

P/00/008 28/5/91
Section 29(1)
Regulation 3.1 (2)

AUSTRALIA

Patents Act 1990

NOTICE OF ENTITLEMENT

(To be filed before acceptance)

We, Jorg WILDENBURG and Georg WILL of Rockumstr. 47, D 5300 BONN 1, Germany and Schlehenweg 17, D 5357 SWISTTAL-BUSCHHOVEN, Germany.

being the applicants and nominated persons in respect of Application No. 44819/89, state the following:-

Part 1 - We are the actual inventors.

Parts 2 and 3 - (Not applicable)

Part 4 - We are the applicants of the application listed in the declaration under Article 8 of the PCT.

The basic application listed in the declaration made under Article 8 of the PCT was the first application made in a Convention country in respect of the invention

Parts 5, 6 and 7 - (Not applicable)

DATED THIS 3RD MARCH 1992

Jorg WILDENBURG and Georg WILL

GRIFFITH HACK & CO.

To: The Commissioner of Patents

(12) PATENT ABRIDGMENT (11) Document No. AU-B-44819/89
(19) AUSTRALIAN PATENT OFFICE (10) Acceptance No. 624875

(54) Title
BORON NITRIDE OF HIGH HARDNESS

International Patent Classification(s)
(51)⁵ C01B 021/064 B01J 003/06 C04B 035/58

(21) Application No. : 44819/89 (22) Application Date : 11.09.89

(87) PCT Publication Number : WO90/02704

(30) Priority Data

(31) Number (32) Date (33) Country
3830840 10.09.88 DE FEDERAL REPUBLIC OF GERMANY

(43) Publication Date : 02.04.90

(44) Publication Date of Accepted Application : 25.06.92

(71) Applicant(s)
JORG WILDENBURG; GEORG WILL

(72) Inventor(s)
JORG WILDENBURG; GEORG WILL

(74) Attorney or Agent
GRIFFITH HACK & CO , GPO Box 1285K, MELBOURNE VIC 3001

(56) Prior Art Documents
US 3233988
US 4361543
US 2947617

(57) Claim

1. Boron nitride (aBN-2) with an amorphous structure as determined by electron beam and X-ray, and with a hardness sufficient to scratch diamond.
2. Process for the production of boron nitride of high hardness from hexagonal or turbostratic boron nitride (BN) as starting material, which is subjected to pressures above 70 Kbar and temperature of at least 1650°C, characterized in that the starting material is subjected to the pressures and temperatures for long enough for it to be completely melted, following which the thus obtained boron nitride melt is quenched and grains of amorphous boron nitride (aBN-2) with X-ray and electron beam amorphous structure and with a hardness sufficient to scratch diamond, are formed.

OPI DATE 02/04/90 APPLN. ID 44819 / 89

PCT
 INTERNATIONALE ZUTÄMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT)
 AOJP DATE 10/05/90 PC NUMBER PCT/EP89/01049 IE
 624975

(51) Internationale Patentklassifikation ⁵ : C01B 21/064, C04B 35/58 B01J 3/06		A1	(11) Internationale Veröffentlichungsnummer: WO 90/02704 (13) Internationales Veröffentlichungsdatum: 22. März 1990 (22.03.90)
(21) Internationales Aktenzeichen: PCT/EP89/01049		HU, IT (europäisches Patent), JP, KP, KR, LK, LU (europäisches Patent), ML (OAPI Patent), MR (OAPI Patent), NL (europäisches Patent), NO, RO, SE (europäisches Patent), SN (OAPI Patent), SU, TD (OAPI Patent), TG (OAPI Patent), US.	
(22) Internationales Anmeldedatum: 11. September 1989 (11.09.89)		Veröffentlicht Mit internationalem Recherchenbericht. Vor Ablauf der für Änderungen der Ansprüche zugelassenen Frist. Veröffentlichung wird wiederholt falls Änderungen eintreffen.	
(30) Prioritätsdaten: P 38 30 840.1 10. September 1988 (10.09.88) DE			
(71)(72) Anmelder und Erfinder: WILDENBURG, Jörg [DE/DE]; Röckumstr. 47, D-5300 Bonn 1 (DE). WILL, Georg [DE/DE]; Schlehenweg 17, D-5357 Swisttal-Buschhoven (DE).			
(74) Anwalt: MÜLLER-GERBES, Margot; Friedrich-Breuer-Str. 112, D-5300 Bonn 3 (DE).			
(81) Bestimmungsstaaten: AT (europäisches Patent), AU, BB, BE (europäisches Patent), BF (OAPI Patent), BG, BJ (OAPI Patent), BR, CF (OAPI Patent), CG (OAPI Patent), CH (europäisches Patent), CM (OAPI Patent), DE (europäisches Patent), DK, FI, FR (europäisches Patent), GA (OAPI Patent), GB (europäisches Patent),			

(54) Title: BORON NITRIDE OF HIGH HARDNESS

(54) Bezeichnung: BORNITRID HOHER HÄRTE

(57) Abstract

The invention concerns a boron nitride with an amorphous structure, which can scratch natural diamond, and a process for producing it. According to this process high-hardness amorphous boron nitride can be obtained from hexagonal or turbostratified boron nitride by subjecting the basic material to pressures in excess of 75 kbar and temperatures of at least 1650°C, until total melting, followed by hardening. Preferably the reaction conditions are maintained in the fusion region over an interval of several minutes, and hardening is achieved by first cutting off the input of heat, which is then followed by stress relief. Preferably 3% to 20% by weight of a catalyst is added, for example Pt, Zr, H₂O, Co or C.

(57) Zusammenfassung

Die Erfindung betrifft ein Bornitrid mit amorpher Struktur, das natürlichen Diamant ritzten kann, und ein Verfahren zu seiner Herstellung. Gemäß diesem Verfahren wird amorphes Bornitrid hoher Härte aus hexagonalen oder turbostratischem Bornitrid erhalten indem das Ausgangsmaterial an Drucken von über 75Kbar und Temperaturen von mindestens 1650°C unterworfen wird, bis es vollständig aufgeschmolzen ist und nachfolgend abgeschreckt wird. Vorzugsweise hält man die Reaktionsbedingungen im Schmelzbereich über einen mehrminütigen Zeitraum aufrecht und wird zum Abschrecken zuerst die Wärmezufuhr abgestellt und dann die Druckentlastung durchgeführt. Vorzugsweise wird 3 bis 20 Gewichtsprozent eines Katalysators wie z.B. Pt, Zr, H₂O, Co oder C zugegeben.

Abstract

5 The invention relates to a boron nitride, of amorphous structure, which can scratch diamond, and to a process for its production.

-amended page 2-

1 finds a use as a cutting grain in the tool and abrasive
industry. A further form of boron nitride is known under the
name "turbostratic boron nitride, tBN". It is used as a
5 starting material for pressed bodies and for the production of
cubic boron nitride.

10 In addition to these, up to now there has only been a so-called
"amorphous boron nitride", synthesized by Sumiya et al., see
Materials Research Buletin, 18 pages 1203-1207, 1983, it is
termed aBN-1 below, for the soft phase produced at normal
atmospheric pressure. This aBN-1 is a boron structure, but
consists of fragments of crystal lattice and is soft. Thus it
is not established whether aBN-1 is really amorphous or whether
15 it is only present in a finely-powdered state.

20 A suitable apparatus for producing the pressures and
temperatures in order to produce cubic boron nitride from
hexagonal boron nitride is described, for example, in U.S.
Patent 2,941,243.

25 There is at present a great industrial need for abrasives of
greater hardness. The object of the invention is to supplement
or widen the palette of the known abrasives with a new one.

30 According to the invention, an amorphous boron nitride (aBN-2)
of a structure which is amorphous by X-ray and electron beam
determination, and with a hardness sufficient to scratch
diamond has been found. It is characterized by an amorphous
(internal) structure, i.e., non-crystalline arrangement of the
atoms. Apart from this, the grains can however have a
35 pseudomorphic form, i.e., the hexagonal or cubic form can still
exist. The grains can also have a glassy external form. To
distinguish it from the known boron nitride produced at normal
pressure and called amorphous, termed aBN-1, the amorphous
boron nitride according to the invention is termed aBN-2. The
boron nitride according to the invention

-amended page 3-

1 is amorphous by X-rays and electron beam.
According to the invention, amorphous boron nitride of high
hardness can be produced from hexagonal or turbostratic boron
nitride (BN) as starting material, being treated at pressures
exceeding 70 Kbar, preferably 75 Kbar or more at temperatures
5 of at least 1650°C or higher, by subjecting the starting
material to these pressures and temperatures until it is
completely molten, then the thus obtained boron nitride melt is
quenched and thereby grains of amorphous Boron nitride (aBN-2)
of a structure which is amorphous by X-ray and electron beam
10 and with a hardness sufficient to scratch diamond result. The
crystalline components contained in the starting material are,
according to the invention, completely melted and :
receive by quenching the consistency of a metastable,
supercooled melt, so that there result grains of completely
15 amorphous boron nitride with X-ray and electron beam amorphous
structure, termed aBN-2.

