THERAPY FOR DRUG-RESISTANT CANCER BY ADMINISTRATION OF ANTI-HER2 ANTIBODY/DRUG CONJUGATE

Abstract: A therapeutic agent and therapeutic method for HER2 expression cancers, which are resistant to or are not easily cured by conventional anti-HER2 drugs, are provided in which use is made of an antibody/drug conjugate comprising a linker and a drug, which are represented by the formula - (Sucinimid-3-yI)-CH₂CH₃CH₂CH₂CH₂-C(=O)-GFFG-NH-CH₂-CH₂-C(=O)-NH-DX) and an anti-HER2 antibody bonded thereto. The therapeutic agent and method are effective against HER2 expression cancers, which are resistant to or are not easily cured by conventional.
に示されるリンカー及び薬物と、抗HER2抗体と、が結合した抗体-薬物コンジュゲートを使用した、既存の抗HER2薬に対し耐性又は難治性のHER2発現癌の治療剤及び治療方法を提供する。
明細書

発明の名称:
抗HER2抗体—薬物コンジュゲート投与による耐性癌の治療

技術分野

[0001] 本発明は、抗HER2抗体とエキサテカンとをリンカー構造を介して結合させた、抗体—薬物コンジュゲートによる薬剤耐性癌（以下、単に「耐性癌」とも記載する）、とりわけ耐性を獲得した癌の治療に関する。

背景技術

[0002] 癌細胞表面に発現し、かつ細胞に内在化できる抗原に結合する抗体に、細胞毒性を有する薬物を結合させた抗体—薬物コンジュゲート（Antibody-Drug Conjugate；ADC）は、癌細胞に選択的に薬物を送達できることによって、癌細胞内に薬物を蓄積させ、癌細胞を死滅させることが期待できる（非特許文献1ー3）。ADCとしては例えば、抗CD33抗体にカルチアマイシンを結合させたMyLotarg（登録商標；INN：ゲムッズマフォゾガマイシン）が急性骨髄性白血病の治療薬として認可されていた。また、抗CD30抗体にオーリステチンEを結合させたAdcertis（登録商標；INN：プレンツキシマブエドティン）がホジキンリンパ腫と未分化大細胞リンパ腫の治療薬として認可された（非特許文献4）。さらに、抗HER2抗体であるトラスッスマブにリンカー構造を介して抗腫瘍性薬物であるメイタンシニド（DM1）を結合したKadcyla（登録商標；T-DM1；INN：トラスッスマブエムタンシン；非特許文献34）も認可された。これまでに認可されたADCに含有される薬物は、DNA又はチェーブリンを標的としている。

[0003] 抗腫瘍性の低分子化合物としてトポイソメラーゼⅠを阻害して抗腫瘍作用を発現する化合物であるカンプトシン誘導体が知られている。その中で下式
で示される抗腫瘍性化合物（エキサテカン、UPAC名：(1S, 9S)-1-アミノ-9-エチル-5-フルオロ-1, 2, 3, 9, 12, 15-ヘキサヒドロ-9-ヒドロキシ-4-メチル-10H, 13H-ベンゾ[de]ピラノ[3', 4':6, 7]インドリジノ[1, 2-b]キノリン-10, 13-ジオン、（化学名：(1S, 93)-1-アミノ-9-エチル-5-フルオロ-2, 3-ジヒドロ-9-ヒドロキシ-4-メチル-1H, 12H-ベンゾ[de]ピラノ[3', 4':6, 7]インドリジノ[1, 2-b]キノリン-10, 13(9H, 15H)-ジオンとして表すこともできる））は、水溶性のカンプトテンシ誘導体である（特許文献1, 2）。この化合物は、現在臨床で用いられているイリノテカンとは異なり、抗腫瘍効果の発現のために、酵素による活性化を必要としない。また、イリノテカンの薬効本体であるSN-38や、同じく臨床で用いられているトポテカンよりも強いトポイソメラーゼ1阻害活性が観察され、in vitroで種々の癌細胞に対してより強い殺細胞活性が認められた。特にP-glycoproteinの発現によってSN-38等に耐性を示す癌細胞に対しても効果が認められた。また、マウスのヒト腫瘍皮下移植モデルでも強い抗腫瘍効果が認められたが、臨床試験が行われたものの上市には至っていない（非特許文献5〜10）。エキサテカンがADCの薬物として有効に作用するかについては明らかでなかった。

DE-3 10は、生分解性のカルボキシメチルデキストランポリリアルコールポリマーにエキサテカンを、GGFGペプチドスペーサーを介して結合させた複合体である（特許文献3）。エキサテカンを高分子プロドラッグ化することによって、高い血中滞留性を保持させ、さらに腫瘍新生血管の透過性の亢進と腫
瘍組織滞留性を利用し、受動的に腫瘍部位への指向性を高めたものである。DE-3 10は、酵素によるペプチドスペーサーの切断によって、活性本体であるエキサテカン、及びグリシンがアミノ基に結合しているエキサテカンが持続的に遊離され、その結果薬物動態が改善される。非臨床試験における種々の腫瘍の評価モデルにおいて、DE-3 10は、ここに含まれるエキサテカンの総量がエキサテカン単剤の投与時よりも減少しているにも拘らず、単剤の投与時よりもより高い有効性を示した。DE-3 10に関しては臨床試験が実施されて有効例も確認され、活性本体が正常組織よりも腫瘍に集積することが確認されたとの報告がある。その一方、腫瘍へのDE-3 10及び活性本体の集積は正常組織への集積と大差なく、ヒトでは受動的なターゲティングは見られなかったとの報告もある（非特許文献 1 1 〜 1 4 ）。結果としてDE-3 10も上市には至らず、エキサテカンがこの様なターゲティングを指向した薬物として有効に機能するかについては明らかでなかった。

[0006]
DE-3 10の関連化合物として、-NH- (CH₂)₄- C(=O) - で示される構造部分を- GGFG - スペーサーとエキサテカンの間に挿入し、-GGFG-NH- (CH₂)₄- C(=O) - をスペーサー構造とする複合体も含まれているが（特許文献 4 ）, 同複合体の抗腫瘍効果については全く知られていない。

[0007]
HER2 は、ヒト上皮細胞増殖因子受容体 2 型関連癌遺伝子として同定された代表的な増殖因子受容体型の癌遺伝子産物のひとつであり、分子量 185kDa のチロシンキナーゼドメインを持つ膜貫通型受容体蛋白である（非特許文献 1 5 ）。HER2 のDNA配列及びアミノ酸配列は公的データベース上に公開されており、例えば、M11730（Genbank）、NP-004439.2（NCBI）等のアクセスション番号により参照可能である。

HER2（neu, ErbB-2）はEGFR（epidermal growth factor receptor : 上皮増殖因子受容体）ファミリーのひとつであり、ホモダイマーも非他EGFR受容体であるHER1（EGFR, ErbB-1）、HER3（ErbB-3）、HER4（ErbB-4）とのヘテロダイマー形成（非特許文献 1 6 〜 1 8 ）によって細胞内チロシン残基が自己リン酸化されて活性化することにより、正常細胞及び癌細胞において細胞
の増殖・分化・生存に重要な役割を果たしていることが知られている（非特許文献19、20）。HER2は乳癌、胃癌、卵巢癌等様々な癌種において過剰発現しており（非特許文献21～26）、乳癌においては負の予後因子であることが報告されている（非特許文献27、28）。

[0008] プラススズマブは、組み換えヒト化抗HER2モノクローナル抗体（huMAb4D5-8、rhuMAb HER2、ハーゼプチン（登録商標））と称される、マウス抗HER2抗体4D5（非特許文献29、特許文献5）のヒト化抗体（特許文献6）である。

プラススズマブは、HER2の細胞外ドメインIVに特異的に結合し、抗体依存性細胞障害（ADCC）誘導やHER2からのシグナル伝達阻害を介して抗癌効果を発揮する（非特許文献30、31）。プラススズマブはHER2過剰発現した腫瘍に対して高い効果を示すことから（非特許文献32）、HER2過剰発現している転移性乳癌患者での治療薬として、米国で1999年、日本において2001年に上市された。

乳癌におけるプラススズマブの治療効果は十分に証明されている一方（非特許文献33）、プラススズマブに応答するのは、広範囲の従来の抗癌治療を受けたHER2過剰発現した乳癌患者の約15%と言われ、この集団の約85%の患者はプラススズマブ処置に対して応答しないが、応答が貧弱であるのみである。

[0009] したがって、プラススズマブに対して応答しないか、応答が貧弱であるHER2過剰発現する腫瘍又はHER2発現に関連する障害を患っている患者のために、HER2発現に関連する疾病を標的とする治療薬の必要性が認識されており、プラススズマブにリンカー構造を介して抗癌性薬物を結合したT-DM1やHER2の細胞外ドメインIIを標的とし、ヘテロダイマー形成を阻害するよう設計されたベルスズマブ（パージエタ（登録商標）；非特許文献35、特許文献7）が開発された。しかしながら、応答性や活性の強さ、並びに適応範囲は未だ十分ではなく、HER2を標的とする未充足ニーズが存在している。

[0010] 抗体一薬物コンジユゲートとして、抗HER2抗体とエキサテカンを構成要素とする抗体一薬物コンジユゲートが知られており、特に次の構造のものが優
れた特性を有することが明らかとなっている（特許文献8）。すなわち、次式で示されるリンカー及び薬物と、抗HER2抗体とが結合した抗体−薬物コンジュゲートである。

- (Succ inimid-3-y L-N) -CH₂CH₂CH₂CH₂CH₂-C(=O) -GGFG-NH₂-CH₂O-CH₂C(=O) - (NH-DX)

（式中、
- (Succ inimid-3-y L-N) - は次式 ：

[化2]

で示される構造であり、このものの3位で抗HER2抗体とチオエーテル結合によって結合し、1位の窒素原子上でこれを含むリンカー構造内のメチレン基と結合し、
- (NH-DX) は次式 ：

[化3]

で示される、1位のアミノ基の窒素原子が結合部位となっている基を示す。

[0011] 上記の抗HER2抗体−薬物コンジュゲートは、抗HER2抗体1分子に対して次式で示される薬物−リンカー構造 ：
- (Succ imid-3-y l-N)-CH\textsubscript{2}CH\textsubscript{2}CH\textsubscript{2}CH\textsubscript{2}CH\textsubscript{2}-C(=0)-GGFG-NH\textsubscript{2}-CH\textsubscript{2}-O-CH\textsubscript{2}-C(=0)-(NH-DX)
を結合させている。この薬物—リンカー構造は抗体の鎖間のジスルフィド結合部位（2箇所の重鎮—重鎮間、および2箇所の重鎮—軽鎖間）に、チオエーテル結合を介して、最大8個結合させることができる。この最大数に近い、ほぼ8個の薬物—リンカー構造を結合させた抗HER2抗体—薬物コンジュゲートが取得されている。このような抗体1分子あたりの薬物結合数の多い抗体—薬物コンジュゲートは、非常に優れた抗癌作用を発揮することが明らかとなっている。例えば、担癌マウスを用いた前臨床研究において、癌細胞でのHER2の発現が低発現であっても殺細胞活性を有することが確認されている（特許文献8、非特許文献3, 6）。このように上記の抗HER2抗体—薬物コンジュゲートは、優れた抗癌薬として期待され、臨床試験が進行中である。

先行技術文献

特許文献

[001 2] 特許文献1 :特開平5-59061 号公報
特許文献2 :特開平8-337584 号公報
特許文献3 :国際公開第1997/46260 号
特許文献4 :国際公開第2000/25825 号
特許文献5 :米国特許第5677171号明細書
特許文献6 :米国特許第5821337号明細書
特許文献7 :国際公開第01/00244 号
特許文献8 :国際公開第2015/15091 号

非特許文献

非特許文献11: Inoue, K. et al., Polymer Drugs in the Clinical Stage, Edited by Maeda et al. (2003) 145-1 53.
発明の概要

発明が解決しようとする課題

抗癌薬は、治療のための投与が継続された場合、一旦は効果が認められても、癌細胞の獲得耐性（以下、本発明において「二次耐性」とも言う。）により治療効果が認められなくなることが知られている。例えば、HER2発現癌においては、トラスッスマブエムタンシンによる治療が行われた結果、トラスッスマブエムタンシンに対する耐性又は難治性を獲得した癌が新たに生じることが知られている。したがって、このような耐性を獲得した癌（以下、本発明において「二次耐性癌」とも言う。）に奏効する新たな治療方法

を提供できる薬剤が望まれる。本発明は、既存の抗HER2薬による治療により耐性又は難治性を獲得したHER2発現癌であっても十分な治療効果が認められる治療剤及び治療方法を提供することを主な課題とする。

また、HER2を発現しているにもかかわらず、既存の抗HER2薬では当初から治療効果が認められない癌（言い換えれば、既存の抗HER2薬による治療によらずに、既存の抗HER2薬に対し本来備わった耐性又は難治性を有するHER2発現癌）が知られている。そのようなHER2発現癌としては、HER2低発現の癌や乳癌及び胃癌以外の固形癌（例えば、大腸癌、非小細胞肺癌等）を挙げることができる。本発明は、そのようなHER2発現癌であっても十分な治療効果が認められる治療剤及び治療方法を提供することも主な課題とする。

課題を解決するための手段

[0015] 本発明者らは、次式で示されるリンカー及び薬物と、抗HER2抗体と、が結合した抗体—薬物コンジユゲート:

(Succinimid-3-y l-N)-CH₂CH₂CH₂CH₂CH₂-C(=0)-GGFG-NH-CH₂-O-CH₂-C(=0)-(NH-DX)

が、既存の抗HER2薬に対し耐性又は難治性のHER2発現癌に対して優れた抗腫瘍効果を示し、かつ安全性にも優れることを前臨床試験及び臨床試験において見い出した。この抗体—薬物コンジユゲートによれば、二次耐性癌であっても有効な治療が期待できる。

[0016] すなわち、本発明は、以下の[1]～[144]を提供する。

[1] 下式で示されるリンカー及び薬物と、抗HER2抗体と、が結合した抗体—薬物コンジユゲートを含有することを特徴とする、既存の抗HER2薬に対し耐性又は難治性のHER2発現癌の治療剤:

(Succinimid-3-y l-N)-CH₂CH₂CH₂CH₂CH₂-C(=0)-GGFG-NH-CH₂-O-CH₂-C(=0)-(NH-DX)。

(式中、

-Succinimid-3-y l-N) は次式:

(Succinimid-3-y l-N)

=

NHCH₂CH₂CONHC(=0)-NH-CH₂-O-CH₂-C(=0)-GGFG-NH-CH₂-
で示される構造であり、このものの3位で抗HER2抗体とチオエーテル結合によって結合し、1位の窒素原子上でこれを含むリンカー構造内のメチレン基と結合し、
- (NH-DX) は次式：

[化4]

で示される、1位のアミノ基の窒素原子が結合部位となっている基を示し、
-GGFG- は、- GLy-G Ly-Phe-G Ly- のテトラペプチド残基を示す。

[2] 耐性又は難治性が、既存の抗HER2薬による治療によって獲得された
耐性又は難治性である、[1] に記載の治療剤。

[4] 既存の抗HER2薬が、トラスッズマブエムタンシン、トラスッズマブ、ペルツマブ、及びラパチニブからなる群より選択される少なくとも一つ

[5] 既存の抗HER2薬が、トラスッズマブエムタンシンである、[1] か
ら [3] のいずれかに記載の治療剤。

[8] 既存の抗癌薬が、トラスッズマブエムタンシン、トラスッズマブ、ベルッズマブ、ラバチニブ、イリノテカン、シスプラチン、カルボプラチン、オキサリプラチン、フルオロウラシル、ゲムシタビン、カペシタビン、パクリタキセル、ドセタキセル、ドキシルビシン、エピルビシン、シクロフォスファミド、マイクマインシンにテガフール・ギメラシル・オテラシル配合剤、セツキシマブ、パニツムマブ、ベバシマブ、ラムシルマブ、レコラフェニブ、トリフルリシン・チピラシル配合剤、ゲフィチニブ、エルチチニブ、アファチニブ、メトトレキサート、及びベメトレキセドからなる群より選択される少なくとも一つを含む、[7]に記載の治療剤。

[9] 既存の抗癌薬が、トラスッズマブエムタンシンを含む、[7]に記載の治療剤。

[10] 既存の抗癌薬が、トラスッズマブを含む、[7]に記載の治療剤。

[14] 抗体—薬物コンジュゲートにおける抗体HER2抗体が、配列番号1においてアミノ酸番号1乃至449に記載のアミノ酸配列からなる重鎖及び配列番号2においてアミノ酸番号1乃至214に記載のアミノ酸配列からなる

[16]抗体—薬物コンジグエートの1回あたりの投与量が5.4mg/kgから8mg/kgの範囲である、[1]から[15]のいずれかに記載の治療剤。

[22]乳癌、胃癌、大腸癌、非小細胞肺癌、食道癌、唾液腺癌、胃食道接合部腺癌、胆管癌、ページエツト病、胰頭癌、卵巢癌、及び子宮癌肉腫からなる群より選択される少なくとも一つの癌の治療のための、[1]から[21]のいずれかに記載の治療剤。

大腸癌の治療のための、[1]から[21]のいずれかに記載の治療剤。

非小細胞肺癌の治療のための、[1]から[21]のいずれかに記載の治療剤。

唾液腺癌の治療のための、[1]から[21]のいずれかに記載の治療剤。

HER2発現癌が、HER2過剰発現の癌である、[1]から[28]のいずれかに記載の治療剤。

HER2過剰発現の癌が、免疫組織化学法によりHER2の発現が3+と判定された癌である、[29]に記載の治療剤。

HER2過剰発現の癌が、免疫組織化学法によりHER2の発現が2+と判定され、且つin situハイブリダイゼーション法によりHER2の発現が陽性と判定された癌である、[29]に記載の治療剤。

HER2発現癌が、HER2低発現の癌である、[1]から[28]のいずれかに記載の治療剤。

HER2低発現の癌が、免疫組織化学法によりHER2の発現が2+と判定され、且つin situハイブリダイゼーション法によりHER2の発現が陰性と判定された癌である、[32]に記載の治療剤。

HER2低発現の癌が、免疫組織化学法によりHER2の発現が1+と判定された癌である、[32]に記載の治療剤。

手術不能又は再発の癌の治療のための、[1]から[34]のいずれかに記載の治療剤。

薬学的に許容される製剤成分を含有する、[1]から[35]のいずれかに記載の治療剤。

下記で示されるリンカー及び薬物と、抗HER2抗体と、が結合した抗体－薬物コンピューティングを、既存の抗HER2薬に対し耐性又は難治性のHER2発現癌の治療を必要とする患者に投与することにより、既存の抗HER2薬に対し耐性又は難治性のHER2発現癌を治療する方法：
- (Succinimid-3-y l-N)-CH₂CH₂CH₂CH₂-C(=0) -GGFG-NH-CH₂-0-CH₂-C(=0) -(NH-DX)。

(式中、-(Succinimid-3-y l-N)-は次式：

![Chemical structure 1]

で示される構造であり、このものの3位で抗HER2抗体とチェオーテル結合によって結合し、1位の窒素原子上でこれを含むリンカー構造内のメチレン基と結合し、-(NH-DX)は次式：

![Chemical structure 2]

で示される、1位のアミノ基の窒素原子が結合部位となっている基を示し、-GGFG-は、-Gly-Gly-Phe-Gly-のテトラペプチド残基を示す。)

[38] 耐性又は難治性が、既存の抗HER2薬による治療によって獲得された耐性又は難治性である、[37]に記載の方法。

[39] 耐性又は難治性が、既存の抗HER2薬による治療によらずに本来備わった耐性又は難治性である、[37]に記載の方法。
既存の抗HER2薬が、トラスツマブエムタンシン、トラスツマブ、ベルツマブ、及びラバチニブからなる群より選択される少なくとも一つである、[37]から[39]のいずれかに記載の方法。

既存の抗HER2薬が、トラスツマブエムタンシンである、[37]から[39]のいずれかに記載の方法。

既存の抗HER2薬が、トラスツマブである、[37]から[39]のいずれかに記載の方法。

既存の抗癌薬による治療歴を有する患者に行うための、[37]から[42]のいずれかに記載の方法。

既存の抗癌薬が、トラスツマブエムタンシン、トラスツマブ、ベルツマブ、ラバチニブ、イリノテカン、シスプラチン、カルボプラチン、オキサリプラチン、フルオロウラシル、ゲムシタバン、カペシタバン、パクリタキセル、ドセタキセル、ドキソルビシン、エピルビシン、シクロフォスファミド、マイトマイシンにテガフール・ギメラシル・オテラシル配合剤、セツキサンマブ、パニツツマブ、ベパシマブ、ラムシルマブ、レゴラファニブ、トリフルリジン・チピラシル配合剤、ゲフィチニブ、エルロチニブ、アファチニブ、メトトレキサート及びベメトトレキセドからなる群より選択される少なくとも一つを含む、[43]に記載の方法。

既存の抗癌薬が、トラスツマブエムタンシンを含む、[43]に記載の方法。

既存の抗癌薬が、トラスツマブを含む、[43]に記載の方法。

既存の抗癌薬が、イリノテカンを含む、[43]に記載の方法。

抗体—薬物コンジユゲートの1抗体あたりの薬物—リンカー構造の平均結合数が7から8個の範囲である、[37]から[47]のいずれかに記載の方法。

抗体—薬物コンジユゲートの1抗体あたりの薬物—リンカー構造の平均結合数が7.5から8個の範囲である、[37]から[47]のいずれかに
記載の方法。

【50】抗体—薬物コンジュゲートにおける抗HER2抗体が、配列番号1においてアミノ酸番号1乃至449に記載のアミノ酸配列からなる重鎖及び配列番号2においてアミノ酸番号1乃至214に記載のアミノ酸配列からなる軽鎖を含んでなる抗体である、【37】から【49】のいずれかに記載の方法。

【51】抗体—薬物コンジュゲートにおける抗HER2抗体が、配列番号1において記載のアミノ酸配列からなる重鎖及び配列番号2において記載のアミノ酸配列からなる軽鎖を含んでなる抗体である、【37】から【49】のいずれかに記載の方法。

