发明名称

具有集成的接近性传感器的 OLED 照明设备

摘要

本发明涉及具有阴极 1、阳极 2 和有源叠层 3 的 OLED 设备，其中阳极 1 被分段成多个阳极段 8。每个阳极段限定 OLED 段 4。此外，提供了电容测量单元 12，其布置成用于分别测量两个阳极段 8 之间和 / 或阳极段 8 与周围的地之间的多个电容系数。通过这种方式，实现了用于照明目的的具有可靠的接近性感应功能的 OLED 设备。
1. OLED 设备，具有阴极 (1)、阳极 (2) 和有源叠层 (3)，其中
所述阳极 (2) 被分段成多个阳极段 (8)，每个阳极段限定 OLED 段 (4)，并且
电容测量单元 (12) 被提供，所述电容测量单元布置成用于分别测量至少两个阳极段
(8) 之间和 / 或至少一个阳极段 (8) 与参考点之间的多个电容系数。

2. 依照权利要求 1 的 OLED 设备，其中所述电容测量单元 (12) 适于分别测量多个阳极段
(12) 中的电流变化。

3. 依照权利要求 1 或 2 的 OLED 设备，其中所述 OLED 段 (4) 包括公共阴极 (15)，并且
驱动器 (9) 被提供以向并联连接的 OLED 段 (4) 提供预定电压。

4. 依照权利要求 1 或 2 的 OLED 设备，其中每个所述 OLED 段 (4) 包括段阴极 (6)，并且
驱动器 (9) 被提供以向串联连接的 OLED 段 (4) 提供预定电压。

5. 依照权利要求 3 或 4 的 OLED 设备，其中所述预定电压对于所有 OLED 段 (4) 是相同的。

6. 依照权利要求 5 的 OLED 设备，其中所述驱动器 (9) 是高频发生器。

7. 依照权利要求 1-6 中任何一项的 OLED 设备，其中 OLED 区域仅一部分被分段成 OLED
段 (4)。

8. 依照权利要求 1-7 中任何一项的 OLED 设备，其中所述 OLED 段 (4) 包括允许通过附
加的空间维度进行位置感知的形状和 / 或彼此相对取向。

9. 使用依照权利要求 1-8 中任何一项的 OLED 设备，用于照明设备的调光和 / 或颜色控
制。
具有集成的接近性传感器的 OLED 照明设备

技术领域
[0001] 本发明涉及 OLED 设备和近场成像触摸传感器的领域。

背景技术
[0002] 触摸传感器应用在不同的技术领域中。它们提供了通过简单地触摸像操作屏幕那样的表面的预定区域而控制设备的可能性。为此，经常使用到地的“共模”电容的变化。与此形成对照的是，近场成像对局部场变化反应，而不对到地的“共模”电容反应。因此，与工作于“共模”技术的标准触摸传感器相比，近场成像提供了更可靠的操作触摸传感器的方式。此外，近场成像允许不仅检测像手指那样的外部对象靠近，而且检测对象的位置。因此，例如，近场成像也允许借助于触摸屏传感器通过利用指尖到具有各自功能的不同屏幕区域上来控制系统。相应的触摸传感器在不同的技术领域中是众所周知的。
[0004] 然而，已知依照上述原理工作的触摸传感器设备是容易发生故障的，尤其是在恶劣的环境条件下。这归因于以下事实：检测信号在预定阈值被超过时产生，例如在电容式传感器中感应的电流超过阈值时产生。然而，绝对值可能由于传感器设备的温度和 / 或表面条件而变化。因此，触摸传感器设备可能不是足够可靠的。