20 In carrying out the process, after melting, the heat supply is
first shut off for quenching the starting material, or if
necessary a partial cooling of the melt, still under full
pressure, is carried out, and relief of the pressure is then
effected.

25 In order to carry out the process with good results, it is
provided that after the heating of the starting material in the
melt region, the reaction conditions of pressure and
temperature are maintained for a long period. Here a period of
at least several minutes should be adhered to. The period
increases in dependence on increasing amounts of the charged
30 material. In this way it is ensured that all the crystal nuclei
present are destroyed, i.e. that crystal nuclei are no longer
present. The heating times take, according to the amount of
starting material, 5- 30 minutes with the known apparatuses.

35 The process according to the invention is carried out with
charging of clean, i.e. pure, starting material, preferably
hexagonal boron nitride, and at the given pressures and
temperatures.

1 According to the invention, amorphous boron nitride of high
hardness can be produced from hexagonal or turbostratic
boron nitride (BN) as starting material, at pressures
exceeding 70 Kbar, preferably 75 Kbar or more, and at temper-
5 eratures of at least 1650°C or higher, by complete melting
of the boron nitride charged, in that the thus obtained
boron nitride melt is quenched. The crystalline compnennts
contained in the starting material are, according to the
invention, completely melted and receive by quenching the
10 consistency of a metastable, supercooled melt, so that there
result grains of completely amorphous boron nitride with X-
ray and electron beam amorphous structure, termed aBN-2.

15 In carrying out the process, after melting, the heat supply
is first shut off for quenching the starting material, or if
necessary a partial cooling of the melt, still under full
pressure, is carried out, and relief of the pressure is then
effected.

20 In order to carry out the process with good results, it is
provided that after the heating of the starting material in
the melt region, the reaction conditions of pressure and
temperature are maintained for a long period. Here a period
of at least several minutes should be adhered to. The
25 period increases in dependence on increasing amounts of the
charged material. In this way it is ensured that all the
crystal nuclei present are destroyed, i.e., that crystal
nuclei are no longer present. The heating times take,
according to the amount of starting material, 5 - 30 minutes
30 with the known apparatuses.

35 The process according to the invention is carried out with
charging of clean, i.e. pure, starting material, preferably
hexagonal boron nitride, and at the given pressures and
temperatures.

1 It was found according to the invention that amorphous boron
nitride of high hardness (aBN-2) can be produced without the
addition of catalysts. Here active catalysts and passive
catalysts are to be distinguished.

5

The active catalysts engage in the process as reactants
themselves and require a large mass fraction to the starting
substance. Hence they are present as a foreign phase in the
product of the process or very strongly determine the form
10 and size of the process product. They have to be subse-
quently removed. It was found according to the invention
that the yield of amorphous boron nitride, aBN-2, is marked-
ly higher without addition of catalyst to the starting
material, or with the addition of passive catalysts, than it
15 is when active catalysts are added. As active catalysts
there were used Li_3N , Mg_3N_2 , BCl_3 , CCl_4 , NH_4Cl , NH_4F ,
 $\text{Ca}_3\text{B}_2\text{N}_4$.

According to the invention, passive catalysts were effect-
20ively used. These act favorably on the flow behavior and
the heat transfer to the starting material during pressing
and melting. At the end of the process for the production
of aBN-2, they are either present unchanged or, with water
as catalyst, no longer present. The yield of aBN-2 is
25 increased up to nearly 100% in relation to the starting
material by the use of passive catalysts. By the use of
passive catalysts, larger grains of aBN-2 can be produced.
Suitable passive catalysts are, e.g., Pt, Zr, H_2O , Co and C
(platinum, zirconium, water, cobalt and carbon).

30

It has been found to be advantageous to add passive cat-
alysts in small amounts, such as about 3 - 20 wt.% in rel-
ation to the amount of the starting material.

35

The direct production of amorphous boron nitride aBN-2
without catalysts takes place with good yield already from

1 pressures of 75 - 78 Kbar at temperatures of 1800 - 2000°C,
preferably from 1900°C. As long as the reaction conditions
of temperature and pressure are high enough and a suffi-
ciently long period is maintained, so that according to the
5 invention a melt completely free from crystal nuclei is
obtained, the starting material is completely converted into
amorphous boron nitride aBN-2. If on the contrary the
reaction conditions of temperature and pressure are left
insufficiently high and do not act for long enough on the
10 starting material (BN), then cubic boron nitride is formed,
among others.

15 Further developments of the invention are explained below in
an example of an embodiment and with reference to the
drawings.

Figures 1 - 8 show electron microscope pictures of
different kinds of boron nitride

20 Figure 9 shows a phase diagram of the different boron
nitrides
[KEY: Ordinate, Pressure (Kbar); abscissa,
Temperature °C; "Schmelze" = Melt.]

25 Figure 10 shows a picture of a scratched diamond
(001)

Figure 11 shows a picture of polished aBN-2 grains

30 Figure 12 shows a schematic view of a high pressure
press

Figure 13 shows a schematic assembly drawing of a press
tool

35 Figure 14 shows a schematic cross section through a

-amended page 7-

1 externally. The outer closure is then formed by a thick-walled
5 tube 303 of pyrophyllite, if necessary in a soft setting. The
thus insulated heatable platinum capsule is then covered top
and bottom with steel or molybdenum plates 301b, which contact
10 the graphite tube 304 and act as current leads. The covers 300
form the closure; they have cover plates 302 of sintered
15 corundum, Al_2O_3 , which are mounted in steel rings 301 and act
as abutment faces for the press punch. The platinum skin of the
capsule acts as a protective cover for the boron nitride and is
temperature-stable up to about 1680°C. Molten platinum is thus
20 an indication that this temperature was exceeded in the
production of aBN-2.

15 This high pressure insert 30 makes it possible to supply
pressure and temperature in a suitable manner and of the
required magnitude to the boron nitride in the capsule
interior. The completed high pressure insert 30 is inserted
25 into the press tool, see Figure 13. This consists in principle
of three rotationally symmetrical parts:

20 - The upper press plate 20 with water cooling and plunger mount
with plunger 27 of tungsten carbide hard material,
- The middle press collar 22 with water cooling and the inner
annular press die 223 of tungsten carbide hard material,
- The lower press plate 21, which is fitted mirror imagewise
25 symmetrically of the upper press plate and likewise has water
cooling, plunger mount and plunger 28 of tungsten carbide
hard material.

30 The press plates 20, 21 and also the press collar 22 are
respectively assembled from several rings 201, 202, 203 or 211,
212, 213, or 221, 222, 223 of which the two outer ones are made
of steel or the like and the respective innermost ring consists
of hard material. Thus the inner rings of the press plates form
the plunger mounts for the plungers 27 or 28 and are likewise
35 made of tungsten carbide hard material. The plungers are
conically shaped at the head and are introduced into
corresponding conical apertures 224, 225 at the top and bottom
of the press die 223.

-amended page 8-

1 Figure 13 shows the press tool in the retracted position of the
parts. The press die 223 has a cylindrical cavity 220 in the
center, which will be termed "the belt" and into which the high
pressure insert is inserted, so that it projects, however,
upwards and downwards into the conical-shaped enlargements 224.
5 When the plungers 27, 28 are advanced, the high pressure insert
is pressed together in the direction of the narrowest place
220, the belt. All the metal parts of the press tool including
the plungers are heated by electric current and hence very
strongly heated. For this reason, the tool parts 20, 21, 22 are
10 cooled. For this purpose, they are provided with through-flow
cooling channels 24, which are shown here only schematically,
and which are connected via inlets 240, 241, 242 to each press
tool and via outlets 250, 251, 252 to a cooling water system.
15 The cooling water circuit is designed such that the cooling
water is first introduced at an inlet 240 into the upper press
plate in the direction of the arrow E, then from the upper
press plate into the lower press plate via the duct 25 and via
the inlet 241, then out of the lower press plate via the duct
20 26 into the press collar via the inlet 242, and out of this is
fed back again into the cooling water supply at the outlet A.

25 The described three-part press tool is connected, during the
synthesis of aBN-2, to a cooling water circuit and also to a
source for the heating current. The cooling water reduces the
material loading on the steel and hard material. The current
feed is arranged such that a high current (40 - 20 A) can flow
at low voltage (2 - 10 V) into the interior of the assembly and
can there heat the graphite hollow cylinder due to its inherent
resistance. This miniature furnace is insulated by the
30 pyrophyllite cylinder 306b as a sheath around the platinum
capsule 306.

35 The heatable water-cooled press tool is placed in a hydraulic
630 t press and acted on by a press force of a maximum of
110 t: see the schematic representation of a press 100 in
Figure 12.

