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A method of embedded encoding of !

an image is disclosed in which image com-

pression techniques encode spatial tilings of

the image, said method including: precal-

culating the significance and zerotree infor- N

mation in a single pass; storing said sig- |

nificance and zerotree information in store, |

and interrogating said store to establish the

significance status of any tree.
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"IMAGE ENCODING"

Technical Field

This invention relates to a system for and method of
image encoding.

The invention has application to methods for the
embedded encoding of an image in which image compression
techniques encode spatial tilings of the image. The
invention has particular application in progressive image

transmissions.

Background of Invention

-In our copending application, the specification of
which is included herein by reference, there is described
a method of progressively transmitting an image in which
image compression techniques rely on spatial tiling of
the image, the method including:-

allocating variable priority values +to spatial
regions within the image;

whereby a receiver of a transmitted image can
interactively define the spatial focus of the image
during transmission thereof.

Progressive image transmission systems are known and
involve the transmission of image data in a way that the
data received at the intermediate stages in the
transmission can be used to reconstruct an approximation
to the full image.

An embedded encoding is one in which the bits
representing the image have been ordered as a single
stream which can be truncated at any point so that an
approximation to the image can be generated from the
information to that point and such that that
approximation has close to optimal distortion for the
proportion of the information received. BAll the more
compressive representations of the image are then
embedded within the stream representing a less

compressive representation. In a sense the bits in the
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stream are ordered by their importance, where the
importance is determined by their magnitude - (bit
significance), spatial scale and spatial location.

It is desirable to produce an encoding which permits
modification to the importance associated with the bits.
In particular the spatial location and the scale can vary
in importance depending on a number of factors. For
example the importance of a particular region of an image
will depend on the interest of the user viewing the
image. In the situation where an image 1is being
progressively transferred the user will want the bits
associated with regions of particular interest to be
delivered before the bits associated with regions of no
particular interest. The decision about how interesting a
region is may only be possible after some small fraction
of the image has been delivered.

Scale is also something whose importance can vary
dynamically during an image transmission. If an image
larger than the viewing area on a monitor is initially
viewed on a scale appropriate to fit the whole image on
the monitor, then it does not make sense to send those
bits which are associated with the information at a finer
scale than can be presented on the monitor. If the user
decides that a particular region is interesting and zooms
the region, then those bits associated with the fine
scale information are now required.

This involves a need to reprioritise the bits in the
image after partial transmission of the image. Ideally
this should be done without having to recode the image or
retransmit any information that has already been
received.

It is not clear at first that this is even possible
if an embedded style of representation with good
compression characteristics is to be retained.
Concentration initially is on the spatial prioritisation.
Briefly, the approach relies on a "tiled" representation
of the image. A tile is a spatially localised subset of

the image information. The term "tile" is used rather
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than "block" to emphasis the fact that although the tiles

are spatially localised and independant of the other
tiles, they are allowed to overlap in the spatial domain.
In this implementation they are in fact a collection of
terms in the wavelet expansion. Each spatial tile is
encoded independently in an embedded representation. The
handling of these tiled embedded representations to
provide Interactively Spatially-prioritised Progressive
Image-retrieval (ISPI) is described in greater detail in
our copending application.

Among the more successful examples of embedded
encodings are the Embedded Zerotree Wavelet (EZW) coding
of Shapiro and the related Spatial Partitioning 1In
Hierarchical Trees (SPIHT) encoding of Said and Pearlman.
See the following:-

A.Said, W.A.Pearlman, "A New Fast and Efficient
Image Codec Based on Set Partitioning in Hierarchical
Trees," Transactions on Circuits and Systems for Video
Technology vol. 6(3). pp 243-250 (1996);

J.M.Shapiro, "Embedded image coding using zerotrees
of wavelet coefficients," IEEE, Trans. on SP, 41 (1993),
pp 3445-3462, and

J.M.Shapiro, "An Embedded Hierarchical Image Coder
using Zerotrees of Wavelet Coefficients," Proc. Data
Compreséion Conference, J.Storer, M.Cohn Eds (1992), pp
214-223.

See also US Patents 5412741, 5321776 and 5315670 to
Shapiro.

This invention relates to the particulars of the
embedded image encoding method and system which is used
to encode the independant spatial tiles. An algorithm is
developed which is an improvment on the methods of Said
and Pearlman and Shapiro described above. Throughout the
specification references are made to this prior art by

way of explaining the advances of the present invention.
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éummary of Invention

The present invention aims to provide a further
alternative to known progressive image transmission
systems and methods utilising embedded encoding of an
image in which image compression techniques encode
spatial tilings of the image.

As used herein the expression "embedded encoding of
an image in which image compression techniques encode
spatial tilings of the image" is to be understood to
include reference to the application to an image of an
algorithm which assumes that the image is divided into a
set of tiles with each tile containing a set of
coefficients which represent the image information.

These coefficients may be arranged or ordered in a
two dimensional grid with the coefficients generally
decreasing in magnitude (significance) from the top left
to the bottom right corner. The ordering is not strict
and occasionally a more significant coefficient can
appear below or to the right of less significant.

The ordering generally results from the
transformation process by which the coefficients are
achieved and should not in general require information to
be stored on a per tile basis to achieve the ordering,
although this is possible. )

To structure the coefficients within one tile they
are organised in a hierarchy defined by descendant
relationships with the top 1left coefficient being the
highest antecedant. The direct descendants of any
coefficient are referred to as its children. These
relationships define a tree structure with a single root
node at the top left coefficient.

Through the use of an appropriately chosen threshold
value a first bit plane in the tile is defined by testing
the coefficients for their significance relative to the
threshold. The next bitplane can be defined by reducing
the threshold and again testing for those points which
become significant at this threshold level. Information

about already significant points is sent as refinement
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bits which are the significance of the remainder of the
coefficient after subtracting the earlier threshold value
from the coefficient for any threshold levels at which
the coefficient remainder was found to have been
significant.

This invention in one aspect resides broadly in
a method of embedded encoding of an image in which image
compression techniques encode spatial tilings of the
image, said method including:-

precalculating the significance and zerotree
information in a single pass;

storing said significance and zerotree information
in store, and )

-interrogating said store to establish the
significance status of any tree.

In another aspect this invention resides broadly in
a method of embedded encoding of an image in which image
compression techniques encode spatial +tilings of the
image, said method including:=-

ordering the coefficients in said spatial tilings
whereby said tiles are defined as having the constraints
(a) that all the children of a coefficient are visited
before the siblings of that coefficient, and (b) that all
the siblings of a coefficient are visited before any
non-descendant non-siblings are visited, whereby the
algorithm can be implemented without using lists in the
partitioning of the tree.

In a further aspect this invention resides broadly
in a method of embedded encoding of an image in which
image compression techniques encode spatial tilings of
the image, said method including:-

transmitting significant bits, refinement bits and
partitioning bits in the order in which the corresponding
coefficients are encountered during a single pass of the
coefficients for each bitplane.

