(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property
Organization
International Bureau

AT O O O

(43) International Publication Date (10) International Publication Number
27 January 2005 (27.01.2005) PCT WO 2005/008536 A1l
(51) International Patent Classification’: GOG6F 17/30 (74) Agent: STALFORD, Terry, J.; Fish & Richardson P.C.,

5000 Bank One Center, 1717 Main Street, Dallas, TX

(21) International Application Number: 75201-4605 (US).

PCT/US2004/022031
(81) Designated States (unless otherwise indicated, for every
A . kind of national protection available): AE, AG, AL, AM,
(22) International Filing Date: 8 July 2004 (08.07.2004) AT, AU, AZ BA. BB, BG, BR, BW, BY, BZ, CA, CH, CN,
CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI,
(25) Filing Language: English GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE,
KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD,
(26) Publication Language: English MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG,
PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM,
(30) Priority Data: ;I‘:IV, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM,
60/486,779 11 July 2003 (11.07.2003) US ’
10/887,137 7 July 2004 (07.07.2004) US
et () (84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
(71) Applicant (for all designated States except US): COM- GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
PUTER ASSOCIATES THINK, INC. [US/US]; One ZW), Burasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
Computer Associates Plaza, Islandia, NY 11749-7000 European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,
(US). FR, GB, GR, HU, IE, IT, LU, MC, NL, PL, PT, RO, SE, SI,
SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ,
(72) Inventor; and GW, ML, MR, NE, SN, TD, TG).

(75) Inventor/Applicant (for US only): VAUGHT, Jeftrey, A.
[US/US]; 4107 Woodmont Drive, Batavia, OH 45103-2567 Published:
(Us). — with international search report

[Continued on next page]

(54) Title: SYSTEM AND METHOD FOR STORING METRICS IN A DATABASE

140a
/

WINDOWS MANAGEMENT
- INSTRUMENTATION
MANAGEMENT ENGINE NET FW METRICS

160
\

SaL
STATEMENTS

115 WINDOWS MANAGEMENT
INSTRUMENTATION
OTHER METRICS

A

)
140b

XML XML

170a-"] ™\-170b

005/008536 A1 | 0001 0 OO0 O 0 A

o (57) Abstract: A system and method for storing data associated with an extensible instrumentation layer are provided. The method
includes receiving metrics (140) from an extensible instrumentation layer (130) in an operating system (110). The metrics (140) are
defined by at least one class and a plurality of properties, with each property being associated with one class. The metrics (140) are

g converted into at least one database-compliant data structure and stored in a database (124).

WO 2005/008536 A1 I} N0V0H0 0 0000 OO0 A

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations” appearing at the begin-
ning of each regular issue of the PCT Gagzette.

10

15

20

25

WO 2005/008536 PCT/US2004/022031

SYSTEM AND METHOD FOR STORING METRICS IN A DATABASE

REFERENCE TO RELATED APPLICATIONS

This application claims the benefit of U.S. provisional application serial
number 60/486,779 filed July 11, 2003 entitled, “SYSTEM AND METHOD
ASSOCIATING CLASSES AND PROPERTIES WITH DATABASE TABLES” and
the U.S. utility application filed July 7, 2004 entitled, “SYSTEM AND METHOD
FOR STORING METRICS IN A DATABASE”.

TECHNICAL FIELD

This disclosure relates generally to the field of data processing and, more

specifically, to storing metrics in a database.

BACKGROUND

Microsoft’s .NET application is software that includes the .NET Framework,
which is typically used for developing and running network-based applications and
web services. These applications often operate over a network through standard,
platform—independent protocols including, for example, eXtensible Markup Language
(XML), Simplé Object Access Protocol (SOAP), and Hypertext Transfer Protocol
(HTTP). The .NET Framework includes the common language runtime (CLR), which
assists memory, process, and thread management. The CLR Profiler is a profiling tool
for NET-compatible applications. Windows Management Instrumentation (WMI) is
an extensible instrumentation layer built into many Windows or Windows-based
operating systems. WMI exposes namespaces, classes, and properties for hardware
devices, the operating system, and applications. When Microsoft NET framework is
installed, a number of classes are created for the management of NET. These are
often located within “root/CIMV2” and may include various CLR classes, ASP.NET
Overall, and ASPNET by Application, which normally includes web services.
Moreover, many correlated operating systems metrics, such as CPU load and disk

queue length, can be collected from the extensible instrumentation layer.

10

15

20

25

30

WO 2005/008536 PCT/US2004/022031

SUMMARY

A system and method for storing data associated with an extensible
instrumentation layer are provided. In one embodiment, the method includes
receiving metrics from an extensible instrumentation layer in an operating system.
The metrics are defined by at least one class and a plurality of properties, with each
property being associated with one class. The metrics are converted into at least one
database-compliant data structure and stored in a database. The details of one or more
embodiments of the disclosure are set forth in the accompanying drawings and the
description below. Other features, objects, and advantages of the disclosure will be

apparent from the description and drawings, and from the claims.

DESCRIPTION OF DRAWINGS

FIGURE 1 illustrates a system for storing metrics in a database according to

certain embodiments of the disclosure;

FIGURES 2A-B illustrate alternative configurations of the scaleable system in
FIGURE 1;

FIGURE 3 is an example data flow diagram illustrating the mapping of

metrics to database-compliant data structures;

FIGURES 4A-B illustrate various displays of example database tables storing

Windows metrics; and

FIGURES 5A-B are flow diagrams illustrating example methods for storing

Windows metrics in a database according to various embodiments of the disclosure.

DETAILED DESCRIPTION

FIGURE 1 is a block diagram illustrating a distributed computing system 100
including management engine 115 for storing Windows, Windows-based, or other
class-based metrics 140 in a database-like repository according to one embodiment of
the present disclosure. Metrics 140 may be any data or information collected or
generated by an extensible instrumentation layer 130. For example, metrics 140 may
include load time for one or more assemblies, modules, and classes, load count of one
or more assemblies, modules, and classes, load failures for one or more classes, jit

compile time for one or more functions, jit search time for one or more functions, jit
2

10

15

20

25

30

WO 2005/008536 PCT/US2004/022031

count for one or more functions, jit compile failures for one or more functions,
function execution time for one or more functions, function exceptions for one or
more functions, function interop boundary crossings for one or more functions,
number of compilations, number of sessions, number of applications, and many
others. At a high level, system 100 is a client/server environment comprising at least
one client or management workstation 104, a server or host 102, and network 108, but
may also be a standard or local computing environmenf or any other suitable
environment. In general, system 100 dynamically provides a system component or a
system administrator or other user with a plurality of Windows, Windows-based, or
Windows-compatible metrics 140, typically communicated in a class/method format,
in a database table/column format. For example, system 100 may comprise an
environment automatically providing one or more users with the ability to easily
manage or view .NET framework metrics 140 and correlated metrics 140. The term
“automatically,” as used herein, generally means that the appropriate processing is
substantially performed by at least part of system 100. It should be understood that
“automatically” further contemplates any suitable user or administrator interaction
with system 100 without departing from the scope of this disclosure. The term
“dynamically,” as used herein, generally means that certain processing is determined,

at least in part, at run-time based on one or more variables.

