the interaction between PD-1 and PD-1 ligand (e.g., soluble PD-L1) can prevent inhibitory signaling. In one embodiment, agents that block the binding of a B7 polypeptide to a PD-1 ligand (e.g., soluble PD-L1) polypeptide allow PD-1 ligand (e.g., soluble PD-L1) to bind PD-1 and provide an inhibitory signal to an immune cell, PD-L1 ligand (e.g., soluble PD-L1), by binding to a B7 polypeptide, also reduces the B7 polypeptide binding to the inhibitory receptor CTLA4. In one embodiment, agents that block the binding of a B7 polypeptide to a PD-1 ligand (e.g., soluble PD-L1) polypeptide allow the B7 polypeptide to bind CTLA4 and provide an inhibitory signal to an immune cell. In another embodiment, PD-L1, by binding to a B7 polypeptide, also reduces the B7 polypeptide binding to the costimulatory receptor CD28. Thus, in one embodiment, agents that block the binding of a B7 polypeptide to a PD-1 ligand (e.g., soluble PD-L1) polypeptide allow the B7 polypeptide to bind CD28, and provide a costimulatory signal to an immune cell.
For example, in one embodiment, agents that increase the interaction between a PD-1 ligand (e.g., soluble PD-L1) and a B7 polypeptide can enhance an immune response, while agents that decrease the interaction between a PD-1 ligand (e.g., soluble PD-L1) and a B7 polypeptide can reduce an immune response by enhancing the interaction between the PD-1 ligand (e.g., soluble PD-L1) and PD-1 and/or the interaction between the B7 polypeptide and CTLA4. In one embodiment, agents that modulate the interaction between a PD-1 ligand (e.g., soluble PD-L1) and a B7 polypeptide do not produce inhibition of the interaction between a PD-1 ligand (e.g., soluble PD-L1) and PD-1 and/or between the B7 polypeptide and CTLA4. In another embodiment, agents that increase a PD-1 ligand (e.g., soluble PD-L1) interaction with a B7 polypeptide, also decrease the interaction between the PD-1 ligand (e.g., soluble PD-L1) and PD-1, and/or between the B7 polypeptide and CTLA4. In yet another embodiment, agents that decrease the interaction of a PD-1 ligand (e.g., soluble PD-L1) and a B7 polypeptide, enhance or increase the interaction between the PD-1 ligand (e.g., soluble PD-L1) and PD-1, and/or between the B7 polypeptide and CTLA4.

Exemplary agents for modulating (e.g., reducing) an immune response include antibodies against PD-L1, a PD-1 ligand (e.g., soluble PD-L1), or a B7 polypeptide which inhibit the interaction of the PD-1 ligand (e.g., soluble PD-L1) with PD-1 or B7 polypeptide: bispecific antibodies that enhance PD-1 signaling, such as bispecific antibodies against PD-1 and PD-L1; agents that reduce the expression of inhibitory receptor-ligand interactions, such as antisense nucleic acid molecules, triplex oligonucleotides, or ribozymes targeting PD-1 and/or PD-L1; small molecules or peptides which inhibit the interaction of the PD-1 ligand (e.g., soluble PD-L1) with the B7 polypeptide; and fusion proteins (e.g., the extracellular portion of the PD-1 ligand (e.g., soluble PD-L1) or B7 polypeptide, fused to the Fc portion of an antibody) which bind to the B7 polypeptide or PD-1 ligand (e.g., soluble PD-L1), respectively, and prevent the interaction between the PD-1 ligand (e.g., soluble PD-L1) and B7 polypeptide.

In another embodiment, agents that increase the interaction between a PD-1 ligand (e.g., soluble PD-L1) and a B7 polypeptide, decrease an immune response by decreasing the ability of the B7 polypeptide to bind to CD28. In yet another embodiment, agents that decrease the interaction between a PD-1 ligand (e.g., soluble PD-L1) and a B7 polypeptide can increase the immune response by increasing the interaction between the B7 polypeptide and CD28.
Agents that modulate the interaction between a PD-1 ligand (e.g., soluble PD-L1) and a PD-1 polypeptide can also be used to up or down regulate the immune response. For example, agents that increase the interaction between the PD-1 ligand (e.g., soluble PD-L1) and PD-1 polypeptide can decrease an immune response while agents that decrease the interaction between the PD-1 ligand (e.g., soluble PD-L1) and PD-1 polypeptide can increase an immune response. Preferably, agents that modulate the interaction between the PD-1 ligand (e.g., soluble PD-L1) and PD-1, do not modulate (have no direct affect on) the interaction between the PD-1 ligand (e.g., soluble PD-L1) and a B7 polypeptide. In another embodiment, agents that increase the interaction between the PD-1 ligand (e.g., soluble PD-L1) and PD-1, decrease the interaction between the PD-1 ligand (e.g., soluble PD-L1) and the B7 polypeptide. In yet another embodiment, agents that decrease the interaction between the PD-L1 ligand and PD-1 increase the interaction between the PD-1 ligand (e.g., soluble PD-L1) and the B7 polypeptide. Exemplary agents for modulating (e.g., enhancing) an immune response include antibodies against PD-1 or a PD-1 ligand (e.g., soluble PD-L1) which block the interaction between PD-1 and the PD-1 ligand (e.g., soluble PD-L1); bispecific antibodies that enhance 87 signaling, such as bispecific antibodies against PD-L1 and B7-1; multivalent antibodies against such a target that ligate many such molecules together in order to increase local concentrations and stimulate interactions; agents that reduce the expression of costimulatory receptor-ligand interactions, such as antisense nucleic acid molecules, triplex oligonucleotides, or ribozymes targeting B7-1; small molecules or peptides which block the interaction between PD-1 and the PD-1 ligand (e.g., soluble PD-L1); and fusion proteins (e.g., the extracellular portion of a PD-1 ligand (e.g., soluble PD-L1) or PD-1 polypeptide fused to the Fc portion of an antibody) which bind to PD-1 or a PD-1 ligand (e.g., soluble PD-L1) and prevent the interaction between the PD-1 ligand (e.g., soluble PD-L1) and PD-1.

In some embodiments, agents useful for up-regulating or downregulating PD-1 and/or PD-L1 in particular are useful. Combinations of any such agents are contemplated. Exemplary agents for use in downmodulating PD-L1 (i.e., PD-L1 antagonists) include (for example): antisense molecules, antibodies that recognize PD-L1, compounds that block interaction of PD-L1 and one of its naturally occurring receptors on a immune cell (e.g., soluble, monovalent PD-L1 molecules, and soluble forms of S7-4 ligands or compounds identified in the subject screening assays). In some embodiments, combinations of antibodies that target either the membrane-bound PD-L1 form or the
soluble PD-L1 form are useful for functionally inactivating both forms of PD-L1. Exemplary agents for use in downmodulating PD-1 (i.e., PD-1 antagonists) include (for example): antisense molecules, antibodies that bind to PD-1, but do not transduce an inhibitory signal to the immune cell ("non-activating antibodies"). and soluble forms of PD-1.

Exemplary agents for use in upmodulating PD-L1 (i.e., PD-L1 agonists) include (for example): nucleic acid molecules encoding PD-L1 polypeptides, multivalent forms of PD-L1, compounds that increase the expression of PD-L1, and cells that express PD-L1 and the like. Exemplary agents for use in upmodulating PD-1 (i.e., PD-1 agonists) include (for example): antibodies that transmit an inhibitory signal via PD-1, compounds that enhance the expression of PD-1, nucleic acid molecules encoding PD-1, and forms of B7-4 that transduce a signal via PD-1.

The modulatory agents described herein (e.g., antibodies, small molecules, peptides, fusion proteins, or small nucleic acids) can be incorporated into pharmaceutical compositions and administered to a subject in vivo. The compositions may contain a single such molecule or agent or any combination of agents described herein. Based on the genetic pathway analyses described herein, it is believed that such combinations of agents is especially effective in diagnosing, prognosing, preventing, and treating cancer. Thus, "single active agents" described herein can be combined with other pharmacologically active compounds ("second active agents") known in the art according to the methods and compositions provided herein. It is believed that certain combinations work synergistically in the treatment of particular types of cancer. Second active agents can be large molecules (e.g., proteins) or small molecules (e.g., synthetic inorganic, organometallic, or organic molecules).

Examples of large molecule active agents include, but are not limited to, hematopoietic growth factors, cytokines, and monoclonal and polyclonal antibodies. Typical large molecule active agents are biological molecules, such as naturally occurring or artificially made proteins. Proteins that are particularly useful in this invention include proteins that stimulate the survival and/or proliferation of hematopoietic precursor cells and immunologically active poietic cells in vitro or in vivo. Others stimulate the division and differentiation of committed crythrocyte progenitors in cells in vitro or in vivo. Particular proteins include, but are not limited to: interleukins, such as IL-2 (including recombinant IL-2 ("rL2")) and canarypox rIL-2, rIL-10, rIL-12, and rIL-18; interferons, such as interferon
alfa-2a, interferon alfa-2b, interferon alfa-ni, interferon alfa-n3, interferon beta-la, and interferon gamma-lb; GM-CF and GM-CSF; and EPO.

Particular proteins that can be used in the methods and compositions provided herein include, but are not limited to: acitretin, aclacinomycin, acodazole hydrochloride, acrotrine, adozelesin, aldesleukin, altretamine, bevacizumab (Omnitarg®), bevacizumab (Avastin®), pertuzumab (Omnitarg®), tositumomab (Bexxar®), edrecolomab (Panorex®), and G250. Compounds of the invention can also be combined with, or used in combination with, anti-TNF-α antibodies. Large molecule active agents may be administered in the form of anti-cancer vaccines. For example, vaccines that secrete, or cause the secretion of cytokines such as IL-2, G-CSF, and GM-CSF can be used in the methods, pharmaceutical compositions, and kits provided herein. See, e.g., Emens, L. A., et al., *Curr. Opinion Mol. Ther.* 3(1):77-84 (2001).

Second active agents that are small molecules can also be used in combination as provided herein. Examples of small molecule second active agents include, but are not limited to, anti-cancer agents, antibiotics, immunosuppressive agents, and steroids.

In some embodiments, well known "combination chemotherapy" regimens can be used. In one embodiment, the combination chemotherapy comprises a combination of two or more of cyclophosphamide, hydroxydaunorubicin (also known as doxorubicin or adriamycin), oncovinor (vincristine), and prednisone. In another preferred embodiment, the combination chemotherapy comprises a combination of cyclophosphamide, oncovinor, prednisone, and one or more chemotherapeutics selected from the group consisting of anthracycline, hydroxydaunorubicin, epirabiein, and motixantrone.

Examples of other anti-eeare agents include, but are not limited to: acivtcin; aclarubkin; acodazol hydrochloride; acroni0; adozeiesin; aldesleukin; altretamine;
amhomycin; ametantrone acetate; amsacrine; anastrozole; amhramycin; asparaginase; asperln; azacitidine; azetepa; azatomycin; batimastat; benzodera; bicalutaraide; bisantrene hydrochloride; bisnafide dimesylate; bizelesin; bleomycin sulfate; brequinar sodium; bropirirrime; busulfan; cactinomycin; ealust erorie; caracemide; carbetimer; carboplatin; carmustine; carubicin hydrochloride; carzelesm; cedefngol; ciecocix (COX-2 inhibitor); chlorambucil; cirocemycin; cisplatin; cladribine; cristiatoi mesylate; cyclophosphamide; cytarabine; dacarbazine; dactinomycin; daimorubicm hydrochloride; decitabine; dexormaplatin; dezaguaine; dezaguarine mesylate; diaziquone; docetaxel; doxorubicin; doxorubicin hydrochloride; droloxifene; droloxifene citrate; dromostanolone propionate; duazomycin; edatrexate; efloornithine hydrochloride; elsamiferucin; enplatin; enpromate; epipropidhie; epirubicin hydrochloride; erbulozo; esorubicin hydrochloride; estramustine; estramustiiie phosphate sodium; etanidazole; etoposide; etoposide phosphate; etoprine; fadrozole hydrochloride; fazarabme; fenretinside; fleroxidine; iludarabine phosphate; fluouracil; florticabine; fosquidone; fostriecin sodium; gencitabine; gencitabine hydrochloride; hydroxyurea; idarubicin hydrochloride; ifosfamide; ilmofosine; iproplatin; irmotecan; irmotecan hydrochloride; lanreotide acetate; leirozo; leuprolide acetate; harozole hydrochloride; lometrexol sodium; lomustine; losoxantrone hydrochloride; masoprocol; maytansine; meehloretamine hydrochloride; megestrol acetate; melengestrol acetate; meiphalan; menogari; mercaptopurine; methotrexa; methotrexate; methotrexate sodium; metoprine; meturedpea; mitindomide; mitocarcin; mitocromin; roitogill mitomalcin; mitomycin; mitosper; mskttane; mstoantrone hydrochloride; mycophenolic acid; nocodazole; nogalamycin; ormaplatin; oxisuran; paclitaxel; pegaspargase; pelomiycin; pentamustisiie; peplomycin sulfate; perfosfamide; pipobroman; piposulfan; piroxantrone hydrochloride; phcamycin; plomestane; porfimer sodium; porfiromycin; prednimustine; procarbazine hydrochloride; puromycin; puromycin hydrochloride; pyrazo&rin; rihoirprine; safingol; safmgol hydrochloride; semustine; simtrazene; sparfosate sodium; sparsomychi; spirogermanium hydrochloride; spirourustine; spoiplatin; streptcinigrin; streptozoezin; sulof fur; talisomycin; tecogalan sodium; taxotere; tegafur; teloxaatrope hydrochloride; temoporfm; tenyposide; retOxirote; testoxetone; thiamiprine; thigamcin; thiophepa; tiazoflirin; tirapazamme; toremifeue citrate; trystonone acetate; triciribine phosphate; trimetrexae; t metrexate glucounate; tpioerlin; tubulozo hydrochloride; uracil mustard; urdepa; vaporeotide; vertexporfin; vinblastine sulfate; vincristine sulfate; vinodesine; vindesiue sulfate; vinpepide sulfate; vioglycinate sulfate; vinleurosine sulfate; vinorelbine
tartrate; vinrosidine sulfate; vinzoidine sulfate; vorozole; zeniplatin; zinostatiri; and zorubicin hydrochloride.

Other anti-cancer drugs include, but are not limited to: 20-epi-l,25 dihydroxyvitamin D3; 5-ethynyluracil; abiraterone; aelarubine; aelyulfene; adeeypenol; adozelesin; aldesleukin; ALL-1K antagonists; altretamine; ambamustine; amidox; amifostine; aminolevulinic acid; amrubicin; amsaerine; rmgJFide; anastrozoie; andrographloohde; angiogenesis inhibitors; antagonist D; antagonist G; antarcix; anti-dorsalizing morphogenetic protein-1; antiandrogen., prostatic carcinoma; antiestrogen; antineoplaston; antisense oligonucleotides; aphidicooin glycinate; apoptosts gene modulators; apoptosis regulators; apurmic acid; ara-CDP-DL-PTBA; arginine deaminase; asulacrine; atamestane; atrinumestine; axinastarin 1; axinastarin 2; axinastatin 3; azasetron; anatoxin; azaiyrosine; baccatin III derivatives; balanol; batimastat; BCR/ABL antagonists; benzochlorins; benzoylstauroposine; beta lactam derivatives; bctca-altahine; bctaclamy cm B; bctulinie acid; bFGF inhibitor; bicahtamimide; bisantrene; bisaziridinyispertnine; bisnafide; bisratene A; hizelesin; breflat; proporhine; budotitane; buthionine sulfoximine; calcipotriol; calphosita C; camptothecin derivatives; capeelahine; earboxaniide-aamino-triazole; carboxyraidotriaizoeie; CaRest M3; CA RN 700; cartilage derived inhibitor; earzelesin; casein kinase inhibitors (iCOS); castanospermine; ceeropm B; cetrorelix; chlorins; chloraquinotxaline sulfanamide; cipicprost; cis-porphyrin; cladribine; clomifeie analogues; clotrimazole; collisniyrein A; collismycii B; combretastatii A4; combretastatii analogue; conagenin; cramboseidin 816; crinsnatoi; cryptophyein 8; cryptophycin A derivatives; curacin A; cyclopaentantraquinones; cycloplatum; cyclosporin A; cypemeyie; cytarabine ocfsrate; cytolytic factor; cytostatin; daclixiraeab; decitabine; dehydrodidemnin B; deslorelin; dexamethasone; dexifosfamide; dextraoxane; devverapamil; diaziqune; didemin B; didox; diethyinorspermine; dihydro-5-azacytidine; dihydrotaxol, 9-; dioxamycin; diphenyl spiromustine; docetaxel; docosanol; doiasetron; doxifluridine; doxorubicin; droloxifene; dronabinol; duocarcynin SA; ebselane; ecomustine; edelfosine; edrcocolomab; efflorifhne; elemenc; emifeur; epirubicin; epriesteride; estramustine analogue; estrogen agonists; estrogen antagonists; etanidazole; etoposide phosphate; exemestane; fadrozole; fazarabirie; fenretinide; filgrastim; finasteride; flavopiridol; flezelastine; fluasterone; fiisdarabine; flitorodaunoruniiein hydrochloride; forfemex; fonnestane; fostriecin; fofremstine; gadolinium fexaphyrin; gallium nitrate; galocifabtne; ganirelix; geiatinse inhibitors; gemcitabine; glutathione inhibitors; liepsuifam; heregulin; - 85 -
hexamethylene bisacetamide; hypericin; ibandronuric acid; idarubicin; idoxifene;
idramantone; ilrafosine; ilomastat; imatinib (e.g., Gleevec®), imiquimod;
imunostimulant peptides; insulin-like growth factor-1 receptor inhibitor; interferon
agonists; interferons; interleukins; iobenguane; iododoxorubicin; ipomeanol, 4-; iroplact;
irsoptidine; isobengazole; isohormohaicindrin B; itasetron; jasplakinoide; kahalalide F;
lamellarin-N triacetate: lanreotide; leinamycin; letiograsit; lentiblan sulfate; leptolstatin;
letrozole; leukemia inhibiting factor; leukocyte alpha interferon;
leuprolide+estrogen +progesterone; leupreolien; ievamisole; iiarozole; linear polyamine
analogue; lipophilic disaccharide peptide; lipophilic platinum compounds; lissoclinamide 7;
lobaplatin; Smbricine; lometrexo; ionidamine; losoxantrone;loxoribine; lurtotecan;
iutetium (exaphyrin; lysyfHine; lytic peptides; maitansine; marmostatiu A; marimastat;
masoprocol; maspin; mati lysin inhibitors; matrix metalloproteinase inhibitors; menogaril;
mébantruc; meterelin; methionamc; mctociopliami; MJF inhibitor; mifepristone;
miltefosine; mito mostim; mitogonazone; mitolactol; mitomycin analogues; mitonafidc;
imotoxin fibroblast growth factor-saporin; mitoxantrone; mofarotene; molaromostim;
Eribitux, human chorionic gonadotrophin; monophosphoryl lipid A+mycobacterium cell wall
sk; mopidanol; mustard anticancer agent; -mucaperoxide B; mycobacterial cell wall extract;
myriaporone; N-acetyldinalacine; N-substituted benzamides; nafarelin; nagrestip;
naiuxorte+pentazocine; napavin; naphterpin; naritograsit; nedapatin; nemosipubicin;
nedidronic acid; nilutamide; nisamycin; nitric oxide modulators; nitroxide antioxidant;
mtraillyn; obiiimten (Genaseinc®); 06-benzylguanine; octreotide; okicenone;
oligonucleotides; onapnsione; ondansetron; ondansetron; oraein; oral cytokine inducer;
ornaplatin; onterone; oxalipkitin; oxauamycin; paeitaxel; paeitaxel analogues;
paeitaxel derivatives; palauamine; palmitoylrhizoxin; pamidronic acid; panaxyltroin;
panomifene; parabactin; pazeiiiptine; pegasarpargae; peldesine; pentosan polysulfate
sodium; pentostatin; pentrozole; perifSbron; perfosfamide; periUyl alcohol;
phalazinomycin; phenylacetate; phosphate inhibitors; picibanil; pilocarpine
hydrochloride; p'triaübiem; pirirpectin; placetin A; placetin S; plasminogen activator
inhibitor; platinum complex; platinum compounds; piatium- triamine complex; porfimer
sodium; porftrormycin; prednisone; propyl bis-acridone; prostaqlandin J2; proteasome
inhibitors; protein A-based immune modulator; protein kinase C inhibitor; protein kinase C
inhibitors, microalgal; protein tyrosine phosphatase inhibitors; purine nucleoside
phosphotyrase inhibitors; purpurins; pyrazoloacridine; pyridoxylated hemoglobin
polyoxyethylene conjugate; raf antagonists; raititrexed; ramosetron; rás farnesyl protein transferase inhibitors; ras inhibitors; ras-GAP inhibitor; reteiiptine deraethylated; rhenium Re 186 etidronate; rhizoxin; ribozymes; rÎII retinamide; rohitukine; romurtide; roquinimex; mbiginone B 1; mboxyl; safmgo1; saintopin; SarCNU; sareophytol A; sargramostim; Sdi 1 mitigation; senustine; senescence derived inhibitor 1; sense oligonucleotides; signal transduction inhibitors; szofuran; sobuzoxanç; sodium borocapate; sodium pheNYlacetate; solvents; somatomedin binding protein; sonermin; sparfosic acid; spicamycin D; spiromustine; splenopenrin; spongistatin 1; squalamine; stipamide; stromelysin inhibitors; sulfmosine; superactive vasoactive intestinal peptide antagonist; suradista; suramin; swainsonine; tallimustine; tatitoxifen metadiode; tauromustine; ãızarotetë; tecogalan sodium; tegafur; tellurapyrylium; teiinerase inhibitors; temoporfin; teniposide; tetrachlorodecaoxide; tetrazomine; thalibiastine; tuicoraline; thrombopoietm; thrombopoietm mimetic; thymaltas; thymopoietin receptor agonist; thymotrinan; thyroid stimulating hormone; tin ethyl etopurprinir; tirapazamine; ritaxome bichloride; toopsentin; toremifene; translation inhibitors; tretinoin; tricetulyridine; triciribine; trimetrexate; triptorelin; tropisetron; ùrosteride; tyrosine kinase inhibitors; typhostins; UBC inhibitors; uãenirîçë; urogenital sinus-derived growth inhibitory factor; urokinase receptor antagonists; vapreotide; variolin B; velaresol; veramine; verdins; verteporfin; vinorelbine; vinxaltine; vitaxirt; voroţoie; zartoteron; zertipiatin; zilascorb; and zinoSTATIN stimaiamer.

