WIPO PCT

- (43) International Publication Date 02 January 2020 (02.01.2020)
- (51) International Patent Classification:
 - *C07D 487/04* (2006.01) *C07D 491/04* (2006.01)
- **A61P 25/14** (2006.01) **A61P 25/28** (2006.01)
- C07D 495/04 (2006.01)
- **A61K 31/4985** (2006.01)
- **C07D 519/00** (2006.01)
- **A61K 31/5025** (2006.01)
- **A61P 25/00** (2006.01)
- (21) International Application Number:

PCT/US2019/038889

(22) International Filing Date:

25 June 2019 (25.06.2019)

(25) Filing Language:

English

(26) Publication Language:

English

US

(30) Priority Data:

62/690,653

27 June 2018 (27.06.2018)

- (71) Applicant: PTC THERAPEUTICS, INC. [US/US]; 100 Corporate Court, South Plainfield, NJ 07080 (US).
- (72) Inventors: SYDORENKO, Nadiya; 37 Sycamore Place, Princeton, NJ 08540 (US). ALAM, Md Rauful; 300 N. Randolphville Road #124, Piscataway, NJ 08854 (US). ARNOLD, Michael A., 17 Mulberry Lane, Flemington, NJ 08822 (US). BABU, Suresh; 225 Concord Place, Pennington, NJ 08534 (US). BHATTACHARYYA, Anuradha; 115 Inverness Drive, Edison, NJ 08820 (US). CHEN, Guangming; 932 Sunset Ridge, Bridgewater, NJ 08807 (US). GERASYUTO, Aleksey I.; 20 Skyline Drive, Flemington, NJ 08822 (US). KARP, Gary Mitchell; 37 Cartwright Drive, Princeton Junction, NJ 08550 (US). KASSICK, Andrew J.; 268 Clematis Drive, Wexford, PA 15090 (US). MAZZOTTI, Anthony R., 1420 Campbell Street, Rahway, NJ 07065 (US). MOON, Young-Choon; 11 Edgewood Drive, Belle Mead, NJ 08502 (US). NARASIMHAN, Jana; 2257 New York Avenue, Scotch Plains, NJ 07076 (US). PATEL, Jigar; 14 Mercer Street, Edison, NJ 08820 (US). TURPOFF, Anthony; 94 Meadowbrook Drive, Hillsborough, NJ 08844 (US). WOLL, Matthew G.; 413 Mountainview Terrace, Dunellen, NJ 08812 (US). YAN, Wuming; 16 Morning Watch Road, Wayne, NJ 07470 (US). ZHANG, Nanjing; 4 Pickering Circle, Princeton, NJ 08540 (US).
- (74) Agent: SCOLA, Daniel A., Jr. et al.; Hoffmann & Baron, LLP, 6900 Jericho Turnpike, Syosset, NY 11791 (US).

(I)

- (81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP, KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.
- (84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, KM, ML, MR, NE, SN, TD, TG).

Published:

— with international search report (Art. 21(3))

(54) Title: HETEROCYCLIC AND HETEROARYL COMPOUNDS FOR TREATING HUNTINGTON'S DISEASE

$$W_1$$
 W_4 W_5 W_5 W_5

(57) **Abstract:** The present description relates to compounds, forms, and pharmaceutical compositions thereof and methods of using such compounds, forms, or compositions thereof for treating or ameliorating Huntington's disease. Formula (I). In particular, the present description relates to substituted bicyclic heterocyclic and heteroaryl compounds compounds of Formula (I), forms and pharmaceutical compositions thereof and methods of using such compounds, forms, or compositions thereof for treating or ameliorating Huntington's disease.

HETEROCYCLIC AND HETEROARYL COMPOUNDS FOR TREATING HUNTINGTON'S DISEASE

An aspect of the present description relates to compounds, forms, and pharmaceutical compositions thereof and methods of using such compounds, forms, or compositions thereof useful for treating or ameliorating Huntington's disease. In particular, another aspect of the present description relates to substituted bicyclic heterocyclic and heteroaryl compounds, forms and pharmaceutical compositions thereof and methods of using such compounds, forms, or compositions thereof for treating or ameliorating Huntington's disease.

10 BACKGROUND

5

15

20

25

Huntington's disease (HD) is a progressive, autosomal dominant neurodegenerative disorder of the brain, having symptoms characterized by involuntary movements, cognitive impairment, and mental deterioration. Death, typically caused by pneumonia or coronary artery disease, usually occurs 13 to 15 years after the onset of symptoms. The prevalence of HD is between three and seven individuals per 100,000 in populations of western European descent. In North America, an estimated 30,000 people have HD, while an additional 200,000 people are at risk of inheriting the disease from an affected parent. The disease is caused by an expansion of uninterrupted trinucleotide CAG repeats in the "mutant" huntingtin (Htt) gene, leading to production of HTT (Htt protein) with an expanded poly-glutamine (polyQ) stretch, also known as a "CAG repeat" sequence. There are no current small molecule therapies targeting the underlying cause of the disease, leaving a high unmet need for medications that can be used for treating or ameliorating HD. Consequently, there remains a need to identify and provide small molecule compounds for treating or ameliorating HD.

All other documents referred to herein are incorporated by reference into the present application as though fully set forth herein.

SUMMARY

An aspect of the present description relates to compounds comprising, a compound of Formula (I):

$$W_1$$
 W_2
 W_3
 W_5
 W_5
 W_5

or a form thereof, wherein R₁, R₂, W₁, W₂, W₃, W₄ and W₅ are as defined herein.

5

10

15

20

An aspect of the present description also relates to a method for use of a compound of Formula (I) or a form or composition thereof to treat or ameliorate HD in a subject in need thereof comprising, administering to the subject an effective amount of the compound or a form or composition thereof.

An aspect of the present description further relates to a use of a compound of Formula (I) or a form thereof to treat or ameliorate HD in a subject in need thereof comprising, administering to the subject an effective amount of the compound or a form thereof.

An aspect of the present description further relates to a use of a compound of Formula (I) or a form thereof for the preparation of a medicament useful to treat or ameliorate HD in a subject in need thereof comprising, administering to the subject an effective amount of the medicament.

An aspect of the present description further relates to a use of a compound of Formula (I) or a form thereof used in combination with other agents useful for treating or ameliorating HD in a subject in need thereof comprising, administering to the subject an effective amount of a combination product for treating or ameliorating HD.

DETAILED DESCRIPTION

An aspect of the present description relates to compounds comprising, a compound of Formula (I):

$$W_1$$
 W_4 W_5 W_5

25 (I)

or a form thereof, wherein:

the dashed lines represent one or more double bonds optionally present where allowed by available valences;

W₁ is independently C-R_a, CH-R_a, N, N-R_b, O, or S where allowed by available valences;

W₂ is independently C-R_a, CH-R_a, N, or N-R_b where allowed by available valences, and;

W₃ is independently C, CH, or N where allowed by available valences;

wherein at least one of W₁, W₂, or W₃ is N or N-R_b;

W₄ and W₅ are independently C-R_a or N,

wherein when W₁ is S or O, W₂ is C-R_a, and W₃ is C;

10 R_a is, in each instance, independently selected from hydrogen, cyano, halogen, hydroxy, $C_{1\text{-}6}$ alkyl, deutero- $C_{1\text{-}4}$ alkyl, halo- $C_{1\text{-}6}$ alkyl, $C_{1\text{-}6}$ alkoxy, halo- $C_{1\text{-}6}$ alkoxy, $C_{1\text{-}6}$ alkoxy- $C_{1\text{-}6}$ alkyl, amino, $C_{1\text{-}6}$ alkyl-amino, $(C_{1\text{-}6}$ alkyl)₂-amino, amino- $C_{1\text{-}6}$ alkyl, and hydroxy- $C_{1\text{-}6}$ alkyl;

R_b is selected from hydrogen and C₁₋₆alkyl;

R₁ is selected from C₃₋₁₀cycloalkyl and heterocyclyl,

wherein heterocyclyl is a saturated or partially unsaturated 3-7 membered monocyclic,

6-10 membered bicyclic or 13-16 membered polycyclic ring system having 1, 2, or 3 heteroatom ring members independently selected from N, O, or S, and

wherein, each instance of C_{3-10} cycloalkyl and heterocyclyl is optionally substituted with one, two or three R_3 substituents and optionally, with one additional R_4 substituent, or,

wherein, alternatively, each instance of C₃₋₁₀cycloalkyl and heterocyclyl is optionally substituted with one, two, three, or four R₃ substituents;

R₂ is selected from phenyl, heterocyclyl, and heteroaryl,

25

wherein heterocyclyl is a saturated or partially unsaturated 3-7 membered monocyclic,

6-10 membered bicyclic or 13-16 membered polycyclic ring system having 1, 2, or 3 heteroatom ring members independently selected from N, O, or S,

wherein heteroaryl is a 3-7 membered monocyclic or 6-10 membered bicyclic ring system having

1, 2, 3, or 4 heteroatom ring members independently selected from N, O, or S, and wherein, each instance of phenyl, heterocyclyl, and heteroaryl is optionally substituted with one, two, or three R₅ substituents, and optionally, with one additional R₆ substituent;

 $R_3 \ is, in \ each \ instance, independently \ selected \ from \ cyano, halogen, hydroxy, C_{1-6}alkyl, deutero-C_{1-4}alkyl, halo-C_{1-6}alkyl, C_{1-6}alkoxy, halo-C_{1-6}alkoxy, C_{1-6}alkoxy-C_{1-6}alkyl, amino, \\ C_{1-6}alkyl-amino, (C_{1-6}alkyl)_2-amino, amino-C_{1-6}alkyl, and hydroxy-C_{1-6}alkyl;$

- R₄ is selected from C₃₋₁₀cycloalkyl, phenyl, heteroaryl, and heterocyclyl,
- wherein heterocyclyl is a saturated or partially unsaturated 3-7 membered monocyclic, 6-10 membered bicyclic or 13-16 membered polycyclic ring system having 1, 2, or 3 heteroatom ring members independently selected from N, O, or S,
 - wherein heteroaryl is a 3-7 membered monocyclic or 6-10 membered bicyclic ring system having 1, 2, 3, or 4 heteroatom ring members independently selected from N, O, or S, and
- wherein, each instance of C₃₋₁₀cycloalkyl, phenyl, heterocyclyl, and heteroaryl is optionally substituted with one, two, or three R₇ substituents;
 - R_5 is, in each instance, independently selected from halogen, hydroxy, cyano, nitro, $C_{1\text{-}6}$ alkyl, deutero- $C_{1\text{-}4}$ alkyl, halo- $C_{1\text{-}6}$ alkyl, $C_{1\text{-}6}$ alkoxy, halo- $C_{1\text{-}6}$ alkoxy, oxime, amino, $C_{1\text{-}6}$ alkyl-amino, ($C_{1\text{-}6}$ alkyl)₂-amino, and $C_{1\text{-}6}$ alkyl-thio;
- 15 R₆ is selected from phenyl and heteroaryl,
 - wherein heteroaryl is a 3-7 membered monocyclic or 6-10 membered bicyclic ring system having 1, 2, 3, or 4 heteroatom ring members independently selected from N, O, or S, and wherein, each instance of phenyl and heteroaryl is optionally substituted with one, two, three or four R_8 substituents;
- R₇ is, in each instance, independently selected from cyano, halogen, hydroxy, C₁₋₆alkyl, deutero-C₁₋₄alkyl, halo-C₁₋₆alkyl, C₁₋₆alkoxy, halo-C₁₋₆alkoxy, C₁₋₆alkoxy-C₁₋₆alkyl, amino, C₁₋₆alkyl-amino, (C₁₋₆alkyl)₂-amino, amino-C₁₋₆alkyl, and C₃₋₁₀cycloalkyl; and
 - R_8 is, in each instance, independently selected from cyano, halogen, hydroxy, $C_{1\text{-}6}$ alkyl, deutero- $C_{1\text{-}4}$ alkyl, halo- $C_{1\text{-}6}$ alkyl, $C_{1\text{-}6}$ alkoxy, halo- $C_{1\text{-}6}$ alkoxy, $C_{1\text{-}6}$ alkoxy, $C_{1\text{-}6}$ alkoxy, amino,
- $C_{1\text{-}6}alkyl\text{-}amino, (C_{1\text{-}6}alkyl)_2\text{-}amino, amino-C_{1\text{-}6}alkyl, and C_{3\text{-}10}cycloalkyl;$
 - wherein a form of the compound is selected from the group consisting of salt, hydrate, solvate, racemate, enantiomer, diastereomer, stereoisomer, and tautomer form thereof.

ASPECTS OF THE DESCRIPTION

One aspect of the present description includes a compound of Formula (I) comprising, a compound of Formula (I.1):

$$W_1$$
 W_2
 W_3
 W_5
 W_5
 W_5

or a form thereof, wherein:

5

25

the dashed lines represent one or more double bonds optionally present where allowed by available valences;

W₁ is independently C-R_a, CH-R_a, N, N-R_b, O, or S where allowed by available valences;

10 W₂ is independently C-R_a, CH-R_a, N, or N-R_b where allowed by available valences, and;

 W_3 is independently C, CH, or N where allowed by available valences; wherein at least one of W_1 , W_2 , or W_3 is N or N-R_b;

W₄ and W₅ are independently C-R_a or N,

wherein when W₁ is S or O, W₂ is C-R_a, and W₃ is C;

R_a is, in each instance, independently selected from hydrogen, cyano, halogen, hydroxy, $C_{1\text{-}6}$ alkyl, deutero- $C_{1\text{-}4}$ alkyl, halo- $C_{1\text{-}6}$ alkyl, $C_{1\text{-}6}$ alkoxy, halo- $C_{1\text{-}6}$ alkoxy, $C_{1\text{-}6}$ alkoxy- $C_{1\text{-}6}$ alkyl, amino, $C_{1\text{-}6}$ alkyl-amino, $(C_{1\text{-}6}$ alkyl)₂-amino, amino- $C_{1\text{-}6}$ alkyl, and hydroxy- $C_{1\text{-}6}$ alkyl;

R_b is selected from hydrogen and C₁₋₆alkyl;

R₁ is selected from C₃₋₁₀cycloalkyl and heterocyclyl,

wherein heterocyclyl is a saturated or partially unsaturated 3-7 membered monocyclic,

6-10 membered bicyclic or 13-16 membered polycyclic ring system having 1, 2, or 3 heteroatom ring members independently selected from N, O, or S, and

wherein, each instance of C_{3-10} cycloalkyl and heterocyclyl is optionally substituted with one, two or three R_3 substituents and optionally, with one additional R_4 substituent, or,

wherein, alternatively, each instance of C₃₋₁₀cycloalkyl and heterocyclyl is optionally substituted with one, two, three, or four R₃ substituents;

R₂ is selected from phenyl, heterocyclyl, and heteroaryl,

wherein heterocyclyl is a saturated or partially unsaturated 3-7 membered monocyclic, 6-10 membered bicyclic or 13-16 membered polycyclic ring system having 1, 2, or 3 heteroatom ring members independently selected from N, O, or S,

- wherein heteroaryl is a 3-7 membered monocyclic or 6-10 membered bicyclic ring system having
- 1, 2, 3, or 4 heteroatom ring members independently selected from N, O, or S, and wherein, each instance of phenyl, heterocyclyl, and heteroaryl is optionally substituted with one, two, or three R_5 substituents, and optionally, with one additional R_6 substituent;
- $R_3 \ is, in each instance, independently selected from cyano, halogen, hydroxy, C_{1\text{-}6}alkyl, deutero-C_{1\text{-}4}alkyl, halo-C_{1\text{-}6}alkyl, C_{1\text{-}6}alkoxy, halo-C_{1\text{-}6}alkoxy, C_{1\text{-}6}alkoxy-C_{1\text{-}6}alkyl, amino,$

C₁₋₆alkyl-amino, (C₁₋₆alkyl)₂-amino, amino-C₁₋₆alkyl, and hydroxy-C₁₋₆alkyl; R₄ is selected from C₃₋₁₀cycloalkyl, phenyl, heteroaryl, and heterocyclyl,

- wherein heterocyclyl is a saturated or partially unsaturated 3-7 membered monocyclic, 6-10 membered bicyclic or 13-16 membered polycyclic ring system having 1, 2, or 3 heteroatom ring members independently selected from N, O, or S,
- wherein heteroaryl is a 3-7 membered monocyclic or 6-10 membered bicyclic ring system having 1, 2, 3, or 4 heteroatom ring members independently selected from N, O, or S, and wherein, each instance of C₃₋₁₀cycloalkyl, phenyl, heterocyclyl, and heteroaryl is optionally substituted with one, two, or three R₇ substituents;
 - R_5 is, in each instance, independently selected from halogen, hydroxy, cyano, nitro, $C_{1\text{-}6}$ alkyl, deutero- $C_{1\text{-}4}$ alkyl, halo- $C_{1\text{-}6}$ alkyl, $C_{1\text{-}6}$ alkoxy, halo- $C_{1\text{-}6}$ alkoxy, oxime, amino, $C_{1\text{-}6}$ alkyl-amino, ($C_{1\text{-}6}$ alkyl)₂-amino, and $C_{1\text{-}6}$ alkyl-thio;

R₆ is selected from phenyl and heteroaryl,

5

10

20

25

- wherein heteroaryl is a 3-7 membered monocyclic or 6-10 membered bicyclic ring system having 1, 2, 3, or 4 heteroatom ring members independently selected from N, O, or S, and wherein, each instance of phenyl and heteroaryl is optionally substituted with one, two, three or four R_8 substituents;
- R₇ is, in each instance, independently selected from cyano, halogen, hydroxy, C₁₋₆alkyl, deutero-C₁₋₄alkyl, halo-C₁₋₆alkyl, C₁₋₆alkoxy, halo-C₁₋₆alkoxy, C₁₋₆alkoxy-C₁₋₆alkyl, amino, C₁₋₆alkyl-amino, (C₁₋₆alkyl)₂-amino, amino-C₁₋₆alkyl, and C₃₋₁₀cycloalkyl;

R₈ is, in each instance, independently selected from cyano, halogen, hydroxy, C₁₋₆alkyl, deutero-

 $C_{1\text{--}4}$ alkyl, halo- $C_{1\text{--}6}$ alkyl, $C_{1\text{--}6}$ alkoxy, halo- $C_{1\text{--}6}$ alkoxy, $C_{1\text{--}6}$ alkoxy, amino,

C₁₋₆alkyl-amino, (C₁₋₆alkyl)₂-amino, amino-C₁₋₆alkyl, or C₃₋₁₀cycloalkyl.

5

10

20

25

One aspect includes a compound of Formula (I), wherein W₁ is N-R_b and W₄ is N.

Another aspect includes a compound of Formula (I), wherein W_1 is $N-R_b$, W_2 is $C-R_a$, W_3 is C, W_4 is N and W_5 is $C-R_a$.

Another aspect includes a compound of Formula (I), wherein W_1 is N-R_b, W_2 is CH-R_a, W_3 is CH, W_4 is N and W_5 is C-R_a.

One aspect includes a compound of Formula (I), wherein W₂ is N-R_b and W₄ is N.

Another aspect includes a compound of Formula (I), wherein W₁ is CH-R_a, W₂ is N-R_b, W₃ is CH, W₄ is N and W₅ is C-R_a.

One aspect includes a compound of Formula (I), wherein W₃ and W₄ are N.

Another aspect includes a compound of Formula (I), wherein W_1 is $C-R_a$, W_2 is $C-R_a$, W_3 is N, W_4 is N and W_5 is $C-R_a$.

Another aspect includes a compound of Formula (I), wherein W_1 is CH-R_a, W_2 is CH-R_a, W_3 is N, W_4 is N and W_5 is C-R_a.

One aspect includes a compound of Formula (I), wherein W₁, W₂ and W₄ are N.

Another aspect includes a compound of Formula (I), wherein W_1 is N, W_2 is N, W_3 is CH, W_4 is N and W_5 is $C-R_a$.

One aspect includes a compound of Formula (I), wherein W_1 and W_2 are N-R_b and W_4 is N.

Another aspect includes a compound of Formula (I), wherein W_1 and W_2 are N-R_b, W_3 is CH, W_4 is N and W_5 is C-R_a.

One aspect includes a compound of Formula (I), wherein W₁, W₃ and W₄ are N.

Another aspect includes a compound of Formula (I), wherein W_1 is N, W_2 is C- R_a , W_3 is N, W_4 is N and W_5 is C- R_a .

One aspect includes a compound of Formula (I), wherein W_1 is N-R_b and W_3 and W_4 are N.

Another aspect includes a compound of Formula (I), wherein W_1 is N-R_b, W_2 is CH-R_a, W_3 is N, W_4 is N and W_5 is C-R_a.

One aspect includes a compound of Formula (I), wherein W2, W3 and W4 are N.

Another aspect includes a compound of Formula (I), wherein W_1 is C- R_a , W_2 is N, W_3 is N, W_4 is N and W_5 is C- R_a .

One aspect includes a compound of Formula (I), wherein W_2 is N-R_b and W_3 and W_4 are N.

Another aspect includes a compound of Formula (I), wherein W_1 is CH-R_a, W_2 is N-R_b, W_3 is N, W_4 is N and W_5 is C-R_a.

5

10

20

One aspect includes a compound of Formula (I), wherein W₁, W₂, W₃ and W₄ are N.

Another aspect includes a compound of Formula (I), wherein W_1 is N, W_2 is N, W_3 is N, W_4 is N and W_5 is C- R_a .

One aspect includes a compound of Formula (I), wherein W₁ is S and W₄ is N.

Another aspect includes a compound of Formula (I), wherein W_1 is S, W_2 is C- R_a , W_3 is C, W_4 is N and W_5 is C- R_a .

One aspect includes a compound of Formula (I), wherein W₁ is O and W₄ is N.

Another aspect includes a compound of Formula (I), wherein W₁ is O, W₂ is C-R_a, W₃ is C, W₄ is N and W₅ is C-R_a.

One aspect includes a compound of Formula (I), wherein W₁ is N-R_b and W₅ is N.

Another aspect includes a compound of Formula (I), wherein W_1 is N-R_b, W_2 is C-R_a, W_3 is C, W_4 is C-R_a and W_5 is N.

Another aspect includes a compound of Formula (I), wherein W_1 is N-R_b, W_2 is CH-R_a, W_3 is CH, W_4 is C-R_a and W_5 is N.

One aspect includes a compound of Formula (I), wherein W₂ is N-R_b and W₅ is N.

Another aspect includes a compound of Formula (I), wherein W_1 is CH-R_a, W_2 is N-R_b, W_3 is CH, W_4 is C-R_a and W_5 is N.

One aspect includes a compound of Formula (I), wherein W₃ and W₅ are N.

Another aspect includes a compound of Formula (I), wherein W₁ is C-R_a, W₂ is C-R_a, W₃ is N, W₄ is C-R_a and W₅ is N.

Another aspect includes a compound of Formula (I), wherein W_1 is CH-R_a, W_2 is CH-R_a, W_3 is N, W_4 is C-R_a and W_5 is N.

One aspect includes a compound of Formula (I), wherein W₁, W₂ and W₅ are N.

Another aspect includes a compound of Formula (I), wherein W_1 is N, W_2 is N, W_3 is CH, W_4 is C- R_a and W_5 is N.

One aspect includes a compound of Formula (I), wherein W_1 and W_2 are N-R_b and W_5 is N.

Another aspect includes a compound of Formula (I), wherein W_1 and W_2 are N-R_b, W_3 is CH, W_4 is C-R_a and W_5 is N.

One aspect includes a compound of Formula (I), wherein W₁, W₃ and W₅ are N.

5

20

25

Another aspect includes a compound of Formula (I), wherein W_1 is N, W_2 is C- R_a , W_3 is N, W_4 is C- R_a and W_5 is N.

One aspect includes a compound of Formula (I), wherein W_1 is N-R_b and W_3 and W_5 are N.

Another aspect includes a compound of Formula (I), wherein W_1 is N-R_b, W_2 is CH-R_a, W_3 is N, W_4 is C-R_a and W_5 is N.

One aspect includes a compound of Formula (I), wherein W₂, W₃ and W₅ are N.

Another aspect includes a compound of Formula (I), wherein W_1 is $C-R_a$, W_2 is N, W_3 is N, W_4 is $C-R_b$ and W_5 is N.

One aspect includes a compound of Formula (I), wherein W_2 is N-R_b and W_3 and W_5 are N.

Another aspect includes a compound of Formula (I), wherein W_1 is CH-R_a, W_2 is N-R_b, W_3 is N, W_4 is C-R_a and W_5 is N.

One aspect includes a compound of Formula (I), wherein W₁, W₂, W₃ and W₅ are N.

Another aspect includes a compound of Formula (I), wherein W_1 is N, W_2 is N, W_3 is N, W_4 is C- R_a and W_5 is N.

One aspect includes a compound of Formula (I), wherein W₁ is S and W₅ is N.

Another aspect includes a compound of Formula (I), wherein W_1 is S, W_2 is C- R_a , W_3 is C, W_4 is C- R_a and W_5 is N.

One aspect includes a compound of Formula (I), wherein W₁ is O and W₅ is N.

Another aspect includes a compound of Formula (I), wherein W_1 is O, W_2 is C-R_a, W_3 is C, W_4 is C-R_a and W_5 is N.

One aspect includes a compound of Formula (I), wherein W₁ is N-R_b.

Another aspect includes a compound of Formula (I), wherein W_1 is N-R_b, W_2 is C-R_a, W_3 30 is C and W_4 and W_5 are C-R_a.

Another aspect includes a compound of Formula (I), wherein W_1 is N-R_b, W_2 is CH-R_a, W_3 is CH and W_4 and W_5 are C-R_a.

One aspect includes a compound of Formula (I), wherein W₂ is N-R_b.

Another aspect includes a compound of Formula (I), wherein W₁ is C-R_a, W₂ is N-R_b, W₃ is C and W₄ and W₅ are C-R_a.

Another aspect includes a compound of Formula (I), wherein W_1 is CH-R_a, W_2 is N-R_b, W_3 is CH and W_4 and W_5 are C-R_a.

One aspect includes a compound of Formula (I), wherein W₃ is N.

Another aspect includes a compound of Formula (I), wherein W_1 is C- R_a , W_2 is C- R_a , W_3 10 is N and W_4 and W_5 are C- R_a .

Another aspect includes a compound of Formula (I), wherein W_1 is CH-R_a, W_2 is CH-R_a, W_3 is N and W_4 and W_5 are C-R_a.

One aspect includes a compound of Formula (I), wherein W_1 and W_2 are N.

Another aspect includes a compound of Formula (I), wherein W_1 is N, W_2 is N, W_3 is CH and W_4 and W_5 are C- R_a .

One aspect includes a compound of Formula (I), wherein W₁ and W₂ are N-R_b.

Another aspect includes a compound of Formula (I), wherein W_1 and W_2 are N-R_b, W_3 is CH and W_4 and W_5 are C-R_a.

One aspect includes a compound of Formula (I), wherein W_1 and W_3 are N.

Another aspect includes a compound of Formula (I), wherein W_1 is N, W_2 is C- R_a , W_3 is N and W_4 and W_5 are C- R_a .

One aspect includes a compound of Formula (I), wherein W₁ is N-R_b and W₃ is N.

Another aspect includes a compound of Formula (I), wherein W_1 is N-R_b, W_2 is CH-R_a, W_3 is N and W_4 and W_5 are C-R_a.

One aspect includes a compound of Formula (I), wherein W₂ and W₃ are N.

Another aspect includes a compound of Formula (I), wherein W_1 is C- R_a , W_2 is N, W_3 is N and W_4 and W_5 are C- R_a .

One aspect includes a compound of Formula (I), wherein W₂ is N-R_b and W₃ is are N.

Another aspect includes a compound of Formula (I), wherein W₁ is CH-R_b, W₂ is N-R_b,

30 W_3 is N and W_4 and W_5 are C-R_a.

15

25

One aspect includes a compound of Formula (I), wherein W₁, W₂ and W₃ are N.

Another aspect includes a compound of Formula (I), wherein W_1 is N, W_2 is N, W_3 is N and W_4 and W_5 are C- R_a .

One aspect includes a compound of Formula (I), wherein W_1 is S.

Another aspect includes a compound of Formula (I), wherein W₁ is S, W₂ is C-R_a, W₃ is C and W₄ and W₅ are C-R_a.

One aspect includes a compound of Formula (I), wherein W_1 is O.

Another aspect includes a compound of Formula (I), wherein W_1 is O, W_2 is C-R_a, W_3 is C and W_4 and W_5 are C-R_a.

One aspect includes a compound of Formula (I), wherein W_1 is N-R_b and W_4 and W_5 are N.

Another aspect includes a compound of Formula (I), wherein W_1 is $N-R_b$, W_2 is $C-R_a$, W_3 is C and W_4 and W_5 are N.

Another aspect includes a compound of Formula (I), wherein W_1 is N-R_b, W_2 is CH-R_a, W_3 is CH and W_4 and W_5 are N.

One aspect includes a compound of Formula (I), wherein W_2 is N-R_b and W_4 and W_5 are N.

15

20

25

30

Another aspect includes a compound of Formula (I), wherein W_1 is CH-R_a, W_2 is N-R_b, W_3 is CH and W_4 and W_5 are N.

One aspect includes a compound of Formula (I), wherein W₃, W₄ and W₅ are N.

Another aspect includes a compound of Formula (I), wherein W_1 is C- R_a , W_2 is C- R_a , W_3 is N and W_4 and W_5 are N.

Another aspect includes a compound of Formula (I), wherein W_1 is CH-R_a, W_2 is CH-R_a, W_3 is N and W_4 and W_5 are N.

One aspect includes a compound of Formula (I), wherein W₁, W₂, W₄ and W₅ are N.

Another aspect includes a compound of Formula (I), wherein W_1 is $N,\,W_2$ is $N,\,W_3$ is CH and W_4 and W_5 are N.

One aspect includes a compound of Formula (I), wherein W_1 and W_2 are N-R_b and W_4 and W_5 are N.

Another aspect includes a compound of Formula (I), wherein W_1 and W_2 are N-R_b, W_3 is CH and W_4 and W_5 are N.

One aspect includes a compound of Formula (I), wherein W₁, W₃, W₄ and W₅ are N.

Another aspect includes a compound of Formula (I), wherein W_1 is N, W_2 is C- R_a , W_3 is N and W_4 and W_5 are N.

One aspect includes a compound of Formula (I), wherein W_1 is N-R_b and W_3 , W_4 and W_5 are N.

Another aspect includes a compound of Formula (I), wherein W_1 is N-R_b, W_2 is CH-R_a, W_3 is N and W_4 and W_5 are N.

One aspect includes a compound of Formula (I), wherein W2, W3, W4 and W5 are N.

Another aspect includes a compound of Formula (I), wherein W_1 is C- R_a , W_2 is N, W_3 is N and W_4 and W_5 are N.

10

15

20

25

30

One aspect includes a compound of Formula (I), wherein W_2 is N-R_b and W_3 , W_4 and W_5 are N.

Another aspect includes a compound of Formula (I), wherein W_1 is CH-R_a, W_2 is N-R_b, W_3 is N and W_4 and W_5 are N.

One aspect includes a compound of Formula (I), wherein W_1 , W_2 , W_3 , and W_4 and W_5 are N.

Another aspect includes a compound of Formula (I), wherein W_1 is N, W_2 is N, W_3 is N, and W_4 and W_5 are N.

One aspect includes a compound of Formula (I), wherein W₁ is S and W₄ and W₅ are N.

Another aspect includes a compound of Formula (I), wherein W_1 is S, W_2 is C- R_a , W_3 is C and W_4 and W_5 are N.

One aspect includes a compound of Formula (I), wherein W_1 is O and W_4 and W_5 are N. Another aspect includes a compound of Formula (I), wherein W_1 is O, W_2 is C-R_a, W_3 is C and W_4 and W_5 are N.

One aspect includes a compound of Formula (I), wherein R_a is, in each instance, independently selected from hydrogen, cyano, halogen, hydroxy, $C_{1\text{-}6}$ alkyl, deutero- $C_{1\text{-}4}$ alkyl, halo- $C_{1\text{-}6}$ alkyl, $C_{1\text{-}6}$ alkoxy, halo- $C_{1\text{-}6}$ alkoxy, $C_{1\text{-}6}$ alkoxy, $C_{1\text{-}6}$ alkyl, amino, $C_{1\text{-}6}$ alkyl, amino, $C_{1\text{-}6}$ alkyl, and hydroxy- $C_{1\text{-}6}$ alkyl.

Another aspect includes a compound of Formula (I), wherein R_a is, in each instance, independently selected from hydrogen, hydroxy, C_{1-6} alkyl, C_{1-6} alkoxy, and C_{1-6} alkyl-amino.

Another aspect includes a compound of Formula (I), wherein R_a is hydrogen.

Another aspect includes a compound of Fomula (I), wherein R_a is hydroxy.

Another aspect includes a compound of Formula (I), wherein R_a is C_{1-6} alkyl selected from methyl, ethyl, propyl, isopropyl, and tert-butyl.

Another aspect includes a compound of Formula (I), wherein R_a is methyl.

5

10

15

20

25

30

Another aspect includes a compound of Formula (I), wherein R_a is C_{1-6} alkoxy selected from methoxy, ethoxy, propoxy, isopropoxy, and tert-butoxy.

Another aspect includes a compound of Formula (I), wherein R_a is methoxy.

Another aspect includes a compound of Formula (I), wherein R_a is $C_{1\text{-}6}$ alkyl-amino wherein $C_{1\text{-}6}$ alkyl is selected from methyl, ethyl, propyl, isopropyl, butyl, isobutyl, sec-butyl, and tert-butyl.

Another aspect includes a compound of Formula (I), wherein R_a is $C_{1\text{-}6}$ alkyl-amino selected from methylamino and ethylamino.

One aspect includes a compound of Formula (I), wherein R_b is selected from hydrogen and $C_{1\text{-}6}$ alkyl.

Another aspect includes a compound of Formula (I), wherein R_b is hydrogen.

One aspect includes a compound of Formula (I), wherein R_1 is selected from C_{3-10} cycloalkyl and heterocyclyl,

wherein heterocyclyl is a saturated or partially unsaturated 3-7 membered monocyclic,

6-10 membered bicyclic or 13-16 membered polycyclic ring system having 1, 2, or 3

heteroatom ring members independently selected from N, O, or S, and

wherein, each instance of C_{3-10} cycloalkyl and heterocyclyl is optionally substituted with one, two or three R_3 substituents and optionally, with one additional R_4 substituent, or,

wherein, alternatively, each instance of C_{3-10} cycloalkyl and heterocyclyl is optionally substituted with one, two, three, or four R_3 substituents.

Another aspect includes a compound of Formula (I), wherein R_1 is C_{3-10} cycloalkyl, optionally substituted with one, two or three R_3 substituents and optionally, with one additional R_4 substituent, or alternatively, optionally substituted with one, two, three, or four R_3 substituents.

Another aspect includes a compound of Formula (I), wherein R_1 is C_{3-10} cycloalkyl selected from cyclopropyl, cylcobutyl, cyclopentyl, cyclohexyl, cycloheptyl, cyclooctyl,

bicyclo[2.2.1]hexanyl, and adamantyl, optionally substituted with one, two or three R₃

substituents and optionally, with one additional R₄ substituent, or alternatively, optionally substituted with one, two, three, or four R₃ substituents.

5

20

Another aspect includes a compound of Formula (I), wherein R_1 is $C_{3\text{--}10}$ cycloalkyl selected from cylcobutyl and cyclohexyl, optionally substituted with one, two or three R_3 substituents and optionally, with one additional R_4 substituent, or alternatively, optionally substituted with one, two, three, or four R_3 substituents.

Another aspect includes a compound of Formula (I), wherein R₁ is heterocyclyl selected

from azetidinyl, tetrahydrofuranyl, pyrrolidinyl, piperidinyl, piperazinyl, 1,4-diazepanyl, 1,2,5,6-tetrahydropyridinyl, 1,2,3,6-tetrahydropyridinyl, 3-azabicyclo[3.1.0]hexyl, (1*R*,5*S*)-3-azabicyclo[3.1.0]hexyl, 8-azabicyclo[3.2.1]octyl, (1*R*,5*S*)-8-azabicyclo[3.2.1]octyl, 8-azabicyclo[3.2.1]oct-2-en-yl, (1*R*,5*S*)-8-azabicyclo[3.2.1]oct-2-en-yl, 9-azabicyclo[3.3.1]nonyl, (1*R*,5*S*)-9-azabicyclo[3.3.1]nonyl, 3-oxa-9-azabicyclo[3.3.1]nonyl, and 3-oxa-9-azabicyclo[3.3.1]non-6-en-yl, optionally substituted with one, two or three R₃ substituents and optionally, with one additional R₄ substituent, or, alternatively, optionally substituted with one, two, three or four R₃ substituents.

Another aspect includes a compound of Formula (I), wherein R_1 is heterocyclyl selected from piperidinyl, piperazinyl, 1,2,3,6-tetrahydropyridinyl, 8-azabicyclo[3.2.1]octyl, (1R,5S)-8-azabicyclo[3.2.1]octyl, 8-azabicyclo[3.2.1]oct-2-en-yl, 3-oxa-9-azabicyclo[3.3.1]nonyl, and 3-oxa-9-azabicyclo[3.3.1]non-6-en-yl, optionally substituted with one, two or three R_3 substituents and optionally, with one additional R_4 substituent, or, alternatively, optionally substituted with one, two, three or four R_3 substituents.

Another aspect includes a compound of Formula (I), wherein R₁ is heterocyclyl selected from azetidin-1-yl, tetrahydrofuran-3-yl, pyrrolidin-1-yl, piperidin-1-yl, piperidin-4-yl, piperazin-1-yl, 1,4-diazepan-1-yl, 1,2,5,6-tetrahydropyridin-5-yl, 1,2,3,6-tetrahydropyridin-4-yl, 8-azabicyclo[3.2.1]oct-3-yl, (1*R*,5*S*)-8-azabicyclo[3.2.1]oct-3-yl, 8-azabicyclo[3.2.1]oct-2-en-3-yl, (1*R*,5*S*)-8-azabicyclo[3.2.1]oct-2-en-3-yl, 9-azabicyclo[3.3.1]non-7-yl, (1*R*,5*S*)-9-azabicyclo[3.3.1]non-3-yl, 3-oxa-9-azabicyclo[3.3.1]non-7-yl, and 3-oxa-9-azabicyclo[3.3.1]non-6-en-7-yl, optionally substituted with one, two or three R₃ substituents and optionally, with one additional R₄ substituent, or, alternatively, optionally substituted with one, two, three or four R₃ substituents.

Another aspect includes a compound of Formula (I), wherein R_1 is heterocyclyl selected from piperidin-4-yl, piperazin-1-yl, 1,2,3,6-tetrahydropyridin-4-yl, 8-azabicyclo[3.2.1]oct-3-yl, (1R,5S)-8-azabicyclo[3.2.1]oct-3-yl, 8-azabicyclo[3.2.1]oct-2-en-3-yl, 3-oxa-9-azabicyclo[3.3.1]non-7-yl, and 3-oxa-9-azabicyclo[3.3.1]non-6-en-7-yl, optionally substituted with one, two or three R_3 substituents and optionally, with one additional R_4 substituent, or, alternatively, optionally substituted with one, two, three or four R_3 substituents.

One aspect includes a compound of Formula (I), wherein R₂ is selected from phenyl, heterocyclyl, and heteroaryl,

5

10

15

20

25

30

wherein heterocyclyl is a saturated or partially unsaturated 3-7 membered monocyclic, 6-10 membered bicyclic or 13-16 membered polycyclic ring system having 1, 2, or 3 heteroatom ring members independently selected from N, O, or S,

wherein heteroaryl is a 3-7 membered monocyclic or 6-10 membered bicyclic ring system having 1, 2, 3, or 4 heteroatom ring members independently selected from N, O, or S, and wherein, each instance of phenyl, heterocyclyl, and heteroaryl is optionally substituted with one, two, or three R₅ substituents, and optionally, with one additional R₆ substituent.

Another aspect includes a compound of Formula (I), wherein R_2 is phenyl, optionally substituted with one, two or three R_5 substituents and optionally, with one additional R_6 substituent.

Another aspect includes a compound of Formula (I), wherein R_2 is heterocyclyl selected from azetidinyl, tetrahydrofuranyl, pyrrolidinyl, piperidinyl, piperazinyl, 1,4-diazepanyl, 1,2,5,6-tetrahydropyridinyl, 1,2,3,6-tetrahydropyridinyl, and 2,3-dihydro-1H-indenyl, optionally substituted with one, two or three R_5 substituents and optionally, with one additional R_6 substituent.

Another aspect includes a compound of Formula (I), wherein R_2 is 2,3-dihydro-1Hindenyl, optionally substituted with one, two or three R_5 substituents and optionally, with one
additional R_6 substituent.

Another aspect includes a compound of Formula (I), wherein R_2 is heterocyclyl selected from azetidin-1-yl, tetrahydrofuran-3-yl, pyrrolidin-1-yl, piperidin-1-yl, piperidin-4-yl, piperazin-1-yl, 1,4-diazepan-1-yl, 1,2,5,6-tetrahydropyridin-5-yl, 1,2,3,6-tetrahydropyridin-4-yl, and 2,3-dihydro-1H-inden-5-yl, optionally substituted with one, two or three R_5 substituents and optionally, with one additional R_6 substituent.

Another aspect includes a compound of Formula (I), wherein R_2 is 2,3-dihydro-1H-inden-5-yl optionally substituted with one, two or three R_5 substituents and optionally, with one additional R_6 substituent.

Another aspect includes a compound of Formula (I), wherein R_2 is heteroaryl selected from furanyl, 1H-pyrrolyl, 1H-pyrazolyl, 1H-imidazolyl, 1,3-oxazolyl, pyridinyl, pyridazinyl, pyrimidinyl, pyrazinyl, 1H-indolyl, 1H-indazolyl, benzofuranyl, 1H-benzimidazolyl, 1H-benzotriazolyl, and quinolinyl, optionally substituted with one, two or three R_5 substituents and optionally, with one additional R_6 substituent.

5

10

15

20

25

30

Another aspect includes a compound of Formula (I), wherein R_2 is heteroaryl selected from pyridinyl, 1H-indazolyl, 1H-benzimidazolyl, 1H-benzotriazolyl, and quinolinyl, optionally substituted with one, two or three R_5 substituents and optionally, with one additional R_6 substituent.

Another aspect includes a compound of Formula (I), wherein R₂ is heteroaryl selected from furan-3-yl, 1*H*-pyrrol-3-yl, 1*H*-pyrazol-1-yl, 1*H*-pyrazol-3-yl, 1*H*-pyrazol-4-yl, , 1*H*-imidazol-1-yl, 1*H*-imidazol-2-yl, 1*H*-imidazol-4-yl, pyridin-2-yl, pyridin-3-yl, pyridin-3-yl, pyridazin-3-yl, pyridazin-4-yl, pyridazin-5-yl, pyrimidin-4-yl, pyrimidin-5-yl, pyrazin-2-yl, pyrazin-3-yl, 1*H*-indol-3-yl, 1*H*-indol-4-yl, 1*H*-indol-5-yl, 1*H*-indol-6-yl, 1*H*-indazol-5-yl, 1*H*-indazol-6-yl, benzofuran-2-yl, benzofuran-5-yl, 1*H*-benzimidazol-5-yl, 1*H*-benzimidazol-5-yl, 1*H*-benzotriazol-4-yl, 1*H*-benzotriazol-5-yl, 1*H*-benzotriazol-5-yl, 1*H*-benzotriazol-6-yl, 1*H*-benzotriazol-7-yl, and quinolin-7-yl, optionally substituted with one, two or three R₅ substituents and optionally, with one additional R₆ substituent.

Another aspect includes a compound of Formula (I), wherein R_2 is heteroaryl selected from pyridin-2-yl, 1*H*-indazol-6-yl, 1*H*-benzimidazol-6-yl, 1*H*-benzotriazol-7-yl, and quinolin-7-yl, optionally substituted with one, two or three R_5 substituents and optionally, with one additional R_6 substituent.

One aspect includes a compound of Formula (I), wherein R_3 is, in each instance, independently selected from from cyano, halogen, hydroxy, $C_{1\text{-}6}$ alkyl, deutero- $C_{1\text{-}4}$ alkyl, halo- $C_{1\text{-}6}$ alkyl, $C_{1\text{-}6}$ alkoxy, halo- $C_{1\text{-}6}$ alkoxy, $C_{1\text{-}6}$ alkoxy- $C_{1\text{-}6}$ alkyl, amino, $C_{1\text{-}6}$ alkyl-amino, $(C_{1\text{-}6}$ alkyl)₂-amino, amino- $C_{1\text{-}6}$ alkyl, and hydroxy- $C_{1\text{-}6}$ alkyl.

Another aspect includes a compound of Formula (I), wherein R_3 is, in each instance, independently selected from from halogen, $C_{1\text{-}6}$ alkyl, and $C_{1\text{-}6}$ alkyl-amino.

Another aspect includes a compound of Formula (I), wherein R_3 is halogen selected from bromo, chloro, fluoro, and iodo.

Another aspect includes a compound of Formula (I), wherein R₃ is fluoro.

Another aspect includes a compound of Formula (I), wherein R_3 is C_{1-6} alkyl selected from methyl, ethyl, propyl, isopropyl, and tert-butyl.

Another aspect includes a compound of Formula (I), wherein R₃ is methyl.

5

10

15

20

25

30

Another aspect includes a compound of Formula (I), wherein R_3 is $C_{1\text{-}6}$ alkyl-amino wherein $C_{1\text{-}6}$ alkyl is selected from methyl, ethyl, propyl, isopropyl, butyl, isobutyl, sec-butyl, and tert-butyl.

Another aspect includes a compound of Formula (I), wherein R₃ is tert-butylamino.

One aspect includes a compund of Formula (I), wherein R_4 is selected from C_{3-10} cycloalkyl, phenyl, heteroaryl, and heterocyclyl,

wherein heterocyclyl is a saturated or partially unsaturated 3-7 membered monocyclic, 6-10 membered bicyclic or 13-16 membered polycyclic ring system having 1, 2, or 3 heteroatom ring members independently selected from N, O, or S,

wherein heteroaryl is a 3-7 membered monocyclic or 6-10 membered bicyclic ring system having 1, 2, 3, or 4 heteroatom ring members independently selected from N, O, or S, and wherein, each instance of C₃₋₁₀cycloalkyl, phenyl, heterocyclyl, and heteroaryl is optionally substituted with one, two, or three R₇ substituents.

One aspect includes a compound of Formula (I), wherein R_5 is, in each instance, independently selected from from halogen, hydroxy, cyano, nitro, $C_{1\text{-}6}$ alkyl, deutero- $C_{1\text{-}4}$ alkyl, halo- $C_{1\text{-}6}$ alkyl, $C_{1\text{-}6}$ alkoxy, halo- $C_{1\text{-}6}$ alkoxy, oxime, amino, $C_{1\text{-}6}$ alkyl-amino, ($C_{1\text{-}6}$ alkyl)₂-amino, and $C_{1\text{-}6}$ alkyl-thio.

Another aspect includes a compound of Formula (I), wherein R_5 is, in each instance, independently selected from from halogen, hydroxy, $C_{1\text{-}6}$ alkyl, and oxime.

Another aspect includes a compound of Formula (I), wherein R_5 is halogen selected from bromo, chloro, fluoro, and iodo.

Another aspect includes a compound of Formula (I), wherein R₅ is halogen selected from chloro and fluoro.

Another aspect includes a compound of Formula (I), wherein R₅ is hydroxy.

Another aspect includes a compound of Formula (I), wherein R_5 is C_{1-6} alkyl selected from methyl, ethyl, propyl, isopropyl, and tert-butyl.

Another aspect includes a compound of Formula (I), wherein R₅ methyl.

Another aspect includes a compound of Formula (I), wherein R₅ is oxime.

5

10

15

20

25

30

One aspect includes a compound of Formula (I), wherein R_6 is selected from phenyl and heteroaryl,

wherein heteroaryl is a 3-7 membered monocyclic or 6-10 membered bicyclic ring system having

1, 2, 3, or 4 heteroatom ring members independently selected from N, O, or S, and wherein, each instance of phenyl and heteroaryl is optionally substituted with one, two, three or four R_8 substituents.

Another aspect includes a compound of Formula (I), wherein R_6 is phenyl, optionally substituted with one, two, three or four R_8 substituents.

Another aspect includes a compound of Formula (I) wherein R₆ is heteroaryl selected from furanyl, thienyl, 1*H*-pyrrolyl, 1*H*-pyrazolyl, 1*H*-imidazolyl, 1*H*-1,2,3-triazolyl, 2*H*-1,2,3-triazolyl, 1*H*-1,2,4-triazolyl, 4*H*-1,2,4-triazolyl, 1,3-thiazolyl, 1,2-oxazolyl, 1,3-oxazolyl, 1,2,4-thiadiazolyl, 1,3,4-thiadiazol-yl, pyridinyl, pyridin-2(1*H*)-on-yl, pyridazinyl, pyrimidinyl, pyrimidin-4(3H)-on-yl, pyrazinyl, 1,3,5-triazinyl, 1*H*-indolyl, 1*H*-indazolyl, benzofuranyl,

imidazo[1,2-a]pyridinyl, imidazo[1,2-a]pyrimidinyl, imidazo[1,2-c]pyrimidinyl,

imidazo[1,2-*b*]pyridazinyl, imidazo[1,2-*a*]pyrazinyl, imidazo[1,5-*a*]pyridinyl, [1,2,3]triazolo[1,5-a]pyridinyl, 1*H*-[1,2,3]triazolo[4,5-b]pyridinyl, 3*H*-[1,2,3]triazolo[4,5-c]pyridinyl, 3*H*-[1,2,3]triazolo[4,5-c]pyridazinyl, [1,2,4]triazolo[1,5-a]pyridinyl,

1*H*-benzimidazolyl, 1*H*-benzotriazolyl, 1*H*-pyrrolo[2,3-*b*]pyridinyl, 1*H*-pyrrolo[2,3-*c*]pyridinyl,

[1,2,4]triazolo[4,3-b]pyridazinyl, and quinolinyl, optionally substituted with one, two, three or four R_8 substituents.

Another aspect includes a compound of Formula (I) wherein R₆ is heteroaryl selected from furanyl, thienyl, 1*H*-pyrrolyl, 1*H*-pyrazolyl, 1*H*-imidazolyl, 1*H*-1,2,3-triazolyl, 2*H*-1,2,3-triazolyl, 1*H*-1,2,4-triazolyl, 4*H*-1,2,4-triazolyl, 1,3-thiazolyl, 1,2-oxazolyl, 1,3-oxazolyl, 1,2,4-thiadiazolyl, 1,3,4-thiadiazol-yl, pyridinyl, pyridin-2(1*H*)-on-yl, pyridazinyl, pyrimidinyl, pyrimidin-4(3*H*)-on-yl, pyrazinyl, 1,3,5-triazinyl, 1*H*-benzotriazolyl, 1*H*-pyrrolo[2,3-*b*]pyridinyl, imidazo[1,2-*a*]pyridinyl, imidazo[1,2-*a*]pyridinyl, imidazo[1,5-*a*]pyridinyl, [1,2,3]triazolo[1,5-*a*]pyridinyl,

1H-[1,2,3]triazolo[4,5-b]pyridinyl, 3H-[1,2,3]triazolo[4,5-c]pyridinyl, [1,2,4]triazolo[1,5-a]pyridinyl, and [1,2,4]triazolo[4,3-b]pyridazinyl, optionally substituted with one, two, three or four R_8 substituents.

Another aspect includes a compound of Formula (I), wherein R₆ is heteroaryl selected from furan-2-yl, furan-3-yl, thien-2-yl, thien-3-yl, 1*H*-pyrrol-3-yl, 1*H*-pyrazol-1-yl, 5 1H-pyrazol-3-yl, 1H-pyrazol-4-yl, 1H-pyrazol-5-yl, 1H-imidazol-1-yl, 1H-imidazol-2-yl, 1*H*-imidazol-4-yl, 1*H*-1,2,3-triazol-1-yl, 1*H*-1,2,3-triazol-4-yl, 2*H*-1,2,3-triazol-2-yl, 2*H*-1,2,3triazol-4-yl, 1*H*-1,2,4-triazol-1-yl, 4*H*-1,2,4-triazol-4-yl, 1,3-thiazol-2-yl, 1,3-thiazol-5-yl, 1,2oxazol-4-yl, 1,3-oxazol-2-yl, 1,3-oxazol-3-yl, 1,3-oxazol-4-yl, 1,3-oxazol-5-yl, 1,2,4-thiadiazol-5yl, 1,3,4-thiadiazol-2-yl, pyridin-2-yl, pyridin-3-yl, pyridin-4-yl, pyridin-2(1*H*)-on-4-yl, 10 pyridazin-3-yl, pyridazin-4-yl, pyrimidin-4-yl, pyrimidin-5-yl, pyrimidin-4(3H)-on-6-yl, pyrazin-1-yl, pyrazin-2-yl, 1,3,5-triazin-2-yl, 1*H*-indol-3-yl, 1*H*-indol-4-yl, 1*H*-indol-5-yl, 1*H*-indol-6-yl, 1*H*-indazol-5-yl, 1*H*-indazol-6-yl, benzofuran-2-yl, benzofuran-5-yl, 1*H*-benzimidazol-2-yl, 1H-benzimidazol-5-yl, 1H-benzimidazol-6-yl, 1H-benzotriazol-4-yl, 1H-benzotriazol-5-yl, 1Hbenzotriazol-6-yl, 1*H*-benzotriazol-7-yl, 1*H*-pyrrolo[2,3-*b*]pyridin-4-yl, 15 1*H*-pyrrolo[2,3-*b*]pyridin-5-yl, 1*H*-pyrrolo[2,3-*c*]pyridin-4-yl, pyrrolo[1,2-*a*]pyrimidin-7-yl, pyrrolo[1,2-a]pyrazin-7-yl, pyrrolo[1,2-b]pyridazin-2-yl, pyrazolo[1,5-a]pyridin-2-yl, pyrazolo[1,5-a]pyridin-5-yl, 2H-pyrazolo[4,3-b]pyridin-5-yl, 2H-pyrazolo[4,3-c]pyridin-5-yl, pyrazolo[1,5-a]pyrazin-2-yl, imidazo[1,2-a]pyridin-2-yl, imidazo[1,2-a]pyridin-6-yl, imidazo[1,2-a]pyridin-7-yl, imidazo[1,2-a]pyrimidin-2-yl, imidazo[1,2-a]pyrimidin-6-yl, 20 imidazo[1,2-c]pyrimidin-2-yl, imidazo[1,2-b]pyridazin-2-yl, imidazo[1,2-b]pyridazin-6-yl, imidazo[1,2-a]pyrazin-2-yl, imidazo[1,2-a]pyrazin-3-yl, imidazo[1,2-a]pyrazin-6-yl, imidazo[1,5-a]pyridine-6-yl, imidazo[1,5-a]pyridin-7-yl, [1,2,3]triazolo[1,5-a]pyridin-5-yl, [1,2,3]triazolo[1,5-a]pyridin-7-yl, 1*H*-[1,2,3]triazolo[4,5-b]pyridin-5-yl, 1*H*-[1,2,3]triazolo[4,5-25 b]pyridin-6-yl, 3*H*-[1,2,3]triazolo[4,5-c]pyridin-6-yl, 3*H*-[1,2,3]triazolo[4,5-c]pyridazin-6-yl, [1,2,4]triazolo[1,5-a]pyridin-7-yl, [1,2,4]triazolo[4,3-b]pyridazin-6-yl, quinolin-6-yl, quinolin-7yl, and quinolin-8-yl, optionally substituted with one, two, three or four R₈ substituents.

Another aspect includes a compound of Formula (I), wherein R₆ is heteroaryl selected from furan-3-yl, thien-3-yl, 1*H*-pyrrol-3-yl, 1*H*-pyrazol-1-yl, 1*H*-pyrazol-3-yl, 1*H*-pyrazol-4-yl, 1*H*-pyrazol-5-yl, 1*H*-imidazol-1-yl, 1*H*-imidazol-2-yl, 1*H*-imidazol-4-yl, 1*H*-1,2,3-triazol-1-yl, 1*H*-1,2,3-triazol-4-yl, 2*H*-1,2,3-triazol-4-yl, 2*H*-1,2,4-triazol-1-yl, 4*H*-

30

1,2,4-triazol-4-yl, 1,3-thiazol-2-yl, 1,3-thiazol-5-yl, 1,2-oxazol-4-yl, 1,3-oxazol-2-yl, 1,3-oxazol-5-yl, 1,2,4-thiadiazol-5-yl, 1,3,4-thiadiazol-2-yl, pyridin-2-yl, pyridin-3-yl, pyridin-4-yl, pyridin-2(1*H*)-on-4-yl, pyridazin-3-yl, pyridazin-4-yl, pyrimidin-4-yl, pyrimidin-5-yl, pyrimidin-4(3*H*)-on-6-yl, pyrazin-2-yl, 1,3,5-triazin-2-yl, 1*H*-benzotriazol-6-yl, 1*H*-pyrrolo[2,3-*b*]pyridin-4-yl, 1*H*-pyrrolo[2,3-*c*]pyridin-4-yl, imidazo[1,2-*a*]pyridin-7-yl, imidazo[1,2-*a*]pyrimidin-6-yl, imidazo[1,2-*a*]pyridin-3-yl, imidazo[1,2-*a*]pyrazin-6-ylimidazo[1,5-*a*]pyridin-7-yl, [1,2,3]triazolo[1,5-a]pyridin-5-yl, 1*H*-[1,2,3]triazolo[4,5-b]pyridin-5-yl, 1*H*-[1,2,3]triazolo[4,5-b]pyridin-6-yl, 3*H*-[1,2,3]triazolo[4,5-c]pyridin-6-yl, and [1,2,4]triazolo[4,3-b]pyridazin-6-yl, optionally substituted with one, two, three or four R₈ substituents.

5

10

15

20

25

30

One aspect includes a compound of Formula (I) wherein R_7 is, in each instance, independently selected from cyano, halogen, hydroxy, $C_{1\text{-}6}$ alkyl, deutero- $C_{1\text{-}4}$ alkyl, halo- $C_{1\text{-}6}$ alkyl, $C_{1\text{-}6}$ alkoxy, halo- $C_{1\text{-}6}$ alkoxy, $C_{1\text{-}6}$ alkoxy, $C_{1\text{-}6}$ alkyl, amino, $C_{1\text{-}6}$ alkyl, amino, $C_{1\text{-}6}$ alkyl, and $C_{3\text{-}10}$ cycloalkyl.

One aspect includes a compound of Formula (I) wherein R_8 is, in each instance, independently selected from cyano, halogen, hydroxy, $C_{1\text{-}6}$ alkyl, deutero- $C_{1\text{-}4}$ alkyl, halo- $C_{1\text{-}6}$ alkyl, $C_{1\text{-}6}$ alkoxy, halo- $C_{1\text{-}6}$ alkoxy, $C_{1\text{-}6}$ alkyl, amino, $C_{1\text{-}6}$ alkyl-amino, ($C_{1\text{-}6}$ alkyl)₂-amino, amino- $C_{1\text{-}6}$ alkyl, and $C_{3\text{-}10}$ cycloalkyl.

One aspect includes a compound of Formula (I) wherein R_8 is, in each instance, independently selected from cyano, halogen, hydroxy, C_{1-6} alkyl, deutero- C_{1-4} alkyl, halo- C_{1-6} alkyl, C_{1-6} alkoxy, halo- C_{1-6} alkoxy, amino, C_{1-6} alkyl-amino, $(C_{1-6}$ alkyl)₂-amino, and C_{3-10} cycloalkyl.

Another aspect includes a compound of Formula (I) wherein R₈ is cyano.

Another aspect includes a compound of Formula (I), wherein R_8 is halogen selected from bromo, chloro, fluoro, and iodo.

Another aspect includes a compound of Formula (I), wherein R₈ is halogen selected from bromo, chloro, and fluoro.

Another aspect includes a compound of Formula (I) wherein R₈ is hydroxy.

Another aspect includes a compound of Formula (I), wherein R_8 is is C_{1-6} alkyl selected from methyl, ethyl, propyl, isopropyl, and tert-butyl.

Another aspect includes a compound of Formula (I), wherein R_8 is is $C_{1\text{-}6}$ alkyl selected from methyl, ethyl, and propyl.

Another aspect includes a compound of Formula (I) wherein R_8 is deutero- $C_{1\text{--}4}$ alkyl wherein $C_{1\text{--}4}$ alkyl is selected from methyl, ethyl, propyl, isopropyl, butyl, isobutyl, sec-butyl, and tert-butyl partially or completely substituted with one or more deuterium atoms where allowed by available valences.

Another aspect includes a compound of Formula (I) wherein R_8 is (2H_3)methyl.

5

10

15

20

25

30

Another aspect includes a compound of Formula (I), wherein R_8 is halo- $C_{1\text{-}6}$ alkyl, wherein $C_{1\text{-}6}$ alkyl is selected from methyl, ethyl, propyl, isopropyl, butyl, isobutyl, sec-butyl, and tert-butyl partially or completely substituted with one or more halogens selected from bromo, chloro, fluoro, and iodo where allowed by available valences.

Another aspect includes a compound of Formula (I), wherein R_8 is halo- C_{1-6} alkyl selected from trifluromethyl and difluoromethyl.

Another aspect includes a compound of Formula (I), wherein R_8 is C_{1-6} alkoxy selected from methoxy, ethoxy, propoxy, isopropoxy, and tert-butoxy.

Another aspect includes a compound of Formula (I), wherein R_8 is $C_{1\text{-}6}$ alkoxy selected from methoxy and ethoxy.

Another aspect includes a compound of Formula (I), wherein R_8 is halo- $C_{1\text{-}6}$ alkoxy, wherein $C_{1\text{-}6}$ alkoxy is selected from methoxy, ethoxy, propoxy, isopropoxy, and tert-butoxy partially or completely substituted with one or more halogens selected from bromo, chloro, fluoro, and iodo where allowed by available valences.

Another aspect includes a compound of Formula (I), wherein R_8 is difluoromethoxy.

Another aspect includes a compound of Formula (I) wherein R₈ is amino.

Another aspect includes a compound of Formula (I), wherein R_8 is $C_{1\text{-}6}$ alkyl-amino wherein $C_{1\text{-}6}$ alkyl is selected from methyl, ethyl, propyl, isopropyl, butyl, isobutyl, sec-butyl, and tert-butyl.

Another aspect includes a compound of Formula (I), wherein R₈ is methylamino.

Another aspect includes a compound of Formula (I), wherein R_8 is $(C_{1\text{-}6}alkyl)_2$ -amino wherein $C_{1\text{-}6}alkyl$ is independently selected from methyl, ethyl, propyl, isopropyl, butyl, isobutyl, sec-butyl, and tert-butyl.

Another aspect includes a compound of Formula (I), wherein R₈ is dimethylamino.

Another aspect includes a compound of Formula (I), wherein R₈ is C₃₋₁₀cycloalkyl selected from cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl or cyclohexyl.

Another aspect includes a compound of Formula (I), wherein R₈ is cyclopropyl.

One aspect of the compound of Formula (I) includes a compound selected from Formula (Ia), Formula (Ib), Formula (Id), Formula (Ie), Formula (If), Formula (Ig), Formula (Ih), Formula (Ii), Formula (Ij), Formula (Ik), Formula (II), Formula (Im), Formula (In), Formula (Io), Formula (Ip), Formula (Iq), Formula (Is), Formula (It), Formula (Iu), Formula (Iv), Formula (Iw), Formula (Ix), Formula (Ig), Formula (Iaa), Formula (Ibb), Formula (Icc), Formula (Idd), Formula (Iee), Formula (Iff), Formula (Igg), Formula (Ihh), Formula (Iii), Formula (Ijj), Formula (Ikk), Formula (Ill), Formula (Imm), Formula (Inn), Formula (Ioo), Formula (Ipp), Formula (Iqq), Formula (Irr), Formula (Iss), Formula (Itt), Formula (Iuu), Formula (Iww), Formula (Ixx),

5

Formula (Iyy), Formula (Izz), Formula (Iaaa), Formula (Ibbb), Formula (Iccc), Formula (Iddd), Formula (Ieee), Formula (Ifff), Formula (Iggg), or Formula (Ihhh):

$$R_{b} \xrightarrow{N_{1}} R_{2} \xrightarrow{N_{2}} R_{1} \xrightarrow{N_{3}} R_{2} \xrightarrow{N_{4}} R_{2} \xrightarrow{R_{2}} R_{1} \xrightarrow{N_{4}} R_{2} \xrightarrow{R_{2}} R_{1} \xrightarrow{N_{3}} R_{1} \xrightarrow{N_{4}} R_{2} \xrightarrow{N_{5}} R_{1} \xrightarrow{R_{1}} R_{2} \xrightarrow{N_{1}} R_{2} \xrightarrow{N_{1}} R_{2} \xrightarrow{N_{2}} R_{1} \xrightarrow{N_{3}} R_{1} \xrightarrow{N_{4}} R_{2} \xrightarrow{N_{5}} R_{1} \xrightarrow{N_{5}} R_{2} \xrightarrow{N_{5}} R_{1} \xrightarrow{N_{5}} R_{2} \xrightarrow{N_{5}} R_{1} \xrightarrow{N_{5}} R_{2} \xrightarrow{N_{5}} R_{1} \xrightarrow{N_{5}} R_{2} \xrightarrow{N_{5}} R_{2} \xrightarrow{N_{5}} R_{1} \xrightarrow{N_{5}} R_{2} \xrightarrow{N_{5}} R_{1} \xrightarrow{N_{5}} R_{2} \xrightarrow{N_{5}} R_{2} \xrightarrow{N_{5}} R_{2} \xrightarrow{N_{5}} R_{2} \xrightarrow{N_{5}} R_{1} \xrightarrow{N_{5}} R_{2} \xrightarrow{N_{5}} R_{2} \xrightarrow{N_{5}} R_{2} \xrightarrow{N_{5}} R_{1} \xrightarrow{N_{5}} R_{2} \xrightarrow{N_{5}} R_{2$$

or a form thereof.

Another aspect of the compound of Formula (I) includes a compound selected from Formula (Ie), Formula (Ii), Formula (Ik), Formula (Ip), Formula (Iq), Formula (It), Formula (Iu), Formula (Ix), Formula (Iz), Formula (Ibb), Formula (Icc), or Formula (Idd):

Another aspect of the compound of Formula (I) includes a compound selected from Formula (Ia1), Formula (Ib1), Formula (Id1), Formula (Ie1), Formula (If1), Formula (Ig1), Formula (Ih1), Formula (Ii1), Formula (Io1), Formula (Ip1), Formula (Iq1), Formula (Is1), Formula (It1), Formula (Iu1), Formula (Iv1), Formula (Iw1), Formula (Iw1), Formula (Id1), Formula (Ig1), Formula (Ig1), Formula (Ibb1), Formula (Iii1), Formula (Ijj1), Formula (Ikk1), Formula (Ill1), Formula (Imm1), Formula (Inn1), Formula (Ioo1), Formula (Ipp1), Formula (Iqq1), Formula (Irr1), Formula (Iss1), Formula (It1), Formula (Iuu1), Formula (Iww1), Formula (Ixx1), Formula (Iyy1), Formula (Izz1), Formula (Iaaa1), Formula (Ibbb1), Formula (Iccc1), Formula (Iddd1), Formula (Ieee1), Formula (Ifff1), Formula (Iggg1), or Formula (Ihhh1):

or a form thereof.

Another aspect of the compound of Formula (I) includes a compound selected from Formula (Ie1), Formula (Ii1), Formula (Ik1), Formula (Ip1), Formula (Iq1), Formula (It1), Formula (Ix1), Formula (Iz1), Formula (Ibb1), Formula (Icc1), or Formula (Idd1):

or a form thereof.

Another aspect of the compound of Formula (I) includes the compound of Formula (Ie1):

$$R_a$$
 R_a
 R_a
 R_a
 R_a
 R_a
 R_a

or a form thereof.

Another aspect of the compound of Formula (I) includes the compound of Formula (Ii1):

$$R_a$$

$$R_1$$
(Ii1)

5 or a form thereof.

Another aspect of the compound of Formula (I) includes the compound of Formula (Ik1):

$$R_{a}$$
 R_{2}
 R_{1}
 $(Ik1)$

Another aspect of the compound of Formula (I) includes the compound of Formula (Ip1):

$$R_a$$
 R_b
 R_a
 R_1
 R_1
 R_2

or a form thereof.

Another aspect of the compound of Formula (I) includes the compound of Formula (Iq1):

$$R_a$$
 R_a
 R_a
 R_a
 R_a
 R_a
 R_a
 R_a
 R_a

or a form thereof.

5

Another aspect of the compound of Formula (I) includes the compound of Formula (It1):

$$R_a$$
 R_a
 R_a
 R_a
 R_a
 R_a
 R_a
 R_a
 R_a

Another aspect of the compound of Formula (I) includes the compound of Formula (Is1):

$$R_a$$
 R_a
 R_a
 R_a
 R_a
 R_a
 R_a
 R_a
 R_a
 R_a

or a form thereof.

Another aspect of the compound of Formula (I) includes the compound of Formula (Ix1):

$$R_a$$
 R_a
 R_1
 R_1
 R_2

or a form thereof.

5

Another aspect of the compound of Formula (I) includes the compound of Formula (Iz1):

$$R_a$$
 R_a
 R_2
 R_1
 R_2
 R_1

Another aspect of the compound of Formula (I) includes the compound of Formula (Ibb1):

$$R_a$$
 R_1
 R_1
 R_2
 R_1
 R_2

or a form thereof.

Another aspect of the compound of Formula (I) includes the compound of Formula (Icc1):

$$R_a$$
 R_a
 R_1
 R_2
 R_1
 R_2

or a form thereof.

5

Another aspect of the compound of Formula (I) includes the compound of Formula (Idd1):

$$R_a$$
 R_a
 R_1
 R_1
 R_2
 R_1
 R_2

An aspect of the compound of Formula (I) or a form thereof includes a compound selected from the group consisting of:

wherein the form of the compound is selected from the group consisting of a salt, hydrate, solvate, racemate, enantiomer, diastereomer, stereoisomer, and tautomer form thereof.