【52】抗体—薬物コンジュゲートの1回あたりの投与量が5.4mg/kgから8mg/kgの範囲である、【37】から【51】のいずれかに記載の方法。

【53】抗体—薬物コンジュゲートの1回あたりの投与量が5.4mg/kgである、【37】から【51】のいずれかに記載の方法。

【54】抗体—薬物コンジュゲートの1回あたりの投与量が6.4mg/kgである、【37】から【51】のいずれかに記載の方法。

【55】抗体—薬物コンジュゲートの1回あたりの投与量が7.4mg/kgである、【37】から【51】のいずれかに記載の方法。

【56】抗体—薬物コンジュゲートの1回あたりの投与量が8mg/kgである、【37】から【51】のいずれかに記載の方法。

【57】抗体—薬物コンジュゲートを3週に1回の間隔で投与する、【37】から【56】のいずれかに記載の方法。

【58】乳癌、胃癌、大腸癌、非小細胞肺癌、食道癌、唾液腺癌、胃食道接合部癌、胆管癌、ページェット病、胰腺癌、卵巢癌、及び子宮癌肉腫からなる群より選択される少なくとも一つの癌の治療のための、【37】から【57】のいずれかに記載の方法。

【59】乳癌の治療のための、【37】から【57】のいずれかに記載の方法。
胃癌の治療のための、[37]から[57]のいずれかに記載の方法。

胃癌及び胃食道接合部腺癌の治療のための、[37]から[57]のいずれかに記載の方法。

大腸癌の治療のための、[37]から[57]のいずれかに記載の方法。

非小細胞肺癌の治療のための、[37]から[57]のいずれかに記載の方法。

唾液腺癌の治療のための、[37]から[57]のいずれかに記載の方法。

HER2発現癌が、HER2過剰発現の癌である、[37]から[64]のいずれかに記載の方法。

HER2過剰発現の癌が、免疫組織化学法によりHER2の発現が3+と判定された癌である、[65]に記載の方法。

HER2過剰発現の癌が、免疫組織化学法によりHER2の発現が2+と判定され、且つin situハイプリダイゼーション法によりHER2の発現が陽性と判定された癌である、[65]に記載の方法。

HER2発現癌が、HER2低発現の癌である、[37]から[64]のいずれかに記載の方法。

HER2低発現の癌が、免疫組織化学法によりHER2の発現が2+と判定され、且つin situハイプリダイゼーション法によりHER2の発現が陰性と判定された癌である、[68]に記載の方法。

HER2低発現の癌が、免疫組織化学法によりHER2の発現が1+と判定された癌である、[68]に記載の方法。

手術不能又は再発の癌の治療のための、[37]から[70]のいずれかに記載の方法。

薬学的に許容される製剤成分とともに抗体-薬物コンジュゲートを投与する、[37]から[71]のいずれかに記載の方法。
既存の抗HER2薬に対し耐性又は難治性のHER2発現癌の治療薬としての使用のための、下式で示されるリンカー及び薬物と、抗HER2抗体と、が結合した抗体—薬物コンジュゲート：
- (Succinimido-3-y L-N) -CH₂CH₂CH₂CH₂C(=O) -GGFG-NH -CH₂OCH₂C(=O) - (NH-DX)。
（式中、
- (Succinimido-3-y L-N) -は次式：
[化8]

で示される構造であり、このものの3位で抗HER2抗体とチオエーテル結合によって結合し、1位の窒素原子上でこれを含むリンカー構造内のメチレン基と結合し、
- (NH-DX) は次式：
[化9]

で示される、1位のアミノ基の窒素原子が結合部位となっている基を示し、
-GGFG- は、- Gly-G Ly-Phe-G Ly- のテトラペプチド残基を示す。）
[74] 耐性又は難治性が、既存の抗HER2薬による治療によって獲得され
た耐性又は難治性である、[73]に記載の抗体—薬物コンジュゲート。
[75]耐性又は難治性が、既存の抗HER2薬による治療によらずに本来備わった耐性又は難治性である、[73]に記載の抗体—薬物コンジュゲート。
[76]既存の抗HER2薬が、トラスッズマブ・エムタンシン、トラスッズマブ、ベルツマブ、及びラパチニブからなる群より選択される少なくとも一つである、[73]から[75]のいずれかに記載の抗体—薬物コンジュゲート。
[77]既存の抗HER2薬が、トラスッズマブ・エムタンシンである、[73]から[75]のいずれかに記載の抗体—薬物コンジュゲート。
[78]既存の抗HER2薬が、トラスッズマブである、[73]から[75]のいずれかに記載の抗体—薬物コンジュゲート。
[79]既存の抗癌薬による治療歴を有する患者に投与するための、[73]から[78]のいずれかに記載の抗体—薬物コンジュゲート。
[80]既存の抗癌薬が、トラスッズマブ・エムタンシン、トラスッズマブ、ベルツマブ、ラパチニブ、イリノテカン、シスプラチン、カルボプラチン、オキサリプラチン、フルボウラシル、ゲムシタビン、カペシタビン、パクリタキセル、ドセタキセル、ドキシルビシン、エピルビシン、シクロフォスフアミド、マイトマイシンにテガフール・ギメラシル・オテラシル配合剤、セッキシマブ、パニツムマブ、ヘパシマブ、ラムシルマブ、レゴラフェニブ、トリフルリシン・テビラシル配合剤、ゲフィチニブ、エルロチニブ、アファチニブ、メトトレキサート、及びペメトレキセドからなる群より選択される少なくとも一つを含む、[79]に記載の抗体—薬物コンジュゲート。
[81]既存の抗癌薬が、トラスッズマブ・エムタンシンを含む、[79]に記載の抗体—薬物コンジュゲート。
[82]既存の抗癌薬が、トラスッズマブを含む、[79]に記載の抗体—薬物コンジュゲート。
既存の抗癌薬が、イリノテカンを含む、79に記載の抗体—薬物コンジュゲート。
抗体—薬物コンジュゲートの1抗体あたりの薬物—リンカー構造の平均結合数が7から8個の範囲である、73から83のいずれかに記載の抗体—薬物コンジュゲート。
抗体—薬物コンジュゲートの1抗体あたりの薬物—リンカー構造の平均結合数が7.5から8個の範囲である、73から83のいずれかに記載の抗体—薬物コンジュゲート。
抗体—薬物コンジュゲートにおける抗HER2抗体が、配列番号1においてアミノ酸番号1乃至449に記載のアミノ酸配列からなる重鎖及び配列番号2においてアミノ酸番号1乃至214に記載のアミノ酸配列からなる軽鎖を含んでなる抗体である、73から85のいずれかに記載の抗体—薬物コンジュゲート。
抗体—薬物コンジュゲートの1回あたりの投与量が5.4mg/kgから8mg/kgの範囲である、73から87のいずれかに記載の抗体—薬物コンジュゲート。
抗体—薬物コンジュゲートの1回あたりの投与量が5.4mg/kgである、73から87のいずれかに記載の抗体—薬物コンジュゲート。
抗体—薬物コンジュゲートの1回あたりの投与量が6.4mg/kgである、73から87のいずれかに記載の抗体—薬物コンジュゲート。
抗体—薬物コンジュゲートの1回あたりの投与量が7.4mg/kgである、73から87のいずれかに記載の抗体—薬物コンジュゲート。
抗体—薬物コンジュゲートの1回あたりの投与量が8mg/kgである、73から87のいずれかに記載の抗体—薬物コンジュゲート。
抗体—薬物コンジュゲートが3週に1回の間隔で投与される、[73]から[92]のいずれかに記載の抗体—薬物コンジュゲート。

乳癌、胃癌、大腸癌、非小細胞肺癌、食道癌、唾液腺癌、胃食道接合部腺癌、胆管癌、ページエット病、腺関癌、卵巣癌、及び子宮癌肉腫からなる群より選択される少なくとも一つの癌の治療のための、[73]から[93]のいずれかに記載の抗体—薬物コンジュゲート。

乳癌の治療のための、[73]から[93]のいずれかに記載の抗体—薬物コンジュゲート。

胃癌の治療のための、[73]から[93]のいずれかに記載の抗体—薬物コンジュゲート。

胃癌及び胃食道接合部腺癌の治療のための、[73]から[93]のいずれかに記載の抗体—薬物コンジュゲート。

大腸癌の治療のための、[73]から[93]のいずれかに記載の抗体—薬物コンジュゲート。

非小細胞肺癌の治療のための、[73]から[93]のいずれかに記載の抗体—薬物コンジュゲート。

唾液腺癌の治療のための、[73]から[93]のいずれかに記載の抗体—薬物コンジュゲート。

HER2発現癌が、HER2通剤発現の癌である、[73]から[100]のいずれかに記載の抗体—薬物コンジュゲート。

HER2通剤発現の癌が、免疫組織化学法によりHER2の発現が3+と判定された癌である、[101]に記載の抗体—薬物コンジュゲート。

HER2通剤発現の癌が、免疫組織化学法によりHER2の発現が2+と判定され、且つin situハイブリダイゼーション法によりHER2の発現が陽性と判定された癌である、[101]に記載の抗体—薬物コンジュゲート。

HER2発現癌が、HER2低発現の癌である、[73]から[100]のいずれかに記載の抗体—薬物コンジュゲート。

HER2低発現の癌が、免疫組織化学法によりHER2の発現が2+と判
定され、且つ in situ ハイブリダイゼーション法によりHER2の発現が陰性と判定された癌である、[104]に記載の抗体—薬物コンジユゲート。

[106] HER2低発現の癌が、免疫組織化学法によりHER2の発現が1+と判定された癌である、[104]に記載の抗体—薬物コンジユゲート。

[0019] [109] 既存の抗HER2薬に対し耐性又は難治性のHER2発現癌を治療するための医薬の製造のための、下式で示されるリンカー及び薬物と、抗HER2抗体と、が結合した抗体—薬物コンジユゲートの使用:

- (Succinimid-3-yl-N)-CH₂CH₂CH₂CH₂-C(=0)-GGFG-NH-CH₂OCH₂-C(=0)-(NH-DX)。

(式中、
- (Succinimid-3-yl-N) は次式：

[化10]

\[
\begin{align*}
\text{O} & \quad \text{N} \\
\text{O} & \\
\end{align*}
\]

で示される構造であり、このものの3位で抗HER2抗体とチョエーテル結合によって結合し、1位の窒素原子上でこれを含むリンカー構造内のメチレン基と結合し、

-(NH-DX) は次式：
で示される、1位のアミノ基の窒素原子が結合部位となっている基を示し、
-GGFG- は、-Gly-Gly-Phe-Gly- のテトラペプチド残基を示す。)
[110] 耐性又は難治性が、既存の抗HER2薬による治療によって獲得された耐性又は難治性である、[109] に記載の使用。
[111] 耐性又は難治性が、既存の抗HER2薬による治療によらずに本来備わった耐性又は難治性である、[109] に記載の使用。
[112] 既存の抗HER2薬が、トラスツマブエムタンシン、トラスツマブ、ペルツマブ、及びラパチニブからなる群より選択される少なくとも一つである、[109] から[111] のいずれかに記載の使用。
[116] 既存の抗癌薬が、トラスツマブエムタンシン、トラスツマブ、ペルツマブ、ラパチニブ、イリノテカン、シスプラチナ、カルボプラチナ、オキサリプラチナ、フルオロウラシル、ゲムシタビン、カペシタビン、パクリタキセル、ドセタキセル、ドキソルビシン、エビルビシン、シクロフォスファミド、マイトマイシンにテガフール・ギメラシル・オテラシル配
合剤、セツキシマブ、バニツムマブ、ベパシズマブ、ラムシルマブ、レゴラフエニブ、トリフルリシン、チビラシル配合剤、ゲフィチニブ、エルロチニブ、アファチニブ、メトレキサート、及びベメトレキセドからなる群より選択される少なくとも一つを含む、[115]に記載の使用。

[117] 既存の抗癌薬が、トラスズマブエムタンシンを含む、[115]に記載の使用。

[118] 既存の抗癌薬が、トラスズマブを含む、[115]に記載の使用。

[119] 既存の抗癌薬が、イリノテカンを含む、[115]に記載の使用。

[120] 抗体—薬物コンジュゲートの1抗体あたりの薬物—リンカー構造の平均結合数が7から8個の範囲である、[109]から[119]のいずれかに記載の使用。

[121] 抗体—薬物コンジュゲートの1抗体あたりの薬物—リンカー構造の平均結合数が7.5から8個の範囲である、[109]から[119]のいずれかに記載の使用。

[122] 抗体—薬物コンジュゲートにおける抗HER2抗体が、配列番号1においてアミノ酸番号1乃至449に記載のアミノ酸配列からなる重鎖及び配列番号2においてアミノ酸番号1乃至214に記載のアミノ酸配列からなる軽鎖を含んでなる抗体である、[109]から[121]のいずれかに記載の使用。

[123] 抗体—薬物コンジュゲートにおける抗HER2抗体が、配列番号1に記載のアミノ酸配列からなる重鎖及び配列番号2に記載のアミノ酸配列からなる軽鎖を含んでなる抗体である、[109]から[121]のいずれかに記載の使用。

[124] 抗体—薬物コンジュゲートの1回あたりの投与量が5.4mg/kgから8mg/kgの範囲である、[109]から[123]のいずれかに記載の使用。
抗体—薬物コンジュゲートの1回あたりの投与量が5.4mg/kgである、[109]から[123]のいずれかに記載の使用。
抗体—薬物コンジュゲートの1回あたりの投与量が6.4mg/kgである、[109]から[123]のいずれかに記載の使用。
抗体—薬物コンジュゲートの1回あたりの投与量が7.4mg/kgである、[109]から[123]のいずれかに記載の使用。
抗体—薬物コンジュゲートの1回あたりの投与量が8mg/kgである、[109]から[123]のいずれかに記載の使用。
抗体—薬物コンジュゲートが3週に1回の間隔で投与される、[109]から[128]のいずれかに記載の使用。
乳癌、胃癌、大腸癌、非小細胞肺癌、食道癌、唾液腺癌、胃食道接合部腺癌、胆管癌、ページエット病、肺腺癌、卵巣癌、及び子宮癌、肉腫からなる群より選択される少なくとも一つの癌の治療のための医薬の製造のための、[109]から[129]のいずれかに記載の使用。
乳癌の治療のための医薬の製造のための、[109]から[129]のいずれかに記載の使用。
胃癌の治療のための医薬の製造のための、[109]から[129]のいずれかに記載の使用。
胃癌及び胃食道接合部腺癌の治療のための医薬の製造のための、[109]から[129]のいずれかに記載の使用。
大腸癌の治療のための医薬の製造のための、[109]から[129]のいずれかに記載の使用。
非小細胞肺癌の治療のための医薬の製造のための、[109]から[129]のいずれかに記載の使用。
唾液腺癌の治療のための医薬の製造のための、[109]から[129]のいずれかに記載の使用。
HER2発現癌が、HER2過剰発現の癌である、[109]から[136]のいずれかに記載の使用。
HER2过剩発現の癌が、免疫組織化学法によりHER2の発現が3+と判定された癌である、[137]に記載の使用。

HER2過剰発現の癌が、免疫組織化学法によりHER2の発現が2+と判定され、且つin situハイプリダイゼーション法によりHER2の発現が陽性と判定された癌である、[137]に記載の使用。

HER2発現癌が、HER2低発現の癌である、[109]から[136]のいずれかに記載の使用。

HER2低発現の癌が、免疫組織化学法によりHER2の発現が2+と判定され、且つin situハイプリダイゼーション法によりHER2の発現が陰性と判定された癌である、[140]に記載の使用。

HER2低発現の癌が、免疫組織化学法によりHER2の発現が1+と判定された癌である、[140]に記載の使用。

手術不能又は再発の癌の治療のための医薬の製造のための、[109]から[142]のいずれかに記載の使用。

医薬が、薬学的に許容される製剤成分を含む、[109]から[143]のいずれかに記載の使用。

に関する。

また、本発明は、以下のように表すこともできる。

（1）耐性癌の治療のための、下式で示されるリンカー及び薬物と、抗HER2抗体と、が結合した抗体—薬物コンジョグート、その塩、又はそれらの水和物の使用。

- (Succimid-3-yL-N)-CH₂CH₂CH₂CH₂CH₂-C(=O)·GGFG-NH₂CH₂-O-CH₂-C(=O)·(NH-DX)

（式中、
- (Succimid-3-yL-N) は次式：

"WO 2018/066626" "PCT/JP2017/036215"
で示される構造であり、このものの3位で抗HER2抗体とチョーセル結合によって結合し、1位の窒素原子上でこれを含むリンカー構造内のメチレン基と結合し、
-(NH-DX) は次式:

で示される、1位のアミノ基の窒素原子が結合部位となっている基を示す。

[0021] 2) 耐性癌が二次耐性癌である（1）に記載の使用。
3) 二次耐性が、抗HER2抗体を含む抗体—薬物コンジユゲートの投与による二次耐性である（2）に記載の使用。
4) 二次耐性が、抗HER2抗体—薬物コンジユゲートであるT-DM1の投与によって獲得された二次耐性である（2）又は（3）に記載の使用。
5) 二次耐性が、抗HER2抗体の投与による二次耐性である（2）に記載の使用。
6) 抗体—薬物コンジユゲートの1抗体あたりの薬物—リンカー構造の平均結合数が2から8個の範囲である（1）から（5）のいずれかに記載の使用。
抗体—薬物コンジユゲートの1抗体あたりの薬物－リンカー構造の平均結合数が3から8個の範囲である（1）から（5）のいずれかに記載の使用。

8）抗体—薬物コンジユゲートの1抗体あたりの薬物－リンカー構造の平均結合数が7から8個の範囲である（1）から（5）のいずれかに記載の使用。

9）抗体—薬物コンジユゲートの1抗体あたりの薬物－リンカー構造の平均結合数が7.5から8個の範囲である（1）から（5）のいずれかに記載の使用。

（10）抗体—薬物コンジユゲートの投与量が0.8mg/kgから8mg/kgの範囲である（1）から（8）のいずれかに記載の使用。

（11）抗体—薬物コンジユゲートの投与が3週に1回行われる（1）から（10）のいずれかに記載の使用。

（12）耐性癌が肺癌、尿路上皮癌、大腸癌、前立腺癌、卵巣癌、乳腺癌、膀胱癌、胃癌、胃間質腫瘍、子宮頸癌、食道癌、扁平上皮癌、腹膜癌、肝臓癌、肝細胞癌、結腸癌、直腸癌、結腸直腸癌、子宮内膜癌、子宮癌、唾液腺癌、腎臓癌、外陰部癌、甲状腺癌、陰茎癌、白血病、悪性リンパ腫、形質細胞腫、骨髄腫、又は肉腫である（1）から（11）のいずれかに記載の使用。

【0022】（13）下式で示されるリンカー及び薬物と、抗HER2抗体と、が結合した抗体—薬物コンジユゲート、その塩、又はそれらの水和物を活性成分とし、薬学的に許容される製剤成分をも含有する耐性癌の治療用医薬組成物。

- (Succ inimid-3-y L-N)-CH₂CH₂CH₂CH₂CH₂- C(=0)-GGFG-NH-CH₂-0-CH₂-C(=0)-(NH-D)

（式中、
- (Succ inimid-3-y L-N) は次式：

- (Succ inimid-3-y L-N)
で示される構造であり、このものの3位で抗HER2抗体とチオエーテル結合によって結合し、1位の窒素原子上でこれを含むリンカー構造内のメチレン基と結合し、
- (NH-DX) は次式：

(14) 耐性癌が二次耐性癌である (13) に記載の治療用医薬組成物。
(15) 二次耐性が、抗HER2抗体を含む抗体－薬物コンジユゲートの投与による二次耐性である (13) に記載の治療用医薬組成物。
(16) 二次耐性が、抗HER2抗体－薬物コンジユゲートであるT-DM 1投与によって獲得された二次耐性である (14) 又は (15) に記載の治療用医薬組成物。
(17) 二次耐性が、抗HER2抗体の投与による二次耐性である (14) に記載の治療用医薬組成物。
(18) 抗体－薬物コンジユケートの1抗体あたりの薬物－リンカー構造の

[22] 抗体—薬物コンジユゲートの投与量が0.8mg/kgから8mg/kgの範囲である[3]から[21]のいずれかに記載の治療用医薬組成物。

[24] 耐性癌が肺癌、尿路上皮癌、大腸癌、前立腺癌、卵巢癌、乳癌、膀胱癌、胃癌、胃腸間質腫瘍、子宮頸癌、食道癌、扁平上皮癌、腹膜癌、肝臓癌、肝細胞癌、結腸癌、直腸癌、結腸直腸癌、子宮内膜癌、子宮癌、唾液腺癌、腎臓癌、外陰部癌、甲状腺癌、陰茎癌、白血病、悪性リンパ腫、形質細胞腫、骨髄腫、又は肉腫である[3]から[23]のいずれかに記載の治療用医薬組成物。

[0023] [25] 下記で示されるリンカー及び薬物と、抗HER2抗体と、が結合した抗体—薬物コンジユゲート、その塩、又はそれらの水和物を投与することを特徴とする耐性癌の治療方法。

- (Succ imid-3-y L-N)-CH₂CH₂CH₂CH₂-CH₂-C(=0)-GGFG-NH-CH₂-0-CH₂-C(=0)-(NH₂X)

（式中、
- (Succ imid-3-y L-N)-は次式：）
で示される構造であり、このものの3位で抗HER2抗体とチオエーテル結合によって結合し、1位の窒素原子上でこれを含むリンカー構造内のメチレン基と結合し、
-(NH-DX) は次式：

で示される、1位のアミノ基の窒素原子が結合部位となっている基を示す。

(26) 耐性癌が二次耐性癌である（25）に記載の治療方法。
(27) 二次耐性が、抗HER2抗体を含む抗体－薬物コンジュゲートの投与による二次耐性である（26）に記載の治療方法。
(28) 二次耐性が、抗HER2抗体－薬物コンジュゲートであるT-DM1投与によって獲得された二次耐性である（26）又は（27）に記載の治療方法。
(29) 二次耐性が、抗HER2抗体の投与による二次耐性である（26）に記載の治療方法。
(30) 抗体－薬物コンジュゲートの1抗体あたりの薬物－リンカー構造の平均結合数が2から8個の範囲である（25）から（29）のいずれかに記載
の治療方法。