Specific second active agents include, but are not limited to, chlorambucil, flhidarabine, dexamethasone (Decadron®), hydrocortisone, methylprednisolone, cilostamide, doxorubicin (D0xïl®), forskoil, rituximab, cyclosporin A, eisplatin, vincristine, PDE7 inhibitors such as BRL-50481 and iR-202, dual PDE4/7 inhibitors such as IR-284, cilostazoï, meribendan, milrinone-, vesnavironone, cnoximone and pimobendan, Syk inhibitors such as fostamatinib disodium (R406/R788), R343, R-i 12 and Excellair® (ZaBëCor Pharmaceuticals, Bala Cynwyd, Pa.).

III. Methods of Selecting Agents and Composittoos

Another aspect of the invention relates to methods of selecting agents (e.g.,

antibodies, fusion proteins, peptides, small molecules, or small nucleic acids) which bind to, upregulate, downregulate, or modulate one or more biomarkers of the invention listed in Table 1 and the Examples and/or a cancer (e.g., a head, neck, or lung cancer). Such methods can use screening assays, including cell based and non-cell based assays.
in one embodiment, the invention relates to assays for screening candidate or test compounds which bind or modulate the expression or activity level of, one or more biomarkers of the invention, including one or more biomarkers listed in Table 1 and the Examples, or a fragment thereof. Such compounds include, without limitation, antibodies, proteins, fusion proteins, nucleic acid molecules, and small molecules.

In one embodiment, an assay is a cell-based assay, comprising contacting a cell expressing one or more biomarkers of the invention, including one or more biomarkers listed in Table 1 and the Examples, or a fragment thereof, with a test compound and determining the ability of the test compound to modulate (e.g., stimulate or inhibit) the level of interaction between the biomarker and its natural binding partners as measured by direct binding or by measuring a parameter of cancer.

For example, in a direct binding assay, the biomarker polypeptide, a binding partner polypeptide of the biomarker, or a fragment(s) thereof, can be coupled with a radioisotope or enzymatic label such that binding of the biomarker polypeptide or a fragment thereof to its natural binding partner(s) or a fragment(s) thereof can be determined by detecting the labeled molecule in a complex. For example, the biomarker polypeptide, a binding partner polypeptide of the biomarker, or a fragment(s) thereof, can be labeled with 125I, 35S, 14C, or 3H either directly or indirectly, and the radioisotope detected by direct counting of radioemission or by scintillation counting. Alternatively, the polypeptides of interest a can be enzymatically labeled with, for example, horseradish peroxidase, alkaline phosphatase, or luciferase, and the enzymatic label detected by determination of conversion of an appropriate substrate to product.

It is also within the scope of this invention to determine the ability of a compound to modulate the interactions between one or more biomarkers of the invention, including one or more biomarkers listed in Table 1 and the Examples, or a fragment thereof, and its natural binding partner(s) or a fragment(s) thereof, without the labeling of any of the interactants (e.g., using a microphysiometer as described in MeConnell, H. M. et al. (1992) Science 257:1906-1912). As used herein, a "microphysiometer" (e.g., CytoSensor) is an analytical instrument that measures the rate at which a cell acidities its environment using a light-addressable potentiometric sensor (LAPS). Changes in this acidification rate can be used as an indicator of the interaction between compound and receptor.

In a preferred embodiment, determining the ability of the blocking agents (e.g., antibodies, fusion proteins, peptides, nucleic acid molecules, or small molecules) to
antagonize the interaction between a given set of polypeptides can be accomplished by determining the activity of one or more members of the set of interacting molecules. For example, the activity of one or more biomarkers of the invention, including one or more biomarkers listed in Table 1 and the Examples, or a fragment thereof can be determined by detecting induction of cytokine or chemokine response, detecting catalytic/ enzymatic activity of an appropriate substrate, detecting the induction of a reporter gene (comprising a target-responsive regulatory element operatively linked to a nucleic acid encoding a detectable marker, e.g., chloramphenicol acetyl transferase), or detecting a cellular response regulated by the biomarker or a fragment thereof (e.g., modulations of biological pathways identified herein, such as modulated proliferation, apoptosis, cell cycle, and/or ligand-receptor binding activity). Determining the ability of the blocking agent to bind to or interact with said polypeptide can be accomplished by measuring the ability of an agent to modulate immune responses, for example, by detecting changes in type and amount of cytokine secretion, changes in apoptosis or proliferation, changes in gene expression or activity associated with cellular identity, or by interfering with the ability of said polypeptide to bind to antibodies that recognize a portion thereof.

In yet another embodiment, an assay of the present invention is a cell-free assay in which one or more biomarkers of the invention, including one or more biomarkers listed in Table 1 and the Examples or a fragment thereof, e.g., a biologically active fragment thereof, is contacted with a test compound, and the ability of the test compound to bind to the polypeptide, or biologically active portion thereof, is determined. Binding of the test compound to the biomarker or a fragment thereof, can be determined either directly or indirectly as described above. Determining the ability of the biomarker or a fragment thereof to bind to its natural binding partner(s) or a fragments thereof can also be accomplished using a technology such as real-time Biomolecular interaction Analysis (BIA) (Sjolander, S. and Urbaniczky, C. (1991) Anal. Chem. 63:2338-2345 and Szabo et al. (1995) Curr. Opin. Struct. Biol. 5:699-705). As used herein, “BIA” is a technology for studying biospecific interactions in real time, without labeling any of the interaetants (e.g., BIAcore). Changes in the optical phenomenon of surface plasmon resonance (SPR) can be used as an indication of real-time reactions between biological polypeptides. One or more biomarkers polypeptide or a fragment thereof can be immobilized on a BIAcore chip and multiple agents, e.g., blocking antibodies, fusion proteins, peptides, or small molecules, can be tested for binding to the immobilized biomarker polypeptide or fragment thereof.
An example of using the BIA technology is described by Fitz et al. (1997) Oncogene 15:613.

The cell-free assays of the present invention are amenable to use of both soluble and/or membrane-bound forms of proteins. In the case of cell-free assays in which a membrane-bound form protein is used it may be desirable to utilize a solubilizing agent such that the membrane-bound form of the protein is maintained in solution. Examples of such solubilizing agents include non-ionic detergents such as u-oetlylg!ueoside, n-dodecylglueoside, n-dodecylmaltoside, octanoyl-M-methylglueamide, decanoyl-N-methylglueamide, Triton® X-100, Triton® X-114, Thesit®, Isotridecypoly(ethylene glycol ether)_n, 3-[(3-cetylamidopropyl)dimethylamminio]-1-propane sulfonate (CHAPS), 3-[(3-cotolaraidopropyl)dimethy lamminio]-2-hy 4oxy-1-propane sulfonate (CHAPSO), or N-dodecyl-\(N\),\(N\)-dimethyl-3-aaittomo-1 -propane sulfonate.

In one or more embodiments of the above described assay methods, it may be desirable to immobilize either the biomarker polypeptide, the natural binding partner(s) polypeptide of the biomarker, or fragments thereof to facilitate separation of complexed from uncomplexed forms of one or both of the proteins, as well as to accommodate automation of the assay. Binding of a test compound in the assay can be accomplished in any vessel suitable for containing the reactants. Examples of such vessels include microtiter plates, test tubes, and micro-centrifuge tubes. In one embodiment, a fusion protein can be provided which adds a domain that allows one or both of the proteins to be bound to a matrix. For example, glutathioe-S-transferase-base fusion proteins, can be adsorbed onto glutathione Sepharose\(\frac{4}{4}\) beads (Sigma Chemical, St. Louis, MO) or glutathione derivatized microtiter plates, which are then combined with the test compound, and the mixture incubated under conditions conducive to complex formation (e.g., at physiological conditions for salt and pH). Following incubation, the beads or microtiter plate wells are washed to remove any unbound components, the matrix immobilized in the case of beads, complex determined either directly or indirectly, for example, as described above. Alternatively, the complexes can be dissociated from the matrix, and the level of binding or activity determined using standard techniques.

In an alternative embodiment, determining the ability of the test compound to modulate the activity of one or more biomarkers of the invention, including one or more biomarkers listed in Table 1 and the Examples, or a fragment thereof, or of natural binding partner(s) thereof can be accomplished by determining the ability of the test compound
modulate the expression or activity of a gene, e.g., nucleic acid, or gene product, e.g., polypeptide, that functions downstream of the interaction. For example, inflammation (e.g., cytokine and chemokine) responses can be determined, the activity of the interactor polypeptide on an appropriate target can be determined, or the binding of the interactor to an appropriate target can be determined as previously described.

In another embodiment, modulators of one or more biomarkers of the invention, including one or more biomarkers listed in Table 1 and the Examples, or a fragment thereof, are identified in a method wherein a cell is contacted with a candidate compound and the expression or activity level of the biomarker is determined. The level of expression of biomarker mRNA or polypeptide or fragments thereof in the presence of the candidate compound is compared to the level of expression of biomarker mRNA, or polypeptide or fragments thereof in the absence of the candidate compound. The candidate compound can then be identified as a modulator of biomarker expression based on this comparison. For example, when expression of biomarker mRNA or polypeptide or fragments thereof is greater (statistically significantly greater) in the presence of the candidate compound than in its absence, the candidate compound is identified as a stimulator of biomarker expression. Alternatively, when expression of biomarker mRNA or polypeptide or fragments thereof is reduced (statistically significantly less) in the presence of the candidate compound than in its absence, the candidate compound is identified as an inhibitor of biomarker expression.

The expression level of biomarker mRNA or polypeptide or fragments thereof in the cells can be determined by methods described herein for detecting biomarker mRNA or polypeptide or fragments thereof.

In yet another aspect of the invention, a biomarker of the invention, including one or more biomarkers listed in Table 1 and the Examples, or a fragment thereof, can be used as "bait proteins" in a two-hybrid assay or three-hybrid assay (see, e.g., U.S. Pat. No. 5,283,317; Zervos et al. (1993) Cell 72:223-232; Madura et al. (1993) J. Biol. Chem. 268:12046-12054; Bartel et al. (1993) Biotechniques 14:920-924; Iwabuchi et al. (1993) Oncogene 8:1693-1696; and Brent W094/10300), to identify other polypeptides which bind to or interact with the biomarker or fragments thereof and are involved in activity of the biomarkers. Such biomarker-binding proteins are also likely to be involved in the propagation of signals by the biomarker polypeptides or biomarker natural binding partner(s) as, for example, downstream elements of one or more biomarkers -mediated signaling pathway.
The two-hybrid system is based on the modular nature of most transcription factors, which consist of separable DNA-binding and activation domains. Briefly, the assay utilizes two different DNA constructs. In one construct, the gene that codes for one or more biomarkers polypeptide is fused to a gene encoding the DNA binding domain of a known transcription factor (e.g., GAL-4). In the other construct, a DNA sequence, from a library of DNA sequences, that encodes an unidentified polypeptide ("prey" or "sample") is fused to a gene that codes for the activation domain of the known transcription factor. If the "bait" and the "prey" polypeptides are able to interact, in vivo, forming one or more biomarkers-dependent complex, the DNA-binding and activation domains of the transcription factor are brought into close proximity. This proximity allows transcription of a reporter gene (e.g., LacZ) which is operably linked to a transcriptional regulator's site responsive to the transcription factor. Expression of the reporter gene can be detected and cell colonies containing the functional transcription factor can be isolated and used to obtain the cloned gene which encodes the polypeptide which interacts with one or more biomarkers polypeptide of the invention, including one or more biomarkers listed in Table 1 and the Examples or a fragment thereof.

In another aspect, the invention pertains to a combination of two or more of the assays described herein. For example, a modulating agent can be identified using a cell-based or a cell-free assay, and the ability of the agent to modulate the activity of one or more biomarkers polypeptide or a fragment thereof can be confirmed in vivo, e.g., in an animal such as an animal model for cellular transformation and/or tumorigenesis.

This invention further pertains to novel agents identified by the above-described screening assays. Accordingly, it is within the scope of this invention to further use an agent identified as described herein in an appropriate animal model. For example, an agent identified as described herein can be used in an animal model to determine the efficacy, toxicity, or side effects of treatment with such an agent. Alternatively, an agent identified as described herein can be used in an animal model to determine the mechanism of action of such an agent. Furthermore, this invention pertains to uses of novel agents identified by the above-described screening assays for treatments as described herein.

III. Uses and Methods of the Invention

The biomarkers of the invention described herein, including the biomarkers listed in Table 1 and the Examples or fragments thereof, can be used in one or more of the following
methods; a) screening assays; b) predictive medicine (e.g., diagnostic assays, prognostic assays, and monitoring of clinical trials); and c) methods of treatment (e.g., therapeutic and prophylactic, e.g., by up- or down-modulating the copy number, level of expression, and/or level of activity of the one or more biomarkers).

The biomarkers described herein or agents that modulate the expression and/or activity of such biomarkers can be used, for example, to (a) express one or more biomarkers of the invention, including one or more biomarkers listed in Table 1 and the Examples or a fragment thereof (e.g., via a recombinant expression vector in a host cell in gene therapy applications or synthetic nucleic acid molecule), (b) detect biomarker mRNA or a fragment thereof (e.g., in a biological sample) or a genetic alteration in one or more biomarkers gene, and/or (c) modulate biomarker activity, as described further below. The biomarkers or modulatory agents thereof can be used to treat conditions or disorders characterized by insufficient or excessive production of one or more biomarkers polypeptide or fragment thereof or production of biomarker polypeptide inhibitors. In addition, the biomarker polypeptides or fragments thereof can be used to screen for naturally occurring biomarker binding partner(s), to screen for drugs or compounds which modulate biomarker activity, as well as to treat conditions or disorders characterized by insufficient or excessive production of biomarker polypeptide or a fragment thereof or production of biomarker polypeptide forms which have decreased, aberrant or unwanted activity compared to biomarker wild-type polypeptides or fragments thereof (e.g., cancers, including head, neck, and/or lung cancers).

A. Screening Assays

In one aspect, the present invention relates to a method for preventing in a subject, a disease or condition associated with an unwanted, more than desirable, or less than desirable, expression and/or activity of one or more biomarkers described herein. Subjects at risk for a disease that would benefit from treatment with the claimed agents or methods can be identified, for example, by any one or combination of diagnostic or prognostic assays known in the art and described herein (see, for example, agents and assays described in [11. Methods of Screening Agents and Impairments]).