An aspect the compound of Formula (I) or a form thereof (wherein compound number (#1) indicates that the salt form was isolated) includes a compound selected from the group consisting of:

5

Cpd Name

1 5-(1*H*-pyrazol-4-yl)-2-[1-(2,2,6,6-tetramethylpiperidin-4-yl)-1*H*-imidazo[4,5-b]pyrazin-5-yl]phenol

2 5-[2,5-difluoro-4-(1*H*-pyrazol-4-yl)phenyl]-1-(2,2,6,6-tetramethylpiperidin-4-yl)-1*H*-imidazo[4,5-b]pyrazine

Cpd	Name
31	5-(1 <i>H</i> -pyrazol-4-yl)-2-[7-(2,2,6,6-tetramethylpiperidin-4-yl)-7 <i>H</i> -imidazo[4,5-c]pyridazin-3-yl]phenol
41	3-[2,5-difluoro-4-(1 <i>H</i> -pyrazol-4-yl)phenyl]-7-(2,2,6,6-tetramethylpiperidin-4-yl)-7 <i>H</i> -imidazo[4,5-c]pyridazine
5 ¹	2-[6-methyl-7-(2,2,6,6-tetramethylpiperidin-4-yl)-7 <i>H</i> -imidazo[4,5-c]pyridazin-3-yl]-5-(1 <i>H</i> -pyrazol-4-yl)phenol
61	3-[2,5-difluoro-4-(1 <i>H</i> -pyrazol-4-yl)phenyl]-6-methyl-7-(2,2,6,6-tetramethylpiperidin-4-yl)-7 <i>H</i> -imidazo[4,5-c]pyridazine
7 ¹	5-(1 <i>H</i> -pyrazol-4-yl)-2-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3 <i>H</i> -[1,2,3]triazolo[4,5-c]pyridazin-6-yl]phenol
81	5-(1 <i>H</i> -pyrazol-4-yl)-2-[5-(2,2,6,6-tetramethyl-1,2,3,6-tetrahydropyridin-4-yl)-5 <i>H</i> -pyrrolo[2,3-b]pyrazin-2-yl]phenol
91	3-[2-hydroxy-4-(1 <i>H</i> -pyrazol-4-yl)phenyl]-7-(2,2,6,6-tetramethylpiperidin-4-yl)-7 <i>H</i> -imidazo[4,5-c]pyridazin-6-ol
10 ¹	5-(1H-pyrazol-4-yl)-2-[5-(2,2,6,6-tetramethylpiperidin-4-yl)-5H-pyrrolo[2,3-b]pyrazin-2-yl]phenol
11 ¹	5-(1H-pyrazol-4-yl)-2-[7-(1,2,3,6-tetrahydropyridin-4-yl)-5H-pyrrolo[3,2-c]pyridazin-3-yl]phenol
12 ¹	2-[7-(piperidin-4-yl)-5 <i>H</i> -pyrrolo[3,2-c]pyridazin-3-yl]-5-(1 <i>H</i> -pyrazol-4-yl)phenol
13 ¹	6-[2,3-difluoro-4-(1 <i>H</i> -pyrazol-4-yl)phenyl]-3-(2,2,6,6-tetramethylpiperidin-4-yl)-3 <i>H</i> -[1,2,3]triazolo[4,5-c]pyridazine
14 ¹	6-[2,5-difluoro-4-(1 <i>H</i> -pyrazol-4-yl)phenyl]-3-(2,2,6,6-tetramethylpiperidin-4-yl)-3 <i>H</i> -[1,2,3]triazolo[4,5-c]pyridazine
15 ¹	5-(1 <i>H</i> -pyrazol-4-yl)-2-[7-(1,2,3,6-tetrahydropyridin-4-yl)thieno[3,2-c]pyridazin-3-yl]phenol
16 ¹	2-[2,5-difluoro-4-(1 <i>H</i> -pyrazol-4-yl)phenyl]-5-(2,2,6,6-tetramethylpiperidin-4-yl)-5 <i>H</i> -pyrrolo[2,3-b]pyrazine
17 ¹	5-(1 <i>H</i> -pyrazol-4-yl)-2-[7-(2,2,6,6-tetramethyl-1,2,3,6-tetrahydropyridin-4-yl)thieno[3,2-c]pyridazin-3-yl]phenol
18 ¹	2-[7-(8-azabicyclo[3.2.1]oct-2-en-3-yl)thieno[3,2-c]pyridazin-3-yl]-5-(1 <i>H</i> -pyrazol-4-yl)phenol
19^{1}	2-[1-(piperidin-4-yl)-1 <i>H</i> -pyrazolo[3,4-b]pyrazin-5-yl]-5-(1 <i>H</i> -pyrazol-4-yl)phenol
201	5-(1 <i>H</i> -pyrazol-4-yl)-2-[7-(2,2,6,6-tetramethyl-1,2,3,6-tetrahydropyridin-4-yl)-5 <i>H</i> -pyrrolo[3,2-c]pyridazin-3-yl]phenol
21 ¹	2-[1-(piperidin-4-yl)-1 <i>H</i> -pyrazolo[3,4-c]pyridazin-5-yl]-5-(1 <i>H</i> -pyrazol-4-yl)phenol
22 ¹	5-(1 <i>H</i> -pyrazol-4-yl)-2-[1-(2,2,6,6-tetramethylpiperidin-4-yl)-1 <i>H</i> -pyrazolo[3,4-c]pyridazin-5-yl]phenol
23 ¹	5-(1 <i>H</i> -pyrazol-4-yl)-2-[7-(2,2,6,6-tetramethylpiperidin-4-yl)-6,7-dihydro-5 <i>H</i> -pyrrolo[2,3-c]pyridazin-3-yl]phenol

Cpd	Name
241	5-(1 <i>H</i> -pyrazol-4-yl)-2-[7-(2,2,6,6-tetramethylpiperidin-4-yl)thieno[3,2-c]pyridazin-3-yl]phenol
25 ¹	2-[7-(3-oxa-9-azabicyclo[3.3.1]non-6-en-7-yl)thieno[3,2-c]pyridazin-3-yl]-5-(1 <i>H</i> -pyrazol-4-yl)phenol
26 ¹	5-(1 <i>H</i> -pyrazol-4-yl)-2-[7-(2,2,6,6-tetramethylpiperidin-4-yl)-7 <i>H</i> -pyrrolo[2,3-c]pyridazin-3-yl]phenol
27 ¹	2-[7-(8-azabicyclo[3.2.1]oct-2-en-3-yl)-5 <i>H</i> -pyrrolo[3,2-c]pyridazin-3-yl]-5-(1 <i>H</i> -pyrazol-4-yl)phenol
281	$2\text{-}[7\text{-}(3\text{-}oxa\text{-}9\text{-}azabicyclo}[3.3.1]\text{non-}6\text{-}en\text{-}7\text{-}yl)\text{-}5H\text{-}pyrrolo}[3,2\text{-}c]pyridazin-3\text{-}yl]\text{-}5\text{-}(1H\text{-}pyrazol\text{-}4\text{-}yl)phenol}$
29 ¹	2-[7-(8-azabicyclo[3.2.1]oct-3-yl)-5 <i>H</i> -pyrrolo[3,2-c]pyridazin-3-yl]-5-(1 <i>H</i> -pyrazol-4-yl)phenol
301	2-[7-(3-oxa-9-azabicyclo[3.3.1]non-7-yl)-5 <i>H</i> -pyrrolo[3,2-c]pyridazin-3-yl]-5-(1 <i>H</i> -pyrazol-4-yl)phenol
311	5-(1 <i>H</i> -pyrazol-4-yl)-2-[7-(2,2,6,6-tetramethylpiperidin-4-yl)-5 <i>H</i> -pyrrolo[3,2-c]pyridazin-3-yl]phenol
321	3-[2,3-difluoro-4-(1 <i>H</i> -pyrazol-4-yl)phenyl]-7-(2,2,6,6-tetramethylpiperidin-4-yl)-6,7-dihydro-5 <i>H</i> -pyrrolo[2,3-c]pyridazine
331	4-fluoro-2-(1 <i>H</i> -pyrazol-4-yl)-5-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3 <i>H</i> -[1,2,3]triazolo[4,5-c]pyridazin-6-yl]phenol
34	5-(1 <i>H</i> -pyrazol-1-yl)-2-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3 <i>H</i> -[1,2,3]triazolo[4,5-c]pyridazin-6-yl]phenol
35 ¹	4-fluoro-5-(1 <i>H</i> -pyrazol-4-yl)-2-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3 <i>H</i> -[1,2,3]triazolo[4,5-c]pyridazin-6-yl]phenol
36 ¹	7-[(3-exo)-8-azabicyclo[3.2.1]oct-3-yl]-3-[2,3-difluoro-4-(1 H -pyrazol-4-yl)phenyl]-6,7-dihydro-5 H -pyrrolo[2,3-c]pyridazine
37	$4-{3-hydroxy-4-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3}H-[1,2,3]triazolo[4,5-c]pyridazin-6-yl]phenyl}-1-methylpyridin-2(1H)-one$
381	4-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3H-[1,2,3]triazolo[4,5-c]pyridazin-6-yl]biphenyl-3,4'-diol
39 ¹	5-(1-methyl-1 <i>H</i> -pyrazol-4-yl)-2-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3 <i>H</i> -[1,2,3]triazolo[4,5-c]pyridazin-6-yl]phenol
40 ¹	2-[6-methoxy-7-(2,2,6,6-tetramethylpiperidin-4-yl)-7 <i>H</i> -imidazo[4,5-c]pyridazin-3-yl]-5-(1 <i>H</i> -pyrazol-4-yl)phenol
421	2-[6-(methylamino)-7-(2,2,6,6-tetramethylpiperidin-4-yl)-7 <i>H</i> -imidazo[4,5-c]pyridazin-3-yl]-5-(1 <i>H</i> -pyrazol-4-yl)phenol
43	2-[7-(piperazin-1-yl)-5 <i>H</i> -pyrrolo[3,2-c]pyridazin-3-yl]-5-(1 <i>H</i> -pyrazol-4-yl)phenol
46	5-(1-ethyl-1 <i>H</i> -pyrazol-4-yl)-2-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3 <i>H</i> -[1,2,3]triazolo[4,5-c]pyridazin-6-yl]phenol

Cpd	Name
47	5-(1-propyl-1 <i>H</i> -pyrazol-4-yl)-2-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3 <i>H</i> -[1,2,3]triazolo[4,5-c]pyridazin-6-yl]phenol
48	5-(1 <i>H</i> -pyrazol-3-yl)-2-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3 <i>H</i> -[1,2,3]triazolo[4,5-c]pyridazin-6-yl]phenol
49 ¹	2-[6-(ethylamino)-7-(2,2,6,6-tetramethylpiperidin-4-yl)-7 <i>H</i> -imidazo[4,5-c]pyridazin-3-yl]-5-(1 <i>H</i> -pyrazol-4-yl)phenol
50	5-(1-methyl-1 <i>H</i> -pyrazol-5-yl)-2-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3 <i>H</i> -[1,2,3]triazolo[4,5-c]pyridazin-6-yl]phenol
51	5-(1-methyl-1 <i>H</i> -pyrazol-3-yl)-2-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3 <i>H</i> -[1,2,3]triazolo[4,5-c]pyridazin-6-yl]phenol
52 ¹	2-[3-(1,2,2,6,6-pentamethylpiperidin-4-yl)-3H-[1,2,3]triazolo[4,5-c]pyridazin-6-yl]-5-(1 <i>H</i> -pyrazol-4-yl)phenol
53 ¹	6-fluoro-4-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3 <i>H</i> -[1,2,3]triazolo[4,5-c]pyridazin-6-yl][1,1'-biphenyl]-3,4'-diol
54 ¹	2-fluoro-3-(1 <i>H</i> -pyrazol-4-yl)-6-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3 <i>H</i> -[1,2,3]triazolo[4,5-c]pyridazin-6-yl]phenol
55 ¹	4- $\{2\text{-fluoro-5-hydroxy-4-}[3-(2,2,6,6\text{-tetramethylpiperidin-4-yl})-3H-[1,2,3]\text{triazolo}[4,5-c]\text{pyridazin-6-yl}]\text{phenyl}-1-\text{methylpyridin-2}(1H)-\text{one}$
56 ¹	2-[3-(2,2-dimethylpiperidin-4-yl)-3 <i>H</i> -[1,2,3]triazolo[4,5-c]pyridazin-6-yl]-5-(1 <i>H</i> -pyrazol-4-yl)phenol
57 ¹	2- $\{3-[(1R,5S)-1,5-dimethyl-8-azabicyclo[3.2.1]octan-3-yl]-3H-[1,2,3]triazolo[4,5-c]pyridazin-6-yl\}-5-(1H-pyrazol-4-yl)phenol$
58 ¹	2-(1 <i>H</i> -pyrazol-4-yl)-5-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3 <i>H</i> -[1,2,3]triazolo[4,5-c]pyridazin-6-yl]benzene-1,4-diol
59 ¹	3-fluoro-5-(1 <i>H</i> -pyrazol-4-yl)-2-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3 <i>H</i> -[1,2,3]triazolo[4,5-c]pyridazin-6-yl]phenol
60 ¹	5-(pyrazin-2-yl)-2-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3 <i>H</i> -[1,2,3]triazolo[4,5-c]pyridazin-6-yl]phenol
61 ¹	5-(pyridin-2-yl)-2-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3 <i>H</i> -[1,2,3]triazolo[4,5-c]pyridazin-6-yl]phenol
621	4-fluoro-5-(1-methyl-1 H -pyrazol-4-yl)-2-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3 H -[1,2,3]triazolo[4,5-c]pyridazin-6-yl]phenol
631	2-[3-(2,2,6,6-tetramethylpiperidin-4-yl)- $3H$ -[1,2,3]triazolo[4,5-c]pyridazin-6-yl]-5-($1H$ -1,2,4-triazol-1-yl)phenol
64 ¹	2-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3 <i>H</i> -[1,2,3]triazolo[4,5-c]pyridazin-6-yl]-5-(4 <i>H</i> -1,2,4-triazol-4-yl)phenol
65 ¹	5-(pyridin-3-yl)-2-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3 <i>H</i> -[1,2,3]triazolo[4,5-c]pyridazin-6-yl]phenol

Cpd	Name
66 ¹	5-(pyridin-4-yl)-2-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3 <i>H</i> -[1,2,3]triazolo[4,5-c]pyridazin-6-yl]phenol
67 ¹	6-{3-hydroxy-4-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3 <i>H</i> -[1,2,3]triazolo[4,5-c]pyridazin-6-yl]phenyl}pyridin-3-ol
68 ¹	2-{3-hydroxy-4-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3 <i>H</i> -[1,2,3]triazolo[4,5-c]pyridazin-6-yl]phenyl}pyrimidin-5-ol
691	$5-[1-(^2H_3)]$ methyl- $1H$ -pyrazol- $4-y$ l]- $2-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3H-[1,2,3]triazolo[4,5-c]pyridazin-6-yl]phenol$
70 ¹	5-(1H-imidazol-1-yl)-2-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3H-[1,2,3]triazolo[4,5-c]pyridazin-6-yl]phenol
71 ¹	5-[1-(difluoromethyl)-1 <i>H</i> -pyrazol-4-yl]-2-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3 <i>H</i> -[1,2,3]triazolo[4,5-c]pyridazin-6-yl]phenol
72 ¹	2-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3 H -[1,2,3]triazolo[4,5-c]pyridazin-6-yl]-5-(1 H -1,2,3-triazol-1-yl)phenol
73 ¹	5-(2-methylpyridin-4-yl)-2-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3 <i>H</i> -[1,2,3]triazolo[4,5-c]pyridazin-6-yl]phenol
74 ¹	2-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3H-[1,2,3]triazolo[4,5-c]pyridazin-6-yl]-5-[2-(trifluoromethyl)pyridin-4-yl]phenol
75 ¹	5-(pyrimidin-4-yl)-2-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3 <i>H</i> -[1,2,3]triazolo[4,5-c]pyridazin-6-yl]phenol
76 ¹	5-(pyridazin-4-yl)-2-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3 <i>H</i> -[1,2,3]triazolo[4,5-c]pyridazin-6-yl]phenol
77 ¹	5-(2-methoxypyridin-4-yl)-2-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3 <i>H</i> -[1,2,3]triazolo[4,5-c]pyridazin-6-yl]phenol
78	5-(pyrimidin-5-yl)-2-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3 <i>H</i> -[1,2,3]triazolo[4,5-c]pyridazin-6-yl]phenol
79 ¹	6-{3-hydroxy-4-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3 <i>H</i> -[1,2,3]triazolo[4,5-c]pyridazin-6-yl]phenyl}pyridazin-3-ol
80	5-(1 <i>H</i> -pyrrol-3-yl)-2-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3 <i>H</i> -[1,2,3]triazolo[4,5-c]pyridazin-6-yl]phenol
811	6-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3 <i>H</i> -[1,2,3]triazolo[4,5-c]pyridazin-6-yl]quinolin-7-ol
82	(3E)-3-(hydroxyimino)-6-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3 H -[1,2,3]triazolo[4,5-c]pyridazin-6-yl]-2,3-dihydro-1 H -inden-5-ol
831	4-chloro-5-(1 <i>H</i> -pyrazol-4-yl)-2-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3 <i>H</i> -[1,2,3]triazolo[4,5-c]pyridazin-6-yl]phenol
84	5-[6-(dimethylamino)pyridin-3-yl]-2-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3 <i>H</i> -[1,2,3]triazolo[4,5-c]pyridazin-6-yl]phenol

Cpd	Name
85	5-(imidazo[1,2-a]pyrazin-3-yl)-2-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3 <i>H</i> -[1,2,3]triazolo[4,5-c]pyridazin-6-yl]phenol
86	1-cyclopropyl-4-{3-hydroxy-4-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3 <i>H</i> -[1,2,3]triazolo[4,5-c]pyridazin-6-yl]phenyl}pyridin-2(1 <i>H</i>)-one
871	4-fluoro-5-(pyridin-4-yl)-2-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3 H -[1,2,3]triazolo[4,5-c]pyridazin-6-yl]phenol
88	5-(imidazo[1,5-a]pyridin-7-yl)-2-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3 <i>H</i> -[1,2,3]triazolo[4,5-c]pyridazin-6-yl]phenol
891	2-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3 <i>H</i> -[1,2,3]triazolo[4,5-c]pyridazin-6-yl]-5-(thiophen-3-yl)phenol
90	5-(imidazo[1,2-a]pyridin-7-yl)-2-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3 <i>H</i> -[1,2,3]triazolo[4,5-c]pyridazin-6-yl]phenol
91	5-(1H-imidazol-2-yl)-2-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3H-[1,2,3]triazolo[4,5-c]pyridazin-6-yl]phenol
92	1-methyl-5-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3 H -[1,2,3]triazolo[4,5-c]pyridazin-6-yl]-1 H -benzimidazol-6-ol
931	4- $\{3-\text{hydroxy-}4-[3-(2,2,6,6-\text{tetramethylpiperidin-}4-\text{yl})-3H-[1,2,3]\text{triazolo}[4,5-c]$ pyridazin-6-yl]phenyl}pyridin- $2(1H)$ -one
94	5-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3H-[1,2,3]triazolo[4,5-c]pyridazin-6-yl]-1 H -indazol-6-ol
95 ¹	5-(furan-3-yl)-2-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3 <i>H</i> -[1,2,3]triazolo[4,5-c]pyridazin-6-yl]phenol
96 ¹	2-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3H-[1,2,3]triazolo[4,5-c]pyridazin-6-yl]-5-(1,3-thiazol-2-yl)phenol
97	2-methyl-5-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3 H -[1,2,3]triazolo[4,5-c]pyridazin-6-yl]-1 H -benzimidazol-6-ol
98 ¹	5-(1-methyl-1H-pyrazol-4-yl)-2-[1-(2,2,6,6-tetramethylpiperidin-4-yl)-1H-pyrazolo[3,4-c]pyridazin-5-yl]phenol
99	5-(2-aminopyridin-4-yl)-2-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3 H -[1,2,3]triazolo[4,5-c]pyridazin-6-yl]phenol
100	5-[2-(dimethylamino)pyridin-4-yl]-2-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3 <i>H</i> -[1,2,3]triazolo[4,5-c]pyridazin-6-yl]phenol
101	5-(3-fluoropyridin-4-yl)-2-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3 H -[1,2,3]triazolo[4,5-c]pyridazin-6-yl]phenol
1021	$5-[1-(^2H_3)$ methyl $-1H$ -pyrazol -4 -yl $]-2-[1-(2,2,6,6)$ -tetramethylpiperidin -4 -yl $)-1H$ -pyrazolo $[3,4$ -c $]$ pyridazin -5 -yl $]$ phenol
1031	5-[5-(difluoromethoxy)pyridin-2-yl]-2-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3 <i>H</i> -[1,2,3]triazolo[4,5-c]pyridazin-6-yl]phenol

Cpd	Name
104	5-[2-(methylamino)pyridin-4-yl]-2-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3 <i>H</i> -[1,2,3]triazolo[4,5-c]pyridazin-6-yl]phenol
105 ¹	5-(1 <i>H</i> -pyrazol-4-yl)-2-[7-(2,2,6,6-tetramethyl-1,2,3,6-tetrahydropyridin-4-yl)furo[3,2-c]pyridazin-3-yl]phenol
106 ¹	5-(3-fluoro-1 <i>H</i> -pyrazol-4-yl)-2-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3 <i>H</i> -[1,2,3]triazolo[4,5-c]pyridazin-6-yl]phenol
107 ¹	2-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3H-[1,2,3]triazolo[4,5-c]pyridazin-6-yl]-5-(1,3-thiazol-5-yl)phenol
108 ¹	5-(3-methyl-1 H -pyrazol-4-yl)-2-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3 H -[1,2,3]triazolo[4,5-c]pyridazin-6-yl]phenol
109 ¹	4-{3-hydroxy-4-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3 <i>H</i> -[1,2,3]triazolo[4,5-c]pyridazin-6-yl]phenyl}-1 <i>H</i> -pyrazole-3-carbonitrile
110^{1}	2-{3-hydroxy-4-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3 <i>H</i> -[1,2,3]triazolo[4,5-c]pyridazin-6-yl]phenyl}-1,3-thiazole-5-carbonitrile
111 ¹	5-(1,3-oxazol-2-yl)-2-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3 <i>H</i> -[1,2,3]triazolo[4,5-c]pyridazin-6-yl]phenol
112	2-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3 H -[1,2,3]triazolo[4,5-c]pyridazin-6-yl]-5-(1 H -1,2,3-triazol-4-yl)phenol
113	5-(6-methoxypyrimidin-4-yl)-2-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3 <i>H</i> -[1,2,3]triazolo[4,5-c]pyridazin-6-yl]phenol
114 ¹	5-[2-(difluoromethoxy)pyridin-4-yl]-2-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3 <i>H</i> -[1,2,3]triazolo[4,5-c]pyridazin-6-yl]phenol
115	5-(1H-imidazol-4-yl)-2-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3H-[1,2,3]triazolo[4,5-c]pyridazin-6-yl]phenol
116 ¹	2-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3H-[1,2,3]triazolo[4,5-c]pyridazin-6-yl]-5-(1,3,4-thiadiazol-2-yl)phenol
117 ¹	6-[4-(1 H -pyrazol-4-yl)-1 H -benzotriazol-7-yl]-3-(2,2,6,6-tetramethylpiperidin-4-yl)-3 H -[1,2,3]triazolo[4,5-c]pyridazine
118 ¹	5-(1 <i>H</i> -pyrrolo[2,3-b]pyridin-4-yl)-2-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3 <i>H</i> -[1,2,3]triazolo[4,5-c]pyridazin-6-yl]phenol
119 ¹	5-(2-methoxypyrimidin-4-yl)-2-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3 <i>H</i> -[1,2,3]triazolo[4,5-c]pyridazin-6-yl]phenol
120 ¹	5-(1,2-oxazol-4-yl)-2-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3 <i>H</i> -[1,2,3]triazolo[4,5-c]pyridazin-6-yl]phenol
121 ¹	5-(5-fluoro-1-methyl-1 <i>H</i> -pyrazol-4-yl)-2-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3 <i>H</i> -[1,2,3]triazolo[4,5-c]pyridazin-6-yl]phenol
122 ¹	5-(1-ethyl-5-fluoro-1 <i>H</i> -pyrazol-4-yl)-2-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3 <i>H</i> -[1,2,3]triazolo[4,5-c]pyridazin-6-yl]phenol

Cpd	Name
123 ¹	5-(2-ethoxypyridin-4-yl)-2-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3 <i>H</i> -[1,2,3]triazolo[4,5-c]pyridazin-6-yl]phenol
124 ¹	5-(6-ethoxypyrimidin-4-yl)-2-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3 <i>H</i> -[1,2,3]triazolo[4,5-c]pyridazin-6-yl]phenol
125 ¹	2-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3 <i>H</i> -[1,2,3]triazolo[4,5-c]pyridazin-6-yl]-5-([1,2,3]triazolo[1,5-a]pyridin-5-yl)phenol
126 ¹	2-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3 <i>H</i> -[1,2,3]triazolo[4,5-c]pyridazin-6-yl]-5-([1,2,4]triazolo[1,5-a]pyridin-7-yl)phenol
127 ¹	5-(3-chloro-1-methyl-1 <i>H</i> -pyrazol-4-yl)-2-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3 <i>H</i> -[1,2,3]triazolo[4,5-c]pyridazin-6-yl]phenol
128 ¹	6-{3-hydroxy-4-[3- $(2,2,6,6$ -tetramethylpiperidin-4-yl)-3 H -[1,2,3]triazolo[4,5-c]pyridazin-6-yl]phenyl}pyrimidin-4(3 H)-one
129 ¹	5-(3-chloro-1 <i>H</i> -pyrazol-4-yl)-2-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3 <i>H</i> -[1,2,3]triazolo[4,5-c]pyridazin-6-yl]phenol
130 ¹	5-(3-fluoro-1-methyl-1 <i>H</i> -pyrazol-4-yl)-2-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3 <i>H</i> -[1,2,3]triazolo[4,5-c]pyridazin-6-yl]phenol
131 ¹	5-(3-methoxy-1 <i>H</i> -pyrazol-4-yl)-2-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3 <i>H</i> -[1,2,3]triazolo[4,5-c]pyridazin-6-yl]phenol
1321	4-{3-hydroxy-4-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3 <i>H</i> -[1,2,3]triazolo[4,5-c]pyridazin-6-yl]phenyl}-1-methyl-1 <i>H</i> -pyrazole-3-carbonitrile
133 ¹	5-(5-methyl-1,3-thiazol-2-yl)-2-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3 <i>H</i> -[1,2,3]triazolo[4,5-c]pyridazin-6-yl]phenol
134 ¹	2-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3 <i>H</i> -[1,2,3]triazolo[4,5-c]pyridazin-6-yl]-5-(1,2,4-thiadiazol-5-yl)phenol
135 ¹	5-(4-fluoro-1 <i>H</i> -benzotriazol-6-yl)-2-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3 <i>H</i> -[1,2,3]triazolo[4,5-c]pyridazin-6-yl]phenol
136 ¹	5-(1 <i>H</i> -pyrazol-4-yl)-2-[7-(2,2,6,6-tetramethylpiperidin-4-yl)-7 <i>H</i> -pyrrolo[2,3-c]pyridazin-3-yl]pyridin-3-ol
1371	5-(3-bromo-1 <i>H</i> -pyrazol-4-yl)-2-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3 <i>H</i> -[1,2,3]triazolo[4,5-c]pyridazin-6-yl]phenol
138 ¹	5-(1-methyl-1 H -1,2,3-triazol-4-yl)-2-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3 H -[1,2,3]triazolo[4,5-c]pyridazin-6-yl]phenol
139 ¹	2-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3 H -[1,2,3]triazolo[4,5-c]pyridazin-6-yl]-5-[3-(trifluoromethyl)-1 H -pyrazol-4-yl]phenol
140 ¹	5-(1 <i>H</i> -pyrazol-4-yl)-2-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3 <i>H</i> -[1,2,3]triazolo[4,5-c]pyridazin-6-yl]pyridin-3-ol
141 ¹	5-(1 <i>H</i> -pyrazol-4-yl)-2-[7-(2,2,6,6-tetramethylpiperidin-4-yl)-7 <i>H</i> -imidazo[4,5-c]pyridazin-3-yl]pyridin-3-ol

Cpd	Name
142 ¹	5-(imidazo[1,2-a]pyrazin-6-yl)-2-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3 <i>H</i> -[1,2,3]triazolo[4,5-c]pyridazin-6-yl]phenol
143 ¹	5-(4-fluoro-1 <i>H</i> -imidazol-1-yl)-2-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3 <i>H</i> -[1,2,3]triazolo[4,5-c]pyridazin-6-yl]phenol
144 ¹	5-(4-methyl-1 <i>H</i> -imidazol-1-yl)-2-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3 <i>H</i> -[1,2,3]triazolo[4,5-c]pyridazin-6-yl]phenol
145 ¹	2-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3 H -[1,2,3]triazolo[4,5-c]pyridazin-6-yl]-5-(1 H -[1,2,3]triazolo[4,5-b]pyridin-6-yl)phenol
146 ¹	2-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3H-[1,2,3]triazolo[4,5-c]pyridazin-6-yl]-5-(3H-[1,2,3]triazolo[4,5-c]pyridin-6-yl)phenol
147 ¹	2-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3H-[1,2,3]triazolo[4,5-c]pyridazin-6-yl]-5-(1H-[1,2,3]triazolo[4,5-b]pyridin-5-yl)phenol
148	5-(3-fluoro-1-methyl-1 <i>H</i> -pyrazol-4-yl)-2-[1-(2,2,6,6-tetramethylpiperidin-4-yl)-1 <i>H</i> -pyrazolo[3,4-c]pyridazin-5-yl]phenol
149 ¹	5-(2,4-dimethyl-1H-imidazol-1-yl)-2-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3H-[1,2,3]triazolo[4,5-c]pyridazin- $6-yl$]phenol
150 ¹	5-(2-methyl-1,3-thiazol-5-yl)-2-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3 <i>H</i> -[1,2,3]triazolo[4,5-c]pyridazin-6-yl]phenol
151 ¹	5-(2-methyl-2 <i>H</i> -1,2,3-triazol-4-yl)-2-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3 <i>H</i> -[1,2,3]triazolo[4,5-c]pyridazin-6-yl]phenol
152 ¹	2-[3-(2,2,6,6-tetramethylpiperidin-4-yl)- $3H$ -[1,2,3]triazolo[4,5-c]pyridazin-6-yl]-5-([1,2,4]triazolo[4,3-b]pyridazin-6-yl)phenol
153 ¹	5-(3-methyl-1,2,4-thiadiazol-5-yl)-2-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3 H -[1,2,3]triazolo[4,5-c]pyridazin-6-yl]phenol
154	5-(4-fluoro-2-methyl-1,3-thiazol-5-yl)-2-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3H-[1,2,3]triazolo[4,5-c]pyridazin-6-yl]phenol
155 ¹	5-(5-methyl-1 H -pyrazol-1-yl)-2-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3 H -[1,2,3]triazolo[4,5-c]pyridazin-6-yl]phenol
156	5-(4-methyl-1 H -pyrazol-1-yl)-2-(3-(2,2,6,6-tetramethylpiperidin-4-yl)-3 H -[1,2,3]triazolo[4,5-c]pyridazin-6-yl)phenol
157 ¹	5-(3-methyl-1 H -pyrazol-1-yl)-2-(3-(2,2,6,6-tetramethylpiperidin-4-yl)-3 H -[1,2,3]triazolo[4,5-c]pyridazin-6-yl)phenol
158	5-(2-methyl-1,3-oxazol-5-yl)-2-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3 <i>H</i> -[1,2,3]triazolo[4,5-c]pyridazin-6-yl]phenol
159 ¹	5-(4-methoxy-1,3,5-triazin-2-yl)-2-(3-(2,2,6,6-tetramethylpiperidin-4-yl)-3 <i>H</i> -[1,2,3]triazolo[4,5-c]pyridazin-6-yl)phenol
160 ¹	5-(imidazo[1,2-a]pyrimidin-6-yl)-2-(3-(2,2,6,6-tetramethylpiperidin-4-yl)-3 <i>H</i> -[1,2,3]triazolo[4,5-c]pyridazin-6-yl)phenol

Cpd	Name
161 ¹	5-(3-fluoro-1 <i>H</i> -pyrazol-4-yl)-2-(1-(2,2,6,6-tetramethylpiperidin-4-yl)-1 <i>H</i> -pyrazolo[3,4-c]pyridazin-5-yl)phenol
162 ¹	5-(imidazo[1,2-b]pyridazin-6-yl)-2-(3-(2,2,6,6-tetramethylpiperidin-4-yl)-3 <i>H</i> -[1,2,3]triazolo[4,5-c]pyridazin-6-yl)phenol
163 ¹	2-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3H-[1,2,3]triazolo[4,5-c]pyridazin-6-yl]-5-(2H-1,2,3-triazol-2-yl)phenol
164 ¹	2- $\{3-[(3S,4S)-3-fluoro-2,2,6,6-tetramethylpiperidin-4-yl]-3H-[1,2,3]$ triazolo[4,5-c]pyridazin-6-yl}-5- $(1H$ -pyrazol-4-yl)phenol
165 ¹	5-(pyridin-4-yl)-2-[1-(2,2,6,6-tetramethylpiperidin-4-yl)-1 <i>H</i> -pyrazolo[3,4-c]pyridazin-5-yl]phenol
166 ¹	5-(pyridin-3-yl)-2-[1-(2,2,6,6-tetramethylpiperidin-4-yl)-1 <i>H</i> -pyrazolo[3,4-c]pyridazin-5-yl]phenol
167 ¹	5-(pyrimidin-5-yl)-2-[1-(2,2,6,6-tetramethylpiperidin-4-yl)-1 <i>H</i> -pyrazolo[3,4-c]pyridazin-5-yl]phenol
168 ¹	2- $\{3-[(3S,4R)-3-fluoro-2,2,6,6-tetramethylpiperidin-4-yl]-3H-[1,2,3]$ triazolo[4,5-c]pyridazin-6-yl}-5- $(1H$ -pyrazol-4-yl)phenol
169 ¹	5-(1-methyl-1 H -pyrazol-3-yl)-2-[1-(2,2,6,6-tetramethylpiperidin-4-yl)-1 H -pyrazolo[3,4-c]pyridazin-5-yl]phenol
170 ¹	2-{3-[3-(tert-butylamino)cyclobutyl]-3 <i>H</i> -[1,2,3]triazolo[4,5-c]pyridazin-6-yl}-5-(1 <i>H</i> -pyrazol-4-yl)phenol
171 ¹	$4-(4-\{3-[(3S,4S)-3-fluoro-2,2,6,6-tetramethylpiperidin-4-yl]-3H-[1,2,3]$ triazolo[4,5-c]pyridazin-6-yl}-3-hydroxyphenyl)-1-methylpyridin-2(1 <i>H</i>)-one
172 ¹	$6-(4-\{3-[(3S,4S)-3-fluoro-2,2,6,6-tetramethylpiperidin-4-yl]-3H-[1,2,3]$ triazolo[4,5-c]pyridazin-6-yl}-3-hydroxyphenyl)-3-methylpyrimidin-4(3 <i>H</i>)-one
173	5-(3-fluoro-1 <i>H</i> -pyrazol-4-yl)-2- $\{3-[(3S,4S)-3-fluoro-2,2,6,6-tetramethylpiperidin-4-yl]-3H-[1,2,3]triazolo[4,5-c]pyridazin-6-yl}phenol$
174 ¹	2-[1-(2,2,6,6-tetramethylpiperidin-4-yl)-1\$H-pyrazolo[3,4-c]pyridazin-5-yl]-5-(2\$H-1,2,3-triazol-2-yl)phenol
175 ¹	$2-\{3-[3-(tert-butylamino)cyclopentyl]-3H-[1,2,3]triazolo[4,5-c]pyridazin-6-yl\}-5-(1H-pyrazol-4-yl)phenol, and$
176	2-[7-(2,2,6,6-tetramethylpiperidin-4-yl)-7 <i>H</i> -pyrrolo[2,3-c]pyridazin-3-yl]-5-(2 <i>H</i> -1,2,3-triazol-2-yl)phenol;

wherein the form of the compound is selected from the group consisting of a salt, hydrate, solvate, racemate, enantiomer, diastereomer, stereoisomer, and tautomer form thereof.

Another aspect of the compound of Formula (I) or a form thereof is a compound salt selected from the group consisting of:

Cpd	Name
1	5-(1 <i>H</i> -pyrazol-4-yl)-2-[1-(2,2,6,6-tetramethylpiperidin-4-yl)-1 <i>H</i> -imidazo[4,5-b]pyrazin-5-yl]phenol hydrochloride
2	5-[2,5-difluoro-4-(1 H -pyrazol-4-yl)phenyl]-1-(2,2,6,6-tetramethylpiperidin-4-yl)-1 H -imidazo[4,5-b]pyrazine hydrochloride
3	5-(1 <i>H</i> -pyrazol-4-yl)-2-[7-(2,2,6,6-tetramethylpiperidin-4-yl)-7 <i>H</i> -imidazo[4,5-c]pyridazin-3-yl]phenol hydrochloride
4	3-[2,5-difluoro-4-(1 <i>H</i> -pyrazol-4-yl)phenyl]-7-(2,2,6,6-tetramethylpiperidin-4-yl)-7 <i>H</i> -imidazo[4,5-c]pyridazine hydrochloride
5	2-[6-methyl-7-(2,2,6,6-tetramethylpiperidin-4-yl)-7 <i>H</i> -imidazo[4,5-c]pyridazin-3-yl]-5-(1 <i>H</i> -pyrazol-4-yl)phenol hydrochloride
6	3-[2,5-difluoro-4-(1 <i>H</i> -pyrazol-4-yl)phenyl]-6-methyl-7-(2,2,6,6-tetramethylpiperidin-4-yl)-7 <i>H</i> -imidazo[4,5-c]pyridazine hydrochloride
7	5-(1 <i>H</i> -pyrazol-4-yl)-2-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3 <i>H</i> -[1,2,3]triazolo[4,5-c]pyridazin-6-yl]phenol hydrochloride
8	5-(1 <i>H</i> -pyrazol-4-yl)-2-[5-(2,2,6,6-tetramethyl-1,2,3,6-tetrahydropyridin-4-yl)-5 <i>H</i> -pyrrolo[2,3-b]pyrazin-2-yl]phenol hydrochloride
9	3-[2-hydroxy-4-(1 <i>H</i> -pyrazol-4-yl)phenyl]-7-(2,2,6,6-tetramethylpiperidin-4-yl)-7 <i>H</i> -imidazo[4,5-c]pyridazin-6-ol hydrochloride
10	5-(1 <i>H</i> -pyrazol-4-yl)-2-[5-(2,2,6,6-tetramethylpiperidin-4-yl)-5 <i>H</i> -pyrrolo[2,3-b]pyrazin-2-yl]phenol hydrochloride
11	5-(1 <i>H</i> -pyrazol-4-yl)-2-[7-(1,2,3,6-tetrahydropyridin-4-yl)-5 <i>H</i> -pyrrolo[3,2-c]pyridazin-3-yl]phenol hydrochloride
12	2-[7-(piperidin-4-yl)-5 <i>H</i> -pyrrolo[3,2-c]pyridazin-3-yl]-5-(1 <i>H</i> -pyrazol-4-yl)phenol hydrochloride
13	6-[2,3-difluoro-4-(1 <i>H</i> -pyrazol-4-yl)phenyl]-3-(2,2,6,6-tetramethylpiperidin-4-yl)-3 <i>H</i> -[1,2,3]triazolo[4,5-c]pyridazine hydrochloride
14	6-[2,5-difluoro-4-(1 <i>H</i> -pyrazol-4-yl)phenyl]-3-(2,2,6,6-tetramethylpiperidin-4-yl)-3 <i>H</i> -[1,2,3]triazolo[4,5-c]pyridazine hydrochloride
15	5-(1 <i>H</i> -pyrazol-4-yl)-2-[7-(1,2,3,6-tetrahydropyridin-4-yl)thieno[3,2-c]pyridazin-3-yl]phenol hydrochloride
16	2-[2,5-difluoro-4-(1 <i>H</i> -pyrazol-4-yl)phenyl]-5-(2,2,6,6-tetramethylpiperidin-4-yl)-5 <i>H</i> -pyrrolo[2,3-b]pyrazine hydrochloride
17	5-(1 <i>H</i> -pyrazol-4-yl)-2-[7-(2,2,6,6-tetramethyl-1,2,3,6-tetrahydropyridin-4-yl)thieno[3,2-c]pyridazin-3-yl]phenol hydrochloride

18

yl)phenol hydrochloride

2-[7-(8-azabicyclo[3.2.1]oct-2-en-3-yl)thieno[3,2-c]pyridazin-3-yl]-5-(1H-pyrazol-4-1)[2-(8-azabicyclo[3.2.1]oct-2-en-3-yl)thieno[3,2-c]pyridazin-3-yl]-5-(1H-pyrazol-4-1)[2-(8-azabicyclo[3.2.1]oct-2-en-3-yl)thieno[3,2-c]pyridazin-3-yl]-5-(1H-pyrazol-4-1)[2-(8-azabicyclo[3.2.1]oct-2-en-3-yl)thieno[3,2-c]pyridazin-3-yl]-5-(1H-pyrazol-4-1)[2-(8-azabicyclo[3.2.1]oct-2-en-3-yl)thieno[3,2-c]pyridazin-3-yl]-5-(1H-pyrazol-4-1)[2-(8-azabicyclo[3.2.1]oct-2-en-3-yl)thieno[3,2-c]pyridazin-3-yl]-5-(1H-pyrazol-4-1)[2-(8-azabicyclo[3.2.1]oct-2-en-3-yl)thieno[3,2-c]pyridazin-3-yl]-5-(1H-pyrazol-4-1)[2-(8-azabicyclo[3.2.1]oct-2-en-3-yl)thieno[3,2-c]pyridazin-3-yl]-5-(1H-pyrazol-4-1)[2-(8-azabicyclo[3.2.1]oct-2-en-3-yl]-5-(8-azabicyclo[3.2.1]oct-2-en-3-yl]-

2-[1-(piperidin-4-yl)-1*H*-pyrazolo[3,4-b]pyrazin-5-yl]-5-(1*H*-pyrazol-4-yl)phenol hydrochloride

- 5-(1*H*-pyrazol-4-yl)-2-[7-(2,2,6,6-tetramethyl-1,2,3,6-tetrahydropyridin-4-yl)-5*H*-pyrrolo[3,2-c]pyridazin-3-yl]phenol hydrochloride
- 2-[1-(piperidin-4-yl)-1*H*-pyrazolo[3,4-c]pyridazin-5-yl]-5-(1*H*-pyrazol-4-yl)phenol hydrochloride
- **22** 5-(1*H*-pyrazol-4-yl)-2-[1-(2,2,6,6-tetramethylpiperidin-4-yl)-1*H*-pyrazolo[3,4-c]pyridazin-5-yl]phenol hydrochloride
- **23** 5-(1*H*-pyrazol-4-yl)-2-[7-(2,2,6,6-tetramethylpiperidin-4-yl)-6,7-dihydro-5*H*-pyrrolo[2,3-c]pyridazin-3-yl]phenol hydrochloride
- 5-(1*H*-pyrazol-4-yl)-2-[7-(2,2,6,6-tetramethylpiperidin-4-yl)thieno[3,2-c]pyridazin-3-yl]phenol hydrochloride
- 25 2-[7-(3-oxa-9-azabicyclo[3.3.1]non-6-en-7-yl)thieno[3,2-c]pyridazin-3-yl]-5-(1*H*-pyrazol-4-yl)phenol hydrochloride
- 5-(1*H*-pyrazol-4-yl)-2-[7-(2,2,6,6-tetramethylpiperidin-4-yl)-7*H*-pyrrolo[2,3-c]pyridazin-3-yl]phenol hydrochloride
- 27 2-[7-(8-azabicyclo[3.2.1]oct-2-en-3-yl)-5*H*-pyrrolo[3,2-c]pyridazin-3-yl]-5-(1*H*-pyrazol-4-yl)phenol hydrochloride
- 2-[7-(3-oxa-9-azabicyclo[3.3.1]non-6-en-7-yl)-5*H*-pyrrolo[3,2-c]pyridazin-3-yl]-5-(1*H*-pyrazol-4-yl)phenol hydrochloride
- 29 2-[7-(8-azabicyclo[3.2.1]oct-3-yl)-5*H*-pyrrolo[3,2-c]pyridazin-3-yl]-5-(1*H*-pyrazol-4-yl)phenol hydrochloride
- **30** 2-[7-(3-oxa-9-azabicyclo[3.3.1]non-7-yl)-5*H*-pyrrolo[3,2-c]pyridazin-3-yl]-5-(1*H*-pyrazol-4-yl)phenol hydrochloride
- 5-(1*H*-pyrazol-4-yl)-2-[7-(2,2,6,6-tetramethylpiperidin-4-yl)-5*H*-pyrrolo[3,2-c]pyridazin-3-yl]phenol hydrochloride
- 32 3-[2,3-difluoro-4-(1*H*-pyrazol-4-yl)phenyl]-7-(2,2,6,6-tetramethylpiperidin-4-yl)-6,7-dihydro-5*H*-pyrrolo[2,3-c]pyridazine hydrochloride
- 4-fluoro-2-(1*H*-pyrazol-4-yl)-5-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3*H*-[1,2,3]triazolo[4,5-c]pyridazin-6-yl]phenol hydrochloride
- 4-fluoro-5-(1*H*-pyrazol-4-yl)-2-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3*H*-[1,2,3]triazolo[4,5-c]pyridazin-6-yl]phenol hydrobromide
- 7-[(3-exo)-8-azabicyclo[3.2.1]oct-3-yl]-3-[2,3-difluoro-4-(1*H*-pyrazol-4-yl)phenyl]-6,7-dihydro-5*H*-pyrrolo[2,3-c]pyridazine hydrochloride
- **38** 4-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3*H*-[1,2,3]triazolo[4,5-c]pyridazin-6-yl]biphenyl-3,4'-diol hydrobromide
- 5-(1-methyl-1*H*-pyrazol-4-yl)-2-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3*H*-[1,2,3]triazolo[4,5-c]pyridazin-6-yl]phenol hydrobromide
- **40** 2-[6-methoxy-7-(2,2,6,6-tetramethylpiperidin-4-yl)-7*H*-imidazo[4,5-c]pyridazin-3-yl]-5-(1*H*-pyrazol-4-yl)phenol hydrochloride

2-[6-(methylamino)-7-(2,2,6,6-tetramethylpiperidin-4-yl)-7*H*-imidazo[4,5-c]pyridazin-3-yl]-5-(1*H*-pyrazol-4-yl)phenol hydrochloride

- **49** 2-[6-(ethylamino)-7-(2,2,6,6-tetramethylpiperidin-4-yl)-7*H*-imidazo[4,5-c]pyridazin-3-yl]-5-(1*H*-pyrazol-4-yl)phenol hydrochloride
- **52** 2-[3-(1,2,2,6,6-pentamethylpiperidin-4-yl)-3*H*-[1,2,3]triazolo[4,5-c]pyridazin-6-yl]-5-(1*H*-pyrazol-4-yl)phenol dihydrochloride
- 6-fluoro-4-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3*H*-[1,2,3]triazolo[4,5-c]pyridazin-6-yl][1,1'-biphenyl]-3,4'-diol hydrobromide
- 2-fluoro-3-(1*H*-pyrazol-4-yl)-6-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3*H*-[1,2,3]triazolo[4,5-c]pyridazin-6-yl]phenol dihydrochloride
- 55 4-{2-fluoro-5-hydroxy-4-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3*H*-[1,2,3]triazolo[4,5-c]pyridazin-6-yl]phenyl}-1-methylpyridin-2(1*H*)-one hydrochloride
- 2-[3-(2,2-dimethylpiperidin-4-yl)-3*H*-[1,2,3]triazolo[4,5-c]pyridazin-6-yl]-5-(1*H*-pyrazol-4-yl)phenol hydrochloride
- 57 $2-\{3-[(1R,5S)-1,5-\text{dimethyl-}8-\text{azabicyclo}[3.2.1]\text{octan-}3-\text{yl}]-3H-[1,2,3]\text{triazolo}[4,5-\text{c]pyridazin-}6-\text{yl}\}-5-(1H-\text{pyrazol-}4-\text{yl})\text{phenol hydrochloride}$
- 2-(1*H*-pyrazol-4-yl)-5-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3*H*-[1,2,3]triazolo[4,5-c]pyridazin-6-yl]benzene-1,4-diol dihydrochloride
- 3-fluoro-5-(1*H*-pyrazol-4-yl)-2-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3*H*-[1,2,3]triazolo[4,5-c]pyridazin-6-yl]phenol dihydrochloride
- 5-(pyrazin-2-yl)-2-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3*H*-[1,2,3]triazolo[4,5-c]pyridazin-6-yl]phenol dihydrochloride
- 5-(pyridin-2-yl)-2-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3*H*-[1,2,3]triazolo[4,5-c]pyridazin-6-yl]phenol dihydrochloride
- 4-fluoro-5-(1-methyl-1*H*-pyrazol-4-yl)-2-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3*H*-[1,2,3]triazolo[4,5-c]pyridazin-6-yl]phenol hydrochloride
- **63** 2-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3*H*-[1,2,3]triazolo[4,5-c]pyridazin-6-yl]-5-(1*H*-1,2,4-triazol-1-yl)phenol hydrochloride
- **64** 2-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3*H*-[1,2,3]triazolo[4,5-c]pyridazin-6-yl]-5-(4*H*-1,2,4-triazol-4-yl)phenol hydrochloride
- 5-(pyridin-3-yl)-2-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3*H*-[1,2,3]triazolo[4,5-c]pyridazin-6-yl]phenol dihydrochloride
- 5-(pyridin-4-yl)-2-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3*H*-[1,2,3]triazolo[4,5-c]pyridazin-6-yl]phenol dihydrochloride
- 67 6-{3-hydroxy-4-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3*H*-[1,2,3]triazolo[4,5-c]pyridazin-6-yl]phenyl}pyridin-3-ol dihydrochloride
- 2-{3-hydroxy-4-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3*H*-[1,2,3]triazolo[4,5-c]pyridazin-6-yl]phenyl}pyrimidin-5-ol dihydrochloride
- 5-[1-(²H₃)methyl-1*H*-pyrazol-4-yl]-2-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3*H*-[1,2,3]triazolo[4,5-c]pyridazin-6-yl]phenol dihydrochloride

70 5-(1*H*-imidazol-1-yl)-2-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3*H*-[1,2,3]triazolo[4,5-c]pyridazin-6-yl]phenol hydrochloride

- **71** 5-[1-(difluoromethyl)-1*H*-pyrazol-4-yl]-2-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3*H*-[1,2,3]triazolo[4,5-c]pyridazin-6-yl]phenol dihydrochloride
- **72** 2-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3*H*-[1,2,3]triazolo[4,5-c]pyridazin-6-yl]-5-(1*H*-1,2,3-triazol-1-yl)phenol hydrochloride
- **73** 5-(2-methylpyridin-4-yl)-2-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3*H*-[1,2,3]triazolo[4,5-c]pyridazin-6-yl]phenol hydrochloride
- **74** 2-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3*H*-[1,2,3]triazolo[4,5-c]pyridazin-6-yl]-5-[2-(trifluoromethyl)pyridin-4-yl]phenol dihydrochloride
- **75** 5-(pyrimidin-4-yl)-2-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3*H*-[1,2,3]triazolo[4,5-c]pyridazin-6-yl]phenol dihydrochloride
- **76** 5-(pyridazin-4-yl)-2-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3*H*-[1,2,3]triazolo[4,5-c]pyridazin-6-yl]phenol hydrochloride
- 5-(2-methoxypyridin-4-yl)-2-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3*H*-[1,2,3]triazolo[4,5-c]pyridazin-6-yl]phenol dihydrochloride
- **79** 6-{3-hydroxy-4-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3*H*-[1,2,3]triazolo[4,5-c]pyridazin-6-yl]phenyl}pyridazin-3-ol hydrochloride
- **81** 6-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3*H*-[1,2,3]triazolo[4,5-c]pyridazin-6-yl]quinolin-7-ol hydrobromide
- **83** 4-chloro-5-(1*H*-pyrazol-4-yl)-2-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3*H*-[1,2,3]triazolo[4,5-c]pyridazin-6-yl]phenol dihydrobromide
- 4-fluoro-5-(pyridin-4-yl)-2-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3*H*-[1,2,3]triazolo[4,5-c]pyridazin-6-yl]phenol dihydrobromide
- **89** 2-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3*H*-[1,2,3]triazolo[4,5-c]pyridazin-6-yl]-5-(thiophen-3-yl)phenol hydrochloride
- **93** 4-{3-hydroxy-4-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3*H*-[1,2,3]triazolo[4,5-c]pyridazin-6-yl]phenyl}pyridin-2(1*H*)-one hydrochloride
- 5-(furan-3-yl)-2-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3*H*-[1,2,3]triazolo[4,5-c]pyridazin-6-yl]phenol hydrochloride
- 2-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3*H*-[1,2,3]triazolo[4,5-c]pyridazin-6-yl]-5-(1,3-thiazol-2-yl)phenol hydrochloride
- **98** 5-(1-methyl-1*H*-pyrazol-4-yl)-2-[1-(2,2,6,6-tetramethylpiperidin-4-yl)-1*H*-pyrazolo[3,4-c]pyridazin-5-yl]phenol dihydrochloride
- 5-[1-(²H₃)methyl-1*H*-pyrazol-4-yl]-2-[1-(2,2,6,6-tetramethylpiperidin-4-yl)-1*H*-pyrazolo[3,4-c]pyridazin-5-yl]phenol dihydrochloride
- 5-[5-(difluoromethoxy)pyridin-2-yl]-2-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3*H*-[1,2,3]triazolo[4,5-c]pyridazin-6-yl]phenol formate
- 5-(1*H*-pyrazol-4-yl)-2-[7-(2,2,6,6-tetramethyl-1,2,3,6-tetrahydropyridin-4-yl)furo[3,2-c]pyridazin-3-yl]phenol hydrochloride

106	5-(3-fluoro-1 <i>H</i> -pyrazol-4-yl)-2-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3 <i>H</i> -
	[1,2,3]triazolo[4,5-c]pyridazin-6-yl]phenol hydrochloride

- 107 2-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3H-[1,2,3]triazolo[4,5-c]pyridazin-6-yl]-5-(1,3-thiazol-5-yl)phenol hydrochloride
- 5-(3-methyl-1*H*-pyrazol-4-yl)-2-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3*H*-[1,2,3]triazolo[4,5-c]pyridazin-6-yl]phenol hydrochloride
- 4-{3-hydroxy-4-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3*H*-[1,2,3]triazolo[4,5-c]pyridazin-6-yl]phenyl}-1*H*-pyrazole-3-carbonitrile hydrochloride
- 2-{3-hydroxy-4-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3*H*-[1,2,3]triazolo[4,5-c]pyridazin-6-yl]phenyl}-1,3-thiazole-5-carbonitrile hydrochloride
- 5-(1,3-oxazol-2-yl)-2-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3*H*-[1,2,3]triazolo[4,5-c]pyridazin-6-yl]phenol formate
- 5-[2-(difluoromethoxy)pyridin-4-yl]-2-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3*H*-[1,2,3]triazolo[4,5-c]pyridazin-6-yl]phenol hydrochloride
- 2-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3H-[1,2,3]triazolo[4,5-c]pyridazin-6-yl]-5-(1,3,4-thiadiazol-2-yl)phenol hydrochloride
- 6-[4-(1*H*-pyrazol-4-yl)-1*H*-benzotriazol-7-yl]-3-(2,2,6,6-tetramethylpiperidin-4-yl)-3*H*-[1,2,3]triazolo[4,5-c]pyridazine trifluoroacetate
- 5-(1H-pyrrolo[2,3-b]pyridin-4-yl)-2-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3H-[1,2,3]triazolo[4,5-c]pyridazin-6-yl]phenol hydrochloride
- 5-(2-methoxypyrimidin-4-yl)-2-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3*H*-[1,2,3]triazolo[4,5-c]pyridazin-6-yl]phenol hydrochloride
- 120 5-(1,2-oxazol-4-yl)-2-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3H-[1,2,3]triazolo[4,5-c]pyridazin-6-yl]phenol hydrochloride
- 5-(5-fluoro-1-methyl-1*H*-pyrazol-4-yl)-2-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3*H*-[1,2,3]triazolo[4,5-c]pyridazin-6-yl]phenol hydrochloride
- 5-(1-ethyl-5-fluoro-1*H*-pyrazol-4-yl)-2-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3*H*-[1,2,3]triazolo[4,5-c]pyridazin-6-yl]phenol hydrochloride
- 5-(2-ethoxypyridin-4-yl)-2-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3*H*-[1,2,3]triazolo[4,5-c]pyridazin-6-yl]phenol hydrochloride
- 5-(6-ethoxypyrimidin-4-yl)-2-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3*H*-[1,2,3]triazolo[4,5-c]pyridazin-6-yl]phenol hydrochloride
- 2-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3*H*-[1,2,3]triazolo[4,5-c]pyridazin-6-yl]-5-([1,2,3]triazolo[1,5-a]pyridin-5-yl)phenol hydrochloride
- 2-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3H-[1,2,3]triazolo[4,5-c]pyridazin-6-yl]-5-([1,2,4]triazolo[1,5-a]pyridin-7-yl)phenol hydrochloride
- 5-(3-chloro-1-methyl-1*H*-pyrazol-4-yl)-2-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3*H*-[1,2,3]triazolo[4,5-c]pyridazin-6-yl]phenol hydrochloride
- 6-{3-hydroxy-4-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3*H*-[1,2,3]triazolo[4,5-c]pyridazin-6-yl]phenyl}pyrimidin-4(3*H*)-one hydrochloride

129	5-(3-chloro-1H-pyrazol-4-yl)-2-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3H-
	[1,2,3]triazolo[4,5-c]pyridazin-6-yl]phenol hydrochloride

- 5-(3-fluoro-1-methyl-1*H*-pyrazol-4-yl)-2-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3*H*-[1,2,3]triazolo[4,5-c]pyridazin-6-yl]phenol hydrochloride
- 5-(3-methoxy-1*H*-pyrazol-4-yl)-2-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3*H*-[1,2,3]triazolo[4,5-c]pyridazin-6-yl]phenol hydrochlorid
- 4-{3-hydroxy-4-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3*H*-[1,2,3]triazolo[4,5-c]pyridazin-6-yl]phenyl}-1-methyl-1*H*-pyrazole-3-carbonitrile hydrochloride
- 5-(5-methyl-1,3-thiazol-2-yl)-2-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3H-[1,2,3]triazolo[4,5-c]pyridazin-6-yl]phenol hydrochloride
- 2-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3H-[1,2,3]triazolo[4,5-c]pyridazin-6-yl]-5-(1,2,4-thiadiazol-5-yl)phenol hydrochloride
- 5-(4-fluoro-1*H*-benzotriazol-6-yl)-2-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3*H*-[1,2,3]triazolo[4,5-c]pyridazin-6-yl]phenol hydrochloride
- 5-(1*H*-pyrazol-4-yl)-2-[7-(2,2,6,6-tetramethylpiperidin-4-yl)-7*H*-pyrrolo[2,3-c]pyridazin-3-yl]pyridin-3-ol dihydrochloride
- 5-(3-bromo-1*H*-pyrazol-4-yl)-2-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3*H*-[1,2,3]triazolo[4,5-c]pyridazin-6-yl]phenol hydrochloride
- 5-(1-methyl-1H-1,2,3-triazol-4-yl)-2-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3H-[1,2,3]triazolo[4,5-c]pyridazin-6-yl]phenol hydrochloride
- 2-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3*H*-[1,2,3]triazolo[4,5-c]pyridazin-6-yl]-5-[3-(trifluoromethyl)-1*H*-pyrazol-4-yl]phenol hydrochloride
- 5-(1*H*-pyrazol-4-yl)-2-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3*H*-[1,2,3]triazolo[4,5-c]pyridazin-6-yl]pyridin-3-ol hydrochloride
- 5-(1*H*-pyrazol-4-yl)-2-[7-(2,2,6,6-tetramethylpiperidin-4-yl)-7*H*-imidazo[4,5-c]pyridazin-3-yl]pyridin-3-ol dihydrochloride
- 5-(imidazo[1,2-a]pyrazin-6-yl)-2-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3*H*-[1,2,3]triazolo[4,5-c]pyridazin-6-yl]phenol hydrochloride
- 5-(4-fluoro-1*H*-imidazol-1-yl)-2-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3*H*-[1,2,3]triazolo[4,5-c]pyridazin-6-yl]phenol dihydrochloride
- 5-(4-methyl-1*H*-imidazol-1-yl)-2-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3*H*-[1,2,3]triazolo[4,5-c]pyridazin-6-yl]phenol dihydrochloride
- 2-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3H-[1,2,3]triazolo[4,5-c]pyridazin-6-yl]-5-(1H-[1,2,3]triazolo[4,5-b]pyridin-6-yl)phenol dihydrochloride
- 2-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3H-[1,2,3]triazolo[4,5-c]pyridazin-6-yl]-5-(3H-[1,2,3]triazolo[4,5-c]pyridin-6-yl]phenol dihydrochloride
- 2-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3H-[1,2,3]triazolo[4,5-c]pyridazin-6-yl]-5-(1H-[1,2,3]triazolo[4,5-b]pyridin-5-yl]phenol dihydrochloride
- 5-(2,4-dimethyl-1H-imidazol-1-yl)-2-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3H-[1,2,3]triazolo[4,5-c]pyridazin-6-yl]phenol dihydrochloride

150	5-(2-methyl-1,3-thiazol-5-yl)-2-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3 <i>H</i> -
	[1,2,3]triazolo[4,5-c]pyridazin-6-yl]phenol dihydrochloride

- 5-(2-methyl-2H-1,2,3-triazol-4-yl)-2-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3H-[1,2,3]triazolo[4,5-c]pyridazin-6-yl]phenol hydrochloride
- 2-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3H-[1,2,3]triazolo[4,5-c]pyridazin-6-yl]-5-([1,2,4]triazolo[4,3-b]pyridazin-6-yl)phenol hydrochloride
- 5-(3-methyl-1,2,4-thiadiazol-5-yl)-2-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3*H*-[1,2,3]triazolo[4,5-c]pyridazin-6-yl]phenol hydrochloride
- 5-(5-methyl-1*H*-pyrazol-1-yl)-2-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3*H*-[1,2,3]triazolo[4,5-c]pyridazin-6-yl]phenol dihydrochloride
- 5-(3-methyl-1H-pyrazol-1-yl)-2-(3-(2,2,6,6-tetramethylpiperidin-4-yl)-3H- [1,2,3]triazolo[4,5-c]pyridazin-6-yl)phenol dihydrochloride
- 5-(4-methoxy-1,3,5-triazin-2-yl)-2-(3-(2,2,6,6-tetramethylpiperidin-4-yl)-3H-[1,2,3]triazolo[4,5-c]pyridazin-6-yl)phenol dihydrochloride
- 5-(imidazo[1,2-a]pyrimidin-6-yl)-2-(3-(2,2,6,6-tetramethylpiperidin-4-yl)-3*H*-[1,2,3]triazolo[4,5-c]pyridazin-6-yl)phenol hydrochloride
- 5-(3-fluoro-1*H*-pyrazol-4-yl)-2-(1-(2,2,6,6-tetramethylpiperidin-4-yl)-1*H*-pyrazolo[3,4-c]pyridazin-5-yl)phenol hydrochloride
- 5-(imidazo[1,2-b]pyridazin-6-yl)-2-(3-(2,2,6,6-tetramethylpiperidin-4-yl)-3*H*-[1,2,3]triazolo[4,5-c]pyridazin-6-yl)phenol hydrochloride
- 2-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3*H*-[1,2,3]triazolo[4,5-c]pyridazin-6-yl]-5-(2*H*-1,2,3-triazol-2-yl)phenol hydrochloride
- 2-{3-[(3*S*,4*S*)-3-fluoro-2,2,6,6-tetramethylpiperidin-4-yl]-3*H*-[1,2,3]triazolo[4,5-c]pyridazin-6-yl}-5-(1*H*-pyrazol-4-yl)phenol dihydrochloride
- 5-(pyridin-4-yl)-2-[1-(2,2,6,6-tetramethylpiperidin-4-yl)-1*H*-pyrazolo[3,4-c]pyridazin-5-yl]phenol hydrochloride
- 5-(pyridin-3-yl)-2-[1-(2,2,6,6-tetramethylpiperidin-4-yl)-1*H*-pyrazolo[3,4-c]pyridazin-5-yl]phenol hydrochloride
- 5-(pyrimidin-5-yl)-2-[1-(2,2,6,6-tetramethylpiperidin-4-yl)-1*H*-pyrazolo[3,4-c]pyridazin-5-yl]phenol hydrochloride
- 2- $\{3-[(3S,4R)-3-fluoro-2,2,6,6-tetramethylpiperidin-4-yl]-3H-[1,2,3]$ triazolo[4,5-c]pyridazin-6-yl}-5-(1*H*-pyrazol-4-yl)phenol dihydrochloride
- 5-(1-methyl-1*H*-pyrazol-3-yl)-2-[1-(2,2,6,6-tetramethylpiperidin-4-yl)-1*H*-pyrazolo[3,4-c]pyridazin-5-yl]phenol hydrochloride
- **170** 2-{3-[3-(tert-butylamino)cyclobutyl]-3*H*-[1,2,3]triazolo[4,5-c]pyridazin-6-yl}-5-(1*H*-pyrazol-4-yl)phenol dihydrochloride
- 4-(4-{3-[(3*S*,4*S*)-3-fluoro-2,2,6,6-tetramethylpiperidin-4-yl]-3*H*-[1,2,3]triazolo[4,5-c]pyridazin-6-yl}-3-hydroxyphenyl)-1-methylpyridin-2(1*H*)-one hydrochloride
- 6-(4-{3-[(3*S*,4*S*)-3-fluoro-2,2,6,6-tetramethylpiperidin-4-yl]-3*H*-[1,2,3]triazolo[4,5-c]pyridazin-6-yl}-3-hydroxyphenyl)-3-methylpyrimidin-4(3*H*)-one dihydrochloride

2-[1-(2,2,6,6-tetramethylpiperidin-4-yl)-1*H*-pyrazolo[3,4-c]pyridazin-5-yl]-5-(2*H*-1,2,3-triazol-2-yl)phenol hydrochloride, and

2-{3-[3-(tert-butylamino)cyclopentyl]-3*H*-[1,2,3]triazolo[4,5-c]pyridazin-6-yl}-5-(1*H*-pyrazol-4-yl)phenol dihydrochloride;

wherein the form of the compound salt is selected from the group consisting of a hydrate, solvate, racemate, enantiomer, diastereomer, stereoisomer, and tautomer form thereof.

An aspect of the present description includes a method of use of a compound of Formula (I) or a form thereof for treating or ameliorating HD in a subject in need thereof, comprising administering an effective amount of the compound of Formula (I) or a form thereof to the subject.

5

10

15

20

25

Another aspect of the present description includes a method of use of the compound salt of Formula (I) or a form thereof for treating or ameliorating HD in a subject in need thereof, comprising administering an effective amount of the compound salt of Formula (I) or a form thereof to the subject.

An aspect of the present description includes a use of the compound of Formula (I) or a form thereof for treating or ameliorating HD in a subject in need thereof, comprising administering an effective amount of the compound of Formula (I) or a form thereof to the subject.

Another aspect of the present description includes a use of the compound salt of Formula (I) or a form thereof for treating or ameliorating HD in a subject in need thereof, comprising administering an effective amount of the compound salt of Formula (I) or a form thereof to the subject.

CHEMICAL DEFINITIONS

The chemical terms used above and throughout the description herein, unless specifically defined otherwise, shall be understood by one of ordinary skill in the art to have the following indicated meanings.

As used herein, the term "C₁₋₆alkyl" generally refers to saturated hydrocarbon radicals having from one to eight carbon atoms in a straight or branched chain configuration, including, but not limited to, methyl, ethyl, n-propyl (also referred to as propyl or propanyl), isopropyl, n-butyl (also referred to as butyl or butanyl), isobutyl, sec-butyl, tert-butyl, n-pentyl (also referred to as pentyl or pentanyl), n-hexyl (also referred to as hexyl or hexanyl), and the like. In certain

aspects, C_{1-6} alkyl includes, but is not limited to C_{1-4} alkyl and the like. A C_{1-6} alkyl radical is optionally substituted with substituent species as described herein where allowed by available valences.

5

10

15

20

25

30

As used herein, the term "C₂₋₈alkenyl" generally refers to partially unsaturated hydrocarbon radicals having from two to eight carbon atoms in a straight or branched chain configuration and one or more carbon-carbon double bonds therein, including, but not limited to, ethenyl (also referred to as vinyl), allyl, propenyl and the like. In certain aspects, C₂₋₈alkenyl includes, but is not limited to, C₂₋₆alkenyl, C₂₋₄alkenyl and the like. A C₂₋₈alkenyl radical is optionally substituted with substituent species as described herein where allowed by available valences.

As used herein, the term "C₂₋₈alkynyl" generally refers to partially unsaturated hydrocarbon radicals having from two to eight carbon atoms in a straight or branched chain configuration and one or more carbon-carbon triple bonds therein, including, but not limited to, ethynyl, propynyl, butynyl and the like. In certain aspects, C₂₋₈alkynyl includes, but is not limited to, C₂₋₆alkynyl, C₂₋₄alkynyl and the like. A C₂₋₈alkynyl radical is optionally substituted with substituent species as described herein where allowed by available valences.

As used herein, the term "C₁₋₆alkoxy" generally refers to saturated hydrocarbon radicals having from one to eight carbon atoms in a straight or branched chain configuration of the formula: -O-C₁₋₆alkyl, including, but not limited to, methoxy, ethoxy, n-propoxy, isopropoxy, n-butoxy, isobutoxy, sec-butoxy, tert-butoxy, n-pentoxy, n-hexoxy and the like. In certain aspects, C₁₋₆alkoxy includes, but is not limited to C₁₋₄alkoxy and the like. A C₁₋₆alkoxy radical is optionally substituted with substituent species as described herein where allowed by available valences.

As used herein, the term "C₃₋₁₀cycloalkyl" generally refers to a saturated or partially unsaturated monocyclic, bicyclic or polycyclic hydrocarbon radical, including, but not limited to, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cyclohexenyl, cycloheptyl, cyclooctyl, 1*H*-indanyl, indenyl, tetrahydro-naphthalenyl and the like. In certain aspects, C₃₋₁₀cycloalkyl includes, but is not limited to C₃₋₈cycloalkyl, C₅₋₈cycloalkyl, C₃₋₁₀cycloalkyl and the like. A C₃₋₁₀cycloalkyl radical is optionally substituted with substituent species as described herein where allowed by available valences.

As used herein, the term "aryl" generally refers to a monocyclic, bicyclic or polycyclic aromatic carbon atom ring structure radical, including, but not limited to, phenyl, naphthyl, anthracenyl, fluorenyl, azulenyl, phenanthrenyl and the like. An aryl radical is optionally substituted with substituent species as described herein where allowed by available valences.

5

10

15

20

25

30

As used herein, the term "heteroaryl" generally refers to a monocyclic, bicyclic or polycyclic aromatic carbon atom ring structure radical in which one or more carbon atom ring members have been replaced, where allowed by structural stability, with one or more heteroatoms, such as an O, S or N atom, including, but not limited to, furanyl, thienyl, pyrrolyl, pyrazolyl, imidazolyl, isoxazolyl, isothiazolyl, oxazolyl, 1,3-thiazolyl, triazolyl, oxadiazolyl, thiadiazolyl, tetrazolyl, pyridinyl, pyrimidinyl, pyrazinyl, pyridazinyl, triazinyl, indolyl, indazolyl, indolizinyl, isoindolyl, benzofuranyl, benzothienyl, benzoimidazolyl, 1,3-benzothiazolyl, 1,3-benzoxazolyl, purinyl, quinolinyl, isoquinolinyl, quinazolinyl, quinoxalinyl, 1,3-diazinyl, 1,2-diazinyl, 1,2-diazolyl, 1,4-diazanaphthalenyl, acridinyl, furo[3,2-b]pyridinyl, furo[3,2-c]pyridinyl, furo[2,3-c]pyridinyl, 6H-thieno[2,3-b]pyrrolyl, thieno[3,2-c]pyridinyl, thieno[2,3-d]pyrimidinyl, 1H-pyrrolo[2,3-b]pyridinyl, 1H-pyrrolo[2,3-c]pyridinyl, 1*H*-pyrrolo[3,2-*b*]pyridinyl, pyrrolo[1,2-*a*]pyrazinyl, pyrrolo[1,2-*b*]pyridazinyl, pyrazolo[1,5-a]pyridinyl, pyrazolo[1,5-a]pyrazinyl, imidazo[1,2-a]pyridinyl, 3H-imidazo[4,5-b]pyridinyl, imidazo[1,2-a]pyrimidinyl, imidazo[1,2-c]pyrimidinyl, imidazo[1,2-b]pyridazinyl, imidazo[1,2-a]pyrazinyl, imidazo[2,1-b][1,3]thiazolyl, imidazo[2,1-b][1,3,4]thiadiazolyl, [1,2,4]triazolo[1,5-a]pyridinyl, [1,2,4]triazolo[4,3-a]pyridinyl and the like. A heteroaryl radical is optionally substituted on a carbon or nitrogen atom ring member with substituent species as described herein where allowed by available valences.

In certain aspects, the nomenclature for a heteroaryl radical may differ, such as in non-limiting examples where furanyl may also be referred to as furyl, thienyl may also be referred to as thiophenyl, pyridinyl may also be referred to as pyridyl, benzothienyl may also be referred to as benzothiophenyl and 1,3-benzoxazolyl may also be referred to as 1,3-benzoxazolyl.

In certain other aspects, the term for a heteroaryl radical may also include other regioisomers, such as in non-limiting examples where the term pyrrolyl may also include 2*H*-pyrrolyl, 3*H*-pyrrolyl and the like, the term pyrazolyl may also include 1*H*-pyrazolyl and the like, the term imidazolyl may also include 1*H*-imidazolyl and the like, the term triazolyl may also include 1*H*-1,2,3-triazolyl and the like, the term oxadiazolyl may also include 1,2,4-oxadiazolyl,

1,3,4-oxadiazolyl and the like, the term tetrazolyl may also include 1*H*-tetrazolyl, 2*H*-tetrazolyl and the like, the term indolyl may also include 1*H*-indolyl and the like, the term indazolyl may also include 1*H*-indazolyl, 2*H*-indazolyl and the like, the term benzoimidazolyl may also include 1*H*-benzoimidazolyl and the term purinyl may also include 9*H*-purinyl and the like.

As used herein, the term "heterocyclyl" generally refers to a saturated or partially unsaturated monocyclic, bicyclic or polycyclic carbon atom ring structure radical in which one or more carbon atom ring members have been replaced, where allowed by structural stability, with a heteroatom, such as an O, S or N atom, including, but not limited to, oxiranyl, oxetanyl, azetidinyl, tetrahydrofuranyl, pyrrolinyl, pyrrolidinyl, pyrazolinyl, pyrazolidinyl, imidazolinyl, imidazolinyl, isoxazolidinyl, isoxazolidinyl, isothiazolinyl, isothiazolidinyl, oxazolidinyl, oxazolidinyl, thiazolidinyl, thiazolidinyl, triazolinyl, triazolidinyl, oxadiazolidinyl, oxadiazolidinyl, thiadiazolinyl, thiadiazolidinyl, tetrazolidinyl, pyranyl, dihydro-2*H*-pyranyl, thiopyranyl, 1,3-dioxanyl, 1,2,5,6-tetrahydropyridinyl, 1,2,3,6-tetrahydropyridinyl, piperidinyl, piperazinyl, morpholinyl, thiomorpholinyl, 1,4-diazepanyl, 1,3-benzodioxolyl, 1,4-benzodioxanyl, 2,3-dihydro-1,4-benzodioxinyl, hexahydropyrrolo[3,4-*b*]pyrrol-(1*H*)-yl, (3a,S,6a,S)-hexahydropyrrolo[3,4-*b*]pyrrol-(1*H*)-yl.

1,4-benzodioxanyl, 2,3-dihydro-1,4-benzodioxinyl, hexahydropyrrolo[3,4-*b*]pyrrol-(1*H*)-yl, (3a*S*,6a*S*)-hexahydropyrrolo[3,4-*b*]pyrrol-(1*H*)-yl, (3a*R*,6a*R*)-hexahydropyrrolo[3,4-*b*]pyrrol-(1*H*)-yl, hexahydropyrrolo[3,4-*b*]pyrrol-(2*H*)-yl, (3a*S*,6a*S*)-hexahydropyrrolo[3,4-*b*]pyrrol-(2*H*)-yl,

(3aR,6aR)-hexahydropyrrolo[3,4-b] pyrrol-(2H)-yl, hexahydropyrrolo[3,4-c] pyrrol-(1H)-yl, hexahydropyrrolo[3,4-c] pyrol-(1H)-yl, hexahydropyrrolo[3,4-c] pyrol-(1H)-yl

20 (3aR,6aS)-hexahydropyrrolo[3,4-c]pyrrol-(1H)-yl,

5

10

(3a*R*,6a*R*)-hexahydropyrrolo[3,4-*c*]pyrrol-(1*H*)-yl, octahydro-5*H*-pyrrolo[3,2-*c*]pyridinyl, octahydro-6*H*-pyrrolo[3,4-*b*]pyridinyl, (4a*R*,7a*R*)-octahydro-6*H*-pyrrolo[3,4-*b*]pyridinyl, (4a*S*,7a*S*)-octahydro-6*H*-pyrrolo[3,4-*b*]pyridinyl, hexahydropyrrolo[1,2-*a*]pyrazin-(1*H*)-yl, (7*R*,8a*S*)-hexahydropyrrolo[1,2-*a*]pyrazin-(1*H*)-yl,

(8a*S*)-hexahydropyrrolo[1,2-*a*]pyrazin-(1*H*)-yl, (8a*R*)-hexahydropyrrolo[1,2-*a*]pyrazin-(1*H*)-yl, (8a*S*)-octahydropyrrolo[1,2-*a*]pyrazin-(1*H*)-yl, (8a*R*)-octahydropyrrolo[1,2-*a*]pyrazin-(1*H*)-yl, hexahydropyrrolo[1,2-*a*]pyrazin-(2*H*)-one, octahydro-2*H*-pyrido[1,2-*a*]pyrazinyl, 3-azabicyclo[3.1.0]hexyl, (1*R*,5*S*)-3-azabicyclo[3.1.0]hexyl, 8-azabicyclo[3.2.1]octyl, (1*R*,5*S*)-8-azabicyclo[3.2.1]octyl, 8-azabicyclo[3.2.1]oct-2-enyl,

30 (1R,5S)-8-azabicyclo[3.2.1]oct-2-enyl, 9-azabicyclo[3.3.1]nonyl, (1R,5S)-9-azabicyclo[3.3.1]nonyl, 2,5-diazabicyclo[2.2.1]heptyl,

(1*S*,4*S*)-2,5-diazabicyclo[2.2.1]heptyl, 2,5-diazabicyclo[2.2.2]octyl, 3,8-diazabicyclo[3.2.1]octyl, (1*R*,5*S*)-3,8-diazabicyclo[3.2.1]octyl, 1,4-diazabicyclo[3.2.2]nonyl, azaspiro[3.3]heptyl, 2,6-diazaspiro[3.3]heptyl, 2,7-diazaspiro[3.5]nonyl, 5,8-diazaspiro[3.5]nonyl, 2,7-diazaspiro[4.4]nonyl, 6,9-diazaspiro[4.5]decyl and the like. A heterocyclyl radical is optionally substituted on a carbon or nitrogen atom ring member with substituent species as described herein where allowed by available valences.

In certain aspects, the nomenclature for a heterocyclyl radical may differ, such as in non-limiting examples where 1,3-benzodioxolyl may also be referred to as benzo[d][1,3]dioxolyl and 2,3-dihydro-1,4-benzodioxinyl may also be referred to as 2,3-dihydrobenzo[b][1,4]dioxinyl.

As used herein, the term "deutero- C_{1-4} alkyl," refers to a radical of the formula: $-C_{1-4}$ alkyldeutero, wherein C_{1-4} alkyl is partially or completely substituted with one or more deuterium atoms where allowed by available valences.

As used herein, the term " $C_{1\text{-}6}$ alkoxy- $C_{1\text{-}6}$ alkyl" refers to a radical of the formula: $-C_{1\text{-}6}$ alkyl-O- $C_{1\text{-}6}$ alkyl.

As used herein, the term " $C_{1\text{--}6}$ alkyl-amino" refers to a radical of the formula: -NH- $C_{1\text{--}6}$ alkyl.

5

10

15

20

30

As used herein, the term " $(C_{1\text{-}6}alkyl)_2$ -amino" refers to a radical of the formula: $-N(C_{1\text{-}6}alkyl)_2$.

As used herein, the term "C₁₋₆alkyl-thio" refers to a radical of the formula: -S-C₁₋₆alkyl.

As used herein, the term "amino- $C_{1\text{-}6}$ alkyl" refers to a radical of the formula: $-C_{1\text{-}6}$ alkyl- NH_2 .

As used herein, the term "halo" or "halogen" generally refers to a halogen atom radical, including fluoro, chloro, bromo and iodo.

As used herein, the term "halo-C₁₋₆alkoxy" refers to a radical of the

formula: -O-C₁₋₆alkyl-halo, wherein C₁₋₆alkyl is partially or completely substituted with one or
more halogen atoms where allowed by available valences.

As used herein, the term "halo- C_{1-6} alkyl" refers to a radical of the formula: $-C_{1-6}$ alkyl-halo, wherein C_{1-6} alkyl is partially or completely substituted with one or more halogen atoms where allowed by available valences.

As used herein, the term "hydroxy" refers to a radical of the formula: -OH.

As used herein, the term "hydroxy- C_{1-6} alkyl" refers to a radical of the formula: - C_{1-6} alkyl-OH, wherein C_{1-6} alkyl is partially or completely substituted with one or more hydroxy radicals where allowed by available valences.

5

10

15

20

25

30

As used herein, the term "substituent" means positional variables on the atoms of a core molecule that are substituted at a designated atom position, replacing one or more hydrogens on the designated atom, provided that the designated atom's normal valency is not exceeded, and that the substitution results in a stable compound. Combinations of substituents and/or variables are permissible only if such combinations result in stable compounds. A person of ordinary skill in the art should note that any carbon as well as heteroatom with valences that appear to be unsatisfied as described or shown herein is assumed to have a sufficient number of hydrogen atom(s) to satisfy the valences described or shown. In certain instances one or more substituents having a double bond (e.g., "oxo" or "=O") as the point of attachment may be described, shown or listed herein within a substituent group, wherein the structure may only show a single bond as the point of attachment to the core structure of Formula (I). A person of ordinary skill in the art would understand that, while only a single bond is shown, a double bond is intended for those substituents.

