Office de la Propriete Canadian CA 2487160 A1 2005/05/12

Intellectuelle Intellectual Property
du Canada Office (21) 2 487 1 60
v organisme An agency of 12 DEMANDE DE BREVET CANADIEN
d'Industrie Canada Industry Canada
CANADIAN PATENT APPLICATION
(13) A1
(22) Date de depot/Filing Date: 2004/11/08 (51) CL.Int.”/Int.CI.” GO6F 9/44
(41) Mise a la disp. pub./Open to Public Insp.: 2005/05/12 (71) Demandeur/Applicant:
(30) Priorité/Priority: 2003/11/12 (10/731,597) US MICROSOFT CORPORATION, US

(72) Inventeurs/Inventors:
JONES, BRIAN M., US;
SUNDERLAND, MARK, US:
SAWICKI, MARCIN, US:
LITTLE, ROBERT A., US

(74) Agent: SMART & BIGGAR

(54) Titre : MODELE OBJET PROGRAMMABLE PRENANT EN CHARGE UN ESPACE D'APPELLATION OU UNE
BIBLIOTHEQUE DE SCHEMAS DANS UNE APPLICATION LOGICIELLE

(54) Title:. PROGRAMMABLE OBJECT MODEL FOR NAMESPACE OR SCHEMA LIBRARY SUPPORT IN A
SOFTWARE APPLICATION

APPLICATION
~ 305
DOCUMENT NAMESEIABCE (S$HENIA)
410 400
_ TEXT 310 - NAMESPACE 17—~
l - RESOURCES 420
-DATA - SOLUTIONS
-XSD ™\
- IMAGES - XSLT
430
- NAMESPACE2 ™~
- SOLUTIONS
- XSD
- XSLT
THIRD PARTY PROGRAM
- NAMESPACEN
C - RESOURCES
C# Y, - XSD
VISUAL BASIC APIs (CALLS) - XSLT
. OBJECTS,
460 PROPERTIES
(57) Abrégée/Abstract:

A programmable object model allows a user to programmatically access and utiize a Namespace or schema library containing
XML schema files and related XML-based resources for associating the schema files and XML-based resources with one or more
documents and for customizing the functionality associated with the schema files and XML-based resources. The programmable
object model also allows the user/programmer to remove schema files and other XML-based resources from association with
previously associated documents.

B

.

'

e
ok [[f
RO . e s
. M "c'-'-.n:‘-:{\: .«me . m s
.
.

A7 /7]
o~

W .
‘ l an a dH http.:vvopic.ge.ca + Ottawa-Hull K1A 0C9 - atp.//cipo.ge.ca OPIC
OPIC - CIPO 191

10

CA 02487160 2004-11-08

51331-48

PROGRAMMABLE OBJECT MODEL FOR NAMESPACE OR SCHEMA
LIBRARY SUPPORT IN A SOFTWARE APPLICATION

Abstract

- A programmable object model allows a user to programmatically access
and utilize a Namespace or schema library containing XML schema files and related
XML-based resources for associating the schema files and XML-based resources with
one or more documents and for customizing the functionality associated with the schema
files and XML-based resources. The programmable object model also allows the

user/programmer to remove schema files and other XML-based resources from

association with previously associated documents.

CA 02487160 2004-11-08

51331-48

10

15

20

235

PROGRAMMABLE OBJECT MODEL FOR NAMESPACE OR SCHEMA
LIBRARY SUPPORT IN A SOFTWARE APPLICATION

Related Applications

United States Utility Patent Application by applicant matter number
60001.0263US01/MS303917.1, entitled “Programmable Object Model for Extensible
Markup Language Schema Véllidation,” and United States Utility Patent Application by
applicant matter number 60001.0264US01/MS303918.1, entitled “Programmable
Object Model for Extensible Markup Language Markup in an Application,” are hereby

incorporated by reference.

Copyright Notice

A portion of the disclosure of this patent document contains material
which is subject to copyright protection. The copyright owner has no objection to the
facsimile reproduction by anyone of the patent document or the patent disclosure, as it
appears in the United States Patent and Trademark Office patent file or records, but

otherwise reserves all copyright rights whatsoever.

Field of the Invention

The present invention relates programmable object models. More
particularly, the present invention relates to a programmable object model for

Namespace or schema library support in a software application.

Background of the Invention

Computer software applications allow users to create a variety of
documents to assist them in work, education, and leisure. For example, popular word
processing applications allow users to create letters, articles, books, memoranda, and
the like. Spreadsheet applications allow users to store, manipulate, print, and display a

variety of alphanumeric data. Such applications have a number of well known strengths

including rich editing, formatting, printing, calculation and on-line and off-line editing.
|

CA 02487160 2004-11-08

51331-48

10

15

20

25

Most computer software applications do not contain all necessary
programming for providing functionality required or desired by every potential user.
Many programmers often wish to take advantage of an existing application’s
capabilities in their own programs or to customize the functionality of an application
and make it more suitable for a specific set of users or actions. For example, a
programmer working in the financial industry may wish to customize a word processor
for a user audience consisting of financial analysts editing financial reports. In recent
years, the Extensible Markup Language has been used widely as an interchangeable
data format fof many users. Often users of XML fuﬁctionality attach or associate one or
more XML schema files or XML-based solutions to a document being edited or created
by the user. However, users/programmers are limited in their ability to apply XML
schema files and other XML-based solutions functionality to a given document because
the user/programmer does not have direct and easy access to the Namespace or schema
library containing the XML schema files or other XML-based solutions.