B. Predictive Medicine

The present invention also pertains to the field of predictive medicine in which diagnostic assays, prognostic assays, and monitoring of clinical trials are used for
prognostic (predictive) purposes to thereby treat an individual prophylactically. Accordingly, one aspect of the present invention relates to diagnostic assays for determining the expression and/or activity level of biomarkers of the invention, including biomarkers listed in Table 1 and the Examples or fragments thereof, in the context of a biological sample (e.g., blood, serum, cells, or tissue) to thereby determine whether an individual is afflicted with a disease or disorder, or is at risk of developing a disorder, associated with aberrant or unwanted biomarker expression or activity. The present invention also provides for prognostic (or predictive) assays for determining whether an individual is at risk of developing a disorder associated with biomarker polypeptide, nucleic acid expression or activity. For example, mutations in one or more biomarkers gene can be assayed in a biological sample.

Such assays can be used for prognostic or predictive purpose to thereby prophylactically treat an individual prior to the onset of a disorder characterized by or associated with biomarker polypeptide, nucleic acid expression or activity.

Another aspect of the invention pertains to monitoring the influence of agents (e.g., drugs, compounds, and small nucleic acid-based molecules) on the expression or activity of biomarkers of the invention, including biomarkers listed in Table 1 and the Examples, or fragments thereof, in clinical trials. These and other agents are described in further detail in the following sections.

1. Diagnostic Assays

The present invention provides, in part, methods, systems, and code for accurately classifying whether a biological sample is associated with a cancer or a clinical subtype thereof (e.g., head, neck, and/or lung cancers). In some embodiments, the present invention is useful for classifying a sample (e.g., from a subject) as a cancer sample using a statistical algorithm and/or empirical data (e.g., the presence or level of one or biomarkers described herein).

An exemplary method for detecting the level of expression or activity of one or more biomarkers of the invention, including one or more biomarkers listed in Table 1 and the Examples or fragments thereof and thus useful for classifying whether a sample is associated with cancer or a clinical subtype thereof (e.g., head, neck, and/or lung cancers), involves obtaining a biological sample from a test subject and contacting the biological sample with a compound or an agent capable of detecting the biomarker (e.g., polypeptide or nucleic acid that encodes the biomarker or fragments thereof) such that the level of
expression or activity of the biomarker is detected in the biological sample. In some embodiments, the presence or level of at least one, two, three, four, five, six, seven, eight, nine, ten, fifty, hundred, or more biomarkers of the invention are determined in the individual's sample. In certain instances, the statistical algorithm is a single learning statistical classifier system. Exemplary statistical analyses are presented in the Examples and can be used in certain embodiments. In other embodiments, a single learning statistical classifier system can be used to classify a sample as a cancer sample, a cancer subtype sample, or a non-cancer sample based upon a prediction or probability value and the presence or level of one or more biomarkers described herein. The use of a single learning statistical classifier system typically classifies the sample as a cancer sample with a sensitivity, specificity, positive predictive value, negative predictive value, and/or overall accuracy of at least about 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99%.

Other suitable statistical algorithms are well known to those of skill in the art. For example, learning statistical classifier systems include a machine learning algorithmic technique capable of adapting to complex data sets (e.g., part of markers of interest) and making decisions based upon such data sets. In some embodiments, a single learning statistical classifier system such as a classification tree (e.g., random forest) is used. In other embodiments, a combination of 2, 3, 4, 5, 6, 7, 8, 9, 10, or more learning statistical classifier systems are used, preferably in tandem. Examples of learning statistical classifier systems include, but are not limited to, those using inductive learning (e.g., decision/classification trees such as random forests, classification and regression trees (C&RT), boosted trees, etc.), Probably Approximately Correct (PAC) learning, connectionist learning (e.g., neural networks (NN), artificial neural networks (ANN), neuro fuzzy networks (NFN), network structures, perceptrons such as multi-layer perceptrons, multi-layer feed-forward networks, applications of neural networks, Bayesian learning in belief networks, etc.), reinforcement learning (e.g., passive learning in a known environment such as naive learning, adaptive dynamic learning, and temporal difference learning, passive learning in an unknown environment, active learning in an unknown environment, learning action-value functions, applications of reinforcement learning, etc.), and genetic algorithms and evolutionary programming. Other learning statistical classifier systems include support vector machines (e.g., Kernel methods), multivariate adaptive regression splines (MARS), Levenberg-Marquardt algorithms, Gauss-Newton algorithms,
mixtures of Gaussians, gradient-descent algorithms, and learning vector quantization (LVQ). In certain embodiments, the method of the present invention further comprises sending the cancer classification results to a clinician, e.g., an oncologist or hematologist.

In another embodiment, the method of the present invention further provides a diagnosis in the form of a probability that the individual has a cancer or a clinical subtype thereof. For example, the individual can have about 0%, 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, or greater probability of having cancer or a clinical subtype thereof. In yet another embodiment, the method of the present invention further provides a prognosis of cancer in the individual.

For example, the prognosis can be surgery, development of a clinical subtype of the cancer (e.g., subtype of leukemia), development of one or more symptoms, development of malignant cancer, or recovery from the disease. In some instances, the method of classifying a sample as a cancer sample is further based on the symptoms (e.g., clinical factors) of the individual from which the sample is obtained. The symptoms or group of symptoms can be, for example, those associated with the IPI. In some embodiments, the diagnosis of an individual as having cancer or a clinical subtype thereof is followed by administering to the individual a therapeutically effective amount of a drug useful for treating one or more symptoms associated with cancer or the cancer.

In some embodiments, an agent for detecting biomarker mRNA, genomic DNA, or fragments thereof is a labeled nucleic acid probe capable of hybridizing to biomarker mRNA, genomic DNA, or fragments thereof. The nucleic acid probe can be, for example, full-length biomarker nucleic acid, or a portion thereof, such as an oligonucleotide of at least 15, 30, 50, 100, 250 or 500 nucleotides in length and sufficient to specifically hybridize under stringent conditions well known to a skilled artisan to biomarker mRNA or genomic DNA. Other suitable probes for use in the diagnostic assays of the invention are described herein. In some embodiments, the nucleic acid probe is designed to detect transcript variants (i.e., different splice forms) of a gene.

A preferred agent for detecting one or more biomarkers listed in Table 1 and the Examples or a fragment thereof is an antibody capable of binding to the biomarker, preferably an antibody with a detectable label. Antibodies can be polyclonal, or more preferably, monoclonal. An intact antibody, or a fragment thereof (e.g., Fab or Fab'2) can be used. The term "labeled", with regard to the probe or antibody, is intended to encompass direct labeling of the probe or antibody by coupling (i.e., physically Unking) a
detectable substance to the probe or antibody, as well as indirect labeling of the probe or antibody by reactivity with another reagent that is directly labeled. Examples of indirect labeling include detection of a primary antibody using a fluorescently labeled secondary antibody and end-labeling of a DNA probe with biotin such that it can be detected with fluorescently labeled streptavidin. The term "biological sample" is intended to include tissues, cells, and biological fluids isolated from a subject, as well as tissues, cells, and fluids present within a subject. That is, the detection method of the invention can be used to detect biomarker mRNA, polypeptide, genomic DNA, or fragments thereof, in a biological sample in vitro as well as in vivo. For example, in vitro techniques for detection of biomarker mRNA or a fragment thereof include Northern hybridizations and in situ hybridizations. In vitro techniques for detection of biomarker polypeptide include enzyme linked immunosorbent assays (ELISAs), Western blots, iramunoprecipitations and immunofluorescence. In vitro techniques for detection of biomarker genomic DNA or a fragment thereof include Southern hybridizations, furthermore, in vivo techniques for detection of one or more biomarkers polypeptide or a fragment thereof include introducing into a subject a labeled anti-biomarker antibody. For example, the antibody can be labeled with a radioactive marker whose presence and location in a subject can be detected by standard imaging techniques.

In one embodiment, the biological sample contains polypeptide molecules from the test subject. Alternatively, the biological sample can contain mRNA molecules from the test subject or genomic DNA molecules from the test subject. A preferred biological sample is a hematological tissue (e.g., a sample comprising blood, plasma, B cell, bone marrow, etc.) sample isolated by conventional means from a subject.

In another embodiment, the methods further involve obtaining a control biological sample from a control subject, contacting the control sample with a compound or agent capable of detecting polypeptide, mRNA, cDNA, small RNAs, mature miRNA, pre-miRNA, pri-fflriRNA, miRNA*, anti-miRNA, or a miRNA binding site, or a variant thereof, genomic DNA, or fragments thereof of one or more biomarkers listed in Table 1 and the Examples such that the presence of biomarker polypeptide, mRNA, genomic DNA, or fragments thereof, is detected in the biological sample, and comparing the presence of biomarker polypeptide, mRNA, cDNA, small RNAs, mature miRNA, pre-miRNA, pri-miRNA, miRNA*, anti-miRNA, or a miRNA binding site, or a variant thereof, genomic DNA, or fragments thereof in the control sample with the presence of biomarker.
polypeptide, mRNA, cDNA, small RNAs, mature miRNA, pre-miRNA, pri-miRNA, miRNA*, anti-miRNA, or a miRNA binding site, or a variant thereof, genomic DNA, or fragments thereof in the test sample.

The invention also encompasses kits for detecting the presence of a polypeptide, mRNA, cDNA, small RNAs, mature miRNA, pre-miRNA, pri-miRNA, miRNA*, anti-miRNA, or a miRNA binding site, or a variant thereof, genomic DNA, or fragments thereof, of one or more biomarkers listed in Table 1 and the Examples in a biological sample. For example, the kit can comprise a labeled compound or agent capable of detecting one or more biomarkers polypeptide, mRNA, cDNA, small RNAs, mature miRNA, pre-miRNA, pri-miRNA, miRNA*, anti-miRNA, or a miRNA binding site, or a variant thereof, genomic DNA, or fragments thereof, in a biological sample; means for determining the amount of the biomarker polypeptide, mRNA, cDNA, small RNAs, mature miRNA, pre-miRNA, pri-miRNA, miRNA*, anti-miRNA, or a miRNA binding site, or a variant thereof, genomic DNA, or fragments thereof, in the sample; and means for comparing the amount of the biomarker polypeptide, mRNA, cDNA, small RNAs, mature miRNA, pre-miRNA, pri-miRNA, miRNA*, anti-miRNA, or a miRNA binding site, or a variant thereof, genomic DNA, or fragments thereof, in the sample with a standard. The compound or agent can be packaged in a suitable container. The kit can further comprise instructions for using the kit to detect the biomarker polypeptide, mRNA, cDNA, small RNAs, mature miRNA, pre-miRNA, pri-miRNA, miRNA*, anti-miRNA, or a miRNA binding site, or a variant thereof, genomic DNA, or fragments thereof.

In some embodiments, therapies tailored to treat stratified patient populations based on the described diagnostic assays are further administered.

2. Prognostic Assays

The diagnostic methods described herein can furthermore be utilized to identify subjects having or at risk of developing a disease or disorder associated with aberrant expression or activity of one or more biomarkers of the invention, including one or more biomarkers listed in Table 1 and the Examples, or a fragment thereof. As used herein, the term "aberrant" includes biomarker expression or activity levels which deviates from the normal expression or activity in a control.

The assays described herein, such as the preceding diagnostic assays or the following assays, can be utilized to identify a subject having or at risk of developing a disorder associated with a misregulation of biomarker activity or expression, such as in a
cancer (e.g., head, neck, and/or lung cancers). Alternatively, the prognostic assays can be used to identify a subject having or at risk for developing a disorder associated with a misregulation of biomarker activity or expression. Thus, the present invention provides a method for identifying and/or classifying a disease associated with aberrant expression or activity of one or more biomarkers of the invention, including one or more biomarkers listed in Table 1 and the Examples, or a fragment thereof. Furthermore, the prognostic-assays described herein can be used to determine whether a subject can be administered an agent (e.g., an agonist, antagonist, peptidomimetic, polypeptide, peptide, nucleic acid, small molecule, or other drag candidate) to treat a disease or disorder associated with aberrant biomarker expression or activity. For example, such methods can be used to determine whether a subject can be effectively treated with an agent for a cancer (e.g., head, neck, and/or lung cancers). Thus, the present invention provides methods for determining whether a subject can be effectively treated with an agent for a disease associated with aberrant biomarker expression or activity in which a test sample is obtained and biomarker polypeptide or nucleic acid expression or activity is detected (e.g., wherein a significant increase or decrease in biomarker polypeptide or nucleic acid expression or activity relative to a control is diagnostic for a subject that can be administered the agent to treat a disorder associated with aberrant biomarker expression or activity), in some embodiments, significant increase or decrease in biomarker expression or activity comprises at least 2.2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, 3, 3.5, 4, 4.5, 5, 5.5, 6, 6.5, 7, 7.5, 8, 8.5, 9, 9.5, 10, 10.5, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20 times or more higher or lower, respectively, than the expression activity or level of the marker in a control sample.

The methods of the invention can also be used to detect generic alterations in one or more biomarkers of the invention, including one or more biomarkers listed in Table 1 and the Examples or a fragment thereof, thereby determining if a subject with the altered biomarker is at risk for cancer (e.g., head, neck, and/or lung cancers) characterized by aberrant biomarker activity or expression levels. In preferred embodiments, the methods tnektde detecting, in a sample of cells from the subject, the presence or absence of a genetic alteration characterized by at least one alteration affecting the integrity of a gene encoding one or more biomarkers polypeptide, or the mis-expression of the biomarker (e.g., mutations and/or splice variants). For example, such genetic alterations can be detected by ascertaining the existence of at least one of i) a deletion of one or more nucleotides from one or more biomarkers gene, 2) an addition of one or more nucleotides to one or more
biomarkers gene, 3) a substitution of one or more nucleotides of one or more biomarkers gene, 4) a chromosomal rearrangement of one or more biomarkers gene, 5) an alteration in the level of a messenger RNA transcript of one or more biomarkers gene, 6) aberrant modification of one or more biomarkers gene, such as of the methylation pattern of the genomic DNA, 7) the presence of a non-wild type splicing pattern of a messenger RNA transcript of one or more biomarkers gene, 8) a non-wild type level of one or more biomarkers polypeptide, 9) allelic loss of one or more biomarkers gene, and 10) inappropriate post-translation modification of one or more biomarkers polypeptide. As described herein, there are a large number of assays known in the art which can be used for detecting alterations in one or more biomarkers gene. A preferred biological sample is a tissue or serum sample isolated by conventional means from a subject.

In certain embodiments, detection of the alteration involves the use of a probe/primer in a polymerase chain reaction (PCR) (see, e.g., U.S. Patents 4,683,395 and 4,683,202), such as anchor PCR or RACE PCR, or, alternatively, in a ligation chain reaction (LCR) (see, e.g., Landegran et al. (1988) Science 241:1077-1080; and Nakazawa et al. (1994) Proc. Nail. Acad. Sci. USA 91:360-364), the latter of which can be particularly useful for detecting point mutations in one or more biomarkers gene (see Abravaya et al. (1995) Nucleic Acids Res. 23:675-682). This method can include the steps of collecting a sample of cells from a subject, isolating nucleic acid (e.g., genomic DNA, mRNA, cDNA, small RNA, mature miRNA, pre-rasiRNA, pri-miRNA, miRNA*, anti-miRNA, or a miRNA binding site, or a variant thereof) from the cells of the sample, contacting the nucleic acid sample with one or more primers which specifically hybridize to one or more biomarkers gene of the invention, including the biomarker genes listed in Table 1, and the Examples, or fragments thereof, under conditions such that hybridization and amplification of the biomarker gene (if present) occurs, and detecting the presence or absence of an amplification product, or detecting the size of the amplification product and comparing the length to a control sample. It is anticipated that PCR and/or LCR may be desirable to use as a preliminary amplification step in conjunction with any of the techniques used for detecting mutations described herein.

nucleic acid amplification method, followed by the detection of the amplified molecules using techniques well known to those of skill in the art. These detection schemes are especially useful for the detection of nucleic acid molecules if such molecules are present in very low numbers.

In an alternative embodiment, mutations in one or more biomarkers gene of the invention, including one or more biomarkers listed in Table 1 and the Examples, or a fragment thereof from a sample cell can be identified by alterations in restriction enzyme cleavage patterns. For example, sample and control DNA is isolated, amplified (optionally), digested with one or more restriction endonucleases, and fragment length sizes are determined by gel electrophoresis and compared. Differences in fragment length sizes between sample and control DNA indicates mutations in the sample DNA. Moreover, the use of sequence specific ribozymes (see, for example, U.S. Patent 5,498,531) can be used to score for the presence of specific mutations by development or loss of a ribozyme cleavage site.

In other embodiments, genetic mutations in one or more biomarkers gene of the invention, including a gene listed in Table 1 and the Examples, or a fragment thereof can be identified by hybridizing a sample and control nucleic acids, e.g., DNA, RNA, miRNA, small RNA, cDN.A, mature miRNA, pre-miRNA, pri-miRNA, miRNA*, anti-miRNA, or a miRNA binding site, or a variant thereof to high density arrays containing hundreds or thousands of oligonucleotide probes (Cronin, M. T. el al. (1996) Hum. Mutat. 7:244-255; KozaJ, M. J. el al. (1996) Nat. Med. 2:753-759). For example, genetic mutations in one or more biomarkers can be identified in two dimensional arrays containing light-generated DNA probes as described in Cronin et al. (1996) supra. Briefly, a first hybridization array of probes can be used to scan through long stretches of DNA in a sample and control to identify base changes between the sequences by making linear arrays of sequential, overlapping probes. This step allows the identification of point mutations. This step is followed by a second hybridization array that allows the characterization of specific mutations by using smaller, specialized probe arrays complementary to all variants or mutations detected. Each mutation array is composed of parallel probe sets, one complementary to the wild-type gene and the other complementary to the mutant gene.

In yet another embodiment, any of a variety of sequencing reactions known in the art can be used to directly sequence one or more biomarkers gene of the invention, including a gene listed in Table 1 and the Examples, or a fragment thereof, and detect

Other methods for detecting mutations in one or more biomarkers gene of the invention, including a gene listed in Table 1 and the Examples, or fragments thereof, include methods in which protection from cleavage agents is used to detect mismatched bases in RNA/RNA or RNA/DNA heteroduplexes (Myers et al. (1985) Science 230:1242). In general, the art technique of "mismatch cleavage" starts by providing heteroduplexes formed by hybridizing (labeled) RNA or DNA containing the wild-type sequence with potentially mutant RNA or DNA obtained from a tissue sample. The double-stranded duplexes are treated with an agent which cleaves single-stended -regions of the duplex such as which will exist due to base pair mismatches between the control and sample strands. For instance, RNA/DNA duplexes can be treated with RNase and DNA/DNA hybrids treated with SI nuclease to enzymatically digest the mismatched regions. In other embodiments, either DNA/DNA or RNA/DNA duplexes can be treated with hydroxy laraine or osmium tetroxide and with piperidine in order to digest mismatched regions. After digestion of the mismatched regions, the resulting material is then separated by size on denaturing polyarySainide gels to determine the site of mutation. See, for example. Cotton et al. (1988) Proc. Natl. Acad. Sci. USA 85:4397 and Saieeba et al. (1992) Methods Enzymol. 217:286-295. In a preferred embodiment, the control DNA or RNA can be labeled for detection.