As used herein, the term "and the like," with reference to the definitions of chemical terms provided herein, means that variations in chemical structures that could be expected by one skilled in the art include, without limitation, isomers (including chain, branching or positional structural isomers), hydration of ring systems (including saturation or partial unsaturation of monocyclic, bicyclic or polycyclic ring structures) and all other variations where allowed by available valences which result in a stable compound.

For the purposes of this description, where one or more substituent variables for a compound of Formula (I) or a form thereof encompass functionalities incorporated into a compound of Formula (I), each functionality appearing at any location within the disclosed compound may be independently selected, and as appropriate, independently and/or optionally substituted.

As used herein, the terms "independently selected," or "each selected" refer to functional variables in a substituent list that may occur more than once on the structure of Formula (I), the pattern of substitution at each occurrence is independent of the pattern at any other occurrence. Further, the use of a generic substituent variable on any formula or structure for a compound

described herein is understood to include the replacement of the generic substituent with species substituents that are included within the particular genus, *e.g.*, aryl may be replaced with phenyl or naphthalenyl and the like, and that the resulting compound is to be included within the scope of the compounds described herein.

As used herein, the terms "each instance of" or "in each instance, when present," when used preceding a phrase such as "... C_{3-14} cycloalkyl, C_{3-14} cycloalkyl- C_{1-4} alkyl, aryl, aryl- C_{1-4} alkyl, heteroaryl, heteroaryl- C_{1-4} alkyl, heterocyclyl and heterocyclyl- C_{1-4} alkyl," are intended to refer to the C_{3-14} cycloalkyl, aryl, heteroaryl and heterocyclyl ring systems when each are present either alone or as a substituent.

5

10

15

20

25

30

As used herein, the term "optionally substituted" means optional substitution with the specified substituent variables, groups, radicals or moieties.

COMPOUND FORMS

As used herein, the term "form" means a compound of Formula (I) having a form selected from the group consisting of a free acid, free base, salt, hydrate, solvate, racemate, enantiomer, diastereomer, stereoisomer, and tautomer form thereof.

In certain aspects described herein, the form of the compound of Formula (I) is a free acid, free base or salt thereof.

In certain aspects described herein, the form of the compound of Formula (I) is a salt thereof.

In certain aspects described herein, the form of the compound of Formula (I) is an isotopologue thereof.

In certain aspects described herein, the form of the compound of Formula (I) is a stereoisomer, racemate, enantiomer or diastereomer thereof.

In certain aspects described herein, the form of the compound of Formula (I) is a tautomer thereof.

In certain aspects described herein, the form of the compound of Formula (I) is a pharmaceutically acceptable form.

In certain aspects described herein, the compound of Formula (I) or a form thereof is isolated for use.

As used herein, the term "isolated" means the physical state of a compound of Formula (I) or a form thereof after being isolated and/or purified from a synthetic process (e.g., from a

reaction mixture) or natural source or combination thereof according to an isolation or purification process or processes described herein or which are well known to the skilled artisan (e.g., chromatography, recrystallization and the like) in sufficient purity to be characterized by standard analytical techniques described herein or well known to the skilled artisan.

5

10

15

20

25

30

As used herein, the term "protected" means that a functional group in a compound of Formula (I) or a form thereof is in a form modified to preclude undesired side reactions at the protected site when the compound is subjected to a reaction. Suitable protecting groups will be recognized by those with ordinary skill in the art as well as by reference to standard textbooks such as, for example, T.W. Greene et al, Protective Groups in organic Synthesis (1991), Wiley, New York. Such functional groups include hydroxy, phenol, amino and carboxylic acid. Suitable protecting groups for hydroxy or phenol include trialkylsilyl or diarylalkylsilyl (e.g., t-butyldimethylsilyl, t-butyldiphenylsilyl or trimethylsilyl), tetrahydropyranyl, benzyl, substituted benzyl, methyl, methoxymethanol, and the like. Suitable protecting groups for amino, amidino and guanidino include t-butoxycarbonyl, benzyloxycarbonyl, and the like. Suitable protecting groups for carboxylic acid include alkyl, aryl or arylalkyl esters. In certain instances, the protecting group may also be a polymer resin, such as a Wang resin or a 2-chlorotrityl-chloride resin. Protecting groups may be added or removed in accordance with standard techniques, which are well-known to those skilled in the art and as described herein. It will also be appreciated by those skilled in the art, although such protected derivatives of compounds described herein may not possess pharmacological activity as such, they may be administered to a subject and thereafter metabolized in the body to form compounds described herein which are pharmacologically active. Such derivatives may therefore be described as "prodrugs". All prodrugs of compounds described herein are included within the scope of the use described herein.

As used herein, the term "prodrug" means a form of an instant compound (*e.g.*, a drug precursor) that is transformed *in vivo* to yield an active compound of Formula (I) or a form thereof. The transformation may occur by various mechanisms (*e.g.*, by metabolic and/or non-metabolic chemical processes), such as, for example, by hydrolysis and/or metabolism in blood, liver and/or other organs and tissues. A discussion of the use of prodrugs is provided by T. Higuchi and W. Stella, "Pro-drugs as Novel Delivery Systems," Vol. 14 of the A.C.S. Symposium Series, and in Bioreversible Carriers in Drug Design, ed. Edward B. Roche, American Pharmaceutical Association and Pergamon Press, 1987.

In one example, when a compound of Formula (I) or a form thereof contains a carboxylic acid functional group, a prodrug can comprise an ester formed by the replacement of the hydrogen atom of the acid group with a functional group such as alkyl and the like. In another example, when a compound of Formula (I) or a form thereof contains a hydroxyl functional group, a prodrug form can be prepared by replacing the hydrogen atom of the hydroxyl with another functional group such as alkyl, alkylcarbonyl or a phosphonate ester and the like. In another example, when a compound of Formula (I) or a form thereof contains an amine functional group, a prodrug form can be prepared by replacing one or more amine hydrogen atoms with a functional group such as alkyl or substituted carbonyl. Pharmaceutically acceptable prodrugs of compounds of Formula (I) or a form thereof include those compounds substituted with one or more of the following groups: carboxylic acid esters, sulfonate esters, amino acid esters, phosphonate esters and mono-, di- or triphosphate esters or alkyl substituents, where appropriate. As described herein, it is understood by a person of ordinary skill in the art that one or more of such substituents may be used to provide a compound of Formula (I) or a form thereof as a prodrug.

5

10

15

20

25

30

One or more compounds described herein may exist in unsolvated as well as solvated forms with pharmaceutically acceptable solvents such as water, ethanol, and the like, and the description herein is intended to embrace both solvated and unsolvated forms.

As used herein, the term "solvate" means a physical association of a compound described herein with one or more solvent molecules. This physical association involves varying degrees of ionic and covalent bonding, including hydrogen bonding. In certain instances the solvate will be capable of isolation, for example when one or more solvent molecules are incorporated in the crystal lattice of the crystalline solid. As used herein, "solvate" encompasses both solution-phase and isolatable solvates. Non-limiting examples of suitable solvates include ethanolates, methanolates, and the like.

As used herein, the term "hydrate" means a solvate wherein the solvent molecule is water.

The compounds of Formula (I) can form salts, which are intended to be included within the scope of this description. Reference to a compound of Formula (I) or a form thereof herein is understood to include reference to salt forms thereof, unless otherwise indicated. The term "salt(s)", as employed herein, denotes acidic salts formed with inorganic and/or organic acids, as well as basic salts formed with inorganic and/or organic bases. In addition, when a compound of

Formula (I) or a form thereof contains both a basic moiety, such as, without limitation an amine moiety, and an acidic moiety, such as, but not limited to a carboxylic acid, zwitterions ("inner salts") may be formed and are included within the term "salt(s)" as used herein.

5

10

15

20

25

30

The term "pharmaceutically acceptable salt(s)", as used herein, means those salts of compounds described herein that are safe and effective (*i.e.*, non-toxic, physiologically acceptable) for use in mammals and that possess biological activity, although other salts are also useful. Salts of the compounds of the Formula (I) may be formed, for example, by reacting a compound of Formula (I) or a form thereof with an amount of acid or base, such as an equivalent amount, in a medium such as one in which the salt precipitates or in an aqueous medium followed by lyophilization.

Pharmaceutically acceptable salts include one or more salts of acidic or basic groups present in compounds described herein. Particular aspects of acid addition salts include, and are not limited to, acetate, ascorbate, benzoate, benzenesulfonate, bisulfate, bitartrate, borate, bromide, butyrate, chloride, citrate, camphorate, camphorsulfonate, ethanesulfonate, formate, fumarate, gentisinate, gluconate, glucaronate, glutamate, iodide, isonicotinate, lactate, maleate, methanesulfonate, naphthalenesulfonate, nitrate, oxalate, pamoate, pantothenate, phosphate, propionate, saccharate, salicylate, succinate, sulfate, tartrate, thiocyanate, toluenesulfonate (also known as tosylate), trifluoroacetate salts and the like. Certain particular aspects of acid addition salts include chloride, bromide or dichloride.

Additionally, acids which are generally considered suitable for the formation of pharmaceutically useful salts from basic pharmaceutical compounds are discussed, for example, by P. Stahl *et al*, Camille G. (eds.) *Handbook of Pharmaceutical Salts. Properties, Selection and Use.* (2002) Zurich: Wiley-VCH; S. Berge *et al*, *Journal of Pharmaceutical Sciences* (1977) 66(1) 1-19; P. Gould, *International J. of Pharmaceutics* (1986) 33, 201-217; Anderson *et al*, *The Practice of Medicinal Chemistry* (1996), Academic Press, New York; and in *The Orange Book* (Food & Drug Administration, Washington, D.C. on their website). These disclosures are incorporated herein by reference thereto.

Suitable basic salts include, but are not limited to, aluminum, ammonium, calcium, lithium, magnesium, potassium, sodium and zinc salts.

All such acid salts and base salts are intended to be included within the scope of pharmaceutically acceptable salts as described herein. In addition, all such acid and base salts are

considered equivalent to the free forms of the corresponding compounds for purposes of this description.

5

10

15

20

25

30

Compounds of Formula (I) and forms thereof, may further exist in a tautomeric form. All such tautomeric forms are contemplated and intended to be included within the scope of the compounds of Formula (I) or a form thereof as described herein.

The compounds of Formula (I) or a form thereof may contain asymmetric or chiral centers, and, therefore, exist in different stereoisomeric forms. The present description is intended to include all stereoisomeric forms of the compounds of Formula (I) as well as mixtures thereof, including racemic mixtures.

The compounds described herein may include one or more chiral centers, and as such may exist as racemic mixtures (R/S) or as substantially pure enantiomers and diastereomers. The compounds may also exist as substantially pure (R) or (S) enantiomers (when one chiral center is present). In one particular aspect, the compounds described herein are (S) isomers and may exist as enantiomerically pure compositions substantially comprising only the (S) isomer. In another particular aspect, the compounds described herein are (R) isomers and may exist as enantiomerically pure compositions substantially comprising only the (R) isomer. As one of skill in the art will recognize, when more than one chiral center is present, the compounds described herein may also exist as a (R,R), (R,S), (S,R) or (S,S) isomer, as defined by IUPAC Nomenclature Recommendations.

As used herein, the term "substantially pure" refers to compounds consisting substantially of a single isomer in an amount greater than or equal to 90%, in an amount greater than or equal to 92%, in an amount greater than or equal to 95%, in an amount greater than or equal to 98%, in an amount greater than or equal to 99%, or in an amount equal to 100% of the single isomer.

In one aspect of the description, a compound of Formula (I) or a form thereof is a substantially pure (S) enantiomer form present in an amount greater than or equal to 90%, in an amount greater than or equal to 92%, in an amount greater than or equal to 95%, in an amount greater than or equal to 98%, in an amount greater than or equal to 99%, or in an amount equal to 100%.

In one aspect of the description, a compound of Formula (I) or a form thereof is a substantially pure (R) enantiomer form present in an amount greater than or equal to 90%, in an amount greater than or equal to 92%, in an amount greater than or equal to 95%, in an amount

greater than or equal to 98%, in an amount greater than or equal to 99%, or in an amount equal to 100%.

As used herein, a "racemate" is any mixture of isometric forms that are not "enantiomerically pure", including mixtures such as, without limitation, in a ratio of about 50/50, about 60/40, about 70/30, or about 80/20.

5

10

15

20

25

30

In addition, the present description embraces all geometric and positional isomers. For example, if a compound of Formula (I) or a form thereof incorporates a double bond or a fused ring, both the cis- and trans-forms, as well as mixtures, are embraced within the scope of the description. Diastereomeric mixtures can be separated into their individual diastereomers on the basis of their physical chemical differences by methods well known to those skilled in the art, such as, for example, by chromatography and/or fractional crystallization. Enantiomers can be separated by use of chiral HPLC column or other chromatographic methods known to those skilled in the art. Enantiomers can also be separated by converting the enantiomeric mixture into a diastereomeric mixture by reaction with an appropriate optically active compound (*e.g.*, chiral auxiliary such as a chiral alcohol or Mosher's acid chloride), separating the diastereomers and converting (*e.g.*, hydrolyzing) the individual diastereomers to the corresponding pure enantiomers. Also, some of the compounds of Formula (I) may be atropisomers (*e.g.*, substituted biaryls) and are considered as part of this description.

All stereoisomers (for example, geometric isomers, optical isomers and the like) of the present compounds (including those of the salts, solvates, esters and prodrugs of the compounds as well as the salts, solvates and esters of the prodrugs), such as those which may exist due to asymmetric carbons on various substituents, including enantiomeric forms (which may exist even in the absence of asymmetric carbons), rotameric forms, atropisomers, and diastereomeric forms, are contemplated within the scope of this description, as are positional isomers (such as, for example, 4-pyridyl and 3-pyridyl). Individual stereoisomers of the compounds described herein may, for example, be substantially free of other isomers, or may be present in a racemic mixture, as described supra.

The use of the terms "salt", "solvate", "ester", "prodrug" and the like, is intended to equally apply to the salt, solvate, ester and prodrug of enantiomers, stereoisomers, rotamers, tautomers, positional isomers, racemates or isotopologues of the instant compounds.

The term "isotopologue" refers to isotopically-enriched compounds described herein which are identical to those recited herein, but for the fact that one or more atoms are replaced by an atom having an atomic mass or mass number different from the atomic mass or mass number usually found in nature. Examples of isotopes that can be incorporated into compounds described herein include isotopes of hydrogen, carbon, nitrogen, oxygen, phosphorus, fluorine and chlorine, such as ²H, ³H, ¹³C, ¹⁴C, ¹⁵N, ¹⁸O, ¹⁷O, ³¹P, ³²P, ³⁵S, ¹⁸F, ³⁵Cl and ³⁶Cl, respectively, each of which are also within the scope of this description.

5

10

15

20

25

30

Certain isotopically-enriched compounds described herein (*e.g.*, those labeled with ³H and ¹⁴C) are useful in compound and/or substrate tissue distribution assays. Tritiated (*i.e.*, ³H) and carbon-14 (*i.e.*, ¹⁴C) isotopes are particularly preferred for their ease of preparation and detectability. Further, substitution with heavier isotopes such as deuterium (*i.e.*, ²H) may afford certain therapeutic advantages resulting from greater metabolic stability (*e.g.*, increased in vivo half-life or reduced dosage requirements) and hence may be preferred in some circumstances.

Polymorphic crystalline and amorphous forms of the compounds of Formula (I) and of the salts, solvates, hydrates, esters and prodrugs of the compounds of Formula (I) are further intended to be included in the present description.

COMPOUND USES

An aspect of the present description relates to a method of use of a compound of Formula (I) or a form thereof for treating or ameliorating HD in a subject in need thereof, comprising administering an effective amount of the compound or a form thereof to the subject.

Another aspect of the present description relates to use of the compound of Formula (I)or a form thereof for treating or ameliorating HD in a subject in need thereof.

Another aspect of the present description relates to use of the compound of Formula (I) or a form thereof having activity toward HD.

An aspect of the present description relates to use of the compound of Formula (I) or a form thereof in a combination therapy to provide additive or synergistic activity, thus enabling the development of a combination product for treating or ameliorating HD.

In addition to monotherapeutic use, the instant compounds are useful in a combination therapy with current standard of agents, having additive or synergistic activity with one or more known agents.

A combination therapy comprising compounds described herein in combination with one or more known drugs may be used to treat HD regardless of whether HD is responsive to the known drug.

Certain aspects of the present description include the use of a compound of Formula (I) or a form thereof in a combination therapy for treating or ameliorating HD in a subject in need thereof, comprising administering an effective amount of the compound of Formula (I) or a form thereof and an effective amount of one or more agent(s).

5

10

15

20

25

30

Certain particular aspects of the present description include the use of a compound of Formula (I) or a form thereof in a combination therapy for treating or ameliorating HD in a subject in need thereof, comprising administering an effective amount of the compound of Formula (I) or a form thereof and an effective amount of one or more agent(s).

In an aspect of a use or method provided herein, compounds of Formula (I) or a form thereof used in combination with one or more additional agents can be administered to a subject or contacted with a subject or patient cell(s) prior to, concurrently with, or subsequent to administering to the subject or patient or contacting the cell with an additional agent(s). A compound(s) of Formula (I) or a form thereof and an additional agent(s) can be administered to a subject or contacted with a cell in single composition or different compositions. In a specific aspect, a compound(s) of Formula (I) or a form thereof is used in combination with gene therapy to inhibit HTT expression (using, *e.g.*, viral delivery vectors) or the administration of another small molecule HTT inhibitor. In another specific aspect, a compound(s) of Formula (I) or a form thereof are used in combination with cell replacement using differentiated non-mutant HTT stem cells. In another specific aspect, a compound(s) of Formula (I) or a form thereof are used in combination with cell replacement using differentiated HTT stem cells.

In one aspect, provided herein is the use of compounds of Formula (I) or a form thereof in combination with supportive standard of care therapies, including palliative care.

An aspect of the present description includes the use of a compound of Formula (I) or a form thereof in the preparation of a kit comprising the compound of Formula (I) or a form thereof and instructions for administering an effective amount of the compound of Formula (I) or a form thereof and an effective amount of one or more agent(s) in a combination therapy for treating or ameliorating HD in a subject in need thereof.

Accordingly, the present description relates to use of a compound of Formula (I) or a form thereof for treating or ameliorating HD. In accordance with the use of the present description, compounds that are useful in selectively treating or ameliorating HD, have been identified and use of these compounds for treating or ameliorating HD has been provided.

Another aspect of the use of the present description relates to use of a compound of Formula (I) or a form thereof for treating or ameliorating HD in a subject in need thereof, comprising administering an effective amount of the compound of Formula (I) or a form thereof to the subject.

5

10

15

20

25

30

Another aspect of the use of the present description relates to a method of use of a compound of Formula (I) or a form thereof for treating or ameliorating HD in a subject in need thereof, comprising administering an effective amount of the compound to the subject.

Another aspect of the use of the present description relates to a method of use of a compound of Formula (I) or a form thereof for treating or ameliorating HD in a subject in need thereof, comprising administering an effective amount of the compound to the subject.

Another aspect of the use of the present description relates to use of a compound of Formula (I) or a form thereof in the manufacture of a medicament for treating or ameliorating HD in a subject in need thereof, comprising administering an effective amount of the medicament to the subject.

Another aspect of the use of the present description relates to use of a compound of Formula (I) or a form thereof in the preparation of a kit comprising the compound of Formula (I) or a form thereof and instructions for administering the compound for treating or ameliorating HD in a subject in need thereof.

In one respect, for each of such aspects, the subject is treatment naive. In another respect, for each of such aspects, the subject is not treatment naive.

As used herein, the term "treating" refers to: (i) preventing a disease, disorder or condition from occurring in a subject that may be predisposed to the disease, disorder and/or condition but has not yet been diagnosed as having the disease, disorder and/or condition; (ii) inhibiting a disease, disorder or condition, *i.e.*, arresting the development thereof; and/or (iii) relieving a disease, disorder or condition, *i.e.*, causing regression of the disease, disorder and/or condition.

As used herein, the term "subject" refers to an animal or any living organism having sensation and the power of voluntary movement, and which requires oxygen and organic food.

Nonlimiting examples include members of the human, primate, equine, porcine, bovine, murine, rattus, canine and feline specie. In certain aspects, the subject is a mammal or a warm-blooded vertebrate animal. In other aspects, the subject is a human. As used herein, the term "patient" may be used interchangeably with "subject" and "human".

As used herein, the terms "effective amount" or "therapeutically effective amount" mean an amount of compound of Formula (I) or a form, composition or medicament thereof that achieves a target plasma concentration that is effective in treating or ameliorating HD as described herein and thus producing the desired therapeutic, ameliorative, inhibitory or preventative effect in a subject in need thereof. In one aspect, the effective amount may be the amount required to treat HD in a subject or patient, more specifically, in a human.

5

10

15

20

25

30

In another aspect, the concentration-biological effect relationships observed with regard to a compound of Formula (I) or a form thereof indicate a target plasma concentration ranging from approximately 0.001 μ g/mL to approximately 50 μ g/mL, from approximately 0.01 μ g/mL to approximately 20 μ g/mL, from approximately 0.05 μ g/mL to approximately 10 μ g/mL, or from approximately 0.1 μ g/mL to approximately 5 μ g/mL. To achieve such plasma concentrations, the compounds described herein may be administered at doses that vary, such as, for example, without limitation, from 0.1 ng to 10,000 mg.

In one aspect, the dose administered to achieve an effective target plasma concentration may be administered based upon subject or patient specific factors, wherein the doses administered on a weight basis may be in the range of from about 0.001 mg/kg/day to about 3500 mg/kg/day, or about 0.001 mg/kg/day to about 3000 mg/kg/day, or about 0.001 mg/kg/day to about 2000 mg/kg/day, or about 0.001 mg/kg/day to about 2000 mg/kg/day, or about 0.001 mg/kg/day, or about 0.001 mg/kg/day to about 1500 mg/kg/day, or about 0.001 mg/kg/day to about 250 mg/kg/day, or about 0.001 mg/kg/day to about 250 mg/kg/day, or about 0.001 mg/kg/day to about 200 mg/kg/day, or about 0.001 mg/kg/day to about 150 mg/kg/day, or about 0.001 mg/kg/day to about 100 mg/kg/day, or about 0.001 mg/kg/day to about 75 mg/kg/day, or about 0.001 mg/kg/day to about 50 mg/kg/day, or about 0.001 mg/kg/day to about 25 mg/kg/day, or about 0.001 mg/kg/day to about 10 mg/kg/day, or about 0.001 mg/kg/day to about 10 mg/kg/day, or about 0.001 mg/kg/day to about 10 mg/kg/day, or about 0.001 mg/kg/day to about 1 mg/kg/day, or about 0.001 mg/kg/day, or about 0.001 mg/kg/day to about 1 mg/kg/day, or about 0.001 mg/kg/day, or about 0.001 mg/kg/day, or about 0.1 mg/kg/day, or from about 0.01 mg/kg/day to about 3500 mg/kg/day, or about 0.01 mg/kg/day to about 3000

mg/kg/day, or about 0.01 mg/kg/day to about 2500 mg/kg/day, or about 0.01 mg/kg/day to about 2000 mg/kg/day, or about 0.01 mg/kg/day to about 1500 mg/kg/day, or about 0.01 mg/kg/day to about 1000 mg/kg/day, or about 0.01 mg/kg/day to about 500 mg/kg/day, or about 0.01 mg/kg/day to about 250 mg/kg/day, or about 0.01 mg/kg/day to about 200 mg/kg/day, or about 0.01 mg/kg/day to about 150 mg/kg/day, or about 0.01 mg/kg/day to about 100 mg/kg/day, or about 0.01 mg/kg/day to about 75 mg/kg/day, or about 0.01 mg/kg/day to about 50 mg/kg/day, or about 0.01 mg/kg/day to about 25 mg/kg/day, or about 0.01 mg/kg/day to about 10 mg/kg/day, or about 0.01 mg/kg/day to about 5 mg/kg/day, or about 0.01 mg/kg/day to about 1 mg/kg/day, or about 0.01 mg/kg/day to about 0.5 mg/kg/day, or about 0.01 mg/kg/day to about 0.1 mg/kg/day, or from about 0.1 mg/kg/day to about 3500 mg/kg/day, or about 0.1 mg/kg/day to about 3000 mg/kg/day, or about 0.1 mg/kg/day to about 2500 mg/kg/day, or about 0.1 mg/kg/day to about 2000 mg/kg/day, or about 0.1 mg/kg/day to about 1500 mg/kg/day, or about 0.1 mg/kg/day to about 1000 mg/kg/day, or about 0.1 mg/kg/day to about 500 mg/kg/day, or about 0.1 mg/kg/day to about 250 mg/kg/day, or about 0.1 mg/kg/day to about 200 mg/kg/day, or about 0.1 mg/kg/day to about 150 mg/kg/day, or about 0.1 mg/kg/day to about 100 mg/kg/day, or about 0.1 mg/kg/day to about 75 mg/kg/day, or about 0.1 mg/kg/day to about 50 mg/kg/day, or about 0.1 mg/kg/day to about 25 mg/kg/day, or about 0.1 mg/kg/day to about 10 mg/kg/day, or about 0.1 mg/kg/day to about 5 mg/kg/day, or about 0.1 mg/kg/day to about 1 mg/kg/day, or about 0.1 mg/kg/day to about 0.5 mg/kg/day.

5

10

15

20

25

30

Effective amounts for a given subject may be determined by routine experimentation that is within the skill and judgment of a clinician or a practitioner skilled in the art in light of factors related to the subject. Dosage and administration may be adjusted to provide sufficient levels of the active agent(s) or to maintain the desired effect. Factors which may be taken into account include genetic screening, severity of the disease state, status of disease progression, general health of the subject, ethnicity, age, weight, gender, diet, time of day and frequency of administration, drug combination(s), reaction sensitivities, experience with other therapies, and tolerance/response to therapy.

The dose administered to achieve an effective target plasma concentration may be orally administered once (once in approximately a 24 hour period; i.e., "q.d."), twice (once in approximately a 12 hour period; i.e., "b.i.d." or "q.12h"), thrice (once in approximately an 8 hour

period; i.e., "t.i.d." or "q.8h"), or four times (once in approximately a 6 hour period; i.e., "q.d.s.", "q.i.d." or "q.6h") daily.

In certain aspects, the dose administered to achieve an effective target plasma concentration may also be administered in a single, divided, or continuous dose for a patient or subject having a weight in a range of between about 40 to about 200 kg (which dose may be adjusted for patients or subjects above or below this range, particularly children under 40 kg). The typical adult subject is expected to have a median weight in a range of about 70 kg. Longacting pharmaceutical compositions may be administered every 2, 3 or 4 days, once every week, or once every two weeks depending on half-life and clearance rate of the particular formulation.

5

10

15

20

25

30

The compounds and compositions described herein may be administered to the subject via any drug delivery route known in the art. Nonlimiting examples include oral, ocular, rectal, buccal, topical, nasal, sublingual, transdermal, subcutaneous, intramuscular, intraveneous (bolus and infusion), intracerebral, and pulmonary routes of administration.

In another aspect, the dose administered may be adjusted based upon a dosage form described herein formulated for delivery at about 0.02, 0.025, 0.03, 0.05, 0.06, 0.075, 0.08, 0.09, 0.10, 0.20, 0.25, 0.30, 0.50, 0.60, 0.75, 0.80, 0.90, 1.0, 1.10, 1.20, 1.25, 1.50, 1.75, 2.0, 3.0, 5.0, 10, 20, 30, 40, 50, 100, 150, 200, 250, 300, 400, 500, 1000, 1500, 2000, 2500, 3000 or 4000 mg/day.

For any compound, the effective amount can be estimated initially either in cell culture assays or in relevant animal models, such as a mouse, guinea pig, chimpanzee, marmoset or tamarin animal model. Relevant animal models may also be used to determine the appropriate concentration range and route of administration. Such information can then be used to determine useful doses and routes for administration in humans. Therapeutic efficacy and toxicity may be determined by standard pharmaceutical procedures in cell cultures or experimental animals, *e.g.*, ED₅₀ (the dose therapeutically effective in 50% of the population) and LD₅₀ (the dose lethal to 50% of the population). The dose ratio between therapeutic and toxic effects is therapeutic index, and can be expressed as the ratio, LD₅₀/ED₅₀. In certain aspects, the effective amount is such that a large therapeutic index is achieved. In further particular aspects, the dosage is within a range of circulating concentrations that include an ED₅₀ with little or no toxicity. The dosage may vary within this range depending upon the dosage form employed, sensitivity of the patient, and the route of administration.

In one aspect, provided herein are methods for modulating the amount of HTT (huntingtin protein), comprising contacting a human cell with a compound of Formula (I) or a form thereof. In a specific aspect, provided herein are methods for modulating the amount of HTT, comprising contacting a human cell with a compound of Formula (I) or a form thereof that modulates the expression of HTT. The human cell can be contacted with a compound of Formula (I) or a form thereof *in vitro*, or *in vivo*, *e.g.*, in a non-human animal or in a human. In a specific aspect, the human cell is from or in a human. In another specific aspect, the human cell is from or in a human with HD. In another specific aspect, the human cell is from or in a human with HD, caused by a CAG repeat in the Htt gene, resulting in a loss of HTT expression and/or function. In another aspect, the human cell is from a human with HD. In another aspect, the human cell is in a human with HD. In one aspect, the compound is a form of the compound of Formula (I).

5

10

15

20

25

30

In a specific aspect, provided herein is a method for enhancing the inhibition of mutant HTT transcribed from the Htt gene, comprising contacting a human cell with a compound of Formula (I) or a form thereof. The human cell can be contacted with a compound of Formula (I) or a form thereof *in vitro*, or *in vivo*, *e.g.*, in a non-human animal or in a human. In a specific aspect, the human cell is from or in a human. In another specific aspect, the human cell is from or in a human with HD. In another specific aspect, the human cell is from or in a human with HD, caused by a CAG repeat in the Htt gene, resulting in a loss of wild-type "normal" HTT expression and/or function. In another aspect, the human cell is from a human with HD. In another aspect, the human cell is in a human with HD. In one aspect, the compound is a form of the compound of Formula (I).

In another aspect, provided herein is a method for modulating the inhibition of mutant HTT transcribed from the Htt gene, comprising administering to a non-human animal model for HD a compound of Formula (I) or a form thereof. In a specific aspect, provided herein is a method for modulating the inhibition of mutant HTT transcribed from the Htt gene, comprising administering to a non-human animal model for HD a compound of Formula (I) or a form thereof. In a specific aspect, the compound is a form of the compound of Formula (I).

In another aspect, provided herein is a method for decreasing the amount of mutant HTT, comprising contacting a human cell with a compound of Formula (I) or a form thereof. In a specific aspect, provided herein is a method for decreasing the amount of mutant HTT, comprising contacting a human cell with a compound of Formula (I) that inhibits the transcription

of mutant *HTT* (huntingtin mRNA) from the Htt gene. In another specific aspect, provided herein is a method for decreasing the amount of HTT, comprising contacting a human cell with a compound of Formula (I) that inhibits the expression of mutant HTT transcribed from the Htt gene. The human cell can be contacted with a compound of Formula (I) or a form thereof *in vitro*, or *in vivo*, *e.g.*, in a non-human animal or in a human. In a specific aspect, the human cell is from or in a human. In another specific aspect, the human cell is from or in a human with HD. In another specific aspect, the human cell is from or in a human with HD, caused by a CAG repeat in the Htt gene, resulting in a loss of HTT expression and/or function. In another aspect, the human cell is from a human with HD. In one aspect, the compound is a form of the compound of Formula (I).

5

10

15

20

25

30

In certain aspects, treating or ameliorating HD with a compound of Formula (I) or a form thereof (alone or in combination with an additional agent) has a therapeutic effect and/or beneficial effect. In a specific aspect, treating HD with a compound of Formula (I) or a form thereof (alone or in combination with an additional agent) results in one, two or more of the following effects: (i) reduces or ameliorates the severity of HD; (ii) delays onset of HD; (iii) inhibits the progression of HD; (iv) reduces hospitalization of a subject; (v) reduces hospitalization length for a subject; (vi) increases the survival of a subject; (vii) improves the quality of life for a subject; (viii) reduces the number of symptoms associated with HD; (ix) reduces or ameliorates the severity of a symptom(s) associated with HD; (x) reduces the duration of a symptom associated with HD; (xi) prevents the recurrence of a symptom associated with HD; (xii) inhibits the development or onset of a symptom of HD; and/or (xiii) inhibits of the progression of a symptom associated with HD.

METABOLITES

Also included within the scope of the present description are the use of *in vivo* metabolic products of the compounds described herein. Such products may result, for example, from the oxidation, reduction, hydrolysis, amidation, esterification and the like of the administered compound, primarily due to enzymatic processes. Accordingly, the description includes the use of compounds produced by a process comprising contacting a compound described herein with a mammalian tissue or a mammal for a period of time sufficient to yield a metabolic product thereof.

Such products typically are identified by preparing a radio-labeled isotopologue (*e.g.*, ¹⁴C or ³H) of a compound described herein, administering the radio-labeled compound in a detectable dose (*e.g.*, greater than about 0.5 mg/kg) to a mammal such as a rat, mouse, guinea pig, dog, monkey or human, allowing sufficient time for metabolism to occur (typically about 30 seconds to about 30 hours), and identifying the metabolic conversion products from urine, bile, blood or other biological samples. The conversion products are easily isolated since they are "radiolabeled" by virtue of being isotopically-enriched (others are isolated by the use of antibodies capable of binding epitopes surviving in the metabolite). The metabolite structures are determined in conventional fashion, *e.g.*, by MS or NMR analysis. In general, analysis of metabolites may be done in the same way as conventional drug metabolism studies well-known to those skilled in the art. The conversion products, so long as they are not otherwise found *in vivo*, are useful in diagnostic assays for therapeutic dosing of the compounds described herein even if they possess no biological activity of their own.

5

10

15

20

25

30

PHARMACEUTICAL COMPOSITIONS

Aspects of the present description include the use of a compound of Formula (I) or a form thereof in a pharmaceutical composition for treating or ameliorating HD in a subject in need thereof, comprising administering an effective amount of the compound of Formula (I) or a form thereof in admixture with one or more pharmaceutically acceptable excipient(s).

An aspect of the present description includes the use of a pharmaceutical composition of the compound of Formula (I) or a form thereof in the preparation of a kit comprising the pharmaceutical composition of the compound of Formula (I) or a form thereof and instructions for administering the compound for treating or ameliorating HD in a subject in need thereof.

As used herein, the term "composition" means a product comprising the specified ingredients in the specified amounts, as well as any product which results, directly or indirectly, from combination of the specified ingredients in the specified amounts.

The pharmaceutical composition may be formulated to achieve a physiologically compatible pH, ranging from about pH 3 to about pH 11. In certain aspects, the pharmaceutical composition is formulated to achieve a pH of from about pH 3 to about pH 7. In other aspects, the pharmaceutical composition is formulated to achieve a pH of from about pH 5 to about pH 8.

The term "pharmaceutically acceptable excipient" refers to an excipient for administration of a pharmaceutical agent, such as the compounds described herein. The term refers to any

pharmaceutical excipient that may be administered without undue toxicity. Pharmaceutically acceptable excipients may be determined in part by the particular composition being administered, as well as by the particular mode of administration and/or dosage form. Nonlimiting examples of pharmaceutically acceptable excipients include carriers, solvents, stabilizers, adjuvants, diluents, *etc.* Accordingly, there exists a wide variety of suitable formulations of pharmaceutical compositions for the instant compounds described herein (*see*, *e.g.*, Remington's Pharmaceutical Sciences).

5

10

15

20

25

30

Suitable excipients may be carrier molecules that include large, slowly metabolized macromolecules such as proteins, polysaccharides, polylactic acids, polyglycolic acids, polymeric amino acids, amino acid copolymers, and inactive antibodies. Other exemplary excipients include antioxidants such as ascorbic acid; chelating agents such as EDTA; carbohydrates such as dextrin, hydroxyalkylcellulose, hydroxyalkylmethylcellulose (*e.g.*, hydroxypropylmethylcellulose, also known as HPMC), stearic acid; liquids such as oils, water, saline, glycerol and ethanol; wetting or emulsifying agents; pH buffering substances; and the like. Liposomes are also included within the definition of pharmaceutically acceptable excipients.

The pharmaceutical compositions described herein may be formulated in any form suitable for the intended use described herein. Suitable formulations for oral administration include solids, liquid solutions, emulsions and suspensions, while suitable inhalable formulations for pulmonary administration include liquids and powders. Alternative formulations include syrups, creams, ointments, tablets, and lyophilized solids which can be reconstituted with a physiologically compatible solvent prior to administration.

When intended for oral use for example, tablets, troches, lozenges, aqueous or oil suspensions, non-aqueous solutions, dispersible powders or granules (including micronized particles or nanoparticles), emulsions, hard or soft capsules, syrups or elixirs may be prepared. Compositions intended for oral use may be prepared according to any method known to the art for the manufacture of pharmaceutical compositions, and such compositions may contain one or more agents including sweetening agents, flavoring agents, coloring agents, and preserving agents, in order to provide a palatable preparation.

Pharmaceutically acceptable excipients suitable for use in conjunction with tablets include, for example, inert diluents, such as celluloses, calcium or sodium carbonate, lactose, calcium or sodium phosphate; disintegrating agents, such as croscarmellose sodium, cross-linked

povidone, maize starch, or alginic acid; binding agents, such as povidone, starch, gelatin or acacia; and lubricating agents, such as magnesium stearate, stearic acid, or talc. Tablets may be uncoated or may be coated by known techniques including microencapsulation to delay disintegration and adsorption in the gastrointestinal tract and thereby provide a sustained action over a longer period. For example, a time delay material such as glyceryl monostearate or glyceryl distearate alone or with a wax may be employed.

5

10

15

20

25

30

Formulations for oral use may be also presented as hard gelatin capsules where the active ingredient is mixed with an inert solid diluent, for example celluloses, lactose, calcium phosphate, or kaolin, or as soft gelatin capsules wherein the active ingredient is mixed with non-aqueous or oil medium, such as glycerin, propylene glycol, polyethylene glycol, peanut oil, liquid paraffin, or olive oil.

In other aspects, pharmaceutical compositions described herein may be formulated as suspensions comprising a compound of Formula (I) or a form thereof in admixture with one or more pharmaceutically acceptable excipient(s) suitable for the manufacture of a suspension. In yet other aspects, pharmaceutical compositions described herein may be formulated as dispersible powders and granules suitable for preparation of a suspension by the addition of one or more excipient(s).

Excipients suitable for use in connection with suspensions include suspending agents, such as sodium carboxymethylcellulose, methylcellulose, hydroxypropyl methylcelluose, sodium alginate, polyvinylpyrrolidone, gum tragacanth, gum acacia, dispersing or wetting agents such as a naturally occurring phosphatide (*e.g.*, lecithin), a condensation product of an alkylene oxide with a fatty acid (*e.g.*, polyoxyethylene stearate), a condensation product of ethylene oxide with a long chain aliphatic alcohol (*e.g.*, heptadecaethyleneoxycethanol), a condensation product of ethylene oxide with a partial ester derived from a fatty acid and a hexitol anhydride (*e.g.*, polyoxyethylene sorbitan monooleate); and thickening agents, such as carbomer, beeswax, hard paraffin, or cetyl alcohol. The suspensions may also contain one or more preservatives such as acetic acid, methyl and/or n-propyl p-hydroxy-benzoate; one or more coloring agents; one or more flavoring agents; and one or more sweetening agents such as sucrose or saccharin.

The pharmaceutical compositions described herein may also be in the form of oil-in-water emulsions. The oily phase may be a vegetable oil, such as olive oil or arachis oil, a mineral oil, such as liquid paraffin, or a mixture of these. Suitable emulsifying agents include naturally-

occurring gums, such as gum acacia and gum tragacanth; naturally occurring phosphatides, such as soybean lecithin, esters or partial esters derived from fatty acids; hexitol anhydrides, such as sorbitan monooleate; and condensation products of these partial esters with ethylene oxide, such as polyoxyethylene sorbitan monooleate. The emulsion may also contain sweetening and flavoring agents. Syrups and elixirs may be formulated with sweetening agents, such as glycerol, sorbitol or sucrose. Such formulations may also contain a demulcent, a preservative, a flavoring or a coloring agent.

5

10

15

20

25

30

Additionally, the pharmaceutical compositions described herein may be in the form of a sterile injectable preparation, such as a sterile injectable aqueous emulsion or oleaginous suspension. Such emulsion or suspension may be formulated according to the known art using those suitable dispersing or wetting agents and suspending agents which have been mentioned above. The sterile injectable preparation may also be a sterile injectable solution or suspension in a non-toxic parenterally acceptable diluent or solvent, such as a solution in 1,2-propanediol. The sterile injectable preparation may also be prepared as a lyophilized powder. Among the acceptable vehicles and solvents that may be employed are water, Ringer's solution and isotonic sodium chloride solution. In addition, sterile fixed oils may be employed as a solvent or suspending medium. For this purpose any bland fixed oil may be employed including synthetic mono- or di-glycerides. In addition, fatty acids such as oleic acid may likewise be used in the preparation of injectables.

The compounds described herein may be substantially insoluble in water and sparingly soluble in most pharmaceutically acceptable protic solvents and vegetable oils, but generally soluble in medium-chain fatty acids (*e.g.*, caprylic and capric acids) or triglycerides and in propylene glycol esters of medium-chain fatty acids. Thus, contemplated in the description are compounds which have been modified by substitutions or additions of chemical or biochemical moieties which make them more suitable for delivery (*e.g.*, increase solubility, bioactivity, palatability, decrease adverse reactions, *etc.*), for example by esterification, glycosylation, PEGylation, etc.

In certain aspects, the compound described herein is formulated for oral administration in a lipid-based composition suitable for low solubility compounds. Lipid-based formulations can generally enhance the oral bioavailability of such compounds. As such, pharmaceutical compositions described herein may comprise a effective amount of a compound of Formula (I) or

a form thereof, together with at least one pharmaceutically acceptable excipient selected from medium chain fatty acids or propylene glycol esters thereof (*e.g.*, propylene glycol esters of edible fatty acids such as caprylic and capric fatty acids) and pharmaceutically acceptable surfactants, such as polysorbate 20 or 80 (also referred to as Tween® 20 or Tween® 80, respectively) or polyoxyl 40 hydrogenated castor oil.

5

10

15

20

25

In other aspects, the bioavailability of low solubility compounds may be enhanced using particle size optimization techniques including the preparation of nanoparticles or nanosuspensions using techniques known to those skilled in the art. The compound forms present in such preparations include amorphous, partially amorphous, partially crystalline or crystalline forms.

In alternative aspects, the pharmaceutical composition may further comprise one or more aqueous solubility enhancer(s), such as a cyclodextrin. Nonlimiting examples of cyclodextrin include hydroxypropyl, hydroxyethyl, glucosyl, maltosyl and maltotriosyl derivatives of α -, β -, and γ -cyclodextrin, and hydroxypropyl- β -cyclodextrin (HPBC). In certain aspects, the pharmaceutical composition further comprises HPBC in a range of from about 0.1% to about 20%, from about 1% to about 15%, or from about 2.5% to about 10%. The amount of solubility enhancer employed may depend on the amount of the compound in the composition.

PREPARATION OF COMPOUNDS

GENERAL SYNTHETIC METHODS

As disclosed herein, general methods for preparing the compounds of Formula (I) or a form thereof as described herein are available via standard, well-known synthetic methodology. Many of the starting materials are commercially available or, when not available, can be prepared using the routes described below using techniques known to those skilled in the art. The synthetic schemes provided herein comprise multiple reaction steps, each of which is intended to stand on its own and can be carried out with or without any preceding or succeeding step(s). In other words, each of the individual reaction steps of the synthetic schemes provided herein in isolation is contemplated.

Scheme A:

5

10

15

20

Compounds of Formula (I), wherein R_1 is C_{3-10} cycloalkyl or heterocyclyl ring systems and R_2 is phenyl, heterocyclyl, or heteroaryl ring systems, may be prepared as described in Scheme A below.

Compound A1 (where X_1 and X_2 are independently bromine, chlorine and the like; W_2 and W₃, are independently CH or N) is converted to Compound A2 by a nucleophilic substitution with a primary amine in the presence of a suitable base (such as Et₃N and the like) in a suitable solvent (such as decanol and the like). Alternatively, Compound A1 is converted to Compound A2 via cross coupling with a primary amine in the presence of a suitable catalyst (such as RuPhos Pd G2 and the like) and base (such as sodium tert-butoxide and the like) in an appropriate solvent such as 1,4-dioxane and the like). Compound A2 is converted to Compound A3 by a diazotization/cyclization sequence upon treatment with an appropriate reagent (such as sodium nitrite and the like) in an appropriate solvent (such acetic acid and the like). Compound A3 is converted to Compound A4 by a Suzuki coupling with an aryl- or heteroaryl-boronic acid (or pinacol boronic ester) in the presence of a catalyst (such as Pd(dppf)Cl₂ and the like) and base (such as aqueous K₂CO₃ and the like) in a suitable solvent (such as 1,4-dioxane and the like). Alternatively, Compound A3 is converted to Compound A4 by a Stille coupling with an aryl- or heteroaryl-stannane in the presence of a catalyst (such as Pd₂(dba)₃ and the like), a ligand (such as X-Phos and the like) and a base (such as CsF and the like) in a suitable solvent (such as 1,4dioxane and the like). Any protection groups on R₁ and R₂ are removed upon treatment with a suitable reagent (such as HCl in dioxane for a Boc protecting group and the like) in a suitable solvent (such as dioxane and the like).

93

Scheme B:

5

10

15

20

Compounds of Formula (I), wherein R_1 is C_{3-10} cycloalkyl or heterocyclyl ring systems and R_2 is phenyl, heterocyclyl, or heteroaryl ring systems, may be prepared as described in Scheme B below.

Compound **B1** (where X_1 and X_2 are independently bromine, chlorine and the like; W_2 and W_3 , are independently CH or N) is converted to Compound **B2** through a nucleophilic substitution/cyclization sequence by treatment with hydrazine ($R_1NH_2NH_2$) and a suitable base (such as Et_3N and the like) in a suitable solvent (such as methanol and the like). Compound **B2** is converted to Compound **B3** by a Suzuki coupling with an aryl- or heteroaryl-boronic acid (or pinacol boronic ester) in the presence of a catalyst (such as $Pd(dppf)Cl_2$ and the like) and base (such as aqueous K_2CO_3 and the like) in a suitable solvent (such as 1,4-dioxane and the like). Alternatively, Compound **B2** is converted to Compound **B3** by a Stille coupling with an aryl- or heteroaryl-stannane in the presence of a catalyst (such as $Pd_2(dba)_3$ and the like), a ligand (such as X-Phos and the like) and a base (such as CsF and the like) in a suitable solvent (such as 1,4-dioxane and the like). Compound **B3** is converted to Compound **B4** by treatment with an activated triflate (such as Tf_2O or Tf_2NPh and the like) in the presence of a suitable base (such as Tf_2NPh and the like) in a suitable solvent (such as Tf_2NPh and the like) in a propriate hydrogen source (such as ammonium formate and the like) in the presence of a suitable catalyst (such as Tf_2NPh) and the like) in the presence of a suitable catalyst (such as Tf_2NPh) and the like) in the presence of a suitable catalyst (such as Tf_2NPh) and the like) in the presence of a suitable catalyst (such as Tf_2NPh) and the like) in the presence of a suitable catalyst (such as Tf_2NPh) and the like) in the presence of a suitable catalyst (such as Tf_2NPh) and the like) in the presence of a suitable catalyst (such as Tf_2NPh) and Tf_2NPh

the like) in a suitable solvent (such as tetrahydrofuran and the like). Any protection groups on R_1 and R_2 are removed upon treatment with a suitable reagent (such as HCl in dioxane for a Boc protecting group and the like) in a suitable solvent (such as dioxane and the like).

Scheme C:

5

10

15

20

Compounds of Formula (I), wherein R_1 is C_{3-10} cycloalkyl or heterocyclyl ring systems and R_2 is phenyl, heterocyclyl, or heteroaryl ring systems, may be prepared as described in Scheme C below.

Compound C1 (where X₁ and X₂ are independently bromine, chlorine and the like; W₂ and W₃, are independently CH or N) is converted to Compound C2 by a Sonogashira coupling with a TMS protected acetylene in the presence of a suitable catalyst (such as Pd(PPh₃)₂Cl₂ and the like and CuI and the like) and suitable base (such as Et₃N and the like) in a suitable solvent (such as acetonitrile and the like). Compound C2 is converted to Compound C3 by heating in a suitable solvent (such as DMF and the like) in the presence of a suitable base (such as K₂CO₃ and the like). Compound C3 is converted to Compound C4 by a Suzuki coupling with an aryl- or heteroaryl-boronic acid (or pinacol boronic ester) in the presence of a catalyst (such as Pd(dppf)Cl₂ and the like) and base (such as aqueous K₂CO₃ and the like) in a suitable solvent (such as 1,4-dioxane and the like). Alternatively, Compound C3 is converted to Compound C4 by a Stille coupling with an aryl- or heteroaryl-stannane in the presence of a catalyst (such as Pd₂(dba)₃ and the like), a ligand (such as X-Phos and the like) and a base (such as CsF and the like) in a suitable solvent (such as 1,4-dioxane and the like). Compound C4 is converted to Compound C5 (where X₃ is iodine, bromine and the like) by halogenation with a suitable reagent

(such as NIS the like) in a suitable solvent (such as DMF and the like). Compound C5 is converted to Compound C6 by a Suzuki coupling with an optionally substituted and appropriately protected amino-containing cycloalkyl/cycloalkenyl pinacol boronic ester in the presence of a catalyst (such as Pd(dppf)Cl₂ and the like) and base (such as aqueous K₂CO₃ and the like) in a suitable solvent (such as 1,4-dioxane and the like). Alternatively, Compound C5 is converted to Compound C6 by a Negishi coupling with an optionally substituted and appropriately protected amino-containing cycloalkyl zinc halide in the presence of a catalyst (such as Pd(dppf)Cl₂ and the like) in a suitable solvent (such as 1,4-dioxane and the like). Upon treatment with a deprotecting agent appropriate for the protecting group (such as HCl in dioxane for a Boc protecting group and the like), Compound C6 is converted to Compound C7. In cases where unsaturation exists in the ring containing the basic amino group, the compound may be converted to the fully saturated analog under an atmosphere of H₂ in a suitable solvent (such as methanol and the like) and in the presence of catalyst (such as 10% Pd/C and the like).

Scheme D:

5

10

15

20

Compounds of Formula (I), wherein R_1 is $C_{3\text{--}10}$ cycloalkyl or heterocyclyl ring systems and R_2 is phenyl, heterocyclyl, or heteroaryl ring systems, may be prepared as described in Scheme D below.

$$X_3$$
 W_2 X_2 X_2 X_3 X_4 X_5 X_5 X_4 X_5 X_4 X_5 X_5 X_5 X_5 X_6 X_7 X_8 X_8

Compound **D1** (where X_1 , X_2 and X_3 are independently bromine, chlorine and the like; W_2 and W_3 , are independently CH or N) is converted to Compound **D2** by a Suzuki coupling with a

vinyl pinacol boronic ester in the presence of a catalyst (such as $Pd(dppf)Cl_2$ and the like) and base (such as aqueous K_2CO_3 and the like) in a suitable solvent (such as 1,4-dioxane and the like). Compound D2 is converted to Compound D3 by heating with a primary amine (R_1NH_2) in a suitable solvent (such as acetonitrile and the like). Compound D3 is converted to Compound D4 by a Suzuki coupling with an aryl- or heteroaryl-boronic acid (or pinacol boronic ester) in the presence of a catalyst (such as $Pd(dppf)Cl_2$ and the like) and base (such as aqueous K_2CO_3 and the like) in a suitable solvent (such as 1,4-dioxane and the like). Alternatively, Compound D3 is converted to Compound D4 by a Stille coupling with an aryl- or heteroaryl-stannane in the presence of a catalyst (such as $Pd_2(dba)_3$ and the like), a ligand (such as X-Phos and the like) and a base (such as CsF and the like) in a suitable solvent (such as 1,4-dioxane and the like). Compound D4 is converted to Compound D5 by treating with a suitable oxidizing agent (such as manganese dioxide and the like) in a suitable solvent (such as toluene and the like). Any protection groups on R_1 and R_2 are removed upon treatment with a suitable reagent (such as HC1 in dioxane for a Boc protecting group and the like) in a suitable solvent (such as dioxane and the like).

Scheme E:

5

10

15

20

Compounds of Formula (I), wherein R_1 is C_{3-10} cycloalkyl or heterocyclyl ring systems and R_2 is phenyl, heterocyclyl, or heteroaryl ring systems, may be prepared as described in Scheme E below.

Compound E1 (where X_1 and X_2 are independently bromine, chlorine and the like; W_2 and W_3 , are independently CH or N) is converted to Compound E2 through a

5

10

15

20

25

30

condensation/cyclization sequence in the presence of a suitable base (such as Et₃N and the like) in a suitable solvent (such as acetonitrile and the like). Compound E2 is converted to Compound E3 by TIPS protection of the hydroxyl group by using an appropriate reagent (such as TIPSCl or TIPSOTf and the like) in the presence of a suitable base (such as imidazole and the like) in a suitable solvent (such as DMF and the like). Compound E3 is converted to Compound E4 by a Suzuki coupling with an aryl- or heteroaryl-boronic acid (or pinacol boronic ester) in the presence of a catalyst (such as Pd(dppf)Cl₂ and the like) and base (such as aqueous K₂CO₃ and the like) in a suitable solvent (such as 1,4-dioxane and the like). Alternatively, Compound E3 is converted to Compound **E4** by a Stille coupling with an aryl- or heteroaryl-stannane in the presence of a catalyst (such as Pd₂(dba)₃ and the like), a ligand (such as X-Phos and the like) and a base (such as CsF and the like) in a suitable solvent (such as 1,4-dioxane and the like). Compound **E4** is converted to Compound E5 through hydrolysis of methyl ester in the presence of a suitable base (such as aqueous NaOH and the like) in a suitable solvent (such as methanol and the like) followed by decarboxylation of the resulting carboxylic acid upon heating in the appropriate solvent (such as DMSO and the like). Compound E5 is converted to Compound E6 by treatment with an activated triflate (such as Tf₂O or Tf₂NPh and the like) in presence of a suitable base (such as Et₃N and the like) in a suitable solvent (such as dichloromethane and the like). Compound **E6** is converted to Compound **E7** by a Suzuki coupling with an optionally substituted and appropriately protected amino-containing cycloalkyl/cycloalkenyl pinacol boronic ester in the presence of a catalyst (such as Pd(dppf)Cl₂ and the like) and base (such as aqueous K₂CO₃ and the like) in a suitable solvent (such as 1,4-dioxane and the like). Alternatively, Compound **E6** is converted to Compound E7 by a Negishi coupling with an optionally substituted and appropriately protected amino-containing cycloalkyl zinc halide in the presence of a catalyst (such as Pd(dppf)Cl₂ and the like) in a suitable solvent (such as 1,4-dioxane and the like). In cases where unsaturation exists in the ring containing the basic amino group, the compound may be converted to the fully saturated analog under an atmosphere of H₂ in a suitable solvent (such as methanol and the like) and in the presence of catalyst (such as 10% Pd/C and the like). Any protection groups on R₁ and R₂ are removed upon treatment with a suitable reagent (such as HCl in dioxane for a Boc protecting group and the like) in a suitable solvent (such as dioxane and the like).

Scheme F:

5

10

15

20

Compounds of Formula (I), wherein R_1 is C_{3-10} cycloalkyl or heterocyclyl ring systems and R_2 is phenyl, heterocyclyl, or heteroaryl ring systems, may be prepared as described in Scheme F below.

Compound F1 (where X₁ and X₂ are independently bromine, chlorine and the like; W₂ and W₃, are independently CH or N) is converted to Compound F2 through nucleophilic substitution with methyl 2-hydroxyacetate in the presence of a suitable base (such as NaH and the like) in a suitable solvent (such as THF and the like). Compound F2 is converted to Compound F3 by cyclization upon treatment with an appropriate base (such as NaOMe and the like) in a suitable solvent (such as THF and the like). Compound F3 is converted to Compound F4 by a Suzuki coupling with an aryl- or heteroaryl-boronic acid (or pinacol boronic ester) in the presence of a catalyst (such as Pd(dppf)Cl₂ and the like) and base (such as aqueous K₂CO₃ and the like) in a suitable solvent (such as 1,4-dioxane and the like). Alternatively, Compound F3 is converted to Compound **F4** by a Stille coupling with an aryl- or heteroaryl-stannane in the presence of a catalyst (such as Pd₂(dba)₃ and the like), a ligand (such as X-Phos and the like) and a base (such as CsF and the like) in a suitable solvent (such as 1,4-dioxane and the like). Compound **F4** is converted to Compound F5 through a hydrolysis/decarboxylation sequence in the presence of a suitable base (such as aqueous NaOH and the like) in a suitable solvent (such as DMSO and the like). Compound **F5** is converted to Compound **F6** by treatment with an activated triflate (such as Tf₂O or Tf₂NPh and the like) in presence of a suitable base (such as Et₃N and the like) in a suitable solvent (such as dichloromethane and the like). Compound F6 is converted to Compound

F7 by a Suzuki coupling with an optionally substituted and appropriately protected aminocontaining cycloalkyl/cycloalkenyl pinacol boronic ester in the presence of a catalyst (such as Pd(dppf)Cl₂ and the like) and base (such as aqueous K₂CO₃ and the like) in a suitable solvent (such as 1,4-dioxane and the like). Alternatively, Compound F6 is converted to Compound F7 by a Negishi coupling with an optionally substituted and appropriately protected amino-containing cycloalkyl zinc halide in the presence of a catalyst (such as Pd(dppf)Cl₂ and the like) in a suitable solvent (such as 1,4-dioxane and the like). In cases where unsaturation exists in the ring containing the basic amino group, the compound may be converted to the fully saturated analog under an atmosphere of H₂ in a suitable solvent (such as methanol and the like) and in the presence of catalyst (such as 10% Pd/C and the like). Any protection groups on R₁ and R₂ are removed upon treatment with a suitable reagent (such as HCl in dioxane for a Boc protecting group and the like) in a suitable solvent (such as dioxane and the like).

Scheme G:

5

10

15

20

Compounds of Formula (I), wherein R_1 is C_{3-10} cycloalkyl or heterocyclyl ring systems and R_2 is phenyl, heterocyclyl, or heteroaryl ring systems, may be prepared as described in Scheme F below.

Compound G1 (where X_1 and X_2 are independently bromine, chlorine and the like; W_2 and W_3 , are independently CH or N) is converted to Compound G2 by a nucleophilic substitution with a primary amine in the presence of a suitable base (such as Et_3N and the like) in a suitable solvent (such as decanol and the like). Alternatively, Compound G1 is converted to Compound G2 via cross coupling with a primary amine in the presence of a suitable catalyst (such as RuPhos

Pd G2 and the like) and base (such as sodium *tert*-butoxide and the like) in an appropriate solvent such as 1,4-dioxane and the like). Compound G2 is converted to Compound G3 (where R3 is H, Me, Et and the like) via cyclization using an appropriate reagent (such as triethylorthoformate and the like) in the presence of an appropriate catalyst (such as HCl and the like). Compound G3 is converted to Compound G4 by a Suzuki coupling with an aryl- or heteroaryl-boronic acid (or pinacol boronic ester) in the presence of a catalyst (such as Pd(dppf)Cl₂ and the like) and base (such as aqueous K₂CO₃ and the like) in a suitable solvent (such as 1,4-dioxane and the like). Alternatively, Compound G3 is converted to Compound G4 by a Stille coupling with an aryl- or heteroaryl-stannane in the presence of a catalyst (such as Pd₂(dba)₃ and the like), a ligand (such as X-Phos and the like) and a base (such as CsF and the like) in a suitable solvent (such as 1,4-dioxane and the like). Any protection groups on R₁ and R₂ are removed upon treatment with a suitable reagent (such as HCl in dioxane for a Boc protecting group and the like) in a suitable solvent (such as dioxane and the like).

Scheme H:

5

10

15

Compounds of Formula (I), wherein wherein R_1 is alkyl, cycloalkyl, heterocyclyl, aryl or heteroaryl, R_2 is hydrogen, fluorine, chlorine, hydroxy, methoxy, aryl, or heteroaryl, and R_3 is monocyclic or bicyclic heterocyclyl or heteroaryl ring systems, may be prepared as described in Scheme H below.

5

10

15

20

25

30

Compound **H1** (where X_1 , X_2 and X_3 are independently bromine, chlorine and the like; W_2 and W₃, are independently CH or N) is converted to Compound **H2** by a nucleophilic substitution with sodium benzenesulfinate in a suitable solvent (such as THF, DMSO and the like). Compound **H2** is converted to Compound **H3** by a nucleophilic substitution with a primary amine in the presence of a suitable base (such as K₂CO₃ and the like) in a suitable solvent (such as dioxane and the like). Alternatively, Compound H2 is converted to Compound H3 via cross coupling with a primary amine in the presence of a suitable catalyst (such as RuPhos Pd G2 and the like) and base (such as sodium tert-butoxide and the like) in an appropriate solvent such as 1,4-dioxane and the like). Compound **H3** is converted to Compound **H4** by treatment with sodium azide in an appropriate solvent (such as DMSO and the like). Compound H4 is converted to Compound H5 by a reduction upon treatment with an appropriate reagent (such as zinc metal and the like) in the presence of an appropriate acid (such as acetic acid and the like) in the appropriate solvent (such as CH₂Cl₂ and the like). Compound H5 is converted to Compound H6 via a diazotization/cyclization sequence upon treatment with an appropriate reagent (such as sodium nitrite and the like) in an appropriate solvent (such acetic acid and the like). Compound **H6** is converted to Compound H8 by a Suzuki coupling with an aryl-boronic acid (or pinacol boronic ester) H7 (where X4 is bromine, chlorine and the like; R2 is hydrogen, fluorine, chlorine, hydroxy, methoxy, aryl or heteroaryl; and P is a protecting group such as MOM and the like) in the presence of a catalyst (such as Pd(dppf)Cl₂ and the like) and base (such as aqueous K₂CO₃ and the like) in a suitable solvent (such as 1,4-dioxane and the like). Compound **H8** is converted to Compound **H9** by a Suzuki coupling with an aryl- or heteroaryl-boronic acid (or pinacol boronic ester) in the presence of a catalyst (such as Pd(dppf)Cl₂ and the like) and a base (such as aqueous K₂CO₃ and the like) in a suitable solvent (such as 1,4-dioxane and the like). Alternatively, Compound **H8** is converted to Compound **H9** by a Stille coupling with an aryl- or heteroarylstannane in the presence of a catalyst (such as Pd₂(dba)₃ and the like), a ligand (such as X-Phos and the like) and a base (such as CsF and the like) in a suitable solvent (such as 1,4-dioxane and the like). Alternatively, Compound **H8** is converted to Compound **H9** by treatment with pinacolatodiboron and a base (such as KOAc and the like) in the presence of a catalyst (such as Pd(dppf)Cl₂ and the like) in an appropriate solvent (such as 1,4-dioxane and the like), followed by addition of an aryl- or heteroaryl-halide in the presence of a catalyst (such as Pd(dppf)Cl₂ and the like) and a base (such as aqueous K₂CO₃ and the like) in a suitable solvent (such as 1,4-dioxane

and the like). Alternatively, Compound **H8** is converted to Compound **H9** by a Buchwald-Hartwig coupling with a heteroaryl or amine in the presence of a catalyst (such as Pd₂(dba)₃ and the like), a ligand (such as tBuX-Phos and the like) and a base (such as K₃PO₄ and the like) in a suitable solvent (such as 1,4-dioxane and the like). Compound **H9** is converted to Compound **H10** upon treatment with conditions appropriate to the removal of the protecting groups (such as HCl in dioxane for a MOM protecting group) in a suitable solvent (such as dioxane and the like).

5

10

15

20

25

30

SPECIFIC SYNTHETIC EXAMPLES

To describe in more detail and assist in understanding, the following non-limiting examples are offered to more fully illustrate the scope of compounds described herein and are not to be construed as specifically limiting the scope thereof. Such variations of the compounds described herein that may be now known or later developed, which would be within the purview of one skilled in the art to ascertain, are considered to fall within the scope of the compounds as described herein and hereinafter claimed. These examples illustrate the preparation of certain compounds. Those of skill in the art will understand that the techniques described in these examples represent techniques, as described by those of ordinary skill in the art, that function well in synthetic practice, and as such constitute preferred modes for the practice thereof. However, it should be appreciated that those of skill in the art should, in light of the present disclosure, appreciate that many changes can be made in the specific methods that are disclosed and still obtain a like or similar result without departing from the spirit and scope of the present description.

Other than in the following examples of the embodied compounds, unless indicated to the contrary, all numbers expressing quantities of ingredients, reaction conditions, experimental data, and so forth used in the specification and claims are to be understood as being modified by the term "about". Accordingly, all such numbers represent approximations that may vary depending upon the desired properties sought to be obtained by a reaction or as a result of variable experimental conditions. Therefore, within an expected range of experimental reproducibility, the term "about" in the context of the resulting data, refers to a range for data provided that may vary according to a standard deviation from the mean. As well, for experimental results provided, the resulting data may be rounded up or down to present data consistently, without loss of significant figures. At the very least, and not as an attempt to limit the application of the doctrine of

equivalents to the scope of the claims, each numerical parameter should be construed in light of the number of significant digits and rounding techniques used by those of skill in the art.

While the numerical ranges and parameters setting forth the broad scope of the present description are approximations, the numerical values set forth in the examples set forth below are reported as precisely as possible. Any numerical value, however, inherently contains certain errors necessarily resulting from the standard deviation found in their respective testing measurements.

5

10

COMPOUND EXAMPLES

As used above, and throughout the present description, the following abbreviations, unless otherwise indicated, shall be understood to have the following meanings:

Abbreviation	Meaning	
Δ	heating (chemistry) or deletion (biology)	_
AcOH or HOAc	acetic acid	
Ac_2O	acetic anhydride	
Ar	argon	
ACN or CH₃CN or MeCN	acetonitrile	
atm	atmosphere(s)	
BBr_3	boron tribromide	
BnOH	benzyl alcohol	
Boc	tert-butoxy-carbonyl	
Boc_2O	di-tert-butyl dicarbonate	
B_2pin_2	bis(pinacolato)diboron	
BuOH	<i>n</i> -butanol	
$(t-Bu)_3P HBF_4$	Tri-t-butylphosphonium tetrafluoroborate	
°C	degrees Centigrade	
Celite® or Celite	diatomaceous earth	
(COCl) ₂	oxalyl chloride	
CsCl	cesium chloride	
Cs_2CO_3	cesium carbonate	
CsF	cesium fluoride	
CuI	copper(I) iodide	

Abbreviation	Meaning
d/h/hr/hrs/min/s	day(d)/hour(h, hr or hrs)/minute(min)/second(s)
DAST	(diethylamino)sulfur trifluoride
DCM or CH ₂ Cl ₂	dichloromethane
DIEA or DIPEA	N,N-diisopropylethylamine
DMA	dimethylacetamide
DMAP	4-(dimethylamino)pyridine
DME	1,2-dimethoxyethane
DMF	dimethylformamide
DMSO	dimethylsulfoxide
EtI	iodoethane
Et_3N	triethylamine
EtOAc	ethyl acetate
EtOH	ethanol
Et ₂ O	diethyl ether
H_2	hydrogen
HC1	hydrochloric acid
H_2SO_4	sulfuric acid
НСООН	formic acid
K_2CO_3	potassium carbonate
KOAc	potassium acetate
KOtBu	Potassium t-butoxide
КОН	potassium hydroxide
KSCN	potassium thiocyanate
LAH	lithium aluminum hydride
LC/MS, LCMS or LC-MS	liquid chromatographic mass spectroscopy
LDA	lithium diisopropylamine
LiOH	lithium hydroxide
MeOH	methanol
MeI	iodomethane
$MgSO_4$	magnesium sulfate
MOM	methoxy methyl
MOMCl	chloromethyl methyl ether

Abbreviation	Meaning
MS	mass spectroscopy
NBS	N-bromosuccinimide
NCS	N-chlorosuccinimide
NH ₄ Cl	ammonium chloride
NH ₄ OAc	ammonium acetate
NH ₄ OH	ammonium hydroxide or aqueous ammonia
NH ₂ OH·HCl	hydroxylamine hydrochloride
NaBH ₄	sodium borohydride
Na ₂ CO ₃	sodium carbonate
NaH	sodium hydride
NaHCO ₃	sodium bicarbonate
NaH	sodium hydride
NaOAc	sodium acetate
NaOH	sodium hydroxide
NaOMe	sodium methoxide
Na_2SO_4	sodium sulfate
N_2	nitrogen
NH ₄ Cl	ammoniuim chloride
NMP	<i>N</i> -methylpyrrolidone
NMR	nuclear magnetic resonance
NOESY	Nuclear Overhauser Enhancement Spectroscopy
Pd	palladium
Pd/C	palladium on carbon
Pd ₂ (dba) ₃ or Pd ₂ dba ₃	tris(dibenzylideneacetone)dipalladium(0)
Pd(dppf)Cl ₂ or Pd(dppf)Cl ₂ -CH ₂ Cl ₂	[1,1'-bis(diphenylphosphino)ferrocene]dichloropalladium(II), complex with dichloromethane
Pd(PPh ₃) ₄ or Pd(Ph ₃ P) ₄	tetrakis(triphenylphosphine)palladium(0)
Pd(PPh ₃) ₂ Cl ₂ , PdCl ₂ (PPh ₃) ₂ or PdCl ₂ (Ph ₃ P) ₂	bis(triphenylphosphine)palladium(II) dichloride
PhMe	toluene
Psi	pounds per square inch pressure
Pt ₂ O	platinum(IV) oxide

Abbreviation	Meaning
РуВОР	(benzotriazol-1-yloxy)tripyrrolidinophosphonium hexafluorophosphate
PyBroP [®]	bromotripyrrolidinophosphonium hexafluorophosphate
RT	retention time
RuPhos Pd G2	chloro(2-dicyclohexylphosphino-2',6'-diisopropoxy-1,1'-biphenyl)[2-(2'-amino-1,1'-biphenyl)]palladium(II)
SOCl ₂	thionly chloride
SO ₂ Cl ₂	sulfuryl chloride
TEA, Et ₃ N or NEt ₃	triethylamine
TFA	trifluoroacetic acid
Tf_2NPh	N-phenyl-bis(trifluoromethanesulfonimide) or 1,1,1-trifluoro-N-phenyl-N-
	[(trifluoromethyl)sulfonyl]methanesulfonamide or <i>N</i> , <i>N</i> -bis(trifluoromethylsulfonyl)aniline or <i>N</i> -phenyl-trifluoromethanesulfonimide
Tf ₂ O	trifluoromethanesulfonic anhydride
THF	tetrahydrofuran
THP	tetrahydropyranyl
TIPS	tiisopropylsilane
TIPSC1	triisopropylsilyl chloride
TIPSOTf	triisopropylsilyl trifluoromethanesulfonate or trifluoromethanesulfonic acid triisopropylsilyl ester or triisopropylsilyl triflate
TLC	thin layer chromatography
TMEDA	tetramethylethylenediamine
TMS	trimethylsilane
TMSCl	trimethylchlorosilane or trimethylsilyl chloride
t-Bu	tert-butyl
UPLC	ultra performance liquid chromatography

Example 1

Preparation of Compound 11

Step 1: To suspension of 3,6-dichloropyridazin-4-amine (1.48 g, 9.02 mmol) in CH₂Cl₂ (25 mL) was added di-tertbutyl dicarbonate (2.2 g, 10 mmol) in one portion followed by addition of a few crystals of DMAP. The reaction was stirred at room temperature for 4 h. Almost complete conversion was observed accompanied by formation of di-Boc material. The solvent was removed under reduced pressure and the product was isolated by silica gel column chromatography eluting with EtOAc/hexanes gradient (0-20% EtOAc) to afford tert-butyl *N*-(3,6-dichloropyridazin-4-yl)carbamate (1.71 g, 72%) as a white solid.

5

10

15

20

Step 2: To a mixture of tert-butyl *N*-(3,6-dichloropyridazin-4-yl)carbamate (1.71 g, 6.47 mmol), CuI (75 mg, 0.39 mmol) and Pd(PPh₃)₂Cl₂_(140 mg, 0.20 mmol) in CH₃CN (25 mL) under an argon atmosphere was added Et₃N (4.50 mL, 32.3 mmol) followed by ethynyl(trimethyl)silane (1.10 mL, 7.78 mmol). The mixture was heated under an argon atmosphere for 1 h, after which, no starting material was detected by UPLC. The solvent was concentrated and the residue was treated with EtOAc. The solid was filtered, washed well with EtOAc and discarded. The mother liquor was concentrated and the residue was purified by silica gel column chromatography eluting with EtOAc/hexanes gradient (0-20% EtOAc) to afford tert-butyl *N*-[6-chloro-3-(2-trimethylsilylethynyl)pyridazin-4-yl]carbamate (1.12 g, 53%) as an oil which solidified on standing.

Step 3: To a solution of tert-butyl *N*-[6-chloro-3-(2-trimethylsilylethynyl)pyridazin-4-yl]carbamate (1.1 g, 3.4 mmol) in DMF (10mL) was added powdered K₂CO₃ (1.00 g, 7.24 mmol). The mixture was heated at 60 °C for 30 min. The reaction was then diluted with water and extracted with EtOAc. Upon drying of the organic phase over Na₂SO₄ and concentration of the solvent, the residue was purified by silica gel column chromatography eluting with EtOAc/hexanes gradient (0-50% EtOAc) to afford tert-butyl 3-chloropyrrolo[3,2-c]pyridazine-5-carboxylate (0.600 g, 70%) as a white solid. MS *m/z* 254.3 [M+H]⁺.

Step 4: 1-Bromo-4-iodo-2-methoxybenzene (50 g, 160 mmol) was suspended in dichloromethane (75 mL) at -10 °C. 1 N BBr₃ in CH₂Cl₂ (250 mL, 250 mmol) was cannulated in over 30 minutes, with the internal temperature remaining below 0 °C throughout the addition. After the addition, the mixture was stirred at 0 °C for 1 h, and then at room temperature for an additional 16 h. The mixture was cooled in an ice bath. 10% Aqueous Na₂CO₃ (250 mL) was added in portions. The
 mixture was then partitioned between H₂O and dichloromethane. The dichloromethane layer was

dried over MgSO₄ and then filtered. 2-Bromo-5-iodophenol (46 g, 96%) was obtained from the filtrate as a pinkish-white solid.

¹H NMR (acetone- d_6) δ: 9.24 (br s, 1H), 7.38 (d, J= 2 Hz, 1H), 7.31 (d, J= 8.5 Hz, 1H), 7.17 (dd, J= 8.5 Hz, 2 Hz, 1H).

- Step 5: 2-Bromo-5-iodophenol (54.9 g, 184 mmol), was dissolved in DMF (240 mL) at 0 °C. 2.5 M Sodium *tert*-pentoxide in THF (90 mL, 230 mmol) was then added dropwise. The reaction was stirred at 0 °C for 15 minutes after the addition was complete. Chloromethyl methyl ether (18 mL, 225 mmol) was added dropwise over 30 minutes. The mixture was warmed to ambient temperature and was stirred for 16 h. The mixture was diluted with H₂O (1500 mL) and was extracted into EtOAc (2 x 400 mL). The combined organic layers were washed with H₂O (300 mL), and then with brine. The organic layer was dried over MgSO₄, filtered, and concentrated under vacuum. The crude product was flushed through a silica plug using CH₂Cl₂ in hexanes (0–10%) to yield 1-bromo-4-iodo-2-(methoxymethoxy)benzene (61 g, 97%) as a clear liquid.
- ¹H NMR (acetone- d_6) δ: 7.56 (d, J= 2 Hz, 1H), 7.38 (d, J= 8Hz, 1H), 7.33 (dd, J= 8 Hz, 2 Hz, 1H), 5.35 (s, 2H), 3.50 (s, 3H).
 - Step 6: 1-Bromo-4-iodo-2-(methoxymethoxy)benzene (49 g, 143 mmol), 1-(tetrahydro-2*H*-pyran-2-yl)-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1*H*-pyrazole (48.4 g, 174 mmol), PdCl₂(dppf)-dichloromethane adduct (3.1 g, 3.6 mmol), dioxane (500 mL), and aqueous 1 N K₂CO₃ (350 mL, 350 mmol) were heated at 90 °C for 2 h. The reaction mixture was then partitioned between H₂O and EtOAc. The organic layer was dried over MgSO₄, filtered, and concentrated under vacuum. Purification by silica gel chromatography (EtOAc in hexanes, 20–50%), followed by trituration with hexanes, yielded 4-(4-bromo-3-(methoxymethoxy)phenyl)-1-(tetrahydro-2*H*-pyran-2-yl)-1*H*-pyrazole (40.4 g, 77%) as an off-white solid.