Accordingly, there is a need in the art for a programmable object model
for allowing a user/programmer to access a Namespace or schema library of XML
resources for customizing or otherwise manipulating the resources to enhance the
user/programmer’s use of XML functionality with a software application document. It

1s with respect to these and other considerations that the present invention has been

made.

Summary of the Invention

The present invention provides methods and systems for allowing a user
to programmatically access and utilize a Namespace or schema library containing XML
schema files and related XML-based resources for associating those XML-based
resources with one or more documents and for customizing the functionality associated
with those XML-based resources. Once a user or programmer obtains access to the
Namespace or schema library, the user may programmatically associate XML schema

files with XML data 1n an associated document, and conversely, the user may detect and

remove associations of XML schema files with XML data contained in the document.
, |

10

15

20

25

CA 02487160 2004-11-08

51331-48

The user may also programmatically associate transformation files with XML data
contained in a document and detect and remove existing transformation files associated
with XML data contained in the document. The user may also associate other files and
executable software associated with XML-based and other document solutions with
XML data contained in the document. Additionally, the user may detect and delete the
association of XML-based solutions and other types of executable software from
association with XML data contained in a document.

Other embodiments of the invention provide computer readable media
having computer executable instructions stored thereon for execution by one or more
computers, that when executed implement a method as summarized above or as detailed
below.

These and other features, advantages, and aspects of the present
invention may be more clearly understood and appreciated from a review of the
following detailed description of the disclosed embodiments and by reference to the

appended drawings and claims.

Brief Description of the Drawings
Fig. 1 1s a simplified block diagram of a computing system and

associated peripherals and network devices that provide an exemplary operating
environment for the present invention.

Fig. 2 is a simplified block diagram illustrating interaction between
software objects according to an object-oriented programming model.

Fig. 3 is a block diagram illustrating interaction between a document, an
attached schema file, and a schema validation functionality model.

Fig. 4 is a block diagram illustrating interaction between a document, a

Namespace or schema library and a third party software application.

Detailed Description of the Preferred Embodiment

Embodiments of the present invention are directed to methods and

systems for allowing a user to programmatically call a Namespace/Schema library of

3

CA 02487160 2004-11-08

51331-48

10

15

20

25

30

XML schema files and XML-based solutions and resources for controlling the
association of those ﬁles., solutions and resources to one or more documents. These
embodiments may be combined, other embodiments may be utilized, and structural
changes may be made without departing from the spirit or scope of the present
invention. The following detailed description is therefore not to be taken in a limiting
senses and the scope of the present invention is defined by the appended claims and
their equivalents. '

Referring now to the drawings, in which like numerals represent like
elements through the several figures, aspects of the present invention and the exemplary
operating environment will be described. Fig. 1 and the following discussion are
intended to provide a brief, general description of a suitable computing environment in
which the invention may be implemented. While the invention will be described in the
general context of program modules that execute in conjunction with an application
program that runs on an operating system on a personal computer, those skilled in the
art will recognize that the invention may also be implemented in combination with other
program modules.

Generally, program modules include routines, programs, components,
data structures, and other types of structures that perform particular tasks or implement
particular abstract data types. Moreover, those skilled in the art will appreciate that the
invention may be practiced with other computer system configurations, including hand-
held devices, multiprocessor systems, microprocessor-based or programmable
consumer electronics, minicomputers, mainframe computers, and the like. The
invention may also be practiced in distributed computing environments where tasks are
performed by remote processing devices that are linked through a communications
network. In a distributed computing environment, program modules may be located in
both local and remote memory storage devices.

Turmning now to Fig. 1, an illustrative computer architecture for a
personal computer 2 for practicing the various embodiments of the invention will be
described. The computer architecture shown in Fig. 1 illustrates a conventional

personal computer, including a central processing unit 4 ("CPU"), a system memory 6,

4

CA 02487160 2004-11-08

51331-48

10

15

20

25

30

including a random access memory 8 ("RAM") and a read-only memory ("ROM") 10,
and a system bus 12 that couples the memory to the CPU4. A basic input/output
system containing the basic routines that help to transfer information between elements
within the computer, such as during startup, is stored in the ROM 10. The personal
computer 2 further includes a mass storage device 14 for storing an operating
system 16, application programs, such as the application program 305, and data.

The mass storage device 14 is connected to the CPU 4 through a mass
storage controller (not shown) connected to the bus 12. The mass storage device 14 and
its associated computer-readable media, provide non-volatile storage for the personal
computer 2. Although the description of computer-readable media contained herein
refers to a mass storage device, such as a hard disk or CD-ROM drive, it should be
appreciated by those skilled in the art that computer-readable media can be any

available media that can be accessed by the personal computer 2.

By way of example, and not limitation, computer-readable media may
comprise computer storage media and communication media. Computer storage media
includes volatile and non-volatile, removable and non-removable media implemented in
any method or technology for storage of information such as computer-readable
Instructions, data structures, program modules or other data. Computer storage media
includes, but is not limited to, RAM, ROM, EPROM, EEPROM, flash memory or other
solid state memory technology, CD-ROM, DVD, or other optical storage, magnetic
cassettes, magnetic tape, magnetic disk storage or other magnetic storage devices, or
any other medium which can be used to store the desired information and which can be
accessed by the computer.