In still another embodiment, the mismatch cleavage reaction employs one or more proteins that recognize mismatched base pairs in double-stranded DNA (so called "DNA mismatch repair" enzymes) in defined systems for detecting and mapping point mutations in biomarker genes of the invention, including genes listed in Table 1 and the Examples, or fragments thereof obtained from samples of cells. For example, the mutY enzyme of E. coli cleaves A at G/A mismatches and the thymidine DNA glycosylase from HeLa cells
cleaves T at G/T mismatches. (Hsu et al. (1994) Carcinogenesis 15:1657-1662). The duplex is treated with a DNA mismatch repair enzyme, and the cleavage products, if any, can be detected from electrophoresis protocols or the like. See, for example, U.S. Patent 5,459,039.

In other embodiments, alterations in electrophoretic mobility will be used to identify mutations in biomarker genes of the invention, including genes listed in Table 1 and the Examples, or fragments thereof. For example, single strand conformation polymorphism (SSCP) may be used to detect differences in electrophoretic mobility between mutant and wild type nucleic acids (Orita et al. (1989) Proc Natl. Acad. Sci USA 86:2766; see also Cotton (1993) Mutat. Res. 285:125-144 and Hayashi (1992) Genet. Anal. Tech. Appi. 9:73-79). Single-stranded DNA fragments of sample and control nucleic acids will be denatured and allowed to renature. The secondary structure of single-stranded nucleic acids varies according to sequence, the resulting alteration in electrophoretic mobility enables the detection of even a single base change. The DNA fragments may be labeled or detected with labeled probes. The sensitivity of the assay may be enhanced by using RNA. (rather than DNA), in which the secondary structure is more sensitive to a change in sequence. In a preferred embodiment, the subject method utilizes heteroduplex analysis to separate double stranded heteroduplex molecules on the basis of changes in electrophoretic mobility (Keen et al. (1.991) Trends Genet. 7:5).

In yet another embodiment the movement of mutant or wild-type fragments in polyacrylamide gels containing a gradient of denaturant is assayed using denaturing gradient gel electrophoresis (DGGE) (Myers et al. (1985) Nature 313:495). When DGGE is used as the method of analysis, DNA will be modified to ensure that it does not completely denature, for example by adding a GC clamp of approximately 40 bp of high-melting GC-rich DNA by PGR. In a further embodiment, a temperature gradient is used in place of a denaturing gradient to identify differences in the mobility of control and sample DNA (Rosenbaum and Reissner (1987) Biophys. Chem. 265:12753).

Examples of other techniques for detecting point mutations include, but are not limited to, selective oligonucleotide hybridization, selective amplification, or selective primer extension. For example, oligonucleotide primers may be prepared in which the known mutation is placed centrally and then hybridized to target DNA under conditions which permit hybridization only if a perfect match is found (Saiki et al. (1986) Nature 324:163; Saiki et al. (1989) Proc. Natl. Acad. Sci. USA 86:6230). Such allele specific oligonucleotides are hybridized to PGR amplified target DNA or a number of different
mutations when the oligonucleotides are attached to the hybridizing membrane and hybridized with labeled target DNA. In some embodiments, the hybridization reactions can occur using microchips, microarrays, etc., or other array technology that are well known in the art.

Alternatively, allele specific amplification technology which depends on selective PCR amplification may be used in conjunction with the instant invention. Oligonucleotides used as primers for specific amplification may earn, the mutation of interest in the center of the molecule (so that amplification depends on differential hybridization) (Gibbs et al. (1989) Nucleic Acids Res. 17:2437-2448) or at the extreme 3’ end of one primer where, under appropriate conditions, mismatch can prevent, or reduce polymerase extension (Prossner (1993) Tibtech 11:238). In addition it may be desirable to introduce a novel restriction site in the region of the mutation to create cleavage-based detection (Gasparini et al. (1992) Mol. Cell Probes 6:1), It is anticipated that in certain embodiments amplification may also be performed using Taq ligase for amplification (Barany (1991) Proc. Natl. Acad. Sci USA 88:189). In such cases, ligation will occur only if there is a perfect match at the 3’ end of the 5’ sequence making it possible to detect the presence of a known mutation at a specific site by looking for the presence or absence of amplification.

The methods described herein may be performed, for example, by utilizing pre-packaged diagnostic kits comprising at least one probe nucleic acid or antibody reagent described herein, which may be conveniently used, e.g., in clinical settings to diagnose patients exhibiting symptoms or family history of a disease or illness involving one or more biomarkers of the invention, including one or more biomarkers listed in Table 1 and the Examples, or fragments thereof.

3. Monitoring of Effects During Clinical Trials

Monitoring the influence of agents (e.g., drugs) on the expression or activity of one or more biomarkers of the invention, including one or more biomarkers listed in Table 1 and the Examples, or a fragment thereof (e.g., the modulation of a cancer state) can be applied not only in basic drug screening, but also in clinical trials. For example, the effectiveness of an agent determined by a screening assay as described herein to increase expression and/or activity of one or more biomarkers of the invention, including one or more biomarkers listed in Table 1 and the Examples, or a fragment thereof, can be monitored in clinical trials of subjects exhibiting decreased expression and/or activity of one or more biomarkers of the invention, including one or more biomarkers of the
invention, including one or more biomarkers listed in Table 1 and the Examples, or a fragment thereof, relative to a control reference. Alternatively, the effectiveness of an agent determined by a screening assay to decrease expression and/or activity of one or more biomarkers of the invention, including one or more biomarkers listed in Table 1 and the Examples, or a fragment thereof, can be monitored in clinical trials of subjects exhibiting decreased expression and/or activity of the biomarker of the invention, including one or more biomarkers listed in Table 1 and the Examples or a fragment thereof relative to a control reference. In such clinical trials, the expression and/or activity of the biomarker can be used as a “end out” or marker of the phenotype of a particular cell,

In some embodiments, the present invention provides a method for monitoring the effectiveness of treatment of a subject with an agent (e.g., an agonist, antagonist, peptide, polypeptide, peptide, nucleic acid, small molecule, or other drug candidate identified by the screening assays described herein) including the steps of (i) obtaining a pro-administration sample from a subject prior to administration of the agent; (ii) detecting the level of expression and/or activity of one or more biomarkers of the invention, including one or more biomarkers listed in Table 1 and the Examples or fragments thereof in the preadministration sample; (iii) obtaining one or more post-administration samples from the subject; (iv) detecting the level of expression or activity of the biomarker in the post-administration samples; (v) comparing the level of expression or activity of the biomarker or fragments thereof in the pre-administration sample with the that of the biomarker in the post administration sample or samples; and (vi) altering the administration of the agent to the subject accordingly. For example, increased administration of the agent may be desirable to increase the expression or activity of one or more biomarkers to higher levels than detected (e.g., to increase the effectiveness of the agent.) Alternatively, decreased administration of the agent may be desirable to decrease expression or activity of the biomarker to lower levels than detected (e.g., to decrease the effectiveness of the agent). According to such an embodiment, biomarker expression or activity may be used as an indicator of the effectiveness of an agent, even in the absence of an observable phenotypic response.

D. Methods of Treatment

The present invention provides for both prophylactic and therapeutic methods of treating a subject at risk of for susceptible to a disorder characterized by insufficient or excessive production of biomarkers of the invention, including biomarkers listed in Table 1
and the Examples or fragments thereof, which have aberrant expression or activity compared to a control. Moreover, agents of the invention described herein can be used to detect and isolate the biomarkers or fragments thereof, regulate the bioavailability of the biomarkers or fragments thereof, and modulate biomarker expression levels or activity.

1. Prophylactic Methods

In one aspect, the invention provides a method for preventing in a subject, a disease or condition associated with an aberrant expression or activity of one or more biomarkers of the invention, including one or more biomarkers listed in Table 1 and the Examples or a fragment thereof, by administering to the subject an agent which modulates biomarker expression or at least one activity of the biomarker. Subjects at risk for a disease or disorder which is caused or contributed to by aberrant biomarker expression or activity can be identified by, for example, any or a combination of diagnostic or prognostic assays as described herein. Administration of a prophylactic agent can occur prior to the manifestation of symptoms characteristic of the biomarker expression or activity aberrancy, such that a disease or disorder is prevented or, alternatively, delayed in its progression.

2. Therapeutic Methods

Another aspect of the invention pertains to methods of modulating the expression or activity or interaction with natural binding partner(s) of one or more biomarkers of the invention, including one or more biomarkers listed in Table 1 and the Examples or fragments thereof, for therapeutic purposes. The biomarkers of the invention have been demonstrated to correlate with cancer (e.g., head, neck, and/or lung cancers). Accordingly, the activity and/or expression of the biomarker, as well as the interaction between one or more biomarkers or a fragment thereof and its natural binding partner(s) or a fragment(s) thereof can be modulated in order to modulate the immune response.

Modulatory methods of the invention involve contacting a cell with one or more biomarkers of the invention, including one or more biomarkers of the invention, including one or more biomarkers listed in Table 1 and the Examples or a fragment thereof or agent that modulates one or more of the activities of biomarker activity associated with the cell. In some embodiments, the biomarkers are or encode secreted molecules such that contacting a cell with one or more biomarkers of the invention or agent that modulates one or more of the activities of biomarker activity is unnecessary and contact with a bodily fluid (e.g., blood, serum, lung pleural fluid, etc.) is sufficient. An agent that modulates biomarker activity can be an agent as described herein, such as a nucleic acid or a
polypeptide, a naturally-occurring binding partner of the biomarker, an antibody against the biomarker, a combination of antibodies against the biomarker and antibodies against other immune related targets, one or more biomarkers agonist or antagonist; a peptidomimetic of one or more biomarkers agonist or antagonist, one or more biomarkers peptidomimetic, other small molecule, or small RNA directed against or a mimic of one or more biomarkers nucleic acid gene expression product.

An agent that modulates the expression of one or more biomarkers of the invention, including one or more biomarkers of the invention, including one or more biomarkers listed in Table J and the Examples or a fragment thereof is, e.g., an antisense nucleic acid molecule, RNAi molecule, shRNA, mature miRNA, pre-miRNA, pri-miRNA, miRNA*, anti-miRNA, or a miRNA binding site, or a variant thereof, or other small RNA molecule, triplex oligonucleotide, ribozyme, or recombinant vector for expression of one or more biomarkers polypeptide. For example, an oligonucleotide complementary to the area around one or more biomarkers polypeptide translation initiation site can be synthesized.

One or more antisense oligonucleotides can be added to cell media, typically at 200 µg/ml, or administered to a patient to prevent the synthesis of one or more biomarkers polypeptide. The antisense oligonucleotide is taken up by cells and hybridizes to one or more biomarkers miRNA to prevent translation. Alternatively, an oligonucleotide which binds double-stranded DNA to form a triplex construct to prevent DNA unwinding and transcription can be used. As a result of either, synthesis of biomarker polypeptide is blocked. When biomarker expression is modulated, preferably, such modulation occurs by a means other than by knocking out the biomarker gene.

Agents which modulate expression, by virtue of the fact that they control the amount of biomarker in a cell, also modulate the total amount of biomarker activity in a cell.

In one embodiment, the agent stimulates one or more activities of one or more biomarkers of the invention, including one or more biomarkers listed in Table 1 and the Examples or a fragment thereof. Examples of such stimulatory agents include active biomarker polypeptide or a fragment thereof and a nucleic acid molecule encoding the biomarker or a fragment thereof that has been introduced into the cell (e.g., cDNA, mRNA, shRNAs, siRNAs, small RNAs, mature miRNA, pre-miRNA, pri-miRNA, miRNA*, anti-miRNA, or a miRNA binding site, or a variant thereof or other functionally equivalent molecule known to a skilled artisan). In another embodiment, the agent inhibits one or
more biomarker activities. In one embodiment, the agent inhibits or enhances the interaction of the biomarker with its natural binding partner(s). Examples of such inhibitory agents include anti-sense nucleic acid molecules, anti-biomarker antibodies, biomarker inhibitors, and compounds identified in the screening assays described herein.

These modulatory methods can be performed in vitro (e.g., by contacting the cell with the agent) or, alternatively, by contacting an agent with cells in vivo (e.g., by administering the agent to a subject). As such, the present invention provides methods of treating an individual afflicted with a condition or disorder that would benefit from up- or down-modulation of one or more biomarkers of the invention listed in Table 1 and the Examples or a fragment thereof, e.g., a disorder characterized by unwanted, insufficient, or aberrant expression or activity of the biomarker or fragments thereof. In one embodiment, the method involves administering an agent (e.g., an agent identified by a screening assay described herein), or combination of agents that modulates (e.g., upregulates or downregulates) biomarker expression or activity. In another embodiment, the method involves administering one or more biomarkers polypeptide or nucleic acid molecule as therapy to compensate for reduced, aberrant, or unwanted biomarker expression or activity.

Stimulation of biomarker activity is desirable in situations in which the biomarker is abnormally downregulated and/or in which increased biomarker activity is likely to have a beneficial effect. Likewise, inhibition of biomarker activity is desirable in situations in which biomarker is abnormally upregulated and/or in which decreased biomarker activity is likely to have a beneficial effect.

In addition, these modulatory agents can also be administered in combination therapy with, e.g., chemotherapeutic agents, hormones, angiogens, radiolabeled, compounds, or with surgery, cryotherapy, and/or radiotherapy. The preceding treatment methods can be administered in conjunction with other forms of conventional therapy (e.g., standard-of-care treatments for cancer well known to the skilled artisan), either consecutively with, pre- or post-conventional therapy. For example, these modulatory agents can be administered with a therapeutically effective dose of chemotherapeutic agent. In another embodiment, these modulatory agents are administered in conjunction with chemotherapy to enhance the activity and efficacy of the chemotherapeutic agent. The Physicians’ Desk Reference (PDR) discloses dosages of chemotherapeutic agents that have been used in the treatment of various cancers. The dosing regime and dosages of these aforementioned chemotherapeutic drugs that are therapeutically effective will depend on
the particular cancer (e.g., head, neck, and/or lung cancers), being treated, the extent of the
disease and other factors familiar to the physician of skill in the art and can be determined by
the physician.

In some embodiments, it is useful to downregulate immune responses. In other
embodiments, it is useful to upregulate immune responses.

a. Downregulation of Immune Responses by Modulation

Here are numerous embodiments of the invention for upregulating the inhibitory
function or downregulating the costimulatory function of a PD-1 ligand (e.g., soluble PD-
L1) thereby downregulate immune responses. Downregulation can be in the form of
inhibiting or blocking an immune response already in progress, or may involve preventing
the induction of an immune response. The functions of activated immune cells can be
inhibited by down-regulating immune cell responses, or by inducing specific anergy in
immune cells, or both.

For example, the immune response can be downmodulated using PD-1 ligand (e.g.,
soluble PD-L1) polypeptides (e.g., soluble, monomeric forms of a PD-1 ligand (e.g.,
soluble PD-L1) polypeptide such as PD-1 ligand (e.g., soluble PD-L1)Ig) and/or anti-PD-1
ligand (e.g., soluble PD-L1) antibodies that block the interaction of PD-1 ligand (e.g.,
soluble PD-L1) with a B7 polypeptide (e.g., while not affecting or increasing the interaction
between PD-L1 and PD-1) or which promote the binding of a PD-1 ligand (e.g., soluble
PD-L1) with PD-1, (e.g., while not affecting or while inhibiting the interaction between a
B7 polypeptide and the PD-1 ligand (e.g., soluble PD-L1)). Other exemplary agents which
can block these interactions include anti-B7 polypeptide, a B7 polypeptide, or a blocking
small molecule.

In addition, in embodiments where PD-L1 binds to an inhibitory receptor, forms of
PD-L1 that bind to the inhibitory receptor, e.g., multivalent PD-L1 on a cell surface, can be
used to downmodulate the immune response.

Likewise, the PD-1 pathway can also be stimulated by the use of an agent to thereby
downmodulate the immune response. Inhibition of the interaction of B7-4 with a
stimulatory receptor on an immune cell (e.g., by using a soluble form of PD-1 and/or
CTLA4) or activation of PD-i (e.g., using an activating antibody which cross-links PD-1)
may provide negative signals to immune cells.

Agents that promote binding of a PD-1 ligand (e.g., soluble PD-L1) to PD-1 or a B7
polypeptide to CTLA4, while not affecting or reducing the binding of the PD-i ligand (e.g.,
soluble PD-L1) to the B7 polypeptide, can also be used to down modulate the immune response. **Exemplary** agents include PD-1 peptide raiaretics, **identified by the methods** described herein.

In one embodiment of the invention, an activating antibody used to stimulate PD-1 activity is a bispecific antibody. For example, such an antibody **can** comprise a PEM binding site and another binding site which targets a cell surface receptor on an immune cell, e.g., on a T cell, a B cell, or a myeloid cell. In one embodiment, such an antibody, in addition to comprising a PD-1 binding site can further comprise a binding site which binds to a molecule which is in proximity to an activating or inhibitory receptor, e.g., B-cell antigen receptor, a T-cell antigen receptor, or an Fc receptor in order to target the molecule to a specific cell population. For example, a CDS antigen, a T-cell receptor chain, LFA-1, CD2, CTLA-4, immunoglobulin, B cell receptor, Ig alpha, Ig beta, CD22, or Fc receptor could be used. Such antibodies (or other bispecific agents) are art recognized and can be produced, e.g., as described herein. **Selection** of this second antigen for the bispecific antibody provides flexibility in selection of cell population to be targeted for inhibition.

In another embodiment, the co-ligation of PD-1 and another activating or inhibitory receptor on a cell can **enhance** the generation of a negative signal via PD-1. Such co-ligation can be accomplished, e.g., by use of a bispecific agent, e.g., a bispecific antibody as described herein having **specificity** for both PD-1 and a molecule associated with a receptor. In another embodiment, the use of a multivalent form of an agent that transmits a negative signal via PD-1 can be used to enhance the transmission of a negative signal via PD-1, e.g., an agent presented on a bead or on a surface. In another embodiment, a such a multivalent agent can **comprise** two specificities to achieve co-ligation of PD-1 and a receptor or a receptor associated molecule (e.g., a bead comprising and CD3 and PD-L1).