6 1) 抗体—薬物コンジユゲートの1抗体あたりの薬物—リンカー構造の平均結合数が3から8個の範囲である(2 5)から(2 9)のいずれかに記載の治療方法。

6 2) 抗体—薬物コンジユゲートの1抗体あたりの薬物—リンカー構造の平均結合数が7から8個の範囲である(2 5)から(2 9)のいずれかに記載の治療方法。

6 3) 抗体—薬物コンジユゲートの1抗体あたりの薬物—リンカー構造の平均結合数が7.5から8個の範囲である(2 5)から(2 9)のいずれかに記載の治療方法。

6 4) 抗体—薬物コンジユゲートの投与量が0.8mg/kgから8mg/kgの範囲である(2 5)から(6 3)のいずれかに記載の治療方法。

6 5) 抗体—薬物コンジユゲートの投与が3週に1回行われる(2 5)から(6 4)のいずれかに記載の治療方法。

6 6) 耐性癌が肺癌、尿路上皮癌、大腸癌、前立腺癌、卵巢癌、脾癌、乳癌、膀胱癌、胃癌、胃間質腫瘍、子宮頸癌、食道癌、扁平上皮癌、腹膜癌、肝腫瘍、肝細胞癌、結腸癌、直腸癌、結腸直腸癌、子宮内膜癌、子宫癌、唾液腺癌、腫膵癌、外陰部癌、甲状腺癌、陰茎癌、白血病、悪性リンパ腫、形質細胞腫、骨髄腫、又は肉腫である(2 5)から(6 5)のいずれかに記載の治療方法。

【0024】6 7) 下式で示されるリンカー及び薬物と、抗HER2抗体と、が結合した抗体—薬物コンジユゲート、その塩、又はそれらの水和物を活性成分とし、薬学的に許容される製剤成分を含有し、抗癌薬に耐性を示す癌患者に適用される、治療用医薬組成物。

(Succ imimid-3-y L-N)-CH₂CH₂CH₂CH₂CH₂ C(=0) -GGFG-NH-CH₂O-CH₂C(=0) -(NH-DX)

(式中、

(Succ imimid-3-y L-N) は次式：}
で示される構造であり、このものの3位で抗HER2抗体とチオエーテル結合によって結合し、1位の窒素原子上でこれを含むリンカー構造内のメチレン基と結合し、
- (NH-DX) は次式：

で示される、1位のアミノ基の窒素原子が結合部位となっている基を示す。

(38) 抗癌薬による治療歴を有する患者に適用される(37)に記載の治療用医薬組成物。

(39) 他 の抗癌薬に替えて、あるいは他 の抗癌薬に組み合わせて用いられる(37)または(38)に記載の治療用医薬組成物。

(40) 抗癌薬への耐性が二次耐性である(37)から(39)のいずれかに記載の治療用医薬組成物。

(41) 抗癌薬が、抗HER2抗体を含む抗体-薬物コンジュゲートである(37)から(40)のいずれかに記載の治療用医薬組成物。

(42) 抗癌薬が、トラスッズマブエムタンシン (T-DM1) である(41)
に記載の治療用医薬組成物。

(43) 抗癌薬が、抗HER2抗体である(37)から(40)のいずれかに記載の治療用医薬組成物。

(44) 抗体—薬物コンジュゲートの1抗体あたりの薬物—リンカー構造の平均結合数が2から8個の範囲である(37)から(43)のいずれかに記載の治療用医薬組成物。

(45) 抗体—薬物コンジュゲートの1抗体あたりの薬物—リンカー構造の平均結合数が3から8個の範囲である(37)から(43)のいずれかに記載の治療用医薬組成物。

(46) 抗体—薬物コンジュゲートの1抗体あたりの薬物—リンカー構造の平均結合数が7から8個の範囲である(37)から(43)のいずれかに記載の治療用医薬組成物。

(47) 抗体—薬物コンジュゲートの1抗体あたりの薬物—リンカー構造の平均結合数が7.5から8個の範囲である(37)から(43)のいずれかに記載の治療用医薬組成物。

(48) 抗体—薬物コンジュゲートの投与量が0.8mg/kgから8mg/kgの範囲である(37)から(47)のいずれかに記載の治療用医薬組成物。

(49) 3週に1回投与される(37)から(48)のいずれかに記載の治療用医薬組成物。

(50) 耐性癌が肺癌、尿路上皮癌、大腸癌、前立腺癌、卵巣癌、乳癌、肺腺癌、胃癌、腎臓関連腫瘍、子宮頸癌、食道癌、扁平上皮癌、腹膜癌、肝癌、肝細胞癌、結腸癌、直腸癌、結腸直腸癌、子宮内膜癌、子宮癌、唾液腺癌、腎癌、外陰部癌、甲状腺癌、陰茎癌、白血病、悪性リンパ腫、形質細胞腫、骨髄腫、又は肉腫である(37)から(49)のいずれかに記載の治療用医薬組成物。

発明の効果

[0025] 本発明で使用される抗体—薬物コンジュゲートを含有する治療剤は、既存
の抗HER2薬に対し耐性又は難治性のHER2発現癌に対して優れた抗腫瘍効果を示し、二次耐性癌であっても高い抗腫瘍効果を示す。また、安全性にも優れてることから、有効な治療方法を提供することができる。

図面の簡単な説明

【0026】図1 ヒト化抗HER2モノクローナル抗体重鎖のアミノ酸配列（配列番号1）を示す。
図2 ヒト化抗HER2モノクローナル抗体軽鎖のアミノ酸配列（配列番号2）を示す。
図3抗体—薬物コンジュゲート（1）又はT-DM1による、T-DM1に二次耐性化したHER2陽性ヒト乳癌ST1616B/TDR腫瘍皮下移植ヌードマウスに対する抗腫瘍効果を示す図である。図中、横軸は初回投与からの日数、縦軸は腫瘍体積を示す。
図4抗体—薬物コンジュゲート（1）又はT-DM1による、T-DM1に二次耐性化したHER2陽性ヒト乳癌ST1360B/TDR腫瘍皮下移植ヌードマウスに対する抗腫瘍効果を示す図である。図中、横軸は初回投与からの日数、縦軸は腫瘍体積を示す。
図5抗体—薬物コンジュゲート（1）の臨床試験における薬物動態を示す図である。
図6抗体—薬物コンジュゲート（1）に関する臨床試験における安全性と認容性を示す図である。
図7抗体—薬物コンジュゲート（1）の臨床試験における有効性について、0RR（客観的奏効率）及びDCR（病勢コントロール率）を示す図である。
図8抗体—薬物コンジュゲート（1）の臨床試験における有効性について、最大腫瘍縮小率（%）を示す図である。
図9抗体—薬物コンジュゲート（1）の臨床試験における有効性について、治療期間・効果を示す図である。
図10抗体—薬物コンジュゲート（1）の臨床試験における有効性について、最大腫瘍縮小率（%）を示す図である。
[図11] 抗体−薬物コンジュゲート (1) の臨床試験における乳癌に対する有効性について、腫瘍縮小率 (%) の時間推移を示す図である。
[図12] 抗体−薬物コンジュゲート (1) の臨床試験における胃癌に対する有効性について、腫瘍縮小率 (%) の時間推移を示す図である。
[図13] 抗体−薬物コンジュゲート (1) の臨床試験におけるHER2発現固形癌（乳癌及び胃癌を除く）に対する有効性について、最大腫瘍縮小率 (%) を示す図である。図中、「C」は大腸癌のコホートを示し、「L」は非小細胞肺癌のコホートを示し、「S」は唾液腺癌のコホートを示し、「P」はベージェット病のコホートを示し、「Ch」は胆管癌のコホートを示し、「E」は食道癌のコホートを示す。また、図中「Other」は他の癌のコホートを示す。

発明を実施するための形態

[0027] 以下、本発明を実施するための好適な形態について図面を参照しながら説明する。なお、以下に説明する実施形態は、本発明の代表的な実施形態の一例を示したものであり、これによって本発明の範囲が狭く解釈されることはない。

[0028] 本発明において使用される抗体−薬物コンジュゲートは、次式で示されるリンカー及び薬物と、抗HER2抗体と、が結合した抗HER2抗体−薬物コンジュゲートである。

式中、-(Succ imid-3-y L-N)-CH₂CH₂CH₂CH₂CH₂-C(=O)-GGFG-NH-CH₂O-CH₂-C(=O)-(NH-DX)
で示される構造であり、このものの3位で抗HER2抗体とチオエーテル結合によって結合し、1位の窒素原子上でこれを含むリンカー構造内のメチレン基と結合する。

-(NH-DX) は次式:

で示される、1位のアミノ基の窒素原子が結合部位となっている基である。

また、-GGFG- は、-GLy-Gly-Phe-Gly- のテトラペプチド残基を示す。

本明細書においては、抗体-薬物コンジュゲートのうちリンカー及び薬物からなる部分構造を「薬物-リンカー構造」と称する。この薬物-リンカー構造は、抗体の鎖間のジスルフィド結合部位、2箇所の重鎖-重鎖間、及び2箇所の重鎖-軽鎖間において生じたチオール基（言い換えれば、システイン残基の硫黄原子）に結合している。

本発明において使用される抗HER2抗体-薬物コンジュゲートは、次式:
で示される構造で表すこともできる。

ここで、薬物—リンカー構造は、抗HER2抗体とチョエーテル結合によって結合している。また、nはいわゆるDAR (Drug-to-Antibody Ratio) と同義であり、抗体1分子への薬物の結合数を示す。DARは平均値、すなわち、平均薬物結合数として特定され、表記される数値である。本発明の抗体—薬物コンジュゲートの場合、nは、2から8であればよく、好ましくは3から8であり、より好ましくは7から8であり、さらに好ましくは7.5から8であり、nは約8であるものが好適に使用できる。

以下に本発明で使用される抗体—薬物コンジュゲートについて詳細に説明する。

[0029] [抗体]

本発明において使用される抗HER2抗体—薬物コンジュゲートに使用される抗HER2抗体は、いずれの種に由来してもよいが、好ましくは、ヒト、ラット、マウス、及びウサギを例示できる。抗体がヒト以外の種に由来する場合は、周知の技術を用いて、キメラ化又はヒト化することが好ましい。本発明の抗体は、ポリクローナル抗体であっても、モノクローナル抗体であってもよいが、モノクローナル抗体が好ましい。

抗HER2抗体は腫瘍細胞を標的にできる抗体であり、すなわち腫瘍細胞を認識できる特性、腫瘍細胞に結合できる特性、腫瘍細胞内に取り込まれて内在化する特性、そして腫瘍細胞に対する殺細胞活性等を備えており、抗腫
癇活性を有する化合物を、リンカーを介して結合させて抗体－薬物コンジュゲートとすることができる。

抗体の抗腫瘍活性は、in vitroでは、細胞の増殖の抑制活性を測定することで確認できる。例えば、抗体の標的蛋白質を過剰発現している癌細胞株を培養し、培養系に種々の濃度で抗体を添加し、フォーカス形成、コロニー形成及びスフェロイド増殖に対する抑制活性を測定することができる。in vivoでは、例えば、標的蛋白質を高発現している腫瘍細胞株を移植したマウスに抗体を投与し、癌細胞の変化を測定することによって、抗腫瘍活性を確認できる。

抗体－薬物コンジュゲートは抗腫瘍効果を発揮する化合物を結合させてあるので、抗体して抗腫瘍効果を有することは、好ましいが、必須ではない。抗腫瘍性化合物の細胞障害性を腫瘍細胞において特異的・選択的に発揮させる目的からは、抗体が内在化して腫瘍細胞内に移行する性質のあることが重要であり、好ましい。

[0030]抗HER2抗体は、公知の手段によって取得することができる。例えば、この分野で通常実施される方法を用いて、抗原となるポリペプチドを動物に免疫し、生体内に産生される抗体を採取、精製することによって得ることが
できる。抗原の由来はヒトに限定されず、マウス、ラット等のヒト以外の動物に由来する抗原を動物に免疫することもできる。この場合には、取得された異種抗原に結合する抗体とヒト抗原との交差性を試験することによって、ヒトの疾患に適用可能な抗体を選別できる。

なお、抗原は抗原蛋白質をコードする遺伝子を遺伝子操作によって宿主細胞に産生させることによって得ることができる。具体的には、抗原遺伝子を発現可能なベクターを作製し、これを宿主細胞に導入して該遺伝子を発現させ、発現した抗原を精製すればよい。上記の遺伝子操作による抗原発現細胞、または抗原を発現している細胞株、を動物に免疫する方法を用いることによっても抗体を取得できる。

[0031] 本発明で使用できる抗HER2抗体は、特に制限はないが、例えば、以下の特性を有するものが望ましい。

（1）以下の特性を有することを特徴とする抗HER2抗体；
　（a）HER2に特異的に結合する。
　（b）HER2と結合することによってHER2発現細胞内在化する活性を有する。
（2）HER2の細胞外ドメインに結合する上記（1）に記載の抗体。
（3）モノクローナル抗体である上記（1）又は（2）に記載の抗体。
（4）抗体依存性細胞傷害（ADCC）活性及び/又は補体依存性細胞傷害（CDC）活性を有する上記（1）乃至（3）のいずれかに記載の抗体。
（5）マウスモノクローナル抗体、ヒトモノクローナル抗体、又はヒト化モノクローナル抗体である、上記（1）乃至（4）のいずれかに記載の抗体。
（6）配列番号1に記載のアミノ酸配列からなる重鎖及び配列番号2に記載のアミノ酸配列からなる軽鎖を含んでなるヒト化モノクローナル抗体である上記（1）乃至（5）のいずれかに記載の抗体。
（7）重鎖カルボキシル末端のリン酸基が欠失している上記（1）乃至（6）のいずれかに記載の抗体。
（8）配列番号1においてアミノ酸番号1乃至449に記載のアミノ酸配列からなる重鎖及び配列番号2においてアミノ酸番号1乃至214に記載のアミノ酸配列からなる軽鎖を含んでなる上記（7）に記載の抗体。
（9）上記（1）乃至（8）のいずれかに記載の抗体をコードするポリヌクレオチドを含有する発現ベクターによって形質転換された宿主細胞を培養する工程及び当該工程で得られた培養物から目的の抗体を採取する工程を含む当該抗体の製造方法によって得られる抗体。

[0032]以下に、本発明において使用される抗HER2抗体について説明する。

本明細書において、「癌」と「腫瘍」は同じ意味に用いている。
本明細書において、「遺伝子」という語には、DNAのみならずそのmRNA、cDNA及びそのcRNAも含まれる。
本明細書において、「ポリヌクレオチド」という語は核酸と同じ意味で用いており、DNA、RNA、プローブ、オリゴヌクレオチド、及びプライマーも含まれる。
本明細書において、「ポリヘプチド」、「蛋白質」、「蛋白」は区別せずに用いている。
本明細書において、「細胞」には、動物個体内の細胞、培養細胞も含んでいる。
本明細書において、「HER2」あるいは「HER2蛋白」と同じ意味で用いている。

本明細書において、抗HER2抗体とは、特に制限はないが、ベルツズマブ（国際公開01/00245号）、トラスズマブ（米国特許第5821337号）等を挙げることができるが、トラスズマブが好ましい。但し、
HER2に特異的に結合する、より好ましくは、HER2と結合することによってHER2発現細胞に内在化する活性を有する抗HER2抗体であればこれに限らない。

本明細書において、「トラスツマ」はHERCEPTIN（登録商標）、hUMAB4D5_8、rhUMAB4D5_8と呼ばれることもあり、配列番号1（図1）においてアミノ酸番号1乃至449に記載のアミノ酸配列からなる重鎖及び配列番号2（図2）においてアミノ酸番号1乃至214に記載のアミノ酸配列からなる軽鎖を含んでるヒト化抗体である。

本明細書において、「特異的に結合」という語は、非特異的な吸着ではない結合を意味する。結合が特異的であるか否かの判定基準としては、例えば、解離定数（以下、「Kd」）を挙げることができる。好適な抗体のHER2蛋白に対するKd値は1×10^-5M以下、5×10^-6M以下、2×10^-7M以下、又は1×10^-6M以下；より好適は5×10^-7M以下、2×10^-7M以下、又は1×10^-7M以下；より一層好適は5×10^-8M以下、2×10^-8M以下、又は1×10^-8M以下；最適は5×10^-9M以下、2×10^-9M以下、又は1×10^-9M以下である。HER2蛋白と抗体との結合は、Surface Plasmon Resonance法、ELISA法、RIA法等公知の方法を用いて測定することができる。

本明細書における「CDR」とは、相補性決定領域（CDR:Compl ementarity determining region）と意味する。抗体分子の重鎖及び軽鎖にはそれぞれ3箇所のCDRがあることが知られている。CDRは、超可変領域（hypervariable domain）とも呼ばれ、抗体の重鎖及び軽鎖の可変領域内にあって、一次構造の変異性が特に高い部位であり、重鎖及び軽鎖のポリペプチド鎖の一次構造上において、それぞれ3ケ所に分離している。本明細書においては、抗体のCDRについて、重鎖のCDRを重鎖アミノ酸配列のアミノ末端側からCDRH1、CDRH2、CDRH3と表記し、軽鎖のCDRを軽鎖アミノ酸配列のアミノ末端側からCDRL1、CDRL2、CDRL3と表記する。これら
の部位は立体構造の上で相互に近接し、結合する抗原に対する特異性を決定している。

本発明において、「スートリンジェントな条件下でハイプリダイズする」とは、市販のハイプリダイゼーション溶液 ExpressHyb Hybridization Solution（クロンテック社製）中、68℃でハイプリダイズすること、又は、DNAを固定したフィルターを用いて0.7 - 1.0 MのNaCl存在下、68℃でハイプリダイズしたこと、又は、DNAを固定したフィルターを用いて0.7 - 1.0 MのNaCl存在下、68℃でハイプリダイズすること、又は、DNAを固定したフィルターを用いて0.7 - 1.0 MのNaCl存在下、68℃でハイプリダイズすること。遺伝子操作では、具体的には、HER2 cDNAを発現可能なベクターに組み込んだ後、転写と翻訳に必要な酵素、基質及びエネルギー物質を含む溶液中で合成する、又は他の原核生物、又は真核生物の宿主細胞を
形質転換してHER2を発現させることによって、該蛋白質を得ることができる。また、前記の遺伝子操作によるHER2発現細胞、或はHER2を発現している細胞株をHER2蛋白として使用することも可能である。

HER2のDNA配列及びアミノ酸配列は公的データベース上に公開されており、例えば、M11730（Genbank）、NP_004439.2（NCBI）等のアクセスション番号により参照可能である。

また、上記HER2のアミノ酸配列において、1又は数個のアミノ酸が置換、欠失及び/又は付加されたアミノ酸配列からなり、当該蛋白質と同等の生物活性を有する蛋白質もHER2に含まれる。

ヒトHER2蛋白は、N末端22アミノ酸残基から成るシグナル配列、630アミノ酸残基から成る細胞外ドメイン、23アミノ酸残基から成る細胞膜貫通ドメイン、580アミノ酸残基から成る細胞内ドメインで構成されている。

[0034]2. 抗HER2抗体の製造

本発明のHER2に対する抗体は、例えば、この分野で通常実施される方法に従って、HER2又はHER2のアミノ酸配列から選択される任意のポリペプチドを動物に免疫し、生体内に産生される抗体を採取、精製することによって得ることができる。抗原となるHER2の生物種はヒトに限定されず、マウス、ラット等のヒト以外の動物に由来するHER2、ラットp185neu等を動物に免疫することもできる。この場合には、取得された異種HER2に結合する抗体とヒトHER2との交差性を試験することによって、ヒトの疾患に適用可能な抗体を選別できる。

きる。
なお、抗原となるHER2はHER2遺伝子を遺伝子操作によって宿主細胞に発現させることによって得ることができる。

具体的には、HER2遺伝子を発現可能なベクターを作製し、これを宿主細胞に導入して該遺伝子を発現させ、発現したHER2を精製すればよい。

また、上記の遺伝子操作によるHER2発現細胞、またはHER2を発現している細胞株をHER2蛋白として使用することも可能である。抗HER2抗体は、公知の手段によって取得することができる。以下、具体的にHER2に対する抗体の取得方法を説明する。

[0035]（1）抗原の調製

抗HER2抗体を作製するための抗原としては、HER2又はその少なくとも6個の連続した部分アミノ酸配列からなるポリペプチド、またはこれらに任意のアミノ酸配列や担体が付加された誘導体を挙げることができる。

HER2は、ヒトの腫瘍組織或いは腫瘍細胞から直接精製して使用することが可能である。また、HER2をin vitroにて合成する、或いは遺伝子操作によって宿主細胞に産生させることによって得ることができる。

遺伝子操作では、具体的には、HER2のcDNAを発現可能なベクターに組み込んだ後、転写と翻訳に必要な酵素、基質及びエネルギー物質を含む溶液中で合成する、或いは他の原核生物又は真核生物の宿主細胞を形質転換してHER2を発現させることによって、抗原を得ることができる。

また、膜蛋白質であるHER2の細胞外領域と抗体の定常領域とを連結した融合蛋白質を適切な宿主・ベクター系において発現させることによって、分泌蛋白質として抗原を得ることも可能である。

HER2のcDNAは、例えばHER2のcDNAを発現しているcDNAライブラリーを録型として、HER2 cDNAを特異的に増幅するプライマーを用いてポリメラーゼ連鎖反応（PCR;Saiki , R. K. , et aに , S c i e n c e (1 9 8 8) 2 3 9 , p. 487 - 489参照）を行なう、いわゆるPCR法によって取得することができる。
ポリペプチドのイン・ビトロ（in vitro）合成としては、例えばロシュ・ダイアグノスティックス社製のラピッドトランスレーションシステム（R T S）を挙げることができるが、これに限定されない。

原核細胞の宿主としては、例えば、大腸菌（Escherichia coli）や枯草菌（Bacillus subtilis）等を挙げることができる。目的の遺伝子をこれらの宿主細胞内で形質転換させるには、宿主と適合し得る種由来のレプレコンすなわち複製起点と、調節配列を含んでいるプラスミドベクターで宿主細胞を形質転換させる。また、ベクターとしては、形質転換細胞に表現形質（表現型）の選択性を付与することができる配列を有するものが好ましい。

