光电转换元件及其制造方法

本发明公开了一种光电转换元件及其制造方法。该光电转换元件包括基底层与有源层。有源层设置在基底层上。有源层的接收光面具有表面组织结构。表面组织结构包含重复的多个凹陷单元，每个该凹陷单元包含交叉的三个平面，在交叉处形成有凹尖点。此三个平面相互垂直或近似相互垂直。本发明采用角隅结构当作凹陷单元，可以增加对入射光产生三次以上反射的区域，能有效提升对入射光的吸收。
1. 一种光电转换元件，包括：
 基底层；以及
 有源层，设置在其基底层上，该有源层的接收光面具有表面组织结构，
 其中该表面组织结构包含重复的多个凹陷单元，每个该凹陷单元包含交叉的三个平面，在交叉处形成有凹尖点，该三个平面之间任两个平面的法向量夹角介于60度至120度的范围。

2. 如权利要求1所述的光电转换元件，其中该三个平面相互垂直。

3. 如权利要求1所述的光电转换元件，其中该基底层与该有源层构成太阳能电池或是光检测器。

4. 如权利要求3所述的光电转换元件，其中该太阳能电池的材料包括非晶硅、硅晶硅、硅锗、Ⅲ-V族半导体、Ⅱ-VI族半导体、有机小分子、有机高分子、染料敏化或铜铟硒化镓。

5. 如权利要求3所述的光电转换元件，其中该太阳能电池的材料包括多晶硅。

6. 如权利要求1所述的光电转换元件，其中该凹陷单元是倒三角锥结构。

7. 如权利要求1所述的光电转换元件，其中每一个该凹陷单元的该三个平面是由一个立方体的三个交叉面所构成。

8. 如权利要求1所述的光电转换元件，其中该些凹陷单元的正面投影为三角形或六角形。

9. 如权利要求1所述的光电转换元件，其中该基底层具有表面结构，该有源层是与该表面结构共形以构成该表面组织结构。

10. 如权利要求1所述的光电转换元件，其中该基底层包括：
 平坦基层；以及
 中间层，在该平坦基层上，具有表面结构，
 其中该有源层是与该表面结构共形以构成该表面组织结构。

11. 如权利要求1所述的光电转换元件，其中该基底层是平坦基层，该有源层有平坦背面，设置在该平坦基层上。

12. 一种光电转换元件的制造方法，包括：
 提供基底层；
 形成表面组织结构于该基底层上，该表面组织结构包含重复的多个凹陷单元，每个该凹陷单元包含交叉的三个平面，在交叉处形成有凹尖点，该三个平面相互之间任两个平面的法向量夹角介于60度至120度的范围；以及
 形成有源层，在该表面组织结构上且与该表面组织结构共形。

13. 如权利要求12所述的光电转换元件的制造方法，其中该三个平面相互垂直。

14. 如权利要求12所述的光电转换元件的制造方法，其中所形成的每一个该凹陷单元是倒三角锥结构。

15. 如权利要求12所述的光电转换元件的制造方法，其中所形成的每一个该凹陷单元的该三个平面是由一个立方体的三个交叉面所构成。

16. 如权利要求12所述的光电转换元件的制造方法，其中在形成该表面组织结构于该基底层上的该步骤中，该表面组织结构是直接在该基底层上。

17. 如权利要求12所述的光电转换元件的制造方法，其中在形成该表面组织结构于该
基底层上的该步骤包括：
 提供平坦基层；
 形成中间层，具有该表面组织结构；以及
 将该中间层设置在该平坦基层上，
 其中该有源层是共形形成于该表面组织结构上。
18. 一种光电转换元件的制造方法，包括：
 提供平坦基层；
 形成有源层在该平坦基层上；以及
 形成表面组织结构于该有源层上，该表面组织结构包含重复的多个凹陷单元，每个该
凹陷单元包含交叉的三个平面，在交叉处形成有凹尖点，该三个平面相互之间任两个平面
的法向量夹角介于 60 度至 120 度的范围。
19. 如权利要求 18 所述的光电转换元件的制造方法，其中该三个平面相互垂直。
20. 如权利要求 18 所述的光电转换元件的制造方法，其中所形成的每一个该凹陷单元
的该三个平面是倒三角锥结构或一个立方体的三个交叉面所构成。
光电转换元件及其制造方法