Agents that block or inhibit interaction of PD-L1 with a costimulatory receptor (e.g., soluble forms of PD-L1 or blocking antibodies to PD-L1) **as well as agents** that promote a PD-L1-mediated inhibitory signal or agonists of PD-1 which activate PD-1 (e.g., PD-I activating antibodies or PD-1 activating small molecules) can be **identified by** their ability to inhibit immune cell **proliferation** and/or **effector** function or to induce anergy when added to an in vitro assay. For example, cells can cultured in the presence of an agent that stimulates signal transduction via an activating receptor. A number of art recognized readouts of cell activation can be employed to measure, e.g., cell proliferation or effector function (e.g., antibody production, cytokine production, phagocytosis) in the presence of
the activating agent. The ability of a test agent to block this activation can be readily
determined by measuring the ability of the agent to effect a decrease in proliferation or
effector function being measured.

In one embodiment of the invention, tolerance is induced against specific antigens
by co-administering an antigen with an agent (e.g., antibody, peptide, fusion protein, or
small molecule) which blocks the interaction between a PD-l ligand (e.g., soluble PD-L1)
and a B7 polypeptide. For example, tolerance can be induced to specific proteins. In one
embodiment, immune responses to allergens, or to foreign proteins to which an immune
response is undesirable, can be inhibited. For example, patients that receive Factor VIII
frequently generate antibodies against this clotting factor. Co-administration of an agent
that blocks a PD-l ligand (e.g., soluble PD-L1)-mediated costimulatory signal or an agent
that stimulates a PD-l mediated inhibitory signal in combination with recombinant factor
VIII (or fay physically linked to Factor V $	ext{Sf,}$ e.g., by cross-linking) can result in
dowmodulation.

In one embodiment, fusion proteins comprising a first PD-l ligand (e.g., soluble
PD-L1) peptide fused to a second peptide can be used to block the interaction of the PD-l
ligand (e.g., soluble PD-L1) with a B7 polypeptide on an immune cell, to thereby
downmodulate immune responses. In one embodiment, the second peptide blocks an
activity of another B lymphocyte antigen (e.g., B7-1, B7-2, or B7-3) to further
downmodulate immune responses. Alternatively, two separate agents that downmodulate
immune responses can be combined as a single composition or administered separately
(simultaneously or sequentially) to more effectively downregulate immune cell mediated
immune responses in a subject. For instance, a PD-l ligand (e.g., soluble PD-L1) can be
combined with a B7 polypeptide, or with a combination of blocking antibodies (e.g.,
anti-B7-1 monoclonal antibodies). Furthermore, a therapeutically active amount of one or
more of the subject agents, can be used in conjunction with other downmodulating reagents
to influence immune responses. Examples of other immunomodulating reagents include,
without limitation, antibodies that block a costimulatory signal, (e.g., against CD28 or
ICOS), antibodies that act as agonists of CTLA4, and/or antibodies against other immune
cell markers (e.g., against CD40, against CD40 ligand, or against cytokines), fusion
proteins (e.g., CTLA4-Fc), and immunosuppressive drugs, (e.g., rapamycin, cyclosporiiie A
or FK506).
The agents described herein can also be useful in the construction of therapeutic agents which block immune cell function by destruction of cells. For example, portions of a PD-L1 or PD-1 polypeptide can be linked to a toxin to make a cytotoxic agent capable of triggering the destruction of cells to which it binds.

For making cytotoxic agents, polypeptides of the invention may be linked, or operatively attached, to toxins using techniques that are known in the art, e.g., crosslinking or via recombinant DNA techniques. The preparation of immunotoxins is, in general well known in the art (see, e.g., US. Pat. Nos. 4,340,535, and EP 44167, both incorporated herein by reference). Numerous types of disulfide-bood containing linkers are known which can successfully be employed to conjugate the toxin moiety with a polypeptide. In one embodiment, linkers that contain a disulfide bond that is sterically "hindered" are to be preferred, due to their greater stability in vivo, thus preventing release of the toxin moiety prior to binding at the site of action.

A wide variety of toxins are known that may be conjugated to polypeptides or antibodies of the invention. Examples include: numerous useful plant-, fungus- or even bacteria-derived toxins, which, by way of example, include various A chain toxins, particularly ricin A chain, rhinosome inactivating proteins such as saporin or gelonin, .alpha.-sarein, aspergillirt, restrictocin, ribonuclease, angiogenic, diphtheria toxin, and pseudomonas exotoxin, etc. A preferred toxin moiety for use in connection with the invention is toxin A chain which has been treated to modify or remove carbohydrate residues, deglycosylated. A chain. (U.S. patent 5,776,427).

Infusion of one or a combination of such cytotoxic agents, (e.g., PD-L1 ricin (alone or in combination with B7-2-ricin or B7-1-richi)), into a patient may result in the death of immune cells, particularly in light of the feet that activated immune cells that express higher amounts of PD-L1 ligands. For example, because PD-1 is induced on the surface of activated lymphocytes, an antibody against PD-1 can be used to target the depletion of these specific cells by Fc-R dependent mechanisms or by ablation by conjugating a cytotoxic drug (e.g., ricin, saporin, or catiehearmeiri) to the antibody. In one embodiment, the antibody toxin can be abispecific antibody. Such btspecific antibodies are useful for targeting a specific cell population, e.g., using a marker found only on a certain type of cell, e.g., a TCR, SCR, or FcR molecule.

Downregulatiing or preventing a PD-1 hgand (e.g., soluble PD-L1) interaction with a B7 polypeptide, or promoting an interaction between a PD-L ligand (e.g., soluble PD-L1)
and PD-i (for example, without modulating, or by additionally enhancing) the interaction between the PD-1 ligand (e.g., soluble PD-L1) and the B7 polypeptide (e.g., by stimulation of the negative signaling function of PD-i) is useful to downmodulate the immune response, e.g., in situations of excess inflammation; in tissue, skin and organ transplantation; in graft-versus-host disease (GVHD); or in autoimmune diseases such as systemic lupus erythematosus, and multiple sclerosis. For example, blocking of immune cell function results in reduced tissue destruction in tissue transplantation. Typically, in tissue transplants, rejection of the transplant is initiated through its recognition as foreign by immune cells, followed by an immune reaction that destroys the transplant. The administration of a polypeptide which inhibits or blocks interaction of a PD-i ligand (e.g., soluble PD-L1) with a B7 polypeptide (such as a soluble, monomeric form of the PD-i ligand (e.g., soluble PD-L1) or PD-1), alone or in conjunction with another downmodulatory agent, prior to or at the time of transplantation can promote the generation of an inhibitory signal. Moreover, inhibition of PD-I ligand (e.g., soluble PD-L1) eostimulatory signals, or promotion of a PD-I ligand (e.g., soluble PD-L1) or PD-i inhibitory signals, may also be sufficient to anerize the immune cells, thereby inducing tolerance in a subject. Induction of long-term tolerance by blocking a PD-I ligand (e.g., soluble PD-L1) mediated costimulatory signal may avoid the necessity of repeated administration of these blocking reagents.

To achieve sufficient immunosuppression or tolerance in a subject, it may also be desirable to block the costimulatory function of other polypeptides. For example, it may be desirable to block the function of B7-1 and PD-L1; B7-2 and PD-L1; B7-1 and B7-2 and PD-L1; B7-1; B7-2; or B7-1 and B7-2 by administering a soluble form of a combination of peptides having an activity of each of these antigens, blocking antibodies against these antigens or blocking small molecules (separately or together in a single composition) prior to or at the time of transplantation. Alternatively, it may be desirable to promote inhibitory activity of a PD-i ligand (e.g., soluble PD-LL) or PD-i and inhibit a costimulatory activity of B7-i and/or B7-2. Other downmodulatory agents that can be used in connection with the downmodulatory methods of the invention include, for example, agents that transmit an inhibitory signal via CTLA4, soluble forms of CTLA4, antibodies that activate an inhibitory signal via CTLA4, blocking antibodies against other immune cell markers or soluble forms of other receptor ligand pairs (e.g., agents that disrupt the interaction between CD40 and CD40 ligand (e.g., anti CD40 ligand antibodies)), antibodies against cytokines.
or immunosuppressive drugs. In another embodiment, a combination of at least two different PD-Li antibodies can be administered to achieve optimal blocking activity.

Downmodulation of immune responses are also useful in treating autoimmune disease. Many autoimmune disorders are the result of inappropriate activation of immune cells that are reactive against self tissue and which promote the production of cytokines and autoantibodies involved in the pathology of the diseases. Preventing the activation of autoreactive immune cells may reduce or eliminate disease symptoms. Administration of reagents which block costimulation of immune cells by disrupting interactions between PD-1 ligand (e.g., soluble PD-L1) and B7 polypeptides, or by promoting the interaction between PD-1 ligand (e.g., soluble PD-L1) and PD-1, without modulating or while downmodulating the interaction between PD-1 ligand (e.g., soluble PD-L1) and a B7 polypeptide, are useful for inhibiting immune cell activation and preventing production of autoantibodies or cytokines which may be involved in the disease process. Additionally, agents that promote an inhibitory function of a PD-i ligand (e.g., soluble PD-Li) or PD-1 may induce antigen-specific tolerance of autoreactive immune cells, which could lead to long-term relief from the disease. The efficacy of reagents in preventing or alleviating autoimmune disorders can be determined using a number of well-characterized animal models of human autoimmune diseases. Examples include murine experimental autoimmune encephalitis, systemic lupus erythematosus in MRL/pr/pr mice or NZB hybrid mice, murine autoimmune collagen arthritis, diabetes mellitus in NOD mice and BB rats, and murine experimental myasthenia gravis (see, e.g., Pan! ed., Fundamenta! Immunology, Raven Press, New York, Third Edition 1993, chapter 30).

Inhibition of immune cell activation is useful therapeutically in the treatment of allergy and allergic reactions, e.g., by inhibiting IgE production. An agent that promotes a PD-I ligand (e.g., soluble PD-L1) or PD-1 inhibitory function can be administered to an allergic subject to inhibit immune cell mediated allergic responses in the subject. Inhibition of PD-1 ligand (e.g., soluble PD-L1) costimulation of immune cells or stimulation of a PD-i ligand (e.g., soluble PD-Li) or PD-1 inhibitory pathway can be accompanied by exposure to allergen in conjunction with appropriate MHC polypeptides. Allergic reactions can be systemic or local in nature, depending on the route of entry of the allergen and the pattern of deposition of IgE on mast cells or basophils. Thus, inhibition of immune cell mediated allergic responses locally or systemically by administration of an inhibitory form of an agent that inhibits the
interaction of a PD-I ligand (e.g., soluble PD-L1) with a costimulatory receptor, or an agent that promotes an inhibitory function of a PD-I ligand (e.g., soluble PD-L1) or PD-L1.

Inhibition of immune cell activation through blockage of the interaction of a PD-I ligand (e.g., soluble PD-L1) and a B7 polypeptide, or through promotion of the interaction between a PD-I ligand (e.g., soluble PD-L1) and PD-1, without modulating or preventing atherosclerosis.

Thrombosis. Thus, conditions that are caused or exacerbated by autoimmune attack (e.g., in this example, heart disease, myocardial infarction or atherosclerosis) may be ameliorated or improved by modulation of these interactions. It is therefore within the scope of the invention to modulate conditions exacerbated by autoimmune attack, such as autoimmune disorders (as well as conditions such as heart disease, myocardial infarction, and atherosclerosis).

b. Upregulation of Imm−ngRNAs

Also useful therapeutically is the blockage of the interaction of a PD-I ligand (e.g., soluble PD-L1) with PD-1, and/or a B7 polypeptide with CTLA4, without modulating or
while upregulating the interaction between the B7 polypeptide and the PD-1 ligand (e.g., soluble PD-L1), or by promoting the interaction of the PD-1 ligand (e.g., soluble PD-L1) with the B7 polypeptide (e.g., while not affecting or while inhibiting the interaction between the PD-1 ligand (e.g., soluble PD-L1) and PD-1) as a means of upregulating an immune response. Blocking the interaction between a B7 polypeptide and a PD-1 ligand (e.g., soluble PD-L1) to thereby increase the interaction between the B7 polypeptide and CD28, is also useful to upregulate immune responses. Upregulation of immune responses can be in the form of enhancing an existing immune response or eliciting an initial immune response. For instance, enhancing an immune response using the subject compositions and methods is useful in cases of infections with microbes (e.g., bacteria, viruses, or parasites). In one embodiment, an agent that blocks the interaction of a PD-1 ligand (e.g., soluble PD-L1) with PD-1, without modulating or while upregulating the interaction between a B7 polypeptide and the PD-1 ligand (e.g., soluble PD-L1), or by promoting the interaction of the PD-1 ligand (e.g., soluble PD-L1) with the B7 polypeptide, is used to enhance the immune response. Such an agent (e.g., a non-activating antibody that blocks PD-L1 binding to PD-1) is therapeutically useful in situations where upregulation of antibody and cell-mediated responses would be beneficial. In a preferred embodiment, the agent inhibits the interaction between PD-1 and a PD-1 ligand (e.g., soluble PD-L1), without inhibiting the interaction between the PD-1 ligand (e.g., soluble PD-L1) and a B7 polypeptide (e.g., an interaction which prevents PD-L1 from binding to PD-1). Exemplary disorders include viral skin diseases, such as Herpes or shingles, in wind case such an agent can be delivered topically to the skin. In addition, systemic viral diseases such as influenza, the common cold, and encephalitis might be alleviated by systemic administration of such agents. Alternatively, immune responses can be enhanced in an infected patient through an ex vivo approach, for instance, by removing immune cells from the patient, contacting immune cells in vitro with an agent that blocks the interaction of a PD-1 ligand (e.g., soluble PD-L1) with PD-1, without modulating or while upmodulating the interaction between a B7 polypeptide and the PD-1 ligand (e.g., soluble PD-L1), or by promoting the interaction of the PD-1 ligand (e.g., soluble PD-L1) with the B7 polypeptide, and reintroducing the in vitro stimulated immune cells into the patient.

In certain instances, it may be desirable to further administer other agents that upregulate immune responses, for example, forms of other B7 family members that
transduce signals via costimulatory receptors, in order to further augment the immune response.

An agent that blocks the interaction of a PD-L ligand (e.g., soluble PD-L1) with PD-L1 (e.g., without modulating or while upmodulating the interaction between a B7 polypeptide and the PD-L1 ligand (e.g., soluble PD-L1)) or by enhancing the interaction of the PD-L ligand (e.g., soluble PD-L1) with the B7 polypeptide (e.g., soluble PD-L1) can be used prophylactically in vaccines against various polypeptides (e.g., polypeptides derived from pathogens). Immunity against a pathogen (e.g., a virus) can be induced by vaccinating with a viral protein along with an agent that blocks the interaction of a PD-L ligand (e.g., soluble PD-L1) with PD-L1, without modulating or while upmodulating the interaction between a B7 polypeptide and the PD-L1 ligand (e.g., soluble PD-L1), or by promoting the interaction of the PD-L ligand (e.g., soluble PD-L1) with the B7 polypeptide, in an appropriate adjuvant.

In another embodiment, upregulation or enhancement of an immune response function, as described herein, is useful in the induction of tumor immunity.

In another embodiment, the immune response can be stimulated by the methods described herein, such that preexisting tolerance is overcome. For example, immune responses against antigens to which a subject cannot mount a significant immune response, e.g., to an autologous antigen, such as a tumor specific antigens can be induced by administering an agent that blocks the interaction of a PD-L ligand (e.g., soluble PD-L1) with PD-L1 (e.g., without modulating or while upmodulating the interaction between a B7 polypeptide and the PD-L1 ligand (e.g., soluble PD-L1)) or by promoting the interaction of the PD-L ligand (e.g., soluble PD-L1) with the B7 polypeptide. In one embodiment, a soluble PD-L1 or a soluble PD-L ligand (e.g., soluble PD-L1) that inhibits the interaction of a PD-L ligand (e.g., soluble PD-L1) with PD-L1, without modulating or while upmodulating the interaction between a B7 polypeptide and the PD-L1 ligand (e.g., soluble PD-L1), or by promoting the interaction of the PD-L1 ligand (e.g., soluble PD-L1) with the B7 polypeptide, can be used to enhance an immune response (e.g., to a tumor cell). In one embodiment, an autologous antigen, such as a tumor-specific antigen can be coadministered. In another embodiment, the subject agents can be used as adjuvants to boost responses to foreign antigens in the process of active immunization. In yet another embodiment, the production of a form of PD-L1 that binds to an inhibitory receptor or that competes with the binding of PD-L1 to a cosstimulatory receptor (e.g., a form of PD-L1 that binds to PD-L1 or a naturally occurring soluble molecule) can be inhibited, e.g., using antisense RNA, in order to
upregulate the immune response. For example, in one embodiment, the production of inhibitory PD-L1 molecules by a tumor cell can be inhibited in order to increase anti-tumor immunity.

In another aspect, the present invention provides pharmaceutically acceptable compositions which comprise a therapeutically-effective amount of an agent that modulates (e.g., increases or decreases) PD-1, membrane-bound PD-L1, and/or soluble PD-L1 levels, formulated together with one or more pharmaceutically acceptable carriers (additives) and/or diluents. As described in detail below, the pharmaceutical compositions of the present invention may be specially formulated for administration in solid or liquid form, including those adapted for the following: (1) oral administration, for example, drenches (aqueous or non-aqueous solutions or suspensions), tablets, boluses, powders, granules, pastes; (2) parenteral administration, for example, by subcutaneous, intramuscular or intravenous injection as, for example, a sterile solution or suspension; (3) topical application, for example, as a cream, ointment or spray applied to the skin; (4) intravaginally or intrarectally, for example, as a pessary, cream or foam; or (5) aerosol, for example, as an aqueous aerosol, liposomal preparation or solid particles containing the compound.

The phrase "therapeutically effective amount" as used herein means that amount of an agent that modulates (e.g., inhibits) PD-L1, membrane-bound PD-L1, and/or soluble PD-L1 levels, or expression and/or activity of the receptor/ligand complex, or composition comprising an agent that modulates (e.g., inhibits) PD-L1, membrane-bound PD-L1, and/or soluble PD-L1 levels, or expression and/or activity of the receptor/ligand complex, which is...
effective for producing some desired therapeutic effect, e.g., carreer treatment, at a reasonable benefit/risk ratio.