According to various embodiments of the invention, the personal
computer 2 may operate 1n a networked environment using logical connections to
remote computers through a TCP/IP network 18, such as the Internet. The personal
computer 2 may connect to the TCP/IP network 18 through a network interface unit 20
connected to the bus 12. It should be appreciated that the network interface unit 20 may

also be utilized to connect to other types of networks and remote computer systems.

The personal computer 2 may also include an input/output controller 22 for receiving

S

CA 02487160 2004-11-08

51331-48

10

15

20

25

30

and processing input from a number of devices, including a keyboard or mouse (not
shown). Similarly, an input/output controller 22 may provide output to a display screen,
a printer, or other type of output device.

As mentioned briefly above, a number of program modules and data files
may be stored in the mass storage device 14 and RAM 8 of the personal computer 2,
including an operating system 16 suitable for controlling the operation of a networked
personal computer, such as the WINDOWS XP operating system from MICROSOFT
CORPORATION of Redmond, Washington. The mass storage device 14 and RAM 8
may also store one or more application programs. In particular, the mass storage device
14 and RAM 8 may store an application program 305 for creating and editing an
electronic document 310. For instance, the application program 305 may comprise a
word processing application program, a spreadsheet application, a contact application,
and the like. Application programs for creating and editing other types of electronic
documents may also be used with the various embodiments of the present invention. A
schema file 330and a namespace/schema library 400, described below, are also shown.

Exeniplary embodiments of the present invention are implemented by
communications between different software objects in an object-oriented programming
environment. For purposes of the following description of embodiments of the present
invention, it 1s useful to briefly to describe components of an object-oriented
programming environment. Fig. 2 is a simplified block diagram illustrating interaction
between software objects according to an object-oriented programming model.
According to an object-oriented programming environment, a first object 210 may
include software code, executable methods, properties, and parameters. Similarly, a
second object 220 may also include software code, executable methods, properties, and
parameters.

A first object 210 may communicate with a second object 220 to obtain
information or functionality from the second object 220 by calling the second object
220 via a message call 230. As is well know to those skilled in the art of object-

oriented programming environment, the first object 210 may communicate with the

second object 220 via application programming interfaces (API) that allow two

6

CA 02487160 2004-11-08

51331-48

10

15

20

235

30

disparate software objects 210, 220 to communicate with each other in order to obtain
information and functionality from each other. For example, if the first object 210
requires the functionality provided by a method contained in the second object 220, the
first object 210 may pass a message call 230 to the second object 220 in which the first
object identifies the required method and in which the first object passes any required
parameters to the second object required by the second object for operating the
identified method. Once the second object 220 receives the call from the first object,
the second object executes the called method based on the provided parameters and
sends a return message 250 containing a value obtained from the executed method back
to the first object 210.

For example, in terms of embodiments of the present invention, and as
will be described below, a first object 210 may be a third party customized application
that passes a message to a second object such as an Extensible Markup Language
schema validation object whereby the first object identifies a method requiring the
validation of a specified XML element in a document where the specified XML element
1s a parameter passed by the first object with the identified method. 'Upon receipt of the
call from the first object, according to this example, the schema validation object
executes the identified method on the specified XML element and returns a message to
the first object in the form of a result or value associated with the validated XML
element. Operation of object-oriented programming environments, as briefly described
above, are well known to those skilled 1n the art.

As described below, embodiments of the present invention are
implemented through the interaction of software objects in the use, customization, and
application of components of the Extensible Markup Language (XML). Fig. 3 1s a
block diagram illustrating interaction between a document, an attached schema file, and
a schema validation functionality module. As is well known to those skilled in the art,
the Extensible Markup Language (XML) provides a method of describing text and data
in a document by allowing a user to create tag names that are applied to text or data in a

document that in turn define the text or data to which associated tags are applied. For

example referring to Fig. 3, the document 310 created with the application 305 contains

7

CA 02487160 2004-11-08

01331-48

10

15

20

25

30

text that has been marked up with XML tags 315, 320, 325. For example, the text
"Greetings" 1s annotated with the XML tag <title>. The text "My name is Sarah" is
annotated with the <body> tag. According to XML, the creator of the <title> and
<body> tags 1s free to create her own tags for describing the tags to which those tags
will be applied. Then, so long as any downstream consuming application or computing
machine is provided 1instructions as to the definition of the tags applied to the text, that
application or computing machine may utilize the data in accordance with the tags. For
example, 1f a downstream application has been programmed to extract text defined as
titles of articles or publications processed by that application, the application may parse
the document 310 and extract the text "Greetings," as illustrated in Fig. 3 because that
text 1s annotated with the tag <title>. The creator of the particular XML tag naming for
the document 310, illustrated in Fig. 3, provides useful description for text or data
contained in the document 310 that may be utilized by third parties so long as those
third parties are provided with the definitions associated with tags applied to the text or
data.

According to embodiments of the present invention, the text and XML
markup entered into the document 310 may be saved according to a variety of different
file formats and according to the native programming language of the application 305
with which the document 310 is created. For example, the text and XML markup may
be saved according to a word processing application, a spreadsheet application, and the
like. Alternatively, the text and XML markup entered into the document 310 may be
saved as an XML format whereby the text or data, any applied XML markup, and any
formatting such as font, style, paragraph structure, etc. may be saved as an XML
representation. Accordingly, downstream or third party applications capable of
understanding data saved as XML may open and consume the text or data thus saved as
an XML representation. For a detailed discussion of saving text and XML markup and
associated formatting and other attributes of a document 310 as XML, see U.S. Patent
Application entitled “Word Processing Document Stored in a Single XML File that may

be Manipulated by Applications that Understanding XML,” U.S. Serial No. 10/187,060,
filed June 28, 2002, which is incorporated herein by reference as if fully set out herein.