7 In another aspect this invention resides broadly in
a method of embedded encoding of an image in which image

compression techniques encode spatial tilings of the
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image, said method including:-

for a given threshold treating as insignificant all
components above a given scale in the tree. ’

In a still further aspect this invention resides
broadly in a method of embedded encoding of an image in
which image compression techniques encode spatial tilings
of the image, said method including:-

splatting the image components corresponding to
individual significant bits in the representation
directly on to the image plane.

As used herein, the expression "splatting"” means a
process in which each incoming significant bit results in
an update of the image itself through the addition of the
relevant part of the basis function.

In a preferred embodiment the invention relates to a
method as defined in any of the preceding statements, for
the embedded encoding of an image 1in which image
compression techniques encode spatial +tilings of the
image, wherein the pseudo-code description of the

embedded encoding algorithm is as set out in FIG 9.

Description of Drawings

In order that this invention may be more easily
understood and put into practical effect, reference will
now be made to the accompanying drawings which iiiustrate
a preferred embodiment of the invention, wherein:-

FIG 1 illustrates a hierarchical wavelet
decomposition with the components which constitute a
spatial tile;

FIG 2 illustrates a spatial tile in the wavelet
domain;

FIG 3 illustrates the bits generated from a dyadic
thresholding;

FIG 4 illustrates the spatial orientation tree
partitioning of a wavelet tile;

‘_ FIG 5 illustrates the Coarse/Fine partitioning of
the orientation trees in accordance with the present

invention;
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FIG 6 shows the root and four spatial subtrees of
one of the orientation trees;

FIG 7 illustrates the Coarse-Tree tests array;

FIG 8 shows tree depth as a function of scale d(s),
and

FIG 9 lists the pseudo-code description of the
embedded encoding algorithm.

Description of Preferred Embodiment of Invention

A preferred embodiment of the invention will now be
described with reference to the above illustrations by
reference under appropriate headings to various aspects

of the invention.

Wavelet Tiles

In general, it is only useful from the point of view

of compression to hierarchically decompose the image on
the wavelet basis to the point that the DC components are
spatially decorrelated. For most images a depth of 3-5
levels in the hierarchy is sufficient to achieve this.
The coefficients in the wavelet domain can then be
collected into groups of components for which the centres
of the corresponding basis function lie within a given
spatial region of the image. This collection of
coefficients can be thought of as a spatial tiie, with
one DC component (at the top left of FIG 1), and an
hierarchy of AC components in a scale hierarchy mimicking
the structure of the image subbands. By reconstructing
the components in each spatial tile it is possible to
arrive at a set of independent but overlapping imagé
partitions which could be added together to reform the
image.

The following description is concerned with the
embedded representation of a single wavelet tile. The
encoding of a full image is achieved by the encoding of
all wavelet tiles.

FIG 1 illustrates a hierarchical wavelet

decomposition with the components which constitute a
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spatial tile and FIG 2 shows The spatial tile in the

wavelet domain.

Thresholding and bitplanes

The invention uses a dyadic sequence of thresholds
producing a binary representation for the coefficients.
The bits generated from such a dyadic sequence of
thresholds for a simple although unrealistic distribution
are illustrated in FIG 3.

The coefficient array corresponding to the wavelet
tile is normalised wusing a predetermined positive
threshold T such that 2T is larger than the magnitude of
any of the values in the tile. For a wavelet coefficient
value. of w, the normalised coefficient is int(214*(w/T)).
The coefficients are saved as 16 bit integer values with
the first bit reserved for the sign and 15 bits used for

the magnitude.

Tile partitioning (Crientation partitioning)

The spatial tiles of coefficients can be partitioned
into three orientation subtrees. The coefficients in an
orientation subtree are produced by the subset of wavelet
basis functions with the same spatial orientation
sensitivity. For this reason Said and Pearlman gave
these trees the name Spatial Orientation trees. The
orientation partitioning of a 4 level wavelet tile is
illustrated in FIG 4. In this invention these

partitions are called the H,D and V partitions.

Tile partitioning (Coarse/Fine partitioning)

Each orientation tree can be further partitioned
into coarse and fine subsets. Because of the tendency of
the magnitude of the coefficients to decrease from coarse
scale to fine scale, components above a given threshold
will tend to <cluster in the coarse part of the
orientation tree. The scale at which the number of
significant components goes to zero will vary from one

spatial tile to the next and will depend on the
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fhreshold, but by and large as the threshold is
decreased, the scale at which significant components
disappear will move towards the fine end. ’
The concept of a coarse/fine tree partition is
illustrated in FIG 5 where the leftmost tree 1is
partitioned at scale 1 and the rightmost tree is
partitioned at scale 3. In this invention these are
called level 1 to level 3 Coarse/Fine Partitions (CFP).
A level 1 CFP corresponds to Said and Pearlman's type A
LIS entry. A level 2 coarse/fine partition corresponds
to a Said and Pearlman's type B LIS entry. There is no
equivalent in Said and Pearlman's work to the higher
level Coarse/Fine partitions of the present invention.
Said and Pearlman also does not use the level 0 CFP which

corresponds to the full tree.

Tile partitioning (Spatial partitioning)

Each orientation tree can be divided into a root
node and four spatial subtrees as illustrated in FIG 6.
This partitioning in conjunction with the orientation
partitioning defines a tree structure for the tile. The
tile has three Orientation subtrees and each Orientation
subtree can be recursively divided into 4 spatial

subtrees.

Significance

Central to the zerotree approach to coding is the
concept of significance. A coefficient w(i,j) is said to
be significant for a given threshold t if the coefficient
is greater than or equal to the threshold. The zerotree
algorithm of Shapiro actually tests a subtly different
quantity, which is called the Just-Significance in the
present invention.

Just-Significant points are those points which are
significant at the threshold t but were not significant
at the threshold 2t and are the key to the partitioning
of the tree. Below the threshold at which a coefficient

becomes significant, subsequent bits are equally likely
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to be 1 or 0 and there is no advantage to looking for
zerotrees among refinement =zeros. The Shapiro algorithm
actually tests for trees in which no coefficients are
Just-Significant. This has some advantage in the
situation where an isolated significant coefficient 1is
surrounded by insignificant coefficients. The mechanism
Shapiro uses to achieve this is to replace any
coefficients in the tree which is found to be significant
by zero and retain the coefficient in a List of
Significant Points. Lower significance bits of these
coefficients are handled as "refinement" bits. Shapiro
always tests the whole tree from the root node to the
bottom of the tree. .

Said and Pearlman use a subtly different mechanism
in which trees are partitioned at each threshold so that
for that threshold each tree is split into a coarse part
which may be significant and a fine part which is wholly
insignificant. This partitioning is the starting point
for tests of the same tree at the next threshold. As the
threshold is lowered the trees are only ever split, they
are never rejoined. Any points within an existing wholly
insignificant partition which become significant at the
next threshold are therefore by implication
Just-Significant. If a. tree cannot be split into a
coarse and fine part with the fine part insignificant,
then the tree is divided into its root and four spatial
subtrees. In the limit the trees will be split into
individual coefficients and only refinement bits will be
sent. This will then require the same number of bits as
sending a binary raster representation of the bitplane.