发明内容
[0005] 本发明的目的是提供一种照明设备，该照明设备提供可靠的近场成像功能。
[0006] 这个目的是通过具有阴极、阳极和有源叠层的 OLED 设备来实现的，其中
[0007] 阴极被分段成多个阳极段，每个阳极段限定 OLED 段，并且
[0008] 电容测量单元被提供，该电容测量单元布置成用于分别测量至少两个阳极段之间和 / 或至少一个阳极段与参考点之间的多个电容系数。
[0009] 因此，像现有技术 OLED 设备一样，依照本发明的 OLED 设备包括阳极、阴极和有源叠层，该有源叠层包括阳极与阴极之间的至少一个有源层。然而，依照本发明，至少该阳极被分段成多个阳极段。因此，本发明的主要特征是利用不同的阳极段提供具有至少两个 OLED 段的 OLED，此提供了分别测量这些阳极段中的一个和 / 或另一个与参考点（比如周围的地方）之间和 / 或这些阳极段自身之间的电容的可能性。
[0010] 这种设计基于以下认识：当检测不与如上所述典型地未知的绝对值有关，而是与检测的信号的梯度变化有关时，可以降低电容式触摸传感器的故障率。因此，内对地滤除了绝对值的变化。结果，实现了鲁棒的触摸敏感照射设备。
[0011] 依照本发明，例如不同阳极段之间和 / 或阳极段与周围的地之间的至少两个电容系数被测量。该电容测量可以基于不同的技术；特别是，可以直接或间接地测量电容。此外，可以定性或定量地进行测量。此外，可以足以检测已经出现了电容系数的变化。
[0012] 依照本发明的优选实施例，该电容测量单元适于分别测量多个阳极段中的电流变化。依照本发明的优选实施例，这意味着在两个不同的阳极段中，各自的电流变化被确定。然后，根据电流变化可以估计相应的电容值。

[0013] OLED 段可以以不同的方式设计。依照本发明的优选实施例，OLED 段包括公共阴极，并且驱动器被提供以向并联连接的 OLED 段提供预定电压。依照本发明的替换性的优选实施例，每个 OLED 段包括其“自身的”段阴极，并且驱动器被提供以向串联连接的 OLED 段提供预定电压。因此，可以以不同的方式实现 OLED 段彼此的“隔离”。取决于公共阴极是否被提供用于“隔离的”OLED 段的问题，使用用于向阳极段提供预定电压的不同驱动方案。

[0014] 通常，可以向 OLED 段提供不同的预定电压。然而，依照本发明的优选实施例，预定电压对于所有 OLED 段是相同的。通过这种方式，可以避免交叉耦合电容和内部 OLED 电容的影响，从而使得设备更加可靠。

[0015] 作为驱动器，通常可以使用不同的类型。然而，依照本发明的优选实施例，驱动器是高频发生器。这意味着 OLED 设备用作接近性传感器（proximity sensor）时，该高频发生器相较于地耦合到所有 OLED 段，从而以优选地相同的预定电压驱动这些段。流入每个段的电流是每个段与地之间的有效电容的度量。

[0016] 如上文已经提到的，优选地电流传感器用来检测流入每个单独的 OLED 段的电流。当像指尖那样的电介质对象靠近 OLED 段时，通常，相对于地发生显著的电容变化。该电容变化将影响所有 OLED 段，并且因而每个段电流将变化。取决于电介质对象的位置，电容变化量在这些段之间不同并且取决于电介质对象关于段阵列的相对位置。

[0017] 通常，OLED 设备的整个区域可以分段成 OLED 段。然而，依照本发明的优选实施例，只有 OLED 设备的一部分被分段成 OLED 段。此外，通常，这些 OLED 段可以包括均匀的形状。然而，依照本发明的优选实施例，这些 OLED 段包括允许通过附加空间维度进行位置敏感的形状和彼此相对取向。通过这种方式，耦合系数沿着 OLED 段的变化形式变成是位置依赖的，从而允许确定对象沿着相应段的位置。

[0018] 此外，依照本发明的优选实施例，上述 OLED 设备用于照明设备的调光和/或颜色控制。

附图说明

[0019] 本发明的这些和其它方面根据以下描述的实施例将是清楚明白的，并且将参照这些实施例进行阐述。

[0020] 在附图中：

[0021] 图 1 示出了依照本发明的第一优选实施例的 OLED 设备的示意图，
[0022] 图 2 示出了依照本发明的第一优选实施例的 OLED 设备的连接方案，
[0023] 图 3a、3b 示出了电介质对象靠近 OLED 设备的情况下的电荷分布，
[0024] 图 4 示出了依照本发明的第二优选实施例的 OLED 设备，
[0025] 图 5 示出了依照本发明的第二优选实施例的 OLED 设备的连接方案，
[0026] 图 6 示意性地示出了依照本发明的第三优选实施例的 OLED 设备，
[0027] 图 7 示出了依照本发明的第四优选实施例的 OLED 设备。
具体实施方式

