wo 2015/161025 A1 |[IN I/ 0F V000 O Y O

(43) International Publication Date

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Ny
Organization é
International Bureau -,

=

\

(10) International Publication Number

WO 2015/161025 A1l

22 October 2015 (22.10.2015) WIPO | PCT
(51) International Patent Classification: (81) Designated States (uniess otherwise indicated, for every
GO6F 9/50 (2006.01) kind of national protection available). AE, AG, AL, AM,
. o . AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,
(21) International Application Number: BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,
PCT/US2015/026088 DO, DZ. EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
(22) International Filing Date: HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR,
16 April 2015 (16.04.2015) KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG,
. MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM,
(25) Filing Language: English PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC,
(26) Publication Language: English SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN,
TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.
(30) Priority Data: . L
14/255,579 17 April 2014 (17.04.2014) Us (84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
(71) Applicant: AB INITIO TECHNOLOGY LLC [US/US]; GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ,
201 Spring Street, Lexington, Massachusetts 02421 (US). TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU,
(72) Inventors: SCHECHTER, Ian; 94 Brook Road, Sharon, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE,
o DK, FE, ES, FL, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU,
Massachusetts 02067 (US). WAKELING, Tim; 11 Abbot LV. MC. MK. MT. NL. NO. PL. PT. RO. RS. SE. SL. SK
Street, Andover, Massachusetts 01810 (US). SM, TR; 0 A’PI (B’F B’J Cla C,G C’I CfV[é A &}N, GQ,
WOLLRATH, Ann M.; 9 Northwoods Road, Groton, GW’ KM, ML. MR I,\IE ,SN ,TD :FG), P T e
Massachusetts 01450 (US). i i i A '
. . . Published:
(74) Agents: FEIGENBAUM, David L. et al.; Fish & Richard-
son P.C., P.O. Box 1022, Minneapolis, Minnesota 55440- — with international search report (Art. 21(3))
1022 (US).
(54) Title: PROCESSING DATA FROM MULTIPLE SOURCES
(57) Abstract: In a first aspect, a method in-
100 cludes, at a node of a Hadoop cluster, the node
N Query 140 storing a first portion of data in HDFS data stor-
age, executing a first instance of a data pro-
Y cessing engine capable of receiving data from a
~ Cluster 112 data source external to the Hadoop cluster, re-
e 14a ceiving a computer-executable program by the
|13 oaii +Engme 1302 1188] Node }/ Dat data processing engine, executing at least part of
194p | [108 the program by the first instance of the data pro-
Data Engine 130b [H134D Node | |——— [150 cessing engine, receiving, by the data processing
104 < 1040 Outputs engine, a second portion of data from the extern-
. 114¢ al data source, storing the second portion of data
1D03£ +@l 116¢| Node |~ other than in HDFS storage, and performing, by
114d the data proc.essing engine, a data prqcessing op-
?oaiﬁ _|L 116d] Node }_/ eration identified by the program using at least
N i the first portion of data and the second portion of
data.
\110
P
L [1242] [1240)] [124c
RDBMS 122
Nz FIG. 1

WO 2015/161025 PCT/US2015/026088

PROCESSING DATA FROM MULTIPLE SOURCES

BACKGROUND
This description relates to processing data from multiple sources. Data can be
stored in a variety of sources, including, for example, an HDFS (Hadoop Distributed File
System) cluster. A data processing system can perform operations on data received from

an HDFS cluster and also data received from other types of sources.

SUMMARY

In a first aspect, a method includes, at a node of a Hadoop cluster, the node
storing a first portion of data in HDFS data storage, executing a first instance of a data
processing engine capable of receiving data from a data source external to the Hadoop
cluster, receiving a computer-executable program by the data processing engine,
executing at least part of the program by the first instance of the data processing engine,
receiving, by the data processing engine, a second portion of data from the external data
source, storing the second portion of data other than in HDFS storage, and performing, by
the data processing engine, a data processing operation identified by the program using at
least the first portion of data and the second portion of data.

In a second aspect, a method includes, at a node storing a first portion of data and
operating in conjunction with a cluster of nodes, the cluster storing an aggregation of data
that can be operated on in parallel, executing a first instance of a data processing engine
capable of receiving data from a data source external to the cluster, receiving a computer-
executable program by the data processing engine, executing at least part of the program
by the first instance of the data processing engine, receiving, by the data processing
engine, a second portion of data from the external data source, storing the second portion
of data in volatile memory of the node, and performing, by the data processing engine, a
data processing operation identified by the program using at least the first portion of data
and the second portion of data.

In a third aspect according to the first or second aspect, the Hadoop cluster
includes nodes each executing an instance of the data processing engine, the instances of

the data processing engine running concurrently to perform the data processing operation

WO 2015/161025 PCT/US2015/026088

together in parallel on a) a first body of data that includes the first portion of data, the
first body of data also including other portions of data being processed by the other nodes
of the Hadoop cluster, and b) a second body of data that includes the second portion of
data, the second body of data being stored in a format native to a relational database
system, and the second body of data being divided into portions that each can be stored in
volatile memory of the nodes of the Hadoop cluster.

In a fourth aspect according to any of the first through third aspects, the computer
program is a dataflow graph executed by a graph execution engine of the data processing
engine, wherein the dataflow graph includes a) at least one component representing the
Hadoop cluster, b) at least one component representing the source of the second portion
of data, and c) at least one link that represents at least one dataflow associated with the
operation to be performed on the data received from at least one source of data.

In a fifth aspect according to the fourth aspect, at least one component of the
dataflow graph is connected to a link representing a flow of data from the Hadoop cluster,
and wherein the at least one component is connected to a link representing a flow of data
from the source of the second portion of data.

In a sixth aspect according to any of the first through fifth aspects, the data
processing engine does not implement the MapReduce programming model.

In a seventh aspect according to any of the first through sixth aspects, the second
portion of data is stored in volatile memory.

In an eighth aspect according to any of the first through seventh aspects, the
method includes receiving a database query, the database query including at least one
operation to be performed on data received from at least one source of data that includes
the Hadoop cluster; and the computer program includes components representing
operations corresponding to the database query, wherein the computer program includes
at least one component representing the at least one source of data and at least one link
that represents at least one dataflow associated with the operation to be performed on data
received from at least one source of data.

In a ninth aspect according to any of the first through eighth aspects, the second

portion of data was chosen based on characteristics of the first portion of data.

WO 2015/161025 PCT/US2015/026088

In a tenth aspect according to any of the first through ninth aspects, the second
portion of data includes a subset of rows of a relational database, and the second portion
of data includes a subset of columns of the relational database

In an eleventh aspect according to any of the first through tenth aspects, the
second portion of data is distinct from a third portion of data received at a second node of
the Hadoop cluster from the external data source.

In a twelfth aspect according to any of the first through eleventh aspects, the
method includes executing at least part of the program by a second instance of the data
processing engine outside of the Hadoop cluster.

In a thirteenth aspect according to any of the first through twelvth aspects, the
method includes communicating with at least part of the program being executed by a
second instance of the data processing engine outside of the Hadoop cluster.

In a fourteenth aspect, a method includes, at a data processing engine of a node of
a Hadoop cluster, performing a data processing operation identified by a computer-
executable program being executed by the data processing engine, the data processing
operation being performed using at least a first portion of data stored in HDFS data
storage at the node and at least a second portion of data received from a data source
external to the Hadoop cluster and stored other than in HDFS the storage.

In a fifteenth aspect, a method includes receiving a SQL query specifying sources
of data including a Hadoop cluster and a relational database, generating a computer-
executable program that corresponds to the SQL query, executing the computer-
executable program at a data processing engine of a node of the Hadoop cluster, and
performing, by the data processing engine, a data processing operation identified by the
computer-executable program using at least data of the Hadoop cluster and data of the
relational database.