8

CA 02487160 2004-11-08

51331-48

10

15

20

25

30

In order to provide a definitional framework for XML markup elements
(tags) applied to text or data, as illustrated in Fig. 3, XML schema files are created
which contain information necessary for allowing users and consumers of marked up
and stored data to understand the XML tagging definitions designed by the creator of
the document. Each schema file also referred to in the art as a XSD file preferably
includes a listing of all XML elements (tags) that may be applied to a document
according to a given schema file. For example, a schema file 330, illustrated in Fig. 3,
may be a schema file containing definitions of certain XML elements that may be
applied to a document 310 including attributes of XML elements or limitations and/of
rules associated with text or data that may be annotated with XML elements according
to the schema file. For example, referring to the schema file 330 illustrated in Fig. 3,
the schema file is identified by the Namespace "intro" the schema file includes a root
element of <introCard>.

According to the schema file 330, the <introCard> element serves as a
root element for the schema file and also as a parent element to two child elements
<title> and <body>. As is well known to those skilled in the art, a number of parent
elements may be defined under a single root element, and a number of child elements
may be defined under each parent element. Typically, however, a given schema file
330 contains only one root element. Referring still to Fig. 3, the schema file 330 also
contains attributes 340 and 345 to the <title> and <body> elements, respectfully. The
attributes 340 and 345 may provide further definition or rules associated with applying
the respective elements to text or data in the document 310. For example, the attribute
345 defines that text annotated with the <title> element must be less than or equal to
twenty-five characters in length. Accordingly, if text exceeding twenty-five characters
In length 1s annotated with the <title> element or tag, the attempted annotation of that
text will be invalid according to the definitions contained in the schema file 330.

By applying such definitions or rules as attributes to XML elements, the
creator of the schema may dictate the structure of data contained in a document

assocliated with a given schema file. For example, if the creator of a schema file 330 for

detining XML markup applied to a resume document desires that the experience section

9

10

15

20

25

30

CA 02487160 2004-11-08

01331-48

of the resume document contain no more than four present or previous job entries, the
creator of the schema file 330 may define an attribute of an <experience> element, for
example, to allow that no more than four present or past job entries may be entered
between the <experience> tags in order for the experience text to be valid according to
the schema file 330. As is well known to those skilled in the art, the schema file 330
may be attached to or otherwise associated with a given document 310 for application
of allowable XML markup defined in the attached schema file to the document 310.
According to one embodiment, the document 310 marked up with XML elements of the
attached or associated schema file 330 may point to the attached or associated schema
file by pointing to a uniform resource identifier (URI) associated with a Namespace
1dentifying the attached or associated schema file 330.

According to embodiments of the present invention, a document 310
may have a plurality of attached schema files. That is, a creator of the document 310
may associate or attach more than one schema file 330 to the document 310 in order to
provide a framework for the annotation of XML markup from more than one schema
file. For example, a document 310 may contain text or data associated with financial
data. A creator of the document 310 may wish to associate XML schema files 330
containing XML markup and definitions associated with multiple financial institutions.
Accordingly, the creator of the document 310 may associate an XML schema file 330
from one or more financial institutions with the document 310. Likewise, a given XML
schema file 330 may be associated with a particular document structure such as a
template for placing financial data into a desirable format.

According to embodiments of the present invention, a collection of XML
schema files and associated document solutions may be maintained in a Namespace or
schema library located separately from the document 310. The document 310 may in
turn contain pointers to URIs in the Namespace or schema library associated with the
one or more schema files attached to otherwise associated with the document 310. As
the document 310 requires information from one or more associated schema files, the

document 310 points to the Namespace or schema library to obtain the required schema

definitions. For a detailed description of the use of an operation of Namespace or

10

CA 02487160 2004-11-08

01331-48

10

15

20

23

schema libraries, see U.S. Patent Application entitled “System and Method for
Providing Namespace Related Information,” U.S. Serial No. 10/184,190, filed June 27,
2002, and U.S. Patent Application entitled “System and Method for Obtaining and
Using Namespace Related Information for Opening XML Documents,” U.S. Serial No.
10/185,940, filed June 27, 2002, both U.S. patent applications of which are incorporated
herein by reference as if fully set out herein. For a detailed description of a mechanism
for downloading software components such as XML schema files and associated
solutions from a Namespace or schema library, see US Patent Application entitled
Mechanism for Downloading Software Components from a Remote Source for Use by a
Local Software Application, US Serial No. 10/164,260, filed June 5, 2002.