In the algorithms described here the coefficients in
the tile are traversed in strict order sending both
partitioning information and sign and magnitude or
refinement information associated with the root node of
each subtree as we encounter them. Lists of addresses
are not used as is the case in Shapiro and Said and
Pearlman. Manipulating lists can be quite expensive and

by avoiding the use of lists the present invention gaiﬂs
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in efficiency.

Hierarchical Partitioning without Lists

Said and Pearlman generalised the zerotree
partitioning concept used by Shapiro with the use of
their Type A and Type B entries to the TList of
Insignificant Sets.

In the present invention this approach is more
clearly understood through the concept of a Coarse-Tree,
which is a tree whose fine components below some scale
are all insignificant. The concept of a Coarse-Tree
encompasses the Type A and Type B sets of Said and
Pearlman but provides a conceptual basis within which
more general Coarge/Fine Partitioning is allowed rather
than just the two levels used by Said and Pearlman.

If the use of lists is to be avoided, another
mechanism for tracking the partitioning process is
needed. For each coefficient a Coarse/Fine partitioning
level index (CF(I)) is saved which records +the CF
partitioning level for the orientation tree with that
coefficient at its root.  As the threshold is lowered
this index is either left the same or incremented but
never decremented. Once it has incremented above the
valid range for that tree (above a preset maximum value
or such that there are no components in the tree finer
than the partitioning level), then no further Coarse-Tree
tests are carried out on that tree for subsequent
thresholds.

At a given threshold, the Coarse-Tree tests on a
given tree are repeated until they either succeed in
finding a level at which the fine components are all
insignificant or CF(I) is incremented above the wvalid
range.

During the traversal of the tree the present
invention also carries information about the effective
depth of the current tree and trees in the current scale.
If the fine parts of the tree are found to be zero at

some point then the effective depth of +the tree is
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adjusted accordingly. As the tree is traversed down,
these variables permit the system to keep track of what

part of the tree has been found to be zero.

Coding of the Zerotree Structure

The tree structure of the wavelet tile is traversed
from the root of the tree. Because of this, tests for a
zerotree in the upper parts of the tree will contain
tests of lower subtrees. If these tests are conducted at
the time that they are required by the algorithm then
this would involve some repetition.

In the present invention a scheme for compactly
storing the results of all possible zero tree tests is
used. - The test is conducted in a single traverse of the
tree, performing tests on all of the bitplanes
simultaneously.

One algorithm for achieving this is described
subsequently. It will be appreciated that the algorithm
presented is but one possible algorithm for practising
the present invention. For example, the calculation
could take advantage of the zero level tree calculation
in calculating the higher Coarse/Fine level partitioning.

The resulting structure is an array which is 16 bits
deep and which takes the form of an irregular 3
dimensional matrix 2zX(i,J). The form of the data
structure is illustrated in FIG 7. The three blocks of
data in that figure corresponding to the three values of
k which is the Coarse/Fine partitioning level index. For
k=0 the data block is of the same dimensions as the
wavelet. For each increment of k the size of the data
block in each of the spatial dimensions (i,j) is reduced

by a factor of 2.

Some Definitions

The hierarchical trees are defined by the set of
descendency and sibling relationships which are based on
an addressing scheme for the wavelet tile with its origin

at the root node.
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I =(,)) A wavelet tile coefficient address
cln = (2i,2)) First Child of 1
Cy(I) = (2i+1,2]) Second Child of I
C3() = (2i+1,2j+1) Third Child of I
cly = (2i2j+1) Fourth Child of I
CT(I) = CI1 ( Clll - 1(1')) First nth order Grandchild of I
PUIY = (I\2,)\2) Parent of 1
pr(ry = PYP" () nth order Grandparent of I
N(I) Next Sibling of I in sequence Lume2um 3w |

The root node of each tile is a special case where
(i,9) = (0,0). 1In this case the first child of the root
tile- is the root itself and 1is excluded from the
hierarchy as a special case when the algorithm calls for
the children of this node. the root tile of the node
also has no siblings.

FIG 7 illustrates the Coarse-Tree tests array
z¥(i,3) . The Coarse-Tree tests are calculated for all
bitplanes and all Coarse-Tree Partitioning Levels in a
single scan of the coefficients of the wavelet tile. The
figure illustrates the Coarse-Tree array and the
corresponding fine components in the wavelet tile for
three different CF Partitioning levels.

Given the relationships defined above, the éffspring
and descendants which define the tree associated with a

given coefficient are defined as follows:-

o'y = {CHD), Cy(D), C3(D), C4(D)}
0’1y = 0'(0' (1)) |
D’ = 1uD' ()
D'ty = D’(0' (1))
DX = D°(0*(1)

For the ©purposes of the encoding it 1is also

necessary to define the following:-
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w(Il), where I=(i,3j) is the index into the spatial
tile, is the array of wavelet components for the

spatial tile encoded as sign and magnitude.

Jn(I) is the just-significance of w(I) at threshold
t=T/2", J(I) = tiw(I)|<2t. With a set of index
values S= {S0,S1,...Sm} we use a shorthand Jn(S) =
{Jn(S0),In(S1),...,In(Sm)}

Sig(w(I)) the integer value with only the most
significant bit of |w(I)| set. We use a look up

table to perform this operation.

2,(I) is a boolean array such that Z (I) =
OR(Jn(Dk(I))), where I is an index in the spatial
tile and OR(S) takes the logical OR of each member
of-the set S.

Sgn(w(I)) is the sign of w(I).

The coding algorithm - Generating Coarse-Tree arravs

The Coarse Tree array is generated by propagating

the Just Significance of each coefficient up it’'s

inheritance tree. The logical operation are performed

across all 16 bitplanes simultaneously.

. Set the number N of threshold 1levels for complete
encoding - we use 15 which is convenient for short

integer representation of the coefficient.
. Allocate memory for Z*(I) and initialise to zero
. Set the Coarse-tree testing limits k ; and k,

For each I, )
for m=kg.:, to dy - d(I},
for k = kpin to min(m,Xpax) .
Zk(P™(I)) = zK(P™(I)) | Siglw(I))
end
end
end



WO 98/19274 PCT/AU97/00725

10

15

20

25

30

35

15

Z *(I) is the bit of z*(I) which gives the result of

the Coarse-Tree test corresponding to threshold t = T/2n.
The | operator is a 16 bit deep OR. .

The Embedded Encoding Algorithm
Each bitplane in the wavelet tile, starting at the

most significant bitplane, is coded with a single pass of
the coefficients. In each pass, the algorithm iterates
through the coefficients in fixed order, only missing
those coefficients which are found to be insignificant
fine components of a Coarse Fine partitioning a subtree
of the tile.

The scan of the components starts at the root of the
tree, - visiting all children of a coefficient before
visiting any siblings, and wvisiting all siblings of a
coefficient before visiting non-descendent non-siblings.
Each coefficient is assigned a Coarse/Fine partitioning
level which is initially set to some minimum value
greater than or equal to 0. For all points with wvalid CF
levels, the algorithm performs a series of Coarse-Tree
tests which check whether any of the fine components of
the Coarse/Fine partitioned tree are significant. After
each test the result of the test is output.