真核細胞の宿主細胞には、脊椎動物、昆虫、酵母等の細胞が含まれ、脊椎動物細胞としては、例えば、サルの細胞であるCOS細胞（G I u z m a n , Y. C e l l (1 9 8 1) 2 3 , p. 1 7 5 – 1 8 2 、 ATCC C R L - 1 6 5 0 ： ATCC : A m e r i c a n T y p e C u l t u r e C o l l e c t i o n ）、マウス線維芽細胞NI H 3 T 3（ATCC N o . C R L - 1 6 5 8 ）やチャイニーズ・ハムスター卵巣細胞（CHO細胞、AT CC C C L - 6 1 ）のジヒドロ葉酸還元酵素欠損株（U r l a u b , G . a n d C h a s i n , L . A . P r o c . N a t . A c a d . S c i . U S A (1 9 8 0) 7 7 , p. 4 1 2 6 – 4 2 2 0 ）等がよく用いられているが、これらに限定されない。

上記のようにして得られる形質転換体は、この分野で通常実施される方法に従って培養することができ、該培養によって細胞内又は細胞外に目的のポリペプチドが生成される。

該培養に用いられる培地としては、採用した宿主細胞に応じて慣用される各種のものを適宜選択でき、大腸菌であれば、例えば、LB培地に必要に応じて、アンピシリン等の抗生物質やIP MGを添加して用いることができる。

上記培養によって、形質転換体の細胞内又は細胞外に生成される組換え蛋
白質は、該蛋白質の物理的性質や化学的性質等を利用した各種の公知の分離操作法によって分離・精製することができる。

該方法としては、具体的には例えば、通常の蛋白質沈殿剤による処理、限外濾過、分子ふるいクロマトグラフィー（ゲル濾過）、吸着クロマトグラフィー、イオン交換クロマトグラフィー、アフィニティークロマトグラフィー等の各種液体クロマトグラフィー、透析法、これらの組合せ等を例示できる。

また、発現させる組換え蛋白質に6残基からなるヒスチジンタグを繋げることによって、ニッケルアフィニティーカラムで効率的に精製することができる。或は、発現させる組換え蛋白質に IgG のFc領域を繋げることによって、プロテインAカラムで効率的に精製することができる。

上記方法を組合せることによって容易に高収率、高純度で目的とするポリベプチドを大量に製造できる。

上記に述べた形質転換体自体を抗原として使用することも可能である。また、HER2を発現する細胞株を抗原として使用することも可能である。この様な細胞株としては、ヒト乳癌株SK-BR-3、BT-474、KPL-4、又はJIMT-1、ヒト胃癌株NCI-N87、及びヒト卵巢癌株SK-OV-3を挙げることができるが、HER2を発現する限り、これらの細胞株に限定されない。

[0036] (2) 抗HER2モノクローナル抗体の製造

HER2と特異的に結合する抗体の例として、HER2と特異的に結合するモノクローナル抗体を挙げることができるが、その取得方法は、以下に記載する通りである。

モノクローナル抗体の製造にあたっては、一般に下記の様な作業工程が必要である。

すなわち、

(a) 抗原として使用する生体高分子の精製、又は抗原発現細胞の調製

(b) 抗原を動物に注射することによって免疫した後、血液を採取してその
抗体価を検定して脾臓摘出の時期を決定してから、抗体産生細胞を調製する工程

(C) 骨髄腫細胞（以下「ミエローマ」という）の調製

(d) 抗体産生細胞とミエローマとの細胞融合

(e) 目的とする抗体を産生するハイブリドーマ群の選別

(f) 単一細胞クローンへの分割（クローニング）

(g) 場合によっては、モノクローナル抗体を大量に製造するためのハイブリドーマの培養、又はハイブリドーマを移植した動物の飼育

(h) この様にして製造されたモノクローナル抗体の生理活性、及びその結合特異性の検討、或は標識試薬としての特性の検定等である。

以下、モノクローナル抗体の作製法を上記工程に沿って詳述するが、該抗体の作製法はこれに制限されず、例えば脾臓以外の抗体産生細胞及びミエローマを使用することもできる。

[0037] (a) 抗原の精製

抗原としては、前記した様な方法で調製したHER2又はその一部を使用することができる。

また、HER2発現組換え体細胞によって調製した膜画分、又はHER2発現組換え体細胞自身、さらに、当業者に周知の方法を用いて化学合成した本発明関連の蛋白質の部分ペプチドを抗原として使用することもできる。

さらに、HER2発現細胞株を抗原として使用することもできる。

[0038] (b) 抗体産生細胞の調製

工程（a）で得られた抗原と、フロインドの完全又は不完全アジュバント、或はカリミヨウバンの様々な助剤とを混合し、免疫原として実験動物に免疫する。この他に、抗原発現細胞を免疫原として実験動物に免疫する方法もある。実験動物は公知のハイブリドーマ作製法で用いられる動物を支障なく使用することができる。具体的には、例えばマウス、ラット、ヤギ、ヒッジ、ウシ、ウマ等を使用することができる。ただし、摘出した抗体産生細胞と融
合させるミエローマ細胞の入手容易性等の観点から、マウス又はラットを免疫動物とするのが好ましい。

また、実際に使用するマウス及びラットの系統には特に制限はなく、マウスの場合は、例えば各系統 A、AKR、BALB/c、BDP、BA、C E、C3H、57BL、C57BL、C57し DBA、FL、HTH、HT
1、LP、NZB、NZW、RF、R I I I 、SJL、SWR、WB、
129等が、またラットの場合には、例えば、Wistar、Low、Le
wiss、Sprague、Dawley、ACI、BN、Fischer等
を用いることができる。

これらのマウス及びラットは、例えば、日本クレア株式会社、日本チヤ
ルス・リバー株式会社等の実験動物飼育販売業者より入手することができる。

被免疫動物としては、後述のミエローマ細胞との融合適合性を勘案すれば
、マウスではBALB/c系統が、ラットではWistar及びLow系統
が特に好ましい。

また、抗原のヒトとマウスでの相性性を考慮し、自己抗体を除去する生体
機構を低下させたマウス、すなわち自己免疫疾患マウスを用いることも好ま
しい。

なお、これらのマウス又はラットの免疫時の週齢は、好ましくは5〜12
週齢、さらに好ましくは6〜8週齢である。

HER2又はこの組換え体によって動物を免疫するには、例えば、Wei
r，D. M.，Handbook of Experimental Imm
unology Vol. I. II. III.，Blackwell S
imental Immunochemistry, Charles C Th
omas Publisher Springfield, Illinoi
s (1964) 等に詳しく記載されている公知の方法を用いることができる。
これらの免疫法のうち、本発明において好適な方法を具体的に示せば、例えば以下のとおりである。

すなわち、まず、抗原である膜蛋白質画分、又は抗原を発現させた細胞を動物の皮内又は腹腔内に投与する。ただし、免疫効率を高めるためには両者の併用が好ましく、前半は皮内投与を行い、後半又は最終回のみ腹腔内投与を行おうと、特に免疫効率を高めることができる。抗原の投与スケジュールは、被免疫動物の種類、個体差等によって異なるが、一般には、抗原投与回数3～6回、投与間隔2～6週間が好ましく、投与回数3～4回、投与間隔2〜4週間がさらに好ましい。

また、抗原の投与量は、動物の種類、個体差等によって異なるが、一般に0.05～0.5mg、好ましくは0.1〜0.5mg程度とする。

追加免疫は、以上の通りの抗原投与の1〜6週間後、好ましくは1〜4週間後、さらに好ましくは1〜3週間後に行う。免疫原が細胞の場合には、1X10^6乃至1X10^7個の細胞を使用する。

なお、追加免疫を行う際の抗原投与量は、動物の種類、大きさ等によって異なるが、一般に、例えばマウスの場合には0.05〜0.5mg、好ましくは0.1〜0.5mg、さらに好ましくは0.1〜0.2mg程度とする。免疫原が細胞の場合には、1X10^6乃至1X10^7個の細胞を使用する。

上記追加免疫から1〜10日後、好ましくは2〜5日後、さらに好ましくは2〜3日後に被免疫動物から抗体産生細胞を含む脾臓細胞又はリンパ球を無菌的に取り出す。その際に抗体価を測定し、抗体価が十分高くなった動物を抗体産生細胞の供給源として用いれば、以後の操作の効率を高めることができる。

ここで用いられる抗体価の測定法としては、例えば、RIA法又はELISA法を挙げることができるがこれらの方法に制限されない。本発明における抗体価の測定は、例えばELISA法によれば、以下に記載する様な手順によって行うことができる。
まず、精製又は部分精製した抗原をE L I S A用96穴プレート等の固相表面に吸着させ、さらに抗原が吸着していない固相表面を抗原と無関係な蛋白質、例えばウシ血清アルブミン（B S A）によって覆い、該表面を洗浄後、第一抗体として段階希釈した試料（例えばマウス血清）に接触させ、上記抗原に試料中の抗体を結合させる。

さらに第二抗体として酵素標識されたマウス抗体に対する抗体を加えてマウス抗体に結合させ、洗浄後酵素の基質を加え、基質分解に基づく発色による吸光度の変化等を測定することによって、抗体価を算出する。

[0039]（c）骨髄腫細胞（以下、「ミエローマ」という）の調製

細胞融合に用いるミエローマ細胞には特段の制限はなく、公知の細胞株から適宜選択して用いることができる。ただし、融合細胞からハイブリドーマを選択する際の利便性を考慮して、その選択手順が確立しているHGPRT（Hypoxanthine—guanine phosphoribosyl transferase）欠損株を用いるのが好ましい。

すなわち、マウス由来のX 63 - A g 8 （X 63）、NS 1—AN S / 1（NS 1）、P 3 X 63 - Ag 8. U 1（P 3 U 1）、X 63 - Ag 8. 653（X 63. 653）、SP 2/ 0 - Ag 14（SP 2/ 0）、MPC 1 1- 45. 6TG1. 7（4 5. 6TG）、F O、S 1 49 / 5 X X O、BU. 1等、ラット由来の2 10. RSY 3. Ag. 1. 2. 3（Y 3）等、
ヒト由来のU266AR (SK○−007)、GM1500-GTG-A12 (GM1500)、UC7296、LICR-LOW-Hmy2 (Hmy2)、8226AR/NIP4-1 (NP41)等である。これらのHPRT欠損株は例えば、ATCC等から入手することができる。
これらの細胞株は適当な培地、例えば8-アザグアニン培地 (RPMI1640培地にグルタミン、2-メルカプトエタノール、ゲンタマイシン、及びウシ胎児血清 (以下「FBS」という)を加えた培地に8-アザグアニンを加えた培地)、イスコフ改変ダルベッコ培地 (Iscove's Modified Dulbecco's Medium; 以下「IMDM」という)、又はダルベッコ改変イーグル培地 (Dulbecco's Modified Eagle Medium; 以下「DMEM」という)で細代培養するが、細胞融合の3乃至4日前に正常培地 (例えば、10% FCSを含むASF104培地 (味の素株式会社製))で細代培養し、融合当日に2×107以上の細胞数を確保しておく。

[0040] (d) 細胞融合
その様な方法として、例えば、ポリエチレングリコール等の高濃度ポリマー一溶液中で抗体産生細胞とミエローマ細胞とを混合する化学的方法、電気的刺激を利用する物理的方法等を用いることができる。このうち、上記化学的方法の具体例を示せば以下のとおりである。
すなわち、高濃度ポリマー溶液としてポリエチレングリコールを用いる場合に、分子量1500〜6000、好ましくは2000〜4000のポリエチレングリコール溶液中で、30〜40℃、好ましくは35〜38℃の温度で抗體産生細胞とミエローマ細胞を1〜10分間、好ましくは5〜8分間混合する。

[0041] (e) ハイブリドーマ群の選択

この方法は、アミノプチリンで生存し得ないHPRT欠損株のミエローマ細胞を用いてハイブリドーマを得る場合に有効である。すなわち、未融合細胞及びハイブリドーマをHAT培地で培養することによって、アミノプチリンに対する耐性を持ち合わせたハイブリドーマのみを選択的に残存させ、かつ増殖させることができる。

[0042] (f) 単一細胞クローンへの分割（クローニング）

ハイブリドーマのクローニング法としては、例えばメチルセルロース法、軟アガロース法、限界希釈法等の公知の方法を用いることができる（例えばBarbara, B. M. and Stanley, M. S. : Selected Methods in Cellular Immunology, W. H. Freeman and Company, San Francisco (1980) 参照）。これらの方法のうち、特にメチルセルロース法等の三次元培養法が好適である。例えば、細胞融合によって形成されたハイブリドーマ群をClonalCell-HY Selection Medium D (StemCell Technologies社製 #03804) 等のメチルセルロース培地に懸濁して培養し、形成されたハイブリドーマコロニーを回収することでモノクローンハイブリドーマの取得が可能
である。回収された各ハイプリドーマコロニーを培養し、得られたハイプリドーマ培養上清中に安定して抗体価の認められたものをHER2モノクローナル抗体産生ハイプリドーマ株として選択する。

（g）ハイプリドーマの培養によるモノクローナル抗体の調製

このようにして選択されたハイプリドーマは、これを培養することによって、モノクローナル抗体を効率よく得ることができるが、培養に先立ち、目的とするモノクローナル抗体を産生するハイプリドーマをスクリーニングすることが望ましい。

このスクリーニングにはそれ自体既知の方法が採用できる。

本発明における抗体価の測定は、例えば上記（b）の項目で説明したELISA法によって行うことができる。

以上のような方法によって得たハイプリドーマは、液体窒素中又は-80℃以下の中凍庫中に凍結状態で保存することができる。

クローニングを完了したハイプリドーマは、培地をHT培地から正常培地に換えて培養される。

大量培養は、大型培養瓶を用いた回転培養、またはスピナー培養で行われる。この大量培養における上清から、ゲル透過等、当業者に周知の方法を用いて精製することによって、本発明の蛋白質に特異的に結合するモノクローナル抗体を得ることができる。

また、同系統のマウス（例えば、上記のBALB/c）、またはNu/Nuマウスの腹腔内にハイプリドーマを注射し、該ハイプリドーマを増殖させることによって、本発明のモノクローナル抗体を大量に含む腹水を得ることが可能である。

腹腔内に投与する場合には、事前（3〜7日前）に2, 6, 10, 14-テトラメチルベンタデカン（2, 6, 10, 14-tetramethylpentadecane；ブリスチン）等の鉱物油を投与すると、より多量の腹水が得られる。

例えば、ハイプリドーマと同系統のマウスの腹腔内に予め免疫抑制剤を注
射し、T細胞を不活性化した後、20日後に10^6〜10^7個のハイブリッドマ・クローン細胞を、血清を含まない培地中に浮遊（0.5ml）させて腹腔内に投与し、通常腹部が膨満し、腹水がたまったところでマウスより腹水を採取する。この方法によって、培養液中に比べて約100倍以上の濃度のモノクローナル抗体が得られる。

かくして得られるモノクローナル抗体は、HER2に対して高い抗原特異性を有する。本発明のモノクローナル抗体としては、特に制限はないと、マウスモノクローナル抗体 4D5（ATCC CRL 10463）を挙げることができる。

[0044] (h) 素モノクローナル抗体の検定

かくして得られたモノクローナル抗体のアイソタイプ及びサブクラスの決定は以下のように行うことができる。

まず、同定法としてはオクテルロニー(Ouchterlony)法、ELISA法、又はRIA法を挙げることができる。

オクテルロニー法は簡便であるが、モノクローナル抗体の濃度が低い場合には濃縮操作が必要である。

一方、ELISA法又はRIA法を用いた場合は、培養上清をそのまま抗原吸着固相と反応させ、さらに第二次抗体として各種イムノグロブリンアイソタイプ、サブクラスに対応する抗体を用いることによって、モノクローナル抗体のアイソタイプ、サブクラスを同定することが可能である。

また、さらに簡便な方法として、市販の同定用のキット（例えば、マウスタイバーキット；バイオラッド社製）等を利用することもできる。

さらに、蛋白質の定量は、フォーリンロリー法、及び280nmにおけ
る吸光度 (1.4 (0D280) = イムノログリン 1mg/ml) より算出する方法によって行うことができる。

さらに、(2) の (a) 乃至 (h) の工程を再度実施して別途に独立してモノクローナル抗体を取得した場合においても、(g) の工程で得られた抗 HER2抗体と同等の細胞傷害活性を有する抗体を取得することが可能である。この様な抗体の一例として、(g) の工程で得られた抗HER2抗体と同一のエピトープに結合する抗体を挙げることができる。新たに作製されたモノクローナル抗体が、前記抗HER2抗体の構造に一部ペプチド又は部分立体構造に結合すれば、該モノクローナル抗体が同一のエピトープに結合すると判定することができる。また、前記抗HER2抗体のHER2に対する結合に対して該モノクローナル抗体が競合する（即ち、該モノクローナル抗体が、前記抗HER2抗体とHER2の結合を妨げる）ことを確認することによって、具体的なエピトープの配列又は構造が決定されていなくても、該モノクローナル抗体が抗HER2抗体と同一のエピトープに結合すると判定することができる。エピトープが同一であることが確認された場合、該モノクローナル抗体が前記抗HER2抗体と同等の抗原結合能又は生物活性を有していることが強く期待される。

[0045]
(3) その他の抗体

本発明の抗体には、上記HER2に対するモノクローナル抗体に加え、ヒトに対する異種抗原性を低下させること等を目的として人工的に改変した遺伝子組換え型抗体、例えば、キメラ（Chimeric）抗体、ヒト化（Humanized）抗体、ヒト抗体等も含まれる。これらの抗体は、既知の方法を用いて製造することができる。

の重鎖定常領域を含むキメラ抗体4 D 5 を挙げることができる。
ヒト化抗体としては、異種抗体の相補性決定領域（CDR；comple-
mentarity determining region）のみをヒト由来の抗体に組み込んだ抗体（Nature（1986）321, p. 52
2—5 2 5 参照）、CDR移植法によって、異種抗体のCDRの配列に加え
て、異種抗体の一部のフレームワークのアミノ酸残基もヒト抗体に移植した
抗体（国際公開第90/ 0 7 8 6 1号）、遺伝子変換突然変異誘発（ge-
ne conversion mutagenesis）ストラテジーを用し
てヒト化した抗体（米国特許第5 8 2 1 3 3 7号）を挙げることができる。
[0046] なお、本明細書における「数個」とは、1 乃至 1 0 個、1 乃至 9 個、1 乃
至 8 個、1 乃至 7 個、1 乃至 6 個、1 乃至 5 個、1 乃至 4 個、1 乃至 3 個、
又は 1 若しくは 2 個を意味する。
[0047] また、本明細書におけるアミノ酸の置換としては保存的アミノ酸置換が好
ましい。保存的アミノ酸置換とは、アミノ酸側鎖に関連のあるアミノ酸グル
ープ内で生じる置換である。好適なアミノ酸グループは、以下のとおりであ
る：酸性グループ＝ アスパラギン酸、グルタミン酸；塩基性グループ＝ リシ
ン、アルギニン、ヒスチジン；非極性グループ＝ アラニン、バリン、ロイシ
ン、イソロイシン、プロリン、フェニルアラニン、メチオニン、トリプトフ
ァン；及び非帯電極性ファミリー＝ ダリシン、アスパラギン、グルタミン、
システィン、セリン、スレオニン、チロシン。他の好適なアミノ酸グループ
は次のとおりである：脂肪族 ヒドロキシグループ＝ セリン及びスレオニン；
アミド含有グループ＝ アスパラギン及びグルタミン；脂肪族グループ＝ アラ
ニン、バリン、ロイシン及びイソロイシン；並びに芳香族グループ＝ フェニ
ルアラニン、トリプトファン及びチロシン。かかるアミノ酸置換は元のアミ
ノ酸配列を有する物質の特性を低下させない範囲で行うのが好ましい。
[0048] 上記の重鎖アミノ酸配列及び軽鎖アミノ酸配列と高い同相性を示す配列を
組み合わせることによって、上記の各抗体と同等の生物活性を有する抗体を
選択することが可能である。この様々な同相性は、一般的には8 0 以上の一
同性であり、好ましくは90％以上の相同性であり、より好ましくは95％以上の相同性であり、最も好ましくは99％以上の相同性である。また、重鎖又は軽鎖のアミノ酸配列に1乃至数個のアミノ酸残基が置換、欠失又は付加されたアミノ酸配列を組み合わせることによっても、上記の各抗体と同等の生物活性を有する抗体を選択することが可能である。なお、本明細書における「相同性」は「同一性」と同じ意味で使用している。

この様なヒト抗体産生マウスは、具体的には、内在性免疫グロブリン重鎖及び軽鎖の遺伝子座が破壊され、代わりに酵母人工染色体 (Yeast artificial chromosome, YAC) ベクター等を介してヒト免疫グロブリン重鎖及び軽鎖の遺伝子座が導入された遺伝子組み換え動物として、ノックアウト動物及びトランスジェニック動物の作製及びこれらの動物同士を掛け合わせることによって作り出すことができる。

また、遺伝子組換え技術によって、その様なヒト抗体の重鎖及び軽鎖の各々をコードするｃＤＮＡ、好ましくは該ｃＤＮＡを含むベクターによって真核細胞を形質転換し、遺伝子組換えヒトモノクローナル抗体を産生する形質転換細胞を培養することによって、この抗体を培養上清中から得ることもできる。

ここで、宿主としては例えば真核細胞、好ましくはＣＨＯ細胞、リンパ球やミエローマ等の哺乳動物細胞を用いることができる。

例えば、ヒト抗体の可変領域を一本鎖抗体 (ｓｃＦｖ) としてファージ表面に発現させて、抗原に結合するファージを選択するファージディスプレイ
抗体（Nature Biotechnology (2005), 23, (9), p. 1105-1116）を用いることができる。