Server 102 includes memory 120 and processor 125 and comprises an
electronic computing device operable to receive, transmit, process and store data
associated with system 100. Server 102 may comprise a general-purpose personal
computer (PC), a Macintosh, a workstation, a Unix-based computer, a server
computer, or any other suitable device. For example, server 102 may be a blade
server or a web server. In short, server 102 may comprise software and/or hardware
in any combination suitable to gather metrics 140 and convert metrics 140 into one or
more database-compliant data structures. FIGURE 1 only provides one example of
computers that may be used with the disclosure. For example, although FIGURE 1
provides one example of server 102 that may be used with the disclosure, system 100
can be implemented using computers other than servers, as well as a server pool. The
present disclosure contemplates computers other than general purpose computers as

well as computers without conventional operating systems. In other words, as used in
3

10

15

20

25

30

WO 2005/008536 PCT/US2004/022031

this document, the term “computer” is intended to encompass any suitable processing
device. Computer server 102 may be adapted to execute any operating system 110
including Windows NT, Windows 2000, Windows Server, Windows Storage Server,
Windows XP home or professional, or any other suitable operating system including

an extensible instrumentation layer 130.

Memory 120 may include any memory or database module and may take the
form of volatile or non-volatile memory including, without limitation, magnetic
media, optical media, random access memory (RAM), read-only memory (ROM),
removable media, or any other suitable local or remote memory component. In this
embodiment, illustrated memory 120 includes database 124, at least one mapping
table 170, and (at least temporarily) one or more SQL scripts or statements 160, but
may also include any other appropriate data. Database 124 stores one or more
database tables, with each table including one or more columns. Database 124 may
receive records, schemas, or any other suitable data through interface 112 or from
another process running on server 102. In one embodiment, database 124 may be a
relational database management system (or DBMS). Relational databases often use
sets of schemas to describe the tables, columns, and relationships between the tables
using basic principles known in the field of database design. But while described as a
relational database, database 124 may be any data repository of any suitable format
including XML documents, flat files, Btrieve files, comma-separated-value (CSV)
files, an object oriented database, name-value pairs, and others so long as it remains

operable to load, store, interface, or reference one or more SQL scripts 160.

Generally, SQL script 160 comprises any SQL API, code, or other statement
165 operable to process any suitable data storage. For example, SQL script 160 may
comprise a plurality of SQL statements 165, such as JOIN, DROP TABLE,
MODIFY, SELECT, DELETE, or UPDATE, without departing from the scope of this
disclosure. It will be understood that script 160 may include one or more SQL
statements 165 and may be used interchangeably as appropriate without departing
from the scope of the disclosure. SQL script 160 may be used by any DBMS or
database 124, whether local or remote, to select, modify, delete, or otherwise process

one or more data structures associated with database 124. As used herein, “SQL”

4

10

15

20

25

30

WO 2005/008536 PCT/US2004/022031

references any of the plurality of versions of the SQL relational database query and
manipulation language such as, for example, SQL, ANSI SQL, or any other variant or
generic database or repository query language. Moreover, this disclosure
contemplates any suitable API, script, or executable in any suitable language and

format compatible with database 124.

Memory 120 also stores one or more mapping tables 170, with each mapping
table 170 comprising a logical format operable to map, or is associated with, at least a
subset of metrics 140. Each mapping table 170 may be an XML document, an object,
an array, or any logical or physical component operable to map metrics 140 to a
database schema using SQL script 160. Further, it will be understood that mapping
table 170 may be local or remote, as well as temporary or persistent, without
departing from the scope of the disclosure. In one embodiment, system 100 may
include two mapping tables 170. For example, first mapping table 170 may be used
by management engine 115 to map .NET framework metrics 140 and second mapping
table 170 may be used by management engine 115 to map correlated or other metrics
140. Moreover, first and second mapping tables 170 may be two logical portions of
the same XML document, object, or array. For example, mapping table 170 may
include one or more portions, tags, and sub-tags in a readable format such as

illustrated below:

NET framework portion

<DatabaseTbl InstTbl="WMI_CLRLoad_Instance"
ThreshTbl="WMI CLRLoad_Thresh"

WMIClass="Win32_ PerfRawData NETFramework NETCLRLoading">
<Prop DBCol="Node" Text="\lY " ThreshTbl="Y"> </Prop>
<Prop DBCol="ClrName" Text="Y" ThreshTbl="Y">Name</Prop>
<Prop DBCol="TStamp" Text="Y" TStamp="Y"> </Prop>

<Prop DBCol="AppDomainsLoaded"
ThreshDerived="Y">Currentappdomains</Prop>

<Prop DBCol="AssembliesLoaded" ThreshDerived="Y">Current

Assemblies</Prop>

10

15

20

25

WO 2005/008536 PCT/US2004/022031

<Prop DBCol="ClassesLoaded"
ThreshDerived="Y">CurrentClassesLoaded</Prop>

<Prop DBCol="ModulesLoaded" ThreshDerived="Y"> </Prop>
<Prop DBCol="AssemblyReloads" ThreshDerived="Y"> </Prop>
<Prop DBCol="ModuleReloads" ThreshDerived="Y"> </Prop>
<Prop DBCol="ClassReloads" ThreshDerived="Y"> </Prop>
<Prop DBCol="JitPitches" ThreshDerived="Y"> </Prop>

<Prop DBCol="ClassLoadFailures"
ThreshDerived="Y">TotalNumberofLoadFailures</Prop>

<Prop DBCol="TotalClassesLoaded"
ThreshDerived="Y">TotalClassesLoaded</Prop>

</DatabaseTbl>
Correlated portion

<entity id="e6">
<description>Processor</description>
<item selected="1">Win32 Processor</item>
<oncontextmenu> </oncontextmenu>


<imageOpen>../../tndportal/images/map-

service_mgn.gif</imageOpen>
<onContextMenu>context/contextAssembly.xx</onContextMenu>
<contents>
<entity id="e61">
<description>AllProcessors</description>
<item selected="1"> </item>