One or more of the aspects, alone or in combination, may be represented as a
system, or an apparatus, or as a computer readable storage device storing a computer
program product including machine readable instructions that, when executed by a
computer system, carry out operations of the aspect. As one example, a computer
readable storage device can store a computer program product including machine

readable instructions that, when executed by a computer system, carry out operations

WO 2015/161025 PCT/US2015/026088

according to any one of the first through fifteenth aspects. As another example, a
computer system including one or more processors can include a computer-readable
storage device storing a computer program product that includes machine readable
instructions that, when executed by the one or more processors, carry out operations
according to any one of the first through fifteenth aspects.

One or more of the above aspects may provide the following advantages. First, a
Hadoop node can operate on data stored in volatile memory, and need not write data to
disk before performing operations on the data. Second, a Hadoop node can be configured
to receive data from multiple types of data sources. Third, a Hadoop node can be
configured to operate in association with a general-purpose data processing operating
system, e.g., a data processing operating system not specific to Hadoop nodes. Fourth, a
Hadoop node can be configured to operate with dataflow graphs that carry out data
processing operations.

Other features and advantages of the invention will become apparent from the

following description, and from the claims.

DESCRIPTION OF DRAWINGS
Figure 1 shows a data processing system.
Figures 2 and 3 show dataflow graphs.
Figure 4 is a flowchart of a data processing procedure.

Figure 5 shows a data processing system.

DESCRIPTION

Figure 1 shows a data processing system 100 in which data 116a-d originating at
one type of data source 110 and data 104 originating at another type of data source 120 is
processed and processed data 106 is provided to one or more outputs 150. The data can
be processed in a way so that the operations performed on the data are not limited
according to which data originated at which type of data source 110, 120. One manner for
accomplishing this is enabling one of the data sources 110 to receive data 104 from the
other data source 120 and process the received data 104 using techniques native to the

data source 110. In this way, much of the data processing is performed by the data source

WO 2015/161025 PCT/US2015/026088

110. Data processing systems that process data from more than one type of data source
are sometimes called federated data processing systems.

One type of data source 110 is a collection of files stored in a Hadoop Distributed
File System (sometimes called HDFS) cluster. HDFS is a technique that defines a file
system that can be used to distribute data across multiple computer systems that each
store data in a manner that complies with the technique. An HDFS cluster, which we also
refer to simply as a Hadoop cluster, is a collection of computer systems (sometimes
called nodes) storing portions of data in a manner that allows a single operation to be
carried out on the portions of data in parallel (e.g., substantially simultaneously). The
data of each node is stored using a file system defined by the HDFS technique. The file
system is sometimes referred to as HDFS storage. Generally, a file system operating
according to HDFS can store any kind of data files. Sometimes a type of file specific to
Hadoop, called a sequence file, is used as the file format for data stored in a Hadoop
node. A Hadoop cluster could have dozens or hundreds of nodes (or more). In this way, a
Hadoop cluster could carry out a single data processing operation across those dozens or
hundreds of nodes in parallel, each node operating on a portion of data. As described
below, techniques can be used to carry out most or all data processing operations on a
Hadoop cluster rather than on a different data processing system that would otherwise
perform the operations.

Although we generally describe a Hadoop node as a computer system storing a
portion of data, a Hadoop node can take other forms. Any arrangement in which a
particular portion of data is associated with a particular portion of computer hardware can
be a Hadoop node. For example, a single Hadoop node itself could be made up of
multiple computer systems, whether they be two or more computer systems operating
together to form a node, two processors of a multiprocessor computer system operating
together to form a node, or some other arrangement. A single computer system could also
act as multiple Hadoop nodes if the single computer system had two distinct file systems
operating according to the HDFS technique each with its own portion of data. Further,
when we say that a node performs a particular action, we mean that the node serves as a
platform on which a functional component carries out the described action. For example,

a computer program executing on the node may be carrying out the action.

WO 2015/161025 PCT/US2015/026088

Further, although we reference the Hadoop technique in this description, other
similar techniques that do not carry the Hadoop name, and/or do not use the HDFS data
storage format, can be used with the techniques described here. In this way, these same
techniques can be used with other types of clusters. For example, these techniques could
be used with another kind of cluster that stores an aggregation of data that can be
operated on in parallel by nodes operating in conjunction with one another to carry out a
data processing operation on the aggregation of data (e.g., by splitting the aggregation of
data into portions operated on by the individual nodes).

One way of processing data in a Hadoop cluster is using a MapReduce
programming model. Generally, a MapReduce program includes a Map procedure that
performs filtering and sorting (such as sorting university students by first name into
queues, one queue for each name) and a Reduce procedure that performs a summary
operation (such as counting the number of university students in the respective queues,
yielding name frequencies). A user of the system specifies the Map and Reduce
procedures, but does not necessarily determine the number of instances (or invocations)
of each procedure (i.e., “processes”) or the nodes on which they execute. Rather, a
“MapReduce System” (also called "infrastructure”, "framework") orchestrates by
marshaling a set of distributed nodes, running the various tasks (e.g., the Map and Reduce
procedures and associated communication) in parallel, managing all communications and
data transfers between the various parts of the system, providing for redundancy and
failures, and overall management of the whole process. A MapReduce system can
schedule execution of instances of Map or Reduce procedures with an awareness of the
data location.

The other data source 120 could be a data source such as a relational database
(sometimes called a Relational Database Management System, or RDBMS), a flat file, a
feed of data from a network resource, or any other resource that can provide data in
response to a request from the data processing system. Data processing operations can be
performed on combinations of data stored in the Hadoop cluster 112 and data 104
received from the other data source 120. Rather than use an independent processing
system to extract data from the Hadoop cluster 112 and from the other data source 120,

the data processing functionality of the Hadoop cluster 112 can be used to process the

WO 2015/161025 PCT/US2015/026088

combination of the data 116a-d stored in the Hadoop cluster 112 and the data 104
received from the other data source 120. For example, this could be done to take
advantage of data processing features of the Hadoop cluster 112. For example, as shown
in figure 1, data 104 received from the other data source 120 is transmitted directly to the
Hadoop cluster 112. Here, we will use the example of a relational database 122 as the
other data source 120.

One way to combine the data for processing is to copy data 116a-d stored in
nodes 114a-d of the Hadoop cluster 112 to the relational database. The relational database
122 can then be instructed to operate on the combined data, for example, using data
processing operations native to the relational database 122 (e.g., database operations
defined according to a query language such as SQL). However, in this technique, the
parallel processing capabilities of the Hadoop cluster 112 are lost. One way to combine
the data for processing is to copy most or all of the data 124a-c stored in the relational
database 122 into the Hadoop cluster 112 and then process the data using techniques
native to the Hadoop cluster 112, for example, using the MapReduce programming model
described above.

Depending on the manner of implementation, either technique could require a
potentially large amount of data to be copied from one data source to the other data
source, which a) typically requires that at least some of the data be written to disk, b)
typically requires a substantial amount of processing time to copy the data, as compared
to the processing time required to perform the operation, and ¢) runs the risk that the
copied data will become stale —i.e., the copied data will become out of date relative to its
source, unless steps are taken to ensure that data does not change while the operation is
being carried out. All of these limitations impact the performance and efficiency of either
technique.

In another technique, most or all of the data can be stored in their respective
native data sources 110, 120, such that only small amounts of data are copied from one
data source to another. Put another way, data processing operations are carried out in a
manner that uses techniques for utilizing the resources of both types of data sources 110,
120, rather than carrying out operations that utilize only one type of data source. As a

practical example, the nodes 114a-d of the Hadoop cluster 112 can perform some

WO 2015/161025 PCT/US2015/026088

operations (e.g., operations that perform a transformation upon a portion of data) needed
to complete a task, and the relational database 122 can carry out some other operations
(e.g., operations that perform a transformation upon another portion of data) also needed
to complete the task.