Referring still to Fig. 3, a schema validation functionality module 350 is
illustrated for validating XML markup applied to a document 310 against an XML
schema file 330 attached to or otherwise associated with the document 310, as described
above. As described above, the schema file 330 sets out acceptable XML elements and
associated attributes and defines rules for the valid annotation of the document 310 with
XML markup from an associated schema file 330. For example, as shown in the
schema file 330, two child elements <title> and <body> are defined under the root or
parent element <introCard>. Attributes 340, 345 defining the acceptable string length
of text associated with the child elements <title> and <body> are also illustrated. As
described above, if a user attempts to annotate the document 310 with XML markup
from a schema file 330 attached to or associated with the document in violation of the
XML markup definitions contained in the schema file 330, an invalidity or error state
will be presented. For example, if the user attempts to enter a title string exceeding
twenty-five characters, that text entry will violate the maximum character length
attribute of the <title> element of the schema file 330. In order to validate XML
markup applied to a document 310, against an associated schema file 330, a schema
validation module 350 is utilized. As should be understood by those skilled in the art,
the schema validation module 350 is a software module including computer executable

instructions sufficient for comparing XML markup and associated text entered in to a

11

CA 02487160 2004-11-08

01331-48

10

15

20

25

30

document 310 against an associated or attached XML schema file 330 as the XML
markup and associated text is entered in to the document 310.

According to embodiments of the present invention, the schema
validation module 350 compares each XML markup element and associated text or data
applied to the document 310 against the attached or associated schema file 330 to
determine whether each element and associated text or data complies with the rules and
defimtions set out by the attached schema file 330. For example, if a user attempts to
enter a character string exceeding twenty-five characters annotated by the <title§
elements 320, the schema validation module will compare that text string against the
text string attribute 340 of the attached schema file 330 and determine that the text
string entered by the user exceeds the maximum allowable text string length.
Accordingly, an error message or dialogue will be presented to the user to alert the user
that the text string being entered by the user exceeds the maximum allowable character
length according to the attached schema file 330. Likewise, if the user attempts to add
an XML markup element between the <title> and the <body> elements, the schema
validation module 350 will determine that the XML markup element applied by the user
1s not a valid element allowed between the <title> and <body> elements according to
the attached schema file 330. Accordingly, the schema validation module 350 will

generate an error message or dialogue to the user to alert the user of the invalid XML

markup.

Programmable Object Model for Namespaces/Schema Libraries
As described above with reference to Fig. 3, in order to provide a

definitional and rules-oriented framework for applying Extensible Markup Language
(XML) markup to a document 310, one or more schema files 330 may be associated or
attached to the document for setting definitions and rules governing the application of
XML markup elements corresponding to a given schema file 330 to a document 310.
As described, a plurality of XML schema files and other document solutions, for

example pre-structured templates, may be attached to or associated with a single XML

document 310. Moreover, as described above, a number of different XML schema files

12

CA 02487160 2004-11-08

51331-48

10

15

20

25

30

identified by a Namespace identification and a number of document solutions may be
stored in a Namespace or schema library apart from the document 310. According to
embodiments of the present invention, users are allowed to programmatically call the
Namespace or schema library associated with one or more documents 310 for
customizing or otherwise manipulating schema file Namespaces and associated
definitions, rules, resources, and solutions associated with various Namespace
1dentifiers contained in the Namespace or schema hbrary.

. ‘Fig. 4 is a block diagram illustrating interaction between a document
310, a Namespace or schema library 400 and a third party application 450. According
to embodiments of the present invention, users may programmatically call the
Namespace library 400 via a set of object-oriented message calls or application
programming interfaces 470 for modifying the contents or operation of individual
schema files 410, 430 or resources 420, 440 associated with schema files identified 1n
the Namespace library 400. The user may communicate with the Namespace library
from the application 305 or from a third party program 450 via a set of object-oriented
message calls, and the third party program may be developed using a variety of
programming languages, such as C, C++, C#, Visual Basic, and the like.

By having access to the Namespace library through a set of application
programming interfaces 470, the user may programmatically associate one or more
additional XML schema files or Namespaces with XML data, and conversely, the user
may detect and remove existing associations between one or more XML schema files
and XML data or markup applied to the document 310. The user may also
programmatically associate Extensible Stylesheet Language Transformation (XSLT)
with XML data applied to a document, and conversely, the user may detect and remove
existing XSLT transforms from association with XML data applied to the document
310. Moreover, the user may programmatically associate other files and executable
software applications with XML data applied to the document 310 and detect and
remove existing associations of other software applications and files with XML data.

For example, the Namespace 430 illustrated in the Namespace library

400 may contain a solution comprised of a pre-formatted structure for a resume

13

CA 02487160 2004-11-08

51331-48

10

15

20

25

30

document template. When that solution is applied to the document 310, associated
schema definitions and rules designed by the creator of the resume template document
will be applied to XML markup and associated text entered into the document 310. If a
schema file associated with a resume document template requires that an experience
section of a resume document must have at least three past or present job descriptions,
that schema definition will be applied to the document 310 such that at least three job
descriptions must be entered by a subsequent user in the experience section in order for
the XML document 310 to be validated by a schema validation module 350.
Continuing with this example, if such a resume document template schema file is
associated with the document 310, and a user desires to remove the association of that
schema file with the document 310, the user may do so programmatically from a third
party program by sending an object-oriented message call to the Namespace library 450
or to the applic.ation 305 with a provided application programming interface for
directing the removal of the association of the resume document template schema file
from the document 310.

The following is a description of objects and associated properties
comprising object-oriented message calls or application programming interfaces that
allow a user to programmatically access the Namespace library 400 as described above.
Following each of the objects and associated properties set out below is a description of

the operation and functionality of the object or associated property.