WO 2005/008536 PCT/US2004/022031

<imageOpen>../../tndportal/images/map-fsys</imageOpen>
<onContextMenu>context/contextClass.xxx</onContextMenu>
<contents>
<entity id="e611">
5 <description>CPUClockSpeed</description>
<item selected="1">Current ClockSpeed</item>


<imageOpen>../../tndportal/images/map-

files</imageOpen>
10 <onClick> </onClick>
<onContextMenu>context/contextFunction.xx</onContextMenu>
| </entity>
<entity id="e612">
<description>CPULoad</description>
15 <item selected="1">LoadPercentage</item>

<imageOpen>../../tndportal/images/map-files</imageOpen>
<onClick> </onClick>

<onContextMenu>context/contextFunction.xx</onContextMenu>

20 </entity>
</contents>
</entity>
</ contents>
</entity>

10

15

20

25

30

WO 2005/008536 PCT/US2004/022031

It will be understood that the above illustrations are for example purposes only
and mapping table 170 may include none, some, or all of the illustrated tags, as well

as other tags and data structures, without departing from the scope of the disclosure.

Server 102 also includes processor 125. Processor 125 executes instructions
and manipulates data to perform the operations of server 102 such as, for example, a
central processing unit (CPU), an application specific integrated circuit (ASIC) or a
field-programmable gate array (FPGA). Although FIGURE 1 illustrates a single
processor 125 in server 102, multiple processors 125 may be used according to
particular needs, and reference to processor 125 is meant to include multiple
processors 125 where applicable. In the embodiment illustrated, processor 125
executes management engine 115 that processes metrics 140 for use in system 100.
Management engine 115 could include any hardware, software, firmware, or
combination thereof operable to receive or retrieve metrics 140 from extensible
instrumentation layer 130 (such as WMI), automatically map metrics 140 to one or
more SQL statements 160 based on mapping table 170, and transform the data such
that any data repository or display, such as database 124, may store or reference it.
For example, management engine 115 may provide client 104 with data displays 150,
reports 150, or management interfaces 150 operable to view and manipulate the stored
metrics 140. It will be understood that while management engine 115 is illustrated as
a single multi-tasked module, the features and functionality performed by this engine
may be performed by multiple modules such as, for example, a retrieving module, a
transforming module, and an editing module. Moreover, while not illustrated,
management engine 115 may be a child or sub-module of any other appropriate
software module such as, for example, an enterprise infrastructure management

application without departing from the scope of this disclosure.

Server 102 also often includes interface 112 for communicating with other
computer systems, such as client 104, over network 108 in a client-server or other
distributed environment via link 118. In certain embodiments, server 102 receives
metrics 140 from a plurality of distributed nodes 130, as illustrated in FIGURE 2B,
via network 108 for storage in memory 120. Network 108 facilitates wireless or

wireline communication between computer server 102 and any other computer.

8

10

15

20

25

30

WO 2005/008536 PCT/US2004/022031

Network 108 may communicate, for example, Internet Protocol (IP) packets, Frame
Relay frames, Asynchronous Transfer Mode (ATM) cells, voice, video, data, and
other suitable information between network addresses. Network 108 may include one
or more local area networks (LANs), radio access networks (RANSs), metropolitan
area networks (MANs), wide area networks (WANSs), all or a portion of the global
computer network known as the Internet, and/or any other communication system or
systems at one or more locations. Generally, interface 112 comprises logic encoded
in software and/or hardware in a suitable combination and operable to communicate
with network 108. More specifically, interface 112 may comprise software
supporting one or more communications protocols associated with communications

network 108 or hardware operable to communicate physical signals.

Client 104 comprises any computer and may include input devices, output
devices, mass storage media, processors, memory, interfaces, communication ports, or
other appropriate components for communicating formatted metrics 140 to the user of
client 104. It will be understood that there may be any number of clients 104 coupled
to server 102 or client 104 may comprise a management component of server 102. As
used in this document, client 104 is intended to encompass a personal computer,
workstation, network computer, kiosk, wireless data port, personal data assistant
(PDA), one or more processors within these or other devices, or any other suitable
processing or display device. Moreover, “client 104 and “user of client 104” may be
used interchangeably without departing from the scope of this disclosure. For
example, client 104 may comprise a computer that includes an input device, such as a
keypad, touch screen, mouse, or other device that can accept information, and an
output device that conveys information associated with the operation of server 102 or
clients 104, including digital data, visual information, or metrics 140. Both the input
device and output device may include fixed or removable storage media such as a
magnetic computer disk, CD-ROM, or other suitable media to both receive input from
and provide output to users of clients 104 through a portion of the web product
interface, namely graphical user interface (GUI) 116.

GUI 116 comprises a graphical user interface operable to allow the user of

client 104 to interface with system 100 and view the output of a plurality of software

9

10

15

20

25

30

WO 2005/008536 PCT/US2004/022031

products. Generally, GUI 116 provides the user of client 104 with an efficient and
user-friendly presentation of data provided by system 100, such as a display or report
of one or more database tables storing metrics 140. GUI 116 may comprise a
plurality of displays having interactive fields, pull-down lists, and buttons operated by
the user. In one example, GUI 116 presents the formatted output and receives
commands from client 104. It should be understood that the term graphical user
interface may be used in the singular or in the plural to describe one or more graphical
user interfaces and each of the displays of a particular graphical user interface.
Further, GUI 116 contemplates any graphical user interface, such as a generic web
browser, that processes information in system 100 and efficiently presents the
information to the user. Server 102 can accept data from client 104 via the web
browser (e.g., Microsoft Internet Explorer or Netscape Navigator) and return the
appropriate HTML or eXtensible Markup Language (XML) responses. For example,
GUI 116 may compﬁse a front-end of management engine 115. Accordingly, for ease
of understanding, the term GUI 116 and management engine 115 may be used
interchangeably; although, it will be understood that management engine 115 will

often include more functionality than a graphical user interface.

In one aspect of operation, management engine 115 interfaces metrics 140 into
database 124 based on mappings defined in one or more mapping tables 170.
Generally, management engine 115 maps individual classes to database tables and
properties within those classes to columns within the respective database tables.
According to certain embodiments, the mapping of metrics 140 to database-compliant
structures depends on whether metrics are .NET specific or correlated. More
specifically, if metrics 140 are correlated, then management engine 115 at least
partially maps based on an instance of each particular class and one of the mapping
tables 170. Whereas if metrics 140 are related to or otherwise associated with the
NET framework, then management engine 115 may locate one or more tags and sub-
tags in the appropriate mapping table 170 for data mapping between the classes and
properties to tables and columns. Once management engine 115 determines the type
of metrics 140 and identifies the appropriate data map, then engine 115 generates one

or more SQL statements 160 based on the identified data map. Accordingly, class-

10

10

15

20

25

30

WO 2005/008536 PCT/US2004/022031

based metrics 140 are then in table-based form and are easily readable and

manipulated by the user or another process.