The phrase "pharmaceutically acceptable" is employed herein to refer to those agents, materials, compositions, and/or dosage forms which are, within the scope of sound medical judgment, suitable for use in contact with the tissues of human beings and animals without excessive toxicity, irritation, allergic response, or other problem or complication, commensurate with a reasonable benefit/risk ratio.

The phrase "pharmaceutically-acceptable carrier" as used herein means a pharmaceutically-acceptable material, composition or vehicle, such as a liquid or solid filler, diluent, excipient, solvent or encapsulating material, inwived in carrying or transporting the subject chemical from one organ, or portion of the body, to another organ, or portion of the body. Each carrier must be “acceptable” in the sense of being compatible with the other ingredients of the formulation and not injurious to the subject. Some examples of materials which can serve as pharmaceutically-acceptable carriers include: (1) sugars, such as lactose, glucose and sucrose; (2) starches, such as corn starch and potato starch; (3) cellulose, and its derivatives, such as sodium carboxymethyl cellulose, ethyl cellulose and cellulose acetate; (4) powdered tragacanth; (5) malt; (6) gelatin; (7) talc; (8) excipients, such as cocoa butter and suppository waxes; (9) oils, such as peanut oil, cottonseed oil, safflower oil, sesame oil, olive oil, corn oil and soybean oil; (10) glycols, such as propylene glycol; (11) polyols, such as glycerin, sorbitol, raunitol and polyethylene glycol; (12) esters, such as ethyl oleate and ethyl laurate; (13) agar; (14) buffering agents, such as magnesium hydroxide and aluminum hydroxide; (15) alginie acid; (16) pyrogen-free water; (17) isotonic saline; (18) Ringer's solution; (19) ethyl alcohol; (20) phosphate buffer solutions; and (21) other non-toxic compatible substances employed in pharmaceutical formulations.

The term: "pharmaceutically-acceptable salts" refers to the relatively non-toxic, inorganic and organic acid addition salts of the agents that modulates (e.g., inhibits) PD-i, membrane-bound P.D-L1, and/or soluble PD-L1 levels, or expression and/or activity of the receptor/ligand complex encompassed by the invention. These salts can be prepared in situ during the final isolation and purification of the respiration uncoupling agents, or by separately reacting a purified respiration uncoupling agent in its free base form with a suitable organic or inorganic acid, and isolating the salt thus formed. Representative salts include the hydrobromide, hydrochloride, sulfate, bisulfate, phosphate, nitrate, acetate,
valerate, oleate, palmate, stearate, laurate, benzoate, lactate, phosphate, tosylate, citrate, maleate, fumarate, succinate, tartrate, naphthylate, mesylate, glucoheptonate, lactobionate, and laurisyithphonate salts and the like (See, for example, Berge et al (1977) "Pharmaceutical Salts", J Pharm. Sci. 66: 5-19).

In other cases, the agents useful in the methods of the present invention may contain one or more acidic functional groups and, thus, are capable of forming pharmaceutically-acceptable salts with pharmaceutically-acceptable bases. The term "pharmaceutically-acceptable salts" in these instances refers to the relatively non-toxic, inorganic and organic base addition salts of agents that modulates (e.g., inhibits) PD-I, membrane-bound PD-L1, and/or soluble PD-L1 levels, or expression and/or activity of the receptor/ligand complex. These salts can likewise be prepared in situ during the final isolation and purification of the respiration uncoupling agents, or by separately reacting the purified respiration uncoupling agent in its free acid form with a suitable base, such as the hydroxide, carbonate or bicarbonate of a pharmaceutically-acceptable metal cation, with ammonia, or with a pharmaceutically-acceptable organic primary, secondary or tertiary amine. Representative alkali or alkaline earth salts include the lithium, sodium, potassium, calcium, magnesium, and aluminum salts and the like. Representative organic amines useful for the formation of base addition salts include ethylamine, diethylamine, ethylenediamine, ethylenediamine, diethanoamine, piperazine and the like (see, for example, Berge et al., supra).

Wetting agents, emulsifiers and lubricants, such as sodium lauryl sulfate and magnesium stearate, as well as coloring agents, release agents, coating agents, sweetening, flavoring and perfuming agents, preservatives and antioxidants can also be present in the compositions.

Examples of pharmaceutically-acceptable antioxidants include: (1) water soluble antioxidants, such as ascorbic acid, cysteine hydrochloride, sodium bisulfate, sodium meiabissulfite, sodium sulfite and the like; (2) oil-soluble antioxidants, such as ascorbyl palmitate, butylated hydroxyanisole (BHA), butylated hydroxytoSuene (BHT), lecithin, propyl gallate, alpha-tocopherol, and the like; and (3) metal chelating agents, such as citric acid, ethylenediammiie tetraaette acid (EDTA), sorbitol, tartaric acid, phosphoric acid, and the like.

Formulations useful in the methods of the present invention include those suitable for oral, nasal, topical (including buccal and sublingual), rectal, vaginal, aerosol and/or parenteral administration. The formulations may conveniently be presented in unit dosage
form and may be prepared by any methods well known in the art of pharmacy. The amount of active ingredient which can be combined with a carrier material to produce a single dosage form will vary depending upon the host being treated, the particular mode of administration. The amount of active ingredient, which can be combined with a carrier material to produce a single dosage form will generally be that amount of the compound which produces a therapeutic effect. Generally, out of one hundred per cent, this amount will range from about 1% to about 99% of active ingredient, preferably from about 5% to about 70%, most preferably from about 10% to about 30%.

Methods of preparing these formulations or compositions include the step of bringing into association an agent that modulates (e.g., increases or decreases) PD-1, membrane-bound PD-1, and/or soluble PD-L1 levels, with the carrier and, optionally, one or more accessory ingredients. In general, the formulations are prepared by uniformly and intimately bringing into association a respiration uncoupling agent with liquid carriers, or finely divided solid carriers, or both, and then, if necessary, shaping the product.

Formulations suitable for oral administration may be in the form of capsules, cachets, pills, tablets, lozenges (using a flavored basis, usually sucrose arid acacia or tragacanth), powders, granules, or as a solution or a suspension in an aqueous or non-aqueous liquid, or as an oil-in-water or water-in-oil liquid emulsion, or as an eixir or syrup, or as pastilles (using an inert base, such as gelatin and glycerin, or sucrose and acacia) and/or as mouth washes and the like, each containing a predetermined amount of a respiration uncoupling agent as an active ingredient. A compound may also be administered as a bolus, electuary or paste.

In solid dosage forms for oral administration (capsules, tablets, pills, dragees, powders, granules and the like), the active ingredient is mixed with one or more pharmaceutically-acceptable carriers, such as sodium citrate or diealeium phosphate, and/or any of the following: (1) fillers or extenders, such as starches, lactose, sucrose, glucose, mannitol, and/or silicic acid; (2) binders, such as, for example, carboxymethylcellulose, alginates, gelatin, polyvinyl pyrroidone, sucrose and/or acacia; (3) humectants, such as glycerol; (4) disintegrating agents, such as agar-agar, calcium carbonate, potato or tapioca starch, alginie acid, certain silicates, and sodium carbonate; (5) solution retarding agents, such as paraffin; (6) absorption accelerators, such as quaternary ammonium compounds; (7) wetting agents, such as, for example, acetyl alcohol and glycerol monosfearaie; (8) absorbents, such as kaolin and bentonite clay; (9) lubricants, such as a talc, calcium stearate.
magnesium stearate, solid polyethylene glycols, sodium lauryl sulfate, and mixtures thereof; and (10) coloring agents. In the case of capsules, tablets and pills, the pharmaceutical compositions may also comprise buffering agents. Solid compositions of a similar type may also be employed as fillers in soft and hard-filled gelatin capsules using such excipients as lactose or milk sugars, as well as high molecular weight polyethylene glycols and the like.

A tablet may be made by compression or molding, optionally with one or more accessor) ingredients. Compressed tablets may be prepared using binder (for example, gelatin or hydroxypropyl methyl cellulose), lubricant, inert diluent, preservative, disintegrant (for example, sodium starch gSycolate or cross-linked sodium carboxymethyl cellulose), surface-active or dispersing agent. Molded tablets may be made by molding in a suitable machine a mixture of the powdered peptide or peptidovairatie moistened with an inert liquid diluent.

Tablets, and other solid dosage forms, such as dragees, capsules, pills and granules, may optionally be scored or prepared with coatings and shells, such as enteric coatings and other coatings well known in the pharmaceuticaMormuiatrag art. They may also be formulated so as to provide slow or controlled release of the active ingredient therein using, for example, hydroxypropylmethyl cellulose in varying proportions to provide the desired release profile, other polymer matrices, liposomes and/or microspheres. They may be sterilized by, for example, filtration through a bacteria-retaining filter, or by incorporating sterilizing agents in the form of sterile solid compositions, which can be dissolved in sterile water, or some other sterile injectable medium immediately before use. These compositions may also optionally contain opacifying agents and may be of a composition that they release the active ingredient(s) only, or preferentially, in a certain portion of the gastrointestinal tract, optionally, in a delayed manner. Examples of embedding compositions, which can be used include polymeric substances and waxes. The active ingredient can also be in micro-encapsulated form, if appropriate, with one or more of the above-described excipients.

Liquid dosage forms for oral administration include pharmaceutically acceptable emulsions, microemulsions, solutions, suspensions, syrups and elixirs. In addition to the active ingredient, the liquid dosage forms may contain inert diluents commonly used in the art, such as, for example, water or other solvents, solubilizing agents and emulsifiers, such as ethyl alcohol, isopropyl alcohol, ethyl carbonate, ethyl acetate, benzy alcohol, benzy
benzoate, propylene glycol, 1,3-burylene glycol, oils (in particular, cottonseed, groundnut, corn, germ, olive, castor and sesame oils), glycerol, tetrahydrofuryl alcohol, polyethylene glycols and fatty acid esters of sorbitan, and mixtures thereof.

Besides inert diluents, the oral compositions can also include adjuvants such as wetting agents, emulsifying and suspending agents, sweetening, flavoring, coloring, perfuming and preservative agents.

Suspensions, in addition to the active agent may contain suspending agents as, for example, ethoxylated isostearyl alcohols, polyoxyethylene sorbitol and sorbitan esters, macrocrystalline cellulose, aluminum metahydroxide, bentonite, agar-agar and tragacanth, and mixtures thereof.

Formulations for rectal or vaginal administration may be presented as a suppository, which may be prepared by mixing one or more respiration uncoupling agents with one or more suitable nonirritating excipients or carriers comprising, for example, cocoa butter, polyethylene glycol, a suppository wax or a salicylate, and which is solid at room temperature, but liquid at body temperature and, therefore, will melt in the rectum or vaginal cavity and release the active agent.

Formulations which are suitable for vaginal administration also include pessaries, tampons, creams, gels, pastes, foams or spray formulations containing such carriers as are known in the art to be appropriate.

Dosage forms for the topical or transdermal administration of an agent that modulates (e.g., increases or decreases) PD-1, membrane-bound PD-L1, and/or soluble PD-L1 levels include powders, sprays, ointments, pastes, creams, lotions, gels, solutions, patches and inhalants. The active component may be mixed under sterile conditions with a pharmaceutically-acceptable carrier, and with any preservatives, buffers, or propellants which may be required.

The ointments, pastes, creams and gels may contain, in addition to a respiration uncoupling agent, excipients, such as animal and vegetable fats, oils, waxes, paraffins, starch, tragacanth, cellulose derivatives, polyethylene glycols, silicones, bentonites, silicic acid, talc and zinc oxide, or mixtures thereof.

Powders and sprays can contain, in addition to an agent that modulates (e.g., increases or decreases) PD-1, membrane-bound PD-L1, and/or soluble PD-L1 levels, excipients such as lactose, talc, silicic acid, aluminum hydroxide, calcium silicates and polyamide powder, or mixtures of these substances. Sprays can additionally contain
customary propellants, such as chlorofluorohydrocarbons and volatile unsubstituted hydrocarbons, such as butane and propane.

The agent that modulates (e.g., increases or decreases) PD-1, membrane-bound PD-L1, and/or soluble PD-L1 levels, can be alternatively administered by aerosol. This is accomplished by preparing an aqueous aerosol, liposomal preparation or solid particles containing the compound. A nonaqueous (e.g., fluorocarbon propellant) suspension could be used. Sonic nebulizers are preferred because they minimize exposing the agent to shear, which can result in degradation of the compound.

Ordinarily, an aqueous aerosol is made by formulating an aqueous solution or suspension of the agent together with conventional pharmaceutically acceptable carriers and stabilizers. The carriers and stabilizers vary with the requirements of the particular compound, but typically include nonionic surfactants (Tweens, Pluronks, or polyethylene glycol), innocuous proteins like serum albumin, sorbiten esters, oleic acid, lecithin, amino acids such as glycine, buffers, salts, sugars or sugar alcohols. Aerosols generally are prepared from isotonic solutions.

Transdermal patches have the added advantage of providing controlled delivery of a respiration uncoupling agent to the body. Such dosage forms can be made by dissolving or dispersing the agent in the proper medium. Absorption enhancers can also be used to increase the flux of the peptidomimetic across the skin. The rate of such flux can be controlled by either providing a rate controlling membrane or dispersing the peptidomimetic in a polymer matrix or gel.

Ophthalmic formulations, eye ointments, powders, solutions and the like, are also contemplated as being within the scope of this invention.

Pharmaceutical compositions of this invention suitable for parenteral administration comprise one or more respiration uncoupling agents in combination with one or more pharmaceutically acceptable sterile isotonic aqueous or nonaqueous solutions, suspensions, or emulsions, or sterile powders which may be reconstituted into sterile injectable solutions or dispersions just prior to use, which may contain antioxidants, buffers, bacteriostats, solutes which render the formulation isotonic with the blood of the intended recipient or suspending or thickening agents.

Examples of suitable aqueous and nonaqueous carriers which may be employed in the pharmaceutical compositions of the invention include water, ethanol, polyols (such as glycerol, propylene glycol, polyethylene glycol, and the like), and suitable mixtures thereof,
vegetable oils, such as olive oil, and injectable organic esters, such as ethyl oleate. Proper fluidify can be maintained, for example, by the use of coating materials, such as lecithin, by the maintenance of the required particle size in the ease of dispersions, and by the use of surfactants.

These compositions may also contain adjuvants such as preservatives, wetting agents, emulsifying agents and dispersing agents. Prevention of the action of microorganisms may be ensured by the inclusion of various antibacterial and antifungal agents, for example, paraben, chlorobutanol, phenol sorbic acid, and the like. It may also be desirable to include isotonic agents, such as sugars, sodium chloride, and the like into the compositions. In addition, prolonged absorption of the injectable pharmaceutical form may be brought about by the inclusion of agents which delay absorption such as aluminum monostearate and gelatin.

in some cases, in order to prolong the effect of a drug, it is desirable to slow the absorption of the drug from subcutaneous or intramuscular injection. This may be accomplished by the use of a liquid suspension of crystalline or amorphous material having poor water solubility. The rate of absorption of the drug then depends upon its rate of dissolution, which, in turn, may depend upon crystal size and crystalline form. Alternatively, delayed absorption of a parenterally-administered drug form is accomplished by dissolving or suspending the drug in an oil vehicle.

injectable depot forms are made by forming microencapsule matrices of an agent that modulates (e.g., increases or decreases) PD-1, membrane-bound PD-L1, and/or soluble PD-L1 levels, in biodegradable polymers such as polylactide-polyglycoide. Depending on the ratio of drug to polymer, and the nature of the particular polymer employed, the rate of drug release can be controlled. Examples of other biodegradable polymers include poly(orthoesters) and poly(anhydrides). Depot injectable formulations are also prepared by entrapping the drug in liposomes or microemulsions, which are compatible with body tissue.

When the respiration uncoupling agents of the present invention are administered as pharmaceuticals, to humans and animals, they can be given per se or as a pharmaceutical composition containing, for example, 0.1 to 99.5% (more preferably, 0.5 to 90%) of active ingredient in combination with a pharmaceutically acceptable carrier.

Actual dosage levels of the active ingredients in the pharmaceutical compositions of this invention may be determined by the methods of the present invention so as to obtain an
amount of the active ingredient, which is effective to achieve the desired therapeutic response for a particular subject, composition, and mode of administration, without being toxic to the subject.

The nucleic acid molecules of the invention can be inserted into vectors and used as gene therapy vectors. Gene therapy vectors can be delivered to a subject by, for example, intravenous injection, local administration (see U.S. Pat. No. 5,328,470) or by stereotactic injection (see e.g., Chen et al. (1994) Proc. Natl. Acad. Sci. USA 91:3054 3057). The pharmaceutical preparation of the gene therapy vector can include the gene therapy vector in an acceptable diluent, or can comprise a slow release matrix in which the gene delivery vehicle is imbedded. Alternatively, where the complete gene delivery vector can be produced intact from recombinant cells, e.g., retroviral vectors, the pharmaceutical preparation can include one or more cells which produce the gene delivery system.

V. Administration of Agents

The cancer diagnostic, prognostic, prevention, and/or treatment modulating agents of the invention are administered to subjects in a biologically compatible form suitable for pharmaceutical administration in vivo, to either enhance or suppress immune cell mediated immune responses. By "biologically compatible form suitable for administration in vivo" is meant a form of the protein to be administered in which any toxic effects are outweighed by the therapeutic effects of the protein. The term "subject" is intended to include living organisms in which an immune response can be elicited, e.g., mammals. Examples of subjects include humans, dogs, cats, mice, rats, and transgenic species thereof.

Administration of an agent as described herein can be in any pharmacological form including a therapeutically active amount of an agent alone or in combination with a pharmaceutically acceptable carrier.

Administration of a therapeutically active amount of the therapeutic composition of the present invention is defined as an amount effective, at dosages and for periods of time necessary, to achieve the desired result. For example, a therapeutically active amount of a blocking antibody may vary according to factors such as the disease state, age, sex, and weight of the individual, and the ability of peptide to elicit a desired response in the individual.

Dosage regimens can be adjusted to provide the optimum therapeutic response. For example, several divided doses can be administered daily or the dose can be proportionally reduced as indicated by the exigencies of the therapeutic situation.
The agents of the invention described herein can be administered in a convenient manner such as by injection (subcutaneous, intravenous, etc.), oral administration, inhalation, transdermal application, or rectal administration. Depending on the route of administration, the active compound can be coated in a material to protect the compound from the action of enzymes, acids and other natural conditions which may inactivate the compound. For example, for administration of agents, by other than parenteral administration, it may be desirable to coat the agent with, or co-administer the agent with, a material to prevent its inactivation.