抗原に結合することで選択されたファージの遺伝子を解析することによって、抗原に結合するヒト抗体の可変領域をコードするDNA配列を決定することができる。

抗体の性質を比較する際の別の指標の一例としては、抗体の安定性を挙げることができる。示差走査カロリメトリー（DSC）は、蛋白の相対的構造安定性のよい指標となる熱変性中点（Tm）を素早く、また正確に測定することができる装置である。DSCを用いてTm値を測定し、その値を比較することによって、熱安定性の違いを比較することができる。抗体の保存安定性は、抗体の熱安定性である程度の相関を示すことが知られており（Lor 1 Burton, et al., Pharmaceutical Development and Technology (2007) 12, p. 265-273）、熱安定性を指標に、好適な抗体を選抜することができる。抗体を選抜するための指標としては、適切な宿主細胞における収量が高いこと、及び水溶液中での凝集性が低いことを挙げることができる。例えば収量の最も高い抗体が最も高い熱安定性を示すとは限らないので、以上に述べた指標に基づいて総合的に判断して、ヒトへの投与に最も適した抗体を選抜する必要がある。

本発明で使用される抗体には抗体の修飾体も含まれる。当該修飾体とは、
本発明の抗体に化学的又は生物的的な修飾が施されてなるものを意味する。化学的な修飾体には、アミノ酸骨格への化学部分の結合、N—結合又はO—結合炭水化物鎖への化学部分の結合を有する化学修飾体等が含まれる。生物学的な修飾体には、翻訳後修飾（例えば、N—結合又はO—結合型糖鎖の付加）N末端又はC末端のプロセッシング、脱アミノ化、アスパラギン酸の異性化、メチオニンの酸化等）されたもの、原核生物宿主細胞を用いて発現させることによってN末端にメチオニン残基が加えられたもの等が含まれる。また、本発明の抗体又は抗原の検出又は単離を可能にするために標識されたもの、例えば、酵素標識体、蛍光標識体、アフィニティ標識体もかかる修飾体の意味に含まれる。この様な本発明の抗体の修飾体は、抗体の安定性及び血中滞留性の改善、抗原性の低減、抗体又は抗原の検出又は単離等に有用である。

[0055] また、本発明において使用される抗体に結合している糖鎖修飾を調節すること（ジコシル化、脱フコース化等）によって、抗体依存性細胞傷害活性を増強することが可能である。抗体の糖鎖修飾の調節技術としては、国際公開第99/54342号、同00/61739号、同02/31140号等が知られているが、これらに限定されるものではない。本発明の抗体には当該糖鎖修飾が調節された抗体も含まれる。

抗体遺伝子を一旦単離した後、適当な宿主に導入して抗体を作製する場合に、適当な宿主と発現ベクターの組み合わせを使用することができる。抗体遺伝子の具体例としては、本明細書に記載された抗体の重鎖配列をコードする遺伝子、及び軽鎖配列をコードする遺伝子を組み合わせたものを挙げることができる。宿主細胞を形質転換する際には、重鎖配列遺伝子と軽鎖配列遺伝子は、同一の発現ベクターに挿入されていることが可能であり、また別の発現ベクターに挿入されていることも可能である。

真核細胞を宿主として使用する場合、動物細胞、植物細胞、真核微生物を用いることができる。特に動物細胞としては、哺乳類細胞、例えば、サルの細胞であるCOS細胞（Gluzman, Y. Cell (1981) 23，

原核細胞を使用する場合は、例えば、大腸菌、枯草菌を挙げることができる。

これらの細胞に目的とする抗体遺伝子を形質転換によって導入し、形質転換された細胞をin vitroで培養することによって抗体が得られる。当該培養においては抗体の配列によって収量が異なる場合があり、同等な結合活性を持つ抗体の中から収量を指標に医薬としての生産が容易なものを選別することが可能である。よって、本発明の抗体には、上記形質転換された宿主細胞を培養する工程、及び当該工程で得られた培養物から目的の抗体又は当該抗体の機能性断片を採取する工程を含むことを特徴とする当該抗体の製造方法によって得られる抗体も含まれる。

ド化された重鎖）等も含まれる。但し、抗原結合能及びエフェクター機能が保たれている限り、本発明に係る抗体の重鎖のカルボキシル末端の欠失体は上記の種類に限定されない。本発明に係る抗体を構成する2本の重鎖は、完全長及び上記の欠失体からなる群から選択される重鎖のいずれか一種であってもよいし、いずれか二種を組み合わせたものであってもよい。各欠失体の量比は本発明に係る抗体を産生する哺乳類培養細胞の種類及び培養条件に影響を受け得るが、本発明に係る抗体は、好ましくは2本の重鎖の双方でカルボキシル末端のひとつのアミノ酸残基が欠失しているものを挙げることができる。

[0057] 本発明において使用される抗体のアイソタイプとしては、例えばIgG（IgG1、IgG2、IgG3、IgG4）等を挙げることができるが、好ましくはIgG1又はIgG2を挙げることができる。

[0058] 抗体の生物活性としては、一般的には抗原結合活性、抗原と結合することによって該抗原を発現する細胞に内在化する活性、抗原の活性を中和する活性、抗原の活性を増強する活性、抗体依存性細胞傷害（ADCC）活性、補体依存性細胞傷害（CDC）活性及び抗体依存性細胞媒介食作用（ADCP）を挙げることができるが、本発明に係る抗体が有する生物活性は、HER2に対する結合活性であり、好ましくはHER2と結合することによってHER2発現細胞に内在化する活性である。さらに、本発明の抗体は、細胞内在化活性に加えて、ADCC活性、CDC活性及び/又はADCP活性を併せ持っていてもよい。

[0059] 得られた抗体は、均一にまで精製することができる。抗体の分離、精製は通常の蛋白質で使用されている分離、精製方法を使用すればよい。例えばカラムクロマトグラフィー、フィルター濾過、限外濾過、塩析、透析、調製用ポリアクリルアミドゲル電気泳動、等電点電気泳動等を適宜選択、組み合わせれば、抗体を分離、精製することができる（Strategies for Protein Purification and Characterization：A Laboratory Course Manu
クロマトグラフィーとして、アフィニティクロマトグラフィー、イオン交換クロマトグラフィー、疏水性クロマトグラフィー、ゲル通過クロマトグラフィー、逆相クロマトグラフィー、吸着クロマトグラフィー等を挙げることができる。

これらのクロマトグラフィーは、HPLCやFPLC等の液体クロマトグラフィーを用いて行うことができる。

アフィニティクロマトグラフィーに用いるカラムとしては、プロテインAカラム、プロテインGカラムを挙げることができる。例えばプロテインAカラムを用いたカラムとして、Hyper D、POROS S、Sephrose F. F.（アルマシア株式会社）等を挙げることができる。

また抗原を固定化した担体を用いて、抗原への結合性を利用して抗体を精製することも可能である。
エキサテカンはカンプトシン構造を有するので、酸性水性媒体中（例えばPH3程度）ではラクトン環が形成された構造（閉環体）に平衡が偏り、一方、塩基性水性媒体中（例えばPH10程度）ではラクトン環が開環した構造（開環体）に平衡が偏ることが知られている。この様な閉環構造及び開環構造に対応するエキサテカン残基を導入した抗体—薬物コンジュゲートは、いずれも本発明で使用される抗体—薬物コンジュゲートの範囲に包含されることはない。[0063]

[リンカー構造]

本発明で使用される抗HER2抗体—薬物コンジュゲートにおいて抗腫瘍性化合物を抗HER2抗体に結合させるリンカー構造について述べる。当該リンカ－は、次式：

- (Succ inimid-3-y L-N) -CH₂CH₂CH₂CH₂CH₂- C(=0) -GGFG-NH-CH₂0-CH₂C(=0) -

（式中、
- (Succ inimid-3-y L-N) は次式：）
で示される構造であり、このものの3位で抗HER2抗体とチオエーテル結合によって結合し、1位の窒素原子上でこれを含むリンカー構造内のメチレン基と結合し、-GGFG-は、-GLy-GLy-Phe-G のテトラペプチド残基を示す。）
で表すことができる。

[腫瘍細胞内で放出される化合物]
本発明において使用される抗HER2抗体—薬物コンジユゲートは、腫瘍細胞内に移動した後にはリンカー部分が切断され、式：

\[
\text{NH}_2-\text{CH}_2-\text{O}-\text{CH}_2-\text{C} (=\text{O})-\text{NH-DX}
\]
で示される構造の薬物誘導体が遊離してもよい。
上記薬物誘導体の同分子内にあるアミナール構造は不安定であるため、さらに自己分解して、式：

\[
\text{HO-CH}_2-\text{C} (=\text{O})-(\text{NH-DX})
\]
で示される化合物が遊離されることが確認されている。
上記化合物は、次式：

[化26]

で示すことができる（以下、本発明において、「Compound 1」と呼ぶこともある。）。

[0065] Compound 1は、本発明で使用される抗体—薬物コンジユゲートが有する抗腫瘍活性の本体であると考えられ、トポイソメラーゼI阻害作用を有すること
力確証されている (Ogita i Y. et al., Clinical Cancer Research, 2016, Oct 15;22(20) :5097-5108, Epub 2016 Mar 29)。

なお、本発明で使用される抗体—薬物コンジュゲートは、バイスタンダー効果を有することも知られている (Ogita i Y. et al., Cancer Science (2016) 107, 1039-1046)。このバイスタンダー効果は、本発明で使用される抗体—薬物コンジュゲートが、HER2発現癌細胞に内在化した後、放出されたCompound 1が、HER2を発現していない近傍の癌細胞に対しても抗腫瘍効果を及ぼすことにより発揮される。

[0066] [製造方法]

本発明で使用される抗体—薬物コンジュゲートは、チオール基（又はスルフヒドリン基とも言う）を有する抗HER2抗体に、次の化合物（以下、本発明において「Compound 2」とも呼ぶ。）：

(maleimid-N-y L)-CH₂CH₂CH₂CH₂CH₂-C(=O)-GGFG-NH-CH₂-OCH₂-C(=O)-(NH-DX)

（式中、（maleimid-N-y L）は、次式：

[化26]

で示される、窒素原子が結合部位である基であり、

-(NH-DX) は、次式：

-
で示される、1位のアミノ基の窒素原子が結合部位となっている基であり、
-GGFG- は、-GLy-Gly-Phe-Gly- の四ペプチド基を示す。)
を反応させることによって製造することができる。

Compound 2 は、国際公開第 2015/115091 号の実施例 2、6、3、2
及び 3、3 に記載の製造方法等を参考に製造することができる。Compound 2
は、6-(2、5-ジオキソ-2、5-ジヒドロ-1H-ビロール-1-イル) ヘキサノイル]
グリシルグリシル- L- フエニルアラニル-N-[2-(9S)-9-エチル-5-フロリ
オ-9-ヒドロキシ-4-メチル-10、13-ジオキソ-3、9、10、13、15-ヘキサヒドロ-1
H、12H-ペンゾ[de]ピラゾ[3、4 :6、7 インドリジノ[1、2-b] キノリン-1-イル
]アミノ)-2-オキソエトキシメチル]グリシンアミド、という化学名で表すこ
とができる。

スルフヒドリル基を有する抗 HER2 抗体は、当業者周知の方法で得ることが
できる (He rmanson, G.T. Bioconjugat e Techniques, pp. 56-136, pp. 456-493
Academic Press (1996))。例えば、トリス (2-カルボキシエチル) ホス
フイン塩酸塩 (T C E P) 等の還元剤を抗 HER2 抗体に作用させて抗体内ヒンジ
部のジスルフィド結合を還元してスルフヒドリル基を生成させる; 等の方法
を挙げることができるがこれらに限定されるのではない。
具体的には、還元剤として T C E P を、抗体内ヒンジ部ジスルフィド 1 個
当たりに対して 0.3 乃至 3 モル当量用い、キレート剤を含む緩衝液中で、
抗 HER2 抗体と反応させることで、抗体内ヒンジ部ジスルフィドが部分的若し
くは完全に還元された抗 HER2抗体を得ることができる。キレート剤としては、例えばエチレンジアミン四酢酸（EDTA）やジエチレントリアミン5酢酸（DTPA）等を挙げることができる。これらを1 mM乃至20 mMの濃度で用いればよい。緩衝液としては、リン酸ナトリウムやホウ酸ナトリウム、酢酸ナトリウム溶液等を用いることができる。具体的には、抗HER2抗体を4℃乃至37℃で1乃至4時間TCFPと反応させることがで、部分的な若しくは完全に還元されたスルフヒドリル基を有する抗HER2抗体を得ることができる。

ここでスルフヒドリル基を薬物－リンカー部分に付加させる反応を実施することでチョエーテル結合によって薬物－リンカー部分を結合させることができる。

スルフヒドリル基を有する抗HER2抗体1個あたり、2乃至20モル当量のCompound 2を使用して、抗HER2抗体1個当たり2個乃至8個の薬物が結合した抗体－薬物コンジユゲート（1）を製造することができる。具体的には、スルフヒドリル基を有する抗HER2抗体を含む緩衝液に、Compound 2を溶解させた溶液を加えて反応させればよい。ここで、緩衝液としては、酢酸ナトリウム溶液、リン酸ナトリウムやホウ酸ナトリウム等を用いればよい。反応時のpHは5乃至9であり、より好適にはpH7付近で反応させればよい。Compound 2を溶解させる溶媒としては、ジメチルスルホキシド（DMSO）、ジメチルホルムアミド（DMF）、ジメチルアセトアミド（DMA）、N−メチル−2−ピリドン（NMP）等の有機溶媒を用いることができる。

Compound 2を溶解させた有機溶媒溶液を、スルフヒドリル基を有する抗HER2抗体を含む緩衝液に1乃至20％v/vを加えて反応させればよい。反応温度は、0乃至37℃、より好適には10乃至25℃であり、反応時間は、0.5乃至2時間である。反応は、未反応のCompound 2の反応性をチオール含有試薬によって活発化することによって終了できる。チオール含有試薬は例えば、システィン又はN−アセチル−L−システィン（NAC）である。より具体的には、NACを、用いたCompound 2に対して、1乃至2モル当量加
え、室温で10乃至30分インキュベートすることにより反応を終了できる。

製造した抗体－薬物コンジュゲートは、以下の共通操作によって濃縮、バッファー交換、精製、抗体濃度、及び抗体一分子あたりの薬物平均結合数の測定を行い、抗体－薬物コンジュゲートの同定を行うことができる。

[0069]共通操作A :抗体又は抗体－薬物コンジュゲート水溶液の濃縮

Amicon Ultra (50,000 MWC 0, Millipore Co.)の容器内に抗体又は抗体－薬物コンジュゲート溶液を入れ、遠心機 (Allegra X－15R, Beckman Coulter, Inc.) を用いた遠心操作 (2000G乃至3800Gで5乃至20分間遠心) にて、抗体又は抗体－薬物コンジュゲート溶液を濃縮した。

[0070]共通操作B :抗体の濃度測定

UV測定器 (Nanodrop 1000, Thermo Fisher Scientific Inc.) を用いて、メーカー規定の方法に従い、抗体濃度の測定を行った。その際に、抗体ごとに異なる280nm吸光係数 (1.3mLmg⁻¹cm⁻¹乃至1.8mLmg⁻¹cm⁻¹) を用いた。

[0071]共通操作C－1 :抗体のバッファー交換

Sephadex G－25担体を使用したNAP－25カラム (Cat. No. 17－085－02, GE Healthcare Japan Corporation) を、メーカー規定の方法に従い、塩化ナトリウム (137mM) 及びエチレンジアミン四酢酸 (EDTA, 5mM) を含むリン酸緩衝液 (10mM, pH 6.0 ; 本明細書でPBS6.0／EDTAと称す）にて平衡化させた。このNAP－25カラム一本につき、抗体水溶液2.5mLをのせた後、PBS6.0／EDTA3.5mLで溶出させた培養 (3.5mL) を分取した。この培養を共通操作Aによって濃縮し、共通操作Bを用いて抗体濃度の測定を行った後に、PBS6.0／EDTAを用いて10mg／mLに抗体濃度を調整した。

共通操作C－2 :抗体のバッファー交換
Sephadex G-25担体を使用したNAP-25カラム（Cat. No. 17-0852-02, GE Healthcare Japan Corporation）を、メーカー規定の方法に従い、塩化ナトリウム（50 mM）及びEDTA（2 mM）を含むリン酸緩衝液（50 mM, pH 6.5；本明細書でPBS 6.5／EDTAと称する）にて平衡化させた。このNAP-25カラム一本につき、抗体水溶液2.5 mLをのせた後、PBS 6.5／EDTA 3.5 mLで溶出させた画分（3.5 mL）を分取した。この画分を共通操作Aによって濃縮し、共通操作Bを用いて抗体濃度の測定を行った後に、PBS 6.5／E D 丁六を用いて20 m。／m に抗体濃度を調整した。

[0072] 共通操作D :抗体一薬物コンジュゲートの精製
市販のリン酸緩衝液（PBS 7.4, Cat. No. 10010-023, In vitro gen）、塩化ナトリウム（137 mM）を含むリン酸ナトリウム緩衝液（10 mM, pH 6.0；本明細書でPBS 6.0と称する）又はSorbitol（5％）を含む酢酸緩衝液（10 mM, pH 5.5；本明細書でABSと称する）のいずれかの緩衝液でNAP-25カラムを平衡化させた。このNAP-25カラムに、抗体一薬物コンジュゲート反応水溶液（約1.5 mL）をのせ、メーカー規定の量の緩衝液で溶出させることで、抗体画分を分取した。この分取画分を再びNAP-25カラムにのせ、緩衝液で溶出させるゲルろ過精製操作を計2乃至3回繰り返すことで、未結合の薬物リンカー及び低分子化合物（トリス（2-カルボキシエチル）ホスファイン塩酸塩（TECP）、N-アセチル-L-シスチン（NAC）、ジメチルスルホキシド）を除いた抗体一薬物コンジュゲートを得た。

[0073] 共通操作E :抗体一薬物コンジュゲートにおける抗体濃度及び抗体一分子あたりの薬物平均結合数の測定（1）
抗体一薬物コンジュゲートにおける結合薬物濃度は、抗体一薬物コンジュゲート水溶液の280 n m及370 n mの二波長におけるUV吸光度を測定した後に下記の計算を行うことで、算出することができる。
ある波長における全吸光度は系内に存在する全ての吸収化学種の吸光度の和に等しい（吸光度の加成性）ことから、抗体と薬物のコンジユゲーション前後において、抗体及び薬物のモル吸光係数に変化がないと仮定すると、抗体－薬物コンジユゲートにおける抗体濃度及び薬物濃度は、下記の関係式で示される。

\[A_{280}^D = A_{280}^A + A_{280}^C + \varepsilon_{280}^D \times c_{280}^A \] 式 (1)

\[A_{370}^D = A_{370}^A + A_{370}^C + \varepsilon_{370}^D \times c_{370}^A \] 式 (1)

ここで、\(A_{280} \) は 280 nm における抗体－薬物コンジユゲート水溶液の吸光度を示し、\(A_{370} \) は 370 nm における抗体－薬物コンジユゲート水溶液の吸光度を示し、\(A_{280}^A \) は 280 nm における抗体の吸光度を示し、\(A_{370}^A \) は 370 nm における抗体の吸光度を示し、\(A_{280}^D \) は 280 nm におけるコンジユゲート前駆体の吸光度を示し、\(A_{370}^D \) は 370 nm におけるコンジユゲート前駆体の吸光度を示し、\(\varepsilon_{280}^A \) は 280 nm における抗体のモル吸光係数を示し、\(\varepsilon_{370}^A \) は 370 nm における抗体のモル吸光係数を示し、\(s_D \) は 280 nm におけるコンジユゲート前駆体のモル吸光係数を示し、\(s_D \) は 370 nm におけるコンジユゲート前駆体のモル吸光係数を示し、\(c_A \) は抗体－薬物コンジユゲートにおける抗体濃度を示し、\(c_D \) は抗体－薬物コンジユゲートにおける薬物濃度を示す。

ここで、\(s_{280} \), \(s_{370} \), \(s_{280}^D \), \(s_{370}^D \) は、事前に用意した値（計算推定値又は化合物の U/V 測定から得られた実測値）が用いられる。例えば、\(\varepsilon_{A} \) は、抗体のアミノ酸配列から、既知の計算方法（Protein Science, 1995, vol. 4, 2411-2423）によって推定することができる。\(\varepsilon_{A} \) は、通常ゼロである。製造例において、トラスツズマブのモル吸光係数は、\(\varepsilon_{A} = 215400 \)（計算推定値）及び \(\varepsilon_{A} = 0 \) を用いた。\(s_{280} \) および \(\varepsilon_{D} \) は、用いるコンジユゲート前駆体をあるモル濃度に溶解させた溶液の吸光度を測定することで、ランベルト・ベールの法則（吸光度 = モル濃度 \(\times \) クビレ吸光係数 \(\times \) セル光路長）によって、得ることができる。製造例における薬物リンカーのモル吸光係数は、特に断りのない限り、\(s_{280} = 50000 \)
（実測平均値）、$s_D \cdot 370 = 19000$（実測平均値）を用いた。抗体—薬物コンジュゲート水溶液のA_{280}及びA_{370}を測定し、これらの値を式（1）及び（11）に代入して連立方程式を解くことによって、C_D及びC_Aを求めることができる。さらにC_DをC_Aで除することで1抗体あたりの薬物平均結合数が求めることができる。

[0074] 共通操作F :抗体—薬物コンジュゲートにおける抗体—分子あたりの薬物平均結合数の測定 (2)

抗体—薬物コンジュゲートにおける抗体—分子あたりの薬物平均結合数は、前述の共通操作Eに加え、以下の方法を用いる高速液体クロマトグラフィー（HPLC）分析によっても求めることができる。

[F - 1. HPLC分析用サンプルの調製（抗体—薬物コンジュゲートの還元）]

抗体—薬物コンジュゲート溶液（約 $1 \, \text{mg} / \text{mL}$、$60 \, \mu\text{L}$）をジチオトレイトール（DTT）水溶液（$100 \, \text{mM}$、$15 \, \mu\text{L}$）と混合する。混合物を$37^\circ\text{C}$で$30$分インキュベートすることで、抗体—薬物コンジュゲートのL鎖及びH鎖間のジスルフィド結合を切断したサンプルを、HPLC分析に用いる。

[F - 2. HPLC分析]