- 1 - The middle press collar 22 with water cooling and the inner annular press die 223 of tungsten carbide hard material,
- 5 - The lower press plate 21, which is fitted mirror imagewise symmetrically of the upper press plate and likewise has water cooling, plunger mount and plunger 28 of tungsten carbide hard material.

10 The press plates 20, 21 and also the press collar 22 are respectively assembled from several rings 201, 202, 203 or 211, 212, 213 or 221, 222, 223 of which the two outer ones are made of steel or the like and the respective innermost ring consists of hard material. Thus the inner rings of the press plates form the plunger mounts for the plungers 27 or 15 28 and are likewise made of tungsten carbide hard material. The plungers are conically shaped at the head and are introduced into corresponding conical apertures 224, 225 at the top and bottom of the press die 223.

20 Figure 13 shows the press tool in the retracted position of the parts. The press die 223 has a cylindrical cavity 20 [sic - 220?] in the center, which will be termed "the belt" and into which the high pressure insert is inserted, so that it projects, however, upwards and downwards into the 25 conical-shaped enlargements 224. When the plungers 27, 28 are advanced, the high pressure insert is pressed together in the direction of the narrowest place 224 [sic], the belt. All the metal parts of the press tool including the plungers are heated by electric current and hence very strongly 30 heated. For this reason, the tool parts 20, 21, 22 are cooled. For this purpose, they are provided with through-flow cooling channels 24, which are shown here only schematically, and which are connected via inlets 240, 241, 242 to each press tool and via outlets 250, 251, 252 to a cooling water system. The cooling water circuit is designed 35 such that the cooling water is first introduced at an inlet

1 240 into the upper press plate in the direction of the arrow
E, then from the upper press plate into the lower press
plate via the duct 25 and via the inlet 241, then out of the
lower press plate via the duct 26 into the press collar via
5 the inlet 242, and out of this is fed back again into the
cooling water supply at the outlet A.

10 The described three-part press tool is connected, during the
synthesis of aBN-2, to a cooling water circuit and also to a
source for the heating current. The cooling water reduces
the material loading on the steel and hard material. The
current feed is arranged such that a high current (40 - 20
A) can flow at low voltage (2 - 10 V) into the interior of
15 the assembly and can there heat the graphite hollow cylinder
due to its inherent resistance. This miniature furnace is
insulated by the pyrophyllite cylinder 306b as a sheath
around the platinum capsule 306.

20 The heatable water-cooled press tool is placed in a hydraulic 630 t press and acted on by a press force of a maximum
of 110 t: see the schematic representation of a press 100 in
Figure 12.

25 The reaction times are 15 - 30 minutes. The crystalline
components contained in the starting substance are
completely melted by the pressure and temperature
conditions.

30 After this time the high pressure insert or the capsule is
quenched by cessation of the heating current, followed by
pressure relief in a matter of seconds. After quenching,
the starting material has been converted and possesses the
consistency of a metastable supercooled melt, i.e., glass-
like material - BN-glass - termed aBN-2. Since the mass of
35 the inserted capsule is small, the capsule can cool down
(from melt temperature to about room temperature) in a

1 matter of seconds after the heating current is switched off,
due to which crystallization is prevented. As against this,
the decompression takes several minutes.

5 For preparation of the initial mixture, 46 mg of hBN and 4
mg of water were used. About 1kW heating load was used for
the temperature production. For water cooling during the
synthesis, about 500 l of water circulated through the
cooling system. The most rapid heating-up time from 20°C to
10 1700°C took about 3 minutes, and the pressure loading took
on average 5 minutes to reach the maximum value provided by
the press used, about 78 Kbar.

15 Setting and regulation of temperature was carried out by
measurements on calibration assemblies and extrapolation of
the load curve. The synthesis assembly was measured with
Ni-NiCr thermoelements up to 1200°C and plotted against the
heating load. The measurement curve obtained was extrap-
olated to 2000°C.

20 The heating load was manually controlled on the basis of the
data thus obtained. For further temperature monitoring,
thermochromic pigments were used instead of the sample.
These oxide pigments show a characteristic color change on
25 reaching a minimum temperature. The finest temperature
gradients in the sample space could thus be measured by
microscopic evaluation. Further, a temperature estimation
was carried out based on the melting of the crucible
material. The maximum temperature reached was accordingly
30 2000°C.

35 A temperature distribution on heating the high pressure
insert in the press tool is shown schematically in Figure
15. It can be seen how the high temperatures produced by
the graphite tube 304 spread out and simultaneously there
occurs on the outside a screening by the cover parts 302 and

1 the pyrophyllite tube 303. The momentary temperature pic-
ture on reaching 1600°C in the graphite tube is shown, where
a temperature of about 1400°C is present in the adjacent
zone t, a temperature of 1100°C in the adjoining zone z, a
5 temperature of about 700°C in the center y, and externally a
temperature of about 740°C is present in the regions x.

10 The pressure reached in the interior of the capsule was
calculated from calibration pressure curves of bismuth
strips (with known transition pressures) and by computer
methods. At most 80 Kbar was attained here.

15 The product obtained consists of water-clear to amber-
colored grains of 1/100 mm to 1 mm diameter, which in a
compact mass appear white to brownish-black. Because of the
small dimensions of the sample space used, the yield of
large grains (0.5 - 1 mm) is low, i.e., 3 volumes %. The
largest proportion, at 50 volume %, is of grains of about
20 1/50 mm size. The residual fraction consists of grains with
diverse sizes. The grains are amorphous by X-ray and elec-
tron beam, and scratch diamond on all faces: see Figure 10.
They show strains in polarized light, have insulating prop-
erties, and conduct heat well. Scanning electron microscope
pictures show a glass-like grain form, but pseudomorphic
25 forms are also possible. The individual grains have a
somewhat irregular ameba-like shape.

30 The amorphous boron nitride ABN-2 according to the invention
is a tough material which can be used advantageously in
grinding wheels, since it shows little tendency to shatter.
This is also an advantage over diamond and cubic boron
nitride, which can be split along the different fracture
surfaces of the crystal lattice. As a grinding material, it
has a substantially higher working life than, e.g., cBN or
35 diamond, since these are more likely to shatter because of
the crystal structure. The new amorphous and tough boron

1 nitride aBN-2, as against this, cannot be fractured in an
oriented manner.

5 When a passive catalyst, e.g., platinum or cobalt, is added,
a greater yield of large grains is obtained.

10 The product according to the invention - amorphous boron
nitride aBN-2 - is compared with the different known var-
ieties of boron nitride by means of electron microscope
pictures.

15 Figure 1 shows hexagonal boron nitride (hBN) in a
scanning electron microscope picture,
enlarged about x 10600. Six-cornered
platelets can be clearly seen.

20 Figure 2 shows hexagonal boron nitride (hBN) in a
transmission electron microscope diffraction
exposure (0001). Many fine reflection points
can be seen on concentric circles. hBN is
a starting material for the production of
aBN-2.

25 Figure 3 shows "turbostratic" boron nitride (tBN) in a
scanning electron microscope exposure, enlar-
ged about x 10600. Starting material for the
production of aBN-2.

30 Figure 4 shows "Turbostratic" boron nitride (tBN) in a
transmission electron microscope diffraction
exposure (0001). Many reflection points can
be seen, some double.

35 Figure 5 shows cubic boron nitride (cBN) in a scanning
electron microscope exposure, enlarged about
x 570. Up to now the hardest BN modification

1

in cubic habit, according to U.S. Patent 2,947,617.

5

Figure 6 shows cubic boron nitride (cBN) in a transmission electron microscope diffraction exposure (111). A few strong reflection points are seen in a 6-angled grid arrangement with a view in the direction of a 3-fold space axis.

10

Figure 7 shows the new kind of boron nitride (aBN-2) in a scanning electron microscope exposure, enlarged about $\times 800$. Melt particles without symmetry or faces can be seen, in a finer matrix.

15

Figure 8 shows the new kind of boron nitride (aBN-2) in a transmission electron microscope diffraction exposure without orientation. No (!) reflection points can be seen, but only diffuse rings. A true amorphous material is concerned.

20

Figure 9 shows the phase diagram of hexagonal boron nitride (hBN), cubic boron nitride (cBN) and amorphous boron nitride (aBN-s) in dependence on pressure and temperature, as ascertained by research on direct synthesis of amorphous aBN-2. hBN is represented by \circ , cBN by \square , and aBN-2 by ∇ . The broken lines indicate the assumed phase boundaries between the physically different substances. The identification of the phases resulted after quenching and decompression. It is conceivable that the phase boundaries are displaced in an in-situ process.

30

35

1

Figure 10 shows a photograph, enlarged 50 times, of a flat surface (001 face) of a brilliant-cut diamond, scratched by amorphous aBN-2 grains.

5

Figure 11 shows a sectional picture of aBN-2 grains, enlarged, showing the ameba-like external shape. The white spots represent molten platinum droplets.