- ¹H NMR (acetone-*d*₆) δ: 8.22 (s, 1H), 7.88 (s, 1H), 7.55 (d, *J*= 8.5 Hz, 1H), 7.47 (d, *J*= 2 Hz, 1H), 7.23 (dd, *J*= 8.5 Hz, 2 Hz, 1H), 5.44 (dd, *J*= 9.5 Hz, 2.5 Hz, 1H), 5.38 (S, 2H), 4.01 (m, 1H), 3.72 (m, 1H), 3.51 (s, 3H), 2.1-2.23 (m, 1H), 2.0-2.1 (m, 2H), 1.7-1.8 (m, 1H), 1.6-1.7 (m, 2H).
 - Step 7: Potassium acetate (22 g, 224 mmol) was pumped dry at 180 °C for 2 h, and then the flask was filled with argon. 4-(4-Bromo-3-(methoxymethoxy)phenyl)-1-(tetrahydro-2*H*-pyran-2-yl)-1*H*-pyrazole (20 g, 54.5 mmol), PdCl₂(dppf)-dichloromethane adduct (1.22 g, 1.47 mmol),
- 30 bis(pinacolato)diboron (20.8 g, 81.9 mmol), and dry toluene (200 mL) was added. This mixture

was heated at 110 °C for 2 days. The mixture was filtered through Celite[®], eluting with ether. The filtrate was concentrated under vacuum, re-dissolved in ether, and was filtered again through Celite[®] to remove solid impurities. Purification by silica gel chromatography (EtOAc in hexanes, 20–50%) yielded crude product (12 g) that was mostly free of protodeboronated by-product. This was dissolved in ether (100 mL) and washed with aqueous NaHCO₃ (2x1.5 L) and brine, then dried over MgSO₄, and then filtered. The filtrate was concentrated to provide pure product (7.05 g, 32%) as a glassy semi-solid.

5

10

15

20

25

30

¹H NMR (500 MHz, acetone- d_6): δ 8.24 (s, 1H), 7.90 (s, 1H), 7.65 (d, J= 8 Hz, 1H), 7.33 (d, J= 1.5 Hz, 1H), 7.29 (dd, J= 8 Hz, 1.5 Hz, 1H), 5.45 (dd, J= 10 Hz, 2.5 Hz, 1H), 5.25 (s, 2H), 4.01 (m, 1H), 3.69-3.74 (m, 1H), 3.52 (s, 3H), 2.15-2.2 (m, 1H), 2.0-2.1 (m, 2H), 1.7-1.8 (m, 1H), 1.6-1.68 (m, 2H), 1.35 (s, 12H).

Step 8: A mixture of tert-butyl 3-chloropyrrolo[3,2-c]pyridazine-5-carboxylate (150 mg, 0.59 mmol), 4-[3-(methoxymethoxy)-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl]-1-tetrahydropyran-2-yl-pyrazole (0.300 g, 0.724 mmol), [1,1'-bis(diphenylphosphino)ferrocene] dichloropalladium(II) (25 mg, 0.033 mmol) and K₂CO₃ (250 mg, 1.81 mmol) in a vial was evacuated and backfilled with argon. 1,4-Dioxane (2 mL) and water (0.5 mL) were added to the mixture and it was heated at 90 °C for 5 h. The mixture was cooled to room temperature, diluted with water, and the product was extracted with CH₂Cl₂ (3 times). The combined organic layers were dried over Na₂SO₄ and concentrated. The residue was purified by silica gel column chromatography eluting with EtOAc/hexanes gradient (70-100% EtOAc) to afford tert-butyl 3-[2-(methoxymethoxy)-4-(1-tetrahydropyran-2-ylpyrazol-4-yl)phenyl]pyrrolo[3,2-c]pyridazine-5-carboxylate (0.15 g, 0.297 mmol, 100 mass %, 50.2%) as a white solid.

MS m/z 506.6 [M+H]⁺; ¹H NMR (acetone- d_6) δ : 8.67 (s, 1H), 8.30 (d, J=0.9 Hz, 1H), 8.10 (d, J=4.1 Hz, 1H), 8.02 (d, J=8.2 Hz, 1H), 7.97 (d, J=0.9 Hz, 1H), 7.58 (d, J=1.6 Hz, 1H), 7.48 (dd, J=7.9, 1.6 Hz, 1H), 7.08 (dd, J=3.8, 0.9 Hz, 1H), 5.49 (dd, J=9.8, 2.5 Hz, 1H), 5.40 (s, 2H), 3.98-4.06 (m, 1H), 3.70-3.79 (m, 1H), 3.45 (s, 3H), 2.17-2.26 (m, 1H), 2.03-2.09 (m, 2H), 1.81 (s, 1H), 1.74 (s, 9H), 1.57-1.68 (m, 2H).

Step 9: A mixture of tert-butyl 3-[2-(methoxymethoxy)-4-(1-tetrahydropyran-2-ylpyrazol-4-yl)phenyl]pyrrolo[3,2-c]pyridazine-5-carboxylate (140 mg, 0.28 mmol) in diphenyl ether (1.6 mL) was heated at 200 °C for 15 min and monitored by UPLC. Once complete, the reaction was cooled to room temperature and a precipitate was formed. The mixture was then diluted with pentane. The solid was filtered and washed with additional pentane. After drying, 3-[2-

(methoxymethoxy)-4-(1-tetrahydropyran-2-ylpyrazol-4-yl)phenyl]-5*H*-pyrrolo[3,2-c]pyridazine (110 mg, 0.27 mmol) was dissolved in DMF (1.5 mL) and *N*-iodosuccinimide (68 mg, 0.30 mmol) was added. The reaction was stirred at room temperature for 15 min and a product precipitated out of the solution. The reaction was diluted with water and the solid was filtered and washed with water and dried. 7-Iodo-3-[2-(methoxymethoxy)-4-(1-tetrahydropyran-2-ylpyrazol-4-yl)phenyl]-5*H*-pyrrolo[3,2-c]pyridazine (140 mg, 97%) was obtained as tan solid. MS *m/z* 532.4 [M+H]⁺;

5

10

15

20

25

30

Step 10: 7-Iodo-3-[2-(methoxymethoxy)-4-(1-tetrahydropyran-2-ylpyrazol-4-yl)phenyl]-5*H*-pyrrolo[3,2-c]pyridazine (140 mg, 0.26 mmol) was suspended in CH₂Cl₂ (2 mL) and di-tertbutyl dicarbonate (80 mg, 0.37 mmol) was added followed by few crystals of DMAP. The reaction was stirred at room temperature and monitored by UPLC until complete consumption of the starting material was observed (20 min). The solvent was removed under reduce pressure and the residue was purified by silica gel column chromatography (60-100% EtOAc in hexanes) to afford tertbutyl 7-iodo-3-[2-(methoxymethoxy)-4-(1-tetrahydropyran-2-ylpyrazol-4-yl)phenyl]pyrrolo[3,2-c]pyridazine-5-carboxylate (122 mg, 71%) as a pale yellow foam.

MS m/z 632.5 [M+H]⁺; ¹H NMR (acetone- d_6) δ : 8.66 (s, 1H), 8.31 (d, J=0.6 Hz, 1H), 8.27 (s, 1H), 8.03 (d, J=7.9 Hz, 1H), 7.98 (d, J=0.9 Hz, 1H), 7.58 (d, J=1.6 Hz, 1H), 7.49 (dd, J=7.9, 1.6 Hz, 1H), 5.49 (dd, J=9.8, 2.5 Hz, 1H), 5.41 (s, 2H), 3.98-4.06 (m, 1H), 3.69-3.80 (m, 1H), 3.45 (s, 3H), 2.14-2.28 (m, 1H), 2.02-2.08 (m, 2H), 1.77-1.84 (m, 1H), 1.75 (s, 9H), 1.60-1.69 (m, 2H).

Step 11: An oven-dried flask was equipped with a magnetic stir bar and charged with tert-butyl 7-iodo-3-[2-(methoxymethoxy)-4-(1-tetrahydropyran-2-ylpyrazol-4-yl)phenyl]pyrrolo[3,2-c]pyridazine-5-carboxylate (122 mg, 0.19 mmol), tert-butyl 4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-3,6-dihydro-2*H*-pyridine-1-carboxylate (75 mg, 0.24 mmol), Pd(PPh₃)₄ (25 mg, 0.022 mmol) and K₂CO₃ (80 mg, 0.58 mmol). The flask was sealed with a rubber septum, and then evacuated and backfilled with argon (3 X). 1,4-Dioxane (1.2 mL) and water (0.3 mL) were added and the reaction was heated to 90° C for 6 h. The reaction was cooled to room temperature, diluted with water (5 mL), and then extracted with CH₂Cl₂ (3 X). The combined organic layers were dried over Na₂SO₄ and concentrated under reduced pressure. The residue was purified by silica gel column chromatography eluting with EtOAc/hexanes gradient (60-100% EtOAc) to afford tert-butyl 7-(1-tert-butoxycarbonyl-3,6-dihydro-2*H*-pyridin-4-yl)-3-[2-(methoxymethoxy)-4-(1-tetrahydropyran-2-ylpyrazol-4-yl)phenyl]pyrrolo[3,2-c]pyridazine-5-

carboxylate (38 mg, 29%) and tert-butyl 4-[3-[2-(methoxymethoxy)-4-(1-tetrahydropyran-2-ylpyrazol-4-yl)phenyl]-5*H*-pyrrolo[3,2-c]pyridazin-7-yl]-3,6-dihydro-2*H*-pyridine-1-carboxylate (25 mg, 22%).

Step 12: To tert-butyl 7-(1-tert-butoxycarbonyl-3,6-dihydro-2*H*-pyridin-4-yl)-3-[2-

- (methoxymethoxy)-4-(1-tetrahydropyran-2-ylpyrazol-4-yl)phenyl]pyrrolo[3,2-c]pyridazine-5-carboxylate (38 mg, 0.055 mmol) was added 4N HCl in dioxane (1 mL, 4.0 mmol) followed by MeOH (1 mL). The reaction was heated at 55 °C for 8 h. The solvents were removed under reduced pressure and the residue was triturated in Et₂O. The resultant solid was filtered, washed well with excess Et₂O and dried under a nitrogen flow to afford 5-(1*H*-pyrazol-4-yl)-2-[7-
- 10 (1,2,3,6-tetrahydropyridin-1-ium-4-yl)-5*H*-pyrrolo[3,2-c]pyridazin-3-yl]phenol hydrochloride (15 mg, 71%) as a bright yellow solid.

MS m/z 359.3 [M+H]⁺; ¹H NMR (DMSO- d_6) δ : 13.26 (br s, 1H), 9.49 (s, 2H), 8.60 (s, 1H), 8.50 (br. s., 1H), 8.20 (s, 2H), 7.82 (d, J=8.5 Hz, 1H), 7.41 (td, J=4.3, 1.9 Hz, 2H), 6.97-7.16 (m, 1H), 3.81-4.00 (m, 2H), 3.35-3.55 (m, 2H), 2.77-2.97 (m, 2H); 1 H not observed (NH or OH).

Using the procedure described for Example 1, above, additional compounds described herein were prepared by substituting the appropriate starting materials, suitable reagents and reaction conditions, obtaining compounds such as those selected from:

Cpd	Data
20	MS m/z 415.5 [M+H] ⁺ ; ¹ H NMR (methanol- d_4) δ : 8.61 (s, 1H), 8.45 (s, 1H), 8.26 (s, 2H), 7.77 (d, J =7.9 Hz, 1H), 7.45 (dd, J =7.9, 1.6 Hz, 1H), 7.36 (d, J =1.6 Hz, 1H), 7.06 (s, 1H), 3.73-3.79 (m, J =6.6 Hz, 1H), 3.57-3.63 (m, J =5.0 Hz, 1H), 1.71 (s, 6H), 1.64 (s, 6H); 4 Hs not observed (3 NHs and OH).
27	MS <i>m/z</i> 385.4 [M+H] ⁺ ; ¹ H NMR (methanol- <i>d</i> ₄) δ: 8.60 (s, 1H), 8.42-8.49 (m, <i>J</i> =2.5 Hz, 2H), 8.39 (s, 1H), 7.78 (d, <i>J</i> =8.2 Hz, 1H), 7.48 (dd, <i>J</i> =8.0, 1.7 Hz, 1H), 7.40 (d, <i>J</i> =1.6 Hz, 1H), 7.35 (d, <i>J</i> =5.7 Hz, 1H), 4.54 (dd, <i>J</i> =6.3, 5.4 Hz, 1H), 4.43 (dd, <i>J</i> =7.3, 4.1 Hz, 1H), 3.35-3.41 (m, 1H), 2.87 (d, <i>J</i> =18.0 Hz, 1H), 2.42-2.52 (m, 1H), 2.37-2.42 (m, 1H), 2.25-2.36 (m, 1H), 2.03-2.16 (m, 1H); 4 Hs not observed (3 NHs and OH).
28	MS <i>m/z</i> 401.4 [M+H] ⁺ ; ¹ H NMR (methanol- <i>d</i> ₄) δ: 8.62 (s, 1H), 8.50 (s, 2H), 8.47 (s, 1H), 7.79 (d, <i>J</i> =7.9 Hz, 1H), 7.49 (dd, <i>J</i> =8.2, 1.6 Hz, 1H), 7.41 (d, <i>J</i> =1.6 Hz, 1H), 7.25 (d, <i>J</i> =5.7 Hz, 1H), 4.33 (d, <i>J</i> =6.0 Hz, 1H), 4.11-4.15 (m, 2H), 4.06 (dd, <i>J</i> =12.6, 1.9 Hz, 1H), 3.97 (d, <i>J</i> =7.3 Hz, 1H), 3.93 (d, <i>J</i> =12.6 Hz, 1H), 3.39 (dd, <i>J</i> =18.6, 8.2 Hz, 1H), 3.10 (dd, <i>J</i> =18.3, 1.6 Hz, 1H); 4 Hs not observed (3 NHs and OH).

Example 2

Preparation of Compound 30

Step 1: A solution of tert-butyl 7-[5-tert-butoxycarbonyl-3-[2-(methoxymethoxy)-4-(1-tetrahydropyran-2-ylpyrazol-4-yl)phenyl]pyrrolo[3,2-c]pyridazin-7-yl]-3-oxa-9-azabicyclo[3.3.1]non-6-ene-9-carboxylate (prepared following the method described in Example 1, step 11) (100 mg, 0.14 mmol) in MeOH (2 mL) and EtOAc (0.2 mL) was hydrogenated over 10% Pd/C (20 mg, 0.02 mmol, 10 mass %) and 10% Pd(OH)₂/C (20 mg, 0.014 mmol, 10 mass %) in a Parr shaker at 50 psi of H₂ over 72 h. The catalysts were filtered and washed with MeOH.

- The mother liquor was concentrated and the residue was purified by silica gel column chromatography eluting with a MeOH/CH₂Cl₂ gradient (0-10% MeOH) to afford tert-butyl 7-[5-tert-butoxycarbonyl-3-[2-(methoxymethoxy)-4-(1-tetrahydropyran-2-ylpyrazol-4-yl)phenyl]pyrrolo[3,2-c]pyridazin-7-yl]-3-oxa-9-azabicyclo[3.3.1]nonane-9-carboxylate (46 mg, 46%) as a pale yellow foam. MS *m/z* 631.4 [M+H]⁺.
- Step 2: To tert-butyl 7-[5-tert-butoxycarbonyl-3-[2-(methoxymethoxy)-4-(1-tetrahydropyran-2-ylpyrazol-4-yl)phenyl]pyrrolo[3,2-c]pyridazin-7-yl]-3-oxa-9-azabicyclo[3.3.1]nonane-9-carboxylate (46 mg, 0.063 mmol) was added 4N HCl in dioxane (0.5 mL, 2 mmol) followed by MeOH (1 mL). The reaction was stirred at 50 °C for 16 h. Volatiles were then removed under reduced pressure, the residue was then triturated with Et₂O, and the solid was filtered and dried in a nitrogen flow to afford 2-[7-(3-oxa-9-azoniabicyclo[3.3.1]nonan-7-yl)-5*H*-pyrrolo[3,2-c]pyridazin-3-yl]-5-(1*H*-pyrazol-4-yl)phenol hydrochloride (16 mg, 58%) as a yellow solid. Stereochemistry was assigned based on NOESY data.

MS *m/z* 403.4 [M+H]⁺; ¹H NMR (methanol-*d*₄) δ: 8.53 (s, 1H), 8.46 (s, 2H), 8.26 (d, *J*=0.6 Hz, 1H), 7.75 (d, *J*=8.2 Hz, 1H), 7.47 (dd, *J*=8.2, 1.9 Hz, 1H), 7.39 (d, *J*=1.9 Hz, 1H), 3.96 (dd, *J*=12.6, 1.9 Hz, 2H), 3.90 (d, *J*=12.6 Hz, 2H), 3.85 (dd, *J*=9.4, 3.2 Hz, 2H), 3.66-3.78 (m, 1H), 2.82 (ddd, *J*=14.5, 9.4, 6.0 Hz, 2H), 2.51 (ddd, *J*=14.5, 11.4, 3.2 Hz, 2H); 4 Hs not observed (3 NHs and OH).

Using the procedure described for Example 2, above, additional compounds described herein were prepared by substituting the appropriate starting materials, suitable reagents and reaction conditions, obtaining compounds such as those selected from:

Cpd	Data
12	MS m/z 361.3 [M+H] ⁺
29	MS m/z 387.4 [M+H] ⁺ ; ¹ H NMR (methanol- d_4) δ : 8.53 (s, 1H), 8.49 (s, 2H), 8.20 (d, J =0.9 Hz, 1H), 7.77 (d, J =8.2 Hz, 1H), 7.48 (dd, J =8.2, 1.6 Hz, 1H), 7.40 (d, J =1.6 Hz, 1H), 4.20-4.27 (m, 2H), 3.74-3.84 (m, 1H), 3.66-3.71 (m, 2H), 2.33-2.41 (m, J =2.5 Hz, 3H), 2.25-2.32 (m, 3H); 4 Hs not observed (3 NHs and OH).
31	MS m/z 417.5 [M+H] ⁺ ; ¹ H NMR (D ₂ O) δ : 8.15 (s, 1H), 7.89 (s, 2H), 7.72 (s, 1H), 7.41 (d, J =8.2 Hz, 1H), 6.99 (d, J =8.8 Hz, 1H), 6.81-6.92 (m, 1H), 3.60-3.70 (m, 1H), 2.01 (dd, J =14.2, 2.8 Hz, 2H), 1.70 (t, J =14.2 2H), 1.54 (s, 6H), 1.40 (s, 6H); 4 Hs not observed (3 NHs and OH).

Example 3

5

10

15

Preparation of Compound 43

Step 1: An oven-dried flask was equipped with a magnetic stir bar and charged with tert-butyl 7-iodo-3-[2-(methoxymethoxy)-4-(1-tetrahydropyran-2-ylpyrazol-4-yl)phenyl]pyrrolo[3,2-c]pyridazine-5-carboxylate (43 mg, 0.07 mmol), tert-butyl piperazine-1-carboxylate (15 mg, 0.08 mmol), tris(dibenzylideneacetone)dipalladium(0) (6.3 mg, 0.007 mmol), S-Phos (5.7 mg, 0.014 mmol) and Cs₂CO₃ (45 mg, 0.14 mmol). The flask was sealed with a rubber septum, and then evacuated and backfilled with argon (repeated a total of 3 X). DME (3 mL) was added and the reaction was heated to 80° C for 2 h. The reaction was cooled to room temperature, filtered through Celite, and then concentrated under reduced pressure. The residue was purified by silica gel column chromatography eluting with EtOAc /hexanes gradient (40-80% EtOAc) to afford tert-butyl 7-(4-(tert-butoxycarbonyl)piperazin-1-yl)-3-(2-(methoxymethoxy)-4-(1-(tetrahydro-2*H*-tetrahydro-2*H*

pyran-2-yl)-1*H*-pyrazol-4-yl)phenyl)-5*H*-pyrrolo[3,2-c]pyridazine-5-carboxylate (18 mg, 38%) as a brownish solid. MS m/z 690.4 [M+H]⁺.

Step 2: To a solution of tert-butyl 7-(4-tert-butoxycarbonylpiperazin-1-yl)-3-[2-(methoxymethoxy)-4-(1-tetrahydropyran-2-ylpyrazol-4-yl)phenyl]pyrrolo[3,2-c]pyridazine-5-carboxylate (18 mg, 0.026 mmol) in CH₂Cl₂ (0.5 mL) plus 1 drop of MeOH was added 4M HCl in 1,4-dioxane (0.03 mL, 0.12 mmol) and the reaction mixture was stirred for 16 h at room temperature. The reaction was concentrated under reduced pressure. The residue was purified by silica gel column chromatography eluting with MeOH /CH₂Cl₂ (0% to 30% MeOH) to provide 2-(7-piperazin-1-yl-5*H*-pyrrolo[3,2-c]pyridazin-3-yl)-5-(1*H*-pyrazol-4-yl)phenol (5 mg, 53%) as an orange solid.

5

10

15

20

MS m/z 362.0 [M+H]⁺; ¹H NMR (methanol- d_4) δ : 8.45 (s, 1H), 8.15 (br s, 2H), 7.80 (s, 1H), 7.70 (d, J=8.0 Hz, 1H), 7.42 (dd, J=8.0, 1.9 Hz, 1H), 7.33 (d, J=1.9 Hz, 1H), 3.69-3.76 (m, 4H), 3.50-3.56 (m, 4H); 4 Hs not observed (3 NHs and OH).

Example 4

Preparation of Compound 8

Step 1: A mixture of 2-bromo-5*H*-pyrrolo[2,3-b]pyrazine (50 mg, 0.25 mmol), 4-[3-methoxy-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl]-1-tetrahydropyran-2-yl-pyrazole (107 mg, 0.28 mmol), [1,1'-bis(diphenylphosphino)ferrocene] dichloropalladium(II) (19 mg, 0.025 mmol) was purged with argon. 1,4-Dioxane (2 mL) and aqueous 2 M K₂CO₃ (0.35 mL, 0.7 mmol) were added and the reaction was heated at 90 °C for 16 h. The reaction mixture was then cooled to

room temperature and diluted with water. The aqueous layer was extracted with EtOAc (3 X). The combined organic layers were dried over Na₂SO₄ and concentrated under reduced pressure. The residue was purified using silica gel chromatography, eluting with a EtOAc/hexanes gradient (50-100% EtOAc) to afford 2-[2-methoxy-4-(1-tetrahydropyran-2-ylpyrazol-4-yl)phenyl]-5*H*-pyrrolo[2,3-b]pyrazine (76 mg, 80%) as a yellow foam.

5

25

30

MS m/z 376.3 [M+H]⁺; ¹H NMR (DMSO- d_6) δ : 8.67 (s, 1H), 8.51 (s, 1H), 8.06 (s, 1H), 7.82-7.88 (m, 1H), 7.71-7.76 (m, 1H), 7.39-7.44 (m, 1H), 7.32-7.38 (m, 1H), 6.63-6.69 (m, 1H), 5.41-5.46 (m, 1H), 3.94-4.00 (m, 1H), 3.93 (s, 3H), 3.63-3.71 (m, 1H), 2.10-2.20 (m, 2H), 1.94-1.98 (m, 2H), 1.52-1.60 (m, 2H).

Step 2: A mixture of 2-[2-methoxy-4-(1-tetrahydropyran-2-ylpyrazol-4-yl)phenyl]-5*H*-pyrrolo[2,3-b]pyrazine (76 mg, 0.20 mmol), (2,2,6,6-tetramethyl-1,3-dihydropyridin-4-yl) trifluoromethanesulfonate (120 mg, 0.42 mmol), aqueous 1 M K₃PO₄ (0.1 mL, 0.1 mmol), XPhos (18 mg, 0.04 mmol), tris(dibenzylideneacetone)dipalladium(0) (19 mg, 0.02 mmol), and 1,4-dioxane (2 mL) were heated under an argon atmosphere at 90 °C for 16 h. The reaction mixture
 was cooled to room temperature and diluted with water. The aqueous layer was extracted with CH₂Cl₂ (3 X). The combined organic layers were dried over Na₂SO₄, filtered, and concentrated under reduced pressure. The residue was purified using silica gel chromatography, eluting with a MeOH/EtOAc gradient (0-10% MeOH) to afford 5-[2-methoxy-4-(1-tetrahydropyran-2-ylpyrazol-4-yl)phenyl]-1-(2,2,6,6-tetramethyl-1,3-dihydropyridin-4-yl)pyrrolo[3,2-b] pyridine (40 mg, 39%) as an orange foam.

MS m/z 513.3 [M+H]⁺; ¹H NMR (CDCl₃) δ : 8.73 (s, 1H), 7.87 (s, 1H), 7.81 (d, J=0.8 Hz, 1H), 7.75 (d, J=7.9 Hz, 1H), 7.51 (d, J=3.7 Hz, 1H), 7.18 (dd, J=7.9, 1.6 Hz, 1H), 7.06 (d, J=1.5 Hz, 1H), 6.69 (d, J=3.7 Hz, 1H), 6.06 (t, J=1.5 Hz, 1H), 5.37 (dd, J=9.1, 3.3 Hz, 1H), 4.02-4.05 (m, 2H), 3.85 (s, 3H), 3.63-3.73 (m, 1H), 2.56 (d, J=1.4 Hz, 2H), 2.00-2.16 (m, 3H), 1.54-1.71 (m, 3H), 1.29 (s, 6H), 1.26 (s, 6H).

Step 3: A solution of 2-[2-methoxy-4-(1-tetrahydropyran-2-ylpyrazol-4-yl)phenyl]-5-(2,2,6,6-tetramethyl-1,3-dihydropyridin-4-yl)pyrrolo[2,3-b]pyrazine (40 mg, 0.08 mmol) and NaSEt (85 mg, 0.8 mmol) in NMP (2 mL) was heated to 180 °C in the microwave for 30 min. The reaction mixture was then cooled to room temperature and diluted with CH₂Cl₂ (10 mL). The precipitate was filtered by vacuum filtration. The filtrate was concentrated and used without further purification.

A mixture of crude 5-(1-tetrahydropyran-2-ylpyrazol-4-yl)-2-[5-(2,2,6,6-tetramethyl-1,3-dihydropyridin-4-yl)pyrrolo[2,3-b]pyrazin-2-yl]phenol (0.039 g, 0.08 mmol) and 4 M HCl in dioxane (0.5 mL, 2 mmol) was stirred at room temperature for 1 h. The precipitate formed was collected by vacuum filtration and rinsed with CH₂Cl₂ (10 mL) to afford 5-(1*H*-pyrazol-4-yl)-2-[5-(2,2,6,6-tetramethyl-1,3-dihydropyridin-4-yl)pyrrolo[2,3-b]pyrazin-2-yl]phenol hydrochloride (7 mg, 43%) as a yellow solid.

MS m/z 415.4 [M+H]⁺; ¹H NMR (DMSO- d_6) δ : 9.15-9.25 (m, 2H), 8.16-8.20 (m, 1H), 8.13-8.16 (m, 2H), 8.08-8.12 (m, 1H), 7.22-7.27 (m, 2H), 6.92-6.97 (m, 1H), 6.40-6.46 (m, 1H), 3.02-3.06 (m, 2H), 1.63 (s, 6H), 1.56 (s, 6H).

Example 5

5

10

15

Preparation of Compound 10

Step 1: To a mixture of 2,2,6,6-tetramethylpiperidin-4-amine (4.2 g, 27 mmol) in acetonitrile (10 mL) was added 2,5-dichloropyrazine (4.0 g, 27 mmol). The reaction mixture was stirred at 120 °C for 16 h. The reaction mixture was then allowed to cooled to room temperature and the precipitate was collected by vacuum filtration to afford 5-chloro-*N*-(2,2,6,6-tetramethylpiperidin-4-yl)pyrazin-2-amine as a light yellow solid (3.1 g, 43%).

MS m/z 269.3 [M+H]⁺; ¹H NMR (DMSO- d_6) δ : 8.02 (d, J=1.3 Hz, 1H), 7.68 (d, J=1.3 Hz, 1H), 7.09 (d, J=7.7 Hz, 1H), 4.09 (dd, J=7.7, 3.7 Hz, 1H), 1.77 (dd, J=12.4, 3.7 Hz, 2H), 1.16 (s, 6H), 1.03 (s, 6H), 0.95-0.99 (m, 2H).

Step 2: To a suspension of 5-chloro-*N*-(2,2,6,6-tetramethyl-4-piperidyl)pyrazin-2-amine (0.7 g, 3 mmol) in acetic acid (5 mL) at room temperature was added NBS (0.5 g, 3 mmol). After stirring for 30 min, a yellow precipitate formed. The precipitate was collected by vacuum filtration to afford 3-bromo-5-chloro-*N*-(2,2,6,6-tetramethyl-4-piperidyl)pyrazin-2-amine (0.7 g, 80%) as a yellow solid.

5

15

25

30

MS *m/z* 347.2, 349.2 [M+H]⁺; ¹H NMR (DMSO-*d₆*) δ: 8.19 (s, 1H), 6.91-6.95 (m, 1H), 4.31-4.36 (m, 1H), 1.90-1.96 (m, 2H), 1.72-1.76 (m, 2H), 1.39-1.45 (m, 12H).

Step 3: A mixture of 3-bromo-5-chloro-*N*-(2,2,6,6-tetramethyl-4-piperidyl)pyrazin-2-amine (1.4 g, 4.0 mmol), CuI (0.05 g, 0.3 mmol), and PdCl₂(PPh₃)₂ (0.17 g, 0.24 mmol) was purged with argon. THF (20 mL), Et₃N (2.2 mL, 16 mmol) and ethynyl(trimethyl)silane (0.8 mL, 6 mmol) were added sequentially. The resulting mixture was stirred under an argon atmosphere at 60 °C for 1 h. The reaction mixture was then cooled to room temperature and concentrated. The crude residue was purified using silica gel chromatography eluting with a MeOH/CH₂Cl₂ gradient (0-10% MeOH) to afford 5-chloro-*N*-(2,2,6,6-tetramethyl-4-piperidyl)-3-(2-trimethylsilylethynyl)pyrazin-2-amine (1.42 g, 97%) as a dark yellow solid.

MS m/z 365.3 [M+H]⁺; ¹H NMR (DMSO- d_6) δ : 8.19 (s, 1H), 4.32-4.37 (m, 1H), 1.98-2.03 (m, 2H), 1.63-1.67 (m, 2H), 1.43 (s, 6H), 1.40 (s, 6H), 0.26 (s, 9H).

Step 4: To a solution of 5-chloro-*N*-(2,2,6,6-tetramethyl-4-piperidyl)-3-(2-trimethylsilylethynyl)pyrazin-2-amine (1.42 g, 3.89 mmol) in THF (20 mL) was added 1M TBAF solution in THF (12 mL). The reaction mixture was stirred under argon at 60 °C for 2 h, then cooled to room temperature, and concentrated. The crude residue was purified using silica gel chromatography eluting with a MeOH/CH₂Cl₂ gradient (0-10% MeOH) to afford 2-chloro-5-(2,2,6,6-tetramethyl-4-piperidyl)pyrrolo[2,3-b]pyrazine (450 mg, 56%) as a dark red oil.

MS m/z 293.3 [M+H]⁺; ¹H NMR (DMSO- d_6) δ : 8.36 (s, 1H), 8.16-8.19 (m, 1H), 6.64-6.68 (m, 1H), 5.07-5.12 (m, 1H), 1.72-1.81 (m, 4H), 1.26 (s, 6H), 1.11 (s, 6H).

Step 5: A mixture of 2-chloro-5-(2,2,6,6-tetramethyl-4-piperidyl)pyrrolo[2,3-b]pyrazine (50 mg, 0.1708 mmol), 4-[3-(methoxymethoxy)-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl]-

1-tetrahydropyran-2-yl-pyrazole (85 mg, 0.2052 mmol), PdCl₂(dppf) (13 mg, 0.01741 mmol) was purged with argon. Aqueous 2 N K₂CO₃ (0.5 mL, 1 mmol), and 1,4-dioxane (2 mL) were added and the reaction was heated under argon at 100 °C for 16 h. The reaction mixture was then cooled to room temperature and diluted with CH₂Cl₂ and then filtered through a phase separation column and then concentrated. The crude residue was purified using silica gel chromatography eluting with a MeOH/CH₂Cl₂ gradient (0-10% MeOH) to afford 2-[2-(methoxymethoxy)-4-(1-tetrahydropyran-2-ylpyrazol-4-yl)phenyl]-5-(2,2,6,6-tetramethyl-4-piperidyl)pyrrolo[2,3-b]pyrazine (55 mg, 59%) as a dark brown oil contaminated with ~20% of 2-chloro-5-(2,2,6,6-tetramethyl-4-piperidyl)pyrrolo[2,3-b]pyrazine. MS *m*/*z* 545.5 [M+H]⁺.

5

Step 6: To a solution of 2-[2-(methoxymethoxy)-4-(1-tetrahydropyran-2-ylpyrazol-4-yl)phenyl]-5-(2,2,6,6-tetramethyl-4-piperidyl)pyrrolo[2,3-b]pyrazine (55 mg, 0.10 mmol) in CH₂Cl₂ (1 mL) was added 4N HCl in dioxane (0.5 mL, 2 mmol) and the reaction was stirred at room temperature for 1 h. The yellow solid that precipitated was collected by vacuum filtration, rinsed with CH₂Cl₂ and dried to afford 5-(1*H*-pyrazol-4-yl)-2-(5-(2,2,6,6-tetramethylpiperidin-4-yl)-5*H*-pyrrolo[2,3-b]pyrazin-2-yl)phenol hydrochloride (18 mg, 23%).

MS m/z 417.4 [M+H]⁺; ¹H NMR (DMSO- d_6) δ : 9.10 (s, 1H), 8.06-8.19 (m, 4H), 7.20-7.27 (m, 2H), 6.81-6.85 (m, 1H), 5.20-5.24 (m, 1H), 2.33-2.45 (m, 2H), 2.12-2.17 (m, 2H), 1.59 (s, 6H), 1.50 (s, 6H).

Using the procedure described for Example 5, above, additional compounds described herein were prepared by substituting the appropriate starting materials, suitable reagents and reaction conditions, obtaining compounds such as those selected from:

Cpd	Data
16	MS <i>m/z</i> 437.2 [M+H] ⁺ , ¹ H NMR (methanol- <i>d</i> ₄) δ: 8.82 (d, <i>J</i> =2.2 Hz, 1H), 8.50 (d, <i>J</i> =1.3 Hz, 2H), 8.11 (d, <i>J</i> =3.8 Hz, 1H), 7.88 (dd, <i>J</i> =11.3, 6.3 Hz, 1H), 7.78 (dd, <i>J</i> =11.3, 6.6 Hz, 1H), 6.84 (d, <i>J</i> =3.8 Hz, 1H), 5.34-5.46 (m, 1H), 2.49 (t, <i>J</i> =13.9 Hz, 2H), 2.29 (dd, <i>J</i> =13.9, 3.8 Hz, 2H), 1.70 (s, 6H), 1.58 (s, 6H); 2 Hs not observed (2 NHs).

Example 6

Preparation of Compound 23

Step 1: An oven-dried flask was equipped with a magnetic stir bar and charged with 4-bromo-3,6-dichloropyridazine (0.227 g, 1.0 mmol), [1,1'-bis(diphenylphosphino)ferrocene] dichloropalladium(II) (75.0 mg, 0.1 mmol), and 4 4,4,5,5-tetramethyl-2-vinyl-1,3,2-dioxaborolane (0.171mL, 1.0 mmol). The flask was sealed with a rubber septum, and then evacuated and backfilled with argon (repeated a total of 3 X). Dioxane (6 mL) and 2N aq. K₂CO₃ (1.5 mL, 3.0 mmol) were added and the reaction was heated to 50 °C for 3 h. The reaction was cooled to room temperature, diluted with water (2 mL) and extracted with EtOAc (3 X). The combined organic layers were dried over Na₂SO₄, concentrated under reduced pressure, and purified by column chromatography, eluting with a EtOAc/hexanes gradient (0-50% EtOAc) to provide 3,6-dichloro-4-vinylpyridazine (0.145 g, 82%).

5

10

15

Step 2: A mixture of 3,6-dichloro-4-vinylpyridazine (0.34 g, 1.94 mmol) and 2,2,6,6-tetramethylpiperidin-4-amine (0.72 mL, 4.6 mmol) was dissolved in acetonitrile (5 mL) and the resulting solution was heated to 90 °C for 16 h. The reaction mixture was concentrated and the residue was purified by silica gel column chromatography eluting with a EtOAc/hexanes gradient (0-50% EtOAc) to provide 3-chloro-7-(2,2,6,6-tetramethylpiperidin-4-yl)-6,7-dihydro-5*H*-pyrrolo[2,3-c]pyridazine (0.29 g, 62%). MS *m/z* 295.4 [M+H]⁺.

20 <u>Step 3:</u> An oven-dried flask was equipped with a magnetic stir bar and charged with 3-chloro-7-(2,2,6,6-tetramethylpiperidin-4-yl)-6,7-dihydro-5*H*-pyrrolo[2,3-c]pyridazine (0.15g, 0.5 mmol),

4-(3-(methoxymethoxy)-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)-1-(tetrahydro-2H-pyran-2-yl)-1H-pyrazole (0.32 mg, 0.76 mmol, prepared in Example 1, step 7), tetrakis(triphenylphosphine)palladium(0) (58 mg, 0.05 mmol), and Na₂CO₃ (160 mg, 1.5 mmol). The flask was sealed with a rubber septum, and then evacuated and backfilled with argon (repeated a total of 3 X). 1,4-Dioxane (10 mL) and water (1.5 mL) were added and the reaction was heated to 90 °C for 16 h. The reaction was cooled to room temperature, diluted with water (2 mL), and extracted with EtOAc (3 X). The combined organic layers were dried over Na₂SO₄, concentrated under reduced pressure, and purified by column chromatography, eluting with a MeOH/CH₂Cl₂ gradient (0-20% MeOH) to afford 3-(2-(methoxymethoxy)-4-(1-(tetrahydro-2Hpyran-2-yl)-1*H*-pyrazol-4-yl)phenyl)-7-(2,2,6,6-tetramethylpiperidin-4-yl)-6,7-dihydro-5*H*-10 pyrrolo[2,3-c]pyridazine (0.145 mg, 52%) as an orange solid. MS m/z 547.3 [M+H]⁺. Step 4: 3-(2-(Methoxymethoxy)-4-(1-(tetrahydro-2*H*-pyran-2-yl)-1*H*-pyrazol-4-yl)phenyl)-7-(2,2,6,6-tetramethylpiperidin-4-yl)-6,7-dihydro-5*H*-pyrrolo[2,3-c]pyridazine (20 mg, 0.037) mmol) was dissolved in 1 mL of methanol, then 4 N HCl in 1,4-dioxane (0.5 mL, 2 mmol) was added and the reaction stirred at room temperature for 2 h. The reaction was concentrated and then triturated with 20% MeOH/ether. The precipitate was filtered and dried to afford 5-(1H-

5

15

25

MS m/z 419.5 [M+H]⁺; ¹H NMR (methanol- d_4) δ : 8.17 (s, 2H), 8.07 (s, 1H), 7.66 (d, J=8.2 Hz, 1H), 7.36 (dd, J=8.2, 1.6 Hz, 1H), 7.27 (d, J=1.6 Hz, 1H), 4.49-4.58 (m, 1H), 3.94 (t, J=7.9 Hz, 20 2H), 3.42 (dd, J=8.5, 7.3 Hz, 2H), 2.12 (dd, J=13.9, 3.5 Hz, 2H), 2.00 (t, J=13.9 Hz, 2H), 1.61 (s, 6H), 1.55 (s, 6H); 3 Hs not observed (1 OH and 2 NHs).

yl)phenol hydrochloride (10 mg, 66%) as a yellow solid.

pyrazol-4-yl)-2-(7-(2,2,6,6-tetramethylpiperidin-4-yl)-6,7-dihydro-5*H*-pyrrolo[2,3-c]pyridazin-3-

Using the procedure described for Example 6, above, additional compounds described herein were prepared by substituting the appropriate starting materials, suitable reagents and reaction conditions, obtaining compounds such as those selected from:

Cpc	Data
32	MS <i>m/z</i> 439.5 [M+H] ⁺ ; ¹ H NMR (methanol- <i>d</i> ₄) δ: 8.23 (s, 2H), 7.93 (s, 1H), 7.69-7.76 (m, 1H), 7.55-7.64 (m, 1H), 4.55-4.67 (m, 1H), 4.01-4.07 (m, 2H), 3.44 (br s, 2H), 2.12-2.19 (m, 2H), 2.02-2.08 (m, 2H), 1.64 (s, 6H), 1.57 (s, 6H); 2 Hs not observed (2 NHs).

Cpd	Data
36	MS <i>m/z</i> 409.3 [M+H] ⁺ ; ¹ H NMR (methanol- <i>d</i> ₄) δ: 8.17 (s, 2H), 7.89 (d, <i>J</i> =1.9 Hz, 1H), 7.66-7.74 (m, 1H), 7.55-7.61 (m, 1H), 4.48-4.58 (m, 1H), 4.21-4.26 (m, 2H), 3.99 (t, <i>J</i> =7.6 Hz, 2H), 3.39-3.43 (m, 2H), 2.22-2.31 (m, 6H), 2.08-2.16 (m, 2H); 2 Hs not observed (2 NHs).

Example 7

Preparation of Compound 26

Step 1: A mixture of 3-(2-(methoxymethoxy)-4-(1-(tetrahydro-2*H*-pyran-2-yl)-1*H*-pyrazol-4-yl)phenyl)-7-(2,2,6,6-tetramethylpiperidin-4-yl)-6,7-dihydro-5*H*-pyrrolo[2,3-c]pyridazine (0.28 g, 0.49 mmol, prepared in Example 6, step 3) and manganese dioxide (0.28 g, 3.21 mmol) in toluene (10 mL) was heated at 125 °C in a sealed tube for 24 h. The reaction mixture was cooled to room temperature, filtered over a small pad of Celite and concentrated. The crude compound was purified by column chromatography, eluting with a MeOH/CH₂Cl₂ gradient (0-20% MeOH) to provide 3-(2-(methoxymethoxy)-4-(1-(tetrahydro-2*H*-pyran-2-yl)-1*H*-pyrazol-4-yl)phenyl)-7-(2,2,6,6-tetramethylpiperidin-4-yl)-7*H*-pyrrolo[2,3-c]pyridazine (0.2 g, 71%) as a tan solid. MS *m/z* 545.4 [M+H]⁺.

Step 2: To a solution of 3-(2-(methoxymethoxy)-4-(1-(tetrahydro-2*H*-pyran-2-yl)-1*H*-pyrazol-4-yl)phenyl)-7-(2,2,6,6-tetramethylpiperidin-4-yl)-7*H*-pyrrolo[2,3-c]pyridazine (0.2 g, 0.36 mmol) in 1,4-dioxane (4 mL) was added 4 N HCl in 1,4-dioxane (0.5 mL, 2 mmol) and the reaction was stirred at room temperature for 2 h. The reaction mixture was concentrated, triturated with 20% MeOH/ether, and the precipitate was filtered and dried to afford 5-(1*H*-pyrazol-4-yl)-2-(7-(2,2,6,6-tetramethylpiperidin-4-yl)-7*H*-pyrrolo[2,3-c]pyridazin-3-yl)phenol hydrochloride (120 mg, 78%) as an orange solid.

15

20

MS m/z 417.4 [M+H]⁺; ¹H NMR (methanol-d₄) δ : 8.84 (s, 1H), 8.68 (d, J=3.5 Hz, 1H), 8.39 (br s, 2H), 7.74 (d, J=7.9 Hz, 1H), 7.45 (d, J=8.2 Hz, 1H), 7.33-7.39 (m, 1H), 7.14 (d, J=3.5 Hz, 1H),

5.42-5.58 (m, 1H), 2.53 (t, *J*=13.6 Hz, 2H), 2.42 (dd, *J*=13.6, 3.2 Hz, 2H), 1.72 (s, 6H), 1.63 (s, 6H); 3 Hs not observed (1 OH and 2 NHs).

Using the procedure described for Example 7, above, additional compounds described herein were prepared by substituting the appropriate starting materials, suitable reagents and reaction conditions, obtaining compounds such as those selected from:

5

Cpd	Data
176	MS m/z 418.5 [M+H] ⁺ ; ¹ H NMR (methanol- d_4) δ : 8.64 (s, 1H), 8.09-8.19 (m, 1H), 8.02-8.06 (m, 1H), 7.97 (s, 2H), 7.70-7.76 (m, 2H), 6.79 (d, J =1.8 Hz, 1H), 5.47-5.60 (m, 1H), 2.51-2.59 (m, 2H), 2.37 (br d, J =13.7 Hz, 2H), 1.74 (s, 6H), 1.60 (s, 6H); 2 Hs not observed (NH and OH).

Example 8

Preparation of Compound 17

Step 1: To a solution of methyl 4,6-dichloropyridazine-3-carboxylate (2.05 g, 9.9 mmol) in CH₃CN (26 mL) was added a solution of methyl 2-sulfanylacetate (0.90 mL, 10.0 mmol) in CH₃CN (8.5 mL) dropwise at 0 °C. Upon completion of addition, Et₃N (1.40 mL, 10.0 mmol) was added dropwise. The reaction stirred at 0 °C for 15 min. After 15 min, an additional portion

of Et₃N (1.40 mL, 10.0 mmol) was added and the mixture was allowed to warm to room temperature and stirred overnight. The reaction was diluted with water and concentrated. The mixture was acidified with 4N HCl to pH \approx 3 and the bright yellow solution turned colorless and a white precipitate was formed. The solid was collected by filtration and washed with water to afford methyl 3-chloro-7-hydroxy-thieno[3,2-c]pyridazine-6-carboxylate (2.26 g, 93.1% yield) as white solid. MS m/z 245.1 [M+H]⁺.

5

- Step 2: To a solution of methyl 3-chloro-7-hydroxy-thieno[3,2-c]pyridazine-6-carboxylate (2.26 g, 9.24 mmol) in DMF (30 mL) were added imidazole (1.0 g, 15 mmol) and TIPSCl (2.25 mL, 10 mmol). The mixture was stirred at room temperature for 15 min and then heated to 50 °C for 24 h.
- 10 Upon completion, the reaction was cooled to room temperature and was then diluted with water and the product was extracted with EtOAc. The combined organic phases were dried over Na₂SO₄, concentrated and the residue was purified by silica gel column chromatography, eluting with a EtOAc/CH₂Cl₂ gradient (0-5% EtOAc), to provide methyl 3-chloro-7-triisopropylsilyloxy-thieno[3,2-c]pyridazine-6-carboxylate (2.04 g, 55.1% yield) as an off-white solid.
- Step 3: A mixture of methyl 3-chloro-7-triisopropylsilyloxy-thieno[3,2-c]pyridazine-6-carboxylate (800 mg, 1.9 mmol), 4-[3-(methoxymethoxy)-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl]-1-tetrahydropyran-2-yl-pyrazole (prepared in example 1, step7, 1.00 g, 2.4 mmol), [1,1'-bis(diphenylphosphino)ferrocene] dichloropalladium(II) complex with dichloromethane (85 mg, 0.10 mmol) and K₂CO₃ (830 mg, 6.0 mmol) in a vial was evacuated and backfilled with N₂ (repeated 3 X), 1,4-dioxane (7 mL) and water (1.8 mL) were added and the mixture was heated at 90 °C for 16h. The reaction was cooled to room temperature, diluted with water and acidified with 4N HCl. The product was extracted with CH₂Cl₂ (3 X). The organic phases were combined, dried over Na₂SO₄ and concentrated. Crude methyl 7-hydroxy-3-[2-(methoxymethoxy)-4-(1-tetrahydropyran-2-ylpyrazol-4-yl)phenyl]thieno[3,2-c]pyridazine-6-carboxylate was used directly in the next step without purification.
 - Step 4: Crude methyl 7-hydroxy-3-[2-(methoxymethoxy)-4-(1-tetrahydropyran-2-ylpyrazol-4-yl)phenyl]thieno[3,2-c]pyridazine-6-carboxylate obtained above was mixed with 5 N NaOH (3 mL, 15 mmol) and MeOH (15 mL) and heated at 95 °C until complete hydrolysis was observed (6h). Once complete, the reaction was cooled to room temperature and carefully acidified with 4N HCl to pH 3-4. The intermediate carboxylic acid was extracted with CH₂Cl₂/MeOH. The organic

phase was dried over Na₂SO₄. Volatiles were removed under reduced pressure and the residue was dissolved in DMSO (10 mL). The mixture was heated at 80 °C for 60 min after which complete decarboxylation of the intermediate α-ketoacid was observed. Upon cooling to room temperature, the mixture was diluted with water and the product was extracted with EtOAc. The organic phase was dried over Na₂SO₄ and the solvent was removed. The residue was purified by silica gel column chromatography eluting with a MeOH/CH₂Cl₂ gradient (0-5% MeOH) to afford 3-[2-(methoxymethoxy)-4-(1-tetrahydropyran-2-ylpyrazol-4-yl)phenyl]thieno[3,2-c]pyridazin-7-ol (0.64 g, 76% yield) as a yellow solid. MS *m/z* 439.4 [M+H]⁺.

5

10

15

20

25

30

Step 5: To a solution of 3-[2-(methoxymethoxy)-4-(1-tetrahydropyran-2-ylpyrazol-4-yl)phenyl]thieno[3,2-c]pyridazin-7-ol (204 mg, 0.47 mmol) in CH₂Cl₂ (2.5 mL) was added DIPEA (0.16 mL, 0.92 mmol). The reaction was cooled to 0 °C and triflic anhydride (0.09 mL, 0.53 mmol) was added dropwise. The reaction was stirred at 0 °C for 30 min, then diluted with water and the products were extracted with CH₂Cl₂. The organic phase was dried over Na₂SO₄, the volatiles were removed under reduced pressure and the residue was purified by silica gel column chromatography eluting with a MeOH/EtOAc gradient (0-5% MeOH) to afford [3-[2-(methoxymethoxy)-4-(1-tetrahydropyran-2-ylpyrazol-4-yl)phenyl]thieno[3,2-c]pyridazin-7-yl] trifluoromethanesulfonate (0.13 g, 48% yield) as white foam. MS *m/z* 571.3 [M+H]⁺.

Step 6: An oven-dried flask was equipped with a magnetic stir bar and charged with [3-[2-(methoxymethoxy)-4-(1-tetrahydropyran-2-ylpyrazol-4-yl)phenyl]thieno[3,2-c]pyridazin-7-yl] trifluoromethanesulfonate (127 mg, 0.22 mmol), 2,2,6,6-tetramethyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1,3-dihydropyridine (64 mg, 0.24 mmol), [1,1'-bis(diphenylphosphino)ferrocene] dichloropalladium(II) and (18 mg, 0.02 mmol), K₂CO₃ (100 mg, 0.72 mmol). The flask was sealed with a rubber septum, and then evacuated and backfilled with argon (repeated a total of 3 X). Dioxane (1.2 mL) and water (0.8 mL) were added and the reaction was heated to 90 °C for 16 h. The reaction was cooled to room temperature, diluted with water (5 mL), and then extracted with EtOAc (3 X). The combined organic layers were dried over Na₂SO₄ and concentrated under reduced pressure. The residue was purified by silica gel column chromatography eluting with a MeOH(with 2.5 % NH₄OH) /CH₂Cl₂ gradient (0 to 10% MeOH/NH₄OH) to afford 3-(2-(methoxymethoxy)-4-(1-(tetrahydro-2*H*-pyran-2-yl)-1*H*-pyrazol-

4-yl)phenyl)-7-(2,2,6,6-tetramethyl-1,2,3,6-tetrahydropyridin-4-yl)thieno[3,2-c]pyridazine (55.6 mg, 45% yield) as brownish foam. MS m/z 560.5 [M+H]⁺.

Step 7: To 3-[2-(methoxymethoxy)-4-(1-tetrahydropyran-2-ylpyrazol-4-yl)phenyl]-7-(2,2,6,6-tetramethyl-1,3-dihydropyridin-4-yl)thieno[3,2-c]pyridazine (13.8 mg, 0.025mmol) was added 4 N HCl in dioxane (0.5 mL, 2 mmol) and MeOH (0.5 mL). The reaction was stirred at room temperature for 30 min and then ~2 h at 50 °C. The volatiles were then removed under reduced pressure, the residue was triturated with Et₂O, and the solid was filtered and dried to afford 5-(1*H*-pyrazol-4-yl)-2-[7-(2,2,6,6-tetramethyl-1,3-dihydropyridin-4-yl)thieno[3,2-c]pyridazin-3-yl]phenol hydrochloride (7 mg, 60% yield) as a yellow solid.

5

10

MS m/z 432.4 [M+H]⁺; ¹H NMR (methanol- d_4) δ : 9.37 (s, 1H), 8.49 (s, 1H), 8.22 (s, 2H), 7.93 (d, J=8.2 Hz, 1H), 7.42 (dd, J=8.2, 1.6 Hz, 1H), 7.36 (d, J=1.6 Hz, 1H), 7.20 (s, 1H), 3.56-3.77 (m, 2H), 1.72 (s, 6H), 1.65 (s, 6H); 3 Hs not observed (2 NHs and OH).

Using the procedure described for Example 8, above, additional compounds described herein may be prepared by substituting the appropriate starting materials, suitable reagents and reaction conditions, obtaining compounds such as those selected from:

Cpd	Data
15	MS <i>m/z</i> 376.3 [M+H] ⁺ ; ¹ H NMR (DMSO- <i>d</i> ₆) δ: 9.41 (br s, 2H), 9.38 (s, 1H), 8.40 (s, 1H), 8.26 (s, 2H), 8.11 (d, <i>J</i> =9.1 Hz, 1H), 7.58-7.68 (m, 1H), 7.40 (d, <i>J</i> =1.9 Hz, 1H), 7.37-7.39 (m, 1H), 3.84-4.03 (m, 2H), 3.41-3.51 (m, 2H), 2.87-3.02 (m, 2H); 1H not observed (NH or OH).
18	MS <i>m/z</i> 402.3 [M+H] ⁺ ; ¹ H NMR (methanol- <i>d</i> ₄) δ: 9.47 (s, 1H), 8.55 (s, 1H), 8.36 (s, 2H), 7.91 (d, <i>J</i> =8.2 Hz, 1H), 7.59 (dt, <i>J</i> =6.3, 1.6 Hz, 1H), 7.48 (dd, <i>J</i> =8.2, 1.6 Hz, 1H), 7.40 (d, <i>J</i> =1.6 Hz, 1H), 4.57 (dd, <i>J</i> =6.6, 6.0 Hz, 1H), 4.45 (dd, <i>J</i> =6.6, 5.0 Hz, 1H), 3.38-3.46 (m, 1H), 2.84-3.01 (m, 1H), 2.40-2.53 (m, 2H), 2.24-2.37 (m, 1H), 2.06-2.19 (m, 1H); 3 Hs not observed (2 NHs and OH).
25	MS m/z 418.4 [M+H] ⁺ ; ¹ H NMR (methanol- d_4) δ : 9.51 (s, 1H), 8.66 (s, 1H), 8.43 (s, 2H), 7.91 (d, J =8.2 Hz, 1H), 7.49 (dd, J =8.2, 1.6 Hz, 1H), 7.44-7.47 (m, 1H), 7.41 (d, J =1.6 Hz, 1H), 4.37 (d, J =5.7 Hz, 1H), 4.16 (d, J =12.6 Hz, 1H), 4.12 (dd, J =12.6, 1.9 Hz, 1H), 4.07 (dd, J =12.6, 1.9 Hz, 1H), 3.98 (s, 2H), 3.39-3.48 (m, 1H), 3.18 (dd, J =18.3, 1.9 Hz, 1H); 3 Hs not observed (2 NHs and OH).

Example 9

Preparation of Compound 24

Step 1: A solution of 3-[2-(methoxymethoxy)-4-(1-tetrahydropyran-2-ylpyrazol-4-yl)phenyl]-7-(2,2,6,6-tetramethyl-1,3-dihydropyridin-4-yl)thieno[3,2-c]pyridazine (50 mg, 0.089 mmol, from Example 8, step 6) in MeOH (3 mL) was hydrogenated in a Parr shaker over Pt₂O (100 mg, 0.44 mmol) for 72 h at 50 psi of H₂. The catalyst was then filtered and washed with MeOH. The mother liquor was concentrated and the residue, crude 3-[2-(methoxymethoxy)-4-(1-tetrahydropyran-2-ylpyrazol-4-yl)phenyl]-7-(2,2,6,6-tetramethyl-4-piperidyl)thieno[3,2-c]pyridazine, was taken directly into the next step.

5

10

15

20

Step 2: A solution of crude 3-[2-(methoxymethoxy)-4-(1-tetrahydropyran-2-ylpyrazol-4-yl)phenyl]-7-(2,2,6,6-tetramethyl-4-piperidyl)thieno[3,2-c]pyridazine obtained from step 1 above in MeOH (1 mL) was treated with 4N HCl in dioxane (0.5 mL, 2 mmol). The reaction was stirred at room temperature for 30 min and then ~2 h at 50 °C. The volatiles were then removed under reduced pressure, the residue was triturated with Et₂O, and the solid was filtered and washed with Et₂O. The crude product was purified by prep HPLC using the polar method (20-65% CH₃CN/H₂O). Upon concentration of the desired fractions and treatment of the residue with 4N HCl in dioxane (0.5 mL, 2 mmol), 5-(1*H*-pyrazol-4-yl)-2-(7-(2,2,6,6-tetramethylpiperidin-4-yl)thieno[3,2-c]pyridazin-3-yl)phenol dihydrochloride (2.4 mg, 6% yield) was obtained as a yellow solid.

MS m/z 434.3 [M+H]⁺; ¹H NMR (DMSO- d_6) d: 9.32 (br s 1H), 9.30 (s, 1H), 8.19 (s, 2H), 8.15 (br. s, 1H), 8.12 (s, 1H), 8.05 (d, J=8.8 Hz, 1H), 7.27-7.36 (m, 2H), 3.91-4.00 (m, 1H), 2.18 (dd, J=12.3, 2.5 Hz, 2H), 1.89-2.07 (m, 2H), 1.60 (s, 6H), 1.50 (s, 6H); 1H not observed (NH or OH).

Example 10

Preparation of Compound 98

Step 1: Methyl 3,6-dichloropyridazine-4-carboxylate (500 mg, 2.42 mmol), (2,2,6,6-tetramethyl-4-piperidyl)hydrazine dihydrochloride (590 mg, 2.84 mmol), and DIPEA (1.3 mL, 7.26 mmol) were mixed in MeOH (2 mL) and heated to 70 °C overnight. UPLC showed 2 peaks with the desired mass in an approximately 2:3 ratio. The solvent was removed under reduced pressure and the residue was purified using silica gel chromatography eluting with a MeOH/CH₂Cl₂ gradient (0% to 30%) to provide 5-chloro-2-(2,2,6,6-tetramethyl-4-piperidyl)pyrazolo[3,4-c]pyridazin-3-ol (230 mg, 31%) as dark violet solid and 5-chloro-1-(2,2,6,6-tetramethyl-4-piperidyl)pyrazolo[3,4-c]pyridazin-3-ol (200 mg, 13.4%) as a brownish-orange solid.

MS m/z 310.8 [M+H]⁺; ¹H NMR (methanol- d_4) δ : 7.84 (s, 1H), 5.24 (tt, J=12.3, 3.8 Hz, 1H), 2.30 (dd, J=14.2, 12.3 Hz, 2H), 2.05 (dd, J=14.2, 3.8 Hz, 2H), 1.66 (s, 6H), 1.54 (s, 6H); 2 Hs not observed (NH and OH).

Step 2: An oven-dried flask was equipped with a magnetic stir bar and charged with 5-chloro-1-(2,2,6,6-tetramethyl-4-piperidyl)pyrazolo[3,4-c]pyridazin-3-ol (500 mg, 1.61 mmol), triisopropyl-[3-(methoxymethoxy)-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenoxy]silane (775 mg,

1.78 mmol), [1,1'-bis(diphenylphosphino)ferrocene] dichloropalladium(II) (121 mg, 0.16 mmol) and K₂CO₃ (451 mg, 3.23 mmol). The flask was sealed with a rubber septum, and then evacuated and backfilled with argon (repeated a total of 3 X). Dioxane (2 mL) and water (0.5 mL) were added and the reaction was heated to 90 °C for 16 h. The reaction was cooled to room temperature, diluted with water, and extracted with EtOAc (3 X). The combined organic layers were dried over Na₂SO₄, concentrated under reduced pressure, and the residue was purified by column chromatography on silica gel, eluting with a MeOH/CH₂Cl₂ gradient (0% to 30% MeOH) to provided 5-[2-(methoxymethoxy)-4-triisopropylsilyloxy-phenyl]-1-(2,2,6,6-tetramethyl-4-piperidyl)pyrazolo[3,4-c]pyridazin-3-ol (200 mg, 21%) as a brownish solid. MS *m/z* 584.4 [M+H]⁺.

Step 3: To a suspension of 5-[2-(methoxymethoxy)-4-triisopropylsilyloxy-phenyl]-1-(2,2,6,6-tetramethyl-4-piperidyl)pyrazolo[3,4-c]pyridazin-3-ol (200 mg, 0.34 mmol) in CH₂Cl₂ (4 mL) were added *N*,*N*-bis(trifluoromethylsulfonyl)aniline (247 mg, 0.69 mmol) and Et₃N (0.15 mL, 1.03 mmol) and the reaction was stirred at room temperature for 16 h. The reaction was concentrated under reduced pressure, and the residue was purified by column chromatography on silica gel, eluting with a MeOH/CH₂Cl₂ gradient (0% to 30% MeOH) to provide [5-[2-(methoxymethoxy)-4-triisopropylsilyloxy-phenyl]-1-(2,2,6,6-tetramethyl-4-piperidyl)pyrazolo[3,4-c]pyridazin-3-yl] trifluoromethanesulfonate (236 mg, 96%) as a tan solid. MS *m*/*z* 716.6 [M+H]⁺.

Step 4: To a mixture of [5-[2-(methoxymethoxy)-4-triisopropylsilyloxy-phenyl]-1-(2,2,6,6-tetramethyl-4-piperidyl)pyrazolo[3,4-c]pyridazin-3-yl] trifluoromethanesulfonate (236 mg, 0.33 mmol), dppf (38 mg, 0.066 mmol), [1,1'-bis(diphenylphosphino)ferrocene] dichloropalladium(II) (49 mg, 0.066 mmol), and ammonium formate (104 mg, 1.65 mmol) in dry THF (4 ml) was added Et₃N (0.23 mL, 1.65 mmol). The mixture was purged with argon and then heated at 60 °C for 6 h in a sealed tube. The reaction was cooled to room temperature, diluted with water, and extracted with EtOAc (3 X). The combined organic layers were dried over Na₂SO₄ and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel, eluting with a MeOH/CH₂Cl₂ gradient (0% to 15% MeOH) to provide triisopropyl-[3-(methoxymethoxy)-4-[1-(2,2,6,6-tetramethyl-4-piperidyl)pyrazolo[3,4-c]pyridazin-5-yl]phenoxy]silane (170 mg, 91%) as a grey solid.

MS m/z 568.5 [M+H]⁺; ¹H NMR (methanol- d_4) δ : 8.45 (s, 1H), 8.32 (s, 1H), 7.67 (d, J=8.2 Hz, 1H), 6.96 (d, J=2.5 Hz, 1H), 6.77 (dd, J=8.8, 2.5 Hz, 1H), 5.74 (tt, J=12.6, 3.8 Hz, 1H), 5.22 (s, 2H), 3.42 (s, 3H), 2.06-2.33 (m, 4H), 1.56 (s, 6H), 1.39 (s, 6H), 1.35 (spt, J=7.6 Hz, 3H), 1.19 (d, J=7.6 Hz, 18H); 1 H not observed (NH).

- Step 5: To a solution of triisopropyl-[3-(methoxymethoxy)-4-[1-(2,2,6,6-tetramethyl-4-piperidyl)pyrazolo[3,4-c]pyridazin-5-yl]phenoxy]silane (273 mg, 0.48 mmol) in THF (4 mL) was added 1.0 M TBAF in THF (0.53 mmol, 0.53 mL) and the reaction was stirred at room temperature for 30 min. The solvent was removed under reduced pressure, and the residue was purified by column chromatography on silica gel, eluting with a MeOH/CH₂Cl₂ gradient (0% to 30% MeOH) to provide 3-(methoxymethoxy)-4-[1-(2,2,6,6-tetramethyl-4-piperidyl)pyrazolo[3,4-c]pyridazin-5-yl]phenol (101 mg, 51%) as a clear solid. MS m/z 412.4 [M+H]⁺.
 - Step 6: To a suspension of 3-(methoxymethoxy)-4-[1-(2,2,6,6-tetramethyl-4-piperidyl)pyrazolo[3,4-c]pyridazin-5-yl]phenol (101 mg, 0.25 mmol) in CH₂Cl₂ (2 mL) were added *N*,*N*-bis(trifluoromethylsulfonyl)aniline (133 mg, 0.37 mmol) and Et₃N (0.104 mL, 0.74 mmol). The reaction mixture was stirred at room temperature for 16 h. UPLC showed complete conversion. The solvent was removed under reduced pressure and the residue was purified by column chromatography on silica gel, eluting with a EtOAc/hexanes gradient (20 to 100% EtOAc) to provide [3-(methoxymethoxy)-4-[1-(2,2,6,6-tetramethyl-4-piperidyl)pyrazolo[3,4-c]pyridazin-5-yl]phenyl] trifluoromethanesulfonate (121 mg, 91%) as a clear solid.

- 20 MS m/z 544.4 [M+H]⁺; ¹H NMR (methanol- d_4) δ : 8.53 (s, 1H), 8.38 (s, 1H), 7.94 (d, J=8.5 Hz, 1H), 7.40 (d, J=2.5 Hz, 1H), 7.24 (dd, J=8.5, 2.5 Hz, 1H), 5.79 (tt, J=12.6, 3.8 Hz, 1H), 5.31 (s, 2H), 3.44 (s, 3H), 2.39 (t, J=13.6 Hz, 2H), 2.28 (dd, J=13.6, 3.8 Hz, 2H), 1.66 (s, 6H), 1.50 (s, 6H); 1 H not observed (NH).
- Step 7: An oven-dried flask was equipped with a magnetic stir bar and charged with [3(methoxymethoxy)-4-[1-(2,2,6,6-tetramethyl-4-piperidyl)pyrazolo[3,4-c]pyridazin-5-yl]phenyl]
 trifluoromethanesulfonate (51 mg, 0.094 mmol), 1-methyl-4-(4,4,5,5-tetramethyl-1,3,2dioxaborolan-2-yl)pyrazole (23 mg, 0.11 mmol), [1,1'-bis(diphenylphosphino)ferrocene]
 dichloropalladium(II) (7 mg, 0.009 mmol), and K₂CO₃ (26 mg, 0.19 mmol). The flask was sealed
 with a rubber septum, and then evacuated and backfilled with argon (repeated a total of 3 X). 1,4Dioxane (1 mL) and water (0.25 mL) were added and the reaction was heated to 90 °C for 16 h.
 The reaction was cooled to room temperature, diluted with water, and extracted with EtOAc (3
 X). The combined organic layers were dried over Na₂SO₄, concentrated under reduced pressure,

and the residue was purified by column chromatography on silica gel, eluting with a MeOH/CH₂Cl₂ gradient (0% to 30% MeOH) to provide 5-[2-(methoxymethoxy)-4-(1-methylpyrazol-4-yl)phenyl]-1-(2,2,6,6-tetramethyl-4-piperidyl)pyrazolo[3,4-c]pyridazine (40 mg, 89%) as an orange solid. MS m/z 476.5 [M+H]⁺.

5 Step 8: To a solution of 5-[2-(methoxymethoxy)-4-(1-methylpyrazol-4-yl)phenyl]-1-(2,2,6,6-tetramethyl-4-piperidyl)pyrazolo[3,4-c]pyridazine (40 mg, 0.084 mmol) in 1 mL of CH₂Cl₂ and 2 drops of MeOH was added 4 N HCl in 1,4-dioxane (42 μL, 0.17 mmol) and the reaction was stirred for 5 h until UPLC showed complete consumption of the starting material. The solvent was removed under reduced pressure and the residue was triturated in Et₂O, and the precipitate was collected by filtration. The solid was further washed with diethyl ether and dried to afford 5-(1-methylpyrazol-4-yl)-2-[1-(2,2,6,6-tetramethyl-4-piperidyl)pyrazolo[3,4-c]pyridazin-5-yl]phenol dihydrochloride (32 mg, 75%) as a yellow solid.

MS m/z 432.5 [M+H]⁺; ¹H NMR (methanol- d_4) δ : 9.11 (s, 1H), 8.66 (s, 1H), 8.16 (s, 1H), 7.99 (s, 1H), 7.86 (d, J=7.9 Hz, 1H), 7.35 (dd, J=8.2, 1.5 Hz, 1H), 7.29 (d, J=1.5 Hz, 1H), 5.74 (tt, J=12.6, 4.0 Hz, 1H), 4.00 (s, 3H), 2.52 (t, J=13.8 Hz, 2H), 2.44 (dd, J=13.8, 4.0 Hz, 2H), 1.76 (s, 6H), 1.62 (s, 6H); 2 NH not observed (NH and OH).

15

Using the procedure described for Example 10, above, additional compounds described herein were prepared by substituting the appropriate starting materials, suitable reagents and reaction conditions, obtaining compounds such as those selected from:

Cpd	Data
21	MS <i>m/z</i> 362.4 [M+H] ⁺ ; ¹ H NMR (methanol- <i>d</i> ₄) δ: 9.12 (s, 1H), 8.68 (s, 1H), 8.42 (s, 2H), 7.89 (d, <i>J</i> =8.2 Hz, 1H), 7.44 (dd, <i>J</i> =8.2, 1.9 Hz, 1H), 7.38 (d, <i>J</i> =1.6 Hz, 1H), 5.52 (tt, <i>J</i> =10.4, 4.4 Hz, 1H), 3.67-3.72 (m, 2H), 3.43 (td, <i>J</i> =12.3, 3.2 Hz, 2H), 2.58-2.70 (m, 2H), 2.46-2.55 (m, 2H); 3 Hs not observed (2 NHs and OH).
102	MS <i>m/z</i> 435.5 [M+H] ⁺ ; ¹ H NMR (methanol- <i>d</i> ₄) δ: 8.84 (s, 1H), 8.43 (s, 1H), 8.05 (s, 1H), 7.97 (d, <i>J</i> =8.2 Hz, 1H), 7.89 (s, 1H), 7.25 (d, <i>J</i> =8.2 Hz, 1H), 7.23 (s, 1H), 5.78 (tt, <i>J</i> =12.4, 3.4 Hz, 1H), 2.51 (t, <i>J</i> =13.7 Hz, 2H), 2.40 (dd, <i>J</i> =13.7, 3.4 Hz, 2H), 1.76 (s, 6H), 1.60 (s, 6H); 2 Hs not observed (NH and OH).
148	MS m/z 450.4 [M+H] ⁺ ; ¹ H NMR (methanol- d_4) δ : 8.81 (s, 1H), 8.40 (s, 1H), 7.77-7.86 (m, 2H), 7.25-7.32 (m, 1H), 6.91-7.00 (m, 1H), 5.56-5.72 (m, 1H), 3.26 (s, 3H), 2.42 (t, J =13.4 Hz, 2H), 2.28 (dd, J =13.4, 2.8 Hz, 2H), 1.65 (s, 6H), 1.50 (s, 6H); 2 Hs not observed (OH and NH).

	Cpd	Data
1	161	MS m/z 436.5 [M+H] ⁺ ; ¹ H NMR (methanol- d_4) δ : 8.81 (d, J =8.5 Hz, 1H), 8.38 (s, 1H), 7.86-8.07 (m, 2H), 7.23-7.31 (m, 1H), 7.04 (d, J =8.6 Hz, 1H), 5.61-5.74 (m, 1H), 1.98-2.18 (m, 4H), 1.48 (s, 6H), 1.30 (s, 6H), 3 Hs not observed (2 NHs and OH).

Example 11

Preparation of Compound 22

Step 1: An oven-dried flask was equipped with a magnetic stir bar and charged with 5-chloro-1-(2,2,6,6-tetramethyl-4-piperidyl)pyrazolo[3,4-c]pyridazin-3-ol (186 mg, 0.60 mmol), 4-[3-(methoxymethoxy)-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl]-1-tetrahydropyran-2-yl-pyrazole (prepared in example 1, step 7, 298.5 mg, 0.72 mmol), [1,1'-

- bis(diphenylphosphino)ferrocene] dichloropalladium(II) (45 mg, 0.06 mmol), and K_2CO_3 (252 mg, 1.80 mmol). The flask was sealed with a rubber septum, and then evacuated and backfilled with argon (repeated a total of 3 X). 1,4-Dioxane (2 mL) and water (0.5 mL) were added and the reaction was heated to 90 °C for 16 h. The reaction was cooled to room temperature, diluted with water, and extracted with EtOAc (3 X). The combined organic phases were dried over Na_2SO_4 , concentrated under reduced pressure, and purified by column chromatography, eluting with a
- MeOH/CH₂Cl₂ gradient (0-30% MeOH) to provide 5-(2-(methoxymethoxy)-4-(1-(tetrahydro-2*H*-pyran-2-yl)-1*H*-pyrazol-4-yl)phenyl)-1-(2,2,6,6-tetramethylpiperidin-4-yl)-1*H*-pyrazolo[3,4-c]pyridazin-3-ol (229 mg, 68%) as a dark yellow solid. MS *m/z* 562.5 [M+H]⁺.
 - Step 2: To a solution of 5-[2-(methoxymethoxy)-4-(1-tetrahydropyran-2-ylpyrazol-4-yl)phenyl]-

1-(2,2,6,6-tetramethyl-4-piperidyl)pyrazolo[3,4-c]pyridazin-3-ol (229 mg, 0.41 mmol) in CH₂Cl₂ (4 mL) was added *N*,*N*-bis(trifluoromethylsulfonyl)aniline (294 mg, 0.82 mmol) and Et₃N (0.17 mL, 1.22 mmol) and the reaction was stirred at room temperature for 16 h. The reaction was cooled to room temperature, diluted with water, and extracted with CH₂Cl₂ (3 X). The combined organic phases were dried over Na₂SO₄, concentrated under reduced pressure and purified by column chromatography, eluting with a MeOH/CH₂Cl₂ gradient (0-25% MeOH) to provide 5-(2-(methoxymethoxy)-4-(1-(tetrahydro-2*H*-pyran-2-yl)-1*H*-pyrazol-4-yl)phenyl)-1-(2,2,6,6-tetramethylpiperidin-4-yl)-1*H*-pyrazolo[3,4-c]pyridazin-3-yl trifluoromethanesulfonate (166 mg, 59%) as a clear solid.