As an example of these techniques, when the nodes 114a-d of the Hadoop cluster
112 perform a data processing operation, each node 114a-d accesses only the data it
needs to carry out the operation, e.g., only the data on which the operation is performed.
For example, some of the data may be stored in a database table having columns and
rows. If a particular operation only applies to certain columns or rows then only those
columns or rows are copied from one data source to another, ¢.g., from the relational
database 122 to one of the nodes 114a-d. As a practical example, if a relational database
122 stores data representing customers of a telephone company, and the data processing
system is performing an operation that requires a list of telephone numbers, then the
nodes 114a-d access only the column of the relational database 122 that stores telephone
numbers, and need not access columns representing customer names, addresses, or other
data that may be stored in the database. The relational database 122 can perform
operations necessary to return only the portions of the database needed for a particular
operation, ¢.g., a particular operation carried out by a node 114a-d of the Hadoop cluster.

Further, individual nodes 114a-d of a Hadoop cluster 112 may each store only a
portion of the total data stored by the Hadoop cluster 112. Each node 114a-d can access
only whatever additional data is needed to carry out operations with respect to its portion
of data, and need not access other data not needed to carry out those operations. For
example, if a node 114a is performing an operation that will use both its portion of data
and other data from a different data source, then the node accesses only the subset of the
other data that is applicable to the operation being performed on its portion of data.

As a practical example, a data processing system may manage a body of data on
behalf of a telephone company which has a master list of customers and a database of
telephone call records. In this example, a node 114a of a cluster 112 may store data 116a
representing only telephone calls originating or received in the United States, and other
nodes 114b-d store data 116b-d representing telephone calls originating or received in all

of the other countries. A relational database 122 separate from the nodes 114a-d of the

WO 2015/161025 PCT/US2015/026088

cluster 112 may store data 124 representing a list of the telephone company’s customers.
(This is only used as an example, as a real-world implementation of a database of
telephone calls may require hundreds or thousands of nodes.)

In this example, a data processing operation can be performed at least in part by
the nodes 114a-d of the Hadoop cluster 112. For example, the operation can be an
operation that identifies customers associated with particular telephone calls. The node
114a that stores data representing telephone calls originating and received in the United
States can be provided data 124a representing the customer records for only those
customers having telephone service in the United States, and not any data 124b, 124c¢
representing customers having telephone service in any other countries. In some
examples, the data 124a-c from the relational database 122 can be provided to the
respective nodes 114a-d of the Hadoop cluster 112. In some examples, the respective
nodes 114a-d of the Hadoop cluster can request the portion of data 124a-c from the
relational database 122. Thus, the amount of data accessed by the node 114a is small
compared to the entire database of customers, ¢.g., all of the data 124a-c stored by the
relational database 122. In some examples, the data 124a-c received by a node 114a-d
may be transformed (e.g., by the node 114a-d) to a format compatible with the format of
data stored at the node 114a-d.

Because only a relatively small amount of data is received from the respective
data sources when each operation is performed, the operations can be performed on data
stored in active (volatile) memory, as opposed to persistent (non-volatile) storage such as
a disk. In many computing environments, this will speed up data processing operations,
since persistent storage tends to be slower than active memory.

In some implementations, the data processing system 100 could be a graph-based
processing system. A graph-based processing system processes data using dataflow
graphs. A dataflow graph is a computer program that contains components representing
operations to be performed on input data and links between the components representing
flows of data. (Components are sometimes referred to as nodes, but will be called
components here to avoid confusion with the nodes of Hadoop clusters.) The operations
represented by the components generate output data based on the input data by

processing the input data. A component can provide input data to and receive output data

WO 2015/161025 PCT/US2015/026088

from other components if the component is linked to the other components, in which each
link between two components represents a flow of data from one of the components to
the other component. When the dataflow graph is executed by a graph-based processing
system, each of the components is executed, e.g., a computer program or portion of a
computer program is executed and carries out the operation represented by the
component. During execution the dataflow graph receives input data which is processed
(e.g., operated on by the operations of the dataflow graph’s components) to generate
output data. One example of a graph-based system is described in detail in U.S.
Publication No. 2007/0011668, titled “Managing Parameters for Graph-Based
Applications,” incorporated herein by reference. A system for executing graph-based
computations is described in U.S. Patent 5,966,072, titled “Executing Computations
Expressed as Graphs,” incorporated herein by reference.

The execution of a graph is sometimes facilitated by a specialized operating
system, sometimes called a graph operating system. A graph operating system is a
computer program capable of executing the operations underlying individual components
of a dataflow graph. For example, if a component of a dataflow graph represents an
operation to be carried out by a database system, the graph operating system is tasked
with instructing a database system to carry out the operation. For this reason, a graph
operating system sometimes executes on systems that interact with a graph-based data
processing system. In the example shown in figure 1, instances of a graph operating
system 130a-d may execute on the nodes 114a-d of the Hadoop cluster 112. Examples of
techniques for executing a graph operating system on a node of a Hadoop cluster are
described in U.S. Application Serial No. 14/090,434, titled “Parallel Access to Data in a
Distributed File System,” incorporated herein by reference.

A graph operating system 130a-d, or any other general-purpose data processing
system, can be used to enable the nodes of the Hadoop cluster 112 to receive data from
other data sources. For example, the graph operating system may be capable of receiving
data from a relational database 122. In this example, an instance of the graph operating
system can receive the data from the relational database 122 and provide it to the
appropriate portion or subsystem of the Hadoop node 114a-d on which the instance of the

graph operating system is executing. In this way, the nodes 114a-d of the Hadoop cluster

-10-

WO 2015/161025 PCT/US2015/026088

do not need any custom functionality (e.g., custom-written code) to receive data from
another kind of data source such as a relational database. In some examples, the graph
operating system 130a-d has the capability to receive a “plug-in” that describes how to
receive and parse data from a particular data source. In the example in which a Hadoop
node 114a receives data from a relational database 122, an instance of the graph
operating system 130a running on the Hadoop node 114a can access the “plug-in” to
determine how to parse the data received from the relational database 122.

In some implementations, the instances of the graph operating system 130a-d that
execute on the nodes 114a-d of the Hadoop cluster 112 communicate with functionality
of the relational database 122. For example, the relational database 122 may support a
function (e.g., a database command) which enables an external entity, such as the graph
operating system, to access data stored by the relational database 122.

In some implementations, the data processing system 100 is tasked with carrying
out a database query 140. A database query is a set of instructions describing a subset of
the database contents and actions to take upon the data in that subset. If the database
query 140 were a database query used with the system described above storing data for a
telephone company, the database query 140 could be a request for certain records of
telephone calls stored in the data sources used by the telephone company. For example,
some database systems perform database queries written in a dedicated database query
language such as Structured Query Language (SQL). In these database systems, an SQL
query is the primary instrument for manipulating the contents of the database.

In some implementations, the database query 140 is an SQL query. SQL queries
use commands and syntax defined by the structured query language. The relational
database 122 includes a collection of one or more database tables; a database table is a
collection of data arranged in a) rows each representing a record and b) columns each
representing a category of data stored in the rows. For example, a database table called
“current_customers” may have rows each representing a current customer of a business
and may have columns representing categories of data such as name of the customer,
address of the customer, last product purchased by the customer, and so on.

A relational database 122 typically includes functionality for interpreting a query

and returning data responsive to the query. The combination of interpreting a query and

-11-

WO 2015/161025 PCT/US2015/026088

returning data responsive to the query is sometimes referred to as executing the query.
For example, some relational database implementations include an engine which a)
parses a SQL query, b) identifies operations that are defined by the structured query
language, c) identifies operands of the operators, and d) carries out (e.g., executes) the
operations according to the operands. An example of a SQL query could be “SELECT
last name FROM current _customers.” This SQL query includes an operation, SELECT,
which instructs a relational database to retrieve data according to the operands of the
SELECT operation. In the syntax of SQL, the operands are “current customers,” which
is a database table managed by the relational database, and “last name,” which is a
column of the database table. When the relational database interprets the query and
executes the operations of the query, the relational database will return the data of the
last name column (e.g., cach portion of data contained in the last name column) in
response to the query.