10

The diagram and the production processes, which have been compared with each other, for cBN and aBN-2 confirm that aBN-2 is obtained when the reaction conditions are chosen such that the pressure for the production of aBN-2 is markedly higher than for the production of cBN at altogether higher temperatures.

For confirmation of the hardness of the aBN-2 according to the invention, a hardness measurement was performed according 20 to the setup schematically shown in Figure 16. A diamond 41 was tightly clamped in a plate 42. A drill 40 was equipped at the tip with grains 45 of amorphous aBN-2. The drill 40 was then pressed perpendicularly onto the diamond at a speed of 30,000 r.p.m. and a pressing force of 250 g. Here a 25 force of 8 t was reached at the tip of the aBN-2 material loaded on the tightly clamped diamond 41. This test was continued for several hours, and in the course of time an erosion of diamond by the drill tip was effected, and can then be measured as penetration into the diamond as path 30 length.

The hardness measurements of aBN-2 against diamond carried out according to Figure 16 are shown in Figure 17, and in fact for three trials V1, V2 and V3; the average curve from these, Vsum, is likewise indicated. The penetration depth 35 into the diamond 41 was measured against the time in hours.

1 The confirmation was thus derived that the aBN-2 according
to the invention, which is amorphous by electron beam and X-
rays, is able to scratch diamond and has a hardness compar-
able to that of diamond. In addition, aBN-2 and cBN were
5 subjected to hard X-rays (synchrotron radiation) and the
diagrams were sketched.

10 The sketched curve of cBN is shown in Figure 18; the angular
dispersion with hard X-ray irradiation was measured with a
diffractometer. The single peaks are clearly visible, and
provide the confirmation of the crystal structure of cBN.

15 The measured diagram for amorphous aBN-2 is shown in Figure
19, and in fact the energy dispersion, measured in the
diffractometer, but with a substantially higher resolution,
since the aBN-2 has no crystal structure and to this extent
there could not be a recognizable measurement curve in a
representation according to Figure 18. The smaller, upward-
20 directed peaks, shown in Figure 19 and recognizable from the
measurement curve, are caused by the means of attachment of
the aBN-2 grains to a measurement head and hence excluded
from consideration relating to aBN-2. The amorphous struc-
ture of aBN-2 is likewise established with this measurement
result according to Figure 19.

THE CLAIMS DEFINING THE INVENTION ARE AS FOLLOWS:

1. Boron nitride (aBN-2) with an amorphous structure as determined by electron beam and X-ray, and with a hardness sufficient to scratch diamond.
- 5 2. Process for the production of boron nitride of high hardness from hexagonal or turbostratic boron nitride (BN) as starting material, which is subjected to pressures above 70 Kbar and temperature of at least 1650°C, characterized in that the starting material is subjected to 10 the pressures and temperatures for long enough for it to be completely melted, following which the thus obtained boron nitride melt is quenched and grains of amorphous boron nitride (aBN-2) with X-ray and electron beam amorphous structure and with a hardness sufficient to scratch 15 diamond, are formed.
3. Process according to Claim 2 in which the pressure is 75Kbar or more.
4. Process according to Claim 2 or Claim 3, characterized in that to quench the boron nitride melt the 20 heat supply is first stopped and after this, pressure relief is performed.
5. Process according to any one of Claims 2 to 4, characterized in that the starting material (BN) is subjected to the desired reaction conditions of temperature 25 and pressure for a long period of several minutes.
6. Process according to any one of Claims 2 to 5, characterized in that the starting material (BN) is subjected to pressures of at least 75 Kbar and temperatures of at least 1900°C.

7. Process according to any one of Claims 2 - 6, characterized in that a passive catalyst such as water (H_2O), carbon (C), platinum (Pt), zirconium (Zr) or cobalt (Co) is added to the starting material (BN).

5 8. Process according to Claim 7, characterized in that the passive catalyst is added in amounts of 3 - 20 wt.%, based on the amount of the starting material (BN).

10

DATED THIS 3RD DAY OF MARCH 1992

Jorg WILDENBURG and Georg WILL

By its Patent Attorneys:

GRIFFITH HACK & CO

Fellows Institute of Patent
Attorneys of Australia.