If the result is True (the tree has a Significant
point), the Coarse/Fine partitioning level is incremented
for the coefficient at the root of the current tree and
the test is repeated until either the test returns a
False result or the CF level 1is incremented beyond the
valid range for the tree. _

If the test returns a False result or the CF level
is beyond the valid range for the tree then the algorithm
sends either the sign and magnitude £for the current
coefficient (sending only that information which cannot
be determined from what has been sent) and moves to the
next sibling of the current coefficient. If there are no
more siblings then the algorithm moves back up the tree
one level at a time until it finds a level with a next

sibling. If there are no more next siblings at the
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\topmost level then the scan for the bitplane terminates

and the algorithm moves to the next bitplane.

The algorithm will always send either a refinement
bit or a sign and magnitude for the coefficient at the
root of the current tree. If the coefficient is known to

have been significant in a previous bitplane pass (which

can be tested for in both the encoder and decoder), then
a refinement bit is sent. If it is insignificant then a
0 is output. If it is Just-Significant then a 1 is

output followed by a zero if the component is negative or
a 1 if the component is positive.

There is a special case when the result of a CF
level 0 Coarse Tree test is True and the subsequent
result of a CF level 1 Coarse tree test is False. In
this case the root is obviously the significant point and
only a sign bit need be sent if the point is Jjust
significant. Also if a level 0 test is false, the root

must be zero and need not be sent.

Variables
. SN(s) is the Sibling Number, which records the
current sibling being tested for each scale. It is

initially 1 for all scales. The valid range for the
Sibling Number SN(s) for all scales other than 1 & O
is 1 to 4. The valid range for scale s 1is

summarised by the table

Table 1: Valid Sibling Range

Scale Sibling Number SN
s=0 1

s=1 2.4

s>2 1.4

. CF(I), I=(i,j) indexing over the wavelet components,
is a two dimensional array of the Course/Fine
Partitioning Level for the tree with its root at the

component I.
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d(s),s = 0 to 4, is the effective tree depth in each
scale of the tree. Because the orientation trees
are trasversed in sequence, the same variable can be

used for each orientation tree.

d(s),s = O to d,, is the effective depth of the
current set of active siblings in each scale of the
tree. Because the orientation trees are traversed
in sequence, the same variable can be used for each
orientation tree. Because we perform a depth first
traversal of the tree there will be at most one set
of active siblings (four coefficients) in each
scale. This wvariable is used to get the correct
effective depth of the next sibling when the we

traverse within a sibling group or back up the tree.

. d. is the depth of the current tree. This can differ
from the sibling depth and is carried down the tree
to form the sibling depth of scales below the

current scale.

Pseudo code description of the encoding
A pseudo-code description of the embedded encoding

algorithm is as set out in FIG 9.

Decoding the bitstream

This encoding is intended to be wused with the
Interactive Spatially-prioritised Progressive
Image-retrieval ISPI technique described in our co-
pending application. The decoding at the client end of-
the connection gets the output of the encoder for a given
tile interleaved with the bitstream encoding of other
tiles. The ISPI application describes how these
interleaved streams can be reformed into independent
stream. For the purposes of this invention it 1is
sufficient then to consider the decoding of a single
tile.

The decoder follows the same execution path as the
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encoder. Whenever a conditional statement is executed in
the decoder the bitstream will provide the necessary
information to keep the execution paths of the encoder
and decoder synchronised.

In the decoder, the wavelet coefficients are not
reconstructed for reasons of efficiency. Instead the

incoming bit information is utilised to directly

reconstruct the image. The image is only modified when a
significant bit (either a refinement bit or a
just-significant bit and sign) are received. A variable

is kept with one bit per coefficient for the sign and one

bit per coefficient to indicate that subsequent bits are

refinement bits. Each incoming significant bit results

in an- update of the image itself through the addition of
the relevant part of the basis function; a process which
is referred to herein as splatting. A

The term ‘"splatting” has been adopted £from the-
volume visualisation community. A more accurate result
could be achieved by refining the image as a result of
the incoming 1 and 0 coefficient bits. However this
would require many more splatting operations and the
final result for the full image is identical.

The splatting calculations are very efficient
because the splatting functions for any signifcant bit
can be precalculated and stored. This only requifes one
function per subband corresponding to a bit in the
uppermost bitplane. For each coefficient within a
subband the splatting function is a simple translation of
the generic splatting function for that subband. The
splatting function for each subband in each bitplane can
be calculated from the equivalent function for the
previous bitplane with a simple bitshift.

Some speed enhancement of splatting can be achieved
by trimming the numerous small components from the
function. If the bistream is saved in a buffer at the
client then these trimmed components can be added in
later with a second pass of the bitstreatm. In this way

a perceptually accurate image can be achieved quickly
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while still retaining the ability to achieve a
numerically accurate image with sufficient time.

To assist further in an understanding of the
invention, information is now provided relating to
Biorthogonal wavelet transforms and the Symmetric

extension at the boundary.

Biorthogonal Wavelet transform

Orthogonal wavelet transforms have the problem that
they cannot 1in general be symmetric. This makes the
handling of image boundary difficult. With orthogonal
wavelets there are two approaches to dealing with image
boundaries. The first is to use a periodic boundary
condition. This has the problem that any disparity
between the intensity at opposite image boundaries, under
a periodic boundary condition, will result in
discontinuous behaviour at the image boundary in the
function being coded. This make the compression less
efficient. The only simple alternative to a periodic
boundary condition is to modify the basis functions to
incorporate the boundary for those regions where the
basis functions overlap the boundary. This is relatively
complex and is increasingly so as the support of the
basis function is increased. )

If the basis functions could be made symmetric then
it would be possible to use a reflection symmetric
extension to handle the boundary. As discussed above,
discrete orthogonal wavelets cannot be symmetric for
support greater than 2. This is easily seen as follows.
Firstly the scaling function must have an even number of
coefficients. If there were an odd number of coefficients
say 2N+1, then for translations of +2N or -2N the scaling
functions would only overlap at one point. To maintain
orthogonality of the translates, one of those values
would therefore have to be zero leaving an even number of
coefficients. If both were zero then we could apply the
same argument for N = N-1. _

So orthogonality requires an even number of non-zero
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éoefficients. If symmetry is required then then, for an
even number of coefficients

(CyrCpe1r =+ *rCysCyre++sCy1sCy), for translations of the
basis of 2(N-1), there would be an overlap of 2 points,
with the untranslated basis. Because of symmetry the
orthogonality condition would then look like 2¢y, c=0.
But this can only be true if one or both of these
coefficients are =zero. If c,=0 and (h—l#o, then we can
re-apply the argument for N = N-1. If both are zero then
we can reapply the argument for N=N-2. If cN#O and If Cy-
,=0, then at displacement of 2(N-2) we would get a
condition for orthogonality of 2¢cNy_,c,=0, but 1if c#0,
then ¢y, must be zero. We can proceed with smaller and
smaller displacements, requiring successive coefficients
to be zero until at zero displacement we find that cy=0
for orthogonality. So orthogonality and symmetry are
incompatible requirements for discrete wavelets (except
for the case where N = 1, for which there would never be
any overlap of their translates.