技术领域
[0001] 本发明涉及一种高光耦合效率的光电转换元件及其制造方法。

背景技术
[0002] 太阳能已经渐渐被利用，取代传统如石油的能源。如果太阳电池全部采用半导体材料来制作，其会形成基板材料严重缺乏，价格也会因此升高。另一种太阳电池是以价格低廉的玻璃或陶瓷做为基板，再以镀膜方式形成薄膜太阳电池。因为薄膜太阳电池没有基板的限制，又可方便使用于不同建材上，前景相当看好。
[0003] 陶瓷基板除了价格低廉、耐高温及环境性外，本身是陶瓷粉料烧结而成，所以是一种很好的朗伯反射体（Lambertian reflector）。当光入射到这个表面时，反射光会形成均匀的扩散光，当制作成薄膜太阳电池的基板时，会有效的将入射光扩散开来，降低直接反射的光，而在薄膜内形成扩散光行进，使光线可以有效的停留在薄膜内被材料所吸收，是一个很好的太阳电池基板形式。
[0004] 陶瓷基板可应用在最常用的薄膜太阳电池，可采用各种材料的镀膜，不论是非晶硅、多晶硅、晶粒硅、硅锗、III-V或 II-VI（CdTe）族半导体、小分子、高分子、染料敏化或铜铟硒化镓（copper indium gallium selenide, 简称 CIGS）的镀膜均可使用。然而，由于其是利用薄膜形成成长以降低材料的使用成本，单层薄膜材料的厚度太薄，光吸收能力远不如块材（bulk materials）。又，这些材料在可见光与近红外光的折射率都相当高，太阳光界面反射的损失（reflectance loss）相当严重，所以必须有合适的光耦合（light-in-coupling）及光限制（light trapping）的方法，将太阳光耦合进入薄膜内，并利用结构设计增加光在薄膜内的行程，进而才能有效增加薄膜太阳电池的效率。
[0005] 图 1 绘示传统平面表面太阳光的反射示意图。参阅图 1，以硅块材为例，其表面是光滑面。垂直的入射光会有一部分被反射回去，如箭头所示。其在硅与空气的介面上的反射损失约为 33%。
[0006] 图 2 绘示传统表面具有倒金字塔的表面结构，其对太阳光的反射示意图。参阅图 2，目前传统设计中，效率较高的单晶硅太阳电池采用的结构是采用倒金字塔表面结构。由于倒金字塔表面结构，大部分入射光会经过两次的反射才离开硅基板。倒金字塔结构可以降低入射光线垂直反射的损失，更使反射的光线再入射到结构表面，由此增加光线进入到硅芯片内的比率。经过两次反射后，反射损失可以降低约为 11%。
[0007] 如何设计适合的结构，增加陶瓷基板所制作的薄膜太阳电池的效率是相关业者在研发上需要考虑的问题。

发明内容
[0008] 本发明提供一种光电转换元件以及其制造方法，以至少达到减少反射损失的效果。
[0009] 本发明提供一种光电转换元件，包括基底层与有源层。有源层设置在基底层上。有
源层的接收光面具有表面组织结构。表面组织结构包含重复的多个凹陷单元，每个该凹陷单元包含交叉的三个平面，在交叉处形成有凹尖点。此三个平面相互之间任两个平面的法向量夹角介于 60 度至 120 度的范围。
[0010] 该三个平面相互垂直。
[0011] 该基底层与该有源层构成太阳能电池或是光侦测器。
[0012] 本发明提出一种制造光电转换元件的方法，包括提供基底层。接着，形成表面组织结构于基底层上。表面组织结构包含重复的多个凹陷单元，每个该凹陷单元包含交叉的三个平面，在交叉处形成有凹尖点，该三个平面相互之间任两个平面的法向量夹角介于 60 度至 120 度的范围。有源层形成在该表面组织结构上且与表面组织结构共形。
[0013] 该三个平面相互垂直。本发明提出一种制造光电转换元件的方法，包括提供平坦基底层，形成有源层在该平坦基底层上，以及形成表面组织结构于该有源层上。表面组织结构包含重复的多个凹陷单元，每个凹陷单元包含交叉的三个平面，在交叉处形成有凹尖点，该三个平面相互之间任两个平面的法向量夹角介于 60 度至 120 度的范围。
[0014] 该三个平面相互垂直。
[0015] 为让本发明的上述特征和优点能更明显易懂，下文特举实施例，并配合附图作详细说明如下。