[0028] 从图1可以看到依照本发明的第一优选实施例的OLED设备。该简化的图示出了具有阴极、阳极2和有源叠层3的OLED设备。有源叠层3包括至少一个有源层。由图1可见，阴极、阳极2和有源叠层3被分段成设置在公共玻璃衬底5上的三个OLED段4。相应地，每个OLED段包括段阴极6、有源叠层段7和阳极段8。由于使用了玻璃衬底5以及由ITO(氧化铟锡)制成的阳极2，有源叠层3的至少一个有源层中产生的光可以通过阳极2和玻璃衬底5发出。

[0029] 依照本发明的第一优选实施例，多个OLED段4用作电容式接近性传感器(capacitive proximity sensor)。为此，确定每个段相对于参考点(地)的有效电容值，并且在触尖尖状的电介质对象靠近OLED设备时检测它们的变化。在下文中，描述了如何驱动依照本发明的第一优选实施例的OLED设备以及如何确定电容系数的变化。

[0030] 从图2可以看到依照本发明的第一优选实施例的OLED设备的供电和触摸传感功能的连接方案。由于三个OLED段4不包括公共阴极，而是每个分别具有段阴极6，因而以串联连接设置OLED段4。作为用于OLED段4的驱动器9，使用了高频发生器，其向三个OLED段4提供对于所有OLED段4相同的预定电压。

[0031] 在正常操作期间，即对于光照目的，依照本发明的第一优选实施例的OLED设备连接到DC电压源10。当用作接近性传感器时，DC电压源10借助于开关11与OLED设备分开。然后，高频发生器耦合到所有OLED段4，电容测量单元12被提供，其包括用于检测流入每个单独的OLED段4的电流的电流传感器13。

[0032] 当电介质对象靠近OLED段4时，相对于地发生显著的电容变化。通常，这将影响所有OLED段4，并且因而各OLED段4的电流将变化。取决于电介质对象的位置，电容变化在这些段之间不同，并且取决于电介质对象关于段阵列的相对位置。

[0033] 由图3a和图3b可以看到针对此的实例，图3a和图3b示出对于其中电介质对象14已靠近左侧的OLED段4的情况，作为有效电容的度量的电荷分布。通过这种方式，实现了集成到OLED设备中的可靠的接近性传感器。

[0034] 由图4和图5示出本发明的第二优选实施例的图4和图5可见，可以对于OLED段4实现相似的电路布置，这些OLED段4包括公共阴极15并且因而并联连接。

[0035] 此外，从图6可以看到依照本发明的第二优选实施例的OLED设备。依照本发明的第三优选实施例，OLED段4也包括公共阴极1。然而，彼此“隔离”的OLED段4并不填充整个OLED区域。相反地，依照本发明的第三优选实施例的OLED设备仅仅包括部分的分段。通过这种方式，仅针对OLED设备的预定区域实现如上所述的电容式接近性传感器的功能。

[0036] 从图7可以看到具有部分分段的另一OLED设备。依照本发明的第四优选实施例的OLED设备包括非均匀OLED段4。这允许通过附加的空间维度进行位置感测，因为耦合系数沿着每个OLED段4的变化的截面变化是位置依赖的。

[0037] 尽管在所述附图和前面的描述中已经详细地说明和描述了本发明，但是这样的说明和描述应当被认为是说明性或示例性的，而不是限制性的；本发明并不限于所公开的实施例。

[0038] 本领域技术人员在实施要求保护的本发明时，根据对于附图、公开内容以及所附权利要求的研究，能够理解并实施所公开实施例的其它变型。在权利要求书中，措词“包括”
并没有排除其它的元件或步骤，并且不定冠词“一”或“一个”并没有排除多个。在相互不同的从属权利要求中陈述某些措施这一事实并不意味着不可以有利地使用这些措施的组合。权利要求中的任何附图标记不应当视为对范围的限制。
图 7