The data processing system 100 can carry out the database query 140 even if data
sources identified in the database query 140 are not databases that operate using queries
in the form of the database query 140. For example, the Hadoop cluster 112 may not
usually accept instructions specified in the form of SQL. If the database query 140 is a
SQL query and references the Hadoop cluster 112 then the instances of the graph
operating system 130a-d can together act as an intermediary which takes in the database
query 140 and each instance can determine what operations should be performed, in
response, at the Hadoop cluster 112. For example, components of a dataflow graph can
be substituted for instructions of a database query 140. Techniques in accordance with
this substitution are further described in U.S. Publication No. 2012/0284255A1, titled
“Managing Data Queries,” incorporated herein by reference. In some implementations, a
dataflow graph can be produced from a database query 140.

In some implementations, each instance of the graph operating system 130a-d
executes a corresponding portion of a computer program 134a-d. For example, the
computer program may be made up of executable components, and each instance of the
graph operating system 130a-d can execute some of the components of the computer
program. The instances of the graph operating system 130a-d can coordinate with one

another, for example, by transmitting and receiving data to and from one another, to

- 12-

WO 2015/161025 PCT/US2015/026088

execute their respective portions of the computer program and thus together execute the
computer program. In some examples, multiple instances of the graph operating system
130a-d execute instances of the same components of the computer program. For example,
the instances of the computer program 134a-d executing on the nodes 114a-d of the
Hadoop cluster 112 may each execute instances of the same data processing component,
cach of which operates on different data (e.g., the data 116a-d stored by the respective
node 114a-d). In some examples, the portions of the computer program may together
make up a dataflow graph, and the portions of the computer program may be subgraphs
(e.g., one or more linked components) of the dataflow graph. In some implementations,
an instance of the graph operating system 130a-d can generate the computer program
134a-d.

In this way, the Hadoop cluster can carry out operations of the database query 140
(sometimes referred to as executing the database query 140) using techniques that do not
rely on functionality of a relational database, e.g., query interpretation functionality of a
relational database, to carry out the operations. Instead, the query can be carried out by
executing the instances of the computer program 134a-d. Once the computer program
134a-d is generated, no query interpretation functionality of a relational database is used
to carry out the operations of the database query 140 on the nodes 114a-d of the Hadoop
cluster.

In some implementations, a computer program (e.g., a dataflow graph, or any
other kind of program) can be configured with parameters. For example, the parameters
may be values that can be changed to change the behavior of the program. As a specific
example, a parameter may be “filename” and the value of the parameter could be the
location of a file in a file system. The value of the parameter can be changed to a location
of a different file to configure the program to access the different file. Two instances of
the same program can be configured with different parameter values, which will change
the behavior of the two instances of the same program.

The systems in figure 1 can communicate with each other using one or more
networks. For example, the nodes 114a-d of the Hadoop cluster 112 can communicate
with one another using a network such as a local area network (LAN) but may

communicate with each other using a wide area network (WAN), the Internet, or another

- 13-

WO 2015/161025 PCT/US2015/026088

kind of network. Further, the nodes 114a-d of the Hadoop cluster 112 may communicate
with the relational database 122 and the processing system 100 using a LAN, WAN, the
Internet, or any other kind of communications network that supports communications
between computer systems.

Further, although a single Hadoop cluster 112 is shown in figure 1, multiple
Hadoop clusters could be used in the system shown in the figure. For example, one
Hadoop cluster could receive some data from the relational database 122, and another
Hadoop cluster could receive other data from the relational database 122. Other
configurations involving multiple Hadoop clusters are possible.

Figure 2 shows an example of a dataflow graph 200. In some examples, the
dataflow graph 200 could be displayed in a user interface that allows a dataflow graph to
be viewed, configured, and/or executed. This dataflow graph 200 represents a data
processing operation that might be performed by the Hadoop cluster 112 and the data
processing system 100 shown in figure 1. In this example, the dataflow graph contains a
component 202 representing an operation called “join,” which we will also refer to as the
join component 202. The “join” operation combines two types of data, for example, one
type of data contained in one data source and another type of data contained in another
data source. The other components of the dataflow graph 200 enable the dataflow graph
200 to carry out the join operation using multiple types of data sources, including one
data source that is a Hadoop cluster. Further, most of the processing occurs on the nodes
of the Hadoop cluster.

In some examples, the dataflow graph 200 can be produced from a database
query, ¢.g., the database query 140 shown in figure 1. For example, the dataflow graph
200 can be generated using an engine (e.g., an instance of a graph operating system 130a-
d shown in figure 1) that takes a database query as input and produces a dataflow graph
as output. In this way, a dataflow graph such as the dataflow graph 200 shown in figure 2
can, when executed, produce the same output as the execution of the corresponding
database query 140 (figure 1). In this way, a database query 140 can be written using a
database query language such as SQL. However, the systems carrying out the
corresponding data processing operations, ¢.g., the Hadoop cluster 112, need not be

capable of parsing the database query 140. For example, there is no need to provide

- 14-

WO 2015/161025 PCT/US2015/026088

custom-designed database query parsing functionality to the Hadoop cluster 112. Instead,
an instance of a graph operating system 130a-d executing on a Hadoop node 114a-d
(figure 1) can execute the dataflow graph 200 to perform operations which, in
combination, are equivalent to operations of the database query 140 (e.g., achieving the
same result as executing the database query 140 in a conventional relational database
system). For example, when the dataflow graph 200 is executed by the instances of the
graph operating system 130a-d, the output of the dataflow graph 200 is equivalent to
output of a system (other than the Hadoop cluster 112) that executes the database query
140 but does not execute the dataflow graph 200. In this way, the dataflow graph 200 is
an example of a computer program that corresponds to the database query 140.

The components of the dataflow graph 200 are arranged so that the dataflow
graph 200 can process data from more than one type of data source, including a data
source representing a Hadoop cluster. One component 204 represents data stored by the
Hadoop cluster 112 and another component 206 represents data stored by the relational
database 122 both shown in figure 1. The Hadoop cluster component 204 is linked to the
join component 202 which means that data flows from the Hadoop cluster component
204 to the join component 202, and so the output of the Hadoop cluster component 204 is
provided to the join component 202 as input. Further, the Hadoop cluster component 204
represents operations that can be carried out in parallel by the nodes of the Hadoop
cluster. For example, when data flows from the Hadoop cluster component 204, multiple
portions of data may simultancously flow from Hadoop cluster nodes, ¢.g., data that has
been processed by the nodes. Similarly, an operation performed by the Hadoop cluster
component 204 can be performed in the form of multiple simultaneous operations each
performed on a Hadoop cluster node. This technique is sometimes referred to as parallel
processing. As shown in the figure, the number “4” indicates the number of nodes in the
underlying Hadoop cluster and thus the number of ways in which an operation can be
divided for parallel processing.

The data flows from the relational database component 206 in a way that the data
can be provided directly to individual nodes of a Hadoop cluster. Data flows from the
relational database component 206 to a broadcast component 210. The data then flows to

the join component 202. In this example, the operations of the join component 202 are

- 15-

WO 2015/161025 PCT/US2015/026088

carried out on data stored by the nodes of the Hadoop cluster represented by the Hadoop
cluster component 204 in order to take advantage of the parallel processing capabilities of
the Hadoop cluster.