附图说明
[0016] 图 1 绘示平坦表面的反射示意图。
[0017] 图 2 绘示具有倒金字塔的表面结构，其对太阳光的反射示意图。
[0018] 图 3 绘示依据本发明实施例，一种光电转换元件立体结构示意图。
[0019] 图 4 (a) 绘示图 3 的俯视示意图。
[0020] 图 4 (b) 绘示图 4 (a) 的 l-l 剖面示意图。
[0021] 图 5 绘示依据本发明实施例，入射光在表面组织结构产生 3 次反射的光路径示意图。
[0022] 图 6 绘示依据本发明实施例，有源层的表面组织结构示意图。
[0023] 图 7 ～ 9 绘示依据本发明些实施例，光电转换元件的结构示意图。
[0024] 图 10 绘示依据本发明实施例，具有高光耦合效率的光电转换元件的剖面结构示意图。
[0025] 图 11 绘示不同波长下，多种表面组织微结构分别被有源层吸收效率的模拟示意图。
[0026] 图 12 (a) 绘示如图 4 (a) 的一种光电转换元件俯视示意图。
[0027] 图 12 (b) 绘示图 12 (a) 中一个凹陷单元，针对正面入射光分析产生两次的反射与三次的反射的区域示意图。
[0028] 图 13 绘示三个平面之间夹角变化的模式示意图。
[0029] 图 14 绘示依照图 13 的模式进行被硅层吸收的能量效率的理论研究。附图标记说明
[0030] 100：有源层
[0031] 102,104,106：平面
具体实施方式

太阳能电池为一种光电转换元件，目的将入射的光能转变为电能。其效率除了受到内部量子效率的影响外，光子是否能有效到达半导体有源层并被该层吸收亦是影响效率的关键。由于半导体多为高折射率材料，其界面反射率高，因此若未赋予合适的光耦合结构，许多能量将因直接反射而损失，无法穿透进入半导体层。

要达到减少入射光的反射损失，如果结构设计能使反射光在多次重复入射到结构表面，则将能再次降低反射光的损耗。发明提出角钻 (corner cube) 结构。角钻结构是利用包括多个相互垂直的面所构成的凹陷单元，可以使其入射光反射一次后再返回水平方向，增加了光在内部表面的光程。若配合朗伯反射体的陶瓷基板上直接沉积此结构，再镀上薄膜太阳能电池，可比倒金字塔结构的光耦合作效能更佳，进而提升太阳能电池效率。

以下举一些实施例来说明本发明，但是本发明不仅限于所举实施例，且所举实施例之间可以相互适当结合。

图 3 绘示依据本发明实施例，一种光电转换元件立体结构示意图。参阅图 3，本发明通过形成表面组织结构增加在表面结构的反射次数，例如增加会有三次反射的机率。光电转换元件例如包括有源层 100。有源层 100 有表面组织结构 (textured structure)。表面组织结构包含重复的多个凹陷单元，每个该凹陷单元包含交叉的三个平面 102、104、106, 在交叉处形成有凹尖点。此三个平面 102、104、106 相互垂直或近似相互垂直。此三个面可允许光线发生多次反射，使光线更容易进入有源层 11。

另外有源层 100 的表面组织结构可以配合基底层的制作，其关系会在图 7～9 描述。以下先描述表面组织结构的设计以及其例如降低反射损失的机制。

图 4(a) 绘示图 3 的俯视示意图。图 4(b) 绘示图 4(a) 的 1-1 剖面示意图。参阅图 4(a) 与图 4(b)，每一个凹陷单元 150 是由相互垂直的三个平面 102、104、106 构成倒三角锥的结构，其交界线 110 与直角座标的 XYZ 轴相似，倒三角锥的凹尖点 108 可视为座标轴的原点。每一个凹陷单元 150 的边线 112 是在分布在平面上。本实施例是将表面组织结构直接制作在有源层 100 的接收光表面。