5

- 10 MS m/z 694.3 [M+H]⁺; ¹H NMR (acetone- d_6) δ: 8.50 (s, 1H), 8.17 (d, J=0.6 Hz, 1H), 7.91 (d, J=8.2 Hz, 1H), 7.83 (d, J=0.6 Hz, 1H), 7.47 (d, J=1.6 Hz, 1H), 7.37 (dd, J=8.2, 1.6 Hz, 1H), 5.73 (tt, J=12.3, 4.0 Hz, 1H), 5.34 (dd, J=9.8, 2.5 Hz, 1H), 5.27 (s, 2H), 3.85-3.92 (m, 1H), 3.54-3.64 (m, 1H), 3.30 (s, 3H), 2.15-2.27 (m, 4H), 1.60-1.68 (m, 2H), 1.54 (s, 6H), 1.45-1.52 (m, 4H), 1.37 (s, 6H), 1 H not observed (NH).
- Step 3: To a solution of 5-(2-(methoxymethoxy)-4-(1-(tetrahydro-2*H*-pyran-2-yl)-1*H*-pyrazol-4-yl)phenyl)-1-(2,2,6,6-tetramethylpiperidin-4-yl)-1*H*-pyrazolo[3,4-c]pyridazin-3-yl trifluoromethanesulfonate (166 mg, 0.24 mmol), Pd(OAc)₂ (11 mg, 0.048 mmol), dppf (27 mg, 0.048 mmol), and Et₃N (0.17 mL, 1.2 mmol) in dry THF (0.5 ml) was added ammonium formate (77 mg, 1.2 mmol). The mixture was purged with argon and heated at 60 °C for 2.5 h in a sealed tube. The reaction was cooled to room temperature, diluted with water, and extracted with EtOAc (3 X). The combined organic phases were dried over Na₂SO₄, concentrated under reduced pressure, and the residue was purified by column chromatography on silica gel, eluting with a MeOH/CH₂Cl₂ gradient (0% to 20% MeOH) to provide 5-(2-(methoxymethoxy)-4-(1-(tetrahydro-2*H*-pyran-2-yl)-1*H*-pyrazol-4-yl)phenyl)-1-(2,2,6,6-tetramethylpiperidin-4-yl)-1*H*-pyrazolo[3,4-c]pyridazine (115 mg, 88%) as a clear foam. MS *m/z* 546.5 [M+H]⁺.
 - Step 4: To a solution of 5-(2-(methoxymethoxy)-4-(1-(tetrahydro-2*H*-pyran-2-yl)-1*H*-pyrazol-4-yl)phenyl)-1-(2,2,6,6-tetramethylpiperidin-4-yl)-1*H*-pyrazolo[3,4-c]pyridazine (115 mg, 0.21 mmol) in 1 ml CH₂Cl₂ and 1 drop of MeOH was added 4N HCl in dioxane (0.11 mL, 0.44 mmol) and the reaction was stirred at room temperature for 2 h. The yellow solid that precipitated was collected by vacuum filtration, rinsed with CH₂Cl₂, Et₂O and dried to afford 5-(1*H*-pyrazol-4-yl)-2-(1-(2,2,6,6-tetramethylpiperidin-4-yl)-1*H*-pyrazolo[3,4-c]pyridazin-5-yl)phenol hydrochloride

(78 mg, 89%) as a yellow solid:

5

MS m/z 418.5 [M+H]⁺; ¹H NMR (methanol- d_4) δ : 9.20 (s, 1H), 8.75 (s, 1H), 8.62 (s, 2H), 7.91 (d, J=8.2 Hz, 1H), 7.49 (dd, J=8.2, 1.9 Hz, 1H), 7.43 (d, J=1.6 Hz, 1H), 5.75 (tt, J=12.0, 4.1 Hz, 1H), 2.53 (t, J=14.2 Hz, 2H), 2.46 (dd, J=14.2, 4.1 Hz, 2H), 1.76 (s, 6H), 1.63 (s, 6H); 3 Hs not observed (2 NHs and OH).

Using the procedure described for Example 11, above, additional compounds described herein were prepared by substituting the appropriate starting materials, suitable reagents and reaction conditions, obtaining compounds such as those selected from:

Cpd	Data
165	MS <i>m/z</i> 429.3 [M+H] ⁺ ; ¹ H NMR (methanol- <i>d</i> ₄) δ: 8.90 (s, 1H), 8.61 (d, <i>J</i> =4.6 Hz, 2H), 8.41 (s, 1H), 8.06 (d, <i>J</i> =8.5 Hz, 1H), 7.79 (br d, <i>J</i> =4.9 Hz, 2H), 7.39 (s, 1H), 7.35 (d, <i>J</i> =8.2 Hz, 1H), 5.61-5.75 (m, 1H), 1.94-2.16 (m, 4H), 1.45 (s, 6H), 1.26 (s, 6H); 2 Hs not observed (NH and OH).
166	MS <i>m/z</i> 429.3 [M+H] ⁺ ; ¹ H NMR (methanol- <i>d</i> ₄) δ: 9.31 (br s, 1H), 9.01-9.10 (m, 2H), 8.92 (br d, <i>J</i> =3.1 Hz, 1H), 8.57 (s, 1H), 8.17-8.31 (m, 2H), 7.56 (br s, 2H), 5.71-5.88 (m, 1H), 2.49-2.60 (m, 2H), 2.35-2.48 (m, 2H), 1.77 (s, 6H), 1.63 (s, 6H); 2 Hs not observed (NH and OH).
167	MS <i>m/z</i> 430.3 [M+H] ⁺ ; ¹ H NMR (methanol- <i>d</i> ₄) δ: 9.19 (s, 1H), 9.16 (br s, 2H), 8.93 (s, 1H), 8.46 (s, 1H), 8.17 (d, <i>J</i> =8.5 Hz, 1H), 7.35-7.50 (m, 2H), 5.76-5.89 (m, 1H), 2.49-2.56 (m, 2H), 2.42 (br dd, <i>J</i> =13.6, 3.2 Hz, 2H), 1.77 (s, 6H), 1.61 (s, 6H); 2 Hs not observed (NH and OH).
169	MS <i>m/z</i> 432.4 [M+H] ⁺ ; ¹ H NMR (methanol- <i>d</i> ₄) δ: 8.83 (s, 1H), 8.39 (s, 1H), 7.93-8.05 (m, 1H), 7.65 (s, 1H), 7.35-7.54 (m, 2H),6.65-6.78 (m, 1H), 5.54-5.83 (m, 1H), 3.95 (s, 3H), 2.12-2.46 (m, 4H), 1.61 (br s, 6H), 1.44 (br s, 6H); 2 Hs not observed (NH and OH).
174	MS m/z 419.4 [M+H] ⁺ ; ¹ H NMR (methanol- d_4) δ : 8.77-8.95 (m, 1H), 8.38 (br s, 1H), 8.01-8.14 (m, 1H), 7.97 (s, 2H), 7.55-7.78 (m, 2H), 5.58-5.73 (m, 1H), 1.94-2.22 (m, 4H), 1.46 (s, 6H), 1.26 (s, 6H); 2Hs not observed (NH and OH).

Example 12

Preparation of Compound 19

Step 1: 3,6-Dibromopyrazine-2-carbaldehyde (340 mg, 1.28 mmol) and benzyl 4-

- hydrazinopiperidine-1-carboxylate dihydrochloride (412 mg, 1.28 mmol) were mixed in DMF (3 mL) and stirred at room temperature for 5 min. The reaction mixture was partitioned between EtOAc and water. The combined organic phases were dried over Na₂SO₄, concentrated under reduced pressure, and the residue was purified by column chromatography on silica gel, eluting with a EtOAc/hexanes gradient (0% to 30% EtOAc) to provide benzyl 4-[(2E)-2-[(3,6-
- dibromopyrazin-2-yl)methylene]hydrazino]piperidine-1-carboxylate (550 mg, 87%) as a yellow solid.

MS m/z 496.0, 498.0, 500.0 [M+H]⁺; ¹H NMR (acetone- d_6) δ : 8.27-8.33 (m, 1H), 8.17 (d, J=4.7 Hz, 1H), 7.90 (s, 1H), 7.36-7.45 (m, 4H), 7.29-7.36 (m, 1H), 5.14 (s, 2H), 4.05-4.15 (m, 2H), 3.64-3.74 (m, 1H), 2.08-2.10 (m, 2H), 2.01-2.05 (m, 2H), 1.49-1.64 (m, 2H).

- 15 Step 2: A solution of benzyl 4-[(2*E*)-2-[(3,6-dibromopyrazin-2-yl)methylene]hydrazino]piperidine-1-carboxylate (550 mg, 1.11 mmol) in CH₃CN (2 mL) was heated in a microwave at 200 °C for 1 h. The solvent was removed under reduced pressure and the residue was purified by column chromatography on silica gel, eluting with a EtOAc/CH₂Cl₂ gradient (0% to 60% EtOAc) to provide benzyl 4-(5-bromo-1*H*-pyrazolo[3,4-b]pyrazin-1-
- 20 yl)piperidine-1-carboxylate (78 mg, 16%). MS *m/z* 416.0, 418.0 [M+H]⁺.

<u>Step 3:</u> An oven-dried flask was equipped with a magnetic stir bar and charged with benzyl 4-(5-bromopyrazolo[3,4-b]pyrazin-1-yl)piperidine-1-carboxylate (78 mg, 0.19 mmol), 4-[3-(methoxymethoxy)-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl]-1-tetrahydropyran-2-

yl-pyrazole (prepared in Example 1, step 7, 93 mg, 0.23 mmol), [1,1'-bis(diphenylphosphino)ferrocene] dichloropalladium(II) (14 mg, 0.019 mmol) and K₂CO₃ (78 mg, 0.56 mmol). The flask was sealed with a rubber septum, and then evacuated and backfilled with argon (repeated a total of 3 X). 1,4-Dioxane (2 mL) and water (0.5 mL) were added and the reaction was heated to 90 °C for 16 h. The reaction was cooled to room temperature, diluted with water, and extracted with EtOAc (3 X). The combined organic layers were dried over Na₂SO₄, concentrated under reduced pressure, and purified by column chromatography, eluting with a EtOAc/CH₂Cl₂ gradient (0-60% EtOAc) to provide benzyl 4-(5-(2-(methoxymethoxy)-4-(1-(tetrahydro-2*H*-pyran-2-yl)-1*H*-pyrazol-4-yl)phenyl)-1*H*-pyrazolo[3,4-b]pyrazin-1-yl)piperidine-1-carboxylate (69 mg, 59%) as brownish solid. MS *m/z* 624.3 [M+H]⁺;

5

10

- Step 4: To a solution of benzyl 4-[5-[2-(methoxymethoxy)-4-(1-tetrahydropyran-2-ylpyrazol-4-yl)phenyl]pyrazolo[3,4-b]pyrazin-1-yl]piperidine-1-carboxylate (69 mg, 0.11 mmol) in EtOH (3 mL) was added 10% Pd/C (10 mg) and the reaction mixture was hydrogenated under 1 atm of H₂ for 16 h. The catalyst was removed by filtration, the solvent was evaporated under reduced pressure, and the residue was purified by column chromatography, eluting with a MeOH/CH₂Cl₂ gradient (0-30% MeOH). 5-[2-(Methoxymethoxy)-4-(1-tetrahydropyran-2-ylpyrazol-4-yl)phenyl]-1-(4-piperidyl)pyrazolo[3,4-b]pyrazine (15 mg, 28%) was obtained as a white solid. MS *m/z* 490.4 [M+H]⁺;
- Step 5: To a solution of 5-[2-(methoxymethoxy)-4-(1-tetrahydropyran-2-ylpyrazol-4-yl)phenyl] 1-(4-piperidyl)pyrazolo[3,4-b]pyrazine (15 mg, 0.031 mmol) in CH₂Cl₂ (1 mL, with one drop of MeOH) was added 4 N HCl in 1,4-dioxane (15 μL, 0.06 mmol) and the reaction was stirred at room temperature for 2 h. The precipitate was collected by filtration, washed with Et₂O (3 X) and dried to provide 2-[1-(4-piperidyl)pyrazolo[3,4-b]pyrazin-5-yl]-5-(1*H*-pyrazol-4-yl)phenol;hydrochloride (8 mg, 66%) as a yellow solid.
- 25 MS *m/z* 362.3 [M+H]⁺; ¹H NMR (DMSO-*d*₆) δ: 11.68 (br s, 1H), 10.09 (br s, 1H), 9.38 (d, *J*=1.6 Hz, 1H), 8.95 (br s, 1H), 8.68 (br s, 1H), 8.56 (s, 1H), 8.14 (br s, 1H), 8.05 (dd, *J*=8.8, 1.6 Hz, 1H), 7.27 (s, 2H), 5.18-5.28 (m, 1H), 3.58-3.66 (m, 1H), 3.42-3.53 (m, 1H), 3.17-3.39 (m, 2H), 2.76-2.88 (m, 1H), 2.34-2.45 (m, 1H), 2.14-2.31 (m, 2H).

Example 13

Preparation of Compound 80

Step 1: To a suspension of 3,6-dichloropyridazin-4-amine (2.0 g, 12.2 mmol) in 1-decanol (3.5 mL) were added 2,2,6,6-tetramethylpiperidin-4-amine (2.3 mL, 1.1 equiv.) and N,Ndiisopropylethylamine (3 mL, 1.4 equiv.) in a 60 mL sealed screw-cap tube. The reaction was stirred at 150 °C for 72 h after which the partially solidified reaction mixture was transferred to a round-bottom flask with the aid of methanol. The organic components were concentrated to afford a thick oil, which was rinsed with hexanes to remove 1-decanol (this may lead to solidification). The crude product was purified by column chromatography, eluting with a MeOH (with 2.5 % NH₄OH)/CH₂Cl₂ gradient (5 to 30% MeOH/NH₄OH). The first compound to elute was unreacted starting material 3,6-dichloropyridazin-4-amine. Then, a mixture of 6-chloro-N3-(2,2,6,6-tetramethylpiperidin-4-yl)pyridazine-3,4-diamine and 6-chloro-N3-(2,2,6,6tetramethylpiperidin-4-yl)pyridazine-3,5-diamine elute (they co-elute), followed by N3,N6bis(2,2,6,6-tetramethylpiperidin-4-yl)pyridazine-3,4,6-triamine. Column chromatography generally results in a 50-60% yield of 6-chloro-N3-(2,2,6,6-tetramethylpiperidin-4-yl)pyridazine-3,4-diamine and 6-chloro-N3-(2,2,6,6-tetramethylpiperidin-4-yl)pyridazine-3,5-diamine (2:1 ratio). The mixture of 6-chloro-N3-(2,2,6,6-tetramethylpiperidin-4-yl)pyridazine-3,4-diamine and 6-chloro-N3-(2,2,6,6-tetramethylpiperidin-4-yl)pyridazine-3,5-diamine (2.7 g, 77%) obtained after chromatography was used in the next step without further purification.

5

10

15

Step 2: To a solution of a mixture of 6-chloro-N3-(2,2,6,6-tetramethyl-4-piperidyl)pyridazine-3,4-diamine and 6-chloro-N3-(2,2,6,6-tetramethyl-4-piperidyl)pyridazine-3,5-diamine (2. 7 g, 9.5 mmol) in AcOH (8 mL) was added NaNO₂ (1.3g, 19 mmol) in portions and the mixture was stirred at room temperature for 1 h. The reaction was quenched by the addition of saturated aqueous sodium bicarbonate slowly until reaching pH ~ 7. The aqueous layer was extracted with ethyl acetate three times. The organic layer was dried over Na₂SO₄, filtered, and concentrated in vacuo. The crude product was purified by column chromatography on silica gel, eluting with a MeOH/CH₂Cl₂ gradient (0-20% MeOH) to yield 6-chloro-3-(2,2,6,6-tetramethyl-4-piperidyl)triazolo[4,5-c]pyridazine (1.22 g, 43%) as brownish solid:

5

15

20

25

30

without further purification.

- 10 MS m/z 295.8 [M+H]⁺; ¹H NMR (500 MHz, methanol- d_4) δ : 8.56 (s, 1H), 5.76 (tt, J=12.6, 4.1 Hz, 1H), 2.30 (dd, J=12.6, 4.1 Hz, 2H), 2.23 (t, J=12.6 Hz, 2H), 1.47 (s, 6H), 1.32 (s, 6H).
 - Step 3: An oven-dried flask was equipped with a magnetic stir bar and charged with 6-chloro-3-(2,2,6,6-tetramethyl-4-piperidyl)triazolo[4,5-c]pyridazine (1.11 g, 3.77 mmol), triisopropyl(3-(methoxymethoxy)-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenoxy)silane (1.81 g, 4.15 mmol), [1,1'-bis(diphenylphosphino)ferrocene] dichloropalladium(II) (138 mg, 0.19 mmol) and K_2CO_3 (1.56 g, 11.31 mmol). The flask was sealed with a rubber septum, and then evacuated and backfilled with argon (repeated a total of 3 X). 1,4-Dioxane (18 mL) and water (4 mL) were added and the reaction was heated to 90 °C for 16 h. The reaction was cooled to room temperature, diluted with water (5 mL) and extracted with EtOAc (3 X). The combined organic layers were dried over Na_2SO_4 and concentrated under reduced pressure, to provide crude 6-(2-(methoxymethoxy)-4-((triisopropylsilyl)oxy)phenyl)-3-(2,2,6,6-tetramethylpiperidin-4-yl)-3H-

[1,2,3]triazolo[4,5-c]pyridazine (1.67 g, 78%) as a brown solid which was used in the next step

Step 4: To a solution of 6-(2-(methoxymethoxy)-4-((triisopropylsilyl)oxy)phenyl)-3-(2,2,6,6-tetramethylpiperidin-4-yl)-3*H*-[1,2,3]triazolo[4,5-c]pyridazine (1.67 g, 2.94 mmol) in THF (10 mL) was added 1.0 M TBAF in THF (3.1 mL, 3.1 mmol). The reaction mixture was stirred at room temperature for 1 h until TLC showed complete consumption of the starting material. The solvent was removed under reduced pressure and the crude product was purified by column chromatography on silica gel, eluting with a EtOAc/hexanes gradient (10-80% EtOAc) to yield 3-(methoxymethoxy)-4-(3-(2,2,6,6-tetramethylpiperidin-4-yl)-3*H*-[1,2,3]triazolo[4,5-c]pyridazin-6-yl)phenol (985 mg, 81%) as a tan oil. To a solution of 3-(methoxymethoxy)-4-(3-(2,2,6,6-tetramethylpiperidin-4-yl)-4-(3-(2,2,6,

tetramethylpiperidin-4-yl)-3*H*-[1,2,3]triazolo[4,5-c]pyridazin-6-yl)phenol (985 mg, 2.39 mmol) in CH₂Cl₂ (8 mL) was added *N*,*N*-bis(trifluoromethylsulfonyl)aniline (1.71 g, 4.78 mmol) and Et₃N (1.0 mL, 7.2 mmol). The reaction was stirred for 5 h until UPLC showed complete conversion. The solvent was removed under reduced pressure and the residue was purified by column chromatography on silica gel, eluting with a EtOAc/hexanes gradient (0-60% EtOAc) to give 3-(methoxymethoxy)-4-(3-(2,2,6,6-tetramethylpiperidin-4-yl)-3*H*-[1,2,3]triazolo[4,5-c]pyridazin-6-yl)phenyl trifluoromethanesulfonate (20 mg, 71%).

5

10

MS m/z 545.6 [M+H]⁺; ¹H NMR (acetone- d_6) δ : 8.68 (s, 1H), 8.04 (d, J=8.5 Hz, 1H), 7.35 (d, J=2.5 Hz, 1H), 7.21 (dd, J=8.8, 2.5 Hz, 1H), 5.67 (tt, J=11.2, 5.4 Hz, 1H), 5.31 (s, 2H), 3.35 (s, 3H), 2.04-2.27 (m, 4H), 1.36 (s, 6H), 1.16 (s, 6H), 1H not observed (NH).

- <u>Step 5:</u> An oven-dried flask was equipped with a magnetic stir bar and charged with [3-(methoxymethoxy)-4-[3-(2,2,6,6-tetramethyl-4-piperidyl)triazolo[4,5-c]pyridazin-6-yl]phenyl] trifluoromethanesulfonate (50 mg, 0.092 mmol), tert-butyl 3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pyrrole-1-carboxylate (32 mg, 0.11 mmol), [1,1'-
- bis(diphenylphosphino)ferrocene] dichloropalladium(II) (7 mg, 0.009 mmol) and K₂CO₃ (26 mg, 0.18 mmol). The flask was sealed with a rubber septum, and then evacuated and backfilled with argon (repeated a total of 3 X). 1,4-Dioxane (18 mL) and water (4 mL) were added and the reaction was heated to 90 °C for 16 h. The reaction was cooled to room temperature, diluted with water (5 mL), and extracted with EtOAc (3 X). The combined organic layers were dried over
 Na₂SO₄, concentrated under reduced pressure, and purified using silica gel chromatography
 - Na₂SO₄, concentrated under reduced pressure, and purified using silica gel chromatography eluting with a MeOH/CH₂Cl₂ gradient (0% to 30% MeOH) to provide tert-butyl 3-[3-(methoxymethoxy)-4-[3-(2,2,6,6-tetramethyl-4-piperidyl)triazolo[4,5-c]pyridazin-6-yl]phenyl]pyrrole-1-carboxylate (40 mg, 78%) as an orange solid. MS *m*/z 562.3 [M+H]⁺.
- Step 6: To a solution of tert-butyl 3-[3-(methoxymethoxy)-4-[3-(2,2,6,6-tetramethyl-4-piperidyl)triazolo[4,5-c]pyridazin-6-yl]phenyl]pyrrole-1-carboxylate (40 mg, 0.071 mmol) in CH₂Cl₂ (2 mL) plus 2 drops of MeOH was added 4 N HCl in 1,4-dioxane (36 μL). The reaction was stirred for 5 h until UPLC showed complete consumption of the starting material. The solvents were removed under reduced pressure and the product was purified by column chromatography, eluting with a MeOH/CH₂Cl₂ gradient (with 2.5 % NH₄OH) (5 to 30%
- MeOH/NH₄OH) to provide 5-(1*H*-pyrrol-3-yl)-2-(3-(2,2,6,6-tetramethylpiperidin-4-yl)-3*H*-[1,2,3]triazolo[4,5-c]pyridazin-6-yl)phenol (22 mg, 74%) as an orange solid.

MS m/z 418.5 [M+H]⁺; ¹H NMR (methanol- d_4) δ : 9.00 (s, 1H), 7.95 (d, J=8.2 Hz, 1H), 7.25 (d, J=1.6 Hz, 1H), 7.22-7.24 (m, 1H), 7.18 (d, J=1.6 Hz, 1H), 6.83 (dd, J=2.8, 1.9 Hz, 1H), 6.52 (dd, J=2.8, 1.6 Hz, 1H), 5.89 (tt, J=10.4, 5.5 Hz, 1H), 2.47-2.68 (m, 4H), 1.72 (s, 6H), 1.57 (s, 6H); 3 Hs not observed (2 NHs and OH).

Using the procedure described for Example 13, above, additional compounds described herein were prepared by substituting the appropriate starting materials, suitable reagents and reaction conditions, obtaining compounds such as those selected from:

Cpd	Data
37	MS <i>m</i> / <i>z</i> 460.6 [M+H] ⁺ ; ¹ H NMR (methanol- <i>d</i> ₄) δ: 9.15 (s, 1H), 8.20 (d, <i>J</i> =8.2 Hz, 1H), 7.82 (d, <i>J</i> =6.9 Hz, 1H), 7.41 (dd, <i>J</i> =8.2, 1.9 Hz, 1H), 7.39 (d, <i>J</i> =1.9 Hz, 1H), 6.91 (d, <i>J</i> =2.2 Hz, 1H), 6.84 (dd, <i>J</i> =6.9, 2.2 Hz, 1H), 5.99 (tt, <i>J</i> =10.4, 4.7 Hz, 1H), 3.67 (s, 3H), 2.64-2.74 (m, 4H), 1.79 (s, 6H), 1.64 (s, 6H); 2 Hs not observed (NH and OH).
38	MS <i>m/z</i> 445.5 [M+H] ⁺ ; ¹ H NMR (DMSO- <i>d</i> ₆) δ: 9.17 (s, 1H), 8.97-9.06 (m, 1H), 8.15 (br. s, 1H), 8.12 (d, <i>J</i> =8.2 Hz, 1H), 7.49-7.61 (m, 2H), 7.29 (d, <i>J</i> =1.6 Hz, 1H), 7.27 (s, 1H), 6.80-6.96 (m, 2H), 5.93 (tt, <i>J</i> =12.0, 4.4 Hz, 1H), 2.53-2.67 (m, 4H), 1.66 (s, 6H), 1.53 (s, 6H); 1H not observed (NH).
39	MS m/z 433.5 [M+H] ⁺ ; ¹ H NMR (methanol- d_4) δ : 9.11 (s, 1H), 8.14 (s, 1H), 8.08 (d, J =7.9 Hz, 1H), 8.00 (s, 1H), 7.31 (dd, J =8.8, 1.9 Hz, 1H), 7.28 (d, J =1.9 Hz, 1H), 5.97 (tt, J =12.3, 4.0 Hz, 1H), 4.01 (s, 3H), 2.56-2.76 (m, 4H), 1.79 (s, 6H), 1.64 (s, 6H), 2 Hs not observed (NH and OH).
46	MS <i>m/z</i> 447.6 [M+H] ⁺ ; ¹ H NMR (methanol- <i>d</i> ₄) δ: 9.11 (s, 1H), 8.21 (d, <i>J</i> =0.9 Hz, 1H), 8.07 (d, <i>J</i> =8.2 Hz, 1H), 8.02 (s, 1H), 7.32 (dd, <i>J</i> =8.2, 1.9 Hz, 1H), 7.29 (d, <i>J</i> =1.9 Hz, 1H), 5.97 (tt, <i>J</i> =10.1, 6.3 Hz, 1H), 4.30 (q, <i>J</i> =7.3 Hz, 2H), 2.55-2.76 (m, 4H), 1.79 (s, 6H), 1.64 (s, 6H), 1.55 (t, <i>J</i> =7.3 Hz, 3H), 2 Hs not observed (NH and OH).
47	MS <i>m/z</i> 461.6 [M+H] ⁺ ; ¹ H NMR (methanol- <i>d</i> ₄) δ: 9.03 (s, 1H), 8.11 (d, <i>J</i> =0.9 Hz, 1H), 8.05 (d, <i>J</i> =8.5 Hz, 1H), 7.92 (d, <i>J</i> =0.9 Hz, 1H), 7.29 (dd, <i>J</i> =8.2, 1.9 Hz, 1H), 7.26 (d, <i>J</i> =1.9 Hz, 1H), 5.82 (tt, <i>J</i> =12.3, 4.6 Hz, 1H), 4.19 (t, <i>J</i> =7.3 Hz, 2H), 2.23-2.45 (m, 4H), 1.95 (sxt, <i>J</i> =7.3 Hz, 2H), 1.54 (s, 6H), 1.38 (s, 6H), 0.97 (t, <i>J</i> =7.3 Hz, 3H), 2 Hs not observed (NH and OH).
48	MS m/z 419.5 [M+H] ⁺ ; ¹ H NMR (methanol- d_4) δ : 9.15 (s, 1H), 8.20 (d, J =8.8 Hz, 1H), 8.04 (s, 1H), 7.45-7.57 (m, 2H), 7.00 (s, 1H), 5.97 (tt, J =12.1, 4.7 Hz, 1H), 2.59-2.76 (m, 4H), 1.79 (s, 6H), 1.65 (s, 6H), 3 Hs not observed (2 NHs and OH).
50	MS m/z 433.5 [M+H] ⁺ ; ¹ H NMR (methanol- d_4) δ : 9.19 (s, 1H), 8.26 (d, J =8.8 Hz, 1H), 7.95-8.06 (m, 1H), 7.21-7.37 (m, 2H), 6.72-6.81 (m, 1H), 5.99 (tt, J =11.3, 5.5 Hz, 1H), 4.11 (s, 3H), 2.59-2.76 (m, 4H), 1.80 (s, 6H), 1.65 (s, 6H); 2 Hs not observed (NH and OH).

Cpd	Data
51	MS <i>m/z</i> 433.5 [M+H] ⁺ ; ¹ H NMR (methanol- <i>d</i> ₄) δ: 9.20 (s, 1H), 8.14 (dd, <i>J</i> =7.6, 0.9 Hz, 1H), 7.91 (d, <i>J</i> =2.5 Hz, 1H), 7.54 (d, <i>J</i> =1.9 Hz, 1H), 7.52 (s, 1H), 6.90 (d, <i>J</i> =2.5 Hz, 1H), 5.98 (tt, <i>J</i> =10.7, 5.7 Hz, 1H), 4.09 (s, 3H), 2.59-2.78 (m, 4H), 1.79 (s, 6H), 1.66 (s, 6H), 2 Hs not observed (NH and OH).
65	MS <i>m/z</i> 430.5 [M+H] ⁺ ; ¹ H NMR (methanol- <i>d</i> ₄) δ: 9.29 (s, 1H), 9.18 (s, 1H), 9.03 (s, 1H), 8.90 (s, 1H), 8.30 (s, 1H), 8.23 (s, 1H), 7.54 (s, 2H), 5.96 (s, 1H), 2.52-2.68 (m, 4H), 1.78 (s, 6H), 1.64 (s, 6H); 2 Hs not observed (NH and OH).
66	MS m/z 430.4 [M+H] ⁺ ; ¹ H NMR (methanol- d_4) δ : 9.11 (s, 1H), 8.82 (d, J = 6.9 Hz, 2H), 8.38 (d, J = 6.9 Hz, 2H), 8.24 (d, J = 7.9 Hz, 1H), 7.56-7.65 (m, 2H), 5.88-6.02 (m, 1H), 2.53-2.63 (m, 4H), 1.68 (s, 6H), 1.54 (s, 6H); 2 Hs not observed (NH and OH).
69	MS <i>m/z</i> 436.5 [M+H] ⁺ ; ¹ H NMR (methanol- <i>d</i> ₄) δ: 9.11 (s, 1H), 8.17 (d, <i>J</i> =0.6 Hz, 1H), 8.07 (d, <i>J</i> =8.2 Hz, 1H), 8.03 (d, <i>J</i> =0.6 Hz, 1H), 7.31 (dd, <i>J</i> =8.2, 1.9 Hz, 1H), 7.28 (d, <i>J</i> =1.9 Hz, 1H), 5.97 (tt, <i>J</i> =11.0, 5.7 Hz, 1H), 2.61-2.74 (m, 4H), 1.79 (s, 6H), 1.64 (s, 6H), 2 Hs not observed (NH and OH).
71	MS <i>m/z</i> 469.5 [M+H] ⁺ ; ¹ H NMR (methanol- <i>d</i> ₄) δ: 9.11 (s, 1H), 8.53 (s, 1H), 8.18 (s, 1H), 8.11 (d, <i>J</i> =8.2 Hz, 1H), 7.55 (t, <i>J</i> =59.9 Hz, 1H), 7.37 (dd, <i>J</i> =8.2, 1.6 Hz, 1H), 7.34 (d, <i>J</i> =1.6 Hz, 1H), 5.97 (tt, <i>J</i> =10.1, 6.3 Hz, 1H), 2.56-2.73 (m, 4H), 1.78 (s, 6H), 1.64 (s, 6H), 2Hs not observed (NH and OH).
77	MS m/z 460.5 [M+H] ⁺ ; ¹ H NMR (methanol- d_4) δ : 9.22 (s, 1H), 8.40 (d, J = 6.3 Hz, 1H), 8.32 (d, J = 7.9 Hz, 1H), 7.79 (dd, J = 6.3, 1.6 Hz, 1H), 7.75 (d, J = 0.9 Hz, 1H), 7.60-7.65 (m, 2H), 5.97-6.02 (m, 1H), 4.31 (s, 3H), 2.62-2.78 (m, 4H), 1.80 (s, 6H), 1.65 (s, 6H); 2 Hs not observed (NH and OH).
93	MS <i>m/z</i> 446.4 [M+H] ⁺ ; ¹ H NMR (methanol- <i>d</i> ₄) δ: 9.17 (s, 1H), 8.24 (d, <i>J</i> =7.9 Hz, 1H), 7.83 (d, <i>J</i> =6.3 Hz, 1H), 7.40-7.50 (m, 2H), 7.14 (d, <i>J</i> =8.8 Hz, 1H), 7.08 (br s, 1H), 5.89-6.05 (m, 1H), 2.58-2.76 (m, 4H), 1.79 (s, 6H), 1.65 (s, 6H); 3 Hs not observed (NH and 2 OHs).

Example 14

Preparation of Compound 67

Step 1: An oven-dried flask was equipped with a magnetic stir bar and charged with [3-(methoxymethoxy)-4-[3-(2,2,6,6-tetramethyl-4-piperidyl)triazolo[4,5-c]pyridazin-6-yl]phenyl] trifluoromethanesulfonate (prepared in example 13, step 4, 60 mg, 0.11 mmol), 4,4,5,5-tetramethyl-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1,3,2-dioxaborolane (35 mg, 0.14 mmol), 1,1'-bis(diphenylphosphino)ferrocene-palladium(II)dichloride dichloromethane complex (5 mg, 0.006 mmol) and potassium acetate (33 mg, 0.33 mmol). The flask was sealed with a rubber septum, and then evacuated and backfilled with argon (repeated a total of 3 X). 1,4-Dioxane (1 mL) was added and the reaction was heated at 90 °C for 90 minutes, after which UPLC showed full conversion to the borylated product. The crude product was cooled to room temperature and used directly in the next step.

5

10

15

20

Step 2: To crude 6-(2-(methoxymethoxy)-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)-3-(2,2,6,6-tetramethylpiperidin-4-yl)-3*H*-[1,2,3]triazolo[4,5-c]pyridazine (~0.11 mmol) was added 6-bromopyridin-3-ol (25 mg, 0.14 mmol), 1,1'-bis(diphenylphosphino)ferrocenepalladium(II)dichloride dichloromethane complex (9 mg, 0.011 mmol), and aqueous 2 M K₂CO₃ (141 μL, 0.282 mmol). The mixture was purged with argon for 5 min, then heated to 85 °C for 16 h. The reaction was cooled to room temperature, diluted with water, and extracted with EtOAc (3 X). The combined organic phases were dried over Na₂SO₄, concentrated under reduced pressure, and purified using silica-gel chromatography eluting with a MeOH/CH₂Cl₂ gradient (0% to 30%

MeOH) to provide 6-[3-(methoxymethoxy)-4-[3-(2,2,6,6-tetramethyl-4-piperidyl)triazolo[4,5-c]pyridazin-6-yl]phenyl]pyridin-3-ol (37.5 mg, 68%) as a light brown solid. MS *m/z* 490.3 [M+H]⁺.

Step 3: 6-[3-(methoxymethoxy)-4-[3-(2,2,6,6-tetramethyl-4-piperidyl)triazolo[4,5-c]pyridazin-6-yl]phenyl]pyridin-3-ol (37.5 mg, 0.077 mmol) was dissolved in 1 mL of methanol, then 4 N HCl in 1,4-dioxane (0.5 mL, 2 mmol) was added and the reaction stirred at room temperature for 2 h. The reaction was concentrated, triturated with 20% MeOH/ether, and the resultant precipitate was filtered to afford 6-[3-hydroxy-4-[3-(2,2,6,6-tetramethyl-4-piperidyl)triazolo[4,5-c]pyridazin-6-yl]phenyl]pyridin-3-ol dihydrochloride (31 mg, 78%) as a light brown solid.

5

15

10 MS m/z 446.4 [M+H]⁺; ¹H NMR (methanol- d_4) δ : 9.23 (s, 1H), 8.36 (d, J= 8.2 Hz, 1H), 8.34 (d, J= 2.5 Hz, 1H), 8.30 (d, J= 8.8 Hz, 1H), 8.12 (dd, J= 9.1, 2.8 Hz, 1H), 7.54-7.59 (m, 2H), 5.95-6.04 (m, 1H), 2.62-2.77 (m, 4H), 1.75 (s, 6H), 1.65 (s, 6H); 3 Hs not observed (NH and 2 OHs).

Using the procedure described for Example 14, above, additional compounds described herein were prepared by substituting the appropriate starting materials, suitable reagents and reaction conditions, obtaining compounds such as those selected from:

Cpd	Data
60	MS m/z 431.3 [M+H] ⁺ ; ¹ H NMR (methanol- d_4) δ : 9.23 (s, 1H), 9.17 (s, 1H), 8.79 (s, 1H), 8.64 (s, 1H), 8.24 (d, J = 8.2 Hz, 1H), 7.79-8.00 (m, 2H), 5.95-6.02 (m, 1H), 2.55-2.75 (m, 4H), 1.79 (s, 6H), 1.65 (s, 6H); 2 Hs not observed (NH and OH).
61	MS m/z 430.5 [M+H] ⁺ ; ¹ H NMR (methanol- d_4) δ : 9.25 (s, 1H), 8.91 (d, J = 5.4 Hz, 1H), 8.76 (t, J = 7.6 Hz, 1H), 8.51 (d, J = 7.9 Hz, 1H), 8.42 (d, J = 7.9 Hz, 1H), 8.13 (t, J = 6.5 Hz, 1H), 7.63-7.71 (m, 2H), 6.00 (m, 1H), 2.59-2.79 (m, 4H), 1.80 (s, 6H), 1.66 (s, 6H); 2 Hs not observed (NH and OH).
68	MS m/z 447.4 [M+H] ⁺ ; ¹ H NMR (methanol-d ₄) δ: 9.15 (s, 1H), 8.47 (s, 2H), 8.13-8.19 (m, 1H), 7.98-8.02 (m, 2H), 5.92-6.04 (m, 1H), 2.65-2.74 (m, 4H), 1.79 (s, 6H), 1.64 (s, 6H); 3 Hs not observed (NH and 2 OHs).
73	MS m/z 444.6 [M+H] ⁺ ; ¹ H NMR (methanol- d_4) δ : 9.23 (s, 1H), 8.75 (d, J = 6.3 Hz, 1H), 8.32-8.37 (m, 2H), 8.26 (dd, J = 6.1, 1.7 Hz, 1H), 7.63-7.71 (m, 2H), 5.98-6.02 (m, 1H), 2.90 (s, 3H), 2.64-2.75 (m, 4H), 1.80 (s, 6H), 1.65 (s, 6H); 2 Hs not observed (NH and OH).
74	MS <i>m/z</i> 498.3 [M+H] ⁺ ; ¹ H NMR (methanol- <i>d</i> ₄) δ: 9.18 (s, 1H), 8.82 (d, <i>J</i> =5.4 Hz, 1H), 8.27 (d, <i>J</i> =8.2 Hz, 1H), 8.15 (d, <i>J</i> =1.9 Hz, 1H), 8.03 (dd, <i>J</i> =5.0, 1.9 Hz, 1H), 7.55 (dd, <i>J</i> =8.2, 1.9 Hz, 1H), 7.52 (d, <i>J</i> =1.9 Hz, 1H), 5.89-6.05 (m, 1H), 2.57-2.79 (m, 4H), 1.79 (s, 6H), 1.64 (s, 6H); 2 Hs not observed (NH and OH).

Cpd	Data
75	MS m/z 431.5 [M+H] ⁺ ; ¹ H NMR (methanol- d_4) δ : 9.42 (d, J = 1.3 Hz, 1H), 9.21 (s, 1H), 8.97-9.03 (m, 1H), 8.35 (dd, J = 6.0, 1.3 Hz, 1H), 8.31 (d, J = 8.5 Hz, 1H), 8.04 (s, 1H), 7.99 (dd, J = 8.2, 1.9 Hz, 1H), 5.98-6.02 (m, 1H), 2.63-2.76 (m, 4H), 1.79 (s, 6H), 1.65 (s, 6H); 2 Hs not observed (NH and OH).
76	MS m/z 431.5 [M+H] ⁺ ; ¹ H NMR (methanol- d_4) δ : 9.96 (dd, J = 2.4, 1.1 Hz, 1H), 9.57 (dd, J = 6.0, 0.9 Hz, 1H), 9.24 (s, 1H), 8.71 (dd, J = 5.8, 2.4 Hz, 1H), 8.38 (d, J = 7.9 Hz, 1H), 7.71-7.78 (m, 2H), 5.98-6.02 (m, 1H), 2.57-2.78 (m, 4H), 1.79 (s, 6H), 1.65 (s, 6H); 2 Hs not observed (NH and OH).
78	MS m/z 431.4 [M+H] ⁺ ; ¹ H NMR (DMSO- d_6) δ : 9.24 (s, 1H), 9.20 (s, 3H), 8.23 (d, J =8.2 Hz, 1H), 7.48 (d, J =8.2 Hz, 1H), 7.46 (s, 1H), 5.68 (tt, J =12.5, 3.4 Hz, 1H), 2.21 (dd, J =12.5, 3.4 Hz, 2H), 2.11 (t, J =12.5 Hz, 2H), 1.36 (s, 6H), 1.19 (s, 6H); 2 Hs not observed (NH and OH).
79	MS m/z 447.5 [M+H] ⁺ , ¹ H NMR (methanol- d_4) δ : 9.12 (s, 1H), 8.64 (d, J =1.3 Hz, 1H), 8.28 (d, J =8.8 Hz, 1H), 7.94 (d, J =1.3 Hz, 1H), 7.62 (d, J =2.2 Hz, 1H), 7.57 (dd, J =8.5, 2.2 Hz, 1H), 5.74-5.90 (m, 1H), 2.27-2.44 (m, 4H), 1.52 (s, 6H), 1.36 (s, 6H); 3 Hs not observed (2 OH and NH).
84	MS <i>m/z</i> 473.3 [M+H] ⁺ ; ¹ H NMR (DMSO- <i>d</i> ₆) δ: 9.19 (s, 1H), 8.50 (d, <i>J</i> =2.4 Hz, 1H), 8.14 (d, <i>J</i> =8.8 Hz, 1H), 7.88 (dd, <i>J</i> =8.9, 2.6 Hz, 1H), 7.18-7.36 (m, 2H), 6.75 (d, <i>J</i> =8.9 Hz, 1H), 5.67 (tt, <i>J</i> =12.5, 3.9 Hz, 1H), 3.09 (s, 6H), 2.20 (dd, <i>J</i> =12.5, 3.9 Hz, 2H), 2.11 (t, <i>J</i> =12.5 Hz, 2H), 1.28-1.42 (m, 6H), 1.18 (s, 6H); 2 Hs not observed (NH and OH).
85	MS <i>m/z</i> 470.3 [M+H] ⁺ ; ¹ H NMR (DMSO- <i>d</i> ₆) δ: 9.19 (d, <i>J</i> =1.6 Hz, 1H), 9.17 (s, 1H), 8.72 (dd, <i>J</i> =4.9, 1.6 Hz, 1H), 8.26 (d, <i>J</i> =8.8 Hz, 1H), 8.16 (s, 1H), 8.01 (d, <i>J</i> =4.9 Hz, 1H), 7.41-7.45 (m, 2H), 5.69 (tt, <i>J</i> =12.2, 3.7 Hz, 1H), 2.22 (dd, <i>J</i> =12.2, 3.7 Hz, 2H), 2.13 (t, <i>J</i> =12.2 Hz, 2H), 1.37 (s, 6H), 1.20 (s, 6H); 2 Hs not observed (NH and OH).
86	MS m/z 486.4 [M+H] ⁺ ; ¹ H NMR (DMSO- d_6) δ : 9.13 (s, 1H), 8.14 (d, J =7.8 Hz, 1H), 7.65 (d, J =7.3 Hz, 1H), 7.24-7.42 (m, 2H), 6.67 (d, J =2.0 Hz, 1H), 6.54 (dd, J =7.3, 2.0 Hz, 1H), 5.64-5.82 (m, 1H), 3.10-3.21 (m, 1H), 2.08-2.33 (m, 4H), 1.42 (s, 6H), 1.26 (s, 6H), 0.98-1.07 (m, 2H), 0.83-0.95 (m, 2H); 2 Hs not observed (NH and OH).
88	MS <i>m/z</i> 469.4 [M+H] ⁺ ; ¹ H NMR (DMSO- <i>d</i> ₆) δ: 11.69 (br s, 2H), 9.18 (s, 1H), 8.45 (d, <i>J</i> =7.3 Hz, 1H), 8.43 (s, 1H), 8.18 (d, <i>J</i> =8.3 Hz, 1H), 7.97 (s, 1H), 7.48 (s, 1H), 7.44 (dd, <i>J</i> =8.2, 1.8 Hz, 1H), 7.41 (d, <i>J</i> =1.7 Hz, 1H), 7.09 (dd, <i>J</i> =7.5, 1.8 Hz, 1H), 5.68 (tt, <i>J</i> =13.0, 3.9 Hz, 1H), 2.21 (dd, <i>J</i> =12.5, 3.7 Hz, 2H), 2.11 (t, <i>J</i> =12.5 Hz, 2H), 1.36 (s, 6H), 1.19 (s, 6H).
89	MS m/z 435.5 [M+H] ⁺ ; ¹ H NMR (methanol- d_4) δ : 8.94-9.13 (m, 1H), 8.07 (d, J =8.2 Hz, 1H), 7.75 (t, J =2.2 Hz, 1H), 7.51 (d, J =1.9 Hz, 2H), 7.38 (dd, J =8.2, 1.6 Hz, 1H), 7.34 (d, J =1.9 Hz, 1H), 5.76-5.96 (m, 1H), 2.42-2.58 (m, 4H), 1.63 (s, 6H), 1.48 (s, 6H); 2 Hs not observed (OH and NH).

Cpd	Data
90	MS <i>m/z</i> 469.4 [M+H] ⁺ ; ¹ H NMR (DMSO- <i>d</i> ₆) d: 11.64 (br s, 1H), 9.18 (s, 1H), 8.67 (d, <i>J</i> =7.5 Hz, 1H), 8.12-8.24 (m, 2H), 8.01 (s, 1H), 7.93 (s, 1H), 7.66 (s, 1H), 7.51 (dd, <i>J</i> =8.3, 1.9 Hz, 1H), 7.47 (d, <i>J</i> =1.9 Hz, 1H), 7.33 (dd, <i>J</i> =7.1, 1.9 Hz, 1H), 5.75 (tt, <i>J</i> =12.5, 4.0 Hz, 1H), 2.17-2.36 (m, 4H), 1.44 (s, 6H), 1.28 (s, 6H).
91	MS m/z 419.3 [M+H] ⁺ ; ¹ H NMR (DMSO- d_6) δ : 12.64 (br s, 1H), 9.16 (s, 1H), 8.15 (d, J =8.3 Hz, 1H), 7.67 (d, J =1.9 Hz, 1H), 7.59 (dd, J =8.3, 1.9 Hz, 1H), 7.30 (br s, 1H), 7.08 (br s, 1H), 5.67 (tt, J =12.2, 3.7 Hz, 1H), 2.20 (dd, J =12.2, 3.7 Hz, 2H), 2.10 (t, J =12.2 Hz, 2H), 1.35 (s, 6H), 1.18 (s, 6H); 2 Hs not observed (NH and OH).
95	MS <i>m/z</i> 419.5 [M+H] ⁺ , ¹ H NMR (methanol- <i>d</i> ₄) δ: 9.10 (s, 1H), 8.08 (d, <i>J</i> =8.2 Hz, 1H), 8.01-8.03 (m, 1H), 7.61-7.63 (m, 1H), 7.30 (dd, <i>J</i> =7.9, 1.9 Hz, 1H), 7.26 (d, <i>J</i> =1.9 Hz, 1H), 6.86-6.89 (m, 1H), 5.92-6.03 (m, 1H), 2.65-2.70 (m, 4H), 1.78 (s, 6H), 1.63 (s, 6H); 2 Hs not observed (OH and NH).
96	MS m/z 436.4 [M+H] ⁺ ; ¹ H NMR (methanol- d_4) δ : 9.16 (s, 1H), 8.16-8.29 (m, 1H), 7.96-8.07, (m, 1H), 7.80 (s, 1H), 7.68 (s, 2H), 5.84-6.06 (m, 1H), 2.67 (d, J =4.4 Hz, 4H), 1.77 (s, 6H), 1.62 (s, 6H); 2 Hs not observed (OH and NH).
99	MS <i>m/z</i> 445.1 [M+H] ⁺ ; ¹ H NMR (DMSO- <i>d</i> ₆) δ: 11.50 (br s, 2H), 9.12 (s, 1H), 8.15 (d, <i>J</i> =8.5 Hz, 1H), 8.00 (d, <i>J</i> =4.6 Hz, 1H), 7.19-7.40 (m, 2H), 6.81 (d, <i>J</i> =4.6 Hz, 1H), 6.75 (s, 1H), 6.05 (s, 2H), 5.60-5.77 (m, 1H), 2.20 (d, <i>J</i> =12.2 Hz, 2H), 2.11 (t, <i>J</i> =12.5 Hz, 2H), 1.36 (s, 6H), 1.19 (s, 6H).
100	MS m/z 473.1 [M+H] ⁺ ; ¹ H NMR (DMSO- d_6) δ : 9.17 (s, 1H), 8.08-8.22 (m, 2H), 7.39 (s, 1H), 7.37 (d, J =1.6 Hz, 1H), 6.87 (dd, J =5.1, 1.6 Hz, 1H), 6.85 (s, 1H), 5.67 (tt, J =12.2, 3.7 Hz, 1H), 3.10 (s, 6H), 2.20 (dd, J =12.2, 3.7 Hz, 2H), 2.11 (t, J =12.2 Hz, 2H), 1.35 (s, 6H), 1.18 (s, 6H); 2Hs not observed (NH and OH).
101	MS m/z 448.1 [M+H] ⁺ ; ¹ H NMR (DMSO- d_6) δ : 9.13 (s, 1H), 8.71 (d, J =2.4 Hz, 1H), 8.55 (d, J =5.1 Hz, 1H), 8.19 (d, J =8.3 Hz, 1H), 7.71 (dd, J =7.1, 5.1 Hz, 1H), 7.38 (s, 1H), 7.35 (d, J =8.3 Hz, 1H), 5.69 (tt, J =12.2, 4.2 Hz, 1H), 2.21 (dd, J =12.2, 4.2 Hz, 2H), 2.12 (t, J =12.2 Hz, 2H), 1.36 (s, 6H), 1.19 (s, 6H); 2Hs not observed (NH and OH).
103	MS m/z 496.7[M+H] ⁺ ; ¹ H NMR (DMSO- d_6) δ : 9.14 (s, 1H), 8.62 (d, J = 2.4 Hz, 1H), 8.35 (s, 1H), 8.17 (d, J = 8.0 Hz, 1H), 8.10 (d, J = 8.8 Hz, 1H), 7.79-7.84 (m, 2H), 7.71 (d, J = 6.4 Hz, 1H), 7.21-7.58 (m, 1H), 5.69-5.72 (m, 1H), 2.13-2.27 (m, 4H), 1.40 (s, 6H), 1.23 (s, 6H); 1 H is not observed (NH or OH).
104	MS m/z 459.8[M+H] ⁺ ; ¹ H NMR (DMSO- d_6) δ : 9.13 (s, 1H), 8.15 (d, J = 8.4 Hz, 1H), 8.08 (d, J = 5.2 Hz, 1H), 7.30-7.34 (m, 2H), 6.81 (dd, J = 5.2, 1.2 Hz, 1H), 6.72(s, 1H), 6.58-6.62 (m, 1H), 5.63-5.72 (m, 1H), 2.83 (d, J = 4.8 Hz, 3H), 2.17-2.22 (m, 2H), 2.06-2.14 (m, 2H), 1.35 (s, 6H), 1.18 (s, 6H).
106	MS m/z 437.5 [M+H] ⁺ ; ¹ H NMR (methanol- d_4) δ : 9.10 (s, 1H), 8.09 (d, J =9.2 Hz, 1H), 8.03 (d, J =1.7 Hz, 1H), 7.32 (d, J =7.2 Hz, 2H), 5.93-6.01 (m, 1H), 2.65-2.70 (m, 4H), 1.78 (s, 6H), 1.64 (s, 6H); 3Hs not observed (1 OH and 2 NHs).

Cpd	Data
107	MS m/z 436.5 [M+H] ⁺ ; ¹ H NMR (methanol- d_4) δ : 9.58 (s, 1H), 9.17 (s, 1H), 8.57 (s, 1H), 8.21 (d, J =9.9 Hz, 1H), 7.44 (dd, J =10.2, 3.2 Hz, 2H), 5.90-6.04 (m, 1H), 2.61-2.75 (m, 4H), 1.79 (s, 6H), 1.64 (s, 6H); 2Hs not observed (1 OH and 1 NH).
108	MS m/z 433.6 [M+H] ⁺ ; ¹ H NMR (DMSO- d_6) δ : 9.41-9.58 (m, 1H), 9.14 (s, 1H), 8.23-8.37 (m, 1H), 8.8 (d, J =6.6 Hz, 1H), 7.86-7.91 (m, 1H), 7.14-7.19 (m, 2H), 5.83-5.95 (m, 1H), 2.56-2.65 (m, 2H), 2.46-2.56 (m, 2H), 2.44 (s, 3H), 1.66 (s, 6H), 1.54 (s, 6H); 1H not observed (NH or OH).
109	MS m/z 444.5 [M+H] ⁺ ; ¹ H NMR (DMSO- d_6) δ : 9.17 (s, 1H), 8.55 (s, 1H), 8.18(d, J =10.5 Hz, 1H), 7.42 (d, J =1.8 Hz, 1H), 7.34-7.38 (m, 1H), 5.65-5.83 (m, 1H), 2.11-2.34 (m, 4H), 1.41 (s, 6H), 1.24 (s, 6H); 3Hs not observed (2 NHs and OH).
110	MS m/z 461.5 [M+H] ⁺ ; ¹ H NMR (methanol- d_4) δ : 9.16 (s, 1H), 8.57 (s, 1H), 8.23 (d, J =9.2 Hz, 1H), 7.68-7.74 (m, 2H), 5.95-6.02 (m, 1H), 2.65-2.71 (m, 4H), 1.79 (s, 6H), 1.64 (s, 6H); 2Hs not observed (OH and NH).
111	MS m/z 420.2 [M+H] ⁺ ; ¹ H NMR (DMSO- d_6) δ : 9.10 (s, 1H), 8.30-8.39 (m, 2H), 8.28 (s, 1H), 8.17 (d, J = 8.0 Hz, 1H), 7.71(d, J = 1.2 Hz, 1H), 7.63 (dd, J = 8.4, 1.6 Hz, 1H), 7.44 (d, J = 0.8 Hz, 1H), 5.68-5.71 (m, 1H), 2.11-2.25 (m, 4H), 1.38 (s, 6H), 1.21 (s, 6H).
112	MS m/z 420.1 [M+H] ⁺ ; ¹ H NMR (DMSO- d_6) δ : 9.13 (s, 1H), 8.42 (s, 1H), 8.15 (d, J = 8.4 Hz, 1H), 7.60 (d, J = 1.6 Hz, 1H), 7.53 (dd, J = 8.4, 1.6 Hz, 1H), 5.66-5.69 (m, 1H), 2.06-2.23 (m, 4H), 1.36 (s, 6H), 1.19 (s, 6H); 3 Hs not observed (2NHs and OH).
113	MS m/z 461.2 [M+H] ⁺ ; ¹ H NMR (DMSO- d_6) δ : 9.14 (s, 1H), 8.89 (d, J = 1.2 Hz, 1H), 8.17 (d, J = 8.4 Hz, 1H), 7.91 (d, J = 1.6 Hz, 1H), 7.80 (dd, J = 8.0, 1.6 Hz, 1H), 7.51 (d, J = 0.8 Hz, 1H), 5.64-5.71 (m, 1H), 3.99 (s, 3H), 2.07-2.22 (m, 4H), 1.35 (s, 6H), 1.18 (s, 6H); 2 Hs not observed (NH and OH).
114	MS m/z 496.4 [M+H] ⁺ ; ¹ H NMR (methanol- d_4) δ : 9.15 (s, 1H), 8.32 (d, J = 5.5 Hz, 1H), 8.22 (d, J = 8.2 Hz, 1H), 7.63 - 7.78 (m, 1H), 7.57 (dd, J = 5.5, 1.5 Hz, 1H), 7.43 - 7.50 (m, 2H), 7.32 (d, J = 0.9 Hz, 1H), 5.99 (tt, J = 10.9, 5.4 Hz, 1H), 2.63 - 2.75 (m, 4H), 1.79 (s, 6H), 1.64 (s, 6H); 2 Hs not observed (NH and OH).
115	MS m/z 419.1 [M+H] ⁺ ; ¹ H NMR (DMSO- d_6) δ : 12.27 (s, 1H), 11.59 (m, 1H), 9.13 (d, J = 8.0 Hz, 1H), 8.07 (d, J = 8.0 Hz, 1H), 7.10-7.76 (m, 2H), 7.40-7.53 (m, 2H), 5.61-5.70 (m, 1H), 2.06-2.22 (m, 4H), 1.35 (s, 6H), 1.18 (s, 6H); 1 H not observed (NH or OH).
116	MS m/z 437.4 [M+H] ⁺ ; ¹ H NMR (methanol- d_4) δ : 9.53 (s, 1H), 9.15 (s, 1H), 8.24 (d, J =8.2 Hz, 1H), 7.74 (d, J =1.8 Hz, 1H), 7.70 (dd, J =7.9, 1.8 Hz, 1H), 5.87-6.00 (m, 1H), 2.57 (d, J =7.6 Hz, 4H), 1.70 (s, 6H), 1.55 (s, 6H); 2 Hs not observed (OH and NH).
118	MS m/z 469.5 [M+H] ⁺ ; ¹ H NMR (methanol- d_4) δ : 9.22 (s, 1H), 8.52 (d, J = 6.1 Hz, 1H), 8.33 - 8.38 (m, 1H), 7.83 (d, J = 3.4 Hz, 1H), 7.79 (d, J = 6.1 Hz, 1H), 7.58 - 7.64 (m, 2H), 7.13 (d, J = 3.4 Hz, 1H), 5.96 -6.05 (m, 1H), 2.64 - 2.76 (m, 4H), 1.80 (s, 6H), 1.65 (s, 6H); 3 Hs not observed (2NHs and OH).

Cpd	Data
119	MS m/z 461.5 [M+H] ⁺ ; ¹ H NMR (methanol- d_4) δ : 9.24 (s, 1H), 8.70 (d, J = 6.4 Hz, 1H), 8.34 (d, J = 8.2 Hz, 1H), 8.10 (d, J = 1.5 Hz, 1H), 8.04 (dd, J = 8.2, 1.5 Hz, 1H), 7.20 (d, J = 6.7 Hz, 1H), 6.00 (tt, J = 11.0, 5.5 Hz, 1H), 4.33 (s, 3H), 2.61 - 2.77 (m, 4H), 1.79 (s, 6H), 1.65 (s, 6H),;2 Hs not observed (NH and OH).
120	MS m/z 420.5 [M+H] ⁺ ; ¹ H NMR (methanol- d_4) δ : 9.19-9.22 (m, 1H), 9.12-9.15 (m, 1H), 8.91-8.95 (m, 1H), 8.14 (d, J =9.2 Hz, 1H), 7.35 (dd, J =14.2, 8.4 Hz, 2H), 5.94-6.02 (m, 1H), 2.64-2.71 (m, 4H), 1.78 (s, 6H), 1.63 (s, 6H); 2Hs not observed (NH and OH).
121	MS m/z 451.5 [M+H] ⁺ ; ¹ H NMR (methanol- d_4) δ : 9.09 (s, 1H), 8.09 (d, J =8.2 Hz, 1H), 7.77-7.89 (m, 1H), 7.27 (s, 2H), 5.91-6.02 (m, 1H), 3.84 (s, 3H), 2.59-2.70 (m, 4H), 1.78 (s, 6H), 1.63 (s, 6H); 2Hs not observed (NH and OH).
122	MS m/z 465.6 [M+H] ⁺ ; ¹ H NMR (methanol- d_4) δ : 9.04 (s, 1H), 8.10-8,08 (d, J =9.6 Hz, 1H), 7.87 (d, J =3.2 Hz, 1H), 7.24-7.31 (m, 2H), 5.74-5.88 (m, 1H), 4.20 (q, J =7.2 Hz, 2H), 2.24-2.41 (m, 4H), 1.51 (s, 6H), 1.50 (t, J =7.5 Hz, 3H), 1.40 (s, 6H); 2Hs not observed (NH and OH).
123	MS m/z 474.5 [M+H] ⁺ ; ¹ H NMR (methanol- d_4) δ : 9.21 (s, 1H), 8.38 (d, J = 6.1 Hz, 1H), 8.31 (d, J = 8.2 Hz, 1H), 7.77 (d, J = 6.4 Hz, 1H), 7.72 (s, 1H), 7.58 - 7.64 (m, 2H), 5.99 (tt, J = 10.7, 5.6 Hz, 1H), 4.65 (q, J = 6.9 Hz, 2H), 2.63 - 2.75 (m, 4H), 1.79 (s, 6H), 1.64 (s, 6H), 1.59 (t, J = 7.0 Hz, 3H); 2 Hs not observed (NH and OH).
124	MS m/z 475.5 [M+H] ⁺ ; ¹ H NMR (methanol- d_4) δ : 9.23 (s, 1H), 9.16 (s, 1H), 8.36 (d, J = 8.2 Hz, 1H), 7.63 - 7.74 (m, 3H), 5.98 - 6.02 (m, 1H), 4.71 - 4.79 (q, J = 7.2 Hz, 2H), 2.59 - 2.79 (m, 4H), 1.79 (s, 6H), 1.65 (s, 6H), 1.54 (t, J = 7.2 Hz, 3H); 2 Hs not observed (NH and OH).
125	MS m/z 470.5 [M+H] ⁺ ; ¹ H NMR (methanol- d_4) δ : 9.17 (s, 1H), 9.01 (d, J = 7.3 Hz, 1H), 8.27 (d, J = 4.9 Hz, 2H), 8.23 (d, J = 8.2 Hz, 1H), 7.61 (dd, J = 7.3, 1.8 Hz, 1H), 7.52 (dd, J = 8.2, 1.8 Hz, 1H), 7.50 (d, J = 1.8 Hz, 1H), 5.98 (ddd, J = 16.3, 10.2, 6.4 Hz, 1H), 2.60 - 2.76 (m, 4H), 1.80 (s, 6H), 1.65 (s, 6H); 2 Hs not observed (NH and OH).
126	MS m/z 470.5 [M+H] ⁺ ; ¹ H NMR (methanol- d_4) δ : 9.21 (s, 1H), 9.14 (d, J = 7.0 Hz, 1H), 9.04 (s, 1H), 8.27 - 8.35 (m, 2H), 7.97 (dd, J = 7.0, 1.5 Hz, 1H), 7.59 - 7.64 (m, 2H), 6.00 (tt, J = 10.9, 5.5 Hz, 1H), 2.64 -2.75 (m, 4H), 1.79 (s, 6H), 1.65 (s, 6H), 2 Hs not observed (NH and OH).
127	MS <i>m/z</i> 467.5 [M+H] ⁺ ; ¹ H NMR (methanol- <i>d</i> ₄) δ: 9.12 (s, 1H), 8.08-8.10 (m, 1H), 8.07-8.11 (m, 1H), 8.01 (s, 1H), 7.28-7.44 (m, 2H), 5.89-6.05 (m, 1H), 3.90-3.96 (m, 3H), 2.63-2.71 (m, 4H), 1.76-1.80 (s, 6H), 1.59-1.66 (s, 6H); 1H not observed (NH or OH).
128	MS m/z 447.5 [M+H] ⁺ ; ¹ H NMR (methanol- d_4) δ : 9.17 (s, 1H), 8.54 (s, 1H), 8.22 (d, J = 8.2 Hz, 1H), 7.71 (d, J = 1.8 Hz, 1H), 7.67 (dd, J = 8.2, 1.8 Hz, 1H), 7.01 (s, 1H), 5.99 (tt, J = 10.9, 5.5 Hz, 1H), 2.61 - 2.77 (m, 4H), 1.79 (s, 6H), 1.64 (s, 6H), 3 Hs not observed (2NHs and OH).

Cpd	Data
129	MS m/z 453.5 [M+H] ⁺ ; ¹ H NMR (methanol- d_4) δ : 9.08 (s, 1H), 8.01-8.11 (m, 2H), 7.30-7.41 (m, 2H), 5.86-5.99 (m, 1H), 2.56-2.63 (m, 4H), 1.71 (s, 6H), 1.56 (s, 6H); 3Hs not observed (2 NHs and OH).
130	MS <i>m/z</i> 451.5 [M+H] ⁺ ; ¹ H NMR (methanol- <i>d</i> ₄) δ: 9.00-9.11 (m, 1H), 8.07-8.07 (m, 1H), 8.07-8.08 (m, 1H), 8.04-8.10 s, 1H), 7.97 (d, <i>J</i> =2.0 Hz, 1H), 7.93-7.99 (s, 1H), 7.22-7.29 (m, 2H), 5.67-5.94 (m, 1H), 3.85 (s, 3H), 2.28-2.42 (m, 4H), 1.53 (s, 6H), 1.37 (s, 6H); 1 H not observed (NH or OH).
131	MS <i>m/z</i> 449.5 [M+H] ⁺ ; ¹ H NMR (methanol- <i>d</i> ₄) δ: 9.06 (s, 1H), 8.02 (d, <i>J</i> =8.5 Hz, 1H), 7.95 (s, 1H), 7.44-7.46 (m, 1H), 7.39 (d, <i>J</i> =9.8 Hz, 1H), 5.90-6.01 (m, 1H), 4.05 (s, 3H), 2.62-2.74 (m, 4H), 1.78 (s, 6H), 1.63 (s, 6H); 3Hs not observed (2 NHs and OH).
132	MS <i>m/z</i> 458.5 [M+H] ⁺ ; ¹ H NMR (methanol- <i>d</i> ₄) δ: 9.06-9.15 (m, 1H), 8.11-8.23 (m, 1H), 7.98-8.07 (m, 1H), 7.41-7.49 (m, 2H), 5.78-5.93 (m, 1H), 4.09-4.18 (m, 3H), 2.39-2.53 (m, 4H), 1.56 (s, 6H), 1.44 (s, 6H); 2Hs not observed (NH and OH).
133	MS m/z 450.5 [M+H] ⁺ ; ¹ H NMR (methanol- d_4) δ : 9.20 (s, 1H), 8.28 (d, J =9.2 Hz, 1H), 7.68 (m, 2H), 7.55 (s, 1H), 5.94-6.05 (m, 1H), 2.61-2.73 (m, 4H), 2.61 (s, 3H), 1.79 (s, 6H), 1.63 (s, 6H); 2Hs not observed (NH and OH).
134	MS m/z 437.5 [M+H] ⁺ ; ¹ H NMR (methanol- d_4) δ : 9.16 (s, 1H), 8.83 (s, 1H), 8.25 (d, J =7.9 Hz, 1H), 7.77 (s, 2H), 5.87-5.97 (m, 1H), 2.49-2.58 (m, 4H), 1.66 (s, 6H), 1.51 (s, 6H); 2Hs not observed (NH and OH).
135	MS m/z 488.5 [M+H] ⁺ ; ¹ H NMR (methanol- d_4) δ : 9.15 (s, 1H), 8.21 (d, J = 8.2 Hz, 1H), 7.95 (s, 1H), 7.57 (d, J = 12.2 Hz, 1H), 7.46 (d, J = 8.2 Hz, 1H), 7.43 (s, 1H), 5.95 - 6.02 (m, 1H), 2.63 - 2.76 (m, 4H), 1.79 (s, 6H), 1.64 (s, 6H), 3 Hs not observed (2NHs and OH).
137	MS m/z 497.4, 499.4 [M+H] ⁺ ; ¹ H NMR (methanol- d_4) δ : 9.11 (s, 1H), 8.10 (d, J =8.2 Hz, 1H), 8.00 (s, 1H), 7.40 (d, J =1.4 Hz, 1H), 7.35 (dd, J =8.3, 1.6 Hz, 1H), 5.92-6.01 (m, 1H), 2.64-2.70 (m, 4H), 1.78 (s, 6H), 1.63 (s, 6H); 3Hs not observed (2NHs and OH).
138	MS <i>m/z</i> 434.5 [M+H] ⁺ ; ¹ H NMR (methanol- <i>d</i> ₄) δ: 9.17 (s, 1H), 8.48 (s, 1H), 8.15 (d, <i>J</i> =7.8 Hz, 1H), 7.52-7.57 (m, 2H), 5.92-6.03 (m, 1H), 4.22-4.26 (m, 3H), 2.66-2.71 (m, 4H), 1.79 (s, 6H), 1.64 (s, 6H); 2Hs not observed (NH and OH).
139	MS <i>m/z</i> 487.4 [M+H] ⁺ ; ¹ H NMR (methanol- <i>d</i> ₄) δ: 9.09 (s, 1H), 8.10 (d, <i>J</i> =7.6 Hz, 1H), 8.05 (s, 1H), 7.19 (s, 2H), 5.93 (s, 1H), 2.40-2.53 (m, 4H), 1.57-1.66 (m, 6H), 1.42-1.50 (m, 6H); 3Hs not observed (NH and OH).
142	MS m/z 470.3 [M+H] ⁺ ; ¹ H NMR (methanol- d_4) δ : 9.12-9.15 (m, 3H), 8.21 (d, J =8.1 Hz, 1H), 8.14 (s, 1H), 7.87 (d, J =0.9 Hz, 1H), 7.79 (d, J =1.7 Hz, 1H), 7.74 (dd, J =8.2, 1.8 Hz, 1H), 5.83-5.95 (m, 1H), 2.23-2.69 (m, 4H), 1.63 (s, 6H), 1.49 (s, 6H); 2Hs not observed (NH and OH).

Cpd	Data
145	MS m/z 471.3 [M+H] ⁺ ; ¹ H NMR (DMSO- d_6) δ : 11.65 (br s, 1H), 9.23 (br s, 1H), 9.09 (br s, 1H), 8.71 (br s, 1H), 8.23 (d, J = 7.9 Hz, 1H), 7.45 - 7.64 (m, 2H), 7.37 (br s, 1H), 5.92 (br s, 1H), 2.56 - 2.72 (m, 4H), 1.67 (s, 6H), 1.55 (s, 6H); 1H not observed (NH or OH).
146	MS m/z 471.3 [M+H] ⁺ ; ¹ H NMR (methanol- d_4) δ : 9.89 (s, 1H), 9.23 (s, 1H), 8.59 (d, J = 0.9 Hz, 1H), 8.36 (d, J = 7.9 Hz, 1H), 7.72 (d, J = 1.8 Hz, 1H), 7.69 (dd, J = 8.2, 2.1 Hz, 1H), 6.00 (tt, J = 10.8, 5.6 Hz, 1H), 2.62 - 2.76 (m, 4H), 1.80 (s, 6H), 1.65 (s, 6H); 3 Hs not observed (2NHs and OH).
147	MS m/z 471.5 [M+H] ⁺ ; ¹ H NMR (methanol- d_4) δ : 9.18 (s, 1H), 8.48 (d, J = 8.9 Hz, 1H), 8.23 (d, J = 8.2 Hz, 1H), 8.14 (d, J = 8.5 Hz, 1H), 7.92 (d, J = 1.8 Hz, 1H), 7.88 (dd, J = 8.2, 1.8 Hz, 1H), 5.99 (tt, J = 10.8, 5.5 Hz, 1H), 2.61 - 2.76 (m, 4H), 1.80 (s, 6H), 1.65 (s, 6H); 3 Hs not observed (2NHs and OH).
150	MS m/z 450.4 [M+H] ⁺ ; ¹ H NMR (DMSO- d_6) δ : 11.51 (br s, 2H), 9.27 (d, J = 12.8 Hz, 1H), 9.15 (s, 1H), 8.23 (d, J = 13.4 Hz, 1H), 8.12 (s, 1H), 8.12 (d, J = 8.2 Hz, 1H), 7.35 (dd, J = 7.9, 1.8 Hz, 1H), 7.28 (d, J = 1.5 Hz, 1H), 5.92 (tt, J = 12.3, 3.9 Hz, 1H), 2.72 (s, 3H), 2.52-2.66 (m, 4H), 1.66 (s, 6H), 1.54 (s, 6H).
151	MS m/z 434.3 [M+H] ⁺ ; ¹ H NMR (methanol- d_4) δ : 9.09-9.13 (m, 1H), 8.14 (d, J =8.7 Hz, 1H), 8.08 (s, 1H), 7.49-7.60 (m, 2H), 5.91-6.05 (m, 1H), 4.26 (s, 3H), 2.65-2.70 (m, 4H), 1.78 (s, 6H), 1.64 (s, 6H); 2Hs not observed (NH and OH).
152	MS m/z 471.3 [M+H] ⁺ ; ¹ H NMR (methanol- d_4) δ : 9.56 (s, 1H), 9.17 (s, 1H), 8.37 (d, J =9.3 Hz, 1H), 8.29 (d, J =8.5 Hz, 1H), 8.03 (d, J =9.7 Hz, 1H), 7.77-7.86 (m, 2H), 5.83-5.91 (m, 1H), 2.42 (d, J =2.9 Hz, 4H), 1.57 (s, 6H), 1.42 (s, 6H); 2Hs not observed (NH and OH).
153	MS m/z 451.3 [M+H] ⁺ ; ¹ H NMR (methanol- d_4) δ : 9.14 (s, 1H), 8.24 (d, J =7.3 Hz, 1H), 7.71 (d, J =1.5 Hz, 2H), 5.82-5.90 (m, 1H), 2.73 (s, 3H), 2.35-2.44 (m, 4H), 1.55 (s, 6H), 1.39 (s, 6H); 2Hs not observed (NH and OH).
154	MS m/z 468.4 [M+H] ⁺ ; ¹ H NMR (1:1 CDCl ₃ : methanol- d_4) δ : 8.88 (s, 1H), 7.95 (d, J = 7.9 Hz, 1H), 7.19 (d, J = 1.8 Hz, 1H), 7.16 (dd, J = 8.2, 1.8 Hz, 1H), 5.66-5.77 (m, 1H), 2.60 (s, 3H), 2.26-2.34 (m, 4H), 1.47 (s, 6H), 1.32 (s, 6H); 2 Hs not observed (NH and OH).
158	MS m/z 434.5 [M+H] ⁺ ; ¹ H NMR (methanol- d_4) δ : 8.89 (s, 1H), 7.99 (d, J =8.2 Hz, 1H), 7.26-7.34 (m, 3H), 5.76 (tt, J =12.5, 4.0 Hz, 1H), 2.56 (s, 3H), 2.47 (t, J =12.5 Hz, 2H), 2.39 (dd, J =13.1, 4.0 Hz, 2H), 1.60 (s, 6H), 1.47 (s, 6H); 2 Hs not observed (NH and OH).
159	MS <i>m/z</i> 462.6 [M+H] ⁺ ; ¹ H NMR (methanol- <i>d</i> ₄) d: 9.16 (s, 1H), 9.00 (s, 1H), 7.92-8.46 (m, 3H), 5.89-6.08 (m, 1H), 4.20 (s, 3H), 2.54-2.79 (m, 4H), 1.79 (s, 6H), 1.65 (s, 6H); 2 Hs not observed (NH and OH).
160	MS m/z 470.2 [M+H] ⁺ ; ¹ H NMR (methanol- d_4) δ : 9.18 (s, 1H), 8.23-8.28 (m, 2H), 8.14 (d, J =9.5 Hz, 1H), 7.86 (d, J =9.8 Hz, 1H), 7.79 (d, J =8.2 Hz, 3H), 5.94-6.03 (m, 1H), 2.63-2.71 (m, 4H), 1.79 (s, 6H); 1.63 (s, 6H), 2Hs not observed (NH and OH).

Cpd	Data
162	MS <i>m/z</i> 470.4 [M+H] ⁺ ; H NMR (methanol- <i>d</i> ₄) δ: 9.25-9.29 (m, 1H), 9.12 (s, 1H), 8.98 (s, 1H), 8.24 (d, <i>J</i> =8.9 Hz, 1H), 7.94 (s, 1H), 7.80 (s, 1H), 7.42-7.47 (m, 2H), 5.80-5.85 (m, 1H), 2.34-2.42 (m, 4H), 1.55 (s, 6H), 1.39 (s, 6H); 2Hs not observed (NH and OH).