The broadcast component 210 represents operations which enable the data stored
by the relational database to be transmitted to each of the nodes represented by the
Hadoop cluster component 204. Although the example here uses a relational database, the
broadcast component 210, like other components shown in figure 2, can be used with
other kinds of data sources. In some implementations, the broadcast component 210
copies a narrowed hashtable of the each portion of data across the cluster to allow the join
operation to be performed locally in each node of the Hadoop cluster. In this way, when
data flows from the relational database component 204 to the join component 202,
portions of the underlying data 124a-c stored in the relational database 122 shown in
figure 1 can be directed to a particular node 114a-d of the Hadoop cluster 112. This
process is represented by a fan-out indicator 212 which indicates that the data is divided
(or “fanned out”) for parallel processing. In some examples, the data stored in the
respective data sources (e.g., the relational database 122 and Hadoop cluster 112) can be
analyzed to determine an optimal manner of dividing the data as it is processed in the
dataflow graph 200. In some examples, the instances of the graph operating system 130a-
d executing on the nodes 114a-d of the Hadoop cluster can determine an optimal manner
of dividing the data as it is processed in the dataflow graph 200 and request a portion of
data from the relational database 122. In general, the data is divided so that the Hadoop
nodes each receive a quantity of data (e.g., only some of the rows and/or columns of the
relational database) that can be stored in active memory of the respective Hadoop node.

In this example, data flows from the join component 202 to a rollup component
214. A rollup component aggregates data from multiple sources. Because the join
component 202 represents operations carried out by multiple nodes of a Hadoop cluster,
the rollup component 214 aggregates the output from the multiple nodes. A fan-in
indicator 216 indicates that, at this point in the dataflow graph 200, the data flowing
through the graph in the form of multiple parallel flows is merged into a single flow.

Components 218 that appear after the fan-in indicator 216 represent operations which

-16-

WO 2015/161025 PCT/US2015/026088

may be carried out by an entity other than nodes of a Hadoop cluster (for example, the
data processing subsystem 101 shown in figure 5).

Each of the components of the dataflow graph is marked with a layout indicator.
A layout refers to a particular system that carries out the operations represented by a
component. As shown in the figure, some components are marked with layout 1, some
components are marked with layout 2, and some components are marked with layout 3.
Here, components marked with layout 1, layout 2, and layout 3 represent operations
carried out by instances of the graph operating system 130a-d associated with the Hadoop
cluster 112. In some examples, components marked with layout 2 represent operations
carried out by the relational database 122 or a graph operating system associated with the
relational database 122. In some examples, components marked with layout 3 represent
operations carried out by a system other than the Hadoop cluster 112 or the relational
database 122, for example, a system such as the data processing subsystem 101 shown in
figure 5.

Thus, when the dataflow graph 200 is executed, operations of the dataflow graph
200 can be carried out by computer systems associated with a Hadoop cluster so that
much of the data processing occurs at the Hadoop nodes. In this way, the parallel
processing features of the Hadoop cluster are used. Further, because the amount of data
copied to individual Hadoop nodes can be retained in active memory, the data does not
need to be copied to disk and so the performance slowdown caused by disk reads/writes
1S mitigated.

Figure 3 shows a dataflow graph 300 that represents another series of operations
that could be carried out together by systems of the the data processing system 100. This
dataflow graph 300 includes a component 302 that carries out an “append” operation. An
“append” operation appends one quantity of data to another quantity of data, forming a
merged quantity of data. This dataflow graph 300 represents another example of a series
of processing operations in which most of the data processing occurs on a Hadoop node.

The components of the dataflow graph 300 are arranged so that the dataflow
graph 300 can process data from more than one type of data source, including a data

source representing a Hadoop cluster. One component 304 represents data stored by the

-17-

WO 2015/161025 PCT/US2015/026088

Hadoop cluster 112 and another component 306 represents data stored by the relational
database 122 both shown in figure 1.

The Hadoop cluster component 304 is linked to a filter component 308 which is
linked to the append component 302. Thus, data flows from the Hadoop cluster
component 304 and is filtered by the filter component 308 before being processed by the
append component 302. The input data can be filtered based on characteristics of the
input data as well as characteristics of the data stored on each Hadoop node. For example,
if an operation is to be performed on data representing commercial transactions, and a
particular Hadoop node only stores data for transactions totaling greater than ten dollars,
then the filter component 308 can be configured (e.g., by modifying parameters
controlling the operation of the component) to pass on input data that is relevant to
purchases totaling greater than ten dollars. As another example, if an operation is to be
performed on data representing commercial transactions, and the operation itself is only
relevant to purchases totaling greater than ten dollars, then the filter component 308 can
be configured (e.g., by modifying parameters controlling the operation of the component)
to pass on input data that is relevant to transactions totaling greater than ten dollars.

In this dataflow graph 300, data flowing from the relational database component
306 is divided for processing at nodes of a Hadoop cluster. The relational database
component 306 is linked to a partition component 310, which partitions (e.g., divides) the
data that flows from the relational database component 306. For example, the partition
component 310 may use a technique called round robin, in which each new portion of
data partitioned by the partition component 310 is provided to a node of a Hadoop cluster
in a fixed sequence. Put another way, in the round robin technique, a portion of data is
parceled out to one node after another in turn. In this way, each node of the Hadoop
cluster receives portions of data that can be kept in active memory of the node and need
not be written to disk.

Thus, the append component 302 represents operations carried out by nodes of a
Hadoop cluster, such that each node appends data received from the relational database
component 306 to data stored at the individual node of the Hadoop cluster. The results of
all of these append operations are provided in parallel to a rollup component 312 which

aggregates the results for further processing. For example, the aggregated output can be

- 18-

WO 2015/161025 PCT/US2015/026088

processed by a further component 314. Again, most of the data processing operations
occur on the Hadoop cluster, in a manner that does not require significant use of disk
operations on nodes of the Hadoop cluster.

Figure 4 shows a flowchart representing a procedure 400 for processing data. The
procedure 400 can be carried out, for example, by components of the data processing
system 100 shown in figure 1.

The procedure 400 executes 402 an instance of a data processing engine at a
Hadoop node of a Hadoop cluster. The Hadoop node stores a first portion of data in
HDFS data storage. The data processing engine is capable of receiving data from a data
source external to the Hadoop cluster. For example, the node could be one of the nodes
114a-d of the Hadoop cluster 112 shown in figure 1. For example, the data processing
engine could be the graph operating system 130a-f shown in figure 1.

Other instances of the data processing engine can execute on other nodes of the
Hadoop cluster, each performing their own instance of operations of the procedure 400
(e.g., operations 402-412). In some implementations, the data processing engine does not
implement the MapReduce programming model.

The procedure 400 receives 404 a program. The program can be received by the
data processing engine. For example, the program could be a dataflow graph that includes
at least one component representing the Hadoop cluster, at least one component
representing a source of received data, and at least one link that represents at least one
dataflow associated with an operation to be performed on data received from at least one
source of data (e.g., the Hadoop cluster or another source of data). The graph may include
at least one component connected to a link representing a flow of data from the Hadoop
cluster and connected to a link representing a flow of data from a source of the data
received in the procedure 400.

In some implementations, the computer program includes components
representing operations corresponding to a database query, e.g., an SQL query. A
computer program representing a database query includes at least one component
representing a source of data referenced in the database query (e.g., a database query

referencing the Hadoop cluster) and at least one link that represents at least one dataflow

-19-

WO 2015/161025 PCT/US2015/026088

associated with the operation to be performed on the data. For example, the operation
could be a data processing operation performed in the procedure 400.

The procedure 400 executes 406 at least part of the computer program. For
example, the part of the computer program can be executed by the data processing
engine, which executes on the Hadoop node in the Hadoop cluster. In some examples, the
part of the computer program executed includes at least one component representing the
Hadoop cluster and at least one component representing a data processing operation. For
example, the components of the computer program executed 406 could be included in a
layout of the computer program. In some examples, instances of the same components of
the computer program executed 406 here are concurrently executed in other nodes of the
Hadoop cluster. In some implementations, the computer program is configured before it
is executed. For example, components of the computer program can be configured with
parameters having values that can be changed. In some examples, the computer program
is linked to another program or programs. For example, if the computer program is a
graph, the graph can be linked to another graph (e.g., a graph executing on or available at
a graph operating system).