在本实施例，多个重复的凹陷单元 150 单元，可以采取三角形排列方式，其中每一
凹陷单元 150 由光电转换元件的正面观察均为正三角形，各正三角形以最密集的方式完整
布满表面。此排列方式下，若只考虑光耦合结构本身对光线的反射，可使大部分的正入射光线
发生 3 次反射。

[005] 使图 5 绘示依据本发明实施例，入射光在表面组织结构产生 3 次反射的光路径示意图。
参阅图 5，由于三个面是相互垂直，光线正向入射时，全部的反射光会在该三个面各反射
一次。在图 5 中，XY 平面、YZ 平面及 XZ 平面为三个相互垂直的平面。入射光如箭头所示将
在三个面各反射一次，之后沿着与入射光相平行的方向出射。三个相互垂直的平面构成一
个凹陷单元。多个凹陷单元组成一个阵列且在适当的排列方式下，若只考虑光耦合结构本
身对光线的反射，可使大部分的正向入射光线发生 3 次反射。因此，本发明提出的表面组织
结构能够更有效提升太阳能电池的光耦合效率。界面的反射损失例如约可以降到 4%。

[0052] 于此，三个平面在优选状况是相互垂直，此时凹陷单元不需太深即可有良好的光
耦合效果。然而，如果是近似于相互垂直也有其效果。换句话说，三个面之间任两面的法向
量夹角介于 60 度和 120 度的范围仍有实质的效果。

[005] 使图 6 绘示依据本发明实施例，有源层的表面组织结构示意图。参阅图 6，有源层的
表面组织结构 200 的凹陷单元例如是以正交的三个交叉平面 202、204、206 所组成，其共同
交叉点就是凹陷点 208。由正面来看凹陷单元边界是正六角形。不同排列方式会有不同效
果。若只考虑光耦合结构本身对光线的反射，经过适当的安排，其甚至可以使 100%的正入
射光线都发生 3 次反射。

[0054] 另外，凹陷单元的大小也可依实际需要做调整。只要凹陷单元的大小大于入射光
波长的十倍以上，凹陷单元的大小并不影响光的反射效果。

[0055] 就制作上来看，要使有源层具有表面组织结构，可以有不同的制作流程，有使得叠
层的结构有一些不同。图 7 绘示依据本发明实施例，光电转换元件的结构示意图。参阅图 7，
本发明的表面组织结构可以先制作在基板 210 上。制作的方式例如是采用热压、热滚压、激
光、黄光蚀刻等工艺技术，先将由凹陷单元构成的阵列结构制作在光电转换元件的基
板 210 上。接着，以镀膜或其他方式在基板 210 上，覆盖上实际需要的各种膜层，其中包含
有源层 212，如下，包含有源层 212 在内的各膜层，重复形成于基板 210 的结构上与表面组
织结构共形。因此有源层 212 的接面光面也具有相同的表面组织结构。

[0056] 除了图 7 的制作方式，也可采取另一种制作方式。图 8 绘示依据本发明实施例，光
电转换元件的结构示意图。参阅图 8，基板 210 可以是平坦的面。另外通过上述方法或是热
成型、光成型等工艺技术将此结构制作在有源层和基板之间的某一中间层 214 上。中间层
214 具有表面组织微结构。借着以镀膜或其他方式覆盖上包含有源层 212 在内的其他组
成膜层，使包含有源层 212 在内的其他组成膜层与表面组织微结构共形，因此有源层 212 也
具有表面组织微结构。

[0057] 再另一种制作方式如图 9 所示。图 9 绘示依据本发明实施例，光电转换元件的结
构示意图。参阅图 9，在陶瓷基板 210 上辅以一层或多层材料，并例如利用前述的工艺方法，
将表面组织微结构直接制作于有源层 212 的一个界面上。