HPLC分析を、下記の測定条件にて行う。

HPLCシステム : Agilent 1290 HPLCシステム（Agilent Technologies）

検出器 : 紫外吸光度計（測定波長 : $280 \, \text{nm}$）

カラム : PLRP—S（2.1×50 mm、8 μm、1000 A; Agilent Technologies, P/N PL1912-1802）

カラム温度 : 80°C

移動相A : 0.04 % トリフルオロ酢酸（TFA）水溶液

移動相B : 0.04 % TFAを含むアセトニトリル溶液

グラジェントプログラム : 29% → 36% (0分→12.5分)、36%
サンプル注入量：15μL

【F-3. データ解析】

（F_3_1）薬物の結合していない抗体のL鎖（L）、及びH鎖（H_0）に対して、薬物の結合したL鎖（薬物が一つ結合したL鎖：L_1）、及びH鎖（薬物が一つ結合したH鎖：H_1、薬物が二つ結合したH鎖：H_2、薬物が三つ結合したH鎖：H_3）は、結合した薬物の数に比例して疎水性が増して保持時間が大きくなることから、L_0、L_1、H_0、H_1、H_2、H_3の順に洗出される。L_0及びH_0との保持時間を比較により検出ピークをL_0、L_1、H_0、H_1、H_2、H_3のいずれかに割り当てることができる。

（F_3_2）薬物リンカーにUV吸収があるため、薬物リンカーの結合数に応じて、L鎖、H鎖及び薬物リンカーのモル吸光係数を用いて下式に従ってピーク面積値の補正を行う。

[0075] [数1]

L鎖ピーク面積補正值（り）
= ピーク面積
\times \frac{L鎖のモル吸光係数}{L鎖のモル吸光係数 + 結合薬物数 × 薬物リンカーのモル吸光係数}

[0076] [数2]

H鎖ピーク面積補正值（ゆ）
= ピーク面積
\times \frac{H鎖のモル吸光係数}{H鎖のモル吸光係数 + 結合薬物数 × 薬物リンカーのモル吸光係数}

[0077] ここで、各抗体におけるL鎖及びH鎖のモル吸光係数（280nm）は、既知の計算方法（ProteinScience, 1995, vol.4, 2411-2423）によって、各抗体のL鎖及びH鎖のアミノ酸配列から推定される値を用いることができる。
トラスプンマップの場合、そのアミノ酸配列に従って、L鎖のモル吸光係数として26150を、H鎖のモル吸光係数として81290を推定値として用いた。また、薬物リンカーのモル吸光係数（280nm）は、各薬物リンカーをメルカプトエタノール又はN—アセチルシスチンで反応させ、マレート基をサクシニミドトチオエーテルに変換した化合物の実測のモル吸光係数（280nm）を用いた。

【F-3-3】ピーク面積補正値合計に対する各鎖ピーク面積比（％）を下式に従って計算する。

\[L \text{ 鎖 ピーク面積比} = \frac{A_{Li}}{A_{L0} + A_{L1}} \times 100 \]

\[H \text{ 鎖 ピーク面積比} = \frac{A_{Hi}}{A_{H0} + A_{H1} + A_{H2} + A_{H3}} \times 100 \]

\[A_{L}, A_{H} \text{に } "/" \text{ 各々のピーク面積補正値} \]

【F-3-4】抗体—薬物コンジユニゲートにおける抗体—分子あたりの薬物平均結合数を、下式に従って計算する。

薬物平均結合数 = （L・ピーク面積比×O+L・ピーク面積比×1+H・ピーク面積比×0+H・ピーク面積比×1+H₂ピーク面積比×2+H₃ピーク面積比×3）/100×2

【F-3-5】本発明で使用される抗HER2抗体—薬物コンジユゲートは、大気中に放置したり、又は再結晶や精製操作をすることにより、水分を吸収し、或は吸着水が付着する等して、水和物になる場合があり、その様な水を含む化合物又は塩も本発明で使用される抗HER2抗体—薬物コンジユゲートに包含される。

また、本発明で使用される抗HER2抗体—薬物コンジユゲートには、様々な放射性又は非放射性同位体でラベルされた化合物も包含される。
の抗体—薬物コンジュゲートを構成する原子の1以上に、原子同位体を非天然割合で含有し得る。原子同位体としては、例えば、重水素（H₂O）、トリチウム（H₃O）、ヨウ素—125（¹²⁵I）、又は炭素—14（¹⁴C）等を挙げることができる。また、本発明化合物は、例えば、トリチウム（H₃O）、ヨウ素—125（¹²⁵I）、又は炭素—14（¹⁴C）等の放射性同位体で放射性標識された放射性標識された化合物は、治療又は予防剤、研究試薬、例えば、アツセイ試薬、及び診断剤、例えば、インピロ画像診断剤として有用である。本発明で使用される抗体—薬物コンジュゲートの全ての同位体変異種は、放射性であると否とを問わず、本発明の範囲に包含される。

[0081] [医薬]

本発明の治療剤は、本発明で使用される抗体—薬物コンジュゲートを含有することを従来とする。また、本発明の治療方法は、本発明で使用される抗体—薬物コンジュゲートを患者に投与することを従来とする。これらは、既存の抗HER2薬に対し耐性又は難治性のHER2発現癌の治療剤及び治療方法として使用することができる。

[0082] 本発明において「耐性」又は「難治性」とは、抗癌剤による治療に対し無応答である性質を示し、無応答性、「不応性」とも表現することができる。また、無応答であることにより腫瘍の増殖を防ぐことができないことから、「不耐性」とも表現することができる。

本発明の耐性又は難治性は、既存の抗HER2薬による治療によって獲得された耐性又は難治性であってもよいし、既存の抗HER2薬による治療によらずに本来備わった耐性又は難治性であってもよい。

なお、本発明において「HER2発現癌」とは、細胞表面にHER2蛋白を発現している癌細胞を含む癌及び/又は腫瘍のことを示す。

本発明において「既存の抗HER2薬」とは、本発明の抗体—薬物コンジュゲートを除く、臨床において使用されているHER2を標的とする薬剤のことを示し、好適には、標準治療において使用されている抗HER2薬のことを示す。「既存の抗HER2薬」は、上記の要件を満たすものであれば特に限定はないが、
好適には、トレスタズマブエムタンシン（Trastuzumab emtansine、T-DM1）、トレスタズマブ（Trastuzumab）、ペルツスマブ（Pertuzumab）、及びラパチニブ（Lapatinib）からなる群より選択される少なくとも一つであり、より好適には、トレスタズマブエムタンシン又はトレスタズマブであり、さらにより好適にはトレスタズマブエムタンシンである。

【0083】本発明の治療剤又は治療方法は、既存の抗癌薬による治療歴を有する患者に投与するために、好適に使用することができる。

本発明において「既存の抗癌薬」とは、本発明で使用される抗体・薬物コンジュゲートを除く、臨床において使用されている抗癌薬のことを示す。

既存の抗癌薬は、上記の要件を満たすものであれば特に限定はしないが、好適には、トレスタズマブエムタンシン、トレスタズマブ、ペルツスマブ、ラパチニブ、イリノテカン（Irmotecan、CPT-11）、シスプラチン（Cisp Lat in）、カルボプラチン（Carbop Lat in）、オキサリプラチン（OxapLat in）、フルオロウラシル（FuLourourac、5-FU）、ゲムシタビン（Gemcitabine）、カペシタビン（Capecitabine）、パクリタキセル（Pacitaxel）、ドセタキセル（Docetaxel）、ドキソルビシン（Doxorubicin）、エピルビシン（Epirubicin）、シクロフォスファミド（Cyclophosphamide）、マイマイシンC（Mitomycin C）、テガフーレル（Tegafur）、ギメラシル（Gimeracil）、オテラシル（Oteracil）配合剤、セツキシマブ（Cetuximab）、パニツムマブ（Panitumumab）、ベラシスマブ（Bevacizumab）、ラムシルマブ（Ramucirumab）、レゴラフェニブ（Regorafenib）、トリフルリジン（Trifluridine）、チピラシル（Tipiracil）、配台剤、ゲフィチニブ（Gefitinib）、エルロチニブ（Erlotinib）、アファチニブ（Afatinib）、メトトレキサート（Methotrexate）、及びベメトレキセド（Pemetrexed）からなる群より選択される少なくとも一つを含む。

乳癌の治療の場合には、既存の抗癌薬は、好適には、トレスタズマブエムタンシン、トレスタズマブ、ペルツスマブ、ラパチニブ、フルオロウラシル、パクリタキセル、ドセタキセル、ドキソルビシン、エピルビシン、シ
クロフオスフォアミド及びメトレキサートからなる群より選択される少なくとも一つを含み、より好適には、トラスッズマプエムタンシン又はトラスッズマプを含み、さらにより好適には、トラスッズマプエムタンシンを含む。

胃癌の治療の場合には、「既存の抗癌薬」は、好適には、トラスッズマプ、イリノテカン、シスプラチン、フルオロウラシル、パクリタキセル、ドセタキセル、ドキソルビシン、エピレピシン、及びマイトマイシンGからなる群より選択される少なくとも一つを含み、より好適には、トラスッズマプ及び/又はイリノテカンを含み、さらにより好適には、トラスッズマプを含む。

大腸癌の治療の場合には、「既存の抗癌薬」は、好適には、イリノテカン、オキサリプラチン、フルオロウラシル、セツキシマブ、パニツムマブ、ベバシズマブ、ラムシルマブ、レゴラフエニブ、及びトリフルリシン・チピウリシン配合剤からなる群より選択される少なくとも一つを含み、より好適には、イリノテカンを含む。

非小細胞肺癌の治療の場合には、「既存の抗癌薬」は、好適には、イリノテカン、シスプラチン、カルボプラチン、ゲムシタビン、ゲフィチニブ、エルロチニブ、アファチニブ、及びペメトレキセドからなる群より選択される少なくとも一つを含む。

本発明の治療剤及び治療方法は、好適には、本発明で使用される抗体-案物コンピュゲートの1回あたりの投与量が5.4mg/kg（体重1kgあたりの投与量が5.4mgであることを示す。以下、同様。）から8mg/kgの範囲であることを特徴とし、より好適には、5.4mg/kg、6.4mg/kg、7.4mg/kg、又は8mg/kgであり、さらにより好適には、5.4mg/kg、又は6.4mg/kgである。

本発明の治療剤及び治療方法は、好適には、本発明で使用される抗体-案物コンピュゲートが3週に1回の間隔で投与されることを特徴とする。

本発明の治療剤及び治療方法は、好適には、乳癌、胃癌（胃腺癌と呼ぶこともある）、大腸癌（結腸直腸癌と呼ぶこともあり、結腸癌及び直腸癌を含む）、非小細胞肺癌、食道癌、唾液腺癌、胃食道接合部腺癌、胆管癌、肝を含む。
ジェット病、肺腺癌、卵巢癌、及び子宮癌肉腫からなる群より選択される少
なくとも一つの癌の治療のために使用することができ、より好適には、乳癌
、胃癌、大腸癌、非小細胞肺癌、食道癌、唾液腺癌、胃食道接合部腺癌、胆
管癌、及びページエッツト病からなる群より選択される少なくとも一つの癌の
治療のために使用することができ、さらにより好適には、乳癌、胃癌、大腸
癌、又は非小細胞肺癌の治療のために使用することができる。
なお、乳癌に対しては、既存の抗HER2薬であるトラスズマブエムタンシ
ン及びトラスズマブによる治療が認められている。また、胃癌及び胃食道
接合部腺癌に対しても、既存の抗HER2薬であるトラスズマブによる治療が
認められている。従って、本発明の治療剤を乳癌、胃癌、及び胃食道接合部
腺癌からなる群から選択される少なくとも一つの癌の治療のために使用する
場合には、「耐性又は難治性」は、好適には、既存の抗HER2薬による治療
によって獲得された耐性又は難治性である。
一方、大腸癌、非小細胞肺癌、食道癌、唾液腺癌、胆管癌、ページエッツト
病、肺腺癌、卵巢癌、及び子宮癌肉腫に対しては、既存の抗HER2薬による有
効な治療方法は確立していない。従って、本発明の治療剤及び治療方法を大
腸癌、非小細胞肺癌、食道癌、唾液腺癌、胆管癌、ページエッツト病、肺腺
癌、卵巢癌、及び子宮癌肉腫からなる群から選択される少なくとも一つの癌の
治療のために使用する場合には、「耐性又は難治性」は、好適には、既存
の抗HER2薬による治療によらずに本来備わった耐性又は難治性である。

[0086] 本発明の治療剤及び治療方法は、HER2発現癌であれば、HER2過剰発現の癌
であっても、HER2低発現の癌であっても使用することができる。
本発明において「HER2過剰発現の癌」とは、当業者においてHER2過剰発現
の癌と認識されるものであれも特に制限はないが、好適には、免疫組織化学
法（IHC）によりHER2の発現が3+と判定された癌、又は、免疫組織化学法によ
りHER2の発現が2+と判定され、且つin situハイブリダイゼーション法（ISH）
によりHER2の発現が陽性と判定された癌を挙げることができる。なお、本
発明のin situハイブリダイゼーション法には、蛍光in situハイブリダイゼ
シオン法（FISH）と、Dual Color in situハイブリダイゼーション法（DISH）が含まれる。

本発明において「HER2低発現の癌」とは、当業者においてHER2低発現の癌と認識されるものであれれば特に制限はなく、好適には、免疫組織化学法によりHER2の発現が2+と判定され、且つin situハイブリダイゼーション法によりHER2の発現が陰性と判定された癌、又は、免疫組織化学法によりHER2の発現が1+と判定された癌を挙げることができる。

免疫組織化学法によるHER2発現度の判定方法や、in situハイブリダイゼーション法によるHER2発現の陽性又は陰性の判定方法は、当業者において認識されているものであれれば特に制限はないと、例えば、HER2検査ガイド乳癌編第四版（乳癌HER2検査病理部門作成）を挙げることができる。

本発明の治療剤及び治療方法は、好適には、手術不能又は再発の癌の治療のために使用することができる。

本発明の治療剤及び治療方法は、薬学的に許容される製剤成分を含有して使用することができる。

本発明の治療剤は、言い換えれば、本発明で使用される抗体—薬物コンジュゲート、その塩、又はそれらの水和物を活性成分とし、薬学的に許容される製剤成分を含有する耐性癌の治療用医薬組成物として使用することもできる。

本発明の治療用医薬組成物は、既存の抗癌薬に耐性を示す癌（すなわち耐性癌）、特に既存の抗癌薬に対する耐性を獲得した癌（すなわち二次耐性癌）に対して優れた抗腫瘍活性を示す。したがって、本発明の治療用医薬組成物は、癌患者のうち、既存の抗癌薬に耐性を示す患者群（既存の抗癌薬による治療歴を有する患者）に適用されて顕著な抗腫瘍効果を奏する。

既存の抗癌薬」の定義は、前述の通りであるが、好適ににはトラスツズマブエムタンシン（T-DM1）等の抗HER2抗体を含む抗体—薬物コンジュゲート、あるいはトラスツズマブ、又はベルツズマブ等の抗HER2抗体そのものである。
本発明の治療用医薬組成物は、これらの既存の抗癌薬に替わって、あるいはこれらの既存の抗癌薬と組み合わせて癌患者に投与されることによって、これらの既存の抗癌薬に耐性を獲得した癌に対しても高い治療効果を示す。

[0089] 本発明の治療用医薬組成物は、好適には、本発明で使用される抗体－薬物コンジユゲートの1回あたりの投与量が0.8mg/kgから8mg/kgの範囲であることを特徴とし、より好適には、5.4mg/kg、6.4mg/kg、又は8mg/kgであることを特徴とし、さらにより好適には、5.4mg/kg、又は6.4mg/kgであることを特徴とする。

本発明の治療用医薬組成物の投与間隔は、1週に1回（q1w）、2週に1回（q2w）3週に1回（q3w）、又は4週に1回（q4w）であってもよいが、好適には、3週に1回である。

[0090] 本発明の治療用医薬組成物は、好適には、耐性癌が肺癌、尿路上皮癌、大腸癌、前立腺癌、卵巢癌、乳癌、膀胱癌、胃癌、胃腸間質腫瘍、子宮頸癌、食道癌、扁平上皮癌、腹膜癌、肝臓癌、肝細胞癌、結腸癌、直腸癌、結腸直腸癌、子宮内膜癌、子宮癌、唾液腺癌、腎臓癌、外陰部癌、甲状腺癌、陰茎癌、白血病、悪性リンパ腫、形質細胞腫、骨髓腫、又は肉腫である場合に使用することができ、より好適には、耐性癌が、乳癌、胃癌、大腸癌、又は非小細胞肺癌である場合に使用することができ、さらにより好適には、耐性癌が、乳癌、又は胃癌の場合に使用することができる。

[0091] 本発明の治療剤及び治療用医薬組成物は、癌細胞の成長を遅らせ、増殖を抑え、さらには癌細胞を破壊することができる。これらの作用によって、癌患者において、癌による症状からの解放や、QOLの改善を達成でき、癌者の生命を保って治療効果が達成される。癌細胞の破壊には至らない場合であっても、癌細胞の増殖の抑制やコントロールによって癌患者においてより高いQOLを達成しつつより長期の生存を達成させることができる。

このような薬物療法においての薬物単独での使用の他、アジュバント療法において他の療法と組み合わせる薬剤としても使用でき、外科手術や、放射
線療法、ホルモン療法等と組み合わせることができる。さらにはネオアジュバント療法における薬物療法の薬剤として使用することもできる。

以上のような治療的使用の他、微細な転移癌細胞の増殖を抑さえ、さらには破壊するといった予防効果も期待することができる。特に原発性の癌細胞においてH E R 2の発現が確認されたときに本発明で使用される抗H E R 2抗体—薬物コンジュゲートを投与することによって癌転移の抑制や、予防効果を期待することができる。例えば、転移過程で体液中にある癌細胞を抑制し破壊する効果や、いずれかの組織に着床した直後の微細な癌細胞に対する抑制、破壊等の効果が期待できる。したがって、特に外科的な癌の除去後においての癌転移の抑制、予防効果が期待できる。

本発明で使用される抗H E R 2抗体—薬物コンジュゲートは、患者に対しては全身療法として適用する他、癌組織に局所的に適用して治療効果を期待することができる。

[0092] 本発明の治療剤及び治療用医薬組成物は、哺乳動物に対して好適に投与することができるが、より好ましくはヒトに投与することができる。

[0093] 本発明の治療剤及び治療用医薬組成物は、1種以上の薬学的に許容される製剤成分を含み投与され得る。薬学的に許容される製剤成分は、本発明で使用される抗体—薬物コンジュゲートの投与量や投与濃度に応じて、この分野において通常使用される製剤添加物その他の適宜選択して適用することができる。薬学的に許容される製剤成分は、代表的には、1種以上の薬学的キャリア（例えば、滅菌した液体）を含む。ここで液体には、例えば、水及び油（石油、動物起源、植物起源、又は合成起源の油）が含まれる。油は、例えば、ラッカセイ油、大豆油、鉱油、ゴマ油等であってよい。水は、本発明の治療剤及び治療用医薬組成物が静脈内投与される場合に、より代表的なキャリアである。食塩水溶液、並びにデキストロース水溶液及びグリセロール水溶液もまた、液体キャリアとして、特に、注射用溶液のために使用される。適切な薬学的賦形剤は、この分野で公知のものから適宜選択することができる。薬学的に許容される製剤成分はまた、所望であれば、微量の湿潤剤
若しくは乳化剤、又はＰＨ緩衝化剤を含む得る。薬学的に許容される製剤成分の適切な例は、E. W. Martinによる「Remington's Pharmaceutical Sciences」に記載される。その処方は、投与の態様に対応する。

種々の送達システムが公知であり、本発明の治療剤及び治療用医薬組成物を投与するために使用され得る。導入方法としては、皮内、筋肉内、腹腔内、静脈内、及び皮下の経路を挙げることができるが、これらに限定されることではない。投与は、例えば、注入又はポーラス注射によるものであり得る。特定の好ましい実施形態において、本発明の治療剤及び治療用医薬組成物の投与は、注入によるものである。非経口的投与は、好ましい投与経路である。

代表的実施形態において、本発明の治療剤及び治療用医薬組成物は、ヒトへの静脈内投与に適合した組成物として、常習的手順に従って処方される。代表的には、静脈内投与のための組成物は、滅菌の等張性の水性緩衝液中の溶液である。必要である場合、本発明の治療剤及び治療用医薬組成物はまた、可溶化剤及び注射部位での疼痛を和らげるための局所麻酔剤（例えば、リグノカイン）を含み得る。一般に、上記成分は、例えば、活性剤の量を示すアンプル又はサシェ等に密封してシールされた容器中の乾燥凍結乾燥粉末又は無水の濃縮物として、別個に、又は単位剤形中で一緒に混合して、のいずれかで供給される。本発明の治療剤及び治療用医薬組成物が注入によって投与される形態の場合、それは、例えば、滅菌の製薬グレードの水又は食塩水を含む注入ポトルで投薬され得る。本発明の治療剤及び治療用医薬組成物が注射によって投与される場合、注射用滅菌水又は食塩水のアンプルは、例えば、上記成分が投与前に混合され得るように、提供され得る。

本発明の治療剤及び治療用医薬組成物は、本発明で使用される抗HER2抗体—薬物コンジユゲートのみを含む医薬組成物であってもよいし、本発明で使用される抗HER2抗体—薬物コンジユゲート及び少なくとも一つのこれ以外の癌治療剤を含む組成物であってもよい。本発明で使用される抗HER2
抗体—薬物コンジュゲートは、既存の抗癌薬と共に投与することもでき、これによって抗癌効果を増強させることができる。この様な目的で使用される既存の抗癌薬は、本発明の抗体—薬物コンジュゲートと同時に、別々に、或は連続して個体に投与されてもよいし、それぞれの投与間隔を変えて投与してもよい。既存の抗癌薬の定義は前述の通りである。

本発明の治療剤及び治療用医薬組成物は、選択された組成と必要な純度を持つ製剤として、凍結乾燥製剤或は液状製剤として製剤化することができる。凍結乾燥製剤として製剤化する際には、この分野において使用される適当な製剤添加物が含まれる製剤であってもよい。また液剤においても同様にして、この分野において使用される各種の製剤添加物を含む液状製剤として製剤化することができる。

実施例

以下に示す例によって本発明を具体的に説明するが、本発明はこれらに限定されるものではなく。また、これらはいかなる意味においても限定的に解釈されるものではない。

[製造例：抗体—薬物コンジュゲートの製造]