The procedure 400 receives 408 a second portion of data from the external data
source. For example, the external data source can be a source other than a node of the
Hadoop cluster, ¢.g., the data source 120 (e.g., a relational database 122) shown in figure
1. The data that is received is distinct from other portions of data received at other nodes
of the Hadoop cluster (e.g., other portions of data received from the other source of data).
In some examples, the second portion of data includes a subset of rows of a relational
database, and the second portion of data includes a subset of columns of the relational
database. In some examples, the second portion of data is distinct from a third portion of
data received at a second node of the Hadoop cluster from the external data source. Put
another way, the second portion of data contains different data, ¢.g., different rows and/or
columns, than the third portion of data.

The procedure 400 stores 410 the second portion of data, other than in HDFS
storage, by which we mean that the second portion of data is not stored in HDFS storage
(c.g., the HDFS storage containing the first portion of data). For example, the second

portion of data can be stored in volatile memory of the Hadoop node. Volatile memory is

-20-

WO 2015/161025 PCT/US2015/026088

sometimes referred to as random access memory. In contrast, non-volatile memory is,
e.g., a disk drive. The data received 408 by the procedure 400 may have a size that fits in
the volatile memory of the nodes of the Hadoop cluster.

The procedure 400 performs 412 a data processing operation identified by the
program using at least the first portion of data and the second portion of data. The data
processing operation can be carried out, at least in part, by an instance of a data
processing engine that co-operates with other instances of the data processing engine.
The instances of the data processing engine perform the data processing operation
together in parallel, by which we mean that the instances of the data processing engine
execute concurrently to perform the same data processing operation on different portions
of data. By “execute concurrently,” we mean that the time at which one instance of data
processing engine begins to carry out a collection of operations (e.g., in a portion of a
computer program) does not depend on the time at which another instance of the data
processing engine begins to carry out the same collection of operations, and at least some
of the same operations may be carried out simultaneously, or within a few milliseconds
of cach other, on both instances of the data processing engine. In some examples, the
instances can together perform the data processing operation on a body of data stored by
nodes of the Hadoop cluster, and another body of data. In some examples the other body
of data could be stored in a format native to a relational database system (e.g., in the form
of a table containing rows and columns, or in another form that is a default format of a
relational database system).

In some examples, the procedure 400 executes at least part of the program by a
second instance of the data processing engine outside of the Hadoop cluster. For
example, the data processing engine could be the graph operating system 130f executing
on the other data source 120 (e.g., a relational database 122) shown in figure 1. A double-
headed arrow is shown in the figure as a representation of communication between the
instance of the graph processing engine executing on the Hadoop node and the instance
of the data processing engine executing outside the Hadoop cluster. In some
implementations, a node of the Hadoop cluster, e.g., one that carries out operations 402-
412 of the procedure, communicates with at least part of the program being executed by

the second instance of the data processing engine outside of the Hadoop cluster (e.g., the

-21-

WO 2015/161025 PCT/US2015/026088

instance of the data processing engine executing on the other data source 120). For
example, at least part of the program (e.g., one or more components of a program) may
send and receive data to and from the node of the Hadoop cluster.

The portion of data received by a node of the Hadoop cluster could be chosen
based on characteristics of the portion of data stored on the node. For example, the
portion of data received by the node could be chosen based on what data would be
needed to carry out the data processing operation on that particular node, as opposed to
other nodes. If the portion of data received by the node comes from a relational database,
then the portion of data may include only some columns and/or only some rows from the
relational database. In some examples the relational database could perform a filtering
operation that filters output data destined for a particular node based on information
identifying the portion of data stored on the particular node.

Figure 5 shows another version of a data processing system 100a in which data
102, 103 originating at one or more data sources 110, 120, is processed by a data
processing subsystem 101. The data processing subsystem 101 performs operations 131
on the data, and provides processed data 132 to one or more outputs 150. This data
processing system 101 can process data 102, 103 from more than one type of data source
110, 120, and process the data in a way so that the operations performed on the data are
not limited according to which data 102, 103 arrived from which type of data source 110,
120. One manner for accomplishing this is enabling one of the data sources 110 (e.g., a
Hadoop cluster 112) to receive data 104 from the other data source 120 (e.g., a relational
database 122) and process the received data 104 using techniques native to the data
source 110. In this way, much of the data processing that would otherwise be performed
by the data processing system 101 is instead performed by the data source 110.

A Hadoop cluster 112, along with other types of data sources, may be designated
as an input data source 110 to the data processing system 101. The other data sources 120
could be data sources such as a relational database, a flat file, a feed of data from a
network resource, or any other resource that can provide data in response to a request
from the data processing system. The data processing subsystem 101 can then perform
operations on combinations of data 102 from the Hadoop cluster 112 and data 103 from

another data source 120. Rather than extract data from the Hadoop cluster 112 or the

-0

WO 2015/161025 PCT/US2015/026088

other data source 120, the data processing subsystem 101 may rely on the data processing
functionality of the Hadoop cluster 112. This could be done to take advantage of data
processing features of the Hadoop cluster 112. In this way, the data processing subsystem
101 can carry out fewer operations, and on a much smaller amount of data, compared to
the Hadoop cluster 112. For example, as shown in figure 5, most of the data 104 received
from the other data source 120 is transmitted directly to the Hadoop cluster 112 (e.g.,
using techniques described above with respect to figure 1), and only a small amount of
data 103 (perhaps none at all) is transmitted to the data processing subsystem 101.

As a practical example, the data processing subsystem 101 can instruct the nodes
114a-d of the Hadoop cluster 112 to perform some operations (e.g., operations that
perform a transformation upon a portion of data) needed to complete a task, and instruct
the relational database 122 to carry out some other operations (e.g., operations that
perform a transformation upon another portion of data) also needed to complete the task.

As an example of these techniques, when the data processing subsystem 101
performs a data processing operation, the data processing subsystem 101 accesses only
the data it needs to carry out the operation, e.g., only the data on which the operation is
performed. Other data processing operations can be carried at the Hadoop cluster 112, for
example.

In some implementations, the data processing subsystem 101 is a graph-based
data processing system which executes graphs to process data. For example, the data
processing subsystem 101 may include an instance of a graph operating system 130e,
which executes one or more computer programs 134e¢ that include data processing
operations.

In some implementations, a further instance of the graph operating system 130f
may execute in association with the relational database 122. For example, the further
instance of the graph operating system 130f may execute on the same computer system
(or combination of systems) that is executing the relational database 122, or the further
instance of the graph operating system 130f may execute on a separate computer system
123 in communication with the computer system (or combination of systems) that is
executing the relational database 122. In some implementations, the further instance of

the graph operating system 130f is not used. Because this instance of the graph operating