An agent can be administered to an individual in an appropriate carrier, diluent or adjuvant, co-administered with enzyme inhibitors or in an appropriate carrier such as liposomes. Pharmaceutically acceptable diluents include saline and aqueous buffer solutions. Adjuvant is used in its broadest sense and includes any immune stimulating compound such as interferon. Adjuvants contemplated herein include resorcinols, non-ionic surfactants such as polyoxyethylene oleyl ether and n-hexadecyl polyethylene ether, Enzyme inhibitors include pancreatic trypsin inhibitor, diisopropylfluorophosphate (DEEP) and trasySoS. Liposomes include water-in-oil-in-water emulsions as well as conventional liposomes (Sterne et al. (1984). J. Neuroimmunol. 7:27).

The agent may also be administered parenterally or intraperitoneally. Dispersions can also be prepared in glycerol, liquid polyethylene glycols, and mixtures thereof, and in oils. Under ordinary conditions of storage and use, these preparations may contain a preservative to prevent the growth of microorganisms.

Pharmaceutical compositions of agents suitable for injectable use include sterile aqueous solutions (where water soluble) or dispersions and sterile powders for the extemporaneous preparation of sterile injectable solutions or dispersion. In all cases the composition will preferably be sterile and must be fluid to the extent that easy syringeability exists. It will preferably be stable under the conditions of manufacture and storage and preserved against the contaminating action of microorganisms such as bacteria and fungi. The carrier can be a solvent or dispersion medium containing, for example, water, ethanol, polyol (for example, glycerol, propylene glycol, and liquid polyethylene glycol, and the like), and suitable mixtures thereof. The proper fluidity can be maintained, for example, by the use of a coating such as lecithin, by the maintenance of the required particle size in the case of dispersion and by the use of surfactants. Prevention of the action of microorganisms can be achieved by various antibacterial and antifungal agents, for
example, parabens, chlorobutanol, phenol, ascorbic acid, thimerosal, and the like. In many cases, it is preferable to include isotonic agents, for example, sugars, polyalcohols such as manitol, sorbitol, sodium chloride in the composition. Prolonged absorption of the injectable compositions can be brought about by including in the composition an agent which delays absorption, for example, aluminum stearate and gelatin.

Sterile injectable solutions can be prepared by incorporating an agent of the invention (e.g., an antibody, peptide, fusion protein or small molecule) in the required amount in an appropriate solvent with one or a combination of ingredients enumerated above, as required, followed by filtered sterilization. Generally, dispersions are prepared by incorporating the active compound into a sterile vehicle which contains a basic dispersion medium and the required other ingredients from those enumerated above. In the case of sterile powders for the preparation of sterile injectable solutions, the preferred methods of preparation are vacuum drying and freeze-dry which yields a powder of the agent plus any additional desired ingredient from a previously sterile-filtered solution thereof.

When the agent is suitably protected, as described above, the protein can be orally administered, for example, with an inert diluent or an assimilable edible carrier. As used herein "pharmaceutically acceptable carrier" includes any and all solvents, dispersion media, coatings, antibacterial and antifungal agents, isotonic and absorption delaying agents, and the like. The use of such media and agents for pharmaceutically active substances is well known in the art. Except as far as any conventional media or agent is incompatible with the active compound, use thereof in the therapeutic compositions is contemplated. Supplementary active compounds can also be incorporated into the compositions.

It is especially advantageous to formulate parenteral compositions in dosage unit forms for ease of administration and uniformity of dosage. "Dosage unit form", as used herein, refers to physically discrete units suited as unitary dosages for the mammalian subjects to be treated; each unit containing a predetermined quantity of active compound calculated to produce the desired therapeutic effect in association with the required pharmaceutical carrier. The specification for the dosage unit forms of the invention are dictated by, and directly dependent on, (a) the unique characteristics of the active compound and the particular therapeutic effect to be achieved, and (b) the limitations inherent in the art of compounding such an active compound for the treatment of sensitivity in individuals.
in one embodiment, an agent of the invention is an antibody. As defined herein, a therapeutically effective amount of antibody (i.e., an effective dosage) ranges from about 0.001 to 30 mg/kg body weight, preferably about 0.01 to 25 mg/kg body weight, more preferably about 0.1 to 20 mg/kg body weight, and even more preferably about 1 to 10 mg/kg, 2 to 9 mg/kg, 3 to 8 mg/kg, or 4 to 7 mg/kg, or 5 to 6 mg/kg body weight. The skilled artisan will appreciate that certain factors may influence the dosage required to effectively treat a subject including but not limited to the severity of the disease or disorder, previous treatments, the general health and/or age of the subject, and other diseases present. Moreover, treatment of a subject with a therapeutically effective amount of an antibody can include a single treatment or, preferably, can include a series of treatments. In a preferred example, a subject is treated with antibody in the range of between about 0.1 to 20 mg/kg body weight, one time per week for between about 1 to 6 weeks, preferably between 2 to 8 weeks, more preferably between about 3 to 7 weeks, and even more preferably for about 4, 5, or 6 weeks. It will also be appreciated that the effective dosage of antibody used for treatment may increase or decrease over the course of a particular treatment. Changes in dosage may result from the results of diagnostic assays. In addition, an antibody of the invention can also be administered in combination therapy with, e.g., chemotherapeutic agents, hormones, antiartgiogens, radiolabeled, compounds, or with surgery, cryotherapy, and/or radiotherapy. An antibody of the invention can also be administered in conjunction with other forms of conventional therapy, either consecutively with, pre- or post-

conventional therapy. For example, the antibody can be administered with a therapeutically effective dose of chemotherapeutic agent. In another embodiment, the antibody can be administered in conjunction with chemotherapy to enhance the activity and efficacy of the chemotherapeutic agent. The Physicians' Desk Reference (PDR) discloses dosages of chemotherapeutic agents that have been used in the treatment of various cancers. The dosing regimen and dosages of these aforementioned chemotherapeutic drugs that are therapeutically effective will depend on the particular immune disorder, e.g., Bodgkin lymphoma, being treated, the extent of the disease and other factors familiar to the physician of skill in the art and can be determined by the physician.

in addition, the agents of the invention described herein can be administered using nanoparticle-based composition and delivery methods well known to the skilled artisan. For example, nanoparticle-based deliver)' for improved nucleic acid (e.g., small RNAs)
therapeutics are well known in the art (Exp. Opinion on Biological Therapy 7:1.811-1822).

Exemplification

This invention is further illustrated by the following examples, which should not be construed as limiting.

Example 1 HPV-Mediated PD-L1 Spike Variants are Associated with Head, Neck, and Lung Cancers and Other Cancers

Figure 1 shows a schematic of a mutational landscape of head and neck cancers analyzed by The Cancer Genome Atlas (TCGA) project. Sequencing results of 279 tumors using whole-exome hybrid capture identified genes displaying significant enrichment for mutation in this dataset. The start indicates samples with evidence of HPV infection. Each column represents one tumor and the different types of tumors are shown by the different marks. Also listed are the number of mutations per sample, the percent of samples with imitations in each of the listed genes and whether these genes have been reported in the COSMIC (Sanger Cancer Gene Census) database.

Figure 2 shows data in the same format as for Figure 1, except that the data is drawn from an independent cohort of HPV- (left half) and HPV+ (right half) head and neck cancers in which 700 cancer-related genes were sequenced. Figure 2 further shows amplified (middle box) or deleted genes (bottom box).

Figure 3 shows a representation of sites of HPV integration in the host genome in head and neck cancers analyzed as part of the TCGA project described in Figure 1. The circle shows the human chromosomes around the perimeter and the green lines show sites of integration.

Figures 4 and 5 show sequencing reads for the CD274 (PD-L1) gene in a squamous head and neck cancer tumor from the larynx (CV-5433) with a detected HPV integration in the PD-L1 gene. On the right panel is seen a white space in the center of the reads which corresponds to where HPV is detected (see left panel). The site of integrations spans positions 5,464,244 to 5,464,509 on chromosome 9 of the Hitman Genome Reference Consortium Human Build 37 (<3RCh37/hgl9) assembly publicly available as GenBank Assembly ID: GCA_000001405.1 and RefSeq Assembly ID: GCF_000001405.13 dated February 27, 2009. Figure 5 shows a zoomed in view of Figure 4 according to a log scale.
Figure 6 shows a consolidation of the sequencing read data of Figures 4 and 5 into a schematic showing the HPV integration within the PD-L1 gene of tumor CV-5433. Figure 7 shows predicted protein products following HPV integration in tumor CV-5433. One protein is a short form of PD-L1 (soluble 1) made of 227 amino acids (plus a stop codon) instead of the full-length, membrane-bound form having 290 amino acids (i.e., the nuclear acid encodes from 5' to 3' the following domains: Exon 1 (L-region), Exon 2 (IgV-like-domain), Exon 3 (IgC-like-domain), Exon 4 (the connecting-region, transmembrane-region, and the start of the intracellular region), and Exons 5 and 6 (intracytoplasmic-region). The identified short 6 rpm of PD-L1 results in loss of the transmembrane and intracellular domains to generate a soluble/secreted polypeptide. In addition, another short form of PD-L1 (soluble 2) was identified and confirmed via RNA sequencing as being identical to the soluble 1 form, but further containing an additional C-terminal sequence (Figure 7) that is not contained in the wild-type, full-length, membrane-bound PD-L1 form.

Figure 8 shows expression of each exon of full-length, membrane-bound PD-L1 on a log scale from the CV-5433 sample and demonstrates a dramatic drop in exons following exon 4 which is the site of EPV integration.

Figures 9-10 show transcript variants of PD-L1 expressed by head, neck, and lung cancers. Figure 9 shows that samples from the TCGA head and neck (left panel) and lung cancer (right panel) projects display a diversity of splicing in PD-L1 indicating that many tumors produce soluble PD-L1. Figure 10 shows the data from Figure 9 for head and neck cancers in a different manner. Each head and neck tumor is represented as a circle and the tumors are ordered left to right according to total PD-L1 expression. Tumors which favor the short form are lower on the y-axis and normal samples are shown as square boxes. The sample with the HPV integration is labeled as the index case and is a clear outlier in terms of high PD-L1 expression favoring the soluble form.

Figure 11 shows that, in addition to head and neck cancer (HNSC), RNA sequencing analyses generated by TCGA (The Cancer Genome Atlas) using computational methods to detect PD-L1 short forms identified expression of such forms in bladder cancer (BLCA), breast cancer (BRCA), glioblastoma (GBM), kidney cancer (KIRC), acute myelogenous leukemia (LAML), lung adenocarcinoma (LLJAD), lung squamous cell carcinoma (LUSC), ovarian cancer (OV), and also summarized in a pan-cancer graph. Tumors are shown in dark gray and normal samples, when available, are shown in light
gray. The y-axis indicates total PD-L1 expression and the x-axis indicates the fraction of short PD-L1. Amplification of PD-L1 is shown by the intensity of the circle. The results indicate that there is a spectrum of PD-L1 expression across many cancer types with many tumors displaying evidence of at least some production of the short form, typically consistent with the soluble 2 form having the C-terminal sequence, VIPGNILVSYKCLTLSPST*. The soluble 2 form sequences were identified by analysis of an index case of head and neck cancer from The Cancer Genome Atlas project (TCGA-CV-5443) in which we identified integration of HPV in the PD-L1 (CD274) gene using the Pathseq algorithm as described above. Assembly of PD-L1 transcripts from RNA sequencing data from this tumor using Cufflinks demonstrated a proportion of transcripts with evidence of sequence beyond the normal exon boundary. Manual assembly and inspection of these transcripts revealed the presence of sequence corresponding to the downstream intron as well as alternative polyadenylation of truncated PD-L1 mRNA leading to the translation of the amino acids “GNILVSYKCLTLSPST” which are not part of full-length, wild-type PD-L1. Evidence of similar transcripts was identified in other primary tumors and cancer derived cell lines.

Figure 12 shows similar results using similar analyses as those conducted in Figure 11 using the Cancer Cell Line Encyclopedia dataset. Since the TCGA samples shown in Figure 11 are bulk tumors which contain both tumor and normal stroma, the source of soluble/short PD-L1 could be either the tumor or normal immune cells. However, Figure 12 demonstrates that cancer cells grown without any stroma produce short PD-L1. The circle at approximately -1.2 on the y-axis and 0.38 on the x-axis and within the circles at the very top row of circles on the y-axis is the index head and neck case for comparison.

Example 2: Soluble PD-L1 Isoforms Associated with Head, Neck, and Lung Cancers and Other Cancers are Immunologically Active

Figures 13-14 show Western blot results 293T cells transfected with expression vectors encoding the full-length or short PD-L1 forms. Figure 13 demonstrates that full-length PD-L1 is only found in the cells (left) and the short form is only found in the media (right), thereby confirming that the short form is soluble. Figure 14 demonstrates that the short form of PD-L1 was produced and affinity purified. Specifically, nucleic acid molecules encoding full-length PD-L1 were purchased from Origene and PCR was used to introduce an early termination codon. PCR was also used to add 3’ HA epitope tags. The
short and long forms were cloned into the expression vector pCDNA3 and also pBabe Puro and pMSCV puro. Cell lines expressing short and long PD-L1 forms were created by introducing the PD-L1 transgene by transient transfection (293T cells) or retroviral infection (K562 and Ba/P3 cells). HA.11 Clone 16B12 monoclonal antibody was used to detect the HA epitope tag and the ab58810 polyclonal antibody to detect PD-L1 (Abeam).

Figure 15 shows the detection of short PD-L1 in culture media obtained from cell lines predicted to make higher amounts of using immunoblot analyses (e.g., the RKO colon cancer cell lines, the BDCM acute myelogenous leukemia cell line, and the C.A.L62 thyroid anaplastic carcinoma cell line). This was confirmed by ELISA with cells engineered to make the short form (293T, 293T PD-L1 long (i.e., wild-type, full-length, membrane-bound PD-L1), PD-L1 short), as well as cancer cell lines predicted to produce the soluble form (e.g., the RKO and CAL62 cell lines). For recombinant production of full-length and soluble PD-L1, a c-terminal HA tag was attached and an anti-HA antibody (Thermo 261S3) was used for detection. For endogenous PD-L1, the 368A.5A4 antibody was used for Western blotting and the ELISA. 29E.128 l antibody was used for ELISA assays (courtesy of Gordon Freeman's laboratory; see also Brown et al. (2003). J. Immunol 170:1257-1266. Figure 15 further shows the distribution of PD-L1 in cells engineered to make the wild-type or short forms, which indicates that the short form is present in the media.

Figure 16 shows the results of T cell viability assays using T cells obtained from two independent donors and incubated in the presence of vehicle or either of the two short PD-L1 forms (i.e., PD-L1 S - Soluble 1 or PD-L1S2 - Soluble 2) or media from cells engineered to make wild-type PD-L1, in which most should have been retained in the cell. Briefly, T cells were isolated from peripheral blood from healthy blood donors at the Dana-Farber Cancer institute using the auto-MACS system. T cells were cultured in RPMI media and stimulated with CD3 and C.D28 conjugated antibody beads for 48 hours. Recombinant soluble PD-L1 (both forms) produced via HA-tag affinity purification from transiently transfected HEK293T cells was then as added at 10 micrograms/ml and cells were cultured for an additional 48 hours. Cell viability was measured by propidium iodide exclusion using a flow cytometer. As a control, HA-affinity purification was performed from the supernatant of 293T cells expressing full-length PD-L1 using exactly the same conditions as for the soluble form. Etoposk!e at 10 micromolar was used as a positive control for cell death. For conditions in which blocking antibodies were used, the blocking antibodies were added at 10 micrograms per ml and the following antibodies from the Freeman laboratory...

\textbf{Figure 17-18} shows that the short form of PD-L1 can \textbf{differentially} kill proliferating T cells. Figure 17 shows the results of f cells obtained from a healthy donor and stimulated to proliferate and then treated with either a) the short form of PD-LL (undiluted, “high input”), b) the short form of PD-L1 (diluted, “low input”), c) the long form of PD-L1, or d) the chemotherapeutic topoisomerase inhibitor, etoposide. The treated T cells then \textbf{underwent} flow cytometry analysis to determine the proportion of live cells. CD8 staining is shown on the \textbf{\textit{\chi}-axis} and cell viability is shown on the \textbf{y-axis}. The results show that the short form of PD-L1 kills T cells similar to etoposide and likely CD4 and not CD8 cells.

Figure 18 shows the results of the \textbf{experiment} described in \textbf{Figure 17}, except that the T cells were not \textbf{stimulated} to \textbf{proliferate}.

\textbf{Incorporation by Reference}

The contents of all references, patent \textbf{applications}, patents, and published patent \textbf{applications}, as well as the Figures and the Sequence Listing, cited throughout this application are hereby incorporated by \textbf{reference}.

\textbf{Equivalents}

Those skilled in the art will \textbf{recognize}, or be able to ascertain using no \textbf{more} than routine experimentation, \textbf{many} equivalents to the specific embodiments of the \textbf{invention} described herein. Such equivalents are intended to be encompassed by the following claims.
What is claimed:

1. A method of determining whether a subject is afflicted with a head, neck, or lung cancer or at risk for developing a head, neck, or lung cancer, the method comprising:
 a) obtaining a biological sample from the subject;
 b) determining the copy number, level of expression, or level of activity of one or more biomarkers listed in Table 1 or a fragment thereof in the subject sample;
 c) determining the copy number, level of expression, or level of activity of the one or more biomarkers in a control; and
 d) comparing the copy number, level of expression, or level of activity of said one or more biomarkers detected in steps b) and c);

 wherein a significant increase in the copy number, level of expression, or level of activity of the one or more biomarkers in the subject sample relative to the control copy number, level of expression, or level of activity of the one or more biomarkers indicates that the subject is afflicted with the head, neck, or lung cancer.

2. A method of determining whether a subject afflicted with a head, neck, or lung cancer or at risk for developing a head, neck, or lung cancer would benefit from modulating PD-L and/or PD-L1 levels, the method comprising:
 a) obtaining a biological sample from the subject;
 b) determining the copy number, level of expression, or level of activity of one or more biomarkers listed in Table 1 or a fragment thereof in the subject sample:
 c) determining the copy number, level of expression, or level of activity of the one or more biomarkers in a control; and
 d) comparing the copy number, level of expression, or level of activity of said one or more biomarkers detected in steps b) and c);

 wherein a significant increase in the copy number, level of expression, or level of activity of the one or more biomarkers in the subject sample relative to the control copy number, level of expression, or level of activity of the one or more biomarkers indicates that the subject afflicted with the head, neck, or lung cancer would benefit from modulating PD-L1 and/or PD-L1 levels.
3. A method for monitoring the progression of a head, neck, or lung cancer in a subject, the method comprising:

 a) detecting in a subject sample at a first point in time the copy number, level of expression, or level of activity of one or more biomarkers listed in Table 1 or a fragment thereof;

 b) repeating step a) at a subsequent point in time; and

 c) comparing the copy number, level of expression, or level of activity of said one or more biomarkers detected in steps a) and b) to monitor the progression of the head, neck, or lung cancer.