Example 15

Preparation of Compound 70

- 5 Step 1: A mixture imidazole (0.1 g, 1.47 mmol), 1-bromo-4-iodo-2-methoxybenzene (0.5 g, 1.6 mmol), 2-(2-pyridyl)benzimidazole (58.0 mg, 0.3 mmol), cesium carbonate (1.2 g, 3.66 mmol), copper (I) iodide (56 mg 0.29 mmol) in DMF (2 mL) was heated at 100 °C for 48 h. The reaction mixture was cooled to room temperature, filtered through Celite, washed with EtOAc, and concentrated. The crude material was purified by silica gel chromatography eluting with a
- EtOAc/hexane gradient (0-80% EtOAc) to provide 1-(4-bromo-3-methoxyphenyl)-1*H*-imidazole (0.25 g, 62%).
 - MS m/z 253.3, 255.3 [M+H]⁺; ¹H NMR (methanol- d_4) δ : 8.19 (s, 1H), 7.66 (d, J=8.5 Hz, 1H), 7.62 (t, J=1.4 Hz, 1H), 7.25 (d, J=2.2 Hz, 1H), 7.14-7.17 (m, 1H), 7.08 (dd, J=8.5, 2.2 Hz, 1H), 3.97 (s, 3H).
- Step 2: An oven-dried flask was equipped with a magnetic stir bar and charged with 1-(4-bromo-3-methoxyphenyl)-1*H*-imidazole (127.0 mg, 0.5 mmol), 4,4,5,5-tetramethyl-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1,3,2-dioxaborolane (254.0 mg, 1.0 mmol), 1,1'-

bis(diphenylphosphino)ferrocene-palladium(II)dichloride dichloromethane complex (38.0 mg, 0.05 mmol) and potassium acetate (200.0 mg, 2.0 mmol). The flask was sealed with a rubber septum, and then evacuated and backfilled with argon (repeated a total of 3 X). Dioxane (1 mL) was added and the reaction was heated at 90 °C for 90 min, after which UPLC showed full conversion to the borylated product. The crude mixture was cooled to room temperature and used directly in the next step.

5

10

15

20

25

Step 3: To the crude mixture from the above reaction was added 1,1'-bis(diphenylphosphino)ferrocene-palladium(II)dichloride dichloromethane complex (38.0 mg, 0.05 mmol) and 6-chloro-3-(2,2,6,6-tetramethyl-4-piperidyl)triazolo[4,5-c]pyridazine (prepared in example 13, step 2, 100.0 mg, 0.34 mmol). The tube was sealed with a rubber septum, and then evacuated and backfilled with argon (repeated a total of 3 X). Aqueous 2.0 M K₂CO₃ (0.75 mL, 1.5 mmol) was added and the reaction was heated to 90 °C for 16 h. The reaction was cooled to room temperature, diluted with water, and extracted with EtOAc (3 X). The combined organic phases were dried over Na₂SO₄, concentrated under reduced pressure, and purified by column chromatography, eluting with a MeOH/CH₂Cl₂ gradient (0% to 30% MeOH) to provide 6-(4-(1*H*-imidazol-1-yl)-2-methoxyphenyl)-3-(2,2,6,6-tetramethylpiperidin-4-yl)-3*H*-[1,2,3]triazolo[4,5-c]pyridazine (85 mg, 39%). MS *m/z* 433.3 [M+H]⁺.

Step 4: To a solution of 6-(4-(1*H*-imidazol-1-yl)-2-methoxyphenyl)-3-(2,2,6,6-tetramethylpiperidin-4-yl)-3*H*-[1,2,3]triazolo[4,5-c]pyridazine (50 mg, 0.115 mmol) in dichloromethane (3 mL) was added 1 M BBr₃ in CH₂Cl₂ (0.6 mL, 0.6 mmol). The mixture was stirred at room temperature for 3 h. Methanol (3 mL) was added and the reaction was stirred for an additional 3 h. The mixture was concentrated at reduced pressure. The residue was purified by column chromatography, eluting with a MeOH/CH₂Cl₂ gradient (with 2.5% NH₄OH) (0% to 30% MeOH/ NH₄OH) to provide 5-(1*H*-imidazol-1-yl)-2-(3-(2,2,6,6-tetramethylpiperidin-4-yl)-3*H*-[1,2,3]triazolo[4,5-c]pyridazin-6-yl)phenol (33 mg, 70%) as a yellow solid.

MS m/z 419.4 [M+H]⁺; ¹H NMR (methanol- d_4) δ : 9.08 (s, 1H), 8.25 (t, J=1.3 Hz, 1H), 8.20 (d, J=8.2 Hz, 1H), 7.67 (t, J=1.3 Hz, 1H), 7.27 (d, J=1.6 Hz, 2H), 7.19 (t, J=0.9 Hz, 1H), 5.72-5.87 (m, 1H), 2.24-2.40 (m, 4H), 1.51 (s, 6H), 1.35 (s, 6H); 2 Hs not observed (OH and NH).

Using the procedure described for Example 15, above, additional compounds described herein were prepared by substituting the appropriate starting materials, suitable reagents and reaction conditions, obtaining compounds such as those selected from:

Cpd	Data
63	MS m/z 420.4 [M+H] ⁺ ; ¹ H NMR (methanol- d_4) δ : 9.20 (s, 1H), 9.10 (s, 1H), 8.24 (d, J =8.5 Hz, 1H), 8.21 (s, 1H), 7.57 (d, J =2.2 Hz, 1H), 7.54 (dd, J =8.5, 2.2 Hz, 1H), 5.75-5.91 (m, 1H), 2.30-2.47 (m, 4H), 1.55 (s, 6H), 1.40 (s, 6H); 2 Hs not observed (OH and NH).
64	MS m/z 420.5 [M+H] ⁺ ; ¹ H NMR (methanol- d_4) δ : 9.17 (s, 1H), 9.12 (s, 2H), 8.30 (d, J =9.1 Hz, 1H), 7.35-7.41 (m, 2H), 5.93-6.03 (m, 1H), 2.67 (s, 4H), 1.78 (s, 6H), 1.64 (s, 6H); 2 Hs not observed (OH and NH).
72	MS m/z 420.4 [M+H] ⁺ ; ¹ H NMR (methanol- d_4) δ : 9.11 (s, 1H), 8.63 (d, J =1.3 Hz, 1H), 8.27 (d, J =8.8 Hz, 1H), 7.94 (d, J =1.3 Hz, 1H), 7.61 (d, J =2.2 Hz, 1H), 7.57 (dd, J =8.5, 2.2 Hz, 1H), 5.77-5.87 (m, 1H), 2.28-2.39 (m, 4H), 1.51 (s, 6H), 1.36 (s, 6H); 2 Hs not observed (OH and NH).
143	MS m/z 437.3 [M+H] ⁺ ; ¹ H NMR (DMSO- d_6) δ : 12.05 (s, 1H), 9.24 (s, 1H), 9.14 (d, J = 11.0 Hz, 1H), 8.22 (d, J = 8.5 Hz, 1H), 8.18 (d, J = 12.8 Hz, 1H), 8.13 (t, J = 1.5 Hz, 1H), 7.63 (dd, J = 8.1, 1.7 Hz, 1H), 7.36 (dd, J = 8.4, 2.3 Hz, 1H), 7.32 (d, J = 2.4 Hz, 1H), 5.92 (tt, J = 12.2, 4.0 Hz, 1H), 4.02-4.16 (m, 1H), 2.52-2.66 (m, 4H), 1.66 (s, 6H), 1.53 (s, 6H).
144	MS m/z 433.4 [M+H] ⁺ ; ¹ H NMR (methanol- d_4) δ : 9.50 (s, 1H), 9.21 (s, 1H), 8.33 (d, J = 9.5 Hz, 1H), 7.93 (s, 1H), 7.44 (br s, 2H), 5.93-6.05 (m, 1H), 2.62-2.78 (m, 4H), 2.45-2.54 (m, 3H), 1.80 (s, 6H), 1.67 (s, 6H); 2 Hs not observed (NH and OH).
149	MS m/z 447.5 [M+H] ⁺ ; ¹ H NMR (methanol- d_4) δ : 9.19 (s, 1H), 8.34 (d, J = 8.2 Hz, 1H), 7.48 (d, J = 1.2 Hz, 1H), 7.21-7.29 (m, 2H), 5.95-6.05 (m, 1H), 2.67-2.75 (m, 4H), 2.66 (s, 3H), 2.43 (d, J = 1.2 Hz, 3H), 1.79 (s, 6H), 1.64 (s, 6H); 2 Ns not observed (NH and OH).
155	MS m/z 433.5 [M+H] ⁺ ; ¹ H NMR (methanol- d_4) δ : 9.18 (s, 1H), 8.28 (d, J = 9.2 Hz, 1H), 7.92 (d, J = 2.1 Hz, 1H), 7.27 (sxt, J = 2.1 Hz, 2H), 6.52-6.55 (m, 1H), 5.99 (spt, J = 5.5 Hz, 1H), 2.64-2.75 (m, 4H), 2.50 (s, 3H), 1.79 (s, 6H), 1.65 (s, 6H); 2 Hs not observed (NH and OH).
156	MS <i>m/z</i> 433.5 [M+H] ⁺ ; ¹ H NMR (DMSO- <i>d</i> ₆) δ: 11.70 (s, 1H), 9.16 (s, 1H), 8.92-9.04 (m, 1H), 8.33 (s, 1H), 8.16 (d, <i>J</i> = 8.5 Hz, 1H), 7.61-7.64 (m, 1H), 7.54 (d, <i>J</i> = 2.1 Hz, 1H), 7.46 (dd, <i>J</i> = 8.5, 2.1 Hz, 1H), 5.89-5.97 (m, 1H), 2.53-2.67 (m, 4H), 2.40 (s, 3H), 1.65 (s, 6H), 1.52 (s, 6H).
157	MS m/z 433.6 [M+H] ⁺ ; ¹ H NMR (methanol- d_4) δ : 9.14 (s, 1H), 8.23 (d, J = 2.4 Hz, 1H), 8.18 (d, J = 8.8 Hz, 1H), 7.45 (s, 1H), 7.44 (dd, J = 10.7, 2.1 Hz, 1H), 6.42 (d, J = 2.4 Hz, 1H), 5.97 (tt, J = 10.4, 5.8 Hz, 1H), 2.64-2.75 (m, 4H), 2.41 (s, 3H), 1.79 (s, 6H), 1.64 (s, 6H); 2 Hs not observed (NH and OH).

Example 16

Preparation of Compound 52

Step 1: A mixture of 3,6-dichloropyridazin-4-amine (1.0 g, 6.0 mmol), 1,2,2,6,6-

pentamethylpiperidin-4-amine (1.0 g, 6.1 mmol) and DIPEA (1.6 mL, 9.1 mmol) in decanol (10 mL) was heated at 150 °C for 7 days. Solvent was removed by blowing air and the residue was purified using silica-gel chromatography eluting with a MeOH/CH₂Cl₂ gradient (2.5% NH₄OH) (0% to 30% MeOH/ NH₄OH) to provide a mixture of 6-chloro-N3-(1,2,2,6,6-pentamethyl-4-piperidyl)pyridazine-3,5-diamine and 6-chloro-N3-(1,2,2,6,6-pentamethyl-4-piperidyl)pyridazine-3,4-diamine (0.85 g, 47%) as a brown solid which was used as is in the next step.

Step 2: To a solution of 6-chloro-N3-(1,2,2,6,6-pentamethyl-4-piperidyl)pyridazine-3,4-diamine, prepared above (0.85 g, 2.9 mmol, ~59% pure), in AcOH (4 mL) was added NaNO₂ (0.50 g, 1.21 mmol) and the mixture was stirred at room temperature for 1 h. The reaction was quenched by the addition of saturated aqueous sodium bicarbonate slowly until pH \approx 7. The aqueous layer was extracted with ethyl acetate three times. The organic layer was dried over Na₂SO₄, filtered, and concentrated under reduced pressure. The crude product was purified by column chromatography on silica gel, eluting with a MeOH/CH₂Cl₂ gradient (0-20% MeOH) to yield 6-chloro-3-(1,2,2,6,6-pentamethyl-4-piperidyl)triazolo[4,5-c]pyridazine (375 g, 43%) as a tan solid. MS m/z 309.1 [M+H]⁺.

15

Step 3: An oven-dried flask was equipped with a magnetic stir bar and charged with [6-chloro-3-(1,2,2,6,6-pentamethyl-4-piperidyl)triazolo[4,5-c]pyridazine (72 mg, 0.23 mmol), 4-[3-(methoxymethoxy)-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl]-1-tetrahydropyran-2-

yl-pyrazole (prepared in example 1, step 7, 116 mg, 0.28 mmol), [1,1'-bis(diphenylphosphino)ferrocene] dichloropalladium(II) (17 mg, 0.023 mmol), and K₂CO₃ (65mg, 0.47 mmol). The flask was sealed with a rubber septum, and then evacuated and backfilled with argon (repeated a total of 3 X). 1,4-Dioxane (2 mL) and water (0.5 mL) were added and the reaction was heated to 90 °C for 16 h. The reaction was cooled to room temperature, diluted with water, and extracted with EtOAc (3 X). The combined organic layers were dried over Na₂SO₄, concentrated under reduced pressure, and purified using silica gel chromatography eluting with a MeOH/CH₂Cl₂ gradient (0% to 30% MeOH) to provide 6-(2-(methoxymethoxy)-4-(1-(tetrahydro-2*H*-pyran-2-yl)-1*H*-pyrazol-4-yl)phenyl)-3-(1,2,2,6,6-pentamethylpiperidin-4-yl)-3*H*-[1,2,3]triazolo[4,5-c]pyridazine (75 mg, 57%). MS *m/z* 561.4 [M+H]⁺.

5

10

15

20

Step 4: To a solution of 6-[2-(methoxymethoxy)-4-(1-tetrahydropyran-2-ylpyrazol-4-yl)phenyl]-3-(1,2,2,6,6-pentamethyl-4-piperidyl)triazolo[4,5-c]pyridazine (61 mg, 0.11 mmol) in CH₂Cl₂ (1 mL) was added 4 N HCl in 1,4-dioxane (0.14 mL, 0.54 mmol) and the reaction mixture was stirred for 16 h. The precipitate formed during this time was collected by filtration, washed with CH₂Cl₂ (3 X), and dried to provide 2-[3-(1,2,2,6,6-pentamethyl-4-piperidyl)triazolo[4,5-c]pyridazin-6-yl]-5-(1*H*-pyrazol-4-yl)phenol dihydrochloride (41 mg, 75%) as a yellow solid.

MS m/z 433.3 [M+H]⁺; ¹H NMR (methanol- d_4) δ : 9.13 (s, 1H), 8.52 (s, 2H), 8.12 (d, J=8.2 Hz, 1H), 7.40 (dd, J=8.2, 1.9 Hz, 1H), 7.37 (d, J=1.9 Hz, 1H), 5.95 (tt, J=12.9, 3.5 Hz, 1H), 3.03 (s, 3H), 2.95 (t, J=14.2Hz, 2H), 2.77 (dd, J=14.2, 3.5 Hz, 2H), 1.76 (s, 6H), 1.70 (s, 6H); 2 Hs not observed (NH and OH).

Using the procedure described for Example 16, above, additional compounds described herein were prepared by substituting the appropriate starting materials, suitable reagents and reaction conditions, obtaining compounds such as those selected from:

Cpc	Data
56	MS <i>m/z</i> 391.5 [M+H] ⁺ ; ¹ H NMR (methanol- <i>d</i> ₄) δ: 9.09 (s, 1H), 8.37 (br s, 2H), 8.09 (d, <i>J</i> =8.2 Hz, 1H), 7.36 (d, <i>J</i> =8.5 Hz, 1H), 7.34 (s, 1H), 5.70-5.90 (m, 1H), 3.57-3.64 (m, 2H), 2.70 (br. s., 4H), 1.68 (s, 3H), 1.58 (s, 3H); 3 Hs not observed (OH and 2 NHs).

Cpd	Data
57	MS m/z 417.6 [M+H] ⁺ ; ¹ H NMR (methanol-d ₄) δ: 9.09 (s, 1H), 8.26 (s, 2H), 8.08 (d,
	J=8.5 Hz, 1H), 7.34 (dd, J=8.2, 1.9 Hz, 1H), 7.32 (d, J=1.6 Hz, 1H), 5.80-5.92 (m, 1H), 2.76 (dd, J=13.6, 12.6 Hz, 2H), 2.61-2.66 (m, 2H), 2.50 (d, J=9.5 Hz, 2H), 2.17
	(d, <i>J</i> =9.1 Hz, 2H), 1.64 (s, 6H); 3 Hs not observed (OH and 2 NHs).

Example 17

Preparation of Compound 7

5

10

15

20

Step 1: An oven-dried flask was equipped with a magnetic stir bar and charged with 6-chloro-3-(2,2,6,6-tetramethylpiperidin-4-yl)-3*H*-[1,2,3]triazolo[4,5-c]pyridazine (prepared in example 13, step 2, 75 mg, 0.25 mmol), 4-(3-(methoxymethoxy)-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)-1-(tetrahydro-2*H*-pyran-2-yl)-1*H*-pyrazole (prepared in example 1, step 7, 150 mg, 0.36 mmol), and [1,1'-bis(diphenylphosphino)ferrocene] dichloropalladium(II) complex with dichloromethane (25 mg, 0.029 mmol). The flask was sealed with a rubber septum, and then evacuated and backfilled with argon (repeated a total of 3 X). 1,4-Dioxane (4 mL) and aqueous 2.0 M K₂CO₃ (0.3 mL, 0.60 mmol) were added and the reaction was heated to 90 °C for 16 h. The reaction was cooled to room temperature, diluted with water (2 mL), and extracted with EtOAc (3 X). The combined organic layers were dried over Na₂SO₄, concentrated under reduced pressure, and purified by column chromatography, eluting with a MeOH/CH₂Cl₂ gradient (0-20% MeOH) to provide 6-(2-(methoxymethoxy)-4-(1-(tetrahydro-2*H*-pyran-2-yl)-1*H*-pyrazol-4-yl)phenyl)-3-(2,2,6,6-tetramethylpiperidin-4-yl)-3*H*-[1,2,3]triazolo[4,5-c]pyridazine (125 mg, 90%) as a yellow solid. MS *m/z* 547.4 [M+H]⁺.

Step 2: To a solution of 6-(2-(methoxymethoxy)-4-(1-(tetrahydro-2*H*-pyran-2-yl)-1*H*-pyrazol-4-yl)phenyl)-3-(2,2,6,6-tetramethylpiperidin-4-yl)-3*H*-[1,2,3]triazolo[4,5-c]pyridazine (125 mg, 0.23 mmol) in CH₂Cl₂ (1 mL) was added 4N HCl in dioxane (3 mL, 12 mmol) and the reaction was stirred at room temperature for 2 h. The yellow solid that precipitated was collected by

vacuum filtration, washed with CH₂Cl₂ and Et₂O and dried to afford 5-(1*H*-pyrazol-4-yl)-2-(3-(2,2,6,6-tetramethylpiperidin-4-yl)-3*H*-[1,2,3]triazolo[4,5-c]pyridazin-6-yl)phenol dihydrochloride (95 mg, 91%).

MS m/z 419.5 [M+H]⁺; ¹H NMR (methanol- d_4) δ : 9.11 (s, 1H), 8.34 (s, 2H), 8.11 (d, J=8.2 Hz, 1H), 7.37 (dd, J=8.2, 1.9 Hz, 1H), 7.35 (d, J=1.9 Hz, 1H), 5.97 (tt, J=11.0, 5.4 Hz, 1H), 2.62-2.74 (m, 4H), 1.79 (s, 6H), 1.64 (s, 6H); 3 Hs not observed (2NHs and OH).

5

Example 18

Preparation of Compound 34

Step 1: An oven-dried flask was equipped with a magnetic stir bar and charged with 6-chloro-3-10 (2,2,6,6-tetramethylpiperidin-4-yl)-3H-[1,2,3]triazolo[4,5-c]pyridazine (prepared in example 13, step 2, 50 mg, 0.17 mmol), 1-[3-methoxy-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2yl)phenyl]pyrazole (61 mg, 0.20 mmol), [1,1'-bis(diphenylphosphino)ferrocene] dichloropalladium(II) (13 mg, 0.17 mmol), and K₂CO₃ (71 mg, 0.51 mmol). The flask was sealed with a rubber septum, and then evacuated and backfilled with argon (repeated a total of 3 X). 15 Dioxane (4 mL) and water (0.5 mL) were added and the reaction was heated to 90 °C for 16 h. The reaction was cooled to room temperature, diluted with water (2 mL), and extracted with EtOAc (3 X). The combined organic phases were dried over Na₂SO₄, concentrated under reduced pressure, and purified by column chromatography, eluting with a MeOH/CH₂Cl₂ gradient (0-20% MeOH) to provide 6-(2-methoxy-4-pyrazol-1-yl-phenyl)-3-(2,2,6,6-tetramethyl-4-20 piperidyl)triazolo[4,5-c]pyridazine (55 mg, 75%) as a yellow solid. MS m/z 433.5 [M+H]⁺. Step 2: To a solution of 6-(2-methoxy-4-pyrazol-1-yl-phenyl)-3-(2,2,6,6-tetramethyl-4piperidyl)triazolo[4,5-c]pyridazine (55 mg, 0.13 mmol) in CH₂Cl₂ (1 mL) was added 1 M BBr₃ in CH₂Cl₂ (0.64 mL, 0.64 mmol) and the reaction was stirred at room temperature for 16 h after which, UPLC showed complete consumption of the starting material. The reaction was quenched 25 with MeOH (10 mL), concentrated under reduced pressure, and purified using silica gel

chromatography, eluting with a MeOH/CH₂Cl₂ gradient (2.5% NH₄OH) (0% to 30% MeOH/NH₄OH) to provide 5-pyrazol-1-yl-2-[3-(2,2,6,6-tetramethyl-4-piperidyl)triazolo[4,5-c]pyridazin-6-yl]phenol (38 mg, 71%) as a yellow solid.

MS m/z 419.5 [M+H]⁺; ¹H NMR (DMSO- d_6) δ : 9.18 (s, 1H), 8.97-9.07 (m, 1H), 8.58 (d, J=2.2 Hz, 1H), 8.19 (d, J=8.8 Hz, 1H), 8.11-8.17 (m, 1H), 7.81 (d, J=1.3 Hz, 1H), 7.62 (d, J=2.5 Hz, 1H), 7.54 (dd, J=8.7, 2.4 Hz, 1H), 6.61 (dd, J=2.4, 1.7 Hz, 1H), 5.93 (tt, J=12.3, 4.1 Hz, 1H), 2.52-2.65 (m, 4H), 1.66 (s, 6H), 1.53 (s, 6H).

Example 19

Preparation of Compound 14

10

15

5

Step 1: An oven-dried flask was equipped with a magnetic stir bar and charged with 1,4-dibromo-2,5-difluoro-benzene (3.2 g, 12 mmol), 1-tetrahydropyran-2-yl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pyrazole (2.95 g, 10.6 mmol) and Pd(dppf)Cl₂·CH₂Cl₂ (430 mg, 0.50 mmol). The flask was sealed with a rubber septum, and then evacuated and backfilled with argon (repeated a total of 3 X). 1,4-Dioxane (50 mL) and aqueous 2.0 M K₂CO₃ (15 mL, 30 mmol) were added and the reaction was heated to 90 °C for 16 h. The reaction was cooled to room temperature, diluted with water, and extracted with EtOAc (3 X). The combined organic phases were dried over Na₂SO₄, concentrated under reduced pressure, and purified by column chromatography, eluting with a EtOAc/hexanes gradient (0-50% EtOAc) to provide 4-(4-bromo-

2,5-difluoro-phenyl)-1-tetrahydropyran-2-yl-pyrazole (1.51 g, 42%) as a brown oil. MS *m/z* 343.0, 345.0 [M+H]⁺.

Step 2: An oven-dried flask was equipped with a magnetic stir bar and charged with Pd(dppf)Cl₂·CH₂Cl₂ (200 mg, 0.23 mmol), 4-(4-bromo-2,5-difluoro-phenyl)-1-tetrahydropyran-2-yl-pyrazole (1.51 g, 4.40 mmol), 4,4,5,5-tetramethyl-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1,3,2-dioxaborolane (2.90 g, 11.4 mmol), and KOAc (1.73 g, 17.6 mmol). The flask was sealed with a rubber septum, and then evacuated and backfilled with argon (repeated a total of 3 X). 1,4-Dioxane (22 mL) was added and the reaction was heated to 90 °C for 16 h. The reaction was cooled to room temperature, diluted with water, and extracted with EtOAc (3 X). The combined organic phases were dried over Na₂SO₄, concentrated under reduced pressure, and purified by column chromatography, eluting with a EtOAc/hexanes gradient (5-50% EtOAc) to provide 4-[2,5-difluoro-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl]-1-tetrahydropyran-2-yl-pyrazole (1.54 g, 89%) as a brownish solid.

¹H NMR (CDCl₃) δ: 8.09 (d, *J*=1.9 Hz, 1H), 7.95 (s, 1H), 7.47 (dd, *J*=10.7, 4.7 Hz, 1H), 7.23 (dd, *J*=9.5, 5.7 Hz, 1H), 5.38-5.51 (m, 1H), 4.01-4.16 (m, 1H), 3.73-3.78 (m, 1H), 2.05-2.20 (m, 3H), 1.66-1.79 (m, 3H), 1.39 (s, 12H).

20

25

30

Step 3: An oven-dried reaction tube was equipped with a magnetic stir bar and charged with 6-chloro-3-(2,2,6,6-tetramethyl-4-piperidyl)triazolo[4,5-c]pyridazine (prepared in example 13, step 2, 75 mg, 0.25 mmol), 4-[2,5-difluoro-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl]-1-tetrahydropyran-2-yl-pyrazole (199 mg, 0.51 mmol), and Pd(dppf)Cl₂·CH₂Cl₂ (25 mg, 0.029 mmol). The tube was sealed with a rubber screw-cap, and then evacuated and backfilled with argon (repeated a total of 3 X). 1,4-Dioxane (1 mL) and aqueous 2.0 M K₂CO₃ (0.3 mL, 0.6 mmol) were added and the reaction was heated to 90 °C for 16 h. The reaction was cooled to room temperature, diluted with water, and extracted with EtOAc (3 X). The combined organic phases were dried over Na₂SO₄, concentrated under reduced pressure, and purified by column chromatography, eluting with a MeOH/CH₂Cl₂ gradient (0% to 30% MeOH) to provide 6-[2,5-difluoro-4-(1-tetrahydropyran-2-ylpyrazol-4-yl)phenyl]-3-(2,2,6,6-tetramethyl-4-piperidyl)triazolo[4,5-c]pyridazine (96 mg, 72%) as a brown solid. MS *m/z* 523.4 [M+H]⁺;

Step 4: To a solution of 6-[2,5-difluoro-4-(1-tetrahydropyran-2-ylpyrazol-4-yl)phenyl]-3-(2,2,6,6-tetramethyl-4-piperidyl)triazolo[4,5-c]pyridazine (96 mg, 0.18 mmol) in CH₂Cl₂ (1 mL) was added 4N HCl in dioxane (2 mL, 8 mmol) and the reaction was stirred at room temperature for 1

h. The yellow solid that precipitated was collected by vacuum filtration, rinsed with CH₂Cl₂ and Et₂O and dried to afford 6-(2,5-difluoro-4-(1*H*-pyrazol-4-yl)phenyl)-3-(2,2,6,6-tetramethylpiperidin-4-yl)-3*H*-[1,2,3]triazolo[4,5-c]pyridazine dihydrochloride.

MS m/z 439.5 [M+H]⁺; ¹H NMR (DMSO- d_6) δ : 9.56 (d, J=15.8 Hz, 1H), 8.97 (d, J=1.6 Hz, 1H), 8.36 (d, J=12.9 Hz, 1H), 8.25 (s, 1H), 7.70-7.91 (m, 1H), 5.93 (tt, J=12.9, 4.1 Hz, 1H), 2.59-2.67 (m, 4H), 1.67 (s, 6H), 1.56 (s, 6H), 2 Hs not observed (2 NHs).

Using the procedure described for Example 19, above, additional compounds described herein were prepared by substituting the appropriate starting materials, suitable reagents and reaction conditions, obtaining compounds such as those selected from:

Cpd	Data
13	MS m/z 439.5 [M+H] ⁺ ; ¹ H NMR (DMSO- d_6) δ : 9.64 (d, J =12.8 Hz, 1H), 8.95 (d, J =1.3 Hz, 1H), 8.39 (d, J =12.8 Hz, 1H), 8.26 (d, J =2.3 Hz, 1H), 7.92-7.99 (m, 1H), 5.93 (tt, J =12.3, 3.8 Hz, 1H), 2.58-2.65 (m, 4H), 1.67 (s, 6H), 1.56 (s, 6H); 2 Hs not observed (2 NHs).
58	MS m/z 435.5 [M+H] ⁺ ; ¹ H NMR (methanol- d_4) δ : 9.02 (s, 1H), 8.79 (s, 2H), 7.61 (s, 1H), 7.37 (s, 1H), 5.97 (tt, J =11.7, 4.7 Hz, 1H), 2.60-2.77 (m, 4H), 1.79 (s, 6H), 1.66 (s, 6H); 4 Hs not observed (2 NHs and 2 OHs).

10

5

Example 20

Preparation of Compound 53

Step 1: An oven-dried flask equipped with a magnetic stir bar was charged with 1-bromo-4-chloro-2-fluoro-5-methoxy-benzene (100 mg, 0.42 mmol), (4-methoxyphenyl)boronic acid (69.8 mg, 0.46 mmol) and [1,1'-bis(diphenylphosphino)ferrocene] dichloropalladium(II) complex with dichloromethane (17.1 mg, 0.021 mmol). The flask was sealed with a rubber septum, and then evacuated and backfilled with argon (repeated a total of 3 X). 1,4-Dioxane (1.0 mL) and aqueous 1 M K₂CO₃ (0.5 mL, 0.5 mmol) were added and the reaction was heated to 90 °C for 2 h. The reaction was cooled to room temperature, diluted with water (5 mL), and extracted with EtOAc (3 X). The combined organic phases were dried over Na₂SO₄, and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel, eluting with a EtOAc/hexanes gradient (0-10% EtOAc) to yield 1-chloro-5-fluoro-2-methoxy-4-(4-methoxyphenyl)benzene (89.2 mg, 80%) as an off white solid.

MS m/z 267.8 [M+H]⁺; ¹H NMR (CDCl₃) δ : 7.39 (dd, J= 8.8, 1.6 Hz, 2H), 7.13 (d, J= 9.5 Hz, 1H), 6.92 (d, J= 8.8 Hz, 2H), 6.85 (d, J= 6.9 Hz, 1H), 3.85 (s, 3H), 3.79 (s, 3H).

Step 2: An oven-dried flask was equipped with a magnetic stir bar and charged with 1-chloro-5-fluoro-2-methoxy-4-(4-methoxyphenyl)benzene (56 mg, 0.21 mmol), bis(pinacolato)diboron (66.6 mg, 0.26 mmol), potassium acetate (61.8 mg, 0.63 mmol), and chloro(2-dicyclohexylphosphino-2',4',6'-triisopropyl-1,1'-biphenyl)[2-(2'-amino-1,1'-biphenyl)]palladium(II) (8.3 mg, 0.011 mmol). The flask was sealed with a rubber septum, and then evacuated and backfilled with argon (repeated a total of 3 X). 1,4-Dioxane (1.4 mL) was added and the reaction was heated to 120 °C for 64 h. The reaction was cooled to room temperature and aq. 1 M K₂CO₃ (0.7 mL, 0.7 mmol) was added followed by 6-chloro-3-(2,2,6,6-tetramethyl-4-piperidyl)triazolo[4,5-c]pyridazine (prepared in example 13, step 2, 40.9 mg, 0.14 mmol), and 1,1'-bis(diphenylphosphino)ferrocene-palladium(II)dichloride dichloromethane complex (8.6 mg, 0.011 mmol). The mixture was purged with argon and heated at 90 °C for 3 h. The reaction was cooled to room temperature, diluted with water, and extracted with EtOAc (3 X). The combined organic phases were dried over Na₂SO₄, and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel, eluting with a MeOH/CH₂Cl₂ gradient (0-30% MeOH) to yield 6-[5-fluoro-2-methoxy-4-(4-

29%). MS m/z 491.5 [M+H]⁺.

5

10

15

20

25

30

methoxyphenyl)phenyl]-3-(2,2,6,6-tetramethyl-4-piperidyl)triazolo[4,5-c]pyridazine (28.5 mg,

Step 3: 6-[5-Fluoro-2-methoxy-4-(4-methoxyphenyl)phenyl]-3-(2,2,6,6-tetramethyl-4-piperidyl)triazolo[4,5-c]pyridazine (28.5 mg, 0.058 mmol) was combined with dichloromethane (2 mL) and 1N BBr₃ in dichloromethane (0.6 mL, 0.6 mmol). The mixture was stirred at room temperature for 3 h. Methanol (0.5 mL) was added and the reaction was stirred for 3 h. The mixture was concentrated at reduced pressure and the residue was triturated with MeOH (3 x 2 mL) and dried under vacuum to yield 6-fluoro-4-(3-(2,2,6,6-tetramethylpiperidin-4-yl)-3*H*-[1,2,3]triazolo[4,5-c]pyridazin-6-yl)-[1,1'-biphenyl]-3,4'-diol hydrobromide as an off white solid (11.3 mg, 36%).

5

15

MS m/z 463.5 [M+H]⁺; ¹H NMR (DMSO- d_6) δ : 11.22 (s, 1H), 9.75 (s, 1H), 9.20 (s, 1H), 8.95 (d, J= 12.0 Hz, 1H), 8.11 (d, J= 12.0 Hz, 1H), 7.98 (d, J= 11.7 Hz, 1H), 7.45 (dd, J= 8.5, 1.6 Hz, 2H), 7.13 (d, J= 6.9 Hz, 1H), 6.91 (d, J= 8.5 Hz, 2H), 5.94 (tt, J= 12.3, 4.1 Hz, 1H), 2.59 (d, J= 12.0 Hz, 2H), 2.54 (d, J= 10.1 Hz, 2H), 1.66 (s, 6H), 1.52 (s, 6H).

Using the procedure described for Example 20, above, additional compounds described herein were prepared by substituting the appropriate starting materials, suitable reagents and reaction conditions, obtaining compounds such as those selected from:

Cpd	Data
33	MS <i>m/z</i> 437.5 [M+H] ⁺ ; ¹ H NMR (DMSO- <i>d</i> ₆) δ: 10.13-10.31 (m, 1H), 9.55-9.70 (m, 1H), 8.82 (d, <i>J</i> =1.3 Hz, 1H), 8.32-8.42 (m, 1H), 8.26 (s, 2H), 7.70 (d, <i>J</i> =12.3 Hz, 1H), 7.64 (d, <i>J</i> =6.9 Hz, 1H), 5.91 (tt, <i>J</i> =12.3, 3.8 Hz, 1H), 2.56-2.70 (m, 4H), 1.67 (s, 6H), 1.56 (s, 6H).
55	MS m/z 478.2 [M+H] ⁺ ; 1 H NMR (methanol- d_4) δ : 9.18 (s, 1H), 8.03 (d, J = 12.0 Hz, 1H), 7.79 (s, 1H), 7.22 (d, J = 6.6 Hz, 1H), 6.83 (s, 1H), 6.70 (dt, J = 6.9, 1.9 Hz, 1H), 5.99 (tt, J = 11.3, 5.4 Hz, 1H), 3.66 (s, 3 H), 2.63-2.71 (m, 4H), 1.78 (s, 6H), 1.63 (s, 6H); 2 Hs not observed (NH and OH).
59	MS m/z 437.5 [M+H] ⁺ ; ¹ H NMR (methanol- d_4) δ : 8.75 (s, 1H), 8.06 (s, 2H), 7.04 - 7.18 (m, 2H), 5.99 (tt, J = 12.0, 4.7 Hz, 1H), 2.62 - 2.74 (m, 4H), 1.78 (s, 6H), 1.63 (s, 6H); 3 Hs not observed (2 NHs and OH).
62	MS m/z 451.5 [M+H] ⁺ ; ¹ H NMR (DMSO- d_6) δ : 11.51 (br s, 2H), 9.48 (d, J = 12.3 Hz, 1H), 9.23 (s, 1H), 8.31 (d, J = 12.0 Hz, 1H), 8.21 (d, J = 1.9 Hz, 1H), 8.03 (d, J = 12.3 Hz, 1H), 7.92 (s, 1H), 7.35 (d, J = 6.9 Hz, 1H), 5.91 (tt, J = 12.6, 4.1 Hz, 1H), 3.94 (s, 3H), 2.59 (d, J = 12.9 Hz, 2H), 2.50-2.54 (m, 2H), 1.67 (s, 6H), 1.55 (s, 6H).
87	MS <i>m/z</i> 448.3 [M+H] ⁺ ; ¹ H NMR (methanol- <i>d</i> ₄) δ: 9.26 (s, 1H), 8.96-9.03 (m, 2H), 8.44 (dd, <i>J</i> =6.9, 1.3 Hz, 2H), 8.21 (d, <i>J</i> =12.6 Hz, 1H), 7.50 (d, <i>J</i> =6.6 Hz, 1H), 6.01 (tt, <i>J</i> =10.7, 5.5 Hz, 1H), 2.63-2.73 (m, 4H), 1.80 (s, 6H), 1.65 (s, 6H); 2 Hs not observed (NH, and OH).

Example 21

Preparation of Compound 35

Step 1: An oven-dried flask was equipped with a magnetic stir bar and charged with 4-bromo-5-fluoro-2-methoxy-aniline (1.0 g, 4.5 mmol), 1-tetrahydropyran-2-yl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pyrazole (1.6 g, 5.5 mmol), Pd(dppf)Cl₂ (340 mg, 0.45 mmol) and K₂CO₃ (1.9 g, 14 mmol). The flask was sealed with a rubber septum, and then evacuated and backfilled with argon (repeated a total of 3 X). 1,4-Dioxane (20 mL) and water (2 mL) were added and the reaction was heated to 90 °C for 16 h. The reaction was cooled to room temperature, diluted with water, and extracted with EtOAc (3 X). The combined organic phases were dried over Na₂SO₄, concentrated under reduced pressure, and purified by column chromatography, eluting with a EtOAc/hexanes gradient (0-60% EtOAc) to provide 5-fluoro-2-methoxy-4-(1-tetrahydropyran-2-ylpyrazol-4-yl)aniline (1.25 g, 94%) as a colorless oil. MS *m/z* 292.3 [M+H]⁺.

5

10

15

20

Step 2: To a well stirred suspension of 5-fluoro-2-methoxy-4-(1-tetrahydropyran-2-ylpyrazol-4-yl)aniline (1.25 g, 4.29 mmol) in THF (40 mL) under a nitrogen flow were sequentially added CsI (1.67g, 6.44 mmol), I₂ (1.09 g, 4.29 mmol), CuI (0.41 g, 2.15 mmol) and tBuONO (1.33 mL, 10.7 mmol). The reaction mixture was stirred vigorously at 65-70 °C for 6 h. After cooling in an ice-water bath, the solid was filtered off. The filtrate was diluted with dichloromethane (500 mL), washed with 30% aq. ammonium hydroxide (150 mL), sodium thiosulphate (300 mL), brine, and dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. The residue was purified

by column chromatography, eluting with a EtOAc/hexanes gradient (0-80% EtOAc) to provide 4-(2-fluoro-4-iodo-5-methoxy-phenyl)-1-tetrahydropyran-2-yl-pyrazole (0.92 g, 53%) as a brownish solid. MS *m/z* 403.1 [M+H]⁺.

Step 3: An oven-dried flask was equipped with a magnetic stir bar and charged with 4-(2-fluoro-4-iodo-5-methoxy-phenyl)-1-tetrahydropyran-2-yl-pyrazole (0.92 g, 2.23 mmol), Pd(dppf)Cl₂ (171 mg, 0.23 mmol), 4,4,5,5-tetramethyl-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1,3,2-dioxaborolane (1.17 g, 4.57 mmol), and KOAc (0.68 g, 6.85 mmol). The flask was sealed with a rubber septum, and then evacuated and backfilled with argon (repeated a total of 3 X). 1,4-Dioxane (10 mL) was added and the reaction was heated to 90 °C for 16 h. The reaction was cooled to room temperature, diluted with water, and extracted with EtOAc (3 X). The combined organic phases were dried over Na₂SO₄, concentrated under reduced pressure, and purified by column chromatography, eluting with a EtOAc/hexanes gradient (0-50% EtOAc) to provide 4-(2-fluoro-5-methoxy-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)-1-(tetrahydro-2*H*-pyran-2-yl)-1*H*-pyrazole (0.745 g, 81%) as a clear oil. MS *m/z* 403.3 [M+H]⁺.

5

10

30

Step 4: An oven-dried reaction tube was equipped with a magnetic stir bar and charged with 6-15 chloro-3-(2,2,6,6-tetramethyl-4-piperidyl)triazolo[4,5-c]pyridazine (prepared in example 13, step 2, 98 mg, 0.33 mmol), 4-(2-fluoro-5-methoxy-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2yl)phenyl)-1-(tetrahydro-2*H*-pyran-2-yl)-1*H*-pyrazole (267 mg, 0.66 mmol), Pd(dppf)Cl₂·CH₂Cl₂ (50 mg, 0.066 mmol) and K₂CO₃ (276 mg, 2.0 mmol). The tube was sealed with a rubber screwcap, and then evacuated and backfilled with argon (repeated a total of 3 X). 1,4-Dioxane (2 mL) 20 and water (0.5 mL) were added and the reaction was heated to 90 °C for 16 h. The reaction was cooled to room temperature, diluted with water, and extracted with EtOAc (3 X). The combined organic layers were dried over Na₂SO₄, concentrated under reduced pressure, and purified by column chromatography, eluting with a MeOH/CH₂Cl₂ gradient (0% to 25% MeOH) To provide 6-(5-fluoro-2-methoxy-4-(1-(tetrahydro-2*H*-pyran-2-yl)-1*H*-pyrazol-4-yl)phenyl)-3-(2,2,6,6-25 tetramethylpiperidin-4-yl)-3H-[1,2,3]triazolo[4,5-c]pyridazine (150 mg, 42%) as a brownish solid. MS m/z 535.4 [M+H]⁺.

Step 5: 6-(5-Fluoro-2-methoxy-4-(1-(tetrahydro-2*H*-pyran-2-yl)-1*H*-pyrazol-4-yl)phenyl)-3-(2,2,6,6-tetramethylpiperidin-4-yl)-3*H*-[1,2,3]triazolo[4,5-c]pyridazine (80 mg, 0.15 mmol) was dissolved in dichloromethane (2 mL) and treated with 1 N BBr₃ in dichloromethane (0.74 mL,

0.74 mmol). The mixture was stirred at room temperature for 3 h. Methanol (0.5 mL) was added and the reaction was stirred for 1 h. The reaction was concentrated at reduced pressure. The residue was triturated in MeOH, the resultant solid was filtered, washed with Et₂O and dried under vacuum to yield 4-fluoro-5-(1*H*-pyrazol-4-yl)-2-(3-(2,2,6,6-tetramethylpiperidin-4-yl)-3*H*-[1,2,3]triazolo[4,5-c]pyridazin-6-yl)phenol dihydrobromide (33 mg, 41%) as an orange solid.:

MS m/z 437.5 [M+H]⁺; ¹H NMR (DMSO- d_6) δ : 11.51 (br s, 1H), 9.25 (s, 1H), 8.92-9.03 (m, 1H), 8.07-8.16 (m, 2H), 8.03 (d, J=12.3 Hz, 1H), 7.38 (d, J=6.8 Hz, 1H), 5.93 (tt, J=12.3, 4.8 Hz, 1H), 2.53-2.63 (m, 4H), 1.66 (s, 6H), 1.52 (s, 6H); 1H not observed (NH or OH).

Using the procedure described for Example 21, above, additional compounds described herein were prepared by substituting the appropriate starting materials, suitable reagents and reaction conditions, obtaining compounds such as those selected from:

Cpd	Data
83	MS m/z 453.9 [M+H] ⁺ ; ¹ H NMR (methanol- d_4) δ : 9.18 (s, 1H), 8.63 (s, 2H), 8.28 (s,
	1H), 7.34 (s, 1H), 5.98 (tt, <i>J</i> =12.0, 4.5 Hz, 1H), 2.61-2.79 (m, 4H), 1.80 (s, 6H), 1.66
	(s, 6H); 3 Hs not observed (2 NHs and OH).

Example 22

Preparation of Compound 54

5

Step 1: (4-Chloro-2-fluoro-3-methoxy-phenyl)boronic acid (200 mg, 0.98 mmol) was combined with 4-bromo-1-tetrahydropyran-2-yl-pyrazole (271 mg, 1.17 mmol) and [1,1′-bis(diphenylphosphino)ferrocene] dichloropalladium(II) complex with dichloromethane (80.0 mg, 0.098 mmol), followed by addition of 1,4-dioxane (2.0 mL) and aqueous 1 M K₂CO₃ (1.0 mL, 1.0 mmol). The mixture was stirred at 110 °C for 2 h. The mixture was then partitioned between EtOAc and H₂O. The aqueous layer was extracted with EtOAc and the combined organic layers were dried over Na₂SO₄, filtered and concentrated. The residue was chromatographed on silica gel, eluting with 0-20% EtOAc in hexanes to yield 4-(4-chloro-2-fluoro-3-methoxy-phenyl)-1-tetrahydropyran-2-yl-pyrazole (165.7 mg, 54%) as an off white solid.

5

30

- 10 MS m/z 311.0 [M+H]⁺; ¹H NMR (CDCl₃) δ : 7.93 (d, J= 1.9 Hz, 1H), 7.82 (s, 1H), 7.13 (dd, J= 8.5, 7.3 Hz, 1H), 7.07 (dd, J= 8.5, 1.3 Hz, 1H), 5.37 (dd, J= 9.0, 3.0 Hz, 1H), 4.02 (d, J= 9.8 Hz, 1H), 3.91 (s, 3H), 3.67 (td, J= 11.2, 2.8 Hz, 1H), 2.08-2.18 (m, 2H), 1.88 2.01 (m, 1H), 1.60 1.72 (m, 2H), 1.57 (d, J= 2.5 Hz, 1H).
- Step 2: 4-(4-Chloro-2-fluoro-3-methoxy-phenyl)-1-tetrahydropyran-2-yl-pyrazole (48.0 mg, 0.15 mmol) was combined with bis(pinacolato)diboron (49.0 mg, 0.19 mmol), potassium acetate (45.5 mg, 0.46 mmol), chloro(2-dicyclohexylphosphino-2',6'-dimethoxy-1,1'-biphenyl)[2-(2'-amino-1,1'-biphenyl)]palladium(II) (5.6 mg, 0.008 mmol), and 1,4-dioxane (1.0 mL). The mixture was stirred at 120 °C for 24 h. The mixture was cooled to room temperature. To the mixture was added aqueous 1 M K₂CO₃ (0.5 mL, 0.5 mmol), 6-chloro-3-(2,2,6,6-tetramethyl-4-
- piperidyl)triazolo[4,5-c]pyridazine (prepared in example 13, step 2, 30.0 mg, 0.102 mmol), and [1,1'-bis(diphenylphosphino)ferrocene] dichloropalladium(II) complex with dichloromethane (4.2 mg, 0.008 mmol). The mixture was stirred at 90 °C for 6 h. The mixture was then partitioned between EtOAc and H₂O. The aqueous layer was extracted with EtOAc. The combined organic layers were dried over Na₂SO₄, filtered and concentrated. The residue was chromatographed on silica gel, eluting with 0-30% MeOH in CH₂Cl₂ to yield 6-[3-fluoro-2-methoxy-4-(1
 - tetrahydropyran-2-ylpyrazol-4-yl)phenyl]-3-(2,2,6,6-tetramethyl-4-piperidyl)triazolo[4,5-c]pyridazine (10.6 mg, 20%). MS *m/z* 535.5 [M+H]⁺.
 - Step 3: 6-[3-Fluoro-2-methoxy-4-(1-tetrahydropyran-2-ylpyrazol-4-yl)phenyl]-3-(2,2,6,6-tetramethyl-4-piperidyl)triazolo[4,5-c]pyridazine (11 mg, 0.02 mmol) was combined with dichloromethane (0.5 mL) and 1 N BBr₃ in dichloromethane (0.10 mL, 0.10 mmol). The mixture was stirred at room temperature for 5 h. Methanol (0.5 mL) was added and the reaction was

stirred for 16 h. The reaction was concentrated at reduced pressure. The residue was partitioned between EtOAc and saturated aqueous NaHCO₃. The aqueous layer was extracted with EtOAc. The combined organic layers were dried over Na₂SO₄, filtered and concentrated. The material was chromatographed on silica gel, eluting with 0-30% MeOH in CH₂Cl₂, and then further purified by reverse phase chromatography on C18 silica gel, eluting with 10-100% MeCN in H₂O, to provide 2-fluoro-3-(1*H*-pyrazol-4-yl)-6-[3-(2,2,6,6-tetramethyl-4-piperidyl)triazolo[4,5-c]pyridazin-6-yl]phenol dihydrochloride (1.1 mg, 11%).

5

10

15

20

25

MS m/z 437.3 [M+H]⁺; ¹H NMR (methanol- d_4) δ : 9.11 (s, 1H), 8.19 (br s, 1H), 8.10 (br s, 1H), 7.90 (dd, J= 8.5, 1.3 Hz, 1H), 7.38 (dd, J= 8.2, 6.9 Hz, 1H), 5.88-5.95 (m, 1H), 2.52-2.63 (m, 4H), 1.71 (s, 6H), 1.56 (s, 6H); 2 Hs not observed (NH and OH).

Example 23

Preparation of Compound 81

Step 1: An oven-dried flask was equipped with a magnetic stir bar and charged with 6-chloro-3-(2,2,6,6-tetramethyl-4-piperidyl)triazolo[4,5-c]pyridazine (prepared in example 13, step 2, 85 mg, 0.29 mmol), (7-methoxy-6-quinolyl)boronic acid (70 mg, 0.35 mmol), [1,1'-bis(diphenylphosphino)ferrocene] dichloropalladium(II) (22 mg, 0.029 mmol), and K₂CO₃ (811 mg, 0.58 mmol). The flask was sealed with a rubber septum, and then evacuated and backfilled with argon (repeated a total of 3 X). Dioxane (2 mL) and water (0.5 mL) were added and the reaction was heated to 90 °C for 16 h. The reaction was cooled to room temperature, diluted with water, and extracted with EtOAc (3 X). The combined organic phases were dried over Na₂SO₄, concentrated under reduced pressure, and the residue was purified by column chromatography on silica gel, eluting with a MeOH/CH₂Cl₂ gradient (0% to 30% MeOH) to provide 7-methoxy-6-(3-(2,2,6,6-tetramethylpiperidin-4-yl)-3*H*-[1,2,3]triazolo[4,5-c]pyridazin-6-yl)quinolone (110 mg, 91%) as a tan solid. MS *m/z* 418.4 [M+H]⁺.

Step 2: 7-Methoxy-6-(3-(2,2,6,6-tetramethylpiperidin-4-yl)-3*H*-[1,2,3]triazolo[4,5-c]pyridazin-6-

yl)quinolone (110 mg, 0.26 mmol) was dissolved in CH₂Cl₂ (2 mL) and 1 N BBr₃ in dichloromethane (1.3 mL, 1.3 mmol) was added dropwise. The mixture was stirred at room temperature for 16 h. Methanol (5 mL) was added and the reaction was stirred for 2 h. The reaction was concentrated at reduced pressure, the residue was triturated in Et₂O, and the resultant precipitate was collected by vacuum filtration, washed with CH₂Cl₂, Et₂O and dried to afford 6-(3-(2,2,6,6-tetramethylpiperidin-4-yl)-3*H*-[1,2,3]triazolo[4,5-c]pyridazin-6-yl)quinolin-7-ol hydrobromide (97 mg, 76%) as an orange solid.

5

10

15

20

MS m/z 404.5 [M+H]⁺; ¹H NMR (methanol- d_4) δ : 9.21-9.25 (m, 2H), 9.11 (dd, J=5.7, 1.3 Hz, 1H), 9.03 (s, 1H), 7.94 (dd, J=8.2, 5.7 Hz, 1H), 7.73 (s, 1H), 6.00-6.08 (m, 1H), 2.60-2.80 (m, 4H), 1.81 (s, 6H), 1.66 (s, 6H); 2 Hs not observed (NH and OH).

Example 24

Preparation of Compound 97

Step 1: To a solution of 5-bromo-6-methoxy-2-methyl-1*H*-benzo[d]imidazole (360 mg, 1.5 mmol) in DMF (5 mL) was added 60% NaH in mineral oil (90 mg, 2.25 mmol) at 0 °C under N₂. The mixture was stirred at 0 °C for 15 min and then SEMCl (400 μL, 2.25 mmol) was added. The reaction was stirred at room temperature for 2 h and the mixture was quenched with ice-water (10 mL). The mixture was extracted with EtOAc (50 mL X 2). The organic layer was washed with brine, dried over Na₂SO₄, filtered and concentrated to give the residue, which was purified by column chromatography on silica gel, eluting with a MeOH/CH₂Cl₂ gradient (2% to 5% MeOH) to obtain the mixture of 5-bromo-6-methoxy-2-methyl-1-((2-(trimethylsilyl)ethoxy)methyl)-1*H*-benzo[d]imidazole and (5-methoxy-2-methyl-1-((2-(trimethylsilyl)ethoxy)methyl)-1*H*-benzo[d]imidazol-6-yl)bromonium as brown oil (416 mg, 75%). MS *m/z* 371 [M+H]⁺.

Step 2: A mixture of 5-bromo-6-methoxy-2-methyl-1-((2-(trimethylsilyl)ethoxy)methyl)-1*H*-benzo[d]imidazole and (5-methoxy-2-methyl-1-((2-(trimethylsilyl)ethoxy)methyl)-1*H*-benzo[d]imidazol-6-yl)bromonium (370 mg, 1 mmol), B₂(pin)₂ (280 mg, 1.1 mmol), Pd (dppf)Cl₂ (73 mg, 0.1 mmol) and KOAc (196 mg, 2 mmol) in 1,4-dioxane (5 mL) was stirred at 90 °C under N₂ for 3 h. The solution was concentrated to give a crude mixture of 6-methoxy-2-methyl-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1-((2-(trimethylsilyl)ethoxy)methyl)-1*H*-benzo[d]imidazole and 2-(5-methoxy-2-methyl-1-((2-(trimethylsilyl)ethoxy)methyl)-1*H*-benzo[d]imidazol-6-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolan-1-ium, which was used in the next step without purification.

5

- 10 Step 3: A mixture of above crude 6-methoxy-2-methyl-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1-((2-(trimethylsilyl)ethoxy)methyl)-1*H*-benzo[d]imidazole and 2-(5-methoxy-2-methyl-1-((2-(trimethylsilyl)ethoxy)methyl)-1*H*-benzo[d]imidazol-6-yl)-4,4,5,5-tetramethyl-1,3,2dioxaborolan-1-ium (150 mg, 0.51 mmol), 6-chloro-3-(2,2,6,6-tetramethylpiperidin-4-yl)-3H-[1,2,3]triazolo[4,5-c]pyridazine (prepared in Example 13, step 2, 147 mg, 0.5 mmol), Pd (dppf)Cl₂ (73 mg, 0.1 mmol), and K₂CO₃ (178 mg, 1.3 mmol) in 1,4-dioxane-H₂O (4 mL, 3/1, 15 v/v) was stirred at 90 °C under N₂ for 3 h. The solution was concentrated and the residue was purified by column chromatography on silica gel, eluting with a CH₂Cl₂/MeOH gradient (0% to 5% MeOH) to give a mixture of 6-(6-methoxy-2-methyl-1-((2-(trimethylsilyl)ethoxy)methyl)-1Hbenzo[d]imidazol-5-yl)-3-(2,2,6,6-tetramethylpiperidin-4-yl)-3H-[1,2,3]triazolo[4,5-c]pyridazine 20 and 6-(5-methoxy-2-methyl-1-((2-(trimethylsilyl)ethoxy)methyl)-1*H*-benzo[d]imidazol-6-yl)-3-(2,2,6,6-tetramethylpiperidin-4-yl)-3H-[1,2,3]triazolo[4,5-c]pyridazine as brown oil (220 mg, 79%). MS m/z 551 [M+H]⁺.
- Step 4: To a solution of a mixture of 6-(6-methoxy-2-methyl-1-((2-(trimethylsilyl)ethoxy)methyl)-1*H*-benzo[d]imidazol-5-yl)-3-(2,2,6,6-tetramethylpiperidin-4-yl)-3*H*-[1,2,3]triazolo[4,5-c]pyridazine and 6-(5-methoxy-2-methyl-1-((2-(trimethylsilyl)ethoxy)methyl)-1*H*-benzo[d]imidazol-6-yl)-3-(2,2,6,6-tetramethylpiperidin-4-yl)-3*H*-[1,2,3]triazolo[4,5-c]pyridazine (220 mg, 0.4 mmol) in CH₂Cl₂ (1 mL) was added TFA (912 mg, 8 mmol). The mixture was stirred at room temperature for 16 h. The mixture was concentrated to give crude 6-(6-methoxy-2-methyl-1*H*-benzo[d]imidazol-5-yl)-3-(2,2,6,6-tetramethylpiperidin-4-yl)-3*H*-[1,2,3]triazolo[4,5-c]pyridazine, which was used in the next step without further purification (151 mg, 90%). MS *m/z* 421 [M+H]⁺.

Step 5: To a solution of 6-(6-methoxy-2-methyl-1*H*-benzo[d]imidazol-5-yl)-3-(2,2,6,6-tetramethylpiperidin-4-yl)-3*H*-[1,2,3]triazolo[4,5-c]pyridazine (150 mg, 0.36 mmol) in CH₂Cl₂ (3 mL) was added 1.0M BBr₃ in CH₂Cl₂ (3 mL, 3 mmol). The reaction was stirred at room temperature for 16 h, then quenched with MeOH (5 mL) and concentrated. The residue was dissolved in MeOH (with 2.5% NH₄OH), filtered, concentrated and purified by prep-HPLC to obtain 2-methyl-5-(3-(2,2,6,6-tetramethylpiperidin-4-yl)-3*H*-[1,2,3]triazolo[4,5-c]pyridazin-6-yl)-1*H*-benzo[d]imidazol-6-ol as yellow solid (30 mg, 21%).

5

10

15

MS m/z 407.3 [M+H]⁺; ¹H NMR (methanol- d_4) δ 9.00 (s, 1H), 8.11 (s, 1H), 7.09 (s, 1H), 5.83 - 5.79 (m, 1H), 2.58 (s, 3H), 2.39 -2.24 (m, 4H), 2.18 (s, 1H), 1.50 (s, 6H), 1.35 (s, 6H); 2 Hs not observed (NH and OH).

Example 25

Preparation of Compound 92

Step 1: 5-Methoxy-2-nitroaniline (7.2 g, 43 mmol) and NBS (7.5 g, 43 mmol) were dissolved in acetonitrile (70 mL) and cooled to 0 °C. Then TFA (3.2 mL, 43 mmol) was added dropwise into the mixture. The ice-bath was removed and the reaction was stirred for 4 h at room temperature. Water (100 mL) was added and the pH was adjusted to 8 by adding 2.5 M NaOH. The formed precipitate was recrystallized from methanol to give 4-bromo-5-methoxy-2-nitroaniline as a yellow solid (9.65 g, 82%). MS *m/z* 247, 249 [M+H]⁺

Step 2: To a solution of 4-bromo-5-methoxy-2-nitroaniline (4.92 g, 20 mmol) and TEA (5.6 mL, 40 mmol) in CH₂Cl₂ (50 mL) was added TFAA (5.6 mL, 40 mmol) at 0 °C. The reaction mixture was stirred at room temperature for 2 h. The solution was concentrated to give a crude

intermediate, which was purified by column chromatography on silica gel, eluting with a EtOAc/hexanes gradient (4% to 10% EtOAc) to obtain *N*-(4-bromo-5-methoxy-2-nitrophenyl)-2,2,2-trifluoroacetamide as yellow solid (4.5 g, 66%). MS *m/z* 343,345 [M+H]⁺.

Step 3: To a solution of *N*-(4-bromo-5-methoxy-2-nitrophenyl)-2,2,2-trifluoroacetamide (3.42 g, 10 mmol) and Cs₂CO₃ (9.78 g, 3 mmol) in DMF (50 mL) was added MeI (3.8 mL, 25 mmol). The mixture was stirred at room temperature for 3 h. 1 M NaOH (10 mL) was added and the reaction was stirred for additional 1 h. The mixture was partitioned between EtOAc and H₂O. The organic layer was washed with brine and concentrated to give 4-bromo-5-methoxy-*N*-methyl-2-nitroaniline as yellow oil without further purification (2.34 g, 90%). MS *m/z* 261,263 [M+H]⁺.

5

- Step 4: A mixture of 4-bromo-5-methoxy-N-methyl-2-nitroaniline (2.0 g, 7.7 mmol) and Fe (4.3 g, 77 mmol) in formic acid (20 mL) was stirred at 100 °C overnight. The mixture was diluted with MeOH (100 mL). The filtrate was concentrated and then partitioned between EtOAc and H₂O. The organic layer was washed with brine, dried over anhydrous Na₂SO₄ and concentrated to give 5-bromo-6-methoxy-1-methyl-1*H*-benzo[d]imidazole, which was used to the next step without further purification (1.63 g, 88%).
 - ¹H NMR (400 MHz, CDCl₃) δ 7.97 (s, 1H), 7.76 (s, 1H), 6.83 (s, 1H), 3.96 (s, 3H), 3.81 (s, 3H).
 - Step 5: A mixture of 5-bromo-6-methoxy-1-methyl-1*H*-benzo[d]imidazole (240mg, 1 mmol), B₂(pin)₂ (280 mg, 1.1 mmol), Pd(dppf)Cl₂ (73 mg, 0.1 mmol) and KOAc (196 mg, 2 mmol) in 1,4-dioxane (4 mL) was stirred at 90 °C under N₂ for 3 hours. The solution was filtered through
- Celite and concentrated to give the crude 6-methoxy-1-methyl-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1*H*-benzo[d]imidazole without purification for next step. MS *m/z* 289 [M+H]⁺.
 - <u>Step 6:</u> A mixture of above crude 6-methoxy-1-methyl-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1*H*-benzo[d]imidazole, 6-chloro-3-(2,2,6,6-tetramethylpiperidin-4-yl)-3*H*-
- [1,2,3]triazolo[4,5-c]pyridazine (prepared in example 13, step 2, 200 mg, 0.68 mmol), Pd (dppf)Cl₂ (50 mg, 0.068 mmol) and K₂CO₃ (188 mg, 1.36 mmol) in 1,4-dioxane (4 mL) and water (1 mL) was stirred at 90 °C under N₂ for 3 h. The solution was concentrated and the residue was purified by column chromatography on silica gel, eluting with a MeOH/CH₂Cl₂ gradient (0% to 5% MeOH) to give 6-(6-methoxy-1-methyl-1*H*-benzo[d]imidazol-5-yl)-3-(2,2,6,6-

tetramethylpiperidin-4-yl)-3H-[1,2,3]triazolo[4,5-c]pyridazine as brown oil (228 mg, 80%). MS m/z 421 [M+H]⁺.

Step 7: To a solution of 6-(6-methoxy-1-methyl-1*H*-benzo[d]imidazol-5-yl)-3-(2,2,6,6-tetramethylpiperidin-4-yl)-3*H*-[1,2,3]triazolo[4,5-c]pyridazine (100 mg, 0.24 mmol) in CH₂Cl₂ (3 mL) was added 1 M BBr₃ in CH₂Cl₂ (3 mL, 3 mmol). The reaction was stirred at room temperature for 16 h. The reaction was quenched with MeOH (5 mL) and concentrated. The residue was dissolved in MeOH (with 2.5% NH₄OH), filtered and concentrated and purified by prep-TLC eluting with CH₂Cl/30%MeOH(with 2.5% NH₄OH) to obtain 1-methyl-5-(3-(2,2,6,6-tetramethylpiperidin-4-yl)-3*H*-[1,2,3]triazolo[4,5-c]pyridazin-6-yl)-1*H*-benzo[d]imidazol-6-ol, as yellow solid (48 mg, 50%).

5

10

15

20

MS m/z 407.1 [M+H]⁺; ¹H NMR (methanol- d_4) δ : 8.95 (s, 1H), 8.30 (s, 1H), 7.92 (s, 1H), 7.41 (s, 2H), 7.11 (s, 1H), 5.74 (tt, J=11.0, 5.5 Hz, 1H), 3.87 (s, 3H), 2.10-2.39 (m, 4H), 1.48 (s, 6H), 1.33 (s, 6H).

Example 26

Preparation of Compound 94

Step 1: To a solution of 5-bromo-6-methoxy-1*H*-indazole (250 mg, 1.1 mmol) in DMF (5 mL) was added 60% NaH in mineral oil (66 mg, 1.65 mmol) at 0 °C under N₂. The mixture was stirred at 0°C for 15 min and then SEMCl (300 μL, 1.65 mmol) was added. The reaction was stirred at room temperature for 2 h and then was quenched with ice-water (10 mL). The mixture was extracted with EtOAc (50 mL X 2). The organic layer was washed with brine, dried over Na₂SO₄, filtered and concentrated to give the crude residue, which was purified by column chromatography on silica gel, eluting with a MeOH/CH₂Cl₂ gradient (0% to 3% MeOH) to give a

mixture of 5-bromo-6-methoxy-1-((2-(trimethylsilyl)ethoxy)methyl)-1H-indazole and 5-bromo-6-methoxy-2-((2-(trimethylsilyl)ethoxy)methyl)-2H-indazole as brown oil (315 mg, 80%). MS m/z 357, 359 [M+H]⁺.

- Step 2: A mixture of 5-bromo-6-methoxy-1-((2-(trimethylsilyl)ethoxy)methyl)-1*H*-indazole and
 5-bromo-6-methoxy-2-((2-(trimethylsilyl)ethoxy)methyl)-2*H*-indazole (300 mg, 0.84 mmol),
 B₂(pin)₂ (235 mg, 0.924 mmol), Pd (dppf)Cl₂ (61 mg, 0.084 mmol) and KOAc (165 mg, 1.68 mmol) in 1,4-dioxane (5 mL) was stirred at 90 °C under N₂ for 3 h. The solution was concentrated to give a crude mixture of 6-methoxy-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1-((2-(trimethylsilyl)ethoxy)methyl)-1*H*-indazole and 6-methoxy-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-2-((2-(trimethylsilyl)ethoxy)methyl)-2*H*-indazole, which was used in the next
 - step without further purification. MS m/z 405 [M+H]⁺.
 - <u>Step 3:</u> A mixture of <u>6</u>-methoxy-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1-((2-(trimethylsilyl)ethoxy)methyl)-1*H*-indazole and 6-methoxy-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-2-((2-(trimethylsilyl)ethoxy)methyl)-2*H*-indazole, 6-chloro-3-(2,2,6,6-tetramethylpiperidin-4-yl)-3*H*-[1,2,3]triazolo[4,5-c]pyridazine (prepared in example 13, ste
- tetramethylpiperidin-4-yl)-3*H*-[1,2,3]triazolo[4,5-c]pyridazine (prepared in example 13, step 2, 170 mg, 0.58 mmol), Pd(dppf)Cl₂ (42 mg, 0.058 mmol) and K₂CO₃ (199 mg, 1.45 mmol) in 1,4-dioxane-H₂O (4 mL) was stirred at 90 °C under N₂ for 3 h. The solution was concentrated and the residue was purified by column chromatography on silica gel, eluting with a MeOH/CH₂Cl₂ gradient (0% to 3% MeOH) to give a mixture of 6-(6-methoxy-1-((2-
- 20 (trimethylsilyl)ethoxy)methyl)-1H-indazol-5-yl)-3-(2,2,6,6-tetramethylpiperidin-4-yl)-3H-[1,2,3]triazolo[4,5-c]pyridazine and 6-(6-methoxy-2-((2-(trimethylsilyl)ethoxy)methyl)-2H-indazol-5-yl)-3-(2,2,6,6-tetramethylpiperidin-4-yl)-3H-[1,2,3]triazolo[4,5-c]pyridazine as brown oil (217 mg, 70%). MS m/z 537 [M+H]⁺.
- Step 4: A solution of 6-(6-methoxy-1-((2-(trimethylsilyl)ethoxy)methyl)-1*H*-indazol-5-yl)-3-(2,2,6,6-tetramethylpiperidin-4-yl)-3*H*-[1,2,3]triazolo[4,5-c]pyridazine and 6-(6-methoxy-2-((2-(trimethylsilyl)ethoxy)methyl)-2*H*-indazol-5-yl)-3-(2,2,6,6-tetramethylpiperidin-4-yl)-3*H*-[1,2,3]triazolo[4,5-c]pyridazine (217 mg, 0.4 mmol) in CH₂Cl₂ (1 mL) was added TFA (912 mg, 8 mmol). The mixture was stirred at room temperature for 16 h. The mixture was concentrated to give the crude 6-(6-methoxy-1*H*-indazol-5-yl)-3-(2,2,6,6-tetramethylpiperidin-4-yl)-3*H*-

[1,2,3]triazolo[4,5-c]pyridazine trifluoroacetic acid salt, which was used in the next step without further purification (150 mg, 90%). MS m/z 407 [M+H]⁺.

Step 5: To a solution of 6-(6-methoxy-1*H*-indazol-5-yl)-3-(2,2,6,6-tetramethylpiperidin-4-yl)-3*H*-[1,2,3]triazolo[4,5-c]pyridazine (150 mg, 0.37 mmol) in CH₂Cl₂ (3 mL) was added 1 M BBr₃ in CH₂Cl₂ (3 mL, 3 mmol). The reaction was stirred at room temperature for 16 h. The reaction was quenched with MeOH (5 mL) and concentrated. The residue was dissolved in MeOH (with 2.5% NH₄OH), filtered and concentrated to give the crude product, which was purified by prep-TLC eluting with CH₂Cl/30%MeOH(with 2.5% NH₄OH) to obtain 5-(3-(2,2,6,6-tetramethylpiperidin-4-yl)-3*H*-[1,2,3]triazolo[4,5-c]pyridazin-6-yl)-1*H*-indazol-6-ol as yellow solid (70 mg, 48%).

10 MS m/z 393.8 [M+H]⁺; ¹H NMR (DMSO- d_6) δ : 12.79 (br s, 1H), 11.00 (br s, 1H), 8.98 (s, 1H), 8.32 (s, 1H), 8.06 (s, 1H), 7.06 (s, 1H), 5.58-5.87 (m, 1H), 2.17-2.35 (m, 4H), 1.43 (s, 6H), 1.26 (s, 6H); 1 H not observed (NH).

Example 27

Preparation of Compound 82

15

20

5

Step 1: A mixture of 6-methoxy-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-2,3-dihydro-1*H*-inden-1-one (1.04 g, 3.6 mmol), 6-chloro-3-(2,2,6,6-tetramethylpiperidin-4-yl)-3*H*-[1,2,3]triazolo[4,5-c]pyridazine (prepared in example 13, step 2, 882 mg, 3 mmol), Pd (dppf)Cl₂ (220 mg, 0.3 mmol) and K₂CO₃ (828 mg, 6 mmol) in 1,4-dioxane (12 mL) and water (3 mL) was stirred at 90 °C under N₂ for 3 h. The solution was concentrated and the residue was purified by silica gel column chromatography eluting with a MeOH/CH₂Cl₂ gradient (0 to 5% MeOH) to

afford 6-methoxy-5-(3-(2,2,6,6-tetramethylpiperidin-4-yl)-3H-[1,2,3]triazolo[4,5-c]pyridazin-6-yl)-2,3-dihydro-1*H*-inden-1-one as an orange-yellow solid (1 g, 79%).

MS m/z 421 [M+H]⁺; ¹H NMR (CDCl₃) δ 8.75 (s, 1H), 8.18 (s, 1H), 7.40 (d, J= 5.0 Hz, 1H), 5.85 – 5.67 (m, 1H), 3.95 (s, 3H), 3.26 – 3.13 (m, 2H), 2.88 – 2.72 (m, 2H), 2.28 (d, J= 7.3 Hz, 4H), 1.27 (d, J= 21.2 Hz, 12H).

5

15

- Step 2: A mixture of 6-methoxy-5-(3-(2,2,6,6-tetramethylpiperidin-4-yl)-3H-[1,2,3]triazolo[4,5-c]pyridazin-6-yl)-2,3-dihydro-1H-inden-1-one (210 mg, 0.5 mmol), NH₂OH·HCl (69 mg, 1 mmol) and Et₃N (0.17 mL, 1.25 mmol) in EtOH (4 mL) was stirred at 90 °C for 4 h. The reaction mixture was cooled to room temperature. The precipitate was collected by filtration, washed with
- Et₂O and dried to afford 6-methoxy-5-(3-(2,2,6,6-tetramethylpiperidin-4-yl)-3H-[1,2,3]triazolo[4,5-c]pyridazin-6-yl)-2,3-dihydro-1H-inden-1-one oxime as white solid (174 mg, 80%). MS m/z 436 [M+H]⁺;
 - Step 3: To a solution of 6-methoxy-5-(3-(2,2,6,6-tetramethylpiperidin-4-yl)-3*H*-[1,2,3]triazolo[4,5-c]pyridazin-6-yl)-2,3-dihydro-1*H*-inden-1-one oxime (66 mg, 0.15 mmol) in CH₂Cl₂ (3 mL) was added 1 M BBr₃ in CH₂Cl₂ (2 mL, 2 mmol). The reaction was stirred at room temperature for 16 h, then quenched with MeOH (5 mL) and concentrated. The residue was dissolved in MeOH (with 2.5% NH₄OH), filtered, concentrated and then purified by prep-HPLC to afford 6-hydroxy-5-(3-(2,2,6,6-tetramethylpiperidin-4-yl)-3*H*-[1,2,3]triazolo[4,5-c]pyridazin-6-yl)-2,3-dihydro-1*H*-inden-1-one oxime as yellow solid (33mg, 52%).
- 20 MS m/z 421.9 [M+H]⁺; ¹H NMR (DMSO- d_6) δ : 10.93-11.19 (m, 2H), 9.02 (s, 1H), 7.96 (s, 1H), 7.22 (s, 1H), 5.67 (tt, J=12.3, 3.4 Hz, 1H), 2.91-3.08 (m, 2H), 2.74-2.91 (m, 2H), 2.20 (dd, J=12.1, 3.3 Hz, 2H), 2.11 (t, J=12.3 Hz, 2H), 1.35 (s, 6H), 1.18 (s, 6H); 1 H not observed (NH or OH).

Example 28

Preparation of Compound 42

Step 1: A mixture of 6-chloro-N3-(2,2,6,6-tetramethyl-4-piperidyl)pyridazine-3,4-diamine (prepared in example 13, step 1, 200 mg, 0.35 mmol) in triethylorthoformate (8 mL) and aq. 4N HCl (1 drop) was stirred at 100 °C for 24 h. The crude reaction mixture was diluted with MeOH to afford a clear solution and concentrated. The residue was purified by silica gel column chromatography eluting with a MeOH (2.5% NH₄OH)/CH₂Cl₂ gradient (0 to 20% MeOH/NH₄OH) to afford 3-chloro-7-(2,2,6,6-tetramethyl-4-piperidyl)imidazo[4,5-c]pyridazine (144 mg, 70%) as a clear oil that solidified under high vacuum. MS *m/z* 294.5 [M+H]⁺.

5

10

15

20

Step 2: To a suspension of 3-chloro-7-(2,2,6,6-tetramethyl-4-piperidyl)imidazo[4,5-c]pyridazine (95 mg, 0.32 mmol) in CHCl₃ (0.5 mL) and MeOH (0.5 mL) was added *N*-bromosuccinimide (178 mg, 0.98 mmol). The reaction was heated at 70 °C for 48 h. Solvents were removed under reduced pressure and the residue was purified by silica gel column chromatography eluting with a MeOH (with 2.5 % NH₄OH)/CH₂Cl₂ gradient (0 to 10% MeOH/NH₄OH) to afford 6-bromo-3-chloro-7-(2,2,6,6-tetramethyl-4-piperidyl)imidazo[4,5-c]pyridazine (80 mg, 66%) as a white solid.

Step 3: To a solution of 6-bromo-3-chloro-7-(2,2,6,6-tetramethyl-4-piperidyl)imidazo[4,5-c]pyridazine (25 mg, 0.07 mmol) in MeOH (1 mL) was added 8 M methylamine in MeOH (63 μL, 0.5 mmol). The reaction was stirred at 50 °C until complete conversion of starting material was obtained. The reaction was concentrated and purified by silica gel column chromatography

eluting with a MeOH (with 2.5 % NH₄OH)/CH₂Cl₂ gradient (0 to 30% MeOH/NH₄OH) to afford 3-chloro-*N*-methyl-7-(2,2,6,6-tetramethyl-4-piperidyl)imidazo[4,5-c]pyridazin-6-amine (20 mg, 65%) as a clear solid. MS *m/z* 323.2 [M+H]⁺.