FIGURES 2A-B illustrate alternative configurations of scaleable system 100.
At a high level, FIGURE 2A illusirates a local configuration of computer 202
operable to store metrics 140 in a database 124 or present metrics 140 to a user
through GUI 116 in table format and FIGURE 2B illustrates a distributed architecture
such as, for example, a portion of an enterprise. In FIGURE 2A, computer 202
includes three logical layers: instrumentation layer 132, data layer 122, and
presentation layer 128. These three logical layers may be part of management engine
115 or may be communicably coupled with management engine 115 without
departing from the scope of this disclosure. Instrumentation layer 132 communicates
with the NET framework through example Windows Management Instrumentation
130, which generates, populates, or formats standard metrics 140. Management
engine 115 transforms, maps, or converts metrics 140 into database-compliant data
structures, such as SQL script 160, and communicates the data structure to database
124. Using any suitable technique, these data structures are loaded or interfaced with |
database 124. The logical presentation layer is operable to present the information
stored in example SQL script 160 to a user through GUI 116. For example,
presentation layer 128 may present one or more HTML pages generated based on

SQL script 160.

In FIGURE 2B, system 100 distributes portions of processing among a
plurality of instrumentation nodes 130, server 102, and one or more client browsers
116. In this embodiment, instrumentation layer 132 is remote from and
communicably coupled with server 102 and then segmented among the plurality of
nodes 130. For example, each node 130 may be an extensible instrumentation agent
operable to monitor a unique portion of a data processing environment for extensible
instrumentation layer 130. Each instrumentation node 130 collects metric information
and communicates metrics 140 to server 102 for processing. Once server 102
receives metrics 140, management engine 115 generates SQL script 160 for storage in
database 124. Further, server 102 may generate graphical displays based on metrics
140, SQL scripts 160, or database 124. These graphical displays may then be

11

10

15

20

25

30

WO 2005/008536 PCT/US2004/022031

presented, using presentation layer 126, to one or more clients through any number of

GUIs 116.

FIGURE 3 is an example data flow diagram illustrating the mapping of
metrics 140 to a database. In the illustrated embodiment, metrics 140 are identified as
one of two example categories, .NET framework metrics 140a and other/correlated
metrics 140b. Management engine 115 retrieves, receives, selects, or otherwise
identifies metrics 140a and/or 140b for storage in database 124 or presentation to a
particular user, such as a system administrator. For example, extensible
instrumentation layer 130 may automatically communicate metrics 140a to
management engine 115. In another example, the particular user may manually
instruct management engine 115 to retrieve metrics 140b from extensible
instrumentation layer 130. Once management engine 115 identifies metrics 140a or
140b, engine ‘115 parses, maps, converts, or processes metrics 140a and/or metrics
140b based, at least in part, on first or second mapping tables 170a and 170b. In one
embodiment, first mapping table 170a may be a document operable to map from
NET framework metrics 140a to one or more SQL statements 160 and second
mapping table 170b may be a document operable to map from correlated metrics 140a
to one or more SQL statements 160. As described above, mapping tables 170a and
170b may each represent a portion of one document, array, or object without
departing from the scope of the disclosure. At any appropriate time, management
engine 115 generates the one or more SQL scripts 160 or files based on the
determined data mappings. Then, management engine 115 (or some other component
such as a DBMS) may load into or otherwise interface SQL scripts 160 with database
124 for addition, modification, or deletion of table schemas or data within database

124.

FIGURES 4A-B illustrate various example displays of database tables storing
metrics 140. It will be understood that each view is for illustration purposes only and
system 100 may utilize or present any graphical display in any format, with any
suitable data, without departing from the scope of this disclbsure. FIGURE 4A
illustrates one view 402 of a subset of metrics 140 received from extensible

instrumentation layer 130. In this example display, GUI 116 presents metrics 140

12

10

15

20

25

30

WO 2005/008536 PCT/US2004/022031

associated with CLR memory WMI class. As illustrated, the WMI class is presented
in table format based on conversion into a database-compliant structure. This table is
generated based on the CLR memory WMI class and the various columns
(AllocatedBytes, FinalizationSurvivor, HenOheapsize, GenOPromoted, and
Genlheapsize, for example) aré genetated based on the attributes defined within the
WMI class. Each row may be generated or populated based portions of interfaced
metrics 140. For example, management engine 115 may receive similar metrics 140
from two different environments, aspnet wp and devenv for example, and generate
two rows based on these two environments. FIGURE 4B illustrates a second example
view 404 of data utilized in system 100. In this example, view 404 presents various
properties of a class from metrics 140 and descriptive information about each property
such as, for example, name, type, and value. Management engine 115 uses this
information or mapping table 170, which may include similar information, to map
class and property information in metrics 140 to database-compliant data structures

for use by database 124, as well as other components in system 100.

FIGURES 5A-B are flow diagrams illustrating example methods 500 and 550,
respectively, for storing metrics 140 in database 124 according to various
embodiments of the disclosure. Generally, FIGURE 5A illustrates method 500, which
converts .NET framework metrics 140, and FIGURE 5B illustrates method 550,
which converts correlated metrics 140. The following descriptions focus on the
operation of management engine 115 in performing methods 500 and 550. But
system 100 contemplates using any appropriate combination and arrangement of

logical elements implementing some or all of the described functionality.

Method 500 begins when management engine 115 extracts, receives, or
otherwise collects metrics 140 from extensible instrumentation layer 130 at step 502.
In the illustrated embodiment, management engine 115 determines if extracted
metrics 140 are .NET specific at decisional step 504. If metrics 140 are not .NET
specific- then method 500 ends and, perhaps, method 550 begins.' Otherwise,
management engine 115 retrieves a mapping table 170 associated with .NET metrics
140 at step 506. Once metrics 140 have been collected and the appropriate mapping
table 170 has been located, processing proceeds to steps 508 through 526, where

13

10

15

20

25

30

WO 2005/008536 PCT/US2004/022031

metrics 140 are mapped to one or more database-compliant data structures based on

mapping table 170.