-23-

WO 2015/161025 PCT/US2015/026088

system 130f is optional, it is represented in figure 1 with a dotted line. In some
implementations, instances of the graph operating system 130a-d that execute on the
nodes 114a-d of the Hadoop cluster 112 communicate with the further instance of the
graph operating system 130f executing in association with the relational database 122.
In some implementations, each instance of the graph operating system 130a-f
executes a corresponding portion of a computer program 134a-f. For example, the
computer program may be made up of executable components, and each instance of the
graph operating system 130a-f can execute some of the components of the computer
program. The instances of the graph operating system 130a-f can coordinate with one
another, for example, by transmitting and receiving data to and from one another, to
execute their respective portions of the computer program and thus together execute the
computer program. In some examples, multiple instances of the graph operating system
130a-f execute instances of the same components of the computer program. For example,
the instances of the computer program 130a-d executing on the nodes 114a-d of the
Hadoop cluster 112 may each execute instances of the same data processing component,
cach of which operates on different data (e.g., the data 116a-d stored by the respective
node 114a-d). In some examples, the portions of the computer program may together
make up a dataflow graph, and the portions of the computer program may be subgraphs
(e.g., one or more linked components) of the dataflow graph. In some examples, the
computer program or portions of the computer program executed by the instances of the
graph operating system 130a-f is generated from a database query 140 received by the
data processing subsystem 101 or received by another component of the data processing
system 100a.The approach described above can be implemented using a computing
system executing suitable software. For example, the software may include procedures in
ong or more computer programs that execute on one or more programmed or
programmable computing system (which may be of various architectures such as
distributed, client/server, or grid) each including at least one processor, at least one data
storage system (including volatile and/or non-volatile memory and/or storage elements),
at least one user interface (for receiving input using at least one input device or port, and
for providing output using at least one output device or port). The software may include

one or more modules of a larger program, for example, that provides services related to

-24-

WO 2015/161025 PCT/US2015/026088

the design, configuration, and execution of dataflow graphs. The modules of the program
(c.g., elements of a dataflow graph) can be implemented as data structures or other
organized data conforming to a data model stored in a data repository.

The software may be provided on a tangible, non-transitory medium, such as a
CD-ROM or other computer-readable medium (e.g., readable by a general or special
purpose computing system or device), or delivered (e.g., encoded in a propagated signal)
over a communication medium of a network to a tangible, non-transitory medium of a
computing system (such as a storage device) where it is executed. Some or all of the
processing may be performed on a special purpose computer, or using special-purpose
hardware, such as coprocessors or field-programmable gate arrays (FPGAs) or dedicated,
application-specific integrated circuits (ASICs). The processing may be implemented in
a distributed manner in which different parts of the computation specified by the software
are performed by different computing elements. Each such computer program is
preferably stored on or downloaded to a storage device (e.g., a non-transitory storage
device such as solid state memory or media, or magnetic or optical media) readable by a
general or special purpose programmable computer, for configuring and operating the
computer when the storage device is read by the computer system to perform the
procedures described herein. The inventive system may also be considered to be
implemented as a tangible, non-transitory medium, configured with a computer program,
where the medium so configured causes a computer to operate in a specific and
predefined manner to perform one or more of the processing steps described herein.

A number of embodiments of the invention have been described. Nevertheless, it
is to be understood that the foregoing description is intended to illustrate and not to limit
the scope of the invention, which is defined by the scope of the following claims.
Accordingly, other embodiments are also within the scope of the following claims. For
example, various modifications may be made without departing from the scope of the
invention. Additionally, some of the steps described above may be order independent,
and thus can be performed in an order different from that described.

For example, although the above examples show a data processing system 100
distinct from the Hadoop cluster 112 or the relational database 122, in some

implementations, the data processing system 100 may actually be functionally distributed

-25-

WO 2015/161025 PCT/US2015/026088

across the Hadoop cluster 112 and/or the relational database 122, for example, as
instances of the graph operating system 130a-e.

As another example, although the examples shown in figures 1-4 use the example
of a single Hadoop cluster an a single relational database, the techniques described here
could also be used to operate on data received from one Hadoop cluster and received

from another separate Hadoop cluster.

-26-

WO 2015/161025 PCT/US2015/026088

What 1s claimed is:

1. A method including:

at a node of a Hadoop cluster, the node storing a first portion of data in HDFS
data storage:

executing a first instance of a data processing engine capable of receiving data
from a data source external to the Hadoop cluster;

receiving a computer-executable program by the data processing engine;

executing at least part of the program by the first instance of the data processing
engine;

receiving, by the data processing engine, a second portion of data from the
external data source;

storing the second portion of data other than in HDFS storage; and

performing, by the data processing engine, a data processing operation identified

by the program using at least the first portion of data and the second portion of data.

2. The method of claim 1 in which the Hadoop cluster includes nodes each
executing an instance of the data processing engine, the instances of the data processing
engine running concurrently to perform the data processing operation together in parallel
on a) a first body of data that includes the first portion of data, the first body of data also
including other portions of data being processed by the other nodes of the Hadoop
cluster, and b) a second body of data that includes the second portion of data, the second
body of data being stored in a format native to a relational database system, and the
second body of data being divided into portions that each can be stored in volatile

memory of the nodes of the Hadoop cluster.

3. The method of claim 1 in which the computer program includes a dataflow
graph executed by a graph execution engine of the data processing engine, wherein the
dataflow graph includes a) at least one component representing the Hadoop cluster, b) at

least one component representing the source of the second portion of data, and ¢) at least

-27-

WO 2015/161025 PCT/US2015/026088

one link that represents at least one dataflow associated with the operation to be

performed on the data received from at least one source of data.

4. The method of claim 3 in which at least one component of the dataflow
graph is connected to a link representing a flow of data from the Hadoop cluster, and
wherein the at least one component is connected to a link representing a flow of data

from the source of the second portion of data.

5. The method of claim 1 in which the data processing engine does not

implement the MapReduce programming model.

6. The method of claim 1, in which the second portion of data is stored in

volatile memory.

7. The method of claim 1 including

receiving a database query, the database query including at least one operation to
be performed on data received from at least one source of data that includes the Hadoop
cluster; and

the computer program includes components representing operations
corresponding to the database query, wherein the computer program includes at least one
component representing the at least one source of data and at least one link that
represents at least one dataflow associated with the operation to be performed on data

received from at least one source of data.

8. The method of claim 1 in which the second portion of data was chosen

based on characteristics of the first portion of data.
9. The method of claim 1 in which the second portion of data includes a

subset of rows of a relational database, and the second portion of data includes a subset of

columns of the relational database.

-08-

WO 2015/161025 PCT/US2015/026088

10. The method of claim 1 in which the second portion of data is distinct from
a third portion of data received at a second node of the Hadoop cluster from the external

data source.

11. The method of claim 1 including communicating with an instance of at
least part of the program that is being executed by a second instance of the data

processing engine that is outside of the Hadoop cluster.

12. The method of claim 1 including executing at least part of the program by

a second instance of the data processing engine outside of the Hadoop cluster.

13. A computer-readable storage device including instructions for causing a
node of a Hadoop cluster storing a first portion of data in HDFS data storage to carry out
operations including:

executing a first instance of a data processing engine capable of receiving data
from a data source external to the Hadoop cluster;

receiving a program by the data processing engine;

executing at least part of the program by the first instance of the data processing
engine;

receiving, by the data processing engine, a second portion of data from the
external data source;

storing the second portion of data other than in HDFS storage; and

performing, by the data processing engine, a data processing operation identified

by the program using at least the first portion of data and the second portion of data.

14. A node of a Hadoop cluster storing a first portion of data in HDFS storage
and including a computer processing device configured to carry out operations including:

executing a first instance of a data processing engine capable of receiving data
from a data source external to the Hadoop cluster;

receiving a program by the data processing engine;

-20.

WO 2015/161025 PCT/US2015/026088

executing at least part of the program by the first instance of the data processing
engine;

receiving, by the data processing engine, a second portion of data from the
external data source;

storing the second portion of data other than in HDFS storage; and

performing, by the data processing engine, a data processing operation identified

by the program using at least the first portion of data and the second portion of data.

15. A node of a Hadoop cluster storing a first portion of data in HDFS storage
and including:

means for executing a first instance of a data processing engine capable of
receiving data from a data source external to the Hadoop cluster;

means for receiving a program by the data processing engine;

means for executing at least part of the program by the first instance of the data
processing engine;

means for receiving, by the data processing engine, a second portion of data from
the external data source;

means for storing the second portion of data other than in HDFS storage; and

means for performing, by the data processing engine, a data processing operation
identified by the program using at least the first portion of data and the second portion of
data.