Step 4: A mixture of 3-chloro-*N*-methyl-7-(2,2,6,6-tetramethyl-4-piperidyl)imidazo[4,5-c]pyridazin-6-amine (20 mg, 0.062 mmol), [1,1'-bis(diphenylphosphino)ferrocene] dichloropalladium(II) (3.3 mg, 0.004 mmol), and 4-[3-(methoxymethoxy)-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl]-1-tetrahydropyran-2-yl-pyrazole (prepared in example 1, step 7, 32 mg, 0.077 mmol) in 1,4-dioxane (1 mL) was purged with argon for 10 min. Then a solution of potassium carbonate (15 mg, 0.11 mmol) in water (0.2 mL) was added and the reaction mixture
was heated to 90 °C for 3 h. The reaction was diluted with EtOAc and filtered through a small pad of Celite (washing with 20% MeOH/CH₂Cl₂). The organic solution was concentrated and purified by silica gel column chromatography eluting with a MeOH/CH₂Cl₂ gradient (0 - 20% MeOH) to afford 3-[2-(methoxymethoxy)-4-(1-tetrahydropyran-2-ylpyrazol-4-yl)phenyl]-*N*-methyl-7-(2,2,6,6-tetramethyl-4-piperidyl)imidazo[4,5-c]pyridazin-6-amine (17 mg, 68%) as a light brown solid. MS *m/z* 575.4 [M+H]⁺.

Step 5: To 3-[2-(methoxymethoxy)-4-(1-tetrahydropyran-2-ylpyrazol-4-yl)phenyl]-*N*-methyl-7-(2,2,6,6-tetramethyl-4-piperidyl)imidazo[4,5-c]pyridazin-6-amine (17 mg, 0.03 mmol) was added 4 N HCl in dioxane (1 mL, 4 mmol). The reaction was stirred for 4 h and then filtered to collect the solid precipitate. The solid was further washed with diethyl ether and dried to afford 2-[6-(methylamino)-7-(2,2,6,6-tetramethyl-4-piperidyl)imidazo[4,5-c]pyridazin-3-yl]-5-(1*H*-pyrazol-4-yl)phenol dihydrochloride as a yellow solid (12.6 mg, 60%).

20

MS m/z 447.9 [M+H]⁺; ¹H NMR (methanol- d_4) δ : 8.79 (s, 1H), 8.50-8.62 (m, 2H), 7.44-7.55 (m, 2H), 7.40 (s, 1H), 5.26-5.41 (m, 1H), 3.85 (s, 3H), 2.50-2.64 (m, 2H), 2.32-2.49 (m, 2H), 1.71 (s, 6H), 1.63 (s, 6H); 4 Hs not observed (3 NHs and OH).

Using the procedure described for Example 28, above, additional compounds described herein were prepared by substituting the appropriate starting materials, suitable reagents and reaction conditions, obtaining compounds such as those selected from:

Cpd	Data
9	MS m/z 434.4 [M+H] ⁺ , ¹ H NMR (methanol- d_4) δ : 8.15 (br s, 2H), 7.99 (s, 1H), 7.69 (d, J =8.2 Hz, 1H), 7.40 (dd, J =7.6, 1.3 Hz, 1H), 7.31 (d, J =1.9 Hz, 1H), 4.96-5.07 (m, 1H), 2.71 (t, J =13.6 Hz, 2H), 2.18 (dd, J =13.6, 3.5 Hz, 2H), 1.66 (s, 6H), 1.58 (s, 6H); 4 Hs not observed (2 OH and 2 NH).
40	MS m/z 448.2 [M+H] ⁺ ; ¹ H NMR (methanol- d_4) δ : 9.13 (s, 1H), 8.26 (s, 2H), 7.55 (d, J = 8.2 Hz, 1H), 7.38 (d, J = 1.3 Hz, 1H), 7.31 (d, J = 1.3 Hz, 1H), 5.40-5.51 (m, 1H), 4.79 (s, 3H), 2.54-2.70 (m, 4H), 1.73 (s, 6H), 1.65 (s, 6H); 3 Hs not observed (2 NHs and OH).
49	MS m/z 461.9 [M+H] ⁺ ; ¹ H NMR (methanol- d_4) δ : 8.78 (s, 1H), 8.28-8.36 (m, 2H), 7.34-7.50 (m, 2H), 7.30 (s, 1H), 5.25-5.41 (m, 1H), 4.11-4.15 (q, J = 6.0 Hz, 2H), 2.51-2.65 (m, 2H), 2.33-2.49 (m, 2H), 1.71 (s, 6H), 1.63 (s, 6H), 1.38-1.41 (t, J = 6.0 Hz, 3H); 4 Hs not observed (3 NHs and OH).

Example 29

5

10

15

Preparation of Compound 3

Step 1: An oven-dried flask was equipped with a magnetic stir bar and charged with 3-chloro-7-(2,2,6,6-tetramethylpiperidin-4-yl)-7*H*-imidazo[4,5-c]pyridazine (prepared in example 29, step 1, 60 mg, 0.15 mmol), tetrakis(triphenylphosphine)palladium(0) (25 mg, 0.015 mmol), and 4-[3-(methoxymethoxy)-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl]-1-tetrahydropyran-2-yl-pyrazole (prepared in example 1, step 7, 75 mg, 0.15 mmol), and Na₂CO₃ (46mg, 0.45 mmol). The flask was sealed with a rubber septum, and then evacuated and backfilled with argon (repeated a total of 3 X). 1,4-Dioxane (3 mL) and water (0.4 mL) were added and the reaction was heated to 90° C for 16 h. The reaction was cooled to room temperature, diluted with water (2 mL), and extracted with EtOAc (3 X). The combined organic phases were dried over Na₂SO₄,

concentrated under reduced pressure, and purified by column chromatography, eluting with a MeOH/CH₂Cl₂ gradient (0-20% MeOH) to provide 3-(2-(methoxymethoxy)-4-(1-(tetrahydro-2*H*-pyran-2-yl)-1*H*-pyrazol-4-yl)phenyl)-7-(2,2,6,6-tetramethylpiperidin-4-yl)-7*H*-imidazo[4,5-c]pyridazine (60 mg, 75%) as a yellow solid. MS *m/z* 546.2 [M+H]⁺.

Step 2: 3-(2-(Methoxymethoxy)-4-(1-(tetrahydro-2*H*-pyran-2-yl)-1*H*-pyrazol-4-yl)phenyl)-7-(2,2,6,6-tetramethylpiperidin-4-yl)-7*H*-imidazo[4,5-c]pyridazine (35 mg, 0.05 mmol) was dissolved in 1 mL of methanol. 4 N HCl in 1,4-dioxane (500 μL, 2 mmol) was added and the reaction stirred at room temperature for 2 h. The reaction was concentrated, triturated with 20% MeOH/ether, and the precipitate was filtered, and dried to afford 5-(1*H*-pyrazol-4-yl)-2-(7-(2,2,6,6-tetramethylpiperidin-4-yl)-7*H*-imidazo[4,5-c]pyridazin-3-yl)phenol (25 mg, 86%).

MS m/z 418.1 [M+H]⁺, ¹H NMR (methanol- d_4) δ : 9.19 (s, 1H), 8.86 (s, 1H), 8.15 (s, 2H), 7.86 (d, J=8.2 Hz, 1H), 7.39 (dd, J=8.2, 1.9 Hz, 1H), 7.32 (d, J=1.6 Hz, 1H), 5.39-5.58 (m, 1H), 2.68 (t, J=13.9 Hz, 2H), 2.48 (dd, J=13.9, 3.5 Hz, 2H), 1.72 (s, 6H), 1.63 (s, 6H); 3 Hs not observed (OH and 2 NHs).

Using the procedure described for Example 29, above, additional compounds described herein were prepared by substituting the appropriate starting materials, suitable reagents and reaction conditions, obtaining compounds such as those selected from:

15

20

Cpd	Data
4	MS <i>m/z</i> 438.3 [M+H] ⁺ ; ¹ H NMR (methanol- <i>d</i> ₄) δ: 9.29 (s, 1H), 8.74 (d, <i>J</i> =0.9 Hz, 1H), 8.41 (d, <i>J</i> =1.3 Hz, 2H), 7.84-7.95 (m, 2H), 5.44-5.65 (m, 1H), 2.73 (t, <i>J</i> =13.9 Hz, 2H), 2.51 (dd, <i>J</i> =13.9, 3.2 Hz, 2H), 1.74 (s, 6H), 1.65 (s, 6H); 2 Hs not observed (2 NHs).

Example 30

Preparation of Compound 5

<u>Step 1:</u> A mixture of 6-chloro-N3-(2,2,6,6-tetramethyl-4-piperidyl)pyridazine-3,4-diamine (prepared in example 13, step 1, 180 mg, 0.63 mmol) in triethylorthoacetate (4 mL) and HCOOH

(0.2 mL) was stirred at 100 °C for 24 h. The reaction was then cooled to room temperature and the precipitate was collected by filtration and dried under vacuum to afford 3-chloro-7-(2,2,6,6-tetramethyl-4-piperidyl)imidazo[4,5-c]pyridazine (112 mg, 56%). MS *m/z* 308.2 [M+H]⁺.

5

10

15

20

Step 2: An oven-dried flask was equipped with a magnetic stir bar and charged with 3-chloro-6-methyl-7-(2,2,6,6-tetramethyl-4-piperidyl)imidazo[4,5-c]pyridazine (50 mg, 0.14 mmol), tetrakis(triphenylphosphine)palladium(0) (25 mg, 0.015 mmol), 4-[3-(methoxymethoxy)-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl]-1-tetrahydropyran-2-yl-pyrazole (prepared in example 1, step 7, 75 mg, 0.15 mmol), and Na₂CO₃ (46 mg, 0.45 mmol). The flask was sealed with a rubber septum, and then evacuated and backfilled with argon (repeated a total of 3 X). 1,4-Dioxane (1 mL) and water (0.25 mL) were added and the reaction was heated to 90 °C for 16 h. The reaction was cooled to room temperature, diluted with water, and extracted with EtOAc three times. The combined organic phases were dried over Na₂SO₄, concentrated under reduced pressure, and purified by column chromatography, eluting with a MeOH/CH₂Cl₂ gradient (0-20% MeOH) to provide 3-(2-(methoxymethoxy)-4-(1-(tetrahydro-2*H*-pyran-2-yl)-1*H*-pyrazol-4-yl)phenyl)-6-methyl-7-(2,2,6,6-tetramethylpiperidin-4-yl)-7*H*-imidazo[4,5-c]pyridazine (60 mg,

Step 3: To a solution of 3-(2-(methoxymethoxy)-4-(1-(tetrahydro-2*H*-pyran-2-yl)-1*H*-pyrazol-4-yl)phenyl)-6-methyl-7-(2,2,6,6-tetramethylpiperidin-4-yl)-7*H*-imidazo[4,5-c]pyridazine (45 mg, 0.05 mmol) in 1 mL of methanol was added 4 N HCl in 1,4-dioxane (500 μL, 2 mmol). The reaction was stirred at room temperature for 2 h. The reaction was concentrated, the residue was triturated in 20% MeOH/ether, and the precipitate was filtered and dried to afford 2-(6-methyl-7-(2,2,6,6-tetramethylpiperidin-4-yl)-7*H*-imidazo[4,5-c]pyridazin-3-yl)-5-(1*H*-pyrazol-4-yl)phenol hydrochloride (30 mg, 88%) as a yellow solid.

66%) as a yellow solid. MS m/z 560.5 [M+H]⁺.

MS *m/z* 432.5 [M+H]⁺; ¹H NMR (methanol-*d*₄) δ: 8.74 (s, 1H), 8.31-8.44 (m, 2H), 7.79 (d, *J*=8.2 Hz, 1H), 7.45 (dd, *J*=8.2, 1.6 Hz, 1H), 7.37 (s, 1H), 5.05-5.20 (m, 1H), 3.02 (s, 3H), 2.96 (t, *J*=13.6 Hz, 2H), 2.30-2.40 (m, 2H), 1.71 (s, 6H), 1.63 (s, 6H); 3 Hs not observed (OH and 2 NHs).

Using the procedure described for Example 30, above, additional compounds described herein were prepared by substituting the appropriate starting materials, suitable reagents and reaction conditions, obtaining compounds such as those selected from:

Cpd	Data
6	MS m/z 452.4 [M+H] ⁺ ; ¹ H NMR (methanol- d_4) δ : 8.65 (s, 1H), 8.38 (d, J =1.6 Hz, 2H), 7.90 (dd, J =11.3, 6.0 Hz, 1H), 7.85 (dd, J =10.7, 6.0 Hz, 1H), 5.09-5.22 (m, 1H), 3.05 (s, 3H), 3.02 (t, J =13.6 Hz, 2H), 2.37 (dd, J =13.6, 3.8 Hz, 2H), 1.72 (s, 6H), 1.63 (s, 6H); 2 Hs not observed (2 NHs).

Example 31

5

10

Preparation of Compound 1

Step 1: To a solution of 3,6-dibromopyrazin-2-amine (504 mg, 2 mmol) and 2,2,6,6-tetramethylpiperidin-4-amine (0.35 mL, 2 mmol) in EtOH (2 mL) was added DIEA (0.38 mL, 2 mmol). The reaction mixture was subjected to microwave irradiation at 180 °C for 3.5 h. The reaction mixture was cooled and concentrated. The residue was purified by silica gel column chromatography eluting with a MeOH (2.5% NH₄OH)/CH₂Cl₂ gradient (0-30% MeOH/NH₄OH) to provide 5-bromo-N2-(2,2,6,6-tetramethylpiperidin-4-yl)pyrazine-2,3-diamine (0.35 g, 54%). MS *m/z* 328.0, 330.0 [M+H]⁺.

15 <u>Step-2:</u> 5-Bromo-N2-(2,2,6,6-tetramethylpiperidin-4-yl)pyrazine-2,3-diamine (0.18 mg, 0.54 mmol) was dissolved in formic acid (0.36 mL) and the resulting solution was heated to 100 °C for

3 h. The solution was concentrated to give crude 5-bromo-1-(2,2,6,6-tetramethylpiperidin-4-yl)-1*H*-imidazo[4,5-b]pyrazine (0.18 g, 97%). MS *m/z* 338.1, 340.1 [M+H]⁺.

<u>Step-3:</u> An oven-dried flask was equipped with a magnetic stir bar and charged with 5-bromo-1-(2,2,6,6-tetramethylpiperidin-4-yl)-1*H*-imidazo[4,5-b]pyrazine (50 mg, 0.15 mmol), 4-(3-

(2,2,0,0-tetramethylpiperidin-4-yi)-1/H-initidazo[4,3-b]pyrazine (30 mg, 0.13 minor), 4-(3-2) (methoxymethoxy)-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)-1-(tetrahydro-2*H*-pyran-2-yl)-1*H*-pyrazole (prepared in example 1, step 7, 62 mg, 0.15 mmol), tetrakis(triphenylphosphine)palladium(0) (25 mg, 0.015 mmol), and Na₂CO₃ (46 mg, 0.45 mmol). The flask was sealed with a rubber septum, and then evacuated and backfilled with argon (repeated a total of 3 X). 1,4-Dioxane (3 mL), water (0.4 mL) were added and the reaction was heated to 90 °C for 16 h. The reaction was cooled to room temperature, diluted with water (2 mL), and extracted with EtOAc (3 X). The combined organic phases were dried over Na₂SO₄, concentrated under reduced pressure, and purified by column chromatography, eluting with a MeOH/CH₂Cl₂ gradient (0-20% MeOH) to provide 5-(2-(methoxymethoxy)-4-(1-(tetrahydro-2*H*-

pyran-2-yl)-1*H*-pyrazol-4-yl)phenyl)-1-(2,2,6,6-tetramethylpiperidin-4-yl)-1*H*-imidazo[4,5-

- 15 b]pyrazine (60 mg, 75%) as a yellow solid. MS m/z 546.4 [M+H]⁺.
 - Step-4: 5-(2-(Methoxymethoxy)-4-(1-(tetrahydro-2H-pyran-2-yl)-1H-pyrazol-4-yl)phenyl)-1-(2,2,6,6-tetramethylpiperidin-4-yl)-1H-imidazo[4,5-b]pyrazine (30 mg, 0.05 mmol) was dissolved in methanol (1 mL), then 4 N HCl in 1,4-dioxane (500 μ L, 2 mmol) was added and the reaction stirred at room temperature for 2 h. The reaction was concentrated, triturated with 20%
- MeOH/ether, and the precipitate was filtered and dried to afford 5-(1*H*-pyrazol-4-yl)-2-(1-(2,2,6,6-tetramethylpiperidin-4-yl)-1*H*-imidazo[4,5-b]pyrazin-5-yl)phenol hydrochloride (22 mg, 86%) as a yellow solid.
- MS *m/z* 418.5 [M+H]⁺; ¹H NMR (methanol-*d*₄) δ: 9.29 (s, 1H), 8.96-9.07 (m, 1H), 8.32 (s, 2H), 8.08-8.15 (m, 1H), 7.21-7.39 (m, 2H), 5.29-5.44 (m, 1H), 2.59-2.72 (m, 2H), 2.39-2.49 (m, 2H), 1.70 (s, 6H), 1.59 (s, 6H); 3 Hs not observed (OH and 2 NHs).

Using the procedure described for Example 31, above, additional compounds described herein were prepared by substituting the appropriate starting materials, suitable reagents and reaction conditions, obtaining compounds such as those selected from:

Cpd	Data
2	MS <i>m/z</i> 438.4 [M+H] ⁺ ; ¹ H NMR (methanol- <i>d</i> ₄) δ: 9.33 (s, 1H), 9.09 (d, <i>J</i> =1.6 Hz, 1H), 8.36 (d, <i>J</i> =1.3 Hz, 2H), 7.97 (dd, <i>J</i> =11.7, 6.3 Hz, 1H), 7.77 (dd, <i>J</i> =12.0, 6.3 Hz, 1H), 5.39-5.49 (m, 1H), 2.67 (t, <i>J</i> =13.9 Hz, 2H), 2.46 (dd, <i>J</i> =13.9, 3.5 Hz, 2H), 1.71 (s, 6H), 1.61 (s, 6H). 2 Hs not observed (2 NHs).

Example 32

5

10

15

Preparation of Compound 140

Step 1: To a solution of 5-bromo-2-chloro-pyridin-3-ol (5 g, 23.9 mmol) in DMF (50 mL) was added sodium hydride (1.2 g, 30 mmol, 60 mass% in mineral oil), and the reaction mixture was stirred for 30 min at room temperature. MOMCl (2.2 mL, 29.1 mmol) was added and the reaction was stirred for an additional hour. The reaction was quenched with water and partitioned between EtOAc and water. The combined organic layers were dried over MgSO4 and concentrated. The crude product was purified by silica gel chromatography eluting with a EtOAc/hexanes gradient (0-25% EtOAc) to afford 5-bromo-2-chloro-3-(methoxymethoxy)pyridine (4.8 g) as white solid.

¹H NMR (CDCl₃) δ: 8.14 (d, *J*=2.1 Hz, 1H), 7.66 (d, *J*=2.0 Hz, 1H), 5.30 (s, 2H), 3.55 (s, 3H). <u>Step 2:</u> A mixture of 5-bromo-2-chloro-3-(methoxymethoxy)pyridine (1g, 3.96 mmol), 1- (tetrahydro-2H-pyran-2-yl)-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1H-pyrazole (1.5 g,

5.40 mmol), 1,1'-bis(diphenylphosphino)ferrocene-palladium(II)dichlormethane complex (0.33 g, 0.40 mmol) and potassium acetate (1.3 g, 13 mmol) was purged with argon. 1,4-Dioxane (12 mL) and water (3 mL) were added and the reaction mixture was heated to 90 °C for 2h. The reaction was cooled to room temperature, filtered through Celite, and washed with MeOH. The organic layers were concentrated and the residue chromatographed on silica gel, eluting with a EtOAc/hexanes gradient (0-50% EtOAc) to afford 2-chloro-3-(methoxymethoxy)-5-(1-tetrahydropyran-2-ylpyrazol-4-yl)pyridine (1.2 g, 93%).

5

10

MS m/z 324.2 [M+H]⁺, ¹H NMR (CDCl₃) δ : 8.20 (s, 1H), 7.92 (s, 1H), 7.82 (s, 1H), 7.56 (d, J=2.0 Hz, 1H), 5.42 (d, J=6.6 Hz, 1H), 5.32 (s, 2H), 4.08-4.16 (m, 1H), 3.74 (td, J=11.2, 2.8 Hz, 1H), 3.55 (s, 3H), 2.03-2.18 (m, 3H), 1.61-1.78 (m, 3H).

Step 3: To a microwave vial were added 2-chloro-3-(methoxymethoxy)-5-(1-tetrahydropyran-2-ylpyrazol-4-yl)pyridine (110 mg, 0.34 mmol), tributyl(tributylstannyl)stannane (410 mg, 0.71 mmol,), tetrkis(trihenylphosphine)palladium(0) (40 mg, 0.03 mmol), and lithium chloride (90 mg, 2.0 mmol). The mixture was purged with argon. 1,4-Dioxane (2 mL) was added, and the reaction was heated in the microwave for 1.5 h at 150 °C. The reaction was cooled to room temperature, filtered through Celite, and washed with MeOH. The organic layers were concentrated and the residue was purified using silica gel column chromatography eluting with a EtOAc/hexanes gradient (0-50% EtOAc) to afford 3-(methoxymethoxy)-5-(1-(tetrahydro-2*H*-pyran-2-yl)-1*H*-pyrazol-4-yl)-2-(tributylstannyl)pyridine (106 mg, 55%).

- 20 MS m/z 580.6 [M+H]⁺,¹H NMR (CDCl₃) δ : 8.58 (s, 1H), 8.13 (s, 1H), 7.88 (s, 1H), 7.40 (s, 1H), 5.38-5.45 (m, 1H), 4.03 (br d, J=11.6 Hz, 1H), 3.93-4.07 (m, 1H), 3.66-3.77 (m, 1H), 3.63 (s, 1H), 2.16 (s, 3H), 1.26-1.40 (m, 18H), 1.11-1.18 (m, 6H), 0.90 (t, J=7.3 Hz, 9H).
 - <u>Step 4:</u> To a microwave vial were added 3-(methoxymethoxy)-5-(1-(tetrahydro-2*H*-pyran-2-yl)-1*H*-pyrazol-4-yl)-2-(tributylstannyl)pyridine (0.11 g, 0.19 mmol), 6-chloro-3-(2,2,6,6-
- tetramethylpiperidin-4-yl)-3*H*-[1,2,3]triazolo[4,5-c]pyridazine (300 mg, 0.10 mmol) tetrkis(trihenylphosphine)palladium(0) (12 mg, 0.01 mmol) and 1,4-dioxane (2 mL). The mixture was sparged with argon and heated in the microwave for 1.5 h at 150 °C. The solvent was removed, and the crude mixture was purified by silica gel chromatography using a MeOH/CH₂Cl₂ gradient (0-15% MeOH) to afford 6-(2-(methoxymethoxy)-4-(4-methyl-1*H*-imidazol-1-
- 30 yl)phenyl)-*N*-methyl-*N*-(2,2,6,6-tetramethylpiperidin-4-yl)-1,2,4-triazin-3-amine (0.04 g, 72%)

with minor impurities. MS m/z 548.6 [M+H]⁺. The compound was used in the next step without additional purification.

Step 5: To a solution of 6-(2-(methoxymethoxy)-4-(4-methyl-1*H*-imidazol-1-yl)phenyl)-*N*-methyl-*N*-(2,2,6,6-tetramethylpiperidin-4-yl)-1,2,4-triazin-3-amine (0.02 g, 0.04 mmol) in MeOH (0.5 mL) was added 4.0 M HCl in dioxane (1 mL). The mixture was stirred for 1 h at room temperature. The solvent was removed, and the crude mixture was purified by silica gel chromatography eluting with a MeOH/CH₂Cl₂ gradient (0-15% MeOH) to afford 5-(1*H*-pyrazol-4-yl)-2-(3-(2,2,6,6-tetramethylpiperidin-4-yl)-3*H*-[1,2,3]triazolo[4,5-c]pyridazin-6-yl)pyridin-3-ol (7 mg) as yellow solid.

5

15

20

10 MS m/z 420.5 [M+H]⁺, ¹H NMR (methanol- d_4) δ : 9.13-9.20 (m, 1H), 8.48 (s, 1H), 8.17 (d, J=8.9 Hz, 1H), 7.56 (m, 2H), 5.97 (dt, J=11.1, 5.5 Hz, 1H), 2.65-2.75 (m, 4H), 1.77-1.80 (m, 6H), 1.64 (s, 6H); 3Hs not observed (1 OH and 2 NH).

Example 33

Preparation of Compound 136

Step 1: 1-Tetrahydropyran-2-yl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pyrazole (5.57 g, 20.0 mmol), 5-bromo-2-chloro-3-fluoro-pyridine (4.01 g, 19.05 mmol), [1,1'-bis(diphenylphosphino)ferrocene(dichloropalladium(II) (493.4 mg, 0.60 mmol), 1,4-dioxane (20.0 mL), and aqueous potassium carbonate (2.0 M, 12.0 mL) were combined, purged with argon and stirred at 80 °C for 3 h. The reaction was concentrated, and the residue was purified by

silica gel chromatography eluting with a EtOAc/hexanes gradient (0-60% EtOAc) to yield 2-chloro-3-fluoro-5-(1-tetrahydropyran-2-ylpyrazol-4-yl)pyridine (3.89 g, 73%). MS *m/z* 282.3 [M+H]⁺.

Step 2: Nickel(II) chloride (484.4 mg, 2.04 mmol), triphenylphosphine (2.14 g, 8.14 mmol), and N,N-dimethylformamide (11.0 mL) were combined, degassed with argon, then stirred at 50 °C for 5 45 min. 2-Chloro-3-fluoro-5-(1-tetrahydropyran-2-ylpyrazol-4-yl)pyridine (286.7 mg, 1.02 mmol) and 3-chloro-7-(2,2,6,6,-tetramethyl-4-piperidyl)-5,6-dihydropyrrolo[2,3-c]pyridazine (300.0 mg, 1.02 mmol) were added, the reaction degassed with argon, and then stirred at 50 °C for 16 h. The reaction was partitioned between CH₂Cl₂, MeOH, brine, and aqueous ammonium hydroxide 10 (30%) (roughly 9:1:5:5). The aqueous layer was extracted twice with CH₂Cl₂/MeOH (9:1) and the combined organic phases were washed with brine, dried over Na₂SO₄, and then filtered and concentrated. The residue was purified by silica gel chromatography eluting with a MeOH/CH₂Cl₂ gradient (0-30% MeOH with 2.5% v/v 30% aqueous ammonium hydroxide additive) to yield 3-[3-fluoro-5-(1-tetrahydropyran-2-ylpyrazol-4-yl)-2-pyridyl]-7-(2,2,6,6tetramethyl-4-piperidyl)-5,6-dihydropyrrolo[2,3-c]pyridazine (735.0 mg, 19%). MS m/z 506.4 15 $[M+H]^+$.

Step 3: 3-[3-Fluoro-5-(1-tetrahydropyran-2-ylpyrazol-4-yl)-2-pyridyl]-7-(2,2,6,6-tetramethyl-4-piperidyl)-5,6-dihydropyrrolo[2,3-c]pyridazine (413.7 mg, 0.82 mmol) was dissolved in methanolic sodium methoxide (25 wt %, 15.0 mL) and stirred at 50 °C for 3 h. The reaction was partitioned between CH₂Cl₂and H₂O, the aqueous layer was extracted with CH₂Cl₂and the combined organic layers were dried over Na₂SO₄, filtered and concentrated. The residue was combined with manganese dioxide (activated, 3.56 g, 41.11 mmol) in CH₂Cl₂ (6.0 mL) and stirred at 50 °C in a sealed tube for 16 h. The reaction was filtered through Celite and rinsed with minimal CH₂Cl₂. The filtrate was combined with manganese dioxide (activated, 3.7 g, 42.5 mmol) and stirred at 60 °C in a sealed tube for 24 h. The reaction was filtered through Celite, rinsed with CH₂Cl₂/MeOH, and the filtrate was concentrated. The residue was purified by silica gel chromatography eluting with a MeOH/CH₂Cl₂ gradient (0-100% MeOH with 2.5% v/v 30% aqueous ammonium hydroxide additive) to yield 3-[3-methoxy-5-(1-tetrahydropyran-2-ylpyrazol-4-yl)-2-pyridyl]-7-(2,2,6,6-tetramethyl-4-piperidyl)pyrrolo[2,3-c]pyridazine (47.3 mg, 11%). MS m/z 516.3 [M+H]⁺.

20

25

30

Step 4: 3-[3-Methoxy-5-(1-tetrahydropyran-2-ylpyrazol-4-yl)-2-pyridyl]-7-(2,2,6,6-tetramethyl-4-piperidyl)pyrrolo[2,3-c]pyridazine (47.3 mg, 0.09 mmol) and boron tribromide (1.0 M in CH₂Cl₂, 2.0 mL, 2.0 mmol) were combined and stirred at room temperature under argon for 20 h. The reaction was reverse quenched into MeOH and concentrated. The residue was chromatographed on a reversed phase C18 column, eluting with a 0-100% CH₃CN in H₂O (0.1% v/v TFA additive) gradient to yield 5-(1*H*-pyrazol-4-yl)-2-[7-(2,2,6,6-tetramethyl-4piperidyl)pyrrolo[2,3-c]pyridazin-3-yl]pyridin-3-ol dihydrochloride (33.6 mg, 75%).

5

10

MS m/z 418.4 [M+H]⁺, ¹H NMR (methanol- d_4) δ : 9.53 (s, 1H), 8.79 (d, J= 1.8 Hz, 1H), 8.71 (d, J = 3.1 Hz, 1H), 8.67 (br s, 2H), 7.86 (s, 1H), 7.20 (d, J = 3.4 Hz, 1H), 5.57 (tt, J = 13.1, 2.8 Hz, 1H), 2.61 (t, J = 13.1 Hz, 2H), 2.42 (dd, J = 13.4, 2.7 Hz, 2H), 1.74 (s, 6H), 5.55 (s, 6H), 3 Hs not observed (2 NHs and OH).

Example 34

Preparation of Compound 141 NTHP step 1 step 2 HN step 3 step 4

Step 1: Nickel(II) chloride hexahydrate (515.8 mg, 10.6 mmol), triphenylphosphine (11.1 g, 42.3 15 mmol), and N,N-dimethylformamide (52.5 mL) were combined, degassed with argon, and then stirred at 50 °C for 45 min. 2-Chloro-3-fluoro-5-(1-tetrahydropyran-2-ylpyrazol-4-yl)pyridine (1.49 g, 5.3 mmol) and 6-chloro-N3-(2,2,6,6-tetramethyl-4-piperidyl)pyridazine-3,4-diamine (1.5 g, 5.3 mmol) were added, the reaction was degassed with argon, and stirred at 50 °C for 16 h. 20

The reaction was partitioned between CH₂Cl₂, MeOH, brine, and aqueous ammonium hydroxide

(30%) (roughly 9:1:5:5). The aqueous layer was extracted twice with CH₂Cl₂/MeOH (9:1) and the combined organic phases were washed with brine, dried over Na₂SO₄, filtered and concentrated. The residue was chromatographed on a reversed phase C18 column, eluting with 0-100% CH₃CN in H₂O to yield 6-[3-fluoro-5-(1-tetrahydropyran-2-ylpyrazol-4-yl)-2-pyridyl]-N3-(2,2,6,6-tetramethyl-4-piperidyl)pyridazine-3,4-diamine (540.0 mg, 21%). MS *m/z* 495.5 [M+H]⁺.

5

10

- Step 2: 6-[3-Fluoro-5-(1-tetrahydropyran-2-ylpyrazol-4-yl)-2-pyridyl]-N3-(2,2,6,6-tetramethyl-4-piperidyl)pyridazine-3,4-diamine (102.0 mg, 0.21 mmol) was dissolved in methanolic sodium methoxide (25 wt %, 4.0 mL) and stirred at 50 °C for 2 h. The reaction was partitioned between CH₂Cl₂and H₂O, the aqueous layer extracted with CH₂Cl₂and the combined organic layers were dried over Na₂SO₄, filtered and concentrated. The residue was purified by silica gel chromatography eluting with a MeOH/CH₂Cl₂ gradient (0-100% MeOH with 2.5% v/v 30% aqueous ammonium hydroxide additive) to yield 6-[3-methoxy-5-(1-tetrahydropyran-2-ylpyrazol-4-yl)-2-pyridyl]-N3-(2,2,6,6-tetramethyl-4-piperidyl)pyridazine-3,4-diamine (48.1 mg, 46%). MS m/z 507.4 [M+H]⁺.
- Step 3: 6-[3-Methoxy-5-(1-tetrahydropyran-2-ylpyrazol-4-yl)-2-pyridyl]-N3-(2,2,6,6-tetramethyl-4-piperidyl)pyridazine-3,4-diamine (48.1 mg, 0.095 mmol), N,N-dimethylformamide (3.0 mL), and Bredereck's reagent (0.2 mL, 0.99 mmol) were combined and stirred at 100 °C for 20 min. The reaction was concentrated to dryness. The residue was partitioned between brine and CH₂Cl₂, and the aqueous layer was extracted with CH₂Cl₂. The combined organic layers were dried over Na₂SO₄, filtered and concentrated to yield 3-[3-methoxy-5-(1-tetrahydropyran-2-ylpyrazol-4-yl)-2-pyridyl]-7-(2,2,6,6-tetramethyl-4-piperidyl)imidazo[4,5-c]pyridazine (50.9 mg, 104%). MS m/z 517.3 [M+H]⁺.
- Step 4: 3-[3-Methoxy-5-(1-tetrahydropyran-2-ylpyrazol-4-yl)-2-pyridyl]-7-(2,2,6,6-tetramethyl-4-piperidyl)imidazo[4,5-c]pyridazine (50.9 mg, 0.099 mmol) and boron tribromide (1.0 M in CH₂Cl₂, 2.0 mL, 2.0 mmol) were combined and stirred at room temperature under argon for 16 h. The reaction was reverse quenched into MeOH and concentrated. The residue was purified on a reverse phase C18 column, eluting with 0-100% CH₃CN in H₂O (0.1% v/v TFA additive), and subsequently chromatographed on silica gel, eluting with 0-100% MeOH (2.5% v/v 30% aqueous ammonium hydroxide additive) in CH₂Cl₂ to yield 5-(1*H*-pyrazol-4-yl)-2-[7-(2,2,6,6-tetramethyl-4-piperidyl)imidazo[4,5-c]pyridazin-3-yl]pyridin-3-ol (12.3 mg, 25%).

MS m/z 419.4 [M+H]⁺; ¹H NMR (methanol- d_4) δ : 9.28 (s, 1H), 9.22 (s, 1H), 8.71 (s, 1H), 8.52 (s, 2H), 8.01 (s, 1H), 5.50 (br t, J= 12.7 Hz, 1H), 2.67 (br t, J= 13.0 Hz, 2H), 2.41 (br d, J= 11.6 Hz, 2H), 1.64 (s, 6H), 1.56 (s, 6H), 3 Hs not observed (2 NHs and OH).

Example 35

Preparation of Compound 117

5

10

15

20

<u>Step 1:</u> 1-Tetrahydropyran-2-yl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pyrazole (105.0 mg, 0.38 mmol), 4,7-dibromo-1*H*-benzotriazole (195.7 mg, 0.71 mmol), [1,1'-

bis(diphenylphosphino(ferrocene]dichloropalladium(II) (16.1 mg, 0.020 mmol), 1,4-dioxane (2.0 mL) and aqueous potassium carbonate (1.0 M, 1.0 mL) were combined and stirred at 80 °C for 16 h. The reaction was partitioned between EtOAc, H₂O, and AcOH, and the aqueous layer was extracted once with EtOAc. The combined organic layers were dried over Na₂SO₄, filtered and concentrated. The residue was purified using silica gel chromatography eluting with a EtOAc/hexanes gradient (0-100% EtOAc) to yield 7-bromo-4-(1-tetrahydropyran-2-ylpyrazol-4-yl)-1*H*-benzotriazole (67.6 mg, 51%). MS *m/z* 348.2 [M+H]⁺.

Step 2: 7-Bromo-4-(1-tetrahydropyran-2-ylpyrazol-4-yl)-1*H*-benzotriazole (67.6 mg, 0.19 mmol), cesium carbonate (238.5 mg, 0.73 mmol), acetonitrile (2.0 mL), and 1-(chloromethyl)-4-methoxy-benzene (70.0 μL, 0.516 mmol) were combined and stirred at room temperature for 18 h. The reaction was concentrated and the residue was partitioned between EtOAc and H₂O. The aqueous layer was extracted once with EtOAc, and the combined organic layers were dried over Na₂SO₄, filtered and concentrated. The residue was purified using silica gel chromatography eluting with a EtOAC/hexanes gradient (0-100% EtOAc) to yield 7-bromo-1-[(4-

methoxyphenyl)methyl]-4-(1-tetrahydropyran-2-ylpyrazol-4-yl)benzotriazole (26.4 mg, 29%). MS *m/z* 490.3 [M+Na]⁺.

Step 3: 7-Bromo-1-[(4-methoxyphenyl)methyl]-4-(1-tetrahydropyran-2-ylpyrazol-4yl)benzotriazole (26.4 mg, 0.056 mmol), chloro(2-dicyclohexylphosphino-2',6'-dimethoxy-1,1'biphenyl)[2-(2'-amino-1,1'-biphenyl)]palladium(II) (4.8 mg, 0.0065 mmol), 5 bis(pinacolato)diboron (18.5 mg, 0.072 mmol), and potassium acetate (dried at 250°C under vacuum immediately prior to using, 21.7 mg, 0.22 mmol), and 1,4-dioxane (1.0 mL) were combined, degassed with argon, and stirred at 110 °C for 1 h. 6-chloro-3-(2,2,6,6-tetramethyl-4piperidyl)triazolo[4,5-c]pyridazine (from Example 13, step 2, 16.6 mg, 0.0563 mmol), chloro(2-10 dicyclohexylphosphino-2',6'-dimethoxy-1,1'-biphenyl)[2-(2'-amino-1,1'-biphenyl)palladium(II) (4.1 mg, 0.006 mmol), and aqueous potassium carbonate (1.0 M, 0.5 mL) were added, the solution degassed with argon, and then stirred at 80 °C for 64 h. The reaction was partitioned between EtOAc and H₂O, and the aqueous layer was extracted once with EtOAc. The combined organic layers were dried over Na₂SO₄, filtered and concentrated. The residue was purified using silica gel chromatography eluting with a MeOH/CH₂Cl₂ gradient (0-30% MeOH) to yield 6-[3-15 [(4-methoxyphenyl)methyl]-7-(1-tetrahydropyran-2-ylpyrazol-4-yl)benzotriazol-4-yl]-3-(2,2,6,6tetramethyl-4-piperidyl)triazolo[4,5-c]pyridazine (9.2 mg, 25%). MS m/z 648.7 [M+H]⁺. Step 4: 6-[3-[(4-Methoxyphenyl)methyl]-7-(1-tetrahydropyran-2-ylpyrazol-4-yl)benzotriazol-4yl]-3-(2,2,6,6-tetramethyl-4-piperidyl)triazolo[4,5-c]pyridazine (9.2 mg, 0.014 mmol) was dissolved in trifluoroacetic acid (2.0 mL) and stirred at 60 °C for 2 h. The reaction was 20 concentrated to dryness and the residue was chromatographed on a reverse phase C18 column, eluting with 0-100% CH₃CN in H₂O (0.1% v/v TFA additive) to yield 6-[7-(1*H*-pyrazol-4-yl)-3*H*benzotriazol-4-yl]-3-(2,2,6,6-tetramethyl-4-piperidyl)triazolo[4,5-c]pyridazine;2,2,2trifluoroacetic acid (1.7 mg, 21%).

25 MS m/z 444.5 [M+H]⁺; ¹H NMR (methanol- d_4) δ : 9.24 (br s, 1H), 8.64 (s, 2H), 8.37-8.41 (m, 1H), 7.91 (d, J= 7.6 Hz, 1H), 6.03 (ddd, J= 16.1, 10.8, 5.5 Hz, 1H), 2.66-2.74 (m, 4H), 1.76-1.85 (m, 6H), 1.61-1.70 (m, 6H), 3 Hs not observed (NHs).

Example 36

Preparation of Compound 105

Step 1: To a solution of methyl 2-hydroxyacetate (218 mg, 2.37 mmol) in THF (3 mL) was added NaH (93 mg, 2.33 mmol, 60 mass%) at 0 °C. The reaction was stirred for 30 min at 0 °C, and the resultant slurry was added slowly to a solution of methyl 4,6-dichloropyridazine-3-carboxylate (500 mg, 2.37 mmol) in THF (3 mL) at 0 °C. The mixture was stirred for 30 min at room temperature. The reaction was quenched with sat. aq. NH₄Cl and diluted with EtOAc and H₂O. The organic phase was dried over Na₂SO₄ and concentrated. The residue was purified using silica gel chromatography eluting with a EtOAc/hexanes gradient (20-50% EtOAc) to yield methyl 6-chloro-4-(2-methoxy-2-oxoethoxy)pyridazine-3-carboxylate (284 mg, 46%) as a white solid. MS *m/z* 261.4 [M+H]⁺.

5

10

15

Step 2: To a solution of methyl 6-chloro-4-(2-methoxy-2-oxoethoxy)pyridazine-3-carboxylate (284 mg, 1.09 mmol) in THF (11.0 mL) was added sodium methoxide (0.22 mL, 1.2 mmol, 5.4 mol/L in MeOH) dropwise at room temperature. The reaction was stirred at room temperature for 15 min, then quenched with 1 M HCl. The mixture was partitioned between H₂O and EtOAc, and the organic phases were collected and washed with brine and concentrated to afford methyl 3-chloro-7-hydroxyfuro[3,2-c]pyridazine-6-carboxylate (230 mg, 92%) as an off-white solid. MS m/z 229.2 [M+H]⁺.

20 <u>Step 3:</u> A mixture of 1,1'-bis(diphenylphosphino)ferrocene-palladium(II)dichloride dichloromethane complex (18 mg, 0.022 mmol), 4-(3-(methoxymethoxy)-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)-1-(tetrahydro-2*H*-pyran-2-yl)-1*H*-pyrazole (118 mg, 0.29 mmol),

methyl 3-chloro-7-hydroxyfuro[3,2-c]pyridazine-6-carboxylate (50 mg, 0.22 mmol), and aqueous 2 M K₂CO₃ (0.22 mL, 0.44 mmol) in dioxane (1 mL) was sparged with argon for 10 minutes, then heated to 90 °C for 3 h. The reaction was cooled to room temperature and filtered through Celite, washing with MeOH. The organic layers were concentrated and the residue was purified using silica gel chromatography eluting with a MeOH/CH₂Cl₂ gradient (5-20% MeOH) to yield methyl 7-hydroxy-3-(2-(methoxymethoxy)-4-(1-(tetrahydro-2*H*-pyran-2-yl)-1*H*-pyrazol-4-yl)phenyl)furo[3,2-c]pyridazine-6-carboxylate (75 mg, 71%) as a light brown solid. MS *m/z* 481.4 [M+H]⁺.

5

- Step 4: To a solution of methyl 7-hydroxy-3-(2-(methoxymethoxy)-4-(1-(tetrahydro-2*H*-pyran-2-yl)-1*H*-pyrazol-4-yl)phenyl)furo[3,2-c]pyridazine-6-carboxylate (280 mg, 0.58 mmol) in DMSO (7 mL) was added aq. 1M NaOH (1.5 mL, 1.5 mmol). The reaction was heated to 50 °C for 1 h, then cooled to room temperature. DMF (7 mL), Cs₂CO₃ (360 mg, 1.1 mmol) and 1,1,1-trifluoro-*N*-phenyl-*N*-((trifluoromethyl)sulfonyl)methanesulfonamide (300 mg, 0.84 mmol) were added, and the mixture stirred at room temperature for 1 h. The reaction mixture was partitioned between CH₂Cl₂ and H₂O, and the aqueous layer was extracted once with CH₂Cl₂. The organic phase was dried over Na₂SO₄, concentrated, and the residue was purified using silica gel chromatography eluting with a EtOAc/hexanes gradient (20-60% EtOAc) to yield 3-(2-(methoxymethoxy)-4-(1-(tetrahydro-2*H*-pyran-2-yl)-1*H*-pyrazol-4-yl)phenyl)furo[3,2-c]pyridazin-7-yl trifluoromethanesulfonate (43 mg, 13%) as a white solid. MS *m/z*, 555.2 [M+H][†].
- Step 5: A mixture of 2,2,6,6-tetramethyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1,2,3,6-tetrahydropyridine (27 mg, 0.10 mmol), 1'-bis(diphenylphosphino)ferrocene-palladium(II)dichloride dichloromethane complex (7 mg, 0.0085 mmol), 3-(2-(methoxymethoxy)-4-(1-(tetrahydro-2*H*-pyran-2-yl)-1*H*-pyrazol-4-yl)phenyl)furo[3,2-c]pyridazin-7-yl trifluoromethanesulfonate (43 mg, 0.078 mmol), and aqueous 2 M K₂CO₃ (0.12 mL, 0.24 mmol) in dioxane (0.5 mL) was sparged with argon for 10 minutes, then heated to 90 °C for 2 h. The reaction was cooled to room temperature and filtered over celite, washing with MeOH. The organic layers were collected and the residue was purified using silica gel chromatography eluting with a MeOH/CH₂Cl₂ gradient (0-50% MeOH) to yield 3-(2-(methoxymethoxy)-4-(1-(tetrahydro-2*H*-pyran-2-yl)-1*H*-pyrazol-4-yl)phenyl)-7-(2,2,6,6-tetramethyl-1,2,3,6-tetrahydropyridin-4-yl)furo[3,2-c]pyridazine (7 mg, 16%) as a yellow film. MS *m/z* 544.5 [M+H]⁺.

Step 6: 3-(2-(Methoxymethoxy)-4-(1-(tetrahydro-2*H*-pyran-2-yl)-1*H*-pyrazol-4-yl)phenyl)-7-(2,2,6,6-tetramethyl-1,2,3,6-tetrahydropyridin-4-yl)furo[3,2-c]pyridazine (7 mg, 0.013 mmol) was dissolved in MeOH (0.5 mL). HCl (0.3 mL, 1.2 mmol, 4M in dioxane) was added and the reaction was stirred at 40 °C for 30 min. The reaction was concentrated and the residue was purified by reverse-phase column chromatography, eluting with 0 - 100 % MeCN/H₂O (0.1% TFA). The product was dissolved in HCl (2 mL, 1.25 M in MeOH) and concentrated to afford 5-(1*H*-pyrazol-4-yl)-2-(7-(2,2,6,6-tetramethyl-1,2,3,6-tetrahydropyridin-4-yl)furo[3,2-c]pyridazin-3-yl)phenol hydrochloride as a yellow film (2.0 mg, 34%).

5

15

20

25

MS m/z 416.5 [M+H]⁺; ¹H NMR (methanol- d_4) δ : 8.96 (s, 1H), 8.81 (s, 1H), 8.39 (br s, 2H), 7.92 (d, J = 8.2 Hz, 1H), 7.47 (d, J = 7.6 Hz, 1H), 7.40 (s, 1H), 7.19 (s, 1H), 2.85 (s, 2H), 1.72 (s, 6H), 1.60-1.66 (m, 6H), 3Hs not observed (2 NHs and OH).

Example 37 Preparation of Compound 163

Step 1: A mixture of Pd₂(dba)₃ (4.3 mg, 0.0047 mmol), (Me)₄tButylXPhos (5.8 mg, 0.012 mmol), toluene (0.6 mL) and 1,4-dioxane (0.15 mL) was sparged with argon, then heated to 120 °C for 5 min and cooled to room temperature. Anhydrous K₃PO₄ (41.0 mg, 0.19 mmol), triazole (9.5 mg, 0.11 mmol), and 3-(methoxymethoxy)-4-(3-(2,2,6,6-tetramethylpiperidin-4-yl)-3*H*-[1,2,3]triazolo[4,5-c]pyridazin-6-yl)phenyl trifluoromethanesulfonate (Example 13, step 4, 50.0 mg, 0.091 mmol) were added and the reaction mixture was sparged with argon and stirred at 120 °C for 2 h. Upon completion, the mixture was cooled to room temperature, concentrated and the residue was purified by column chromatography on silica gel, eluting with a MeOH//CH₂Cl₂ gradient (0-30% MeOH) to give 6-(2-(methoxymethoxy)-4-(2*H*-1,2,3-triazol-2-yl)phenyl)-3-(2,2,6,6-tetramethylpiperidin-4-yl)-3*H*-[1,2,3]triazolo[4,5-c]pyridazine (30.0 mg, 71% yield) as a light yellow solid. MS m/z 464.4 [M+H]⁺.

Step 2: 6-(2-(Methoxymethoxy)-4-(2*H*-1,2,3-triazol-2-yl)phenyl)-3-(2,2,6,6-tetramethylpiperidin-4-yl)-3*H*-[1,2,3]triazolo[4,5-c]pyridazine (30.0 mg, 0.065 mmol) was dissolved in methanol (0.5 mL) and HCl in dioxane (1.0 mL, 4.0 mmol, 4.0 mol/L) was added. The reaction mixture was stirred at 45 °C for 1 h and then concentrated. The residue was purified by column chromatography on silica gel, eluting with a MeOH/NH₄OH/CH₂Cl₂ gradient (0-30% MeOH/2.5%NH₄OH) to yield 2-(3-(2,2,6,6-tetramethylpiperidin-4-yl)-3*H*-[1,2,3]triazolo[4,5-c]pyridazin-6-yl)-5-(2*H*-1,2,3-triazol-2-yl)phenol (19.0 mg, 70% yield) as a yellow solid.

5

10

15

MS m/z 420.5 [M+H]⁺; 1 H NMR (methanol- d_4) δ : 9.09 (s, 1H), 8.19-8.25 (m, 1H), 7.98 (s, 2H), 7.71-7.83 (m, 2H), 5.74-5.94 (m, 1H), 2.31-2.41 (m, 4H), 1.53 (s, 6H), 1.37 (s, 6H); 2 Hs not observed (NH and OH).

Example 38

Preparation of Compound 171

Step 1: To a solution of 3,4,6-trichloropyridazine (20.04 g, 106 mmol) in a mixture of THF and DMSO (5:1, 200 mL) was added sodium benzenesulfinate (18.6 g, 111.1 mmol) and the mixture was stirred vigorously at room temperature. Full conversion was observed in 40 minutes. After completion, the reaction mixture was diluted with EtOAc (100 mL) and washed with water and

brine. The combined organic phases were dried over MgSO₄. The solvent volume was reduced by evaporation. Recrystallization from EtOAc/hexanes yielded 3,6-dichloro-4-(phenylsulfonyl)pyridazine (28.5 g, 93% yield) as a white solid.

MS m/z 289.0 [M+H]⁺; ¹H NMR (CDCl₃) δ: 8.34 (s, 1H), 8.07 - 7.98 (m, 2H), 7.80 - 7.74 (m, 1H), 7.68 - 7.61 (m, 2H).

5

10

15

20

25

30

Step 2: To a round bottom flask were added 3,6-dichloro-4-(phenylsulfonyl)pyridazine (1.0 g, 3.46 mmol), (3*S*,4*S*)-3-fluoro-2,2,6,6-tetramethylpiperidin-4-amine (1.3 g, 5.2 mmol), K₂CO₃ (2.18 g, 15.6 mmol) and dioxane (14.0 mL). The mixture was stirred at 100 °C for 16 h, then cooled to room temperature. The reaction was partitioned between EtOAc and water. The organic phase was washed with brine, dried over MgSO₄, and the solvent was removed in vacuo to provide crude 6-chloro-*N*-((3*S*,4*S*)-3-fluoro-2,2,6,6-tetramethylpiperidin-4-yl)-4-(phenylsulfonyl)pyridazin-3-amine which was used in the next step without further purification.

MS m/z 427.2, 429.2 [M+H]⁺; 1 H NMR (CDCl₃) δ: 8.00 - 7.93 (m, 2H), 7.77 (s, 1H), 7.76 - 7.73 (m, 1H), 7.64-7.61 (m, 2H), 6.73 (d, J = 7.9 Hz, 1H), 5.04 - 4.88 (m, 1H), 4.34 (d, J = 50.0 Hz, 1H), 1.81 - 1.72 (m, 1H), 1.61 - 1.49 (m, 1H), 1.29 (s, 6H), 1.22 (s, 6H); 1H (NH) not observed.

Step 3: The crude mixture from Step 2 was dissolved in dioxane (8 mL) and DMSO (2 mL). NaN₃ (400.0 mg, 6.15 mmol) was added, and the mixture was stirred at 50 °C for 16 h, and then cooled to room temperature. The reaction mixture was diluted with EtOAc and washed with brine (4 times) to remove DMSO. The combined organic phases were dried over MgSO₄ and concentrated to provide crude 4-azido-6-chloro-*N*-((3*S*,4*S*)-3-fluoro-2,2,6,6-tetramethylpiperidin-4-yl)pyridazin-3-amine as a dark brown oil which was used in the next step without further purification.

MS m/z 328.2, 330.2 [M+H]⁺; ¹H NMR (CDCl₃) δ : 6.88 (s, 1H), 4.90 - 4.69 (m, 2H), 4.33 (d, J = 50.0 Hz, 1H), 1.73 - 1.63 (m, 1H), 1.46 - 1.35 (m, 1H), 1.23 (s, 6H), 1.11 (s, 6H); 1H (NH) not observed.

Step 4: The crude product from Step 3 was dissolved in CH₂Cl₂ (10 mL) and AcOH (2 mL) and the mixture was cooled at 0 °C. Zinc mesh (640.0 mg, 9.8 mmol) was added portionwise and the mixture was stirred for 3 h at 0 °C. Upon completion, the reaction was quenched with aqueous saturated NaHCO₃. The organic phase was washed with brine, dried over MgSO₄, and the solvent was removed in vacuo. The crude product was purified by column chromatography on silica gel,

eluting with a MeOH/CH₂Cl₂ gradient (0-30% MeOH) to yield 6-chloro-N3-((3*S*,4*S*)-3-fluoro-2,2,6,6-tetramethylpiperidin-4-yl)pyridazine-3,4-diamine (860.0 mg, 82% yield over 3 steps).

MS m/z 302.2, 304.2 [M+H]⁺; ¹H NMR (DMSO- d_6) δ : 6.46 (s, 2H), 6.41 (s, 1H), 6.02 (d, J = 7.5 Hz, 1H), 4.76 - 4.62 (m, 1H), 4.45 (d, J = 55.0 Hz, 1H), 1.61 - 1.54 (m, 2H), 1.23 (s, 3H), 1.22 (s, 3H), 1.13 (s, 3H), 1.09 (s, 3H); 1H (NH) not observed.

5

10

20

25

30

Step 5: A solution of 6-chloro-N3-((3*S*,4*S*)-3-fluoro-2,2,6,6-tetramethylpiperidin-4-yl)pyridazine-3,4-diamine (860 mg, 2.8 mmol) in AcOH (6 mL) was cooled to 0 °C. NaNO₂ (280 mg, 4.0 mmol) was dissolved in water (1 mL) and the solution was slowly added dropwise to the reaction mixture. The mixture was then gradually warmed to room temperature and stirred for 1 h at room temperature. After completion, the solvent was removed in vacuo and the residue was purified by column chromatography on silica gel, eluting with a MeOH/CH₂Cl₂ gradient (0-10% MeOH) to provide 6-chloro-3-((3*S*,4*S*)-3-fluoro-2,2,6,6-tetramethylpiperidin-4-yl)-3*H*-[1,2,3]triazolo[4,5-c]pyridazine bishydrochloride (450 mg, 50% yield).

MS m/z 313.1, 315.1 [M+H]⁺; ¹H NMR (DMSO- d_6) δ : 9.87 (br s, 1H), 8.96 (s, 1H), 8.59 (br s, 1H), 6.31 - 6.16 (m, 1H), 5.30 (d, J = 45.0 Hz, 1H), 3.08 (t, J = 13.6 Hz, 1H), 2.61 - 2.54 (m, 1H), 1.73 (s, 3H), 1.66 (s, 3H), 1.61 (s, 3H), 1.52 (s, 3H); extra 2Hs are due to bis HCl salt.

Step 6: A dry screw cap vial was charged with 6-chloro-3-((3*S*,4*S*)-3-fluoro-2,2,6,6-tetramethylpiperidin-4-yl)-3*H*-[1,2,3]triazolo[4,5-c]pyridazine (200.0 mg, 0.64 mmol), Pd(PPh₃)₄ (70.0 mg, 10 mol%) and 2-(4-chloro-2-(methoxymethoxy)phenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (270.0 mg, 0.90 mmol). The vial was evacuated under vacuum and purged with argon, followed by the addition of dioxane (2.2 mL) and aqueous K₂CO₃ solution (2.0 M, 0.8 mL, 1.92 mmol). The mixture was heated at 70 °C for 16 h. After completion, the solvent was removed in vacuo and the residue was purified by column chromatography on silica gel, eluting with a MeOH/CH₂Cl₂ gradient (0-15% MeOH) to yield 6-(4-chloro-2-(methoxymethoxy)phenyl)-3-((3*S*,4*S*)-3-fluoro-2,2,6,6-tetramethylpiperidin-4-yl)-3*H*-[1,2,3]triazolo[4,5-c]pyridazine (279.0 mg, 97%) as a brownish solid. MS m/z 449.4, 451.4 [M+H]⁺.

Step 7: A dry screw cap vial was charged with 6-(4-chloro-2-(methoxymethoxy)phenyl)-3-((3*S*,4*S*)-3-fluoro-2,2,6,6-tetramethylpiperidin-4-yl)-3*H*-[1,2,3]triazolo[4,5-c]pyridazine (40.0 mg, 0.9 mmol), bis(pinacolato)diboron (30.0 mg, 0.12 mmol), Pd X-Phos G3 (4.0 mg, 0.05 mmol) and KOAc (18.0 mg, 0.18 mmol). The vial was evacuated under vacuum and backfilled with argon. The argon/vacuum cycle was performed at least three times and then dioxane (0.5 mL) was added

to the vial under Ar pressure. The reaction was then heated at $100 \,^{\circ}\text{C}$ for 2 h. $3\text{-}((3S,4S)\text{-}3\text{-Fluoro-}2,2,6,6\text{-tetramethylpiperidin-}4\text{-yl})\text{-}6\text{-}(2\text{-}(methoxymethoxy})\text{-}4\text{-}(4,4,5,5\text{-tetramethyl-}1,3,2\text{-}dioxaborolan-}2\text{-yl})\text{phenyl})\text{-}3H\text{-}[1,2,3]\text{triazolo}[4,5\text{-c}]\text{pyridazine was used for the next step without isolation. MS m/z 541.4 [M+H]⁺.$

- 5 Step 8: To the mixture from Step 7, was added 2 M aqueous K₂CO₃ (0.1 mL), Pd X-Phos G3 (4.0 mg, 0.05 mmol) and 4-bromo-1-methylpyridin-2(1H)-one (20.0 mg, 0.11 mmol). The reaction was then heated at 100 °C for 12 h. The crude product was purified by column chromatography on silica gel, eluting with a MeOH/CH₂Cl₂ gradient (0-30% MeOH) to yield 4-(4-(3-((3S,4S)-3-fluoro-2,2,6,6-tetramethylpiperidin-4-yl)-3*H*-[1,2,3]triazolo[4,5-c]pyridazin-6-yl)-3-
- 10 (methoxymethoxy)phenyl)-1-methylpyridin-2(1H)-one (35 mg, 75% yield). MS m/z 522.4 $[M+H]^+$.
 - Step 9: To the solution of 4-(4-(3-((3*S*,4*S*)-3-fluoro-2,2,6,6-tetramethylpiperidin-4-yl)-3*H*-[1,2,3]triazolo[4,5-c]pyridazin-6-yl)-3-(methoxymethoxy)phenyl)-1-methylpyridin-2(1H)-one (35.0 mg, 0.067 mmol) in dichloromethane (1.0 mL) and MeOH (100 μL) was added 2.0 M HCl in Et₂O (1.5 mL, 0.75 mmol) and the reaction mixture was stirred at room temperature for 5 h. The solvent volume was reduced by evaporation. The residue was purified by column chromatography on silica gel, eluting with a MeOH/NH₄OH/CH₂Cl₂ gradient (0-30% MeOH/2.5%NH₄OH) to yield 4-(4-(3-((3*S*,4*S*)-3-fluoro-2,2,6,6-tetramethylpiperidin-4-yl)-3*H*-[1,2,3]triazolo[4,5-c]pyridazin-6-yl)-3-hydroxyphenyl)-1-methylpyridin-2(1H)-one (16.0 mg, 50% yield) as a tan solid.

15

20

MS m/z 478.4 [M+H]⁺; ¹H NMR (methanol- d_4) δ : 9.19 (s, 1H), 8.23 (d, J = 7.9 Hz, 1H), 8.00 (br d, J = 6.9 Hz, 1H), 7.49 - 7.36 (m, 2H), 7.15 - 7.04 (m, 2H), 6.30 - 6.21 (m, 1H), 5.42 (d, J = 50 Hz 1H), 3.79 (s, 3H), 3.55 - 3.45 (m, 1H), 2.80 - 2.69 (m, 1H), 1.88 (s, 3H), 1.81 (s, 3H), 1.74 (s, 3H), 1.67 (s, 3H); 2Hs not observed (NH and OH).

Using the procedure described for Example 38, above, additional compounds described herein were prepared by substituting the appropriate starting materials, suitable reagents and reaction conditions, obtaining compounds such as those selected from:

Cpd	Data
164	MS m/z 437.3 [M+H] ⁺ ; ¹ H NMR (DMSO- d_6) δ : 10.74 - 10.49 (m, 1H), 9.22 (s, 1H), 8.47 (br d, $J = 12.2$ Hz, 1H), 8.15 (s, 2H), 8.13 - 8.05 (m, 1H), 7.32 (br s, 2H), 6.32 - 6.16 (m, 1H), 5.37 (d, $J = 45$ Hz, 1H), 3.09 (t, $J = 13.6$ Hz, 1H), 2.67 - 2.57 (m, 1H), 1.79 (s, 3H), 1.71 (s, 3H), 1.68 - 1.61 (m, 3H), 1.61 - 1.49 (m, 3H); 1H not observed (OH).
168	MS m/z 437.3 [M+H] ⁺ ; ¹ H NMR (methanol- d_4) δ : 9.19 (s, 1H), 8.70 (s, 2H), 8.16 (d, J = 8.1 Hz, 1H), 7.47 - 7.39 (m, 2H), 6.22 - 6.10 (m, 1H), 5.52 (dd, J =50.0, 10.0 Hz, 1H), 3.17 - 3.05 (m, 1H), 2.73 - 2.62 (m, 1H), 1.89 - 1.79 (m, 6H), 1.75 (s, 3H), 1.68 (s, 3H); 3Hs not observed (OH and 2 NHs).
170	MS m/z 405.5 [M+H] ⁺ ; ¹ H NMR (methanol- d_4) δ : 9.00 (s, 1H), 8.03 (br d, J =8.2 Hz, 3H), 7.16-7.37 (m, 2H), 5.44-5.61 (m, 1H), 3.52-3.65 (m, 1H), 3.13-3.19 (m, 2H), 2.93 (br dd, J =9.2, 2.5 Hz, 2H), 1.21 (s, 9H); 3 Hs not observed (2NHs and OH).
172	MS m/z 479.5 [M+H] ⁺ ; ¹ H NMR (methanol- d_4) δ : 9.22 (s, 1H), 9.08 (s, 1H), 8.25 (d, $J = 8.1$ Hz, 1H), 7.68 - 7.55 (m, 2H), 7.04 (s, 1H), 6.36 - 6.15 (m, 1H), 5.42 (d, $J = 55.0$ Hz, 1H), 3.72 - 3.65 (m, 1H), 3.68 (s, 4H), 2.75 (br d, $J = 12.2$ Hz, 1H), 1.88 (s, 3H), 1.81(s, 3H), 1.74 (s, 3H), 1.67 (s, 3H); 2Hs not observed (NH and OH).
173	MS m/z 455.4 [M+H] ⁺ ; ¹ H NMR (DMSO- d_6) δ : 12.69 (s, 1H), 11.55 (s, 1H), 9.15 (s, 1H), 8.26 (s, 1H), 8.11 (d, $J = 10$ Hz, 1H), 7.29 – 7.26 (m, 2H), 6.10-5.90 (m, 1H), 5.95 (d, $J = 55$ Hz, 1H), 2.67 - 2.57 (m, 1H), 2.19-2.25 (m, 1H), 1.41 (s, 3H), 1.34 (s, 3H), 1.26 (m, 3H), 1.14 (m, 3H); 1H not observed.
175	MS m/z 419.5 [M+H] ⁺ ; ¹ H NMR (methanol- d_4) δ : 9.00 (s, 1H), 8.02 (br d, J =8.1 Hz, 3H), 7.24-7.30 (m, 2H), 5.92-6.00 (m, 1H), 4.30 (br t, J =8.0 Hz, 1H), 2.98-3.06 (m, 1H), 2.75 (br dd, J =8.6, 4.0 Hz, 1H), 2.55-2.67 (m, 3H), 1.99-2.11 (m, 1H), 1.45 (s, 9H); 3 Hs not observed (2 NHs and OH).

BIOLOGICAL EXAMPLES

5

10

The following *in vitro* biological examples demonstrate the usefulness of the compounds of the present description for treating Huntington's disease.

To describe in more detail and assist in understanding the present description, the following non-limiting biological examples are offered to more fully illustrate the scope of the description and are not to be construed as specifically limiting the scope thereof. Such variations of the present description that may be now known or later developed, which would be within the

purview of one skilled in the art to ascertain, are considered to fall within the scope of the present description and as hereinafter claimed.

Compounds of Formula (I) were tested using the Meso Scale Discovery (MSD) Assay provided in International Application No. PCT/US2016/066042, filed on December 11, 2016 and claiming priority to United States Provisional Application U.S. 62/265,652 filed on December 10, 2015, the entire contents of which are incorporated herein by reference.

The Endogenous Huntingtin Protein assay used in Example 1 was developed using the ELISA-based MSD electrochemiluminescence assay platform.

Example 1

Endogenous Huntingtin Protein Assay

5

10

15

20

25

Meso Scale Discovery (MSD) 96-well or 384-well plates were coated overnight at 4°C with MW1 (expanded polyglutamine) or MAB2166 monoclonal antibody (for capture) at a concentration of 1 μ g/mL in PBS (30 μ L per well). Plates were then washed three times with 300 μ L wash buffer (0.05% Tween-20 in PBS) and blocked (100 μ L blocking buffer; 5% BSA in PBS) for 4-5 hours at room temperature with rotational shaking and then washed three times with wash buffer.

Samples (25 μ L) were transferred to the antibody-coated MSD plate and incubated overnight at 4°C. After removal of the lysates, the plate was washed three times with wash buffer, and 25 μ L of #5656S (Cell signaling; rabbit monoclonal) secondary antibody (diluted to 0.25 μ g/mL in 0.05% Tween-20 in blocking buffer) was added to each well and incubated with shaking for 1 Hour at room temperature. Following incubation with the secondary antibody, the wells were rinsed with wash buffer after which 25 μ L of goat anti-rabbit SULFO TAG secondary detection antibody (required aspect of the MSD system) (diluted to 0.25 μ g/mL in 0.05% Tween-20 in blocking buffer) was added to each well and incubated with shaking for 1 hour at room temperature. After rinsing three times with wash buffer, 150 μ L of read buffer T with surfactant (MSD) were added to each empty well, and the plate was imaged on a SI 6000 imager (MSD) according to manufacturers' instructions provided for 96- or 384-well plates. The resulting IC₅₀ values (μ M) for compounds tested are shown in Table 1.

As shown in Table 1, test compounds described herein had the following IC $_{50}$ values, an IC $_{50}$ value between > 3 μ M and \leq 9 μ M is indicated by a single star (*), an IC $_{50}$ value between > 1 μ M and \leq 3 μ M is indicated by two stars (**), an IC $_{50}$ value between > 0.5 μ M and \leq 1 μ M is indicated by three stars (***), an IC $_{50}$ value between > 0.1 μ M and \leq 0.5 μ M is indicated by four stars (****) and an IC $_{50}$ value of \leq 0.1 μ M is indicated by five stars (*****).

Table 1

5

Cpd	IC50	Cpd	IC50	Cpd	IC50
1	****	62	****	121	****
2	****	63	****	122	**
3	****	64	**	123	*
4	****	65	***	124	****
5	****	66	****	125	****
6	***	67	****	126	****
7	****	68	****	127	****
8	**	69	****	128	****
9	**	70	****	129	****
10	****	71	****	130	****
11	**	72	****	131	****
12	****	73	****	132	***
13	****	74	****	133	****
14	***	75	***	134	****
15	**	76	***	135	****
16	****	77	****	136	****
17	****	78	**	137	****
18	****	79	***	138	***
19	**	80	****	139	***
20	****	81	**	140	****
21	**	82	***	141	****
22	****	83	****	142	****
23	****	84	**	143	****
24	****	85	**	144	****
25	****	86	**	145	**
26	****	87	****	146	**
27	****	88	***	147	**
28	**	89	***	148	****

Cpd	IC50	Cpd	IC50	Cpd	IC50
29	****	90	****	149	**
30	***	91	**	150	****
31	****	92	**	151	****
32	****	93	****	152	***
33	***	94	***	153	****
34	****	95	****	154	****
35	****	96	****	155	*
36	****	97	****	156	***
37	****	98	****	157	****
38	****	99	****	158	****
39	****	100	**	159	****
40	*	101	***	160	***
42	****	102	****	161	****
43	***	103	****	162	****
46	***	104	****	163	****
47	**	105	****	164	****
48	****	107	****	165	****
49	**	108	****	166	****
50	****	109	****	167	**
51	****	110	****	168	****
52	***	111	****	169	****
53	****	112	****	170	**
54	****	113	****	171	****
55	****	114	**	172	****
56	****	115	****	173	****
57	****	116	****	174	****
58	****	117	*	175	***
59	****	118	**	176	****
60	**	119	****		
61	**	120	****		

Without regard to whether a document cited herein was specifically and individually indicated as being incorporated by reference, all documents referred to herein are incorporated by reference into the present application for any and all purposes to the same extent as if each individual reference was fully set forth herein.

Having now fully described the subject matter of the claims, it will be understood by those having ordinary skill in the art that the same can be performed within a wide range of equivalents without affecting the scope of the subject matter or particular aspects described herein. It is intended that the appended claims be interpreted to include all such equivalents.

5

What is claimed is:

1. A compound comprising, a compound of Formula (I):

$$W_1$$
 W_4 R_2 W_5 R_1 (I)

5 or a form thereof, wherein:

10

15

20

25

the dashed lines represent one or more double bonds optionally present where allowed by available valences;

W₁ is independently C-R_a, CH-R_a, N, N-R_b, O, or S where allowed by available valences;

W₂ is independently C-R_a, CH-R_a, N, or N-R_b where allowed by available valences, and;

W₃ is independently C, CH, or N where allowed by available valences;

wherein at least one of W₁, W₂, or W₃ is N or N-R_b;

W₄ and W₅ are independently C-R_a or N,

wherein when W₁ is S or O, W₂ is C-R_a, and W₃ is C;

 R_a is, in each instance, independently selected from hydrogen, cyano, halogen, hydroxy, $C_{1\text{-}6}alkyl, \, deutero-C_{1\text{-}4}alkyl, \, halo-C_{1\text{-}6}alkyl, \, C_{1\text{-}6}alkoxy, \, halo-C_{1\text{-}6}alkoxy, \\ C_{1\text{-}6}alkoxy-C_{1\text{-}6}alkyl, \, amino, \, C_{1\text{-}6}alkyl-amino, \, (C_{1\text{-}6}alkyl)_2-amino, \, amino-C_{1\text{-}6}alkyl, \\ and \, hydroxy-C_{1\text{-}6}alkyl;$

R_b is selected from hydrogen and C₁₋₆alkyl;

R₁ is selected from C₃₋₁₀cycloalkyl and heterocyclyl,

wherein heterocyclyl is a saturated or partially unsaturated 3-7 membered monocyclic,

6-10 membered bicyclic or 13-16 membered polycyclic ring system having 1, 2, or

3 heteroatom ring members independently selected from N, O, or S, and

wherein, each instance of $C_{3\text{--}10}$ cycloalkyl and heterocyclyl is optionally substituted with one, two or three R_3 substituents and optionally, with one additional R_4 substituent,

or,

wherein, alternatively, each instance of C_{3-10} cycloalkyl and heterocyclyl is optionally substituted with one, two, three, or four R_3 substituents;

R₂ is selected from phenyl, heterocyclyl, and heteroaryl,

wherein heterocyclyl is a saturated or partially unsaturated 3-7 membered monocyclic, 6-10 membered bicyclic or 13-16 membered polycyclic ring system having 1, 2, or 3 heteroatom ring members independently selected from N, O, or S,

- wherein heteroaryl is a 3-7 membered monocyclic or 6-10 membered bicyclic ring system having 1, 2, 3, or 4 heteroatom ring members independently selected from N, O, or S, and
- wherein, each instance of phenyl, heterocyclyl, and heteroaryl is optionally substituted with one, two, or three R_5 substituents, and optionally, with one additional R_6 substituent:
- R_3 is, in each instance, independently selected from cyano, halogen, hydroxy, $C_{1\text{-}6}$ alkyl, deutero- $C_{1\text{-}4}$ alkyl, halo- $C_{1\text{-}6}$ alkyl, $C_{1\text{-}6}$ alkoxy, halo- $C_{1\text{-}6}$ alkoxy, $C_{1\text{-}6}$ alkyl, amino, $C_{1\text{-}6}$ alkyl-amino, $(C_{1\text{-}6}$ alkyl)₂-amino, amino- $C_{1\text{-}6}$ alkyl, and hydroxy- $C_{1\text{-}6}$ alkyl;

R₄ is selected from C₃₋₁₀cycloalkyl, phenyl, heteroaryl, and heterocyclyl,

- wherein heterocyclyl is a saturated or partially unsaturated 3-7 membered monocyclic, 6-10 membered bicyclic or 13-16 membered polycyclic ring system having 1, 2, or 3 heteroatom ring members independently selected from N, O, or S,
- wherein heteroaryl is a 3-7 membered monocyclic or 6-10 membered bicyclic ring system having 1, 2, 3, or 4 heteroatom ring members independently selected from N, O, or S, and
- wherein, each instance of C_{3-10} cycloalkyl, phenyl, heterocyclyl, and heteroaryl is optionally substituted with one, two, or three R_7 substituents;
- R₅ is, in each instance, independently selected from halogen, hydroxy, cyano, nitro, C₁₋₆alkyl, deutero-C₁₋₄alkyl, halo-C₁₋₆alkyl, C₁₋₆alkoxy, halo-C₁₋₆alkoxy, oxime, amino, C₁₋₆alkyl-amino, (C₁₋₆alkyl)₂-amino, and C₁₋₆alkyl-thio;

R₆ is selected from phenyl and heteroaryl,

5

10

15

20

25

30

- wherein heteroaryl is a 3-7 membered monocyclic or 6-10 membered bicyclic ring system having 1, 2, 3, or 4 heteroatom ring members independently selected from N, O, or S, and
- wherein, each instance of phenyl and heteroaryl is optionally substituted with one, two, three or four R_8 substituents;

 R_7 is, in each instance, independently selected from cyano, halogen, hydroxy, $C_{1\text{-}6}$ alkyl, deutero- $C_{1\text{-}4}$ alkyl, halo- $C_{1\text{-}6}$ alkyl, $C_{1\text{-}6}$ alkoxy, halo- $C_{1\text{-}6}$ alkoxy, $C_{1\text{-}6}$ alkoxy- $C_{1\text{-}6}$ alkyl, amino, $C_{1\text{-}6}$ alkyl-amino, $(C_{1\text{-}6}$ alkyl)₂-amino, amino- $C_{1\text{-}6}$ alkyl, and $C_{3\text{-}10}$ cycloalkyl; and

- R_8 is, in each instance, independently selected from cyano, halogen, hydroxy, $C_{1\text{-}6}$ alkyl, deutero- $C_{1\text{-}4}$ alkyl, halo- $C_{1\text{-}6}$ alkyl, $C_{1\text{-}6}$ alkoxy, halo- $C_{1\text{-}6}$ alkoxy, $C_{1\text{-}6}$ alkoxy- $C_{1\text{-}6}$ alkyl, amino, $C_{1\text{-}6}$ alkyl-amino, $(C_{1\text{-}6}$ alkyl)₂-amino, amino- $C_{1\text{-}6}$ alkyl, and $C_{3\text{-}10}$ cycloalkyl;
- wherein a form of the compound is selected from the group consisting of salt, hydrate, solvate, racemate, enantiomer, diastereomer, stereoisomer, and tautomer form thereof.
- 2. The compound of claim 1, wherein the compound is a compound of Formula (Ibb1):

$$R_1$$
 R_2
 R_1
 R_2
 R_1
 R_2

or a form thereof.