Management engine 115 begins mapping the extracted metrics 140 by
selecting a first class from extracted metrics 140 at step 508. Next, management
engine 115 locates a tag in mapping table 170 that is associated with the selected class
at step 510. Once located, management engine 115 maps the selected class to a
database table defined by the located tag. It will be understood that the database table
in database 124 may be previously defined or undefined without departing from the
scope of this disclosure. For example, the mapping of the selected class with the
database table may comprise associating the class with a pre-defined database table.
In another example, management engine 115 may create a database table using the
name of the selected class, class level attributes, and other appropriate class
characteristics. Next, at step 514, management engine 115 selects the first property in
the selected class. Based on this selected property, management engine 115 locates a
subtag within the current tag in mapping table 170 at step 516. At step 518,
management engine 115 maps the selected property in the selected class to a column
in the associated database table as defined by the subtag. As with step 512, this
mapping may be to a previously defined or undefined column in the database table.
For example, if the column was previously undefined, management engine may
define the column attributes, such as data type and data length, based on the selected
property and subtag. Next, at decisional step 520, management engine 115
determines if there are more properties in the selected class. If there are, then
management engine 115 selects the next property in the selected class at step 522 and
execution returns to step 516. Once there are no more properties in the selected class,
processing proceeds to decisional step 524. At decisional step 524, management
engine 115 determines if there are more classes in extracted metrics 140. If there are,
management engine 115 selects the next class from extracted metrics 140 at step 526

and execution returns to step 510.

Once there are no more unmapped classes in extracted metrics 140 at
decisional step 524, management engine 115 generates a SQL statement or script 160

at step 528 based on the mappings determined in steps 508 through 526. It will be

14

10

15

20

25

30

WO 2005/008536 , PCT/US2004/022031

understood that SQL statement 160 may be used to define a column or database table,
upload data into database 124 based on metrics 140, update data already stored in
database 124, or to perform any other appropriate database operation. Next, at step
530, management engine 115 may load or interface the generated SQL statement 160

into database 124.

Turning to FIGURE 5B, method 550 begins at step 552 when management
engine 115 extracts, receives, or otherwise collects or identifies metrics 140 from
extensible instrumentation layer 130 at step 552. In the illustrated embodiment,
management engine 115 determines if extracted metrics 140 are correlated at
decisional step 554. If metrics 140 are not correlated then method 550 ends.
Otherwise, management engine 115 retrieves, selects, or identifies a mapping table
170 associated with extracted correlated metrics 140 at step 556. Once metrics 140
have been collected and the appropriate mapping table 170 has been located,
processing proceeds to step 558 through 580, where metrics 140 are mapped to
database 124 based on retrieved mapping table 170.

Management engine 115 begins mapping the extracted metrics 140 by
selecting a first class from extracted metrics 140 at step 558. Next, management
engine 115 locates a tag in mapping table 170 that is associated with the selected class
at step 560. Once located, at step 562 management engine 115 identifies an instance
of the selected class. Based on this instance, management engine 115 locates a subtag
within the located tag in mapping table 170 at step 564. Management engine 115 then
maps the selected class instance to a database table defined by the located subtag at
step 566. As described in FIGURE 5A, it will be understood that the database table in
database 124 may be previously defined or undefined without departing from the
scope of this disclosure. Next, at step 568, management engine 115 selects the first
property in the selected class instance. Based on this selected property, management
engine 115 locates a second-tier (or child level) subtag within the current class
instance subtag in mapping table 170 at step 570. At step 572, management engine
115 maps the property in the selected class instance to a column in the database table
as defined by the second level subtag. As with step 564, this mapping may be to a

previously defined or undefined column in the database table. For example, if the

15

10

15

20

25

30

WO 2005/008536 PCT/US2004/022031

column was previously undefined, management engine may define the column
attributes such as data type and data length based on the selected property. Next, at
decisional step 574, management engine 115 determines if there are more properties
in the selected class. If there are, then management engine 115 selects the next
property in the selected class at step 576 and execution returns to step 570. Once
there are no more properties in the selected class, processing proceeds to decisional
step 578. At decisional step 578, management engine 115 determines if there are
more classes in extracted metrics 140. If there are, management engine 115 selects
the next class from extracted metrics 140 at step 580 and execution returns to step

560.

Once there are no more unmapped classes in extracted metrics 140 at
decisional step 578, management engine 115 generates a SQL statement 160 at step
582 based on the mappings from step 558 through 580. It will be understood that
SQL statement 160 may be used to define a column or database table, upload data into
database 124 based on metrics 140, update data already stored in database 124 or any
other appropriate database operation. Next, at step 584, management engine 115 may

load or interface the generated SQL statement 160 into database 124.

The preceding flowcharts and accompanying description illustrate only
exemplary methods 500 and 550. In short, system 100 contemplates using any
suitable technique for performing these and other tasks. Accordingly, many of the
steps in these flowcharts may take place simultaneously and/or in different orders than
as shown. Moreover, system 100 may use methods with additional steps, fewer steps,

and/or different steps, so long as the methods remain appropriate.

Although this disclosure has been described in terms of certain embodiments
and generally associated methods, alterations and permutations of these embodiments
and methods will be apparent to those skilled in the art. Accordingly, the above
description of example embodiments does not define or constrain this disclosure.
Other changes, substitutions, and alterations are also possible without departing from

the spirit and scope of this disclosure.

16

10

15

20

25

WO 2005/008536 PCT/US2004/022031

WHAT IS CLAIMED IS:

1. A method for storing data associated with an extensible

instrumentation layer comprises:

receiving metrics from an extensible instrumentation layer in an operating
system, the metrics defined by at least one class and a plurality of properties, each

property associated with one class;
converting the metrics into at least one database-compliant data structure; and
storing the one or more data structures in a database.

2. The method of Claim 1, the extensible instrumentation layer
comprising Windows Management Instrumentation (WMI).

3. The method of Claim 1 further comprising:
mapping a first class to a first database table;

mapping a first property associated with the first class to a first column in the

first database table mapped from the first class; and

wherein converting the metrics into at least one database-compliant data
structure comprises converting the metrics into at least one database-compliant data

structure based on the maps.

4. The method of Claim 3, the mapping of each class and property being
based on an eXtensible Markup Language (XML) file, the XML file comprising at
least one tag and a plurality of sub-tags and each tag associated with at least one

attribute of the metrics.

5. The method of Claim 4, the metrics associated with a NET

framework.

6. The method of Claim 5, each tag comprising a map between one class
and one database table and each subtag comprising a map between one property and

one column.

7. The method of Claim 3, further comprising generating a structured
query language (SQL) statement based, at least in part, on the mappings.

17

10

15

20

25

WO 2005/008536 PCT/US2004/022031

8. The method of Claim 3, the metrics defined by a plurality of classes
and the method further comprising mapping a relationship between two of the

plurality of classes and a relationship between two database tables.
9. The method of Claim 4, further comprising:
receiving a second set of metrics from the extensible instrumentation layer;

mapping the second set of metrics to at least one database-compliant data

structure based on a second XML file;

converting the second of metrics into the one or more database-compliant data

structures; and g

storing the one or more data structures for the converted second set of metrics

in the database.