4. The method of any one of claims 1-3, wherein the one or more biomarkers comprises soluble PD-L1, optionally wherein the soluble PD-L1 comprises an amino acid sequence of SBQ ID NO: 13 or 15 or an amino acid sequence that is at least 80% identical to SEQ ID NO: 13 or 15; or b) comprises a nucleic acid molecule comprising a nucleic acid sequence encoding an amino acid sequence of SEQ ID NO: 13 or 15 or an amino acid sequence that is at least 80% identical to SEQ ID NO: 13 or 15.

5. The method of claim 3, wherein an at least twenty percent increase or an at least twenty percent decrease between the copy number, level of expression, or level of activity of the one or more biomarkers in the subject sample at a first point in time relative to the copy number, level of expression, or level of activity of the one or more biomarkers in the subject sample at a subsequent point in time indicates progression of the head, neck; or lung cancer; or wherein less than a twenty percent increase or less than a twenty percent decrease between the copy number, level of expression, or level of activity of the one or more biomarkers in the subject sample at a first point in time relative to the copy number, level of expression, or level of activity of the one or more biomarkers in the subject sample at a subsequent point in time indicates a lack of significant progression of the head, neck, or lung cancer.

6. The method of claim 3, wherein between the first point in time and the subsequent point in time, the subject has undergone treatment to modulate PD-L1 and/or PD-L1 levels.

7. A method for stratifying subjects afflicted with head, neck, or lung cancer according to predicted clinical outcome of treatment with one or more modulators of PD-L1 and/or PD-L1 levels, the method comprising:
a) determining the copy number, level of expression, or level of activity of one or more biomarkers listed in Table 1 or a fragment thereof in a subject sample;

b) determining the copy number, level of expression, or level of activity of the one or more biomarkers in a control sample; and

c) comparing the copy number, level of expression, or level of activity of said one or more biomarkers detected in steps a) and b);

wherein a significant modulation in the copy number, level of expression, or level of activity of the one or more biomarkers in the subject sample relative to the normal copy number, level of expression, or level of activity of the one or more biomarkers in the control sample predicts the clinical outcome of the patient to treatment with one or more modulators of PD-1 and/or PD-L1 levels.

8. The method of claim 7, wherein the predicted clinical outcome is (a) cellular growth, (b) cellular proliferation, or (c) survival time resulting from treatment with one or more modulators of PD-1 and/or PD-L1 levels.

9. The method of claim 7, wherein the one or more biomarkers comprises soluble PD-L1, optionally wherein the soluble PD-L1 a) comprises an amino acid sequence of SEQ ID NO: 13 or 15 or an amino acid sequence that is at least 80% identical to SEQ ID NO: 13 or 15; or b) comprises a nucleic acid molecule comprising a nucleic acid sequence encoding an amino acid sequence of SEQ ID NO: 13 or 15 or an amino acid sequence that is at least 80% identical to SEQ ID NO: 1.

10. The method of claim 7, wherein an at least twenty percent increase or an at least twenty percent decrease between the copy number, level of expression, or level of activity of the one or more biomarkers in the subject sample compared to the control sample predicts that the subject has a poor clinical outcome; or wherein less than a twenty percent increase or less than a twenty percent decrease between the copy number, level of expression, or level of activity of the one or more biomarkers in the subject sample compared to the control sample predicts that the subject has a favorable clinical outcome.

11. The method of claim 7, further comprising treating the subject with a therapeutic agent that specifically modulates the copy number, level of expression, or level of activity of the one or more biomarkers.
12. The method of claim 7, further comprising treating the subject with one or more modulators of PD-1 and/or PD-L1 levels.

13. A method of determining the efficacy of a test compound for inhibiting a head, neck, or lung cancer in a subject, the method comprising:
 a) determining the copy number, level of expression, or level of activity of one or more biomarkers listed in Table 1 or a fragment thereof in a first sample obtained from the subject and exposed to the test compound;
 b) determining the copy number, level of expression, or level of activity of the one or more biomarkers in a second sample obtained from the subject, wherein the second sample is not exposed to the test compound, and
c) comparing the copy number, level of expression, or level of activity of the one or more biomarkers in the first and second samples, wherein a significantly modulated copy number, level of expression, or level of activity of the biomarker, relative to the second sample, is an indication that the test compound is efficacious for inhibiting the head, neck, or lung cancer in the subject.

14. The method of claim 13, wherein the one or more biomarkers comprises soluble PD-L1, optionally wherein the soluble PD-L1 a) comprises an amino acid sequence of SEQ ID NO: 13 or 15 or an amino acid sequence that is at least 80% identical to SEQ ID NO: 13 or 15; or b) comprises a nucleic acid molecule comprising a nucleic acid sequence encoding an amino acid sequence of SEQ ID NO: 13 or 15 or an amino acid sequence that is at least 80% identical to SEQ ID NO: 1.

15. The method of claim 13, wherein the first and second samples are portions of a single sample obtained from the subject or portions of pooled samples obtained from the subject.

16. A method of determining the efficacy of a therapy for inhibiting a head, neck, or lung cancer in a subject, the method comprising:
 a) determining the copy number, level of expression, or level of activity of one or more biomarkers listed in Table 1 or a fragment thereof in a first sample obtained from the subject prior to providing at least a portion of the therapy to the subject;
b) determining the copy number, level of expression, or level of activity of the one or more biomarkers in a second sample obtained from the subject following provision of the portion of the therapy; and

e) comparing the copy number, level of expression, or level of activity of the one or more biomarkers in the first and second samples,

wherein a significantly decreased copy number, level of expression, or level of activity of the one or more biomarkers in the second sample, relative to the first sample, is an indication that the therapy is efficacious for inhibiting the head, neck, or lung cancer in the subject.

17. The method of claim 16, wherein the one or more biomarkers comprises soluble PD-L1, optionally wherein the soluble PD-L1 a) comprises an amino acid sequence of SEQ ID NO: 13 or 15 or an amino acid sequence that is at least 80% identical to SEQ ID NO: 13 or 15; or b) comprises a nucleic acid molecule comprising a nucleic acid sequence encoding an amino acid sequence of SEQ ID NO: 13 or 15 or an amino acid sequence that is at least 80% identical to SEQ ID NO: 1.

18. A method for identifying a compound which inhibits a head, neck, or lung cancer, the method comprising:

a) contacting one or more biomarkers listed in Table 1 or a fragment thereof with a test compound; and

b) determining the effect of the test compound on the copy number, level of expression, or level of activity of the one or more biomarkers to thereby identify a compound which inhibits the head, neck, or lung cancer.

19. The method of claim 18, wherein the one or more biomarkers comprises soluble PD-L1, optionally wherein the soluble PD-L1 a) comprises an amino acid sequence of SEQ ID NO: 13 or 15 or an amino acid sequence that is at least 80% identical to SEQ ID NO: 13 or 15; or b) comprises a nucleic acid molecule comprising a nucleic acid sequence encoding an amino acid sequence of SEQ ID NO: 13 or 15 or an amino acid sequence that is at least 80% identical to SEQ ID NO: 1.

20. The method of claim 18, wherein the one or more biomarkers is expressed on or in a cell.
21. The method of claim 20, wherein said cells are isolated from an animal model of a head, neck, or lung cancer.

22. The method of claim 20, wherein said cells are from a subject afflicted with a head, neck, or lung cancer.

23. A method for inhibiting a head, neck, or lung cancer, the method comprising contacting a cell with an agent that modulates the copy number, level of expression, or level of activity of one or more biomarkers listed in Table 1 or a fragment thereof to thereby inhibit the cancer.

24. The method of claim 23, wherein the one or more biomarkers comprises soluble PD-L1, optionally wherein the soluble PD-L1 comprises an amino acid sequence of SEQ ID NO: 13 or 15 or an amino acid sequence that is at least 80% identical to SEQ ID NO: 13 or 15; or b) comprises a nucleic acid molecule comprising a nucleic acid sequence encoding an amino acid sequence of SEQ ID NO: 13 or 15 or an amino acid sequence that is at least 80% identical to SEQ ID NO: 1.

25. The method of claim 23, wherein the copy number, level of expression, or level of activity of the one or more biomarkers is downmodulated.

26. The method of claim 23, wherein the step of contacting occurs in vivo, ex vivo, or in vitro.

27. The method of claim 23, further comprising contacting the cell with an additional agent that inhibits the head, neck, or lung cancer.

28. A method for treating a subject afflicted with a head, neck, or lung cancer, the method comprising administering an agent that dowregulates the copy number, level of expression, or level of activity of one or more biomarkers listed in Table 1 or a fragment thereof such that the head, neck, or lung cancer is treated.

29. The method of claim 28, wherein the one or more biomarkers comprises soluble PD-L1, optionally wherein the soluble PD-L1 a) comprises an amino acid sequence of SEQ ID NO: 13 or 15 or an amino acid sequence that is at least 80% identical to SEQ ID NO: 13 or 15; or b) comprises a nucleic acid molecule comprising a nucleic acid sequence encoding
an amino acid sequence of SEQ ID NO: 13 or 15 or an amino acid sequence that is at least 80% identical to SEQ ID NO: 1.

30. The method of claim 28, further comprising administering one or more additional agents that treats the cancer.

31. The method of claim 28, wherein the agent is one or more modulators of PD-J levels.

32. The method of claim 28, wherein the agent is one or more modulators of PD-L1 levels.

33. A pharmaceutical composition comprising an antisense polynucleotide that specifically binds to a polynucleotide of one or more biomarkers listed in Table 1 or a fragment thereof useful for treating a head, neck, or lung cancer in a pharmaceutically acceptable carrier.

34. The pharmaceutical composition of claim 33, wherein the antisense polynucleotide further comprises an expression vector.

35. A method of using the pharmaceutical composition of claims 33 or 34 for treating a head, neck, or lung cancer in a subject.

36. A kit comprising an agent which selectively binds to one or more biomarkers listed in Table 1 or a fragment thereof and instructions for use.

37. The kit of claim 36, wherein the agent is selected from the group consisting of polynucleotides and antibodies.

38. A biochip comprising a solid substrate, said substrate comprising one or more probes capable of detecting one or more biomarkers listed in Table 1 or a fragment thereof wherein each probe is attached to the substrate at a spatially defined address.

39. The biochip of claim 31, wherein the probes are complementary to a genomic or transcribed polynucleotide associated with the one or more biomarkers.
40. The pharmaceutics composition of claim 33, the kit of claim 36, or the biochip of claim 38, wherein the one or more biomarkers comprises soluble PD-L1, optionally wherein the soluble PD-L1 a) comprises an amino acid sequence of SEQ ID NO: 13 or 15 or an amino acid sequence that is at least 80% identical to SEQ ID NO: 13 or 15; or b) comprises a nucleic acid molecule comprising a nucleic acid sequence encoding an amino acid sequence of SEQ ID NO: 13 or 15 or an amino acid sequence that is at least 80% identical to SEQ ID NO: 1.

41. The method of any one of claims 1, 2, 3, 7, 13, 16, 18, 23, and 28, wherein the control is determined fort) a non-cancerous sample from the subject or member of the same species to which the subject belongs.

42. The method of any one of claims 1, 2, 3, 7, 13, 16, 18, 23, and 28, wherein the sample consists of or comprises body fluid, cells, cell lines, histological slides, paraffin embedded tissue, fresh frozen tissue, fresh tissue, biopsies, blood, plasma, serum, buccal scrape, saliva, cerebrospinal fluid, urine, stool, mucus, or bone marrow, obtained from the subject.

43. The method of claim 42, wherein the body Quid is selected from group consisting of amniotic fluid, aqueous humor, bile, blood and blood plasma, cerebrospinal fluid, cerumen and ear wax, cowper’s fluid or pre-ejaculatory fluid, chyle, chyme, stool, female ejaculate, interstitial fluid, intracellular fluid, lymph, menses, breast milk, mucus, pleural fluid, peritoneal fluid, pus, saliva, sebum; semen, serum, sweat, synovial fluid, tears, urine, vaginal lubrication, vitreous humor, and vomit.

44. The method of any one of claims 1, 2, 3, 7, 13, 16, 18, 23, and 28, wherein the copy number is assessed by microarray, quantitative PCR (qPCR), high-throughput sequencing, comparative genomic hybridization (CGH), or fluorescent in situ hybridization (FISH).

45. The method of any one of claims 1, 2, 3, 7, 13, 16, 18, 23, and 28, wherein the expression level of the one or more biomarkers is assessed by detecting the presence in the samples of a polynucleotide molecule encoding the biomarker or a portion of said polynucleotide molecule.
46. The method of claim 44, wherein the polynucleotide molecule is a mRNA, cDNA, or functional variants or fragments thereof and, optionally, wherein the step of detecting further comprises amplifying the polynucleotide molecule.

47. The method of any one of claims 1, 2, 3, 7, 13, 16, 18, 23, and 28, wherein the expression level of the one or more biomarkers is assessed by annealing a nucleic acid probe with the sample of the polynucleotide encoding the one or more biomarkers or a portion of said polynucleotide molecule under stringent hybridization conditions.

48. The method of any one of claims 1, 2, 3, 7, 13, 16, 18, 23, and 28, wherein the expression level of the biomarker is assessed by detecting the presence in the samples of a protein of the biomarker, a polypeptide, or protein fragment thereof comprising said protein.

49. The method of claim 48, wherein the presence of said protein, polypeptide or protein fragment thereof is detected using a reagent which specifically binds with said protein, polypeptide or protein fragment thereof.

50. The method of claim 49, wherein the reagent is selected from the group consisting of an antibody, an antibody derivative, and an antibody fragment.

51. The method of any one of claims 1, 2, 3, 7, 13, 16, 18, 23, and 28, wherein the activity level of the biomarker is assessed by determining the magnitude of modulation of the activity or expression level of downstream targets of the one or more biomarkers.

52. The method of any one of claims 1, 6, 7, 13, 16, 18, 23, and 28, wherein the agent or test compound modulates PD-1, PD-L1, and or soluble PD-L1 levels.

53. The method of claim 52, wherein the agent or test compound inhibits the expression and/or activity of soluble PD-L1, optionally wherein the soluble PD-L1 a) comprises an amino acid sequence of SEQ ID NO: 13 or 15 or an amino acid sequence that is at least 80% identical to SEQ ID NO: 13 or 15; or b) comprises a nucleic acid molecule comprising a nucleic acid sequence encoding an amino acid sequence of SEQ ID NO: 13 or 15 or an amino acid sequence that is at least 80% identical to SEQ ID NO: 1.
54. The method of claim 53, wherein the agent or test compound is an antibody against soluble PD-L1, optionally wherein the soluble PD-L1 comprises an amino acid sequence of SEQ ID NO: 13 or 15 or an amino acid sequence that is at least 80% identical to SEQ ID NO: 13 or 15.

55. The method of claim 52, wherein the agent or test compound is a small molecule inhibitor of soluble PD-L1, optionally wherein the soluble PD-L1 comprises an amino acid sequence of SEQ ID NO: 13 or 15 or an amino acid sequence that is at least 80% identical to SEQ ID NO: 13 or 15.

56. The method of claim 52, wherein the agent or test compound is an anti-PD-L1 inhibitor selected from the group consisting of a small molecule, antisense nucleic acid, interfering RNA, shRNA, siRNA, aptamer, ribozyme, and dominant-negative protein binding partner.

57. The method of any one of claims 1, 2, 3, 7, 13, i.e., 18, 23, 28, and 35, wherein the head or neck cancer is squamous cell carcinomas of the head and neck (SCCHN) or associated with human papillomavirus infection.

58. The method of any one of claims 1, 2, 3, 7, 13, 16, 18, 23, 28, and 35, wherein the lung cancer is small-cell lung carcinoma (SCLC) or non-small-cell lung carcinoma (NSCLC).

59. The method of any one of claims 1, 2, 3, 7, 13, 16, 18, 23, and 28, wherein the subject is a mammal.

60. The method of claim 59, wherein the mammal is a human.
Figure 7

IG x2

TM 239-259

WT ...FRRLDPEENHTAELVIP...LNVSIKICLTLSPST*
Soluble 1 ...FRRLDPEENHTAELVIP*
Soluble 2 ...FRRLDPEENHTAELVIPGN...
Figure 8

CV-5433

Index

em(x[[37]], 1)
Figure 11

A HSCN

B BLCA
Figure 11 (cont.)

C BRCA

D GBM
Figure 11 (cont.)

E KIRC

F LAML
Figure 16

- **Donor 1**
- **Donor 2**

- Control
- PDL1
- PDL1S
- PDL1S+PDL1
- Anti-PDL1
- Anti-PD1
- Anti-PD1+Anti-PDL1
- PDL1S+Anti-PD1
- PDL1S+Anti-PD1+Anti-PDL1
- IgG
- IgG+PDL1
- IgG_PDL1S
- Etop

Viable %
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

IPC(8) - G01 N 33/50 (2014.01)
CPC - G01 N 33/5005 (2014.09)

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
IPC(8) - A61K 39/395; A61P 35/000; C12N 9/12; 15/09; C12Q 1/02; G01N 33/15, 33/50, 33/53, 33/567, 33/68 (2014.01)
USPC - 436664; 514/1.1, 19.3, 44A

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched
CPC - G01N 33/5052, 33/5005, 33/5008, 33/3863, 2333/70532, 2333/912 (2014.09)

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

Orbit, Google Patents, Google Scholar

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>US 2011/0271358 A1 (FREEMAN et al) 03 November 2011 (03.11.2011) entire document</td>
<td>1-60</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of Box C.

* Special categories of cited documents:
 "A" document defining the general state of the art which is not considered to be of particular relevance
 "E" earlier application or patent but published on or after the international filing date
 "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
 "O" document referring to an oral disclosure, use, exhibition or other means
 "P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search: 30 September 2014

Date of mailing of the international search report: 06 NOV 2014

Authorized officer: Blaine R. Copenheaver

PCT Helpdesk: 571-272-4300
PCT OSP: 571-272-7774

Form PCT/ISA210 (second sheet) (July 2009)