[0058] 换句话说，有源层 212 的接收光的面需要制作前述的面组织结构，但是就叠层结
构而言，其制作方式无须限制在特定制作流程。

[0059] 图 10 绘示依据本发明实施例，具有高光耦合效率的光电转换元件的剖面结构示
意图。参阅图10，光电转换元件的实施例包括基板300采用陶瓷基板，以模具压印的方式于制作出本发明提出的角隅结构。陶瓷基板300上沉积有例如二氧化硅的共形层302,厚度例如为100 μm。有源层304,例如厚度为5 μm的单晶硅材料，沉积于共形层302上也与其共形。因此有源层304也具有表面组织微结构。共形层302及有源层304都重复陶瓷基板300的表面组织微结构，其由多个重复的凹陷单元所组成。每一个凹陷单元包含三个相互垂直的面。每一凹陷单元由正面观察为边长20 μm的正三角形，各正三角形以最密集的方式完整布满表面。

[0060] 图11绘示多种表面组织微结构分别被有源层吸收的能量分布模拟示意图。参阅图11，由圆点构成的曲线是有源层上未制作任何结构所模拟得到的吸光效率对波长反应图。由三角点构成的曲线是于有源层上制作倒金字塔结构，在相同的材料下模拟所得到的吸光效率对波长反应图。由交叉点构成的曲线是采用相同的材料，但是制作如图10的表面组织结构经模拟所得的吸光效率对波长反应图。

[0061] 由图11的结果可以看出，本发明提出的角隅状的凹陷单元，确实有助于吸收光的能量，也就是说减少反射损失。其中原因之一是本发明提高具有3次以上的反射点的比例，因此允许入射光有更多机会进入有源层而被吸收。

[0062] 图12(a)绘示如图4(a)的一种光电转换元件立体结构俯视示意图。参阅图12(a),取一个凹陷单元150如图3中所界定的一个区域，以进行光线迹的模拟。图12(b)绘示图12(a)中一个凹陷单元150,针对正面入射光分析产生二次的反射与三次的反射的区域。根据本实施例的倒三角锥结构，进入三次反射区域400的光会经过三个面的三次反射后才被反射回去。又，进入二次反射区域402的光经过二个面的两次反射后就被反射回去。由于光分子表面的反射，有源层就会一次机会吸收部分的光，因此三次反射区域400的增大会使光吸收率增大。

[0063] 另外，由于凹陷的平面102,104,106对垂直于基底层的入射光而言不是垂直入射，也就是说入射角不是零度。考虑到反射率与入射角的关系，从学理数据显示，非偏振光在入射角小于60度的反射率大致上相同，入射角大于60度的反射率会急速上升。本发明凹陷的平面102,104,106与正面入射光的入射角是小于60度，因此本发明的表面组织微结构不会造成增加表面反射率。

[0064] 进一步关于改变三个平面间其间的夹角的探讨，其无需限制在三个平面相互垂直。本发明做了理论的研究。图13绘示三个平面其间夹角变化的模式示意图。取图13所示的模式，一些参数定义如下。在一个xyz坐标系统中，在x轴几何下，角隅的顶点位于原点O。假如顶点在向量[1,1,1]的方向上来回移动，则ψ角度不再是90度，ψ = ζ AOB = ζ BOC = ζ AOC。另外，θ角度定义为三个平面AOB, AOC,与BOC的任两个平面的垂直方向的夹角。如先前提到，θ角度可以是约为90度，例如是约在60°至120°的范围。类似地，ψ角度也可以是约为90度。

[0065] 图14绘示依照图13的模式进行被硅层吸收的能量效率的理论研究。参阅图14(b),被硅层吸收的能量效率的研究。如其所示，被硅层吸收的能量随着θ角度增加而增加，尤其在θ角度介于60度和90度之间，增加的幅度最为明显。而当θ角度大于90度时，被硅层吸收的能量趋于稳定。因此，θ角度介于60度至120度的范围内都有良好效果，其中θ角度以90度为佳，因为即使再增加角度，能提高吸收的效果有限，反而会提高
制程的难度。本发明采用角隅结构当作凹陷单元，可以增加对入射光产生三次以上反射的区域，能有效提升对入射光的吸收。

【0066】虽然本发明已以实施例披露如上，然其并非用以限定本发明，任何所属技术领域中普通技术人员，在不脱离本发明的精神和范围内，当可作些许的更动与润饰，故本发明的保护范围当视所附的权利要求界定为准。