1/11

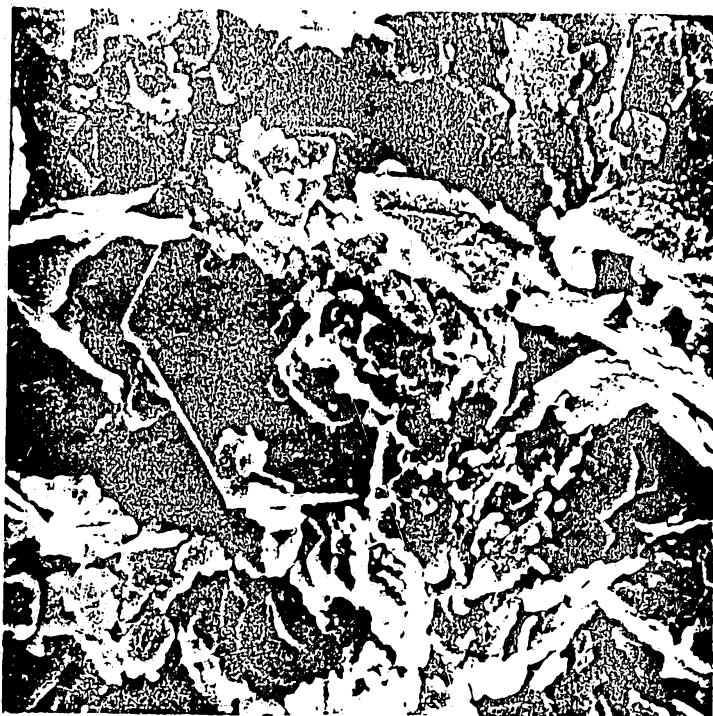


Fig. 1

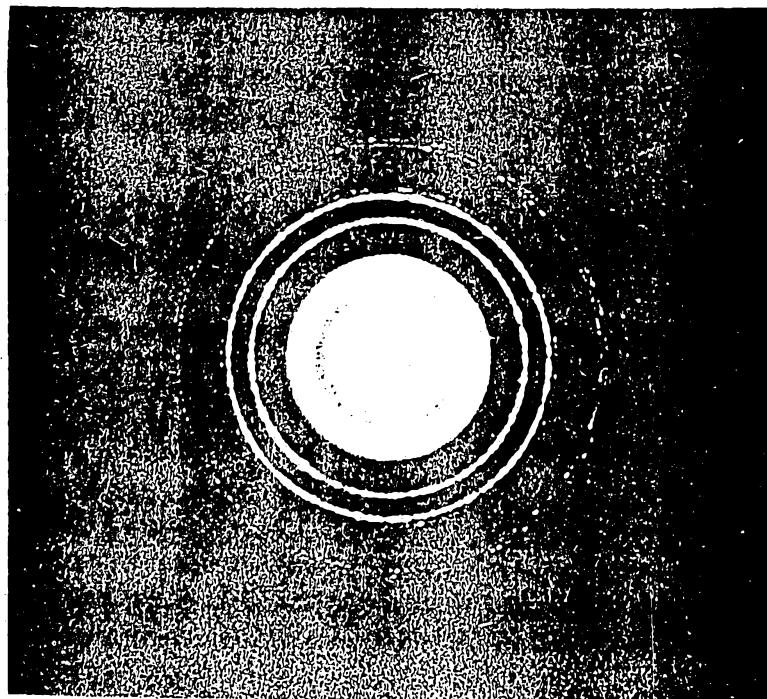


Fig. 2

2/11

Fig. 3

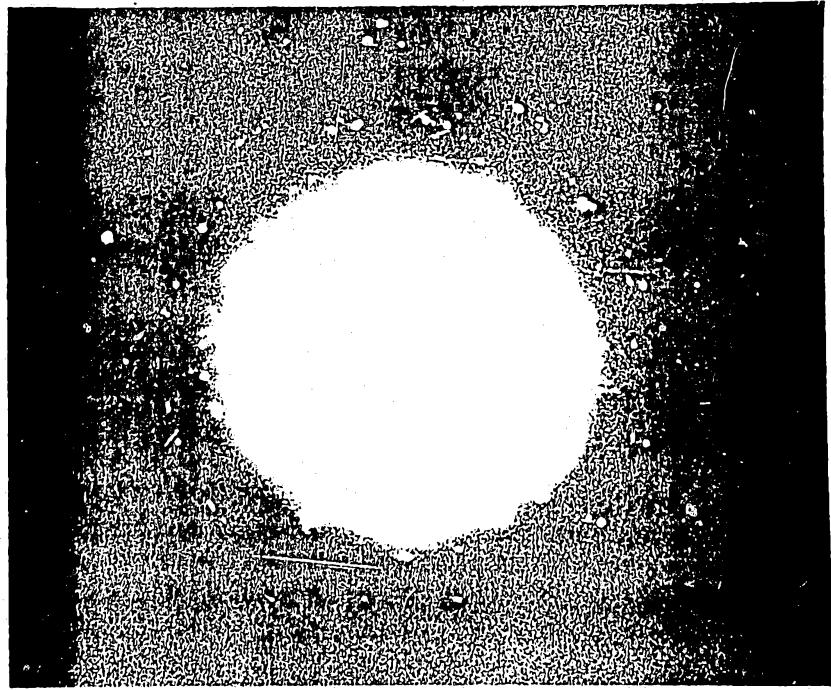


Fig. 4

3 | 11

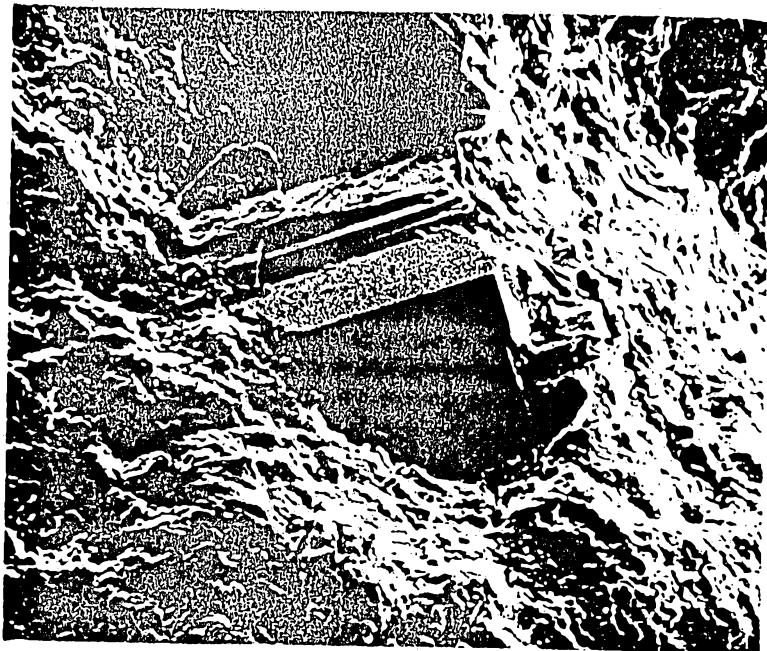


Fig. 5



Fig. 6

4 | 11



Fig. 7

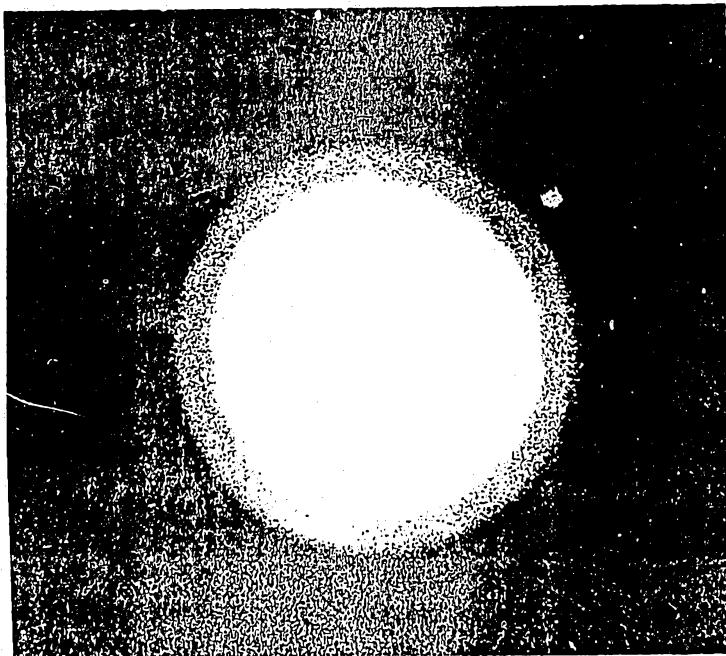


Fig. 8

5/11

PRESSURE

kbar

200

150

100

50

0

○ hBN
□ cBN
▽ $\tilde{\alpha}$ BN-2

