发明名称

银杏内酯渗透泵片及其制备方法

摘要

本发明提供一种银杏内酯渗透泵片及其制备方法。本发明所述银杏内酯渗透泵片是由含药层和助推层组成的双层片，并对其进行包衣，在含药层片面上有释药孔，所述银杏内酯渗透泵片以银杏叶提取物中有效部位银杏内酯为活性成分，其中银杏内酯A、银杏内酯B、银杏内酯C和白果内酯的总量不低于70%。本发明通过固体分散体增溶技术与渗透泵片控释技术相结合的策略，在首先将银杏内酯制成固体分散体，提高难溶性成分溶解度的基础上，通过进一步制成银杏内酯渗透泵片，实现银杏内酯中复杂成分的缓释功能，减少给药次数，提高患者顺应性。
1. 一种银杏内酯渗透泵片，其特征在于：所述银杏内酯渗透泵片是由含药层和助推层组成的双层片，并对其进行包衣，在含药层片面上有释药孔；所述银杏内酯渗透泵片以银杏叶提取物中有效部位银杏内酯为活性成分，其中银杏内酯 A、银杏内酯 B、银杏内酯 C 和白果内酯的总量不低于 70%；

所述银杏内酯渗透泵片采用固体分散体增溶技术与渗透泵片控释技术，将银杏内酯制成固体分散体后，再制备银杏内酯双层渗透泵片。

2. 根据权利要求 1 所述的银杏内酯渗透泵片，其特征在于：所述的银杏内酯固体分散体为银杏内酯中加入适当种类与比例的载体材料，采用溶剂法、研磨法或热熔挤出法制成。

3. 根据权利要求 1 所述的银杏内酯渗透泵片，其特征在于：所述的银杏内酯渗透泵双层片的含药层由银杏内酯固体分散体、填充剂、润滑剂组成。

4. 根据权利要求 3 所述的银杏内酯渗透泵片，其特征在于：所述的填充剂选自乳糖、糊精、淀粉、可压性淀粉或微晶纤维素中的一种或几种；所述的润滑剂选自滑石粉或微粉硅胶。

5. 根据权利要求 1 所述的银杏内酯渗透泵片，其特征在于：所述的助推层由 50 ～ 70mg 的促渗剂，10 ～ 30mg 的膨胀材料，润滑剂组成。

6. 根据权利要求 5 所述的银杏内酯渗透泵片，其特征在于：所述的促渗剂选自乳糖、甘露醇、葡萄糖、氯化钠、果糖或蔗糖中的一种或几种；所述的膨胀材料选自聚氧乙烯、羟丙甲基纤维素、交联羟甲基纤维素钠、羧甲基淀粉钠或聚乙烯吡咯烷酮中的一种或几种；所述的润滑剂为滑石粉或微粉硅胶。

7. 根据权利要求 1 所述的银杏内酯渗透泵片，其特征在于：所述的包衣液为半透膜材料、增塑剂或渗透率调节剂的有机溶剂溶液；所述的半透膜材料选自醋酸纤维素或乙基纤维素；所述的渗透率调节剂选自聚乙二醇或羟丙甲基纤维素；其中半透膜材料与渗透率调节剂的比例为 10：1 ～ 5：1；增塑剂选自三醋酸甘油酯、邻苯二甲酸酯或聚乙二醇；包衣增重为 10% ～ 25%。

8. 根据权利要求 1 所述的银杏内酯渗透泵片，其特征在于：所述银杏内酯渗透泵片的释药孔是在含药层片面激光打孔，孔径范围为 200 μm ～ 1000 μm。
银杏内酯渗透泵片及其制备方法

技术领域
[0001] 本发明属于中药技术领域，具体涉及一种银杏内酯渗透泵片及其制备方法。

背景技术
[0002] 银杏叶制剂是目前国际、国内用于心脑血管疾病治疗和预防的最主要的药物之一，也是销量最大、接受度最广的植物药。我国的银杏资源占世界总资源的70%以上，年生产银杏叶高达2万吨，年产银杏叶标准提取物（EGb761）百余吨，原料充足，国外银杏制品的原料主要来源于我国，银杏叶及银杏叶标准提取物的出口额占我国中药材的第一位。但对银杏叶的研究和利用则滞后于国外。我国目前银杏叶的主要利用方式为廉价出口银杏叶及银杏叶标准提取物EGb761，银杏叶制剂基本上限于国内销售。而银杏叶从原料到制剂的附加值为1：5：100（即叶子：提取物：制剂的增值比）。因此，充分利用我国丰富的银杏叶资源，加强对银杏叶有效部位及现代制剂的研究，是推动我国银杏产业发展、增强我国银杏制剂的国际竞争力，提高银杏资源的附加值的关键。

