UNITED STATES PATENT OFFICE.

FRANK L. REMLEIN, OF PENNS GROVE, NEW JERSEY, ASSIGNOR TO E. I. DU PONT DE NEMOURS & COMPANY, OF WILMINGTON, DELAWARE, A CORPORATION OF DELA-WARE.

DYEING SULPHUR COLORS ON SILK.

No Drawing.

Application filed November 5, 1924. Serial No. 747,987.

To all whom it may concern:

Be it known that I, Frank L. Remlein, a citizen of the United States, and a resident of Penns Grove, in the county of Salem
5 and State of New Jersey, have invented
certain new and useful Dyeing Sulphur Colors on Silk, of which the following is a

specification.

This invention relates to dyeing sulphur 10 colors on silk, and comprises a procedure whereby the dveing of silk by sulphur colors may be satisfactorily accomplished, the color going on to the silk evenly and yet damage to the fibre being avoided. With the pres-15 ent process, which is applicable to all sulphur colors, there is no premature oxidation during the dyeing, particularly level and vivid shades are produced, there is no loss in tensile strength or brilliance of the 20 silk, the characteristic soft feel of the silk is not injured, and the fibres will not rise on the yarn in dyeing and will not show the fluffiness which, in the silk industry, is known as "whiskers." It is the object of the 25 invention to provide a process of the character indicated.

Heretofore, the procedure has been to neutralize the excess alkali produced by dissolving the dyestuff in sodium sulphide, with 30 sodium bisulphite until the dye bath was only feebly alkaline, as tested by phenolphthalein paper which, when the bath had the right alkalinity, showed a rose and not a cherry red. The difficulty has been, how-35 ever, that if the alkalinity was sufficiently reduced to save the fibre, the color went on very unevenly and in some cases hardly at all; while, on the other hand, if the bath were sufficiently alkaline to properly keep 40 the color in solution, it was too alkaline for the fibre and damaged it. I have devised a process by which the difficulties indicated are avoided.

departing from previous practice in dyeing sulphur colors on silk, there is added to the lbs. of the mixture of bisulphite and hydrobath a protective colloid, as, for example, sulphite. Add eight (8) gals. of gum or the product obtained by treating gum silk bast soap and make up the bath to 400 gals., 105 with marseilles soap and variously called or about forty times the weight of the silk. bast soap, gum soap, and boiled-off liquor, Raise the temperature of the dye bath to another example being cellulose sulphite 110° F. and at that temperature enter the

pitch, that is, the pitch from the waste liq- 55 uor of sulphite wood pulp manufacture. The ratio of hydrosulphite to bisulphite may be substantially from 15:85 to 1:1, preferably 1:3. The ratio of gum or bast soap to the bath may be substantially from 3:400 60 to 1:20 preferably 1:50, and, indeed, a greater proportion of soap than 1:20 can be used.

but without particular advantage.

The hydrosulphite serves satisfactorily as a reducing agent in a substantially neutral 65 bath, thus providing for proper dyeing action even though the bath be substantially neutral, as necessary for preservation of the The protective colloid acts as a preservative of the bath, preventing coagu- 70 lation of the dyestuff. Its function is therefore to be clearly distinguished from such action as soap might have, if used in dyeing with acid or basic dyes, to act upon the fibres to facilitate the saturation thereof; for in 75 the present case the colloid functions with respect to the bath and is used for its effects thereon.

To illustrate practice in accordance with the invention, but not in restriction of the 80 same, I give the following, it being understood, of course, that the various details, as to temperatures, mechanical operations, and the like, may be varied to suit particular circumstances and are given primarily to 85 give fullness to the example, rather than as indicating that the primary features of the invention are restricted to the specific di-

rections given.

For dyeing 100 lbs. of silk, make a solu- 90 tion of ten (10) lbs. immedial yellow D (Schultz #710), a sulphur dyestuff, in the usual manner, with ten (10) lbs. of sodium sulphide concentrated, that is, chip sulphide. To the liquor thus produced add a mixture 95 of 75 pts., by weight, sodium bisulphite; 25 pts., by weight, sodium hydrosulphite, pref-According to the present invention, so-erably in solution, in a small quantity of dium hydrosulphite is used with the sodium cold water, until the bath becomes but bisulphite, instead of using bisulphite only, slightly alkaline, giving only a pink and not 100 to reduce the alkalinity, and also, further a red when tested with phenolphthalein paper. This will require about twelve (12)

hold at this temperature for twenty minutes, then add fifty (50) lbs. Glauber's salt and 5 dye for one-half hour longer. Pass the goods through a squeeze roller into cold water, then into hot water. Soap at 150° F. for fifteen minutes and finally scroop, as usual, with an acid.

In using cellulose sulphite pitch no changes in the procedure just stated are called for, except, instead of gum soap is used an amount of pitch substantially between .5 oz. to 5 oz., preferably 1 oz. per 15 gallon of the liquor, though, as in the case of the soap, the given maximum may be exceeded. It is to be noted that the protective colloid is advantageous even though the alkalinity of the bath be reduced without 20 the use of hydrosulphite.

I claim:

1. In dyeing a sulphur color on silk, the steps of reducing the alkalinity of the dye bath with sodium hydrosulphite and so-25 dium bisulphite, and adding a protective colloid.

2. In dyeing a sulphur color on silk, the steps of reducing the alkalinity of the dye bath with sodium hydrosulphite and sodium 30 bisulphite in a ratio substantially between 15:85 to 1:1, and adding a protective col-

3. In dyeing a sulphur color on silk, the

silk. Bring the temperature very slowly and steps of reducing the alkalinity of the dye regularly to 160° F. within one-half hour; bath with sodium hydrosulphite and sodium 35 bisulphite in substantially the ratio 1:3, and adding a protective colloid.

4. In dyeing a sulphur color on silk, the steps of reducing the alkalinity of the dye bath with sodium hydrosulphite and sodium 40 bisulphite, and adding gum soap in an amount, relative to the bath, substantially between the ratios 3:400 and 1:20.

5. In dyeing a sulphur color on silk, the steps of reducing the alkalinity of the dye 45 bath with sodium hydrosulphite and sodium bisulphite, and adding gum soap in an amount, relative to the bath, substantially in the ratio 1:50.

6. In dyeing a sulphur color on silk, the 50 steps of reducing the alkalinity of the dye bath with sodium hydrosulphite and sodium bisulphite in substantially the proportions of 10 parts of a mixture of substantially 25 parts of hydrosulphite and 75 of bisulphite, 55 to 10 of color, and adding gum soap in substantially the proportion of 8 parts of soap to 400 of bath, and making up the bath to substantially 400 gallons per 10 pounds of color.

7. In dyeing a sulphur color on silk, the steps of reducing the alkalinity of the dye bath, and adding a protective colloid.

In testimony whereof I affix my signature.

FRANK L. REMLEIN.