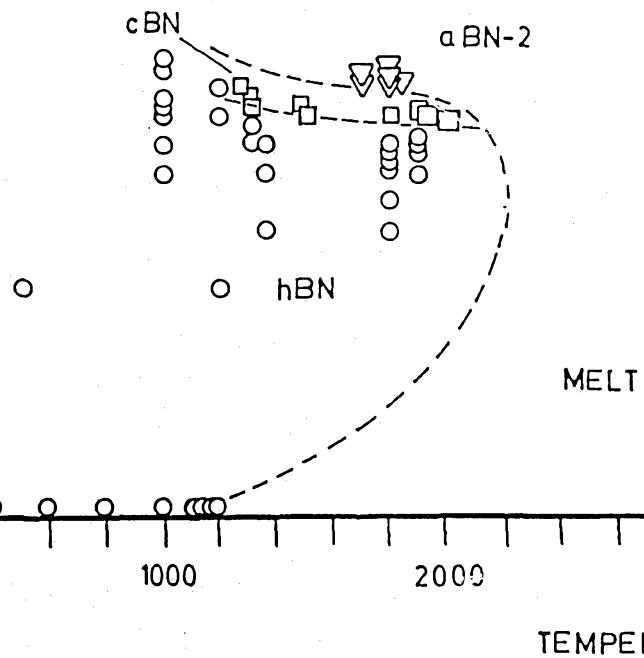


FIG. 9

6/11

Fig. 10

aBN-2 Pt Fig. 11

7 | 11
Fig. 12

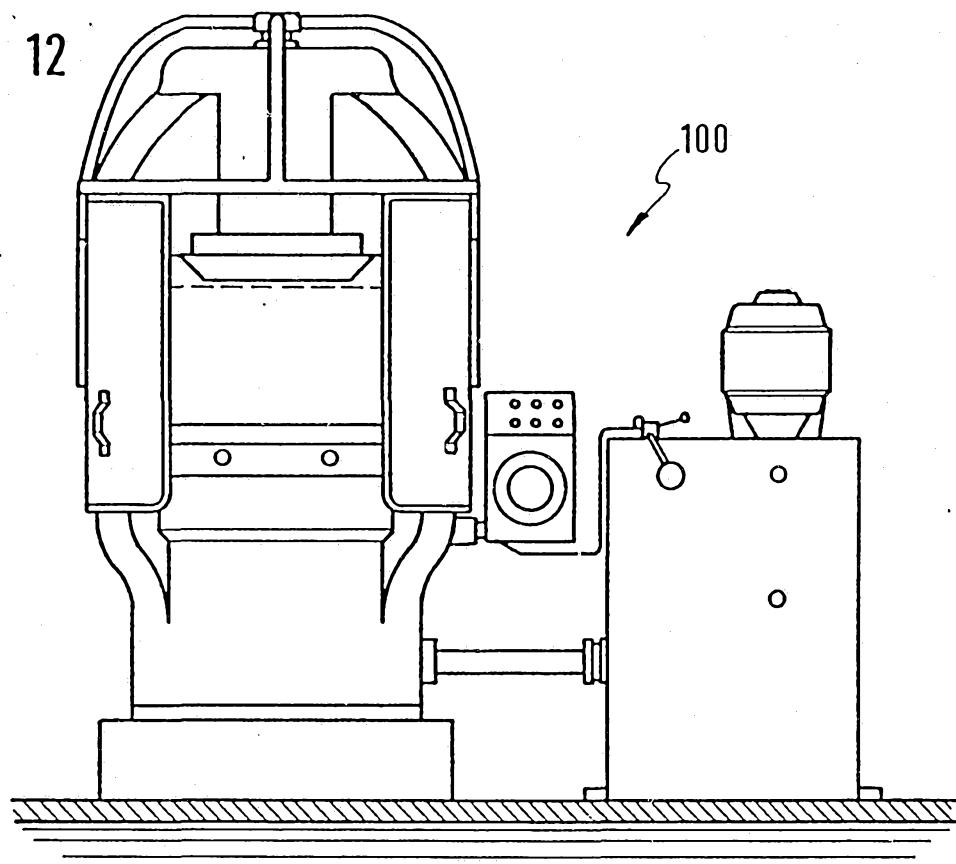


Fig. 13

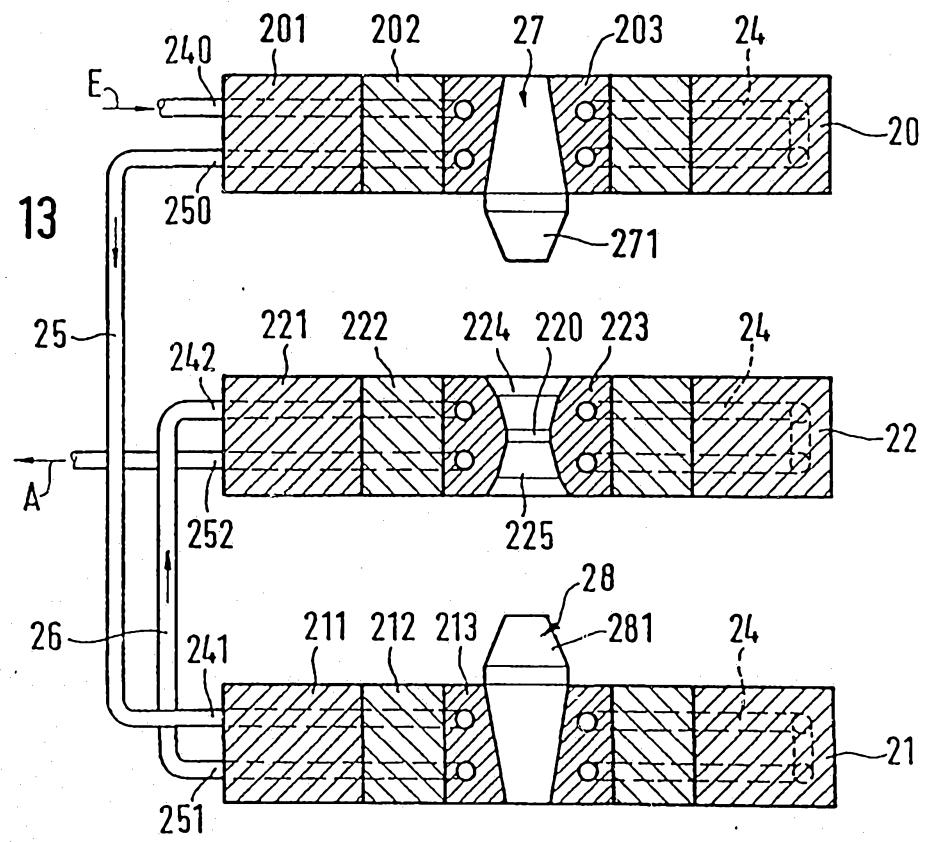


Fig. 14

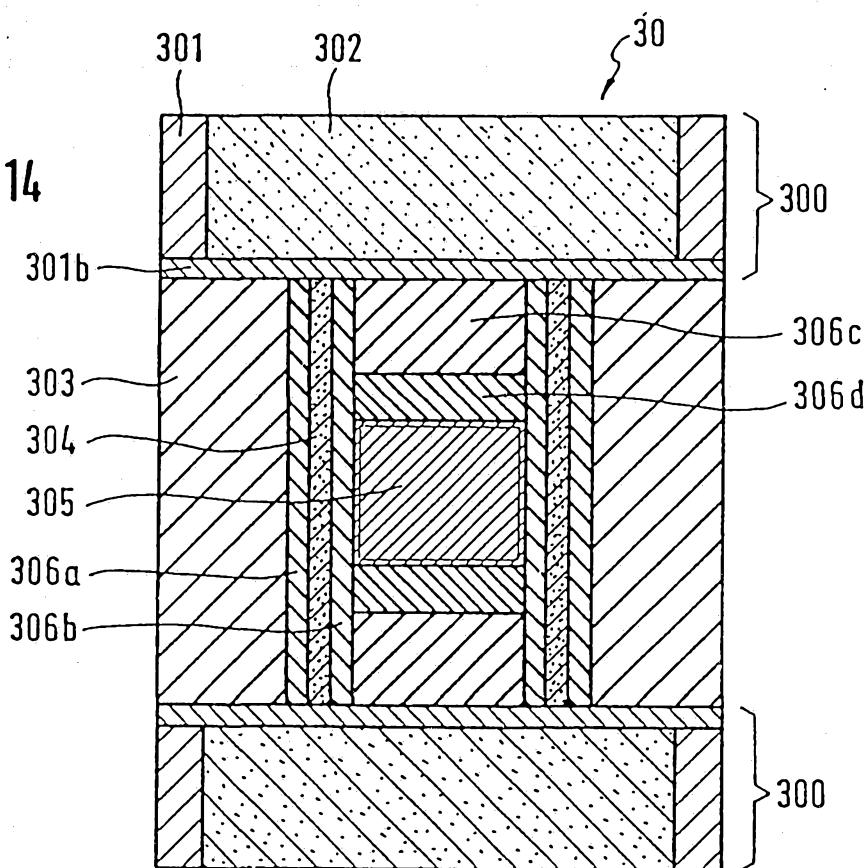
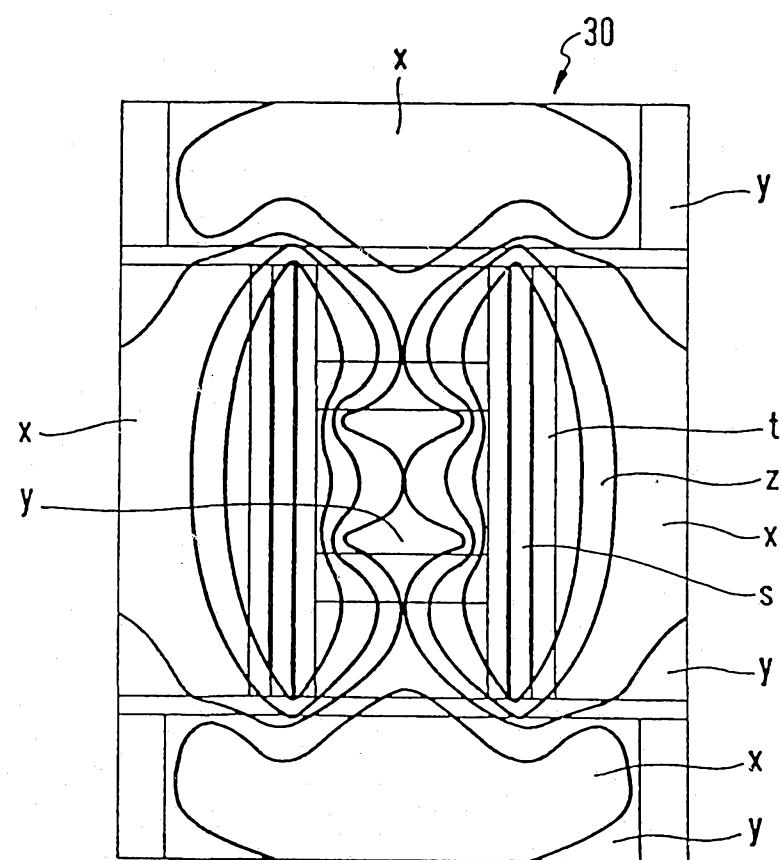



Fig. 15

9/11

Fig. 16

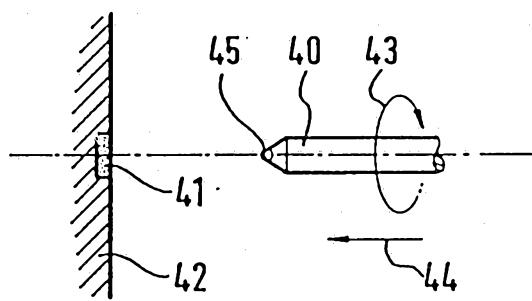
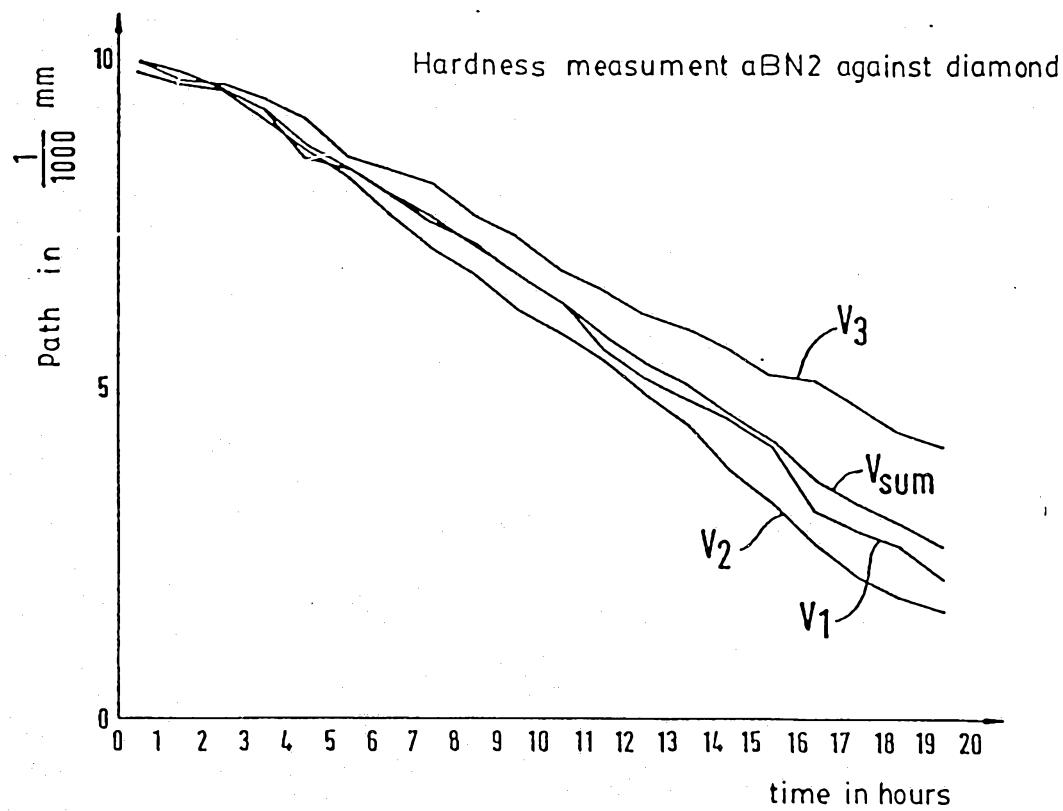