Application object

The following are methods and properties of the object.
XMLNamespaces property

A read only pointer to an XMLNamespaces collection which represents

the Namespace library available to the application.

14

51331-48

CA 02487160 2004-11-08

XML Namespaces collection object - an object providing access to the

XMLNamespace objects. It represents the Namespace library. Each XMLNamespace

object in the collection represents a single and unique Na.mespace in the Namespace

library. The following are methods and properties of the object.

10

15

20

25

30

.Add() method

A method creating and adding to the collection a new XMLNamespace

object. It 1s used to register a new Namespace in the Namespace library.

It returns a new XMLNamespace object. It can accept the following

parameters.

Path — pointer to the schema file for the Namespace. The pointer can be
a file path represented as a string.

NamespaceURI — the URI of the Namespace that represents the schema.
The URI can be a text string.

Alias — a text string representing an alternate (more user-friendly) name
for the Namespace that the programmer may specify.

InstallForAllUsers — a flag indicating whether the new Namespace in the
Namespace library should be available to all users of the computer or

only the current user.

JApplication property

A read only pointer to the application object representing the application

of this object model.

.Count property

A read only property returning the number of registered Namespaces in
the Namespace library. The property is the same as the total number of
XMLNamespace objects in the XMLNamespaces collection.

15

CA 02487160 2004-11-08

51331-48

.Creator property

A read only pointer to the creator of the object.

JInstallManifest() method

5 A method for installing solution manifests that register Namespaces in

the Namespace library. It can accept the following parameters.

Path — pointer to the manifest file for the manifest. The pointer can be a
file path represented by a text string.

10 InstallForAllUsers - a flag indicating whether the new Namespaces
installed in the Namespace library by the manifest should be available to

all users of the computer or only the current user.

Jtem() method
15 A method for accessing the individual members of this collection using
an numerical index or a search keyword. The method can accept the

following parameters.

Index — a number representing the position of the requested XML
20 Namespace object in the Namespace library. The index can also be a text

string representing the alias or the URI of the requested Namespace.

.Parent property
A read only property returning the parent object of the collection. This
25 property returns a pointer to the application from which the

XMLNamespaces collection is accessed.

16

CA 02487160 2004-11-08

51331-48

XMLNamespace object — an object representing an individual Namespace entry in the
Namespace library (and an individual item in the XMLNamespaces collection). The

following are methods and properties of the object.

S Alias property
A property for controlling the alias the programmer associates with the

Namespace. It can support the following parameter.

AllUsers — a flag indicating whether the alias is available to all users or

10 just the current user.

Application property
A read only pointer to the Application object representing the
application of this object model.
15
AttachToDocument() method
A method for attaching the schema of the Namespace represented by the

object to the selected document. It supports the following parameters:

20 Document — a pointer to the document to which the schema is requested

to be attached.

.Creator property
A read only pointer to the creator of the object.
25
.DefaultTransform property
A property that points to the default XSLT transformation assdciated

with this Namespace. It can support the following parameter.

17

01331-48

10

15

20

235

30

| TR I |

CA 02487160 2004-11-08

AllUsers — a flag indicating whether the default transformation setting

should affect all users of the machine or only the current user.

Delete() method

A method for removing the XML Namespace object from the collection
and destroying it, effectively removing the Namespace association

represented by this object from the Namespace library.

.Location property

A read only property that controls the location of the schema associated

with the Namespace represented by the XMLNamespace object. It can

support the following parameter.

AllUsers — a flag indicating whether the schema location setting should

affect all users of the machine or only the current user.

.JParent property

A read only property returning the parent object of the XMLNamespace
object. This property returns a pointer to the XMILNamespaces

collection of which the object is a member.

.URI property

A read only property returning the URI of the Namespace represented
by the object.

XSLTransforms property
A read only pointer to the XSLTransforms collection representing XSLT

transformations associated with the Namespace represented by the

object.

18

51331-48

CA 02487160 2004-11-08

XSLTransforms object - an object providing access to the XSLTransforms objects

each of which represents a single and unique XSLT transform associated with a

Namespace in the Namespace library. The following are methods and properties of the

5 object.

10

15

20

25

30

.Add() method

' A method for creating and adding to the collection a new XSLTransform

object. It is used to associate a new XSLT transformation with a
Namespace in the Namespace library. It returns a new XSLTransform

object. It can accept the following parameters.

Location — pointer to the XSLT file; can be a file path represented as a
text string.

Alias — a text string representing an alternate (more user-friendly) name
for the XSLT transformation that the programmer may specify.
InstallForAllUsers — a flag indicating whether the new Namespace in the
Namespace library should be available to all users of the computer or

only the current user.

.Application property

A read only pointer to the Application object representing the

application of this object model.

.Count property

A read only property returning the number of registered XSLT
transforms for a given Namespace in the Namespace library. It is the
same as the total number of XSLTransform objects in the

XSLTransforms collectioh.

19

CA 02487160 2004-11-08

51331-48
.Creator property
A read only pointer to the creator of the object.
Jtem() method
5 A method for accessing the individual members of this collection using
an numerical index or a search keyword. It can accept the following
parameters.
Index — a number representing the position of the requested
10 XSLTransform object in the Namespace library. The index can also be a
text string representing the alias of the requested XSL transform.
3
.Parent property
A read only property returning the parent object of the collection. This
15 property returns a pointer to the application from which the

XSLTransforms collection is accessed.