10. The method of Claim 9, each set of metrics associated with a metric
category and the method further comprising selected the first and second XML file

based on each metric category.

11. The method of Claim 10, the first XML file and the second XML file

comprising first and second portions of one XML document.

12. The method of Claim 1, each metric selected from the group consisting
of:

load time for one or more assemblies, modules, and classes;
load count of one or more assemblies, modules, and classes;
load failures for one or more classes;

jit compile time for one or more functions;

jit search time for one or more functions;

jit count for one or more functions;

jit compile failures for one or more functions;

function execution time for one or more functions;

function exceptions for one or more functions; or

18

10

15

20

25

WO 2005/008536 PCT/US2004/022031

function interop boundary crossings for one or more functions.

13. The method of Claim 1, wherein receiving metrics from the extensible
instrumentation layer comprises polling the extensible instrumentation layer at a

predetermined interval.
14. The method of Claim 4, the metrics comprising correlated metrics.
15. The method of Claim 14, further comprising:

determining one class instance for each class of the metrics using the XML
file; and

mapping each class to one database table based on the determined class

instance.

16. Software for storing data associated with an extensible instrumentation

layer operable to:

receive metrics from an extensible instrumentation layer in an operating
system, the metrics defined by at least one class and a plurality of properties, each

property associated with one class;
convert the metrics into at least one database-compliant data structure; and
‘store the one or more data structures in a database.

17. The software of Claim 16, the extensible instrumentation layer

comprising Windows Management Instrumentation (WMI).
18. The software of Claim 16 further operable to:
map one class to a database table;

map a first property associated with the one class to a first column in the

database table mapped from the associated class; and

wherein the software operable to convert the metrics into at least one database-
compliant data structure comprises software operable to convert the metrics into at

least one database-compliant data structure based on the maps.

19. The software of Claim 18, the mapping of each class and property
being based on an eXtensible Markup Language (XML) file, the XML file comprising

19

10

15

20

25

WO 2005/008536 PCT/US2004/022031

at least one tag and a plurality of sub-tags and each tag associated with at least one

attribute.

20. The software of Claim 19, the metrics associated with a .NET

framework.

21. The software of Claim 20, each tag comprising a map between one
class identified by the attribute and one database table and each subtag comprising a

map between one property and one column.

22. The software of Claim 18, further operable to generate a structured
query language (SQL) statement based, at least in part, on the mappings.

23. The software of Claim 18, the metrics defined by a plurality of classes
and the software further operable to map a relationship between two of the plurality of

classes and a relationship between two database tables.
24. The software of Claim 19 further operable to:
receive a second set of metrics from the extensible instrumentation layer;

map the second set of metrics to at least one database-compliant data

structures based on a second XML file;

convert the second of metrics into the one or more database-compliant data

structures; and

store the one or more data structures for the converted second set of metrics in

the database.

25. The software of Claim 24, each set of metrics associated with a metric
category and the software further operable to identify the first and the second XML

file based on each metric category.

26. The software of Claim 25, the first XML file and the second XML file

comprising a first and second section of one XML document.

27. The software of Claim 16, each metric selected from the group

consisting of:

load time for one or more assemblies, modules, and classes;

20

10

15

20

25

WO 2005/008536 PCT/US2004/022031

load count of one or more assemblies, modules, and classes;
load failures for one or more classes;

jit compile time for one or more functions;

jit search time for one or more functions;

jit count for one or more functions;

jit compile failures for one or more functions;

function execution time for one or more functions;

function exceptions for one or more functions; or

function interop boundary crossings for one or more functions. |

28. The software of Claim 16, wherein the software operable to receive

metrics from the extensible instrumentation layer comprises software operable to poll

the extensible instrumentation layer at a predetermined interval.

and

29. The software of Claim 19, the metrics comprising correlated metrics.
30. The software of Claim 29, further operable to:

determine one class instance for each class of the metrics using the XML file;

map each class to one database table based on the determined class instance.

31. A system for storing data associated with an extensible instrumentation

layer comprising:

memory operable to store one or more mapping files and a database;
one or more processors operable to:

receive metrics from an extensible instrumentation layer in an operating

system, the metrics defined by at least one class and a plurality of properties, each

property associated with one class;

convert the metrics into at least one database-compliant data structure based

on one of the mapping files; and

store the one or more data structures in the database.

21

10

15

20

25

WO 2005/008536 PCT/US2004/022031

32. The system of Claim 31, the extensible instrumentation layer

comprising Windows Management Instrumentation (WMI).

33. The system of Claim 31, the one or more processors further operable

to:
map one class to a database table based on the mapping file;

map a first property associated with the one class to a first column in the

database table mapped from the associated class based on the mapping file; and

wherein the one or more processors operable to convert the metrics into at
least one database-compliant data structure based on one of the mapping files
comprises one or more processors operable to convert the metrics into at least one

database-compliant data structure based on the maps.

34, The system of Claim 31, the mapping file comprising an eXtensible
Markup Language (XML), the XML file comprising at least one tag and a plurality of

sub-tags, each tag associated with at least one attribute.

35. The system of Claim 34, the metrics associated with a .NET

framework.

36. The system of Claim 35, each tag comprising a map between one class
identified by the attribute and one database table and each subtag comprising a map

between one property and one column.

37. The system of Claim 33, the one or more processors further operable to
generate a structured query language (SQL) statement based, at least in part, on the

mappings.

38. The system of Claim 33, the metrics defined by a plurality of classes
and the software further operable to map a relationship between two of the plurality of

classes and a relationship between two database tables.

39. The system of Claim 31, the one or more processors further operable

to:

receive a second set of metrics;

22

10

15

20

25

WO 2005/008536 PCT/US2004/022031

map the second set of metrics to at least one database-compliant data

structures based on a second XML file;

convert the second of metrics into the one or more database-compliant data

structures; and
store the converted second set of metrics in the database.

40. The system of Claim 39, each set of metrics associated with a metric
category and the software further operable to select the first and second XML file

based on each metric category.

41. The system of Claim 40, the first XML file and the second XML file

comprising a first and second section of one XML document.

42. The system of Claim 31, each metric selected from the group

consisting of:
load time for one or more assemblies, modules, and classes;
load count of one or more assemblies, modules, and classes;
load failures for one or more classes;
jit compile time for one or more functions;
jit search time for one or more functions;
jit count for one or more functions;
jit compile failures for one or more functions;
function execution time for one or more functions;
function exceptions for one or more functions; or
function interop boundary crossings for one or more functions.