Biorthogonal wavelets satisfy a much  weaker
condition that does not require orthogonality of the
basis functions. For an orthogonal basis, the inverse
transform basis is identical to the forward basis. For
the discrete case this is equivalent to saying that the
matrix of column vectors representing the orthogonal
discrete basis has an inverse which because of the
orthonormal condition is equal to the transpose of the
forward transform matrix. If the basis components are not
orthogonal then this no longer applies. But it is still .
possible to have a discrete inverse basis with compact
support. This means however that we can now impose a
symmetry constraint on the basis functions, which allows
us to use a symmetric reflection in the boundary to
handle the image boundary.

For this work we use the same biorthogonal basis
used by Said and Pearlman, which was originally described
by Antonini et al. The components of the discrete basis

are given in Table 2. The low frequency discrete basis
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functions are translates of the synthesis basis , centred
on the even points (0,2,4...) at a given scale, the
coefficients for which are calculated by projection bnto
translates the analysis basis centred on even points at a
given scale. Similarly, the high fregquency discrete basis
functions are translates of the synthesis basis, centred
on the odd points (1,3,5...), the coefficients for which
are calculated by projection onto translates the analysis
basis centred on odd points.

Thus the transform of a 1-D sequence of values xi,
into the low frequency components X and the high

frequency components Y would proceed as

koo
Xj = Z x'lj-.&nh—n

n=-k
k (1)
}fj = Z x2j+n+lg—n
n=-=k ’

If we define the upsampling of X to be X', such that
XIZn = Xn
X'2n+1 =0

@

and the upsampling of Y to be

Then the resynthesis is simply expressed as

l l
e S Kb 5V @
n {

n=-{

However, computationally, this is not as efficient
as it might be, due to the padding with zeros. A more
efficient algorithm can be achieved if we define the

interleaved coefficients Z such that

Z;=X;+7, (s)
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Then i1f we define the interlaced filter kernels

haj = 2]

h21+1 = §2j+1 ©)
gzj = ézj

82j+1 = h2j+1

- %

=0
o
~
+
|
I M -
N
N
.
+
B
+
o
4

The two dimensional image data is handled by first

transforming each row of the image, then transforming

of the This would produce

from the original image which we label

each column result. four
subband images
LL0, LHO, HLO and HHOC,

filters used to produce
indicates the 1level in the hierarchy.
decomposition of an image would take the LLO subband and
apply the same analysis to it to produce the subbands

LH1, HL1 and HHI.

where H and L refer to the 1D
and the number

The hierarchical

each subimage

Table 2: Components of the discrete biorthogonal wavelet basis

n 0 +1 +2 +3 +4
B2 [0602949 | 0266864 | -0.078223 ~0.016 864 | 0.026 749
g /3 |0557543 | 0295636 | 002877 0.045636 |0
h"n s /3 | 0557543 0295636 | -0.028772 |-0.045636 |0
g”n s[5 | 0602949 | -0266864 | -0078223 |0.016864 | 0.026749
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The svmmetric extensiocn at the boundary.

If we have data (x0,x1,....xN-1) and a symmetric
basis function with support 2K+1 such that the basis
coefficients (b-K,b~K+1l,....,bK-1,bK) satisfy

bﬁ:=bj (I1<j<K) (3)

and we symmetrically extend the boundary of the
image so that

R (1<j<K) ©)
AIN+j-1 = IN-j-1
Then the coefficients in the transform will be

related by

X, = X,
Xo. . =Xy

Noews- Nl 1<k (10)
Yo=Y
YN+j—1 = YN—j-I

If we consider the interleaved form of the
coefficients +then the reflection extension at the
boundary becomes simply

Z . =2Z.
A (1<j<K) an

Zns+j-1 = Zy-j-1

This permits the boundary coefficients to be
regenerated for the synthesis without having to store

extra coefficients.

Implementation
To further enable a fuller understanding of one

manner 1in which the invention may be practiced, one

manner of implementing the invention is now described.
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1. Introduction

The demonstrator was implemented in Java in the interests of platform independence. It is assumed that the reader
is familiar with the design of this project and the Java programming language, in particular threads, the
java.awt.image package and the java.net package. In particular it is important to be aware of the following Java
primitive data type sizes.

TABLE 1. Java primitive data type sizes

Type Size
byte 8 bits
short 16 bits
int 32 bits
float 32 bits

1t is assumed that this document will be read in parallel with the code itself. The implementation consists of the
foliowing three parts:

»  Encoder - Converts GIF or JPEG files into encoded files by applying the wavelet transform then parti-
tioning by doing every bit-plane pass over every tle in order and writing the resulting data to a file. The
encoder is implemented as a Java application.

«  Server - Opens a network socket and listens for incoming connections from the client. Upon connection
the server starts a new Thread to serve the client and reads the requested encoded image file (produced
by the encoder). The server serves pass data according to the current priority which may be modified by
client requests. The server is also implemented as a Java application.

+  Client - The client is a Java applet that may be run inside a web browser window. It connects to the
server (which must be running on the same machine that the client applet was loaded from). The client
also maintains a current priority map that is identical to the one in the server. When coefficient informa-
tion is received the image is updated through splatting of a footprint (see below).

2. The coordinate system

There are two basic methods of specifying the coordinates of coefficient pixels. The one that fits most easily into
the algorithmic model is one where pixels are indexed firstly by tile, then by coordinates within the tile (with the
origin in the top-left corner). This model allows simple traversal of the spatial orientation tree in each tile. The
operations on coordinates x, y are as follows:

+ gotofirstchild = x *=2; y *=2;

+  goto first sibling = x++;

+  goto second sibling - y++;

+  goto third sibling > x--;

¢« gotoparent=>Xx/=2;y/=2;
(note that going to the first child from the 0,0 pixel is a special case, in fact we skip to the second child).
However in order to simplify the data structures a different coordinate system is used. In this system pixels are
specified by their global coordinates in the coefficient image rather than the coordinates within the tile. Note that
in the general case the coordinate manipulations for traversing the spatial orientation tree of a tile are exactly the

same. Figure 1 shows the distribution of a spatial tile on the coefficient image with a traversal of the spatial tree
numbered. The tree will not always be traversed to its full depth.
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FIGURE 1. Traversal of the spatial tree for an example tile.
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Note the special case when moving between the highest 4 nodes of the tree. In these cases we increment/decrement
by w or h. In all cases we traverse depth-first and clockwise among siblings starting at the top-left. Traversal is
implemented in the do_pass methods of the encoder and client (see below).

3. The priority class

The priority class is shared by the server and the client. It is used to represent and modify the tile priority mapping.
The constructor sets the initial priority to a uniform value of 1/3 for each tile.

The modification functions are of the form do_*_priority and are described below. Each takes an op argu-
ment which specifies the operator to use when modifying the priorities array. It is one of the following:

set_operator 0
add_operator = 1
max_operator = 2

set_operator writes over the existing value, add_operator sums the existing and the new value and
max_operator takes the maximum of the existing and new value. At present there is no user-interface support
for the max operator.