Fig. 17

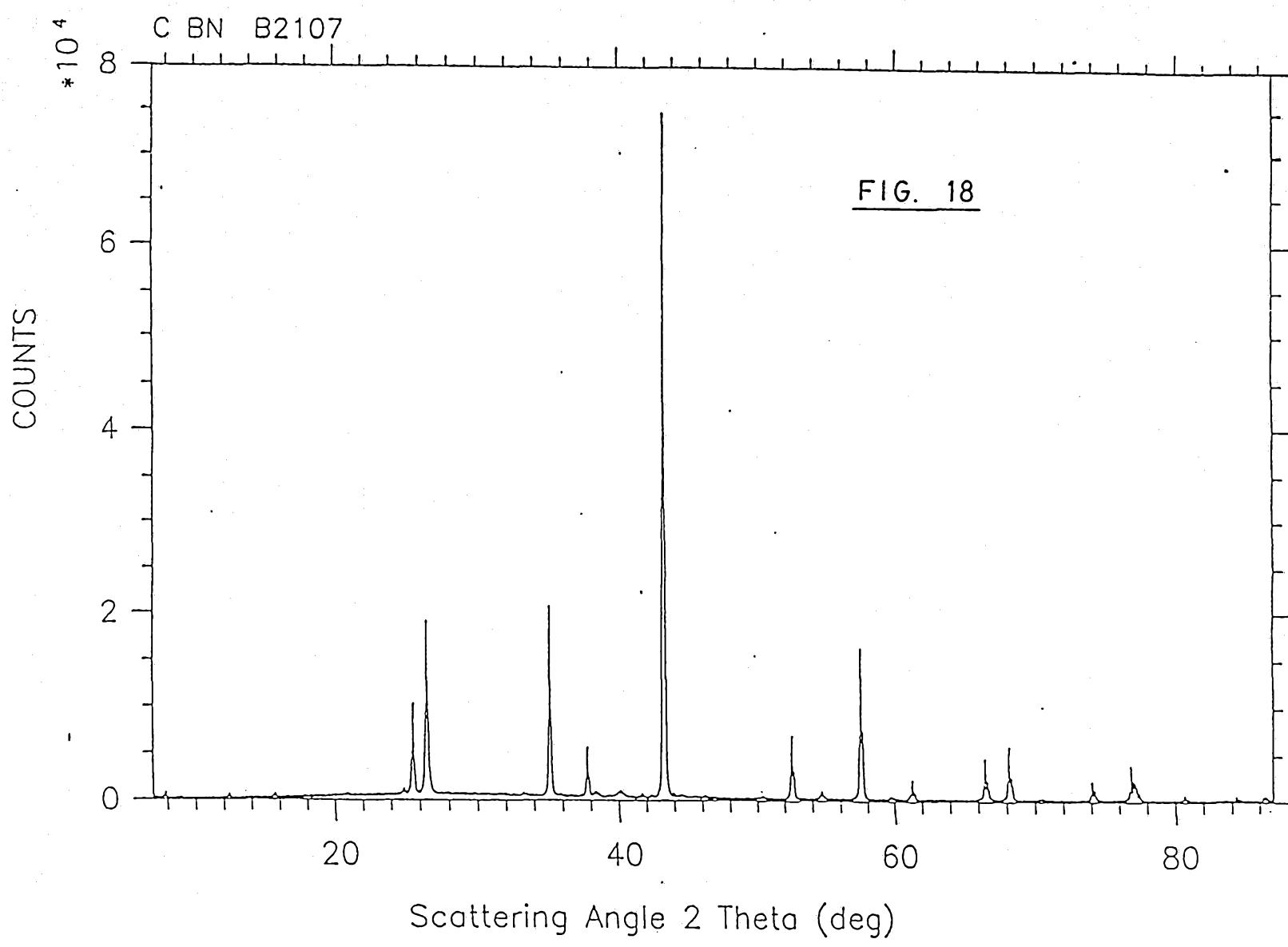
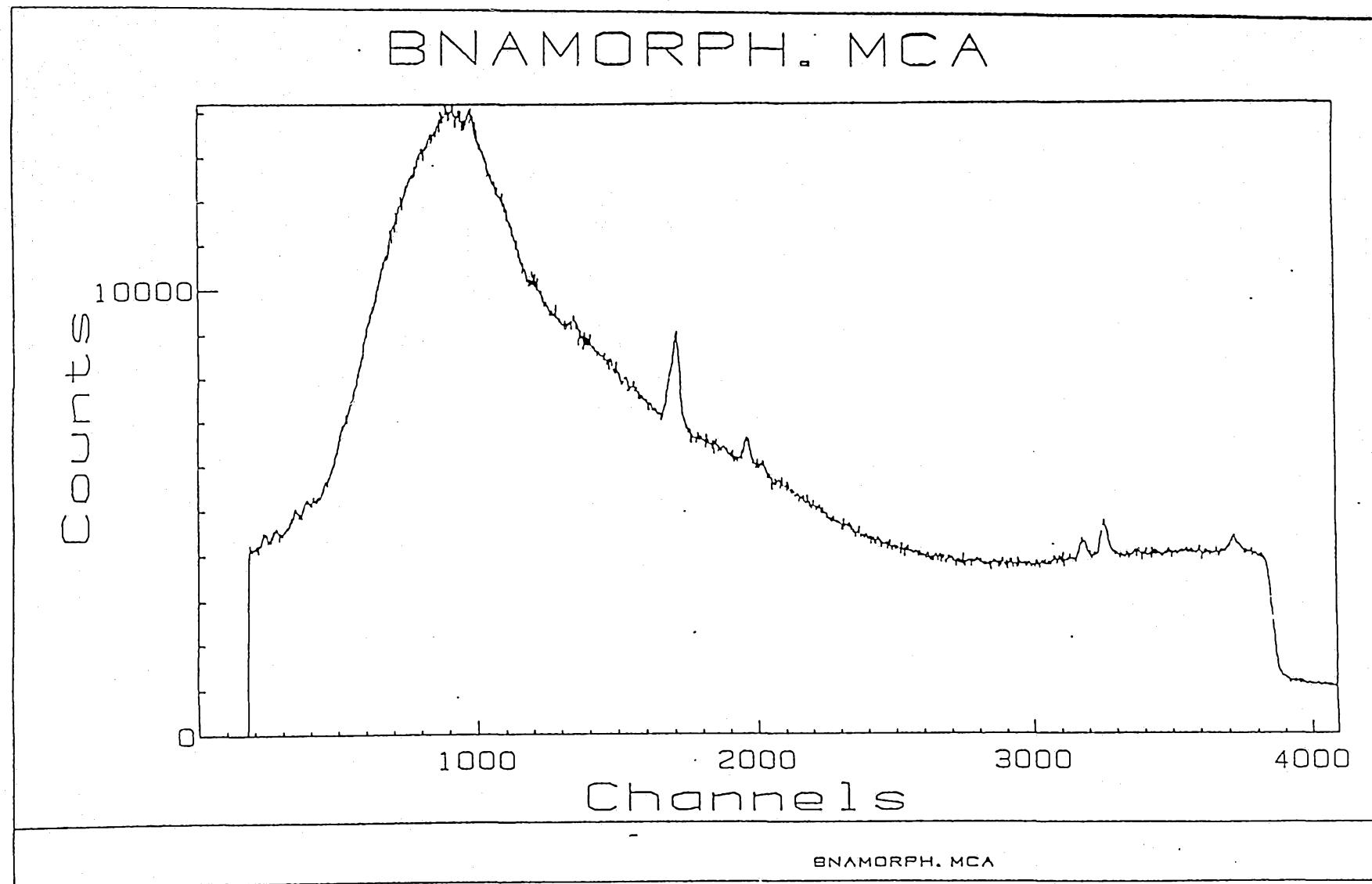