43. The system of Claim 31, wherein the one or more processofs operable
to receive metrics from the extensible instrumentation layer comprises one or more
processors operable to poll the extensible instrumentation layer at a predetermined

interval.

44, The system of Claim 34, the metrics comprising correlated metrics.

23

10

WO 2005/008536 PCT/US2004/022031

45. The system of Claim 44, the one or more processors further operable
to:

determine one class instance for each class of the metrics using the XML file;
and

map each class to one database table based on the determined class instance.

46. A system for storing data associated with an extensible instrumentation

layer comprises:

means for receiving metrics from an extensible instrumentation layer in an
operating system, the metrics defined by at least one class and a plurality of

properties, each property associated with one class;

means for converting the metrics into at least one database-compliant data

structure; and

means for storing the one or more data structures in a database.

24

WO 2005/008536 PCT/US2004/022031

1-116 16
104 [
100
108 4
118 1/150
112
110
125~ 0S !_/ |_-102
N\-130
L

170 P-140
165 [MANAGEMENT FIG. 1

160 ENGINE _1 15

3
e

(
124

NET FW
&
\
INSTRUMENTATION [WINDOWS MANAGEMENT £~130
LAYER INSTRUMENTATION
METRICS 140
132/ ____________
FIG. 24 DATA LAYER E — — —
CIN124
122/ —
128~ PRESENTATION LAYER

WO 2005/008536

132

N\

INSTRUMENTATION

130a
N

NODE 1

1§Sb 140a

NODE 2

140D

=

nope 3 | 140¢

/
130¢c

160
\

PCT/US2004/022031

SQL
STATEMENTS

170a-"

FIG. 3

2/6
116a
102
\‘ CLIENT
SERVER BROWSER
Q
DATABASE 116b
L LAYER\ B /
CLIENT
105 122 108b . BROWSER
PRESENTATION D
LAYER
126 | | CLIENT
| BROWSER
116¢
FIG. 2B
140a
/
WINDOWS MANAGEMENT
- INSTRUMENTATION
MANAGEMENT ENGINE 'NET FW METRICS
115 WINDOWS MANAGEMENT
“ INSTRUMENTATION
OTHER METRICS
A f \
140b
i M 700

PCT/US2004/022031

WO 2005/008536

3/6

Yy OIA

0zgrle 82888 877888¢ 0 9/0S€1C AUSASD

¥00¢cy 0688¢ 0849162 0 ¥85v6801 dm 18udse

0022y 06882 0859152 0 99.v6/212 Trego” || |
w azisdoayuag ||l " "gpajowoldouay |l azisdoayguag “"IMNSUOHDZI[DUL %‘_g*ouo_z wﬁ

=

Aows Y1) 1IN HIomaWD §| INTDIDAMDYIaG Zguim []

PCT/US2004/022031

4/6

WO 2005/008536

qy OI4

0 Zenun sisanbaybuibbngaqg %
0 zgpun ejo suonenduiod ||
<fdwa> Bus uonded [

0 28Hun g1RYIaA0UIN | [RI0 | 3U0R) %
0 zguun ~ sassirIojayoe) |RY
0 zZeuun SHHIeI018y2e) [
0 zeyun oseg oleyiHIEI018Y9e) R
0 zeuun ofiediHIelo auoe) il
0 zeuun saujug(elolayae) R
0 Zeuun aleylaaouin||dyayoe) %
0 zenun sassiNldveyoe) [RR| [L]]
0 zeuun SHHIdV8yde) % ,
0 zenun aseg oneyiHIdvayoe) [Re
0 zenun onlegliHIdYau2e) [l
0 zenun saujudldyayoe) R e
0 zelun | daglagsisenbaysnowhuouy |Rg 174017

, _ 0 zenun sisanbaysnowAuouy | R

qT %_ozg_‘_ m&:; - i v aWwoy|
‘SSD|D D JO 3JuDjSul up mN_._w*uo_._ce_u 0} pasn aip }DY} SIN|DA 31D *om_no up }o mm_twn_ohn_ m@”_.lium_
cho_ﬁ_uomﬁ ;mcofmz selpadoly

1™ =suwip suoyoayddy | 34~ LIN"0joqmoypiagzguim [

Al

WO 2005/008536 PCT/US2004/022031

5/6
502
\ EXTRACT METRICS FROM EXTENSIBLE INSTRUMENTATION LAYER
ARE
EXTRACTED METRICS .NET-
SPECIFIC?
506
N RETRIEVE XML FILE ASSOCIATED WITH .NET METRICS
508 !
N SELECT FIRST CLASS FROM EXTRACTED METRICS
510 ~ r
LOCATE TAG ASSOCIATED WITH SELECTED CLASS IN XML FILE
512 *
N MAP DB TABLE DEFINED BY LOCATED TAG
514 ‘
™ SELECT FIRST PROPERTY IN SELECTED CLASS
V‘
s LOCATE SUBTAG ASSOCIATED WITH SELECTED PROPERTY WITHIN TAG
516 ¢
518 A MAP COLUMN IN DB TABLE DEFINED BY LOCATED SUBTAG
MORE VES SELECT NEXT
PROPERTIES IN SELECTED PROPERTY IN —
CLASS? SELECTED CLASS
N
522
MORE VES SELECT NEXT CLASS
CLASSES IN EXTRACTED FROM EXTRACTED
METRICS? METRICS
524 N
526

GENERATE SQL STATEMENT BASED ON MAPPINGS
528 I

LOAD SQL STATEMENT INTO DATABASE

FIG. 54

530~

WO 2005/008536

PCT/US2004/022031

550 EXTRACT METRICS 6/6
\| FROM EXTENSIBLE 550
INSTRUMENTATION
LAYER e
ARE
EXTRACTED METRICS N0
CORRELATED?
END
556~ | RETRIEVE XiL FILE 5
ASSQCIATED WITH SELECT FIRST
EXTRACTED METRICS PROPERTY IN SELECTED [200
T CLASS INSTANCE
556~ | SELECT FIRST CLASS -~
FRO'\,(’AE?;EASCTED LOCATE SECOND
LEVEL SUBTAG 570
| ASSOCIATED WITH
SoATETG SELECTED PROPERTY
560~] ASSOCIATED WITH !
SELECTED CLASS IN MAP VALUE AND |
XML FILE IDENTIFIER TO DATABASE |/~ 572
7 COLUMNS BASED ON
S
DETERMINE INSTANCE SECOND LEVEL SUBTAG
562 /] OF CLASS
! MORE)
LOCATE SUBTAG PROPERTIES IN CLASS > E2 576
ASSOCIATED WITH INSTANCE? /
564-"] CLASS INSTANGE IN e SELECT NEXT.
XML FILE PROPERTY IN
I CLASS INSTANGE |
MAP CLASS INSTANCE MORE VES L
TO DATABASE TABLE CLASSES IN EXTRACTED
566 | BASED ON SUBTAG METRICS? SR
[CLASS FROM
EXTRACTED
GENERATE SQL STATEMENT METRICS
BASED ON MAPPINGS
N N
i 982 580
LOAD SQL STATEMENT
INTO DATABASE N\ 584