3.1 The do_uniform_ priority method

do_uniform_priority contributes a constant priority value of the given height to the map.
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3.2 The do_hump_ priority method
do_hump_priority contributes a Lorentzian function to the priority map. The equation used is:
ht

Tl
[

1+

Where At is the height of the hump, d is the distance from the center and r is the radius of the hump.

3.3 The do_polyline priority method

do_polyline_priority is similar to do_hump_priority except the distance from a polyline is used.
The dst_sqgr_to_polyline method is used to calculate the @2 term. See Graphics Gems II, Academic Press
for a description of the algorithm.

3.4 The do_polygon_priority method

do_polygon_priorityissimilarto do_polyline_priority exceptthe polyline is taken to be a closed
polygon (there is an implicit edge between the last and first elements of the polyline) and points lying inside the
polygon are taken to be at 0 distance from the polygon. The resulting shape is a plateau function with Lorentzian
edges. The pt_1in_polygon function is used to determine whether a point lies inside the polygon or not. The
algorithm is a simple horizontal ray-intersection count.

3.5 The do_disc_priority method

do_disc_priority is similar to do_polygon_priority except the plateau shape is given by a circle
instead of a polygon.

4. The encoder application

The encoder is implemented as a single class in a single file encoder . java. It implements ImageConsumer
because it consumes the GIF or JPEG image specified on the command line.

4.1 Variables

+ inttest_level, init_level - specify a Said and Pearlman configuration (2,1) but may be changed.
These correspond to &, and k,,,,. in the TWEZIR document.

«  float[] basis_enc_h, basis_enc_g - store the wavelet analysis basis.
+ int bitplanes - the number of bitplanes that will be saved to file for each wavelet tile.
+ int depth - the number of wavelet transforms applied to the image (dj in the TWEZIR document).

+ short([] sig_bit -alookup table implementing a function that clears every bit except the most sig-
nificant one. For example sig_bit [ 0010010110010110 ] = 0010000000000000. This is
used to calculate the significance mask of a particular coefficient bit representation.

+  int width, height - the dimensions of the image in pixels.
+ int w, h - the dimensions of the image in tiles.
« int tile_d - the dimensions of a tile.

+ float TO - the partitioning threshold corresponding to the first bit-plane.
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* Dbytel][] T -thecurrent bitplane of each tile. We always start at 14 and count towards 0.stopping
after bitplanes passes over the tile.

* int[] pixels - the pixels array. Each element is 4 bytes of the form ARGB where A is the alpha
channel (always Oxff), R, G and B are the colour channels.

4.2 The main method

main analyses the command line arguments allowing them to override the default values for bitplanes and
depth. It loads the input image file and specifies this as a consumer of that image.

4.3 The imageComplete method

imageComplete is called when the image has been completely loaded in and the pixels array has been
defined. The encoded image file is opened and the header information is written giving the image dimensions,
depth and number of bitplanes.

4.3.1 The wavelet transform

Next the wavelet transform is applied depth times to construct the wavelet coefficients. The transform is carried
out using £1oat values for accuracy. During the transform the maximum absolute coefficient value max_coeff
is found. After the transform the final coefficients are stored in the temporary working2 array.

4.3.2 The coeffs array

The values from the working?2 array are converted to shorts and placed in the coef£s array.

The max_coeff value is used so that the coefficient of maximum absolute value will be stored as Oxf£££ (if it
is positive) or 0x7 ££ £ (if it is negative). TO, the initial threshold value corresponds to 0x4000 (or 1<<14).
Coefficient entries in the coeffs array have the following bit layout:

P S Sy 5253 54 S556 575859 810511512513514

Where p is set if the coefficient is positive, s; is used either to check whether the coefficient is just-significant at
bitplane i or to check the refinement bit at bitplane i. Throughout the partitioning code expressions of the form
(c&0x8000) are used to extract the sign bitand (c&0x7£££) is used to extract the absolute value. Also a value
this_sigisused as amask against the coefficient value for the current bitplane. For example on the first bitplane

(corresponding to TO0) this_sig = 0100000000000000 at subsequent bitplanes it is
0010000000000000 and so on. Therefore if it is known that a coefficient has not yet been found to be signifi-
cant the expression ( (c&0x7££f)&this_sig) !'= 0 provides the just-significance. Otherwise it provides

the refinement bit value,

4.3.3 The sig array

The sig array is central to the bit-wise implementation of the partitioning algorithm. It is used to lookup the sig-
nificance of the descendants of a particular pixel with respect to the current significance level (this_sig). The
synopsis of the sig array is as follows:

sigl level 1[ x 1[ v )

Stored in this element is a short bit array providing the significance of the Level descendants of the coefficient
at x, y for all 15 bitplanes (the sign bit is not used). For example to do a level-2 test of coefficient 234, 126 with
respect to the bitplane corresponding to this_sig, one would use the value
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{ sig( 2 ][ 234 ][ 126 ] & this_sig ) t= 0

This corresponds to the value S(D(i,j) ) of Said and Pearlman. The pixel coordinate system used is the same as
described above.

4.3.4 The partitioning algorithm

In the encoder partitioning is done by executing bitplanes tile-passes over each tile in turn. Each pass over a
tile produces a bit-string. The length of these bit-strings are written to the output file and the data itself is added to
the image_data array. When all the string lengths for a particular colour channel have been written, the
image_data for that channel is written in one chunk. All the partitioning work is done in the do_pass method.

4.3.5 The do_pass method

The do_pass method appears both in the encoder and the client. Both versions are structurally similar except the
client inputs bits where the encoder outputs bits (among other things).

Firstly the this_sig mask is defined for the current tile at the current bitplane (see above). The while (d@>=0)
loop censtitutes the depth-first walk over the spatial orientation tree (See figure 1)."The out_bit method is used
to write bits to the buffer for the current tile. After the pass over the tile the buffered data is appended to the
image_data array and will be written to file after the current colour channel has been done.

5. The server application

The server is the simplest of the three components. It has nothing to do with wavelets or partitioning. It reads the
encoded image file and serves it to remote clients based on a dynamic prioritisation. The server class itself is
just a connection daemon that starts off new threads to handle individual connections. This allows many simulta-
neous connections.

5.1 The run method

The connection class extends java.lang.Thread and as such is started through the run () method.
run () calls setup_£file () to establish the image data and then enters a wait -> serve loop.

5.2 The setup_£file method

setup_file() firstly attempts to read the name of an encoded image file from the input network connection. It then
reads the header information from that file and passes it on to the client. Then it reads the image data from the file
and counts the total number of bits in the image which it also passes to the client. This allows the client to display
the total file size in its status bar as the image is loading. )
In the event of any error, a O is sent to the client in place of the width parameter (the first expected parameter) and
the connection is stopped.

The tile_pexrm array is also defined at this point. tile_permis a random permutation of the wavelet tiles that
is shared by the client. It is used (rather than a pair of for-loops over the tiles) because the image can be updated
at any time and it doesn’t look good if tiles to one side of the image have been better defined than the other side.
tile_perm allows tiles to be served in a random order.