5

10

- 3. The compound of claim 1, wherein R₁ is heterocyclyl selected from azetidinyl, tetrahydrofuranyl, pyrrolidinyl, piperidinyl, piperazinyl, 1,4-diazepanyl, 1,2,5,6-tetrahydropyridinyl, 1,2,3,6-tetrahydropyridinyl, 3-azabicyclo[3.1.0]hexyl, (1*R*,5*S*)-3-azabicyclo[3.1.0]hexyl, 8-azabicyclo[3.2.1]octyl, (1*R*,5*S*)-8-azabicyclo[3.2.1]octyl, 8-azabicyclo[3.2.1]oct-2-en-yl, (1*R*,5*S*)-8-azabicyclo[3.2.1]oct-2-en-yl, 9-azabicyclo[3.3.1]nonyl, 0(1*R*,5*S*)-9-azabicyclo[3.3.1]nonyl, 3-oxa-9-azabicyclo[3.3.1]nonyl, and 3-oxa-9-
- 20 0(1*R*,5*S*)-9-azabicyclo[3.3.1]nonyl, 3-oxa-9-azabicyclo[3.3.1]nonyl, and 3-oxa-9-azabicyclo[3.3.1]non-6-en-yl, optionally substituted with one, two or three R₃ substituents and optionally, with one additional R₄ substituent, or, alternatively, optionally substituted with one, two, three or four R₃ substituents.

4. The compound of claim 1, wherein R_2 is phenyl, optionally substituted with one, two or three R_5 substituents and optionally, with one additional R_6 substituent.

- 5. The compound of claim 1, wherein the form of the compound is a compound salt selected from hydrochloride, hydrobromide, formate, dihydrochloride, and dihydrobromide.
- 5 6. A compound selected from the group consisting of:
 - 5-(1*H*-pyrazol-4-yl)-2-[1-(2,2,6,6-tetramethylpiperidin-4-yl)-1*H*-imidazo[4,5-b]pyrazin-5-yl]phenol;
 - 5-[2,5-difluoro-4-(1H-pyrazol-4-yl)phenyl]-1-(2,2,6,6-tetramethylpiperidin-4-yl)-1H-imidazo[4,5-b]pyrazine;
 - 5-(1*H*-pyrazol-4-yl)-2-[7-(2,2,6,6-tetramethylpiperidin-4-yl)-7*H*-imidazo[4,5-c]pyridazin-3-yl]phenol;
 - 3-[2,5-difluoro-4-(1*H*-pyrazol-4-yl)phenyl]-7-(2,2,6,6-tetramethylpiperidin-4-yl)-7*H*-imidazo[4,5-c]pyridazine;
 - 2-[6-methyl-7-(2,2,6,6-tetramethylpiperidin-4-yl)-7H-imidazo[4,5-c]pyridazin-3-yl]-5-(1H-pyrazol-4-yl)phenol;
 - 3-[2,5-difluoro-4-(1*H*-pyrazol-4-yl)phenyl]-6-methyl-7-(2,2,6,6-tetramethylpiperidin-4-yl)-7*H*-imidazo[4,5-c]pyridazine;
 - 5-(1H-pyrazol-4-yl)-2-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3H-[1,2,3]triazolo[4,5-c]pyridazin-6-yl]phenol;
 - 5-(1H-pyrazol-4-yl)-2-[5-(2,2,6,6-tetramethyl-1,2,3,6-tetrahydropyridin-4-yl)-5H-pyrrolo[2,3-b]pyrazin-2-yl]phenol;
 - 3-[2-hydroxy-4-(1*H*-pyrazol-4-yl)phenyl]-7-(2,2,6,6-tetramethylpiperidin-4-yl)-7*H*-imidazo[4,5-c]pyridazin-6-ol;
 - 5-(1H-pyrazol-4-yl)-2-[5-(2,2,6,6-tetramethylpiperidin-4-yl)-5H-pyrrolo[2,3-b]pyrazin-2-yl]phenol;
 - 5-(1*H*-pyrazol-4-yl)-2-[7-(1,2,3,6-tetrahydropyridin-4-yl)-5*H*-pyrrolo[3,2-c]pyridazin-3-yl]phenol;
 - 2-[7-(piperidin-4-yl)-5*H*-pyrrolo[3,2-c]pyridazin-3-yl]-5-(1*H*-pyrazol-4-yl)phenol;
 - 6-[2,3-difluoro-4-(1*H*-pyrazol-4-yl)phenyl]-3-(2,2,6,6-tetramethylpiperidin-4-yl)-3*H*-[1,2,3]triazolo[4,5-c]pyridazine;
 - 6-[2,5-difluoro-4-(1*H*-pyrazol-4-yl)phenyl]-3-(2,2,6,6-tetramethylpiperidin-4-yl)-3*H*-[1,2,3]triazolo[4,5-c]pyridazine;
 - 5-(1*H*-pyrazol-4-yl)-2-[7-(1,2,3,6-tetrahydropyridin-4-yl)thieno[3,2-c]pyridazin-3-yl]phenol;
 - 2-[2,5-difluoro-4-(1*H*-pyrazol-4-yl)phenyl]-5-(2,2,6,6-tetramethylpiperidin-4-yl)-5*H*-pyrrolo[2,3-b]pyrazine;

5-(1*H*-pyrazol-4-yl)-2-[7-(2,2,6,6-tetramethyl-1,2,3,6-tetrahydropyridin-4-yl)thieno[3,2-c]pyridazin-3-yl]phenol;

- 2-[7-(8-azabicyclo[3.2.1]oct-2-en-3-yl)thieno[3,2-c]pyridazin-3-yl]-5-(1H-pyrazol-4-yl)phenol;
- $2\hbox{-}[1\hbox{-}(piperidin-4\hbox{-}yl)\hbox{-}1H\hbox{-}pyrazolo[3,4\hbox{-}b]pyrazin-5\hbox{-}yl]\hbox{-}5\hbox{-}(1H\hbox{-}pyrazol-4\hbox{-}yl)phenol;}$
- 5-(1*H*-pyrazol-4-yl)-2-[7-(2,2,6,6-tetramethyl-1,2,3,6-tetrahydropyridin-4-yl)-5*H*-pyrrolo[3,2-c]pyridazin-3-yl]phenol;
- 2-[1-(piperidin-4-yl)-1*H*-pyrazolo[3,4-c]pyridazin-5-yl]-5-(1*H*-pyrazol-4-yl)phenol;
- 5-(1H-pyrazol-4-yl)-2-[1-(2,2,6,6-tetramethylpiperidin-4-yl)-1H-pyrazolo[3,4-c]pyridazin-5-yl]phenol;
- 5-(1*H*-pyrazol-4-yl)-2-[7-(2,2,6,6-tetramethylpiperidin-4-yl)-6,7-dihydro-5*H*-pyrrolo[2,3-c]pyridazin-3-yl]phenol;
- 5-(1*H*-pyrazol-4-yl)-2-[7-(2,2,6,6-tetramethylpiperidin-4-yl)thieno[3,2-c]pyridazin-3-yl]phenol;
- 2-[7-(3-oxa-9-azabicyclo[3.3.1]non-6-en-7-yl)thieno[3,2-c]pyridazin-3-yl]-5-(1*H*-pyrazol-4-yl)phenol;
- 5-(1*H*-pyrazol-4-yl)-2-[7-(2,2,6,6-tetramethylpiperidin-4-yl)-7*H*-pyrrolo[2,3-c]pyridazin-3-yl]phenol;
- 2-[7-(8-azabicyclo[3.2.1]oct-2-en-3-yl)-5*H*-pyrrolo[3,2-c]pyridazin-3-yl]-5-(1*H*-pyrazol-4-yl)phenol;
- 2-[7-(3-oxa-9-azabicyclo[3.3.1]non-6-en-7-yl)-5H-pyrrolo[3,2-c]pyridazin-3-yl]-5-(1*H*-pyrazol-4-yl)phenol;
- 2-[7-(8-azabicyclo[3.2.1]oct-3-yl)-5*H*-pyrrolo[3,2-c]pyridazin-3-yl]-5-(1*H*-pyrazol-4-yl)phenol;
- 2-[7-(3-oxa-9-azabicyclo[3.3.1]non-7-yl)-5*H*-pyrrolo[3,2-c]pyridazin-3-yl]-5-(1*H*-pyrazol-4-yl)phenol;
- 5-(1*H*-pyrazol-4-yl)-2-[7-(2,2,6,6-tetramethylpiperidin-4-yl)-5*H*-pyrrolo[3,2-c]pyridazin-3-yl]phenol;
- 3-[2,3-difluoro-4-(1*H*-pyrazol-4-yl)phenyl]-7-(2,2,6,6-tetramethylpiperidin-4-yl)-6,7-dihydro-5*H*-pyrrolo[2,3-c]pyridazine;
- 4-fluoro-2-(1*H*-pyrazol-4-yl)-5-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3*H*-[1,2,3]triazolo[4,5-c]pyridazin-6-yl]phenol;
- 5-(1H-pyrazol-1-yl)-2-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3H-[1,2,3]triazolo[4,5-c]pyridazin-6-yl]phenol;
- 4-fluoro-5-(1*H*-pyrazol-4-yl)-2-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3*H*-[1,2,3]triazolo[4,5-c]pyridazin-6-yl]phenol;
- 7-[(3-exo)-8-azabicyclo[3.2.1]oct-3-yl]-3-[2,3-difluoro-4-(1\$H-pyrazol-4-yl)phenyl]-6,7-dihydro-5\$H-pyrrolo[2,3-c]pyridazine;
- 4-{3-hydroxy-4-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3*H*-[1,2,3]triazolo[4,5-c]pyridazin-6-yl]phenyl}-1-methylpyridin-2(1*H*)-one;

- 4-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3H-[1,2,3]triazolo[4,5-c]pyridazin-6-yl]biphenyl-3,4'-diol;
- 5-(1-methyl-1H-pyrazol-4-yl)-2-[3-(2,2,6,6-tetramethyl)-2H-
- [1,2,3]triazolo[4,5-c]pyridazin-6-yl]phenol;
- 2-[6-methoxy-7-(2,2,6,6-tetramethylpiperidin-4-yl)-7*H*-imidazo[4,5-c]pyridazin-3-yl]-5-(1*H*-pyrazol-4-yl)phenol;
- 2-[6-(methylamino)-7-(2,2,6,6-tetramethylpiperidin-4-yl)-7*H*-imidazo[4,5-c]pyridazin-3-yl]-5-(1*H*-pyrazol-4-yl)phenol;
- 2-[7-(piperazin-1-yl)-5*H*-pyrrolo[3,2-c]pyridazin-3-yl]-5-(1*H*-pyrazol-4-yl)phenol;
- 5-(1-ethyl-1*H*-pyrazol-4-yl)-2-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3*H*-
- [1,2,3]triazolo[4,5-c]pyridazin-6-yl]phenol;
- 5-(1-propyl-1*H*-pyrazol-4-yl)-2-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3*H*-
- [1,2,3]triazolo[4,5-c]pyridazin-6-yl]phenol;
- 5-(1H-pyrazol-3-yl)-2-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3H-[1,2,3]triazolo[4,5-c]pyridazin-6-yl]phenol;
- 2-[6-(ethylamino)-7-(2,2,6,6-tetramethylpiperidin-4-yl)-7*H*-imidazo[4,5-c]pyridazin-3-yl]-5-(1*H*-pyrazol-4-yl)phenol;
- 5-(1-methyl-1*H*-pyrazol-5-yl)-2-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3*H*-
- [1,2,3]triazolo[4,5-c]pyridazin-6-yl]phenol;
- 5-(1-methyl-1*H*-pyrazol-3-yl)-2-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3*H*-
- [1,2,3]triazolo[4,5-c]pyridazin-6-yl]phenol;
- 2-[3-(1,2,2,6,6-pentamethylpiperidin-4-yl)-3H-[1,2,3]triazolo[4,5-c]pyridazin-6-yl]-5-(1*H*-pyrazol-4-yl)phenol;
- 6-fluoro-4-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3H-[1,2,3]triazolo[4,5-c]pyridazin-6-yl][1,1'-biphenyl]-3,4'-diol;
- 2-fluoro-3-(1*H*-pyrazol-4-yl)-6-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3*H*-[1,2,3]triazolo[4,5-c]pyridazin-6-yl]phenol;
- $4-\{2-fluoro-5-hydroxy-4-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3H-[1,2,3]triazolo[4,5-c]pyridazin-6-yl]phenyl\}-1-methylpyridin-2(1$ *H*)-one;
- 2-[3-(2,2-dimethylpiperidin-4-yl)-3H-[1,2,3]triazolo[4,5-c]pyridazin-6-yl]-5-(1H-pyrazol-4-yl)phenol;
- $2-\{3-[(1R,5S)-1,5-dimethyl-8-azabicyclo[3.2.1]octan-3-yl]-3H-[1,2,3]triazolo[4,5-c]pyridazin-6-yl\}-5-(1H-pyrazol-4-yl)phenol;$
- 2-(1H-pyrazol-4-yl)-5-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3H-[1,2,3]triazolo[4,5-c]pyridazin-6-yl]benzene-1,4-diol;
- 3-fluoro-5-(1*H*-pyrazol-4-yl)-2-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3*H*-[1,2,3]triazolo[4,5-c]pyridazin-6-yl]phenol;
- 5-(pyrazin-2-yl)-2-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3*H*-[1,2,3]triazolo[4,5-c]pyridazin-6-yl]phenol;

- 5-(pyridin-2-yl)-2-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3H-[1,2,3]triazolo[4,5-c]pyridazin-6-yl]phenol;
- 4-fluoro-5-(1-methyl-1*H*-pyrazol-4-yl)-2-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3*H*-[1,2,3]triazolo[4,5-c]pyridazin-6-yl]phenol;
- 2-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3H-[1,2,3]triazolo[4,5-c]pyridazin-6-yl]-5-(1H-1,2,4-triazol-1-yl)phenol;
- 2-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3H-[1,2,3]triazolo[4,5-c]pyridazin-6-yl]-5-(4H-1,2,4-triazol-4-yl)phenol;
- 5-(pyridin-3-yl)-2-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3H-[1,2,3]triazolo[4,5-c]pyridazin-6-yl]phenol;
- 5-(pyridin-4-yl)-2-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3H-[1,2,3]triazolo[4,5-c]pyridazin-6-yl]phenol;
- 6-{3-hydroxy-4-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3*H*-[1,2,3]triazolo[4,5-c]pyridazin-6-yl]phenyl}pyridin-3-ol;
- 2-{3-hydroxy-4-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3*H*-[1,2,3]triazolo[4,5-c]pyridazin-6-yl]phenyl}pyrimidin-5-ol;
- $5-[1-(^2H_3)]$ methyl-1H-pyrazol-4-yl]-2-[3-(2,2,6,6-tetramethylpiperidin-<math>4-yl)-3H-[1,2,3]triazolo[4,5-c]pyridazin-6-yl]phenol;
- 5-(1H-imidazol-1-yl)-2-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3H-[1,2,3]triazolo[4,5-c]pyridazin-6-yl]phenol;
- 5-[1-(difluoromethyl)-1H-pyrazol-4-yl]-2-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3H-[1,2,3]triazolo[4,5-c]pyridazin-6-yl]phenol;
- 2-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3H-[1,2,3]triazolo[4,5-c]pyridazin-6-yl]-5-(1H-1,2,3-triazol-1-yl)phenol;
- 5-(2-methylpyridin-4-yl)-2-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3*H*-[1,2,3]triazolo[4,5-c]pyridazin-6-yl]phenol;
- 2-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3H-[1,2,3]triazolo[4,5-c]pyridazin-6-yl]-5-[2-(trifluoromethyl)pyridin-4-yl]phenol;
- 5-(pyrimidin-4-yl)-2-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3H-[1,2,3]triazolo[4,5-c]pyridazin-6-yl]phenol;
- 5-(pyridazin-4-yl)-2-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3H-[1,2,3]triazolo[4,5-c]pyridazin-6-yl]phenol;
- 5-(2-methoxypyridin-4-yl)-2-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3*H*-[1,2,3]triazolo[4,5-c]pyridazin-6-yl]phenol;
- 5-(pyrimidin-5-yl)-2-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3H-[1,2,3]triazolo[4,5-c]pyridazin-6-yl]phenol;
- 6-{3-hydroxy-4-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3*H*-[1,2,3]triazolo[4,5-c]pyridazin-6-yl]phenyl}pyridazin-3-ol;
- 5-(1*H*-pyrrol-3-yl)-2-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3*H*-[1,2,3]triazolo[4,5-c]pyridazin-6-yl]phenol;

- 6-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3H-[1,2,3]triazolo[4,5-c]pyridazin-6-yl]quinolin-7-ol;
- (3E)-3-(hydroxyimino)-6-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3H-[1,2,3]triazolo[4,5-c]pyridazin-6-yl]-2,3-dihydro-1H-inden-5-ol;
- 4-chloro-5-(1*H*-pyrazol-4-yl)-2-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3*H*-
- [1,2,3]triazolo[4,5-c]pyridazin-6-yl]phenol;
- $5\hbox{-}[6\hbox{-}(dimethylamino)pyridin-}3\hbox{-}yl]\hbox{-}2\hbox{-}[3\hbox{-}(2,2,6,6\hbox{-}tetramethylpiperidin-}4\hbox{-}yl)\hbox{-}3H\hbox{-}10]$
- [1,2,3]triazolo[4,5-c]pyridazin-6-yl]phenol;
- 5-(imidazo[1,2-a]pyrazin-3-yl)-2-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3*H*-
- [1,2,3]triazolo[4,5-c]pyridazin-6-yl]phenol;
- 1-cyclopropyl-4-{3-hydroxy-4-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3*H*-
- [1,2,3]triazolo[4,5-c]pyridazin-6-yl]phenyl}pyridin-2(1*H*)-one;
- 4-fluoro-5-(pyridin-4-yl)-2-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3*H*-
- [1,2,3]triazolo[4,5-c]pyridazin-6-yl]phenol;
- 5-(imidazo[1,5-a]pyridin-7-yl)-2-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3*H*-
- [1,2,3]triazolo[4,5-c]pyridazin-6-yl]phenol;
- 2-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3H-[1,2,3]triazolo[4,5-c]pyridazin-6-yl]-5-(thiophen-3-yl)phenol;
- 5-(imidazo[1,2-a]pyridin-7-yl)-2-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3H-10-(imidazo[1,2-a]pyridin-7-yl)-2-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3H-10-(imidazo[1,2-a]pyridin-7-yl)-2-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3H-10-(imidazo[1,2-a]pyridin-7-yl)-2-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3H-10-(imidazo[1,2-a]pyridin-7-yl)-2-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3H-10-(imidazo[1,2-a]pyridin-7-yl)-3H-10-(imidazo[1,2-a]py
- [1,2,3]triazolo[4,5-c]pyridazin-6-yl]phenol;
- 5-(1H-imidazol-2-yl)-2-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3H-[1,2,3]triazolo[4,5-c]pyridazin-6-yl]phenol;
- 1-methyl-5-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3H-[1,2,3]triazolo[4,5-c]pyridazin-6-yl]-1H-benzimidazol-6-ol;
- $4-{3-hydroxy-4-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3}H-[1,2,3]triazolo[4,5-c]pyridazin-6-yl]phenyl}pyridin-2(1<math>H$)-one;
- 5-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3H-[1,2,3]triazolo[4,5-c]pyridazin-6-yl]-1H-indazol-6-ol;
- 5-(furan-3-yl)-2-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3H-[1,2,3]triazolo[4,5-c]pyridazin-6-yl]phenol;
- 2-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3H-[1,2,3]triazolo[4,5-c]pyridazin-6-yl]-5-(1,3-thiazol-2-yl)phenol;
- 2-methyl-5-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3H-[1,2,3]triazolo[4,5-c]pyridazin-6-yl]-1H-benzimidazol-6-ol;
- 5-(1-methyl-1*H*-pyrazol-4-yl)-2-[1-(2,2,6,6-tetramethylpiperidin-4-yl)-1*H*-pyrazolo[3,4-c]pyridazin-5-yl]phenol;
- 5-(2-aminopyridin-4-yl)-2-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3H-[1,2,3]triazolo[4,5-c]pyridazin-6-yl]phenol;
- 5-[2-(dimethylamino)pyridin-4-yl]-2-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3*H*-
- [1,2,3]triazolo[4,5-c]pyridazin-6-yl]phenol;

- 5-(3-fluoropyridin-4-yl)-2-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3H-[1,2,3]triazolo[4,5-c]pyridazin-6-yl]phenol;
- $5-[1-(^2H_3)]$ methyl-1H-pyrazol-4-yl]-2-[1-(2,2,6,6-tetramethylpiperidin-<math>4-yl)-1H-pyrazolo[3,4-c]pyridazin-5-yl]phenol;
- 5-[5-(difluoromethoxy)pyridin-2-yl]-2-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3*H*-[1,2,3]triazolo[4,5-c]pyridazin-6-yl]phenol;
- 5-[2-(methylamino)pyridin-4-yl]-2-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3*H*-[1,2,3]triazolo[4,5-c]pyridazin-6-yl]phenol;
- 5-(1*H*-pyrazol-4-yl)-2-[7-(2,2,6,6-tetramethyl-1,2,3,6-tetrahydropyridin-4-yl)furo[3,2-c]pyridazin-3-yl]phenol;
- 5-(3-fluoro-1*H*-pyrazol-4-yl)-2-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3*H*-[1,2,3]triazolo[4,5-c]pyridazin-6-yl]phenol;
- 2-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3H-[1,2,3]triazolo[4,5-c]pyridazin-6-yl]-5-(1,3-thiazol-5-yl)phenol;
- 5-(3-methyl-1*H*-pyrazol-4-yl)-2-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3*H*-[1,2,3]triazolo[4,5-c]pyridazin-6-yl]phenol;
- 4- $\{3-\text{hydroxy-}4-[3-(2,2,6,6-\text{tetramethylpiperidin-}4-yl)-3H-[1,2,3]\text{triazolo}[4,5-c]$ pyridazin-6-yl]phenyl $\}-1H$ -pyrazole-3-carbonitrile;
- 2-{3-hydroxy-4-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3*H*-[1,2,3]triazolo[4,5-c]pyridazin-6-yl]phenyl}-1,3-thiazole-5-carbonitrile;
- 5-(1,3-oxazol-2-yl)-2-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3H-[1,2,3]triazolo[4,5-c]pyridazin-6-yl]phenol;
- 2-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3H-[1,2,3]triazolo[4,5-c]pyridazin-6-yl]-5-(1H-1,2,3-triazol-4-yl)phenol;
- 5-(6-methoxypyrimidin-4-yl)-2-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3*H*-[1,2,3]triazolo[4,5-c]pyridazin-6-yl]phenol;
- 5-[2-(difluoromethoxy)pyridin-4-yl]-2-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3*H*-[1,2,3]triazolo[4,5-c]pyridazin-6-yl]phenol;
- 5-(1H-imidazol-4-yl)-2-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3H-[1,2,3]triazolo[4,5-c]pyridazin-6-yl]phenol;
- 2-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3H-[1,2,3]triazolo[4,5-c]pyridazin-6-yl]-5-(1,3,4-thiadiazol-2-yl)phenol;
- 6-[4-(1*H*-pyrazol-4-yl)-1*H*-benzotriazol-7-yl]-3-(2,2,6,6-tetramethylpiperidin-4-yl)-3*H*-[1,2,3]triazolo[4,5-c]pyridazine;
- 5-(1*H*-pyrrolo[2,3-b]pyridin-4-yl)-2-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3*H*-
- [1,2,3]triazolo[4,5-c]pyridazin-6-yl]phenol;
- 5-(2-methoxypyrimidin-4-yl)-2-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3H-1-3-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3H-1-3-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3H-1-3-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3H-1-3-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3H-1-3-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3-[3-(2
- [1,2,3]triazolo[4,5-c]pyridazin-6-yl]phenol;
- 5-(1,2-oxazol-4-yl)-2-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3*H*-[1,2,3]triazolo[4,5-c]pyridazin-6-yl]phenol;

- 5-(5-fluoro-1-methyl-1*H*-pyrazol-4-yl)-2-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3*H*-[1,2,3]triazolo[4,5-c]pyridazin-6-yl]phenol;
- 5-(1-ethyl-5-fluoro-1*H*-pyrazol-4-yl)-2-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3*H*-[1,2,3]triazolo[4,5-c]pyridazin-6-yl]phenol;
- 5-(2-ethoxypyridin-4-yl)-2-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3*H*-
- [1,2,3]triazolo[4,5-c]pyridazin-6-yl]phenol;
- 5-(6-ethoxypyrimidin-4-yl)-2-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3*H*-
- [1,2,3]triazolo[4,5-c]pyridazin-6-yl]phenol;
- 2-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3H-[1,2,3]triazolo[4,5-c]pyridazin-6-yl]-5-([1,2,3]triazolo[1,5-a]pyridin-5-yl)phenol;
- 2-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3H-[1,2,3]triazolo[4,5-c]pyridazin-6-yl]-5-([1,2,4]triazolo[1,5-a]pyridin-7-yl)phenol;
- 5-(3-chloro-1-methyl-1*H*-pyrazol-4-yl)-2-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3*H*-[1,2,3]triazolo[4,5-c]pyridazin-6-yl]phenol;
- $6-{3-hydroxy-4-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3}H-[1,2,3]triazolo[4,5-c]pyridazin-6-yl]phenyl}pyrimidin-4(3}H)-one;$
- 5-(3-chloro-1H-pyrazol-4-yl)-2-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3H-(3-chloro-1H-pyrazol-4-yl)-2-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3H-(3-chloro-1H-pyrazol-4-yl)-3
- [1,2,3]triazolo[4,5-c]pyridazin-6-yl]phenol
- 5-(3-fluoro-1-methyl-1*H*-pyrazol-4-yl)-2-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3*H*-[1,2,3]triazolo[4,5-c]pyridazin-6-yl]phenol;
- 5-(3-methoxy-1*H*-pyrazol-4-yl)-2-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3*H*-[1,2,3]triazolo[4,5-c]pyridazin-6-yl]phenol;
- 4-{3-hydroxy-4-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3*H*-[1,2,3]triazolo[4,5-c]pyridazin-6-yl]phenyl}-1-methyl-1*H*-pyrazole-3-carbonitrile;
- 5-(5-methyl-1,3-thiazol-2-yl)-2-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3H-[1,2,3]triazolo[4,5-c]pyridazin-6-yl]phenol;
- 2-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3H-[1,2,3]triazolo[4,5-c]pyridazin-6-yl]-5-(1,2,4-thiadiazol-5-yl)phenol;
- 5-(4-fluoro-1*H*-benzotriazol-6-yl)-2-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3*H*-[1,2,3]triazolo[4,5-c]pyridazin-6-yl]phenol;
- 5-(1H-pyrazol-4-yl)-2-[7-(2,2,6,6-tetramethylpiperidin-4-yl)-7H-pyrrolo[2,3-c]pyridazin-3-yl]pyridin-3-ol;
- 5-(3-bromo-1*H*-pyrazol-4-yl)-2-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3*H*-[1,2,3]triazolo[4,5-c]pyridazin-6-yl]phenol;
- 5-(1-methyl-1*H*-1,2,3-triazol-4-yl)-2-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3*H*-[1,2,3]triazolo[4,5-c]pyridazin-6-yl]phenol;
- 2-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3*H*-[1,2,3]triazolo[4,5-c]pyridazin-6-yl]-5-[3-(trifluoromethyl)-1*H*-pyrazol-4-yl]phenol;
- 5-(1*H*-pyrazol-4-yl)-2-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3*H*-[1,2,3]triazolo[4,5-c]pyridazin-6-yl]pyridin-3-ol;

- 5-(1*H*-pyrazol-4-yl)-2-[7-(2,2,6,6-tetramethylpiperidin-4-yl)-7*H*-imidazo[4,5-c]pyridazin-3-yl]pyridin-3-ol;
- 5-(imidazo[1,2-a]pyrazin-6-yl)-2-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3*H*-[1,2,3]triazolo[4,5-c]pyridazin-6-yl]phenol;
- 5-(4-fluoro-1*H*-imidazol-1-yl)-2-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3*H*-[1,2,3]triazolo[4,5-c]pyridazin-6-yl]phenol;
- 5-(4-methyl-1*H*-imidazol-1-yl)-2-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3*H*-[1,2,3]triazolo[4,5-c]pyridazin-6-yl]phenol;
- 2-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3H-[1,2,3]triazolo[4,5-c]pyridazin-6-yl]-5-(1H-[1,2,3]triazolo[4,5-b]pyridin-6-yl)phenol;
- 2-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3H-[1,2,3]triazolo[4,5-c]pyridazin-6-yl]-5-(3*H*-[1,2,3]triazolo[4,5-c]pyridin-6-yl)phenol;
- 2-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3H-[1,2,3]triazolo[4,5-c]pyridazin-6-yl]-5-(1H-[1,2,3]triazolo[4,5-b]pyridin-5-yl)phenol;
- 5-(3-fluoro-1-methyl-1H-pyrazol-4-yl)-2-[1-(2,2,6,6-tetramethylpiperidin-4-yl)-1H-pyrazolo[3,4-c]pyridazin-5-yl]phenol;
- 5-(2,4-dimethyl-1*H*-imidazol-1-yl)-2-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3*H*-[1,2,3]triazolo[4,5-c]pyridazin-6-yl]phenol;
- 5-(2-methyl-1,3-thiazol-5-yl)-2-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3H-[1,2,3]triazolo[4,5-c]pyridazin-6-yl]phenol;
- 5-(2-methyl-2H-1,2,3-triazol-4-yl)-2-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3H-[1,2,3]triazolo[4,5-c]pyridazin-6-yl]phenol;
- 2-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3H-[1,2,3]triazolo[4,5-c]pyridazin-6-yl]-5-([1,2,4]triazolo[4,3-b]pyridazin-6-yl)phenol;
- 5-(3-methyl-1,2,4-thiadiazol-5-yl)-2-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3H-[1,2,3]triazolo[4,5-c]pyridazin-6-yl]phenol;
- 5-(4-fluoro-2-methyl-1,3-thiazol-5-yl)-2-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3*H*-[1,2,3]triazolo[4,5-c]pyridazin-6-yl]phenol;
- 5-(5-methyl-1*H*-pyrazol-1-yl)-2-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3*H*-[1,2,3]triazolo[4,5-c]pyridazin-6-yl]phenol;
- 5-(4-methyl-1*H*-pyrazol-1-yl)-2-(3-(2,2,6,6-tetramethylpiperidin-4-yl)-3*H*-[1,2,3]triazolo[4,5-c]pyridazin-6-yl)phenol;
- 5-(3-methyl-1*H*-pyrazol-1-yl)-2-(3-(2,2,6,6-tetramethylpiperidin-4-yl)-3*H*-[1,2,3]triazolo[4,5-c]pyridazin-6-yl)phenol;
- 5-(2-methyl-1,3-oxazol-5-yl)-2-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3*H*-[1,2,3]triazolo[4,5-c]pyridazin-6-yl]phenol;
- 5-(4-methoxy-1,3,5-triazin-2-yl)-2-(3-(2,2,6,6-tetramethylpiperidin-4-yl)-3H-[1,2,3]triazolo[4,5-c]pyridazin-6-yl)phenol;
- 5-(imidazo[1,2-a]pyrimidin-6-yl)-2-(3-(2,2,6,6-tetramethylpiperidin-4-yl)-3*H*-[1,2,3]triazolo[4,5-c]pyridazin-6-yl)phenol;

- 5-(3-fluoro-1*H*-pyrazol-4-yl)-2-(1-(2,2,6,6-tetramethylpiperidin-4-yl)-1*H*-pyrazolo[3,4-c]pyridazin-5-yl)phenol;
- 5-(imidazo[1,2-b]pyridazin-6-yl)-2-(3-(2,2,6,6-tetramethylpiperidin-4-yl)-3*H*-[1,2,3]triazolo[4,5-c]pyridazin-6-yl)phenol;
- 2-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3H-[1,2,3]triazolo[4,5-c]pyridazin-6-yl]-5-(2H-1,2,3-triazol-2-yl)phenol;
- $2-\{3-[(3S,4S)-3-fluoro-2,2,6,6-tetramethylpiperidin-4-yl]-3H-[1,2,3]$ triazolo[4,5-c]pyridazin-6-yl}-5-(1*H*-pyrazol-4-yl)phenol;
- 5-(pyridin-4-yl)-2-[1-(2,2,6,6-tetramethylpiperidin-4-yl)-1*H*-pyrazolo[3,4-c]pyridazin-5-yl]phenol;
- 5-(pyridin-3-yl)-2-[1-(2,2,6,6-tetramethylpiperidin-4-yl)-1*H*-pyrazolo[3,4-c]pyridazin-5-yl]phenol;
- 5-(pyrimidin-5-yl)-2-[1-(2,2,6,6-tetramethylpiperidin-4-yl)-1*H*-pyrazolo[3,4-c]pyridazin-5-yl]phenol;
- $2-\{3-[(3S,4R)-3-fluoro-2,2,6,6-tetramethylpiperidin-4-yl]-3H-[1,2,3]$ triazolo[4,5-c]pyridazin-6-yl}-5-(1*H*-pyrazol-4-yl)phenol;
- 5-(1-methyl-1*H*-pyrazol-3-yl)-2-[1-(2,2,6,6-tetramethylpiperidin-4-yl)-1*H*-pyrazolo[3,4-c]pyridazin-5-yl]phenol;
- 2-{3-[3-(tert-butylamino)cyclobutyl]-3*H*-[1,2,3]triazolo[4,5-c]pyridazin-6-yl}-5-(1*H*-pyrazol-4-yl)phenol;
- $4-(4-\{3-[(3S,4S)-3-fluoro-2,2,6,6-tetramethylpiperidin-4-yl]-3H-[1,2,3]triazolo[4,5-c]pyridazin-6-yl\}-3-hydroxyphenyl)-1-methylpyridin-2(1$ *H*)-one;
- $6-(4-\{3-[(3S,4S)-3-fluoro-2,2,6,6-tetramethylpiperidin-4-yl]-3H-[1,2,3]$ triazolo[4,5-c]pyridazin-6-yl}-3-hydroxyphenyl)-3-methylpyrimidin-4(3*H*)-one;
- $5-(3-fluoro-1H-pyrazol-4-yl)-2-\{3-[(3S,4S)-3-fluoro-2,2,6,6-tetramethylpiperidin-4-yl]-3H-[1,2,3]triazolo[4,5-c]pyridazin-6-yl}phenol;$
- 2-[1-(2,2,6,6-tetramethylpiperidin-4-yl)-1*H*-pyrazolo[3,4-c]pyridazin-5-yl]-5-(2*H*-1,2,3-triazol-2-yl)phenol;
- 2-{3-[3-(tert-butylamino)cyclopentyl]-3*H*-[1,2,3]triazolo[4,5-c]pyridazin-6-yl}-5-(1*H*-pyrazol-4-yl)phenol; and
- 2-[7-(2,2,6,6-tetramethylpiperidin-4-yl)-7H-pyrrolo[2,3-c]pyridazin-3-yl]-5-(2H-1,2,3-triazol-2-yl)phenol;
 - wherein a form of the compound is selected from the group consisting of a salt, hydrate, solvate, racemate, enantiomer, diastereomer, stereoisomer, and tautomer form thereof.
- 7. The compound of claim 6, wherein the form of the compound is a compound salt or a form thereof selected from the group consisting of:
 - 5-(1H-pyrazol-4-yl)-2-[1-(2,2,6,6-tetramethylpiperidin-4-yl)-1H-imidazo[4,5-b]pyrazin-5-yl]phenol hydrochloride;

5-[2,5-difluoro-4-(1*H*-pyrazol-4-yl)phenyl]-1-(2,2,6,6-tetramethylpiperidin-4-yl)-1*H*-imidazo[4,5-b]pyrazine hydrochloride;

- 5-(1*H*-pyrazol-4-yl)-2-[7-(2,2,6,6-tetramethylpiperidin-4-yl)-7*H*-imidazo[4,5-c]pyridazin-3-yl]phenol hydrochloride;
- 3-[2,5-difluoro-4-(1*H*-pyrazol-4-yl)phenyl]-7-(2,2,6,6-tetramethylpiperidin-4-yl)-7*H*-imidazo[4,5-c]pyridazine hydrochloride;
- 2-[6-methyl-7-(2,2,6,6-tetramethylpiperidin-4-yl)-7*H*-imidazo[4,5-c]pyridazin-3-yl]-5-(1*H*-pyrazol-4-yl)phenol hydrochloride;
- 3-[2,5-difluoro-4-(1*H*-pyrazol-4-yl)phenyl]-6-methyl-7-(2,2,6,6-tetramethylpiperidin-4-yl)-7*H*-imidazo[4,5-c]pyridazine hydrochloride;
- 5-(1*H*-pyrazol-4-yl)-2-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3*H*-[1,2,3]triazolo[4,5-c]pyridazin-6-yl]phenol hydrochloride;
- 5-(1*H*-pyrazol-4-yl)-2-[5-(2,2,6,6-tetramethyl-1,2,3,6-tetrahydropyridin-4-yl)-5*H*-pyrrolo[2,3-b]pyrazin-2-yl]phenol hydrochloride;
- 3-[2-hydroxy-4-(1*H*-pyrazol-4-yl)phenyl]-7-(2,2,6,6-tetramethylpiperidin-4-yl)-7*H*-imidazo[4,5-c]pyridazin-6-ol hydrochloride;
- 5-(1*H*-pyrazol-4-yl)-2-[5-(2,2,6,6-tetramethylpiperidin-4-yl)-5*H*-pyrrolo[2,3-b]pyrazin-2-yl]phenol hydrochloride;
- 5-(1*H*-pyrazol-4-yl)-2-[7-(1,2,3,6-tetrahydropyridin-4-yl)-5*H*-pyrrolo[3,2-c]pyridazin-3-yl]phenol hydrochloride;
- 2-[7-(piperidin-4-yl)-5H-pyrrolo[3,2-c]pyridazin-3-yl]-5-(1H-pyrazol-4-yl)phenol hydrochloride;
- 6-[2,3-difluoro-4-(1*H*-pyrazol-4-yl)phenyl]-3-(2,2,6,6-tetramethylpiperidin-4-yl)-3*H*-[1,2,3]triazolo[4,5-c]pyridazine hydrochloride;
- 6-[2,5-difluoro-4-(1*H*-pyrazol-4-yl)phenyl]-3-(2,2,6,6-tetramethylpiperidin-4-yl)-3*H*-[1,2,3]triazolo[4,5-c]pyridazine hydrochloride;
- 5-(1*H*-pyrazol-4-yl)-2-[7-(1,2,3,6-tetrahydropyridin-4-yl)thieno[3,2-c]pyridazin-3-yl]phenol hydrochloride;
- 2-[2,5-difluoro-4-(1*H*-pyrazol-4-yl)phenyl]-5-(2,2,6,6-tetramethylpiperidin-4-yl)-5*H*-pyrrolo[2,3-b]pyrazine hydrochloride;
- 5-(1*H*-pyrazol-4-yl)-2-[7-(2,2,6,6-tetramethyl-1,2,3,6-tetrahydropyridin-4-yl)thieno[3,2-c]pyridazin-3-yl]phenol hydrochloride;
- 2-[7-(8-azabicyclo[3.2.1]oct-2-en-3-yl)thieno[3,2-c]pyridazin-3-yl]-5-(1*H*-pyrazol-4-yl)phenol hydrochloride;
- 2-[1-(piperidin-4-yl)-1*H*-pyrazolo[3,4-b]pyrazin-5-yl]-5-(1*H*-pyrazol-4-yl)phenol hydrochloride;
- 5-(1*H*-pyrazol-4-yl)-2-[7-(2,2,6,6-tetramethyl-1,2,3,6-tetrahydropyridin-4-yl)-5*H*-pyrrolo[3,2-c]pyridazin-3-yl]phenol hydrochloride;
- 2-[1-(piperidin-4-yl)-1*H*-pyrazolo[3,4-c]pyridazin-5-yl]-5-(1*H*-pyrazol-4-yl)phenol hydrochloride;

- 5-(1*H*-pyrazol-4-yl)-2-[1-(2,2,6,6-tetramethylpiperidin-4-yl)-1*H*-pyrazolo[3,4-c]pyridazin-5-yl]phenol hydrochloride;
- 5-(1*H*-pyrazol-4-yl)-2-[7-(2,2,6,6-tetramethylpiperidin-4-yl)-6,7-dihydro-5*H*-pyrrolo[2,3-c]pyridazin-3-yl]phenol hydrochloride;
- 5-(1*H*-pyrazol-4-yl)-2-[7-(2,2,6,6-tetramethylpiperidin-4-yl)thieno[3,2-c]pyridazin-3-yl]phenol hydrochloride;
- 2-[7-(3-oxa-9-azabicyclo[3.3.1]non-6-en-7-yl)thieno[3,2-c]pyridazin-3-yl]-5-(1*H*-pyrazol-4-yl)phenol hydrochloride;
- 5-(1*H*-pyrazol-4-yl)-2-[7-(2,2,6,6-tetramethylpiperidin-4-yl)-7*H*-pyrrolo[2,3-c]pyridazin-3-yl]phenol hydrochloride;
- 2-[7-(8-azabicyclo[3.2.1]oct-2-en-3-yl)-5*H*-pyrrolo[3,2-c]pyridazin-3-yl]-5-(1*H*-pyrazol-4-yl)phenol hydrochloride;
- 2-[7-(3-oxa-9-azabicyclo[3.3.1]non-6-en-7-yl)-5*H*-pyrrolo[3,2-c]pyridazin-3-yl]-5-(1*H*-pyrazol-4-yl)phenol hydrochloride;
- 2-[7-(8-azabicyclo[3.2.1]oct-3-yl)-5*H*-pyrrolo[3,2-c]pyridazin-3-yl]-5-(1*H*-pyrazol-4-yl)phenol hydrochloride;
- 2-[7-(3-oxa-9-azabicyclo[3.3.1]non-7-yl)-5*H*-pyrrolo[3,2-c]pyridazin-3-yl]-5-(1*H*-pyrazol-4-yl)phenol hydrochloride;
- 5-(1*H*-pyrazol-4-yl)-2-[7-(2,2,6,6-tetramethylpiperidin-4-yl)-5*H*-pyrrolo[3,2-c]pyridazin-3-yl]phenol hydrochloride;
- 3-[2,3-difluoro-4-(1H-pyrazol-4-yl)phenyl]-7-(2,2,6,6-tetramethylpiperidin-4-yl)-6,7-dihydro-5H-pyrrolo[2,3-c]pyridazine hydrochloride;
- 4-fluoro-2-(1*H*-pyrazol-4-yl)-5-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3*H*-
- [1,2,3]triazolo[4,5-c]pyridazin-6-yl]phenol hydrochloride;
- 4-fluoro-5-(1*H*-pyrazol-4-yl)-2-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3*H*-[1,2,3]triazolo[4,5-c]pyridazin-6-yl]phenol hydrobromide;
- 7-[(3-exo)-8-azabicyclo[3.2.1]oct-3-yl]-3-[2,3-difluoro-4-(1*H*-pyrazol-4-yl)phenyl]-6,7-dihydro-5*H*-pyrrolo[2,3-c]pyridazine hydrochloride;
- 4-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3*H*-[1,2,3]triazolo[4,5-c]pyridazin-6-yl]biphenyl-3,4'-diol hydrobromide;
- 5-(1-methyl-1*H*-pyrazol-4-yl)-2-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3*H*-[1,2,3]triazolo[4,5-c]pyridazin-6-yl]phenol hydrobromide;
- 2-[6-methoxy-7-(2,2,6,6-tetramethylpiperidin-4-yl)-7*H*-imidazo[4,5-c]pyridazin-3-yl]-5-(1*H*-pyrazol-4-yl)phenol hydrochloride;
- 2-[6-(methylamino)-7-(2,2,6,6-tetramethylpiperidin-4-yl)-7*H*-imidazo[4,5-c]pyridazin-3-yl]-5-(1*H*-pyrazol-4-yl)phenol hydrochloride;
- 2-[6-(ethylamino)-7-(2,2,6,6-tetramethylpiperidin-4-yl)-7*H*-imidazo[4,5-c]pyridazin-3-yl]-5-(1*H*-pyrazol-4-yl)phenol hydrochloride;
- 2-[3-(1,2,2,6,6-pentamethylpiperidin-4-yl)-3*H*-[1,2,3]triazolo[4,5-c]pyridazin-6-yl]-5-(1*H*-pyrazol-4-yl)phenol dihydrochloride;

- 6-fluoro-4-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3*H*-[1,2,3]triazolo[4,5-c]pyridazin-6-yl][1,1'-biphenyl]-3,4'-diol hydrobromide;
- 2-fluoro-3-(1*H*-pyrazol-4-yl)-6-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3*H*-[1,2,3]triazolo[4,5-c]pyridazin-6-yl]phenol dihydrochloride;
- 4-{2-fluoro-5-hydroxy-4-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3*H*-[1,2,3]triazolo[4,5-c]pyridazin-6-yl]phenyl}-1-methylpyridin-2(1*H*)-one hydrochloride;
- 2-[3-(2,2-dimethylpiperidin-4-yl)-3*H*-[1,2,3]triazolo[4,5-c]pyridazin-6-yl]-5-(1*H*-pyrazol-4-yl)phenol hydrochloride;
- $2-{3-[(1R,5S)-1,5-dimethyl-8-azabicyclo[3.2.1]octan-3-yl]-3H-[1,2,3]triazolo[4,5-c]pyridazin-6-yl}-5-(1H-pyrazol-4-yl)phenol hydrochloride;$
- 2-(1*H*-pyrazol-4-yl)-5-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3*H*-[1,2,3]triazolo[4,5-c]pyridazin-6-yl]benzene-1,4-diol dihydrochloride;
- 3-fluoro-5-(1*H*-pyrazol-4-yl)-2-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3*H*-[1,2,3]triazolo[4,5-c]pyridazin-6-yl]phenol dihydrochloride;
- 5-(pyrazin-2-yl)-2-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3*H*-[1,2,3]triazolo[4,5-c]pyridazin-6-yl]phenol dihydrochloride;
- 5-(pyridin-2-yl)-2-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3*H*-[1,2,3]triazolo[4,5-c]pyridazin-6-yl]phenol dihydrochloride;
- 4-fluoro-5-(1-methyl-1*H*-pyrazol-4-yl)-2-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3*H*-[1,2,3]triazolo[4,5-c]pyridazin-6-yl]phenol hydrochloride;
- 2-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3*H*-[1,2,3]triazolo[4,5-c]pyridazin-6-yl]-5-(1*H*-1,2,4-triazol-1-yl)phenol hydrochloride;
- 2-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3*H*-[1,2,3]triazolo[4,5-c]pyridazin-6-yl]-5-(4*H*-1,2,4-triazol-4-yl)phenol hydrochloride;
- 5-(pyridin-3-yl)-2-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3*H*-[1,2,3]triazolo[4,5-c]pyridazin-6-yl]phenol dihydrochloride;
- 5-(pyridin-4-yl)-2-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3*H*-[1,2,3]triazolo[4,5-c]pyridazin-6-yl]phenol dihydrochloride;
- 6-{3-hydroxy-4-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3*H*-[1,2,3]triazolo[4,5-c]pyridazin-6-yl]phenyl}pyridin-3-ol dihydrochloride;
- 2-{3-hydroxy-4-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3*H*-[1,2,3]triazolo[4,5-c]pyridazin-6-yl]phenyl}pyrimidin-5-ol dihydrochloride;
- $5-[1-(^2H_3)$ methyl-1H-pyrazol-4-yl]-2-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3H-[1,2,3]triazolo[4,5-c]pyridazin-6-yl]phenol dihydrochloride;
- 5-(1*H*-imidazol-1-yl)-2-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3*H*-[1,2,3]triazolo[4,5-c]pyridazin-6-yl]phenol hydrochloride;
- 5-[1-(difluoromethyl)-1*H*-pyrazol-4-yl]-2-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3*H*-[1,2,3]triazolo[4,5-c]pyridazin-6-yl]phenol dihydrochloride;
- 2-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3*H*-[1,2,3]triazolo[4,5-c]pyridazin-6-yl]-5-(1*H*-1,2,3-triazol-1-yl)phenol hydrochloride;

- 5-(2-methylpyridin-4-yl)-2-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3*H*-[1,2,3]triazolo[4,5-c]pyridazin-6-yl]phenol hydrochloride;
- 2-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3*H*-[1,2,3]triazolo[4,5-c]pyridazin-6-yl]-5-[2-(trifluoromethyl)pyridin-4-yl]phenol dihydrochloride;
- 5-(pyrimidin-4-yl)-2-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3*H*-[1,2,3]triazolo[4,5-c]pyridazin-6-yl]phenol dihydrochloride;
- 5-(pyridazin-4-yl)-2-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3*H*-[1,2,3]triazolo[4,5-c]pyridazin-6-yl]phenol hydrochloride;
- 5-(2-methoxypyridin-4-yl)-2-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3*H*-[1,2,3]triazolo[4,5-c]pyridazin-6-yl]phenol dihydrochloride;
- 6-{3-hydroxy-4-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3*H*-[1,2,3]triazolo[4,5-c]pyridazin-6-yl]phenyl}pyridazin-3-ol hydrochloride;
- 6-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3*H*-[1,2,3]triazolo[4,5-c]pyridazin-6-yl]quinolin-7-ol hydrobromide;
- 4-chloro-5-(1*H*-pyrazol-4-yl)-2-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3*H*-[1,2,3]triazolo[4,5-c]pyridazin-6-yl]phenol dihydrobromide;
- 4-fluoro-5-(pyridin-4-yl)-2-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3*H*-[1,2,3]triazolo[4,5-c]pyridazin-6-yl]phenol dihydrobromide;
- 2-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3*H*-[1,2,3]triazolo[4,5-c]pyridazin-6-yl]-5-(thiophen-3-yl)phenol hydrochloride;
- 4-{3-hydroxy-4-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3*H*-[1,2,3]triazolo[4,5-c]pyridazin-6-yl]phenyl}pyridin-2(1*H*)-one hydrochloride;
- 5-(furan-3-yl)-2-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3*H*-[1,2,3]triazolo[4,5-c]pyridazin-6-yl]phenol hydrochloride;
- 2-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3H-[1,2,3]triazolo[4,5-c]pyridazin-6-yl]-5-(1,3-thiazol-2-yl)phenol hydrochloride;
- 5-(1-methyl-1*H*-pyrazol-4-yl)-2-[1-(2,2,6,6-tetramethylpiperidin-4-yl)-1*H*-pyrazolo[3,4-c]pyridazin-5-yl]phenol dihydrochloride;
- 5-[1-(²H₃)methyl-1*H*-pyrazol-4-yl]-2-[1-(2,2,6,6-tetramethylpiperidin-4-yl)-1*H*-pyrazolo[3,4-c]pyridazin-5-yl]phenol dihydrochloride;
- 5-[5-(difluoromethoxy)pyridin-2-yl]-2-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3*H*-[1,2,3]triazolo[4,5-c]pyridazin-6-yl]phenol formate;
- 5-(1*H*-pyrazol-4-yl)-2-[7-(2,2,6,6-tetramethyl-1,2,3,6-tetrahydropyridin-4-yl)furo[3,2-c]pyridazin-3-yl]phenol hydrochloride;
- 5-(3-fluoro-1*H*-pyrazol-4-yl)-2-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3*H*-[1,2,3]triazolo[4,5-c]pyridazin-6-yl]phenol hydrochloride;
- 2-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3*H*-[1,2,3]triazolo[4,5-c]pyridazin-6-yl]-5-(1,3-thiazol-5-yl)phenol hydrochloride;
- 5-(3-methyl-1*H*-pyrazol-4-yl)-2-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3*H*-[1,2,3]triazolo[4,5-c]pyridazin-6-yl]phenol hydrochloride;

- 4-{3-hydroxy-4-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3*H*-[1,2,3]triazolo[4,5-c]pyridazin-6-yl]phenyl}-1*H*-pyrazole-3-carbonitrile hydrochloride;
- 2-{3-hydroxy-4-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3*H*-[1,2,3]triazolo[4,5-c]pyridazin-6-yl]phenyl}-1,3-thiazole-5-carbonitrile hydrochloride;
- 5-(1,3-oxazol-2-yl)-2-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3*H*-[1,2,3]triazolo[4,5-c]pyridazin-6-yl]phenol formate;
- 5-[2-(difluoromethoxy)pyridin-4-yl]-2-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3*H*-[1,2,3]triazolo[4,5-c]pyridazin-6-yl]phenol hydrochloride;
- 2-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3*H*-[1,2,3]triazolo[4,5-c]pyridazin-6-yl]-5-(1,3,4-thiadiazol-2-yl)phenol hydrochloride;
- 6-[4-(1*H*-pyrazol-4-yl)-1*H*-benzotriazol-7-yl]-3-(2,2,6,6-tetramethylpiperidin-4-yl)-3*H*-[1,2,3]triazolo[4,5-c]pyridazine trifluoroacetate;
- $5-(1H-\mathrm{pyrrolo}[2,3-\mathrm{b}]\mathrm{pyridin}-4-\mathrm{yl})-2-[3-(2,2,6,6-\mathrm{tetramethylpiperidin}-4-\mathrm{yl})-3H-\mathrm{yl})-3H-\mathrm{yl})$
- [1,2,3]triazolo[4,5-c]pyridazin-6-yl]phenol hydrochloride;
- 5-(2-methoxypyrimidin-4-yl)-2-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3*H*-
- [1,2,3]triazolo[4,5-c]pyridazin-6-yl]phenol hydrochloride;
- 5-(1,2-oxazol-4-yl)-2-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3*H*-[1,2,3]triazolo[4,5-c]pyridazin-6-yl]phenol hydrochloride;
- 5-(5-fluoro-1-methyl-1*H*-pyrazol-4-yl)-2-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3*H*-[1,2,3]triazolo[4,5-c]pyridazin-6-yl]phenol hydrochloride;
- 5-(1-ethyl-5-fluoro-1 H-pyrazol-4-yl)-2-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3 H-pyrazol-4-yl)-2-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3 H-pyrazol-4-yl)-2-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3 H-pyrazol-4-yl)-2-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3 H-pyrazol-4-yl)-2-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3 H-pyrazol-4-yl)-2-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3 H-pyrazol-4-yl)-3 H-pyrazol-4-
- [1,2,3]triazolo[4,5-c]pyridazin-6-yl]phenol hydrochloride;
- 5-(2-ethoxypyridin-4-yl)-2-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3*H*-
- [1,2,3]triazolo[4,5-c]pyridazin-6-yl]phenol hydrochloride;
- 5-(6-ethoxypyrimidin-4-yl)-2-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3*H*-
- [1,2,3]triazolo[4,5-c]pyridazin-6-yl]phenol hydrochloride;
- 2-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3H-[1,2,3]triazolo[4,5-c]pyridazin-6-yl]-5-([1,2,3]triazolo[1,5-a]pyridin-5-yl)phenol hydrochloride;
- 2-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3H-[1,2,3]triazolo[4,5-c]pyridazin-6-yl]-5-([1,2,4]triazolo[1,5-a]pyridin-7-yl)phenol hydrochloride;
- 5-(3-chloro-1-methyl-1*H*-pyrazol-4-yl)-2-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3*H*-[1,2,3]triazolo[4,5-c]pyridazin-6-yl]phenol hydrochloride;
- 6-{3-hydroxy-4-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3*H*-[1,2,3]triazolo[4,5-c]pyridazin-6-yl]phenyl}pyrimidin-4(3H)-one hydrochloride;
- 5-(3-chloro-1*H*-pyrazol-4-yl)-2-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3*H*-
- [1,2,3]triazolo[4,5-c]pyridazin-6-yl]phenol hydrochloride;
- 5-(3-fluoro-1-methyl-1*H*-pyrazol-4-yl)-2-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3*H*-[1,2,3]triazolo[4,5-c]pyridazin-6-yl]phenol hydrochloride;
- 5-(3-methoxy-1*H*-pyrazol-4-yl)-2-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3*H*-
- [1,2,3]triazolo[4,5-c]pyridazin-6-yl]phenol hydrochloride;

```
4-{3-hydroxy-4-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3H-[1,2,3]triazolo[4,5-c]pyridazin-6-yl]phenyl}-1-methyl-1H-pyrazole-3-carbonitrile hydrochloride;
```

- 5-(5-methyl-1,3-thiazol-2-yl)-2-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3*H*-[1,2,3]triazolo[4,5-c]pyridazin-6-yl]phenol hydrochloride;
- 2-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3*H*-[1,2,3]triazolo[4,5-c]pyridazin-6-yl]-5-
- (1,2,4-thiadiazol-5-yl)phenol hydrochloride; 5-(4-fluoro-1*H*-benzotriazol-6-yl)-2-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3*H*-[1,2,3]triazolo[4,5-c]pyridazin-6-yl]phenol hydrochloride;
- 5-(1*H* -pyrazol-4-yl)-2-[7-(2,2,6,6-tetramethylpiperidin-4-yl)-7*H*-pyrrolo[2,3-c]pyridazin-3-yl]pyridin-3-ol dihydrochloride;
- 5-(3-bromo-1*H*-pyrazol-4-yl)-2-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3*H*-
- [1,2,3]triazolo[4,5-c]pyridazin-6-yl]phenol hydrochloride;
- 5-(1-methyl-1*H*-1,2,3-triazol-4-yl)-2-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3*H*-
- [1,2,3]triazolo[4,5-c]pyridazin-6-yl]phenol hydrochloride;
- 2-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3*H*-[1,2,3]triazolo[4,5-c]pyridazin-6-yl]-5-[3-(trifluoromethyl)-1*H*-pyrazol-4-yl]phenol hydrochloride;
- 5-(1*H*-pyrazol-4-yl)-2-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3*H*-[1,2,3]triazolo[4,5-c]pyridazin-6-yl]pyridin-3-ol hydrochloride;
- 5-(1*H*-pyrazol-4-yl)-2-[7-(2,2,6,6-tetramethylpiperidin-4-yl)-7*H*-imidazo[4,5-c]pyridazin-3-yl]pyridin-3-ol dihydrochloride;
- 5-(imidazo[1,2-a]pyrazin-6-yl)-2-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3*H*-[1,2,3]triazolo[4,5-c]pyridazin-6-yl]phenol hydrochloride;
- 5-(4-fluoro-1*H*-imidazol-1-yl)-2-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3*H*-
- [1,2,3]triazolo[4,5-c]pyridazin-6-yl]phenol dihydrochloride;
- 5-(4-methyl-1*H*-imidazol-1-yl)-2-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3*H*-
- [1,2,3]triazolo[4,5-c]pyridazin-6-yl]phenol dihydrochloride;
- 2-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3*H*-[1,2,3]triazolo[4,5-c]pyridazin-6-yl]-5-(1*H*-[1,2,3]triazolo[4,5-b]pyridin-6-yl)phenol dihydrochloride;
- 2-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3*H*-[1,2,3]triazolo[4,5-c]pyridazin-6-yl]-5-(3*H*-[1,2,3]triazolo[4,5-c]pyridin-6-yl)phenol dihydrochloride;
- 2-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3*H*-[1,2,3]triazolo[4,5-c]pyridazin-6-yl]-5-(1*H*-[1,2,3]triazolo[4,5-b]pyridin-5-yl)phenol dihydrochloride;
- 5-(2,4-dimethyl-1*H*-imidazol-1-yl)-2-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3*H*-
- [1,2,3]triazolo[4,5-c]pyridazin-6-yl]phenol dihydrochloride;
- 5-(2-methyl-1,3-thiazol-5-yl)-2-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3*H*-
- [1,2,3]triazolo[4,5-c]pyridazin-6-yl]phenol dihydrochloride;
- 5-(2-methyl-2*H*-1,2,3-triazol-4-yl)-2-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3*H*-
- [1,2,3]triazolo[4,5-c]pyridazin-6-yl]phenol hydrochloride;
- 2-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3*H*-[1,2,3]triazolo[4,5-c]pyridazin-6-yl]-5-
- ([1,2,4]triazolo[4,3-b]pyridazin-6-yl)phenol hydrochloride;

- 5-(3-methyl-1,2,4-thiadiazol-5-yl)-2-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3 H-1,2,4-thiadiazol-5-yl)-2-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3 H-1,2,4-thiadiazol-5-yl)-2-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3 H-1,2,4-thiadiazol-5-yl)-2-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3 H-1,2,4-thiadiazol-5-yl)-2-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3 H-1,2,4-thiadiazol-5-yl)-2-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3 H-1,2,4-thiadiazol-5-yl)-2-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3 H-1,2,4-thiadiazol-5-yl)-2-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3 H-1,2,4-thiadiazol-5-yl)-2-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3 H-1,2,4-thiadiazol-5-yl)-3 H-1,2,4-thiadiazol
- [1,2,3]triazolo[4,5-c]pyridazin-6-yl]phenol hydrochloride;
- 5-(5-methyl-1*H*-pyrazol-1-yl)-2-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3*H*-
- [1,2,3]triazolo[4,5-c]pyridazin-6-yl]phenol dihydrochloride;
- 5-(3-methyl-1*H*-pyrazol-1-yl)-2-(3-(2,2,6,6-tetramethylpiperidin-4-yl)-3*H*-
- [1,2,3]triazolo[4,5-c]pyridazin-6-yl)phenol dihydrochloride;
- 5-(4-methoxy-1,3,5-triazin-2-yl)-2-(3-(2,2,6,6-tetramethylpiperidin-4-yl)-3*H*-
- [1,2,3]triazolo[4,5-c]pyridazin-6-yl)phenol dihydrochloride;
- 5-(imidazo[1,2-a]pyrimidin-6-yl)-2-(3-(2,2,6,6-tetramethylpiperidin-4-yl)-3*H*-
- [1,2,3]triazolo[4,5-c]pyridazin-6-yl)phenol hydrochloride;
- 5-(3-fluoro-1*H*-pyrazol-4-yl)-2-(1-(2,2,6,6-tetramethylpiperidin-4-yl)-1*H*-pyrazolo[3,4-c]pyridazin-5-yl)phenol hydrochloride;
- 5-(imidazo[1,2-b]pyridazin-6-yl)-2-(3-(2,2,6,6-tetramethylpiperidin-4-yl)-3*H*-
- [1,2,3]triazolo[4,5-c]pyridazin-6-yl)phenol hydrochloride;
- 2-[3-(2,2,6,6-tetramethylpiperidin-4-yl)-3*H*-[1,2,3]triazolo[4,5-c]pyridazin-6-yl]-5-(2*H*-1,2,3-triazol-2-yl)phenol hydrochloride;
- 2-{3-[(3*S*,4*S*)-3-fluoro-2,2,6,6-tetramethylpiperidin-4-yl]-3*H*-[1,2,3]triazolo[4,5-c]pyridazin-6-yl}-5-(1*H*-pyrazol-4-yl)phenol dihydrochloride;
- 5-(pyridin-4-yl)-2-[1-(2,2,6,6-tetramethylpiperidin-4-yl)-1*H*-pyrazolo[3,4-c]pyridazin-5-yl]phenol hydrochloride;
- 5-(pyridin-3-yl)-2-[1-(2,2,6,6-tetramethylpiperidin-4-yl)-1*H*-pyrazolo[3,4-c]pyridazin-5-yl]phenol hydrochloride;
- 5-(pyrimidin-5-yl)-2-[1-(2,2,6,6-tetramethylpiperidin-4-yl)-1*H*-pyrazolo[3,4-c]pyridazin-5-yl]phenol hydrochloride;
- $2-\{3-[(3S,4R)-3-fluoro-2,2,6,6-tetramethylpiperidin-4-yl]-3H-[1,2,3]$ triazolo[4,5-c]pyridazin-6-yl}-5-(1*H*-pyrazol-4-yl)phenol dihydrochloride;
- 5-(1-methyl-1*H*-pyrazol-3-yl)-2-[1-(2,2,6,6-tetramethylpiperidin-4-yl)-1*H*-pyrazolo[3,4-c]pyridazin-5-yl]phenol hydrochloride;
- 2-{3-[3-(tert-butylamino)cyclobutyl]-3*H*-[1,2,3]triazolo[4,5-c]pyridazin-6-yl}-5-(1*H*-pyrazol-4-yl)phenol dihydrochloride;
- 4-(4-{3-[(3*S*,4*S*)-3-fluoro-2,2,6,6-tetramethylpiperidin-4-yl]-3*H*-[1,2,3]triazolo[4,5-c]pyridazin-6-yl}-3-hydroxyphenyl)-1-methylpyridin-2(1*H*)-one hydrochloride;
- 6-(4-{3-[(3*S*,4*S*)-3-fluoro-2,2,6,6-tetramethylpiperidin-4-yl]-3*H*-[1,2,3]triazolo[4,5-c]pyridazin-6-yl}-3-hydroxyphenyl)-3-methylpyrimidin-4(3*H*)-one dihydrochloride;
- 2-[1-(2,2,6,6-tetramethylpiperidin-4-yl)-1*H*-pyrazolo[3,4-c]pyridazin-5-yl]-5-(2*H*-1,2,3-triazol-2-yl)phenol hydrochloride; and
- 2-{3-[3-(tert-butylamino)cyclopentyl]-3*H*-[1,2,3]triazolo[4,5-c]pyridazin-6-yl}-5-(1*H*-pyrazol-4-yl)phenol dihydrochloride;

wherein a form of the compound is selected from the group consisting of a hydrate, solvate, racemate, enantiomer, diastereomer, stereoisomer, and tautomer form thereof.

8. A method for treating or ameliorating HD in a subject in need thereof, comprising administering to the subject an effective amount of the compound of any of claims 1, 6, or 7.

- 9. The method of claim 8, wherein the effective amount of the compound is in a range of from about 0.001 mg/kg/day to about 500 mg/kg/day.
 - 10. A use of the compound of any of claims 1, 6, or 7 for treating or ameliorating HD in a subject in need thereof, comprising administering to the subject an effective amount of the compound.
- The use of claim 10, wherein the effective amount of the compound is in a range of from
 about 0.001 mg/kg/day to about 500 mg/kg/day.
 - 12. A use of the compound of any of claims 1, 6, or 7 in the manufacture of a medicament for treating or ameliorating HD in a subject in need thereof, comprising administering an effective amount of the medicament to the subject.
- 13. The use of claim 12, wherein the effective amount of the compound in the medicament is in a range of from about 0.001 mg/kg/day to about 500 mg/kg/day.
 - 14. A use of the compound of any of claims 1, 6, or 7 in admixture with one or more pharmaceutically acceptable excipient(s) in a pharmaceutical composition for treating or ameliorating HD in a subject in need thereof, comprising administering an effective amount of the pharmaceutical composition to the subject.
- The use of claim 14, wherein the effective amount of the compound in the pharmaceutical composition is in a range of from about 0.001 mg/kg/day to about 500 mg/kg/day.
 - 16. A pharmaceutical composition for use in treating or ameliorating HD comprising an effective amount of the compound of claim 1 and a pharmaceutically acceptable excipient.
- 17. A pharmaceutical composition for use in treating or ameliorating HD comprising an effective amount of the compound of claims 6 or 7 and a pharmaceutically acceptable excipient.

International application No PCT/US2019/038889

A. CLASSIFICATION OF SUBJECT MATTER INV. C07D487/04 C07D491/04

A61P25/14

A61P25/28

C07D495/04 A61K31/4985

CO7D519/00 A61K31/5025 A61P25/00

ADD.

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

C07D A61P

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

EPO-Internal, CHEM ABS Data, WPI Data

C. DOCUME	ENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	WO 2018/081091 A1 (RELAY THERAPEUTICS INC [US]; DE SHAW RES LLC [US]) 3 May 2018 (2018-05-03) claims 1, 14, 15, 19 7th to 13th compound; page 38 1st to 14th compound; page 39 1st to 14th compound etc.; page 40; examples 18-28 compounds 65-118	1,5
X	WO 2017/023987 A1 (SAMUMED LLC [US]) 9 February 2017 (2017-02-09) 5-(1-methyl-1H-pyrazol-4-yl)-1- (tetrahydro-2H-pyran-2-yl)-1H-pyrazolo[3,4 -b]pyridine; page 146; compound XCVI	1
	-/	

X See patent family annex.

- Special categories of cited documents:
- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier application or patent but published on or after the international filing date
- "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other
- document published prior to the international filing date but later than the priority date claimed
- "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
- "&" document member of the same patent family

Date of mailing of the international search report

Date of the actual completion of the international search

08/08/2019

1 August 2019

Name and mailing address of the ISA/ European Patent Office, P.B. 5818 Patentlaan 2

NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Fax: (+31-70) 340-3016

Authorized officer

Brandstetter, T

1

International application No
PCT/US2019/038889

C(Continua	tion). DOCUMENTS CONSIDERED TO BE RELEVANT	
Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	ABDUL KHADER K K ET AL: "Regioselective synthesis of C-2 substituted imidazo[4,5-b]pyridines utilizing palladium catalysed C-N bond forming reactions with enolizable heterocy", TETRAHEDRON LETTERS, ELSEVIER, AMSTERDAM, NL, vol. 55, no. 10, 1 February 2014 (2014-02-01), pages 1778-1783, XP028662807, ISSN: 0040-4039, DOI: 10.1016/J.TETLET.2014.01.114 entry 15; page 1782; table 5; compound 3k	1,4
X	MARIUSZ MOJZYCH ET AL: "Synthesis of pyrazolo[4,3- e][1,2,4]triazine sulfonamides, novel Sildenafil analogs with tyrosinase inhibitory activity", BIOORGANIC & MEDICINAL CHEMISTRY: A TETRAHEDRON PUBLICATION FOR THE RAPID DISSEMINATION OF FULL ORIGINAL RESEARCH PAPERS AND CRITICAL REVIEWS ON BIOMOLECULAR CHEMISTRY, MEDICINAL CHEMISTRY AND RELATED DISCIPLINES, vol. 22, no. 23, 18 October 2014 (2014-10-18), pages 6616-6624, XP055609447, NL ISSN: 0968-0896, DOI: 10.1016/j.bmc.2014.10.009 page 6618; compound 14	1,4
X	INGO KNEPPER ET AL: "3-Acylindoles as versatile starting materials for pyridine ring annulation: synthesis of 1-deazapurine isosteres", TETRAHEDRON, vol. 67, no. 29, 14 May 2011 (2011-05-14), pages 5293-5303, XP055609452, AMSTERDAM, NL ISSN: 0040-4020, DOI: 10.1016/j.tet.2011.05.037 table 2; compounds 13b, 16c, 16d	1,4
X	US 2014/121197 A1 (BÜRLI ROLAND WERNER [GB] ET AL) 1 May 2014 (2014-05-01) page 82; example 73; compound XIIIa claims 4, 19	1,3,5

1

International application No
PCT/US2019/038889

tion). DOCUMENTS CONSIDERED TO BE RELEVANT	
,	Relevant to claim No.
WO 2007/133756 A2 (NEUROGEN CORP [US]; HORVATH RAYMOND F [US]; ZHANG LU YAN [US]) 22 November 2007 (2007-11-22) claims 3, 5 compounds 8, 27, 82, 98, 183, 185, 190, 203, 229, 239, 265 compounds 348, 384, 403, 517, 556	1,3,5
EP 2 841 428 A1 (VERTEX PHARMA [US]) 4 March 2015 (2015-03-04) claims 1, 24 82, 83, 141, 145, 151, 155, 171, etc; claim 17	1,3,5
WO 2017/210134 A1 (BOARD OF REGENTS UNIV OF TEXAS SYSTEM [US]) 7 December 2017 (2017-12-07) claims 1, 35 last compound; page 154 all compounds; page 155	1,5
WO 2017/100726 A1 (PTC THERAPEUTICS INC [US]) 15 June 2017 (2017-06-15) claims 1-3	1-5,8-16 6,7,17
WO 2018/218133 A1 (RELAY THERAPEUTICS INC [US]; DE SHAW RES LLC [US]) 29 November 2018 (2018-11-29) claims 12, 49, 50, 52-65 compounds 20-471, 519-533 etc.	1,5
	Citation of document, with indication, where appropriate, of the relevant passages W0 2007/133756 A2 (NEUROGEN CORP [US]; HORVATH RAYMOND F [US]; ZHANG LU YAN [US]) 22 November 2007 (2007-11-22) claims 3, 5 compounds 8, 27, 82, 98, 183, 185, 190, 203, 229, 239, 265 compounds 348, 384, 403, 517, 556 EP 2 841 428 A1 (VERTEX PHARMA [US]) 4 March 2015 (2015-03-04) claims 1, 24 82, 83, 141, 145, 151, 155, 171, etc; claim 17 W0 2017/210134 A1 (BOARD OF REGENTS UNIV OF TEXAS SYSTEM [US]) 7 December 2017 (2017-12-07) claims 1, 35 last compound; page 154 all compounds; page 155 W0 2017/100726 A1 (PTC THERAPEUTICS INC [US]) 15 June 2017 (2017-06-15) claims 1-3 W0 2018/218133 A1 (RELAY THERAPEUTICS INC [US]; DE SHAW RES LLC [US]) 29 November 2018 (2018-11-29) claims 12, 49, 50, 52-65

1

Information on patent family members

International application No
PCT/US2019/038889

Patent document Publication Patent family Publica	
cited in search report date member(s) date	
	6-2018 5-2018
	8-2018 2-2017
US 2015265617 A1 24-09	5-2014 9-2015 9-2016
	3-2008 1-2007
AU 2017/239481 A1 26-11 BR 112014026703 A2 27-0 CA 2871471 A1 31-11 CL 2014002873 A1 24-0 CN 104640852 A 20-0 CN 106977495 A 25-0 CN 106986863 A 28-0 DK 2841428 T3 10-11 EP 2841428 A1 04-0 EP 3459942 A1 27-0 ES 2702707 T3 05-0 HK 1207859 A1 12-0 HK 1207859 A1 12-0 HK 1208022 A1 19-0 HR P20181862 T1 11-0 HR P20181863 T1 11-0 HR P201818685 T1 11-0 HR P20181868 T1 11-0 HR P20181868 T1 11-0 HR P201818685 T1 11-0 HR P20181868 T1 11-0 HR P20181868 T1 11-0 HR P201818685 T1 T1-0 HR P20181868 T1 T1-0 HR P20181868 T1 T1-0 HR P201818685 T1 T1-0 HR P20181868 T1 T1-0 HR P20181868 T1 T1-0 HR P201818685 T1 T1-0 HR P20181868 T1 T1-0 HR P20181868 T1 T1-0 HR P201818685 T1 T1-0 HR P20181868 T1 T1-0 HR P20181868 T1 T1-0 HR P201818685 T1 T1-0 HR P20181868 T1 T1-0 HR P20181868 T1 T1 T1-0 HR P20181868 T1 T1 T1-0 HR P20181868 T1 T1-0 HR P20181868 T1 T1-0 HR P20	0-2014 0-2017 6-2017 6-2017 0-2018 4-2015 5-2017 7-2018 3-2019 3-2019 3-2019 3-2019 3-2019 3-2018 5-2017 3-2018 5-2018 5-2017 1-2018 6-2017 1-2018
	1-2019 2-2017

Information on patent family members

International application No
PCT/US2019/038889

Patent document cited in search report	Publication date	Patent family member(s)	Publication date
		CN 109475531 A EP 3463343 A1 JP 2019517487 A US 2017342078 A1 WO 2017210134 A1	15-03-2019 10-04-2019 24-06-2019 30-11-2017 07-12-2017
WO 2017100726 A1	15-06-2017	AU 2016366694 A1 CA 3007412 A1 CN 108697709 A EA 201800367 A1 EP 3386511 A1 JP 2019500352 A KR 20180103045 A PH 12018501226 A1 SG 11201804915R A US 2019000844 A1 WO 2017100726 A1	28-06-2018 15-06-2017 23-10-2018 28-02-2019 17-10-2018 10-01-2019 18-09-2018 04-02-2019 30-07-2018 03-01-2019 15-06-2017
WO 2018218133 A1	29-11-2018	NONE	