特許文献8（国際公開第2015/115091号）に記載の製造方法に従って、下記式で示される抗体—薬物コンジュゲート（以下、抗体—薬物コンジュゲート（1））又は「ADC(1）」と称する）を製造した。

[化学28]

ここで、薬物—リンカー構造は、抗体とチョエーテル結合によって結合し
ており、nは7から8の範囲である。

[評価例1：抗腫瘍試験]

マウス: 6-12週齢の雌免疫欠損Cr1:Nu [Foxn1Nuマウス（チャールズ・リバー社）] を実験に供した。

測定・計算式: 腫瘍の長径および短径を電子式デジタルキヤリバーで1週間に2回測定し、腫瘍体積 (mm^3) を計算した。計算式を以下に示す。

腫瘍体積 (mm^3) = 0.52 x 長径 (mm) x [短径 (mm)]^2

抗体－薬物コンジュゲート（1）: DAR = 7.6 のものを使用した。抗体－薬物コンジュゲート（1）を、溶媒（10mM Histidine, 10% Trehalose, 0.02% Polysorbate 20, pH 5.5）で希釈した。トラススズマブエムタンシン（T-DM1）は生理食塩水で希釈した。抗体－薬物コンジュゲート（1）の希釈液またはT-DM1の希釈液を、10mLkgでマウスの尾静脈内に投与した。

T-DM1治療後、耐性化したHER2陽性乳癌患者から摘出した腫瘍を、雌免疫欠損マウスに移植することにより、複数回継代維持した。その後、マウスにT-DM1を持続投与することによって、T-DM1に高い耐性を獲得した腫瘍である。ST1616B/TDRおよびST1360B/TDRを示した。ST1616B/TDRは、T-DM1を13ヶ月間継続投与された患者、ST1360B/TDRは、T-DM1を3ヶ月間継続投与された患者に由来する腫瘍である。これらの腫瘍は、いずれもHER2過剰発現（免疫組織化学染色（IHC））による判定は3+である。

固形腫瘍の腫瘍片を雌免疫欠損マウスの体側部に皮下移植し、腫瘍体積がおよそ200mm^3に到達した時点で無作為に群分けを実施した。群分け日をDay0とし、抗体－薬物コンジュゲート（1）を3mg/kg又は10mg/kgの用量でDay0に尾静脈内投与とした。T-DM1は10mg/kgの用量でDay0、7、14、21に尾静脈内投与した。コントロール群として、抗体－薬物コンジュゲート（1）の希釈に用いた溶媒のみを投与する群を設定した。

結果を図3又は図4に示す。ST1616B/TDR腫瘍及びST1360B/TDR腫瘍に対し、T-DM1の投与は腫瘍の増殖を抑制しなかった。一方で抗体－薬物コンジュゲート（1）は3mg/kg及び10mg/kgのいずれの投与においても腫瘍の増殖を顕著
に抑制した。全ての薬剤投与群においてマウスの体重減少は認められなかった。

以上より、抗体—薬物コンジュゲート（1）はT-DM1に対して耐性を獲得した腫瘍（すなわち二次耐性癌）に対し、顕著な抗腫瘍活性を有することが明らかとなった。また、安全性にも優れることも明らかである。

[評価例2：臨床試験]
抗体—薬物コンジュゲートは、がん遺伝子発見腫瘍細胞への効率よくかつ特異的な薬物送達の効果を有する有望な医薬である。抗体—薬物コンジュゲート（1）は、新規なトランスマブ（Tmab）をターゲットとした抗体—薬物コンジュゲートである（表1）。臨床試験に使用された抗体—薬物コンジュゲート（1）のDARは7-8の範囲であり、8に近い値である。前臨床データからHER2ターゲッティングが非常に特異的であることが証された。前臨床モデルにおいて、抗体—薬物コンジュゲート（1）は、トランスマブ（Tmab）よりもはるかに広範な抗腫瘍スペクトルとT-DM1耐性及びHER2低発現腫瘍に対する効果を示した。

[表1]

<table>
<thead>
<tr>
<th>ADC(1)</th>
<th>T-DM1</th>
</tr>
</thead>
<tbody>
<tr>
<td>抗体</td>
<td>抗HER2モノクローナル抗体</td>
</tr>
<tr>
<td>薬物</td>
<td>トポイソメラーゼI阻害薬（Dxd）</td>
</tr>
<tr>
<td>DAR*</td>
<td>7-8</td>
</tr>
</tbody>
</table>

* DAR: Average drug-to-antibody Ratio

[試験計画]
オープンラベル、Phase1用量増試験。
EWOC原則に則ったmCRM法によって最大耐用量（MTD）を求める。
抗体—薬物コンジュゲート（1）は、認容できない毒性又は病態の増悪が認め
められるまで3週に1度静脈内投与。

用量制限毒性（DLT）は、Cycle 1（Day 1-21）において求める。

[01 08] パート1試験：用量漸増試験（日本において実施）

乳癌又は胃腺癌/胃食道接合部腺癌

被検者数は少なくとも18とし、16%の被検者（すなわち被検者の1/6）がHER2発現（IHC 2+，3+）と想定する。

[01 09] パート2試験：用量展開試験（日本において実施）

パート2a：被検者数40、HER2過剰発現、T-DM1治療歴のある乳癌。

パート2b：被検者数40、HER2過剰発現、トラッズマブ治療歴のある胃腺癌/胃食道接合部腺癌。

パート2c：被検者数20、HER2低発現、乳癌。

パート2d：被検者数20、乳癌又は胃腺癌を除くHER2発現固形癌。

[01 10] 主目標：

抗体・薬物コンジュゲート（1）の安全性と認容性の評価。

抗体・薬物コンジュゲート（1）の最大耐用量、および第二相試験推奨用量を求める。

二次目標及び探索的目標：

抗体・薬物コンジュゲート（1）の薬物動態の評価。

抗体・薬物コンジュゲート（1）の有効性の評価。

客観的奏効率（ORR；完全奏効（CR）+部分奏効（PR））。

病勢コントロール率（DCR；CR + PR +安定（SD））。

奏効期間、SD期間、応答時間、無増悪生存期間。

抗体・薬物コンジュゲート（1）へのヒト抗ヒト化抗体の評価。

[01 11] 試験結果

パート1試験：用量漸増試験（日本において実施）

(1) 被検者の解析

被検者の状況は表2に示したとおりである。
抗体—薬物 コンジユゲー卜（1）は、0.8mg/kg、1.0mg/kg、2.2mg/kg、5.4mg/kg、6.4mg/kg、8mg/kg のいずれかの投与量で、3週に1度（q3w）投与された。これ等の投与から測定された抗体—薬物 コンジユゲー卜（1）の薬物動態を図5に示した。

抗体—薬物 コンジユゲー卜（1）の曝露は3.2mg/kg 以上の用量で投与量比以上に高く、T1/2 は3.2mg/kg 以上の用量で延長している。

図に「Compound 1」として記載されている化合物のT1/2 はlip-lop現象のため抗体—薬物 コンジユゲー卜（1）と類似している（データ示さず）。なお、Compound 1は次の構造を有する。
Cyc e 1での抗体—薬物コンジユゲート（1）、6.4mg/kg 投与におけるCmin（10700 ng/mL）の中央値は、前臨床での活性成分濃度全体を元にした目標曝露（4260ng/mL）を超え、T-DM1上市用量の3.6mg/kg と殆ど同じであった。なお、抗体—薬物コンジユゲート（1）の目標投与量は5.0mg/kg であった。

[01 15] （3）安全性と認容性

安全性と認容性の結果を図6に示した。

0.8mg—8mg/ kgのコホートではMTDには達していなかった。

いずれの用量レベルにおいても、用量制限毒性、グレード4、心毒性に至っていなかった。

もっともよく認められる有害事象（AEs）は、低から中程度の消化器、及び、血液学的的事象であった。

7件のグレード3の有害事象（低カリウム血症（1）、貧血（1）、好中球数減少（1）、リンパ球数減少（2）、アルカリホスファターゼ増加（1）、胆管炎（1））が22名の被験者中4名で発生した（18%）。

Cyc e 2以降に、6.4mg/kg （n=4/6） と8.0mg/kg （n=2/3） のコホートにおいて6名の被験者が有害事象により投与量が減量されたが、投与中止には至らなかった。

[01 16] （4）有効性

有効性を図7、8、9に示した。
12名のT-DM1既治療例と5名のHER2低発現被験者を含む20名の評価可能被験者において、0RR 35%（7 PRs）、DCR 90%が達成された（図8、9）。
抗体—薬物コンジュゲート（1）は、T-DM1を含む標準治療に不応又は不耐となった乳癌患者において、0RR 42%、DCR 92%を達成した（図7）。なお、前治療におけるT-DM1の治療効果は0RR 18%、DCR 64%であり、抗体—薬物コンジュゲート（1）は、T-DM1による治療よりも高率で奏効した。

PR（Partial Response）を達成した症例のうち1名は登録時IHC1+であった（図8）。

PRを達成した症例の大部分は5.4 mg/kg以上の用量であった（図8、9）。

（1）被験者の解析

パート2試験の各コホートにおける被験者数、及び抗体—薬物コンジュゲート（1）の投与量は、表3に示したとおりである。いずれのコホートも、抗体—薬物コンジュゲート（1）は3週に1回の間隔で投与された。

<table>
<thead>
<tr>
<th>被験者数</th>
<th>投与量</th>
<th>評価</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>パート2a</td>
<td>43/100</td>
<td>5.4mg/kg 6.4mg/kg</td>
<td>HER2過剰発現</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>T-DM1治療歴のある乳癌</td>
</tr>
<tr>
<td>パート2b</td>
<td>41/40</td>
<td>5.4mg/kg 6.4mg/kg</td>
<td>HER2過剰発現</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>トラツツマブ治療歴のある胃癌</td>
</tr>
<tr>
<td>パート2c</td>
<td>10/20</td>
<td>6.4mg/kg</td>
<td>HER2低発現</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>乳癌</td>
</tr>
<tr>
<td>パート2d</td>
<td>25/20</td>
<td>6.4mg/kg</td>
<td>乳癌及び胃癌を除くHER2発現固形癌</td>
</tr>
</tbody>
</table>

（2）有効性

（2-1）パート2試験全体における有効性について、図10に最大腫瘍縮小率（%）を示
した。図中、「Breast cancer HER2 Positive」は、HER2 過剰発現の乳癌のコホートを示し、「Breast cancer HER2 LowJ」は、HER2 低発現の乳癌のコホートを示し、「Gastric cancer HER2 Positive」は、HER2 過剰発現の胃癌のコホートを示し、「Gastric cancer HER2 LowJ」は、HER2 低発現の胃癌のコホートを示し、「Others」は、乳癌及び胃癌を除くHER2 発現陽性癌を示す。抗体—薬物コンビリュート（1）は、いずれの癌種においても、また、HER2 が過剰発現であっても低発現であっても、優れた腫瘍縮小効果を示すことが判明した。

[0120] (2-2)

抗体—薬物コンビリュート（1）の乳癌に対する有効性について、図1-1に腫瘍縮小率（%）の時系列推移を示した。図中、「Breast cancer HER2 Positive」は、HER2 過剰発現の乳癌のコホートを示し、「Breast cancer HER2 LowJ」は、HER2 低発現の乳癌のコホートを示す。また、抗体—薬物コンビリュート（1）の胃癌に対する有効性について、図1-2に腫瘍縮小率（%）の時系列推移を示した。図中、「Gastric cancer HER2 Positive」は、HER2 過剰発現の胃癌のコホートを示し、「Gastric cancer HER2 LowJ」は、HER2 低発現の胃癌のコホートを示す。抗体—薬物コンビリュート（1）は、いずれの癌種においても、また、HER2 が過剰発現であっても低発現であっても、優れた腫瘍縮小維持効果を示すことが判明した。

[0121] (2-3)

パート2試験における有効性について、ORR（客観的奏効率）及びDCR（病勢コントロール率）を、表4に示した。抗体—薬物コンビリュート（1）は、全てのコホートにおいて、高いORR及びDCRを示した。特に、トラスツマブエムタンシン（T-DM1）による治療歴のある乳癌患者、トラスツマブエムタンシンとペルツマブの併用による治療歴のある乳癌患者、及び、イリノテカン（CPT-11）による治療歴のある胃癌患者において、高いORR及びDCRを示した。
表4

<table>
<thead>
<tr>
<th></th>
<th>ORR（被験者数）</th>
<th>DCR（被験者数）</th>
</tr>
</thead>
<tbody>
<tr>
<td>全体</td>
<td>40.2% (39/97)</td>
<td>91.8% (89/97)</td>
</tr>
<tr>
<td>乳癌</td>
<td>42.2% (19/45)</td>
<td>97.8% (44/45)</td>
</tr>
<tr>
<td>乳癌（T-DM1治療歴あり）</td>
<td>45.7% (16/35)</td>
<td>100.0% (35/35)</td>
</tr>
<tr>
<td>乳癌（T-DM1+Pertuzumab治療歴あり）</td>
<td>46.7% (14/30)</td>
<td>100.0% (30/30)</td>
</tr>
<tr>
<td>胃癌</td>
<td>44.4% (16/36)</td>
<td>88.9% (32/36)</td>
</tr>
<tr>
<td>胃癌（CPT-11治療歴あり）</td>
<td>44.4% (8/18)</td>
<td>94.4% (17/18)</td>
</tr>
</tbody>
</table>

【0123】 (2 - 4)

パート2d試験（乳癌及び胃癌を除くHER2発現固形癌）の被験者には、
大腸癌（11名）、非小細胞肺癌（5名）、唾液腺癌（4名）、ページェット病（2名）、食道癌（1名）、及び胆管癌（1名）の患者が含まれている。
評価可能な患者12名において、ORR 33%、DCR 91%を達成した。大腸癌では、5名のうち2名がPRを達成した。唾液腺癌では4名のうち2名がPRを達成した。

(2 - 5)

パート2d試験の結果を表5に示す。抗体-薬物コンジュゲート（1）は、評価可能な患者22名において、パート2d試験全体で、ORR 31.8%、DCR 81.8%を達成した。このうち、大腸癌のコホートでは、ORR 20.0%、DCR 80.0%を達成し、非小細胞肺癌のコホートでは、ORR 20.0%、DCR 60.0%を達成し、唾液腺癌のコホートでは、ORR 75.0%、DCR 100.0%を達成し、その他の癌（ページェット病、食道癌、及び胆管癌）のコホートでは、ORR 33.3%、DCR 100.0%を達成した。
また、パート2d試験における抗体制剤コンピュゲート（1）の有効性について、図13に最大腫瘍縮小率（%）を示した（図中、「C」は大腸癌のコホートを示し、「」非小細胞肺癌のコホートを示し、「」唾液腺癌のコホートを示し、「」は唾液腺癌のコホートを示し、「」は呼吸器のコホートを示す。図13中、「」は治療が進行中のものを示す。）。
さらに、図14に腫瘍縮小率（%）の時間推移を示した（図中、「colorectal」は大腸癌のコホートを示し、「NSCLC」非小細胞肺癌のコホートを示し、「sialovary」唾液腺癌のコホートを示し、「」はその他の癌のコホートを示す）。

抗体制剤コンピュゲート（1）は、いずれの癌種においても、また、HER2が過剰発現であっても低発現であっても、優れた腫瘍縮小効果を示すことが判明した。

[0124]（3）安全性と認容性

安全性と認容性の結果を表6に示した。もっともよく認められる有害事象（AEs）は、吐き気、食欲減少、嘔吐といった消化器系毒性であった。しかし、グレード3以上の有害事象は少ないことが判明した。また、血小板数減少、好中球数減少といった骨髄抑制も認められたが、これらについてはグレード3
以上の有害事象は少ないことが判明した。

<table>
<thead>
<tr>
<th></th>
<th>Grade 1 (%)</th>
<th>Grade 2 (%)</th>
<th>Grade 3 (%)</th>
<th>Grade 4 (%)</th>
<th>All (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>血小板数減少</td>
<td>13.5</td>
<td>9.0</td>
<td>8.3</td>
<td>3.8</td>
<td>34.6</td>
</tr>
<tr>
<td>貧血</td>
<td>3.0</td>
<td>12.0</td>
<td>14.3</td>
<td>1.5</td>
<td>30.8</td>
</tr>
<tr>
<td>好中球数減少</td>
<td>0.8</td>
<td>9.8</td>
<td>12.0</td>
<td>3.0</td>
<td>25.6</td>
</tr>
<tr>
<td>白血球数減少</td>
<td>0.8</td>
<td>12.8</td>
<td>9.0</td>
<td>1.5</td>
<td>24.1</td>
</tr>
<tr>
<td>吐き気</td>
<td>51.9</td>
<td>13.5</td>
<td>1.5</td>
<td>0.0</td>
<td>66.9</td>
</tr>
<tr>
<td>食欲減少</td>
<td>33.8</td>
<td>20.3</td>
<td>3.8</td>
<td>0.0</td>
<td>57.9</td>
</tr>
<tr>
<td>嘔吐</td>
<td>31.6</td>
<td>3.8</td>
<td>1.5</td>
<td>0.0</td>
<td>36.8</td>
</tr>
<tr>
<td>下痢</td>
<td>19.5</td>
<td>5.3</td>
<td>0.8</td>
<td>0.0</td>
<td>25.6</td>
</tr>
<tr>
<td>便秘</td>
<td>18.8</td>
<td>3.0</td>
<td>0.0</td>
<td>0.0</td>
<td>21.8</td>
</tr>
<tr>
<td>脱毛</td>
<td>21.1</td>
<td>6.0</td>
<td>0.0</td>
<td>0.0</td>
<td>27.1</td>
</tr>
<tr>
<td>厳重感</td>
<td>18.0</td>
<td>4.5</td>
<td>0.8</td>
<td>0.0</td>
<td>24.1</td>
</tr>
</tbody>
</table>

総括
抗体－薬物コンジュゲート（1）は、パート1試験（用量漸増試験）ではMTDには達せず、高い認容性を示した。
20名の評価可能な被験者のうち、抗体－薬物コンジュゲート（1）は、35%の0RRと90%のDCRを達成した。
抗体－薬物コンジュゲート（1）は、T-DM1既治療の乳癌患者において、前治療のT-DM1よりも高い奏効率を示した。
パート2試験（用量展開試験）では、抗体－薬物コンジュゲート（1）は、5.4mg/kg及び6.4mg/kgの投与量で3週に1回の間隔で投与された。抗体－薬物コンジュゲート（1）は、いずれの癌種においても、また、HER2が過剰発現であっても低発現であっても、優れた抗腫瘍効果を示すことが判明した。また、グレード3以上の有害事象は少ないことが確認され、優れた安全性を示すことが判明した。
以上より、抗体－薬物コンジュゲート（1）は、抗癌薬による前治療により耐性を獲得した癌に対しても優れた抗癌作用を有することが示された。このような前治療としては、抗HER2療法（既存の抗HER2薬による治療、或いは既存の抗HER2薬とこれ以外の抗癌薬の組合せなどによる治療）を挙げることがで
きる。抗HER2療法としてトラスツスマブ、及びペルツスマブ等の抗体の投与、あるいは抗HER2抗体—薬物コンジユゲートであるT-DM1の投与等を挙げることができる。これ等の前治療において使用された抗HER2薬は、治療対象となる癌がHER2陽性（すなわちHER2過剰発現）であることが投与前の検査によって確認されていることが必須である。したがって、HER2が認識されて奏効するとの作用機作の点からは当該癌種への効果が期待されて投与が行われるものである。しかしながら、これ等の抗HER2薬の投与が継続された後においては、一旦は期待のとおり抗癌作用が確認されていたとしても何らかのメカニズムによって抗癌作用が確認されなくなる病態に至ることが観察される。このような状況において、本発明で使用される抗体—薬物コンジユゲート（1）は、前治療の抗HER2薬投与の効果が認められなくなった癌であっても優れた抗癌作用が確認されたのである。すなわち、抗体—薬物コンジユゲート（1）は、既存の抗HER2薬が前治療として投与されて耐性を獲得した癌（二次耐性癌）であっても優れた抗癌作用を示すことが確認された。

また、抗体—薬物コンジユゲート（1）は、HER2低発現の癌や、乳癌及び胃癌以外の固形癌（例えば、大腸癌、非小細胞肺癌、唾液腺癌、ページエクト病、食道癌、及び胆管癌等）に対しても優れた治療効果を示すことが臨床試験において実証された。これ等の癌は、HER2を発現しているにもかかわらず、既存の抗HER2薬では当初から治療効果が認められない癌（言い換えれば、既存の抗HER2薬による治療によらずに、既存の抗HER2薬に対し本来備わった耐性又は難治性を有するHER2発現癌）である。

以上により、本発明で使用される抗体—薬物コンジユゲートを含有する治療剤及び治療用医薬品組成物、並びに、本発明の抗体—薬物コンジユゲートを投与することを特徴とする治療方法は、既存の抗HER2薬に対し耐性又は難治性のHER2発現癌の治療に優れていることが示された。

配列表フリーテキスト

[0128]配列番号1：ヒト化抗HER2モノクローナル抗体重鎖のアミノ酸配列
配列番号2：ヒト化抗HER2モノクローナル抗体軽鎖のアミノ酸配列
請求の範囲

[請求項1] 下式で示されるリンカー及び薬物と、抗HER2抗体と、が結合した抗体—薬物コンジュゲートを含有することを特徴とする、既存の抗HER2薬に対し耐性又は難治性のHER2発現癌の治療剤:

- \((\text{Succ inimid-3-y I-N}) -\text{CH}_2\text{CH}_2\text{CH}_2\text{CH}_2\text{C}(=\text{O}) -\text{GGFG-NH-CH}_2\text{CH}_2\text{C}(=\text{O}) -\text{NNxD})\)。

(式中、
- \((\text{Succ inimid-3-y L-N}) -\text{は次式}:

[化1]

\[
\begin{align*}
\text{O} & \quad \text{N} \\
\text{O} & \quad \text{N}
\end{align*}
\]

で示される構造であり、このものの3位で抗HER2抗体とチョエーテル結合によって結合し、1位の窒素原子上でこれを含むリンカー構造内のメチレン基と結合し、
- \((\text{NH-DX}) \) は次式:

[化2]

\[
\begin{align*}
\text{Me} & \quad \text{F} \\
\text{N} & \quad \text{Me}
\end{align*}
\]
で示される、1位のアミノ基の窒素原子が結合部位となっている基を示し、
-GGFG- は、-GLy-G Ly-Phe-G Ly- のテトラペプチド残基を示す。