5.3 The sexrve_request method

serve_request reads a request from the input network connection and executes it.
All requests are a string of one or more integers. The first integer is the request type. It must be one of the follow-

ing:
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pass_request =
flat_request =
hump_request =
disc_request =
pline_request
pgon_request

Ul WP O

5.3.1 Pass requests
pass_request is arequest for a priority pass over the tiles of the image. It is executed by visiting each tile in
the image once according to the order defined by the tile_perm array (see setup_file above). This is not

to be confused with a tile pass which concerns a single tile only.
If there are no more passes for any tiles left to be sent, then a -1 is sent to the client. Otherwise the current request

number is sent.

The passes_sent value for each tile is incremented by its priorities value. If the integer part of the
passes_sent value increases as a result, the tile “fires” and data is sent for that tile. Note that the tile will also
fire at the same time in the client and data will be expected for that tile. All three colour channels are sent at the
same time when a tile is served. The out_bit method (see below) is called to send individual bits onto the output

stream.

5.3.2 The priority requests

The priority requests consist of flat_request, hump_request, disc_request, pline_request and
pgon_request. They correspond to methods of the priority class (see below) and are used to set or modify
the priority map. The arguments to the priority class methods are input from the client as integers. Floating point
arguments are converted from integers with a scaling factor of 1000.

As with the pass_request, the current request_number is sent back to the client. Upon receipt the client
will execute the same priority change as the server. This way the server and client keep their priority mappings
synchronised.

5.4 The out_bit method

out_bit is called to send a single bit of data to the client. Data is buffered into 32 bit integers and transmitted as
integers. The £lush_bits method flushes the integer bit buffer.

6. The client applet

The client is by far the largest component of the system. It consists of the client.java, footprint.java

and priority. java files.
The client class is the applet itself and it simply creates an instance of the client_decoder Thread, starts

it and forwards the appropriate user events to it.

6.1 Variables

Variables by the same name as those used in the encoder or server may be assumed to have the same meaning.

*+ boolean do_rms - determines whether an RMS error calculation will be performed on the image
each time it is updated. This option requires the original image file to be hardwired into the code.

* int default_port - the port at which the server will attempt to connect to the server on. This
value may be overidden by an applet parameter tag.
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« int default_image_update_interval - the default interval in milliseconds at which the dis-
played image will be updated. This value may be overidden by an applet parameter tag.

+ int default_splat_threshold - the default value of the threshold which is used to trim all
footprints (see the footprint class below). This value may be overriden by an applet parameter tag.

+ int requests_size - the size of the recorded requests array. After requests_size requests
have been used, the counter wraps around to O and continues.

+  int requests(] [}, recquests_made - a circular buffer of the requests made by the client.
When a request is made (one of pass_, flat_, hump_, disc_, pline_ or pgon_request) the
exact data sent to the server is stored in the requests amray at the position specified by
requests_made. The request is not acted upon until the server replies with the request number which
is the same as the position in the requests array. At that point the request is executed in the client via
the execute_request method. Pass requests are executed by receiving the image data. Priority
requests are executed by calling a do_*_priority method of the priority class according to the argu-
ments stored in the requests array.

+ int[] chan_lookup - a lookup table that performs the following function:

1000;

LFf( x < 1000 ) x
x = 1255;

if( x » 1255 )
return Xx;

It is used to trim floating point values near the range [0,255] to the integer range [0,255]. The 1000
buffer at each end is necessary because the floating point intensity values can exceed the range [0,255]
slightly.

+ footprint{][][] feet - the footprints used to splat the image (see the footprint class
below).

+ int{] pixels - the image as it will appear on the screen. Entries are in the defaultRG3 Colox-
Model (ie in ARGB form).

» float{][] coeffs - the image in floating point intensity form for each colour channel.
coeffs (0], coeffs[1l] and coeffs[2] comrespond to the Y, I and Q channels respectively.
chan_coeffs is used to point to one of these three sub-arrays during a tile pass. The floating point
values are necessary to retain prescision over many small splat contributions. The pixels array is
derived from the coeffs array in the draw_image method.

+ int current_request - is defined as the user enters a priority request. When the request has been
finished, it is transmitted to the server and added to the requests array.

+ update_image ui - the instance of the update_image Thread used to periodically update the
image on the screen (see below).

6.2 The run method

The run method is called to begin execution of the client_decoder thread. Firstly we send the name of the
encoded file we wish to be served then we read in the image parameters. If a 0 is received for the width (the first
parameter) then we know there has been a problem with that file and the thread stops.

Next the feet array is defined (see the footprint class below) and we enter the request -> reply loop. The
client begins by making a request for image data (a pass_request) then we wait for the server to reply with
the request number being served. If it is -1 then the server is finished and we stop. Otherwise we execute the request
according to the associated entry in the requests array (see above).
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6.3 The footprint class

Footprints are splats that are applied to the image when we receive information about the value of a particular
wavelet coefficient. All the feet are derived from a single delta function footprint through wavelet derivation, cop-

ying and halving as follows.

6.3.1 The footprint( float v ) constructor

This constructor produces a trivial delta function footprint 1x1 in size and having a single image value of v. This
footprint represents the original value in the coefficients image that will be decoded to derive the other footprints.

6.3.2 The footprint( parent, x low, y_low ) constructor

This constructor is used to derive a larger footprint from an existing parent (possibly the delta footprint) using
the wavelet synthesis basis. If x_low is true (false) then we treat the parent footprint as X (Y) values for the
horizontal transform. Similarly y_1low is for the vertical transform.

6.3.3 The halve method

The halve method halves the intensity of the splat image. This is used to derive a footprint for a certain bitplane
from the associated footprint in the previous bitplane.

6.3.4 The trim method

Trimming is used to reduce the size of footprints in order to reduce rendering time. The floating point threshold
(which may be specified as an applet parameter tag) is applied to coefficients on the boundary of the footprint.
The resulting footprint is effectively obtained by shrinking a rectangle the height of the threshold around the
footprint until it encounters splat elements that exceed the threshold on all four sides.

6.4 The do_pass method
The do_pass method in the client differs from that of the encoder in the following ways,
«  There is an extra chan argument that specifies the colour channel we are working in.

« A second set of coordinates are maintained. They are square_level, square_num, square_x
and square_v. Figure 2 shows these four values in the various regions of the spatal tile.
square_level and square_num are used to specify which footprint splat to use for a particular
coefficient and square_x and square_y are used to specify the location of the splat.
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FIGURE 2. The values of the square__ coordinates within a spacial tile. square_level and
square_num identify the footprint to splat with. square_x and square_y determine the location of

the splat.
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+  Since actual coefficient values are not stored in the client (only the final image intensity values are stored
using the coe££s array) we need to keep track of the sign and significance status of all the coefficients.
To do this we have two flags for each pixel, a sign flag and a refinement flag. The refinement flag gets set
when a coefficient is found to be just-significant. These two flags reside in bit positions 5 and 6 in the
level array (since the level value itself will never be large enough to encroach on these positions). To
query the sign of a coefficient { level[x] [y] & 0x40 ) isused. To check whether a refinement
bit is expected for a coefficient,
( level[x) [y} & O0x20 ) isused. Previously two boolean arrays were used to store these values
but doing it this way typically saves around 500k of memory.