FIG. 5B

INTERNATIONAL SEARCH REPORT

lnte.onal Application No
PCT/US2004/022031

CLASSIFICATION OF SUBJECT MATTER

A.
IPC 7 GO6F17/30

According 1o International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC 7 GO6F

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the internationa) search (name of data base and, where practical, search terms used)

EPO-Internal, INSPEC, COMPENDEX

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category ° | Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

-/~=

Further documents are listed in the continuation of box C. D Patent family members are listed in annex.

° Special categories of cited documents :
Sp g *T* later document published after the international filing date

or priority date and not In conflict with the application but
cited to understand the principle or theory underlying the
invention

*A" document defining the general state of the art which is not
considered to be of particular relevance

*E" earfier document but published on or after the international *X* document of particular relevance; the claimed invention
filing date cannot be considered novel or cannot be considered to
L document which may throw doubts on priority claim(s) or involve an inventive step when the document is taken alone
which s cited to establish the publication date of another *Y* document of particular relevance; the claimed invention
citation or other special reason (as specified) cannot be considered to involve an inventive step when the
*0" document referring to an oral disclosure, use, exhibition or document is combined with one or more other such docu—
other means ments, such combination being obvious to a person skilled
*P' document published prior to the international filing date but in the art.
later than the priority date claimed *&" document member of the same patent family
Date of the actual completion of the international search Date of mailing of the intemational search repont
29 October 2004 12/11/2004
Name and mailing address of the ISA Authorized officer

European Patent Office, P.B. 5818 Patentlaan 2
TNL z2280 HV Rijswijk

el. (+31-70) 340-2040, Tx. 31 651 epo nl, s
Fax: (+31-70) 340-3016 Eichenauer, L

Fom PCT/ISA/210 (second sheet) (January 2004)

INTERNATIONAL SEARCH REPORT

Inte‘onal Application No
PCT/US2004/022031

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category ° | Gitation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

X "User Guide - Microsoft Operations Manager
2000" ‘Online!

2001, MICROSOFT CORP , REDMOND, USA ,
XP002302452

Retrieved from the Internet:
URL:http://www.microsoft.com/mom/docs/user
g.pdf>

‘retrieved on 2004-10-21!

page 44, line 28 - page 45, line 2

page 18, line 1 - 1line 8

A page 32, line 26 — line 29

X CH. STEIGNER AND J. WILKE: "Multi-Source
Performance Analysis of Distributed
Software"

PROCEEDINGS OF THE COMMUNICATION NETWORKS
AND DISTRIBUTED SYSTEMS MODELING AND
SIMULATION CONFERENCE, ‘Online!

27 January 2002 (2002-01-27), XP002302448
SAN ANTONIO, TEXAS, USA

Retrieved from the Internet:
URL:http://www.uni-koblenz.de/{steigner/1a
bor/papers/CNDS2002. pdf>

‘retrieved on 2004-10-25!

page 3 - page 6

X "The Microsoft Windows Management
Instrumentation - Extensions to the
Windows Driver Model"

MSDN LIBRARY, ‘Online!

September 1998 (1998-09), XP002302449
REDMOND, USA

Retrieved from the Internet:
URL:http://msdn.microsoft.com/Tibrary/defa
ult.asp?url=/Tibrary/en-us/dnwmi/html/wmix
wdm.asp> ‘retrieved on 2004-10-25!

page 1, line 18 - line 21; figure 1

1-3,7,8,
12,13,
16-18,
22,23,
27,28,
31-33,
37-43,46

4-6,
9-11,14,
15,
19-21,
24-26,
29,30,
34-36,
44,45
13,28,43

1-3,7;8,
12,13,
16-18,
22,23,
27,28,
31-33,
37-43,46

1-3,7,8,
12,13,
16-18,
22,23,
27,28,
31-33,
37-43,46

4-6,
9-11,14,
15,
19-21,
24-26,
29,30,
34-36,
44,45

Form PCT/ISA/210 (continuation of second sheet) (January 2004)

INTERNATIONAL SEARCH REPORT

Inte.onal Application No
PCT/US2004/022031

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category ° | Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

X "The Common Information Model - CIM
Version 2.7"

DISTRIBUTED MANAGEMENT TASK FORCE -
TECHNICAL NOTE, ‘Ontine!

January 2003 (2003-01), XP002302450
PORTLAND, OREGON, USA

Retrieved from the Internet:
URL:http://www.dmtf.org/education/technote
_CIM.pdf> ‘retrieved on 2004-10-25!

the whole document

A "Specification for the Representation of
CIM in XML"™ ‘Online!

2 June 1999 (1999-06-02), DISTRIBUTED
MANAGEMENT TASK FORCE, INC (DMTF) ,
PORTLAND, OREGON, USA , XP002302453
Retrieved from the Internet:
URL:http://www.dmtf.org/standards/document
s/WBEM/CIM_XML_Mapping20.htm1>

‘retrieved on 2004-10-25!

the whole document

A "Common Information Model - Specification
Version 2.2" ‘Online!

14 June 1999 (1999-06-14), DISTRIBUTED
MANAGEMENT TASK FORCE, INC. (DMTF) ,
PORTLAND, OREGON, USA , XP002302454
Retrieved from the Internet:
URL:http://www.dmtf.org/standards/document
s/CIM/DSP0004 . pdf>

‘retrieved on 2004-10-25!

the whole document

A JIM DAVIS: "WBEM Services Specification
JSR-0048"

JAVA DEVELOPER CONFERENCE, ‘Online!

6 June 2001 (2001-06-06), XP002302451

SAN FRANCISCO, USA

Retrieved from the Internet:
URL:http://www.wbemsolutions.com/articles/
jsr_48.pdf> ‘retrieved on 2004-10-25!
pages 17,21

pages 32-40

1,16,31,
46

4-6,
9-11,14,

19-21,
24-26,
29,30,
34-36,
44,45

1-46

12,27,42

Form PCT/ISA/210 (continuation of second sheet) {January 2004)

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