[請求項2] 耐性又は難治性が、既存の抗HER2薬による治療によって獲得された耐性又は難治性である、請求項1に記載の治療剤。

[請求項3] 耐性又は難治性が、既存の抗HER2薬による治療によらずに本来備わった耐性又は難治性である、請求項1に記載の治療剤。

[請求項4] 既存の抗HER2薬が、トラスッズマブエムタンシン、トラスッズマブ、ベルツマブ、及びラバチニブからなる群より選択される少なくとも一つである、請求項1から3のいずれかに記載の治療剤。

[請求項5] 既存の抗HER2薬が、トラスッズマブエムタンシンである、請求項1から3のいずれかに記載の治療剤。

[請求項6] 既存の抗HER2薬が、トラスッズマブである、請求項1から3のいずれかに記載の治療剤。

[請求項7] 既存の抗癌薬による治療歴を有する患者に投与するための、請求項1から6のいずれかに記載の治療剤。

[請求項8] 既存の抗癌薬が、トラスッズマブエムタンシン、トラスッズマブ、ベルツマブ、ラバチニブ、イリノテカン、シスプラチン、カルボプラチン、オキサリプラチン、フルオロウラシル、ゲムシタビン、カペシタビン、パクリタキセル、ドセタキセル、ドキソルビシン、エピルピシン、シクロフォスファミド、マイトマイシンにテガフール - ギメラシル・オテラシル配合剤、セツキシマブ、パニツムマブ、ベパシズマブ、ラムシルマブ、レゴラフエニブ、トリフルリン・チピラシル配合剤、ゲフイチニブ、エルロチニブ、アファチニブ、メトトレキサート、及びベメトレキセドからなる群より選択される少なくとも一つを含む、請求項7に記載の治療剤。

[請求項9] 既存の抗癌薬が、トラスッズマブエムタンシンを含む、請求項7に記載の治療剤。
[請求項10] 既存の抗癌薬が、トラスッズマブを含む、請求項7に記載の治療剤。

[請求項11] 既存の抗癌薬が、イリノテカンを含む、請求項7に記載の治療剤。

[請求項12] 抗体-薬物コンジュゲートの1抗体あたりの薬物-リンカー構造の平均結合数が7から8個の範囲である、請求項1から15のいずれかに記載の治療剤。

[請求項13] 抗体-薬物コンジュゲートの1抗体あたりの薬物-リンカー構造の平均結合数が7.5から8個の範囲である、請求項1から15のいずれかに記載の治療剤。

[請求項14] 抗体-薬物コンジュゲートにおける抗HER2抗体が、配列番号1においてアミノ酸番号1乃至449に記載のアミノ酸配列からなる重鎖及び配列番号2においてアミノ酸番号1乃至214に記載のアミノ酸配列からなる軽鎖を含むなる抗体である、請求項1から13のいずれかに記載の治療剤。

[請求項15] 抗体-薬物コンジュゲートにおける抗HER2抗体が、配列番号1に記載のアミノ酸配列からなる重鎖及び配列番号2に記載のアミノ酸配列からなる軽鎖を含むなる抗体である、請求項1から15のいずれかに記載の治療剤。

[請求項16] 抗体-薬物コンジュゲートの1回あたりの投与量が5.4mg/kgから8mg/kgの範囲である、請求項1から15のいずれかに記載の治療剤。

[請求項17] 抗体-薬物コンジュゲートの1回あたりの投与量が5.4mg/kgである、請求項1から15のいずれかに記載の治療剤。

[請求項18] 抗体-薬物コンジュゲートの1回あたりの投与量が6.4mg/kgである、請求項1から15のいずれかに記載の治療剤。

[請求項19] 抗体-薬物コンジュゲートの1回あたりの投与量が7.4mg/kgである、請求項1から15のいずれかに記載の治療剤。

[請求項20] 抗体-薬物コンジュゲートの1回あたりの投与量が8mg/kgである、請求項1から15のいずれかに記載の治療剤。
[請求項21] 抗体－薬物コンジュゲートが3週に1回の間隔で投与される、請求項1から20のいずれかに記載の治療剤。

[請求項22] 乳癌、胃癌、大腸癌、非小細胞肺癌、食道癌、唾液腺癌、胃食道接合部腺癌、胆管癌、ペレージュト病、胰腺癌、卵巢癌、及び子宮癌肉腫からなる群より選択される少なくとも一つの癌の治療のための、請求項1から21のいずれかに記載の治療剤。

[請求項23] 乳癌の治療のための、請求項1から21のいずれかに記載の治療剤。

[請求項24] 胃癌の治療のための、請求項1から21のいずれかに記載の治療剤。

[請求項25] 胃癌及び胃食道接合部腺癌の治療のための、請求項1から21のいずれかに記載の治療剤。

[請求項26] 大腸癌の治療のための、請求項1から21のいずれかに記載の治療剤。

[請求項27] 非小細胞肺癌の治療のための、請求項1から21のいずれかに記載の治療剤。

[請求項28] 唾液腺癌の治療のための、請求項1から21のいずれかに記載の治療剤。

[請求項29] HER2発現癌が、HER2過剰発現の癌である、請求項1から28のいずれかに記載の治療剤。

[請求項30] HER2過剰発現の癌が、免疫組織化学法によりHER2の発現が3+と判定された癌である、請求項29に記載の治療剤。

[請求項31] HER2過剰発現の癌が、免疫組織化学法によりHER2の発現が2+と判定され、且つin situハイプリダイゼーション法によりHER2の発現が陽性と判定された癌である、請求項29に記載の治療剤。

[請求項32] HER2発現癌が、HER2低発現の癌である、請求項1から28のいずれかに記載の治療剤。

[請求項33] HER2低発現の癌が、免疫組織化学法によりHER2の発現が2+と判定された癌である、請求項29に記載の治療剤。
れ、且つin situ ハイブリダイゼーション法によりHER2の発現が陰性と判定された癌である、請求項32に記載の治療剤。

[請求項34] HER2低発現の癌が、免疫組織化学法によりHER2の発現が1+と判定された癌である、請求項32に記載の治療剤。

[請求項35] 手術不能又は再発の癌の治療のための、請求項1から34に記載の治療剤。

[請求項36] 薬学的に許容される製剤成分を含有する、請求項1から35に記載の治療剤。

[請求項37] 下式で示されるリンカー及び薬物と、抗HER2抗体と、が結合した抗体-薬物コンジユゲートを、既存の抗HER2薬に対し耐性又は難治性のHER2発現癌の治療を必要とする患者に投与することにより、既存の抗HER2薬に対し耐性又は難治性のHER2発現癌を治療する方法:

- \((\text{Succ inimid-3-yl-N}) \cdot \text{CH}_2\text{CH}_2\text{CH}_2\text{CH}_2\text{C}(=\text{O}) \cdot \text{GGFG-NH} \cdot \text{CH}_2\text{C}(=\text{O}) \cdot \text{-CH}) \cdot (\text{NH-DX})\)。

(式中、
- \((\text{Succ inimid-3-yl-N})\) は次式:

[化3]

\[
\begin{align*}
\text{O} & \quad \text{O} \\
\text{N} & \\
\end{align*}
\]

で示される構造であり、このものの3位で抗HER2抗体とチオエーテル結合によって結合し、1位の窒素原子上でこれを含むリンカー構造内のメチレン基と結合し、

- \((\text{NH-DX})\) は次式:
で示される、1位のアミノ基の窒素原子が結合部位となっている基を示し、
-GGFG- は、-GLy-G Ly-Phe-G Ly- のテトラペプチド残基を示す。)

[請求項38] 耐性又は難治性が、既存の抗 HER2 薬による治療によって獲得された
耐性又は難治性である、請求項37に記載の方法。

[請求項39] 耐性又は難治性が、既存の抗 HER2 薬による治療によらずに本来備わる
った耐性又は難治性である、請求項37に記載の方法。

[請求項40] 既存の抗 HER2 薬が、トラスッズマブエムタンシン、トラスッズマブ
、ベルツズマブ、及びラバチニブからなる群より選択される少なくとも一つである、請求項37から39のいずれかに記載の方法。

[請求項41] 既存の抗 HER2 薬が、トラスッズマブエムタンシンである、請求項3
7から39のいずれかに記載の方法。

[請求項42] 既存の抗 HER2 薬が、トラスッズマブである、請求項37から39の
いずれかに記載の方法。

[請求項43] 既存の抗癌薬による治療歴を有する患者に行うための、請求項37
から42のいずれかに記載の方法。

[請求項44] 既存の抗癌薬が、トラスッズマブエムタンシン、トラスッズマブ、
ベルツズマブ、ラバチニブ、イリノテカン、シスプラチン、カルポプラ
チン、オキサリプラチン、フルオロウラシル、ゲムシタビン、カペシタビン、パクリタキセル、ドセタキセル、ドキソルビシン、エピル
ピシン、シクロフォスファミド、マイトマイシンに テガフール - ギ
メラシル・オテラシル配合剤、セツキシマブ、パニツムマブ、ベバシズマブ、ラムシルマブ、レゴラフエニブ、トリフルリジン・チビラシル配合剤、ゲフイチニブ、エルロチニブ、アファチニブ、メトトレキサート、及びベメトレキセドからなる群より選択される少なくとも一つを含む、請求項43に記載の方法。

[請求項45] 既存の抗癌薬が、トラスッズマブエムタンシンを含む、請求項43に記載の方法。

[請求項46] 既存の抗癌薬が、トラスッズマブを含む、請求項43に記載の方法。

[請求項47] 既存の抗癌薬が、イリノテカンを含む、請求項43に記載の方法。

[請求項48] 抗体—薬物コンジュゲートの1抗体あたりの薬物—リンカー構造の平均結合数が7から8個の範囲である、請求項37から47のいずれかに記載の方法。

[請求項49] 抗体—薬物コンジュゲートの1抗体あたりの薬物—リンカー構造の平均結合数が7.5から8個の範囲である、請求項37から47のいずれかに記載の方法。

[請求項50] 抗体—薬物コンジュゲートにおける抗HER2抗体が、配列番号1においてアミノ酸番号1乃至449に記載のアミノ酸配列からなる重鎖及び配列番号2においてアミノ酸番号1乃至214に記載のアミノ酸配列からなる軽鎖を含んでなる抗体である、請求項37から49のいずれかに記載の方法。

[請求項51] 抗体—薬物コンジュゲートにおける抗HER2抗体が、配列番号1に記載のアミノ酸配列からなる重鎖及び配列番号2に記載のアミノ酸配列からなる軽鎖を含んでなる抗体である、請求項37から49のいずれかに記載の方法。

[請求項52] 抗体—薬物コンジュゲートの1回あたりの投与量が5.4mg/kgから8mg/kgの範囲である、請求項37から51のいずれかに記載の方法。

[請求項53] 抗体—薬物コンジュゲートの1回あたりの投与量が5.4mg/kgである
請求項37から51のいずれかに記載の方法。

[請求項54]
抗体—薬物コンビュゲートの1回あたりの投与量が6.4mg/kgである、請求項37から51のいずれかに記載の方法。

[請求項55]
抗体—薬物コンビュゲートの1回あたりの投与量が7.4mg/kgである、請求項37から51のいずれかに記載の方法。

[請求項56]
抗体—薬物コンビュゲートの1回あたりの投与量が8mg/kgである、請求項37から51のいずれかに記載の方法。

[請求項57]
抗体—薬物コンビュゲートを3週に1回の間隔で投与する、請求項37から56のいずれかに記載の方法。

[請求項58]
乳癌、胃癌、大腸癌、非小細胞肺癌、食道癌、唾液腺癌、胃食道接合部腺癌、胆管癌、ページエット病、腎臓癌、卵巣癌、及び子宮癌肉腫からなる群より選択される少なくとも一つの癌の治療のための、請求項37から57のいずれかに記載の方法。

[請求項59]
乳癌の治療のための、請求項37から57のいずれかに記載の方法。

[請求項60]
胃癌の治療のための、請求項37から57のいずれかに記載の方法。

[請求項61]
胃癌及び胃食道接合部腺癌の治療のための、請求項37から57のいずれかに記載の方法。

[請求項62]
大腸癌の治療のための、請求項37から57のいずれかに記載の方法。

[請求項63]
非小細胞肺癌の治療のための、請求項37から57のいずれかに記載の方法。

[請求項64]
唾液腺癌の治療のための、請求項37から57のいずれかに記載の方法。

[請求項65]
HER2発現癌が、HER2過剰発現の癌である、請求項37から64のいずれかに記載の方法。

[請求項66]
HER2過剰発現の癌が、免疫組織化学法によりHER2の発現が3+と判定
された癌である、請求項65に記載の方法。

[請求項67] HER2過剰発現の癌が、免疫組織化学法によりHER2の発現が2+と判定され、且つin situハイブリダイゼーション法によりHER2の発現が陽性と判定された癌である、請求項65に記載の方法。

[請求項68] HER2発現癌が、HER2低発現の癌である、請求項37から64のいずれかに記載の方法。

[請求項69] HER2低発現の癌が、免疫組織化学法によりHER2の発現が2+と判定され、且つin situハイブリダイゼーション法によりHER2の発現が陰性と判定された癌である、請求項68に記載の方法。

[請求項70] HER2低発現の癌が、免疫組織化学法によりHER2の発現が1+と判定された癌である、請求項68に記載の方法。

[請求項71] 手術不能又は再発の癌の治療のための、請求項37から70に記載の方法。

[請求項72] 薬学的に許容される製剤成分とともに抗体－薬物コンジュゲートを投与する、請求項37から71に記載の方法。
ST1616B/TDR (from 13-mo T-DM1 treated Pt)

HER2 IHC 3+

Vehicle
T-DM1 10 mg/kg
ADC(1) 3 mg/kg
ADC(1) 10 mg/kg
[図4]

ST1360B/TDR (from 3-mo T-DM1 treated Pt)

- **HER2 IHC 3+**
- **Vehicle**
- **T-DM1 10 mg/kg**
- **ADC(1) 3 mg/kg**
- **ADC(1) 10 mg/kg**

[図5]

(a) **ADC(1)**
- 0.8
- 1.5
- 3.2
- 5.4

(b) **6.4 mg/kg**
- **ADC(1)**
- **Compound 1**
- **Total Antibody**

Compound 1: Payload of ADC(1)
[図6]

食欲不振
吐き気
倦怠感
嘔吐
脱毛
便秘
血小板数減少
赤血球数減少
好中球数減少
発疹（各部位の総計）
腹部膨満感
貧血
AST上昇
インフルエンザ様疾患
頭痛
不快感

Grade 1
Grade 2
Grade 3

0 10 20 30 40 50 60 70 80 90 100

[図7]

ORR

Response to prior T-DM1 treatment (n=11*)

Response to subsequent ADC(1) treatment (n=12*)

DCR

Tumor control rate to prior T-DM1 treatment (n=11*)

Tumor control rate to subsequent ADC(1) treatment (n=12*)

Prior T-DM1: Data by previous treatment of T-DM1
ADC(1): Data by ADC(1) who already have been treated with T-DM1

* 1 of 12 patient data who had no information of the best response on prior T-DM1 treatment is excluded

18% 42%

64% 92%
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

A 61K39/395 (2006.01), A 61K 47/66 (2011.01), A 61P 35/00 (2006.01)

According to International Patent Classification (IPC) or to both national classification and IPC.

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
A 61K 39/395, A 61K 47/66, A 61P 35/00

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
CAplus /MEDL /INE /EMBASE /B IOS /S (STN)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>OGITANI Y. et al., DS - 8 201 a, A Nove l HER 2 . Target ing ADC with a Nove l DNA Topo Isomer a s e l I nhibitor . Demons trate s a Promi s ing Ant i lumor Effi cacy with Differen t lat ion from T-DM1 . C lini cal Cancer Res earch , 2016.03 . Vol. 22 , p . 5097 - 5108 , ISSN 1078 - 0432 , part ularly . A bs tract , p . 5098 , l eft c olumn , 2 nd p aragraph , p . 5103 , r ight c olumn , 2 nd p aragraph to p . 5105 , l eft c olumn , 1 st p aragraph , p . 5106 , l eft c olum n , 2 nd to 3 rd p aragraphs , Figure s 4, 5.</td>
<td></td>
</tr>
</tbody>
</table>

X

Further documents are listed in the continuation of Box C. See patent family annex.

Date of the actual completion of the international search
02 November 2017 (02.11.17)

Date of mailing of the international search report
21 November 2017 (21.11.17)

Name and mailing address of the ISA
Japan Patent Office
3-4-3, Kasumigaseki, Chiyoda-ku, Tokyo 100-8915, Japan

Authorized officer

Telephone No.

Form PCT/ISA/210 (second sheet) (January 2015)
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>wo 2015/115091 A1 (Daiichi Sankyo Co., Ltd.), 06 August 2015 (06.08.2015), claims 1 to 27; paragraphs 0159, 0162; evaluation example s 1 to 14 & US 2016/0333112 A1; claims 1 to 8; paragraphs 0377, 0381; Evaluation example s 1 to 14 & EP 3101032 AI & CN 105829346 A & KR 10-2016-0113099 A</td>
<td>1-72</td>
</tr>
<tr>
<td>A</td>
<td>LOGANZO, F. et al ., Tumor Cells Chronically Treated with a Trastuzumab-Maytansino id Antibody- Drug Conjugate Develop VariedResistance Mechanisms but Respond to Alternate Treatment s, Molecular Cancer Therapeutics, 2015, Vol.14, No.4, p.952-963, ISSN 1535-7163</td>
<td>1-72</td>
</tr>
<tr>
<td>A</td>
<td>TAN, X. et al., Antibody-drug conjugates with modified linker-pay loads overcome resistance to a trasuzumab-maytansino id conjugate in multiple cultured tumor cell models, Cancer Research, 2014, Vol.74, No.19, Suppl., Abs tract 1830, ISSN 1538-7445</td>
<td>1-72</td>
</tr>
</tbody>
</table>
DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>P, X</td>
<td>TAMURA, K. et al., Single agent activity of DS-8201a, a HER2-targeting antibody-drug conjugate, in breast cancer patients previously treated with T-DM1: Phase 1 dose escalation, Annals of Oncology, 2016.10.13, Vol.27, Suppl.6, vi 552-vi 587, LBA1 7, ISSN 0923-7534, entire text</td>
<td>1-72</td>
</tr>
</tbody>
</table>
A. 発明の属する分野の分類 (国際特許分類 (I P C))
Int.Cl. A61K39/395 (2006. 01) i , A61K47/68 (2017. 01) i , A61P35/00 (2006. 01) i

B. 調査を行った分野
調査を行った最小限資料 (国際特許分類 (I P C))
Int.Cl. A61K39/395, A61K47/68, A61P35/00

最小限資料以外の資料で調査を行った分野に含まれるもの
日本国実用新案公報 1922
日本国公開実用新案公報 1971－2
日本国実用新案登録公報 1996－
日本国登録実用新案公報 1994－

国際調査で使用した電子データベース (データベースの名前, 調査に使用した用語)
Cmp I WS/MEDLINE/EMBASE/Biosis (STN)

C. 関連すると認められる文献

<table>
<thead>
<tr>
<th>引用文献のカテゴリ*</th>
<th>引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示</th>
<th>関連する請求項の番号</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>OGINI, Y. et al., DS_8201a, A Novel HER2-Targeting ADC with a Novel DNA Topoisomerase I Inhibitor, Demonstrates a Promising Antitumor Efficacy with Differentiation from T-DM1, Clinical Cancer Research, 2016. 03, Vol. 22, p. 5097-5108, ISSN 1078-0432, 特に Abstract, p. 5098 左欄第2段落, p. 5103 右欄第2段落, p. 5105 左欄第1段落, p. 5106 左欄第2-3 段落, Figures 4, 5</td>
<td>1-72</td>
</tr>
</tbody>
</table>

P. 本欄の続きにも文献が列挙されている。

「：パテントファミリーに関する別紙を参照。

A. 特許に関連のある文献では、一般的技術手順を示すものの
B. 国際出願日前の出願または特許であるが、国際出願日以後に公表されたもの
C. 優先権主張を疑義を提起する文献又は他の文献の発行日若しくは他の特別な理由を理由にして引用する文献（理由を付す）
D. 口頭による開示、使用、展示等に言及する文献
E. 国際出願日で、かつ優先権の主張の基礎となる出願

国際調査報告の発送日
21. 11. 2017

国際調査機関の名称及びあて先
日本国特許庁（I SA ／J P）
郵便番号 100-8915
東京都千代田区霞が関三丁目4番3号

特許庁審査官 権限のある職員) 4 C 4498
高橋 樹理
電話番号 03-3581-1101 内線 3452

様式 PCT／I SA／210（第2ページ）（2015年1月）
国際出願番号 PCT / JP 2017 / 036215

C（続き）関連すると認められる文献

<table>
<thead>
<tr>
<th>引用文献のカテゴリ</th>
<th>引用文献名及び一部の箇所が関連するときは、その関連する箇所の表示</th>
<th>関連する請求項の番号</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>LOGANZO, F. et al., Tumor Cells Chronically Treated with a Trastuzumab-Maytansinoid Antibody-Drug Conjugate Develop Varied Resistance Mechanisms but Respond to Alternate Treatments, Molecular Cancer Therapeutics, 2015. Vol. 14, No. 4, p. 952-963, ISSN 1535-7163</td>
<td>1-72</td>
</tr>
</tbody>
</table>

様式 PCT / ISA / 210（第2ページの続き）（2015年1月）
<table>
<thead>
<tr>
<th>引用文献のカテゴリー</th>
<th>引用文献名及び一部の箇所が関連するときは、その関連する箇所の表示</th>
<th>関連する請求項の番号</th>
</tr>
</thead>
<tbody>
<tr>
<td>TAMURA, K. et al.</td>
<td>Single agent activity of DS_8201a, a HER2-targeting antibody-drug conjugate, in breast cancer patients previously treated with T-DM1: Phase 1 dose escalation, Annals of Oncology, 2016. 10. 13, Vol. 27, Suppl. 6, vi552_vi587, LBA17, ISSN 0923-7534,全文</td>
<td>1-72</td>
</tr>
</tbody>
</table>