XSLTransform object - an object representing an XSLT transformation associated

20 with a Namespace in the Namespace library. The following are methods and properties

of the object.

.Ahas property
A property for controlling the alias the programmer associated with the

25 XSLT transform in the Namespace library. It can support the following

parameter.

AllUsers — a flag indicating whether the alias is available to all users or

just the current user.
30

20

CA 02487160 2004-11-08

51331-48

10

13

20

25

30

.Application property
A read only pointer to the Application object representing the
application of this object model. ' |

.Creator property
A read only pointer to the creator of the object.

.Delete() method

A method for removing the XSLTransform object from the collection
and destroying it, effectively removing the association between the

XSLT transform and its Namespace in the Namespace library.

.Location property
A read only property that controls the location of the XSLT transform

associated with the given Namespace and represented by the

XSLTransform object. It can support the following parameter.

AllUsers — a flag indicating whether the XSLT transform location setting

should affect all users of the machine or only the current user.

-Parent property
A read only property returning the parent object of the XSLTransform

object. This property returns a pointer to the XSLTransforms collection

of which the object is a member.

As described herein, methods and system are provided for allowing a
user to programmatically call the resources identified in an Extensible Markup
Language Namespace or schema library for customizing or otherwise modifying the
association of resources identified or contained in the Namespace or schema library

with one or more associated documents. It will be apparent to those skilled in the art

21

CA 02487160 2004-11-08

51331-48

that various modifications or variations may be made in the present invention without
departing from the scope or spirit of the invention. Other embodiments of the invention
will be apparent to those skilled in the art from consideration of the specification and

practice of the invention disclosed herein.

22

10

15

20

25

CA 02487160 2004-11-08

51331-48

- CLAIMS:

1. A programmable object model for accessing the resources of an

Extensible Markup Language (XML) schema library, comprising:

an application programming interface for allowing a wuser to
programmatically access resources identified in an XML schema library;

the application programming interface comprising a meséage call for
requesting association of an XML schema file to an XML markup applied to a
document; and

the application programming interface operative to receive a return value
from the XML schema library responsive to association of the XML schema file to the
XML markup applied to the document.

2. The programmable object model of Claim 1, whereby the application
programming intertace further comprises a message call for requesting removal of an
association of the XML schema file to the XML markup applied to the document; and

whereby the application programming interface is further operative to receive a
return value from the XML schema library responsive to removal of the association of

the XML schema file to the XML markup applied to the document.

3. A programmable object model for accessing the resources of an
Extensible Markup Language (XML) schema library, comprising:
an application programming interface for allowing a user to
programmatically access resources identified in an XML schema library;
the application programming interface comprising a message call for
requesting association of an XSLT transformation to an XML markup applied to a

document; and

the application programming interface operative to receive a return value
from the XML schema library responsive to association of the XSLT transformation to

the XML markup applied to the document.

23

CA 02487160 2004-11-08

51331-48

10

15

20

25

4, The programmable object model of Claim 3, whereby the application
programming interface further comprises a message call for requesting removal of an
association of the XSLT transformation to the XML markup applied to the document;
and

whereby the application programming interface is further operative to receive a
return value from the XML schema library responsive to removal of the association of

the XSLT transformation to the XML markup applied to the document.

5. A programmable object model for accessing the resources of an
Extensible Markup Language (XML) schema library, comprising:
an application programming interface for allowing a user to

programmatically access resources identified in an XML schema library;

the application programming interface comprising a message call for

requesting association of an one or more XML-based resources to an XML markup

applied to a document; and

the application programming interface operative to receive a return value
from the XML schema library responsive to association of the one or more XML-based

resources to the XML markup applied to the document.

6. The programmable object model of Claim 5, whereby the application
programming interface further comprises a message call for requesting removal of an

association of the one or more XML-based resources to the XML markup applied to the

document: and
whereby the application programming interface is further operative to receive a
return value from the XML schema library responsive to removal of the association of

the one or more XML-based resources to the XML markup applied to the document.

7. A programmable object model method for accessing the resources of an

Extensible Markup Language (XML) schema library, comprising:

calling the XML schema library via an object-oriented message call;

24

CA 02487160 2004-11-08

51331-48

10

15

20

25

30

passing an object property to the XML schema library, the object
property being associated with a software object associated with functionality identified
in the XML schema library; and

In response to the message call and the object property passed to the
XML schema library, receiving access to the functionality identified in the XML
schema library associated with the object property passed to the XML schema library.

8. The method of Claim 7, whereby passing an object property to the XML
schema library includes passing a method property for creating a new XML Namespace
and for adding the new XML Namespace to a collection of XML Namespaces, where a
path to a schema file associated with the new XML Namespace and a uniform resource
identifier for the new XML Namespace are passed to the XML schema library as

parameters of the method object.

9. The method of Claim 7, whereby passing an object property to the XML
schema library includes passing a method property for installing solution manifests for

registering XML Namespaces in the XML schema library.

10. The method of Claim 7, whereby passing an object property to the XML
schema library includes passing a method property for accessing individual XML
resources from a collection of XML resources using a numerical index or search key

word, where a numerical index associated with an individual XML resource is passed as

a parameter with the method property.

11. The method of Claim 7, whereby passing the object property to the XML
schema library includes passing an object property for controlling an alias name

associated with a specified Namespace identified in the XML schema library.