FIG. 19

INTERNATIONAL SEARCH REPORT

PCT/EP 89/1049

International Application No

I. CLASSIFICATION OF SUBJECT MATTER (If several classification symbols apply, indicate all) ⁶

According to International Patent Classification (IPC) or to both National Classification and IPC

Int.Cl.5 C01B 21/064 ; C04B 35/58 ; B01J 3/06

II. FIELDS SEARCHED

Minimum Documentation Searched ⁷

Classification System	Classification Symbols
Int.Cl.5	C01B ; C04B ; B01J

Documentation Searched other than Minimum Documentation
to the Extent that such Documents are Included in the Fields Searched ⁸III. DOCUMENTS CONSIDERED TO BE RELEVANT ⁹

Category ¹⁰	Citation of Document, ¹¹ with indication, where appropriate, of the relevant passages ¹²	Relevant to Claim No. ¹³
Y	US, A, 4361543 (ZHDANOVICH) 30 November 1982 see claims 1-5	3,6-8
Y	see example 2, lines 63-67 ---	4,5
Y	CHEMICAL ABSTRACTS, vol. 93, no. 10, September 1980 Columbus, Ohio, USA page 153; right hand column; ref. no. 97824 C & JP-A-8060008 (NAT. INST. FOR RES. IN INORG. Mat.) (6/5/1980) see abstract ---	3-8
Y	US, A, 3233988 (WENTDORF) 8 February 1966 see claim 3 ---	7,8 --- . / .

* Special categories of cited documents: ¹⁰

"A" document defining the general state of the art which is not considered to be of particular relevance

"E" earlier document but published on or after the international filing date

"L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)

"O" document referring to an oral disclosure, use, exhibition or other means

"P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.

"&" document member of the same patent family

IV. CERTIFICATION

Date of the Actual Completion of the International Search
23 January 1990 (23.01.90)

Date of Mailing of this International Search Report

22 February 1990 (22.02.90)

International Searching Authority
EUROPEAN PATENT OFFICE

Signature of Authorized Officer

III. DOCUMENTS CONSIDERED TO BE RELEVANT (CONTINUED FROM THE SECOND SHEET)

Category *	Citation of Document, with indication, where appropriate, of the relevant passages	Relevant to Claim No
Y	PATENT ABSTRACTS OF JAPAN vol.11, no. 322 (C-453) (2769) 20 October 1987, & JP-A-60 108713 (DENKI KAGAKU KOKOYO K.K.) 20 May 1987, see the whole document --	7,8
A	US, A, 4150098 (SIROTA) 17 April 1979 see abstract; example 1; lines 13-15; example 2; lines 40.50 -----	3-6

ANNEX TO THE INTERNATIONAL SEARCH REPORT
ON INTERNATIONAL PATENT APPLICATION NO.

EP 89/01049
SA 31883

This annex lists the patent family members relating to the patent documents cited in the above-mentioned international search report. The members are as contained in the European Patent Office EDP file on The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information. 23/01/90

Patent document cited in search report	Publication date	Patent family member(s)		Publication date
US-A-4361543	30-11-82	DE-A- FR-A, B	3217556 2526413	10-11-83 10-11-83
Ma-.-			None	
US-A-3233988			None	
US-A-4150098	17-04-79		None	

INTERNATIONALER RECHERCHENBERICHT

Internationales Aktenzeichen

PCT/EP 89/01049

I. KLASSEKIFICATION DES ANMELDUNGSGEGENSTANDS (bei mehreren Klassifikationssymbolen sind alle anzugeben)⁶

Nach der internationalen Patentklassifikation (IPC) oder nach der nationalen Klassifikation und der IPC
 Int.K1. 5 C01B21/064 ; C04B35/58 ; B01J3/06

II. RECHERCHIERTE SACHGEBIETE

Recherchierte Mindestprüfstoff⁷

Klassifikationssystem	Klassifikationssymbole		
Int.K1. 5	C01B	C04B	B01J

Recherchierte nicht zum Mindestprüfstoff gehörende Veröffentlichungen, soweit diese unter die recherchierten Sachgebiete fallen⁸

III. EINSCHLÄGIGE VERÖFFENTLICHUNGEN⁹

Art. ¹⁰	Kennzeichnung der Veröffentlichung ¹¹ , soweit erforderlich unter Angabe der maßgeblichen Teile ¹²	Betr. Anspruch Nr. ¹³
Y	US,A,4361543 (ZHDANOVICH) 30 November 1982 siehe Ansprüche 1-5	3, 6-8
Y	siehe Beispiel 2, Zeile 63-67 ---	4, 5
Y	CHEMICAL ABSTRACTS, vol. 93, no. 10, September 1980 Columbus, Ohio, USA Seite 153; rechte Spalte; ref. no. 97824 C &JP-A-8060008 (NAT. INST. FOR RES. IN INORG. Mat.)(6/5/1980) siehe Zusammenfassung ---	3-8
Y	US,A,3233988 (WENTDORF) 8 Februar 1966 siehe Anspruch 3 ---	7, 8 -/-

⁶ Besondere Kategorien von angegebenen Veröffentlichungen¹⁰:

- "A" Veröffentlichung, die den allgemeinen Stand der Technik definiert, aber nicht als besonders bedeutsam anzusehen ist
- "E" älteres Dokument, das jedoch erst am oder nach dem internationalen Anmelddatum veröffentlicht worden ist
- "I" Veröffentlichung, die geeignet ist, einen Prioritätsanspruch zweifelhaft erscheinen zu lassen, oder durch die das Veröffentlichungsdatum einer anderen im Recherchenbericht genannten Veröffentlichung heilig werden soll oder die aus einem anderen besonderen Grund angegeben ist (wie ausgeführt)
- "O" Veröffentlichung, die sich auf eine mündliche Offenbarung, eine Benutzung, eine Ausstellung oder andere Maßnahmen bezieht
- "P" Veröffentlichung, die vor dem internationalen Anmelddatum, aber nach dem beanspruchten Prioritätsdatum veröffentlicht worden ist

- "T" Spätere Veröffentlichung, die nach dem internationalen Anmelddatum oder dem Prioritätsdatum veröffentlicht worden ist und mit der Anmeldung nicht kollidiert, sondern nur zum Verständnis des der Erfindung zugehörigen Prinzips oder der ihr zugrundeliegenden Theorie angegeben ist
- "X" Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann nicht als neu oder auf erfinderischer Tätigkeit beruhend betrachtet werden
- "Y" Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann nicht als auf erfinderischer Tätigkeit beruhend betrachtet werden, wenn die Veröffentlichung mit einer oder mehreren anderen Veröffentlichungen dieser Kategorie in Verbindung gebracht wird und diese Verbindung für einen Fachmann naheliegend ist
- "&" Veröffentlichung, die Mitglied derselben Patentsfamilie ist

IV. BESCHREINIGUNG

Datum des Abschlusses der internationalen Recherche

Absendetermin des internationalen Recherchenberichts

1

23.JANUAR 1990

22.02.90

Internationale Recherchebehörde

Unterschrift des beauftragten Dienststellen

EUROPAISCHES PATENTAMT

ZALM W. E.

III. EINSCHLAGIGE VERÖFFENTLICHUNGEN (Fortsetzung von Blatt 2)		
Art o.	Kennzeichnung der Veröffentlichung, soweit erforderlich unter Angabe der maßgeblichen Teile	Betr. Anspruch Nr.
Y	PATENT ABSTRACTS OF JAPAN vol. 11, no. 322 (C-453)(2769) 20 Oktober 1987, & JP-A-60 108713 (DENKI KAGAKU KOKOYO K.K.) 20 Mai 1987, siehe das ganze Dokument ---	7, 8
A	US,A,4150098 (SIROTA) 17 April 1979 siehe Zusammenfassung; Beispiel 1; Zeile 13-15; Beispiel 2; Zeile 40-50 ---	3-6

ANHANG ZUM INTERNATIONALEN RECHERCHENBERICHT
ÜBER DIE INTERNATIONALE PATENTANMELDUNG NR.

PCT/EP 89/01049

SA 31883

In diesem Anhang sind die Mitglieder der Patentsfamilien der im obengenannten internationalen Recherchenbericht angeführten Patentdokumente angegeben.

Die Angaben über die Familienmitglieder entsprechen dem Stand der Datei des Europäischen Patentamts am
Diese Angaben dienen nur zur Unterrichtung und erfolgen ohne Gewähr.

23/01/90

Im Recherchenbericht angeführtes Patentdokument	Datum der Veröffentlichung	Mitglied(er) der Patentsfamilie	Datum der Veröffentlichung
US-A-4361543	30-11-82	DE-A- 3217556 FR-A, B 2526413	10-11-83 10-11-83
Ma.-.-		Keine	
US-A-3233988		Keine	
US-A-4150098	17-04-79	Keine	