[0003] 自上世纪六十年代以来，国内外学者对银杏的化学成分、药理作用及其应用做了大量的研究工作，已证明蒲黄酯酵类有效部位银杏内酯（包括银杏内酯A、B、C、J和白果内酯）是银杏叶中的主要活性成分，也是迄今在其他任何植物中没有发现的银杏特有成分。它是一类专一高效的血管小板活化因子（PAF）受体拮抗剂，可有效防止血管小板聚集和血栓的形成，同时具有清除体内自由基、抗氧化的作用，能减轻脑缺血时体内产生的过多自由基对脑组织造成的损害。在临床上可用于冠心病、脑血栓、脑缺血、神经系统疾病和哮喘等病的治疗；白果内酯抗PAF作用弱，但具较强的神经保护作用。与传统银杏叶提取物相比，银杏内酯治疗作用更加专一，毒副作用更少，使用剂量更小。银杏内酯制剂被认为是新一代的银杏制剂，银杏内酯新制剂的研制成功，必将创造更大的社会和经济效益。目前公开的银杏内酯制剂均为普通片剂或胶囊剂，需一日多次服药（3次/日），而银杏内酯在人体内的消除半衰期较短（1～3h），心脑血管疾病的治疗和预防又需要长期用药，因此有必要将其改进成口服一次的缓控释制剂，以减少给药频率、保持平稳的血药浓度、避免“峰谷”现象，提高治疗效果和患者顺应性，创造更大的市场价值。

[0004] 研究显示，银杏内酯有效部位溶度度不佳、各成分理化性质具有差异（如银杏内酯A、B、C、D和白果内酯的溶解度分别为261.3±9.9、69.5±1.2，481.8±20.6和1389.7±42.9μg/ml）。鉴于中药制剂的疗效是多组分共同作用的结果，只有各成分在体内同步释放和吸收才能达到相辅相成、协同作用的目的，才能与历代医家重视的组方用药规律相吻合。目前普遍采用的膜控技术和骨架技术均难以保证不同性质中药成分体内释放的同步性。因此，业内共识如何实现理化性质差异显著的银杏内酯有效部位中复杂成分的同步释放是银杏内酯缓释制剂研制的关键。