12. The method of Claim 7, whereby passing the object property to the XML
schema library includes passing a method property for attaching a specified XML

25

CA 02487160 2004-11-08

51331-48

10

15

20

25

schema file of a specified XML Namespace to a specified document, whereby a pointer
to the specified document is passed to the XML schema library as a parameter of the
method property.

13. The method of Claim 7, whereby passing the object property to the XML
schema library includes passing an object property that points to a default XSLT

transformation associated with a specified Namespace.

14. The method of Claim 7, whereby passing an object property to the XML
schema library includes passing a method property for removing an XML Namespace

object from a collection of Namespace objects.

15. The method of Claim 7, whereby passing an object property to the XML
schema library includes passing a method property for creating a new XSLT
transformation and for adding the new XSLT transformation to a collection of XSLT

transformations, where a pointer to the new XSLT transformation is passed to the XML

schema library as a parameter to the method property.

16. The method of Claim 7, further comprising a method property for
accessing individual XSLT transformations contained in a collection of XSLT
transformations using a numerical index or search key word, where a numerical index
representing the position of a requested XSLT transformation in the XML schema

library is passed as a parameter to the XML schema library with the method property.
17. The method of Claim 7, whereby passing an object property to the XML

schema library includes passing an object property for controlling an alias name

assoclated with an XSLT transformation identified in the XML schema library.

26

CA 02487160 2004-11-08

51331-48

18. The method of Claim 7, whereby passing the object property to the XML
schema library includes passing a method property for removing an XSLT

transformation from a collection of XSLT transformations.

19. A computer readable medium having computer executable instructions
stored thereon for execution by one or more computers, that when executed implement

a method according to any one of claims 7 to 18.

SMART & BIGGAR
OTTAWA, CANADA

PATENT AGENTS

27

CA 02487160 2004-11-08

1/4

¢c

0Lt
LININTIO0Ad

Pl d0IAId
JIVIOLS SSVIN

dITIOJINOD

LNdLNO/LNdNI

[31

AAVILIT)oY
JOVISTIWVN

1123
d'11d VINTIHOS

WV¥903d 708
NOLLVII1ddV

91
WILSAS
INLLVIIJO 9

0¢

LININ
INISSIDOAd
TVAINID

CA 02487160 2004-11-08

2/4

SYALINVIVI
AIAIIDTY
NO dOHIIN
ai1T1vd dilndixi
2103190

~_
ove

SHALINWVIV SSVd -
dOHLIN TIVD -
¢ L1D3[40 OL 11VD
[ID3[90

~
0¢¢C

0Lc

¢ ‘01

0cC

SYILVINVIV -
SALLAIJOU -

SAOHILIN -
dd0I -

ZI1D3[90

SYILVIAVIVA -
SALLAIJOUd -

SAOHLIN -
dd0OO -

[10390

[LD3[d0
OL AOHIINW
dirnJ>ix3i
WO INTVA
NANLTA

¢ 1D3ld0

~
0S¢

3/4

CA 02487160 2004-11-08

¢ 'S1]

SHALOVIVHD 00T >

~ <Adogd~>
Sve

SYLIDVIVHI ST S
~ <TLLIL>
0vE <MAVIOUINI>
~_) OUINI = IDVdSIWVN

g€t

VINIHDS
AIHOVLLV LSNIVOV
INIANDO0d OL dIrlddV 0cE
VIVd ANV TWX ZLVATTVA - VIWTHDS ATHOV.LLV

09¢ ALI'TVNOLIDNNd
NOLLVAITVA
VINIHDS

<AAVIOOUILNI/>
LXdodgd/>

HVIVS SI INVN AN <AdO§
0S¢ <FTLLLL/> SONLLITIO <T1LLL> 5¢C¢

<@AVOOULNI> 1743

e

0Lt

20t NOLLVOI'IddV

CA 02487160 2004-11-08

4/4

007

LISX -

asx -

SNOILITIOS -

SIJANOSIY -
N FOVISINWVYN -

11SX -
asx -
SNOLLIN'TOS -
Ovv SIDANOSTY -
Z IIVASTWVN -
oty
L1SX -
asx -
oy) SNOLLNTOS -
$IIYNOSITA -

I -
. JOVASINVN

AAVALI']
(VIWIHDS) IDVdISTAWVN

b 81

SILLAILOAd

‘SID3[90 .
(STTIVD) SIdV JISVE TVIISIA
~_ #0
174 4 ++)
J

11% 7

WVIO0Id ALIVd QITHL
0I¢
G0¢

NOILVOIlddV

APPLICATION

DOCUMENT

THIRD PARTY PROGRAM

C
C++

C#

VISUAL BASIC

305

APIs (CALLS)
OBJECTS,
PROPERTIES

470

Y,

NAMESPACE (SCHEMA)
LIBRARY

- NAMESPACE 1 ~A

0
- RESOURCES
- SOLUTIONS } ~320

- XSD
~- XSLT

430
- NAMESPACE2 ™ ™~

- RESOURCES 440
- SOLUTIONS

- XSD

- XSLT

- NAMESPACEN
- RESOURCES
- SOLUTIONS
- XSD
- XSLT

400

	Page 1 - abstract
	Page 2 - abstract
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - claims
	Page 26 - claims
	Page 27 - claims
	Page 28 - claims
	Page 29 - claims
	Page 30 - drawings
	Page 31 - drawings
	Page 32 - drawings
	Page 33 - drawings
	Page 34 - abstract drawing