When information about a coefficient is received the following action is taken. Firstly if we discover that
the coefficient has just become significant we set the refinement flag in the corresponding level array
element (see above). Similarly if we have just discovered the coefficient is positive, we set the sign flag.
Finally if the implicitly stored value of the coefficient has changed, we call update_coefficient
to reflect that change in the coeffs array representation of the actual image (see the
update_coefficient method below).

+  Datais input with the in_bit method rather than output. in_bit reads data from the network 32 bits

at a time into an integer buffer.

6.5 The update_coefficient method

The update_coefficient method is responsible for applying an individual splat to the floating point repre-
sentation of the final image. The footprint to use is identified by the 1evel and index arguments which corre-
spond to the square_level and square_num coordinates of the do_pass method (See figure 2). The
position of the splat is identified by the x and y arguments which correpond to the square_x and square_y
coordinates of the do_pass method. The sign argument specifies whether the splat will add or subtract from
the image. If the coefficient causing the splat is positive we add to the image, otherwise we subtract from it. Recall
that in the client the sign of each coefficient is stored in bit position 6 of the 1evel array.

Inside update_coefficient the chan_coeffs array points to either coeffs (0], coeffs{l] or



WO 98/19274 PCT/AU97/00725

33

coeffs (2] (i.e. one of the colour channels). _
The bulk of the update_coefficient method is broken into 9 similar parts. Each one corresponds to one of
the possible reflections that the splat can undergo (See figure 3). Originally this code was contained in the follow-

ing loop.
for( int dx=-1; dx<2; dx++ ) for( int dy=-1; dy<2; dy++ )

Since update_coeificient is critical to the performance of the client, the loop was unrolled as an optimisa-

tion..

FIGURE 3. The 9 reflected splats. The central 1/9th of the grid represents the actual image. The 9
splats correspond to reflections of the splat about the center of the first and last row and column of
pixels in the central image (marked with triangles). Note that in this case the only reflected splat that
contributes to the image is the dx,dy = (0,-1) one. The other reflections are trimmed down to 0

dimensions and are not used.
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When the center of a splat lies on one of the reflecting rows or columns of pixels, it is not reflected on that row or
column (See figure 4).

FIGURE 4. Omission of the dx=-1 reflections. Here the central splat lies on a reflecting column of pixels
(marked with a gray triangie) and is therefore not reflected along that column.
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It will be appreciated that the present invention
has a number of advantages over known methods and systems
of progressively transmitting an image wherein
compression techniques rely on spatial tiling of the

image. These include:-

. A wider range of partitioning elements for the tree

of the Said and Pearlman algorithm.

. The present invention implements the code as a
single pass for each bitplane rather than requiring
partitioning and refinement passes as with prior art

algorithms.

. Each pass of the partitioning tree iterates through
each node which for the current pass has not already
been found to be part of a zero tree. At each node
the algorithm generates either a refinement bit or
significance information. This has advantages in

terms of the ordering of the coded bits.

. Furthermore, the implementation is achieved without
the necessity of using lists as necessary with the
Said and Pearlman algorithm and precalculates all of
the significance information required by thé coding

passes in a single pass of the tree.

After transmission of as little as 1-2% of an image,
the user has enough information to identify regions
of potential interest. The user can then click oﬁ
that area and define a smooth priority map which can
be communicated to the server such that the image
will appear to resolve smoothly and progressively

around the selected region.

. The user can redefine the priority without the
server having to reformat the image representation

at the transmission end or without having to resend
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. The refinement bits are sent in the order in which
the corresponding coefficients are encountered
during a single pass of the coefficients for each
bitplane. This is to be contrasted with the method
of Said and Pearlman where a partitioning pass and a

refinement pass are used.

. When decoding each image tile the wavelet
representation 1is not regenerated. Rather, the
image components corresponding to individual
significant bits in the representation are splatted
directly on to the image plane. Because only a
small proportion of the bits are significant this is
computationally efficient and on some platforms it
could take advantage of hardware to achieve even

greater efficiency.

. To achieve control of spatial priority, the
coefficients in the biorthogonal wavelet transform
used in implementing the embedded encoding are
rearranged. This explicit rearranging and
separating the encoding streams allows greater
flexibility than 1is possible with the ééid and

Pearlman approach.

It will of course be realised that whilst the above
has been given by way of an illustrative example of this
invention, all such and other modifications and
variations hereto, as would be apparent to persons
skilled in the art, are deemed to fall within the broad

scope and ambit of this invention as is herein set forth.
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The Claims defining the Invention are as follows:-

1. A method of embedded encoding of an image in which
image compression techniques encode spatial tilings of
the image, said method including:-

precalculating the significance and zerotree
information in a single pass;

storing said significance and zerotree information
in store, and

interrogating said store to establish the

significance status of any tree.

2. A method of embedded encoding of an image in which
image compression techniques encode spatial tilings of
the image, said method including:-

ordering the coefficients in said spatial tilings
whereby said tiles are defined as having the constraints
(a) that all the children of a coefficient are visited
before the siblings of that coefficient, and (b) that all
the siblings of a coefficient are visited before any
non-descendant non-siblings are visited, whereby the
algorithm can be implemented without using lists in the

partitioning of the tree.

3. A method of embedded encoding of an image in which
image compression techniques encode spatial tilings of
the image, said method including:-

transmitting significant bits, refinement bits and
partitioning bits in the order in which the corresponding
coefficients are encountered during a single pass of the

coefficients for each bitplane.

4. A method of embedded encoding of an image in which
image compression techniques encode spatial tilings of
the image, said method including:-

for a given threshold treating as insignificant all

components above a given scale in the tree.
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5. A method of embedded encoding of an image in which
image compression techniques encode spatial tilings of
the image, said method including:- '
splatting the image components corresponding to
individual significant bits in the representation

directly on to the image plane.

6. A method as claimed in any one of the preceding
claims of embedded encoding of an image in which image
compression techniques encode spatial tilings of the
image, wherein the pseudo-code description of the

embedded encoding algorithm is as set out in FIG 9.
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Pseudo-code description of the encoding.

For all I, set the Coarse/Fine partition level CF(I) = kg,
Set the depth of the current tree to &, = &g
For each bitplane n = 0 to 18
Tnitialise the coefficient address I = (i,3) = (0,0)
Initialise the scale s = 0
Set the sibling numbexr SN(s)=1l, £for all scales s = 0 to dg

while s >= 0,
While (SN(s) is in the valid range for scale s),
inile (CF(I) <= kg and CF(I)<= Kpay !
$Perform CF Parcition of the tree
output (2,57 (1))
i£ (2,5 (1))

$Handle the root coefficient
if(w(I) previously significant)
_output bit n of the magnitude of w(I)

else
output J,(I)
1E(Jq(I))
cutput sgn(I}
endif
end
if(ke > 1)
$Go down the tree to first child
s = s+1
I = Ch(I)
de = dg-1
dg(s) = &g
else
$Go to next sibling
SN(s) = SN{s)=+1
I = N{(I})
de = dgls)
end
end
%$go up the tree to next sibling of parent
s = s-1
SN(s) = SN(s)+1
de = dgis)
I = N(P(I))
end

end
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