16. A method including:
at a node storing a first portion of data and operating in conjunction with a cluster
of nodes, the cluster storing an aggregation of data, the nodes being configured to
operateon the aggregation of data in parallel:
executing a first instance of a data processing engine capable of receiving
data from a data source external to the cluster;
receiving a computer-executable program by the data processing engine;
executing at least part of the program by the first instance of the data

processing engine;

- 30-

WO 2015/161025 PCT/US2015/026088

receiving, by the data processing engine, a second portion of data from the
external data source;

storing the second portion of data in volatile memory of the node;

performing, by the data processing engine, a data processing operation
identified by the program using at least the first portion of data and the second
portion of data.

17. A method including:

at a data processing engine of a node of a Hadoop cluster, performing a data
processing operation identified by a computer-executable program being executed by the
data processing engine, the data processing operation being performed using at least a
first portion of data stored in HDFS data storage at the node and at least a second portion
of data received from a data source external to the Hadoop cluster and stored other than

in HDFS the storage.

18. A method including:

receiving a SQL query specifying sources of data including a Hadoop cluster and
a relational database;

generating a computer-executable program that corresponds to the SQL query;

executing the computer-executable program at a data processing engine of a node
of the Hadoop cluster; and

performing, by the data processing engine, a data processing operation identified
by the computer-executable program using at least data of the Hadoop cluster and data of

the relational database.

-31-

PCT/US2015/026088

WO 2015/161025

1/4

sindino
0G1

l Old

0cl
I/K

AN

¢l SNdad

vClL| (dPcCl] [BvCl

N\ Y,
L
~1 8PON [POlT PYEl 4 POS) mc_mcm+
PyLL
~ ®PON |991T S¥EI = O0C1 mc_mcm+
oyl
«— ~—| 8PON |G91T arcl H aocl ®c_?mT_.
50T avll
eleq
~1 9PON [eg]] BYCl - B0Cl oc_mcm_+
eyl
21T Jasnio
A
ov1 Aanpd

001

PCT/US2015/026088

WO 2015/161025

2/4

mw mu_n_ Z 1noAeT Z InoAe
0l¢ 90¢
uoniued [sSnaad
| InoAeT
¢ 1noke r|50>m._ =0¢c
(253 453
<] dnjoy [T puaddy
|l In0AeT | In0AeT \
oTaTa —== 00¢
80¢ v0€
Jayi4 Il doopeH
N mu_n_ Z InoAeT Z 1noAeT
0lc 90¢
8L¢c che u,wmo_omohm_”_ [l swaax
, A N | 1noAeT
¢ JnokeT ¢ 1nokeT | 1noAeT =02
%4
[H djoy 1 upop
| InoAeT
9lL¢ 502 A:J
doopeH 00¢

12

WO 2015/161025 3/ PCT/US2015/026088

400

S

At Node of Hadoop Cluster
A

N

o

[
\

Execute data processing engine

404 v

Receive computer-executable program

|

Execute at least part of program

40

[L

408 y

Receive data from external data source

-

Store received data

412 l

Perform data processing operation on two
portions of data

-

-

FIG. 4

100a

WO 2015/161025

110

4/4

PCT/US2015/026088

Data

'9\4

N

12

RDBMS

)
5
o
o|| &
~ -
O
[4v]
g>r| A
- o~
o
- : 25
S| FLE < |8
C|l— g_or) o 035)‘
~ ~ ~ O_Q
O
[}
awv
©
e
| 5
\ a \
® o)) ©
hd < < <
~ A ~— A
T TY Y MY
(D) (b} D (D)
L) L) L) L)
O O O O
zZ prd zZ zZ
o 5 O & o)
-— © © @‘ ©
<~ ~ ~ ~ <~
o Aum b v < b v
()
)
3
o (] (] o -
o |2 = = =
'O o) o 9]
8’ c c LICJ <
I L L o
o) O o [A
=) =) o)
(40 (40 (ap (40
~ ~ ~ ~ ﬁ_
I | I |
O O © D
< < < <
(a8 ™) (ap (40
< b v < <
]
e
{0
()]

FIG. 5

K\~120

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2015/026088

A. CLASSIFICATION OF SUBJECT MATTER

INV. GOD6F9/50
ADD.

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

GO6F

Minimum documentation searched {classification system followed by classification symbols)

Documentation searshed other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the intemational search (name of data base and, where practicable, search terms used)

EPO-Internal, WPI Data, PAJ, INSPEC, COMPENDEX

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* | Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
Y US 20137325814 Al (CARTER JOSHUA DANIEL 1-18
[US]) 5 December 2013 (2013-12-05)
abstract
paragraph [0003] - paragraph [0032]
Y US 20127239612 Al (GEORGE MUTHIAN [US] ET 1-18
AL) 20 September 2012 (2012-09-20)
abstract
paragraph [0002] - paragraph [0003]
paragraph [0010] - paragraph [0014]
paragraph [0024] - paragraph [0031]
paragraph [0085] - paragraph [0086]
A US 20137024496 Al (KRISHNAN SUBRAMANIAM 1-18
VENKATRAMAN [IN] ET AL)
24 January 2013 (2013-01-24)
the whole document
- / -

Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents :

"A" document defining the general state of the art which is not considered
to be of particular relevance

"E" earlier application or patent but published on or after the international
filing date

"L" documentwhich may throw doubts on priority claim(s) or which is
cited to establish the publication date of another citation or other
special reason (as specified)

"O" document referring to an oral disclosure, use, exhibition or other
means

"P" document published prior to the international filing date but later than
the priority date claimed

"T" later document published after the international filing date or priority
date and not in conflict with the application but cited to understand
the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be
considered novel or sannot be considered to involve an inventive
step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

'&" document member of the same patent family

Date of the actual completion of the international search

24 June 2015

Date of mailing of the international search report

03/07/2015

Name and mailing address of the ISA/

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswilk

Tel. (+31-70) 340-2040,

Fax: (+31-70) 340-3016

Authorized officer

Beltrén-Escavy, José

Form PCT/ISA/210 (second sheet) (April 2005)

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2015/026088

C(Continuation).

DOCUMENTS CONSIDERED TO BE RELEVANT

Category” | Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

A

US 20137227558 Al (DU JUNPING [CN] ET AL)
29 August 2013 (2013-08-29)

the whole document

US 20137254196 Al (BABU SHIVNATH [US] ET
AL) 26 September 2013 (2013-09-26)

the whole document

US 20147047422 A1 (RAVI NISHKAM [US] ET
AL) 13 February 2014 (2014-02-13)

the whole document

US 20147095470 A1 (CHEN XING [CN] ET AL)
3 April 2014 (2014-04-03)

the whole document

1-18

1-18

1-18

1-18

Form PCT/ISA210 (continuation of second sheet) [Aptil 2005)

INTERNATIONAL SEARCH REPORT

Information on patent famlly members

International application No

PCT/US2015/026088
Patent document Publication Patent family Publication
cited in search report date member(s) date
US 2013325814 Al 05-12-2013 NONE
US 2012239612 Al 20-09-2012 NONE
US 2013024496 Al 24-01-2013 US 2013024496 Al 24-01-2013
Us 2015127725 Al 07-05-2015
US 2013227558 Al 29-08-2013 NONE
US 2013254196 Al 26-09-2013 NONE
US 2014047422 Al 13-02-2014 NONE
US 2014095470 Al 03-04-2014 CN 103714073 A 09-04-2014
US 2014095470 Al 03-04-2014

Form PCT/ISA210 (patent family annex) (April 2005)

	Page 1 - front-page
	Page 2 - description
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - claims
	Page 29 - claims
	Page 30 - claims
	Page 31 - claims
	Page 32 - claims
	Page 33 - drawings
	Page 34 - drawings
	Page 35 - drawings
	Page 36 - drawings
	Page 37 - wo-search-report
	Page 38 - wo-search-report
	Page 39 - wo-search-report