发明内容
[0005] 本发明的目的是提供一种银杏内酯渗透泵片及其制备方法，尤其涉及可实现复杂
成分同步缓慢释放的银杏内酯产品及其制备方法。

【0006】本发明的目的是采用如下技术方案来实现的：
【0007】采用固体分散体增溶技术与渗透泵片控释技术相结合的策略，在首先将银杏内酯制成固体分散体，提高难溶性成分溶解度的基础上，通过进一步制成银杏内酯渗透泵片实现银杏内酯中复杂成分的同步缓慢释放。
【0008】本发明所述银杏内酯渗透泵片中的活性成分为银杏叶提取物中有效部位银杏内酯，其中银杏内酯A、银杏内酯B、银杏内酯C和白果内酯的总量不低于70%。
【0009】本发明所述的银杏内酯固体分散体为药物中加入适当种类与比例的载体材料，采用溶剂法制备研磨法制备固体分散体，其制备过程为：称取处方量的银杏内酯与载体材料，加入适当种类有机溶剂，搅拌，使药物与载体材料溶解。采用旋转蒸发，蒸去有机溶剂。置真空干燥箱中继续干燥10～30h，研磨，过60～120目筛，即得。其中载体材料可选择聚乙烯醇基药膜，羟丙甲基纤维素、羟丙甲基纤维素、聚乙二醇6000、聚乙二醇4000、巴洛热姆、半乳糖、甘露糖、聚氧乙烯中的一种或几种，其中优选聚乙二醇基药膜。药物与载体比例为1：2～15，其中优选1：5～10。溶剂可选择氯仿、二氯甲烷、丙二醇、聚乙二醇、乙醇或丙酮中的其中一种或几种。
【0010】本发明中，采用溶剂法制备银杏内酯固体分散体，其制备过程为：称取处方量的银杏内酯与载体材料，混匀，置研磨仪中，研磨，转速100～600rpm，研磨时间20～60min。取出，过60～120目筛，即得。其中载体材料可选择微晶纤维素（包括PH101、PH102、PH103、PH104、PH105、PH106、PH107、PH108、PH109、RC1090、RC1091、RC1092等型号）、β-环糊精、羟丙基-β-环糊精、聚乙二醇基药膜或乳糖中的一种或几种，其中优选聚乙二醇基药膜。药物与载体比例为1：2～15，其中优选1：5～10。
【0011】本发明中，采用研磨法制备银杏内酯固体分散体，其制备过程为：称取处方量的银杏内酯与载体材料，混匀，置研磨仪中，研磨，转速100～600rpm，研磨时间20～60min。取出，过60～120目筛，即得。其中载体材料可选择巴洛热姆188、巴洛热姆407、聚乙二醇基药膜、聚乙二醇基纤维素、聚乙二醇基纤维素、聚乙二醇基纤维素、聚乙二醇基纤维素、聚乙二醇基纤维素、聚乙二醇基纤维素、聚乙二醇基纤维素、聚乙二醇基纤维素、聚乙二醇基纤维素、聚乙二醇基纤维素（2：2，聚乙二醇/聚乙二醇基药膜按比例100：100配制）共聚物或Soluplus中的一种或几种，其中优选聚维酮酸乙醇酯-聚维酮混合物（2：2）。药物与载体比例为1：2～15，其中优选1：5～10。
【0012】本发明所述的银杏内酯渗透泵片是由含药层和助渗层组成的双层片，并对其进行包衣，在含药层表面进行激光打孔作为释药孔，即得。
【0013】本发明所述的银杏内酯渗透泵双层片的含药层由银杏内酯固体分散体，填充剂、润滑剂组成。所述的填充剂可选择乳糖、糊精、淀粉、可压性淀粉、微晶纤维素中的一种或几种。所述的润滑剂可选择滑石粉或微粉硅胶。
【0014】本发明所述的银杏内酯渗透泵双层片的助渗层由50～70mg的助渗剂，10～30mg的膨胀材料，润滑剂组成。所述的助渗剂可选择乳糖、甘露醇、葡萄糖、氯化钠、果糖、蔗糖中的一种或几种。所述的膨胀材料可选择聚乙烯醇、羟丙甲基纤维素、交联羧甲基纤维素钠、羧甲基淀粉钠、聚乙烯醇基药膜中的一种或几种。所述的润滑剂可选择滑石粉或微粉硅胶。
【0015】本发明所述的银杏内酯渗透泵双层片的包衣液为半透明材料、增塑剂、渗透调节剂的有机溶剂溶液。所述的半透明材料可选择醋酸纤维素或乙基纤维素。所述的渗透
率调节剂可选择聚乙二醇或羟丙甲基纤维素。其中半透膜材料和渗透率调节剂的比例为 10 : 1 ～ 5 : 1。增塑剂可选择三醋酸甘油酯、邻苯二甲酸酯或聚乙二醇。包衣增重为 10% ～ 25%。

[0017] 本发明所述的银杏内酯渗透泵片，含药层片面的释药孔的孔径范围为 200 μm ～ 1000 μm。

[0018] 本发明将固体分散体增溶技术与渗透泵片控释技术相结合，用于中药有效部位银
杏内酯控释制剂的制备。该制剂除具有渗透泵控释制剂零级释药，释药行为不受环境 pH、胃
肠蠕动、进食情况等影响，个体差异小，体内外相关性好，获得稳定血药浓度等优点外，还
可以实现复杂成分的同步释放。中药制剂的疗效是多组分共同作用的结果，只有各成分在体
内同步释放和吸收才能达到相辅相成、协同作用的目的，才能与历代医家重视的配伍用药
规律相吻合。本发明通过固体分散技术增加难溶性成分的溶解度，减小成分间的溶解度差
异，在此基础上制备渗透泵片，从而实现理化性质差异显著的各成分的同步释放，为中药缓
控释制剂的研制探索了一种新型有效模式。

附图说明

[0019] 以下，结合附图来详细说明本发明的实施方案，其中：

[0020] 图 1 为实施例 1 银杏内酯渗透泵片体外释放曲线。

[0021] 图 2 为实施例 4 银杏内酯渗透泵片体外释放曲线。

[0022] 图 3 为实施例 7 银杏内酯渗透泵片体外释放曲线。

[0023] 图 4 为银杏内酯普通片与渗透泵片的 beagle 犬体内药时曲线对比。

具体实施方式

[0024] 下面结合具体实施方式对本发明进行进一步的详细描述，给出的实施例仅为阐明本发明，而不是为了限制本发明的范围。

[0025] 实施例 1

[0026] 片芯处方：

银杏内酯 8mg
聚乙烯吡咯烷酮 72mg
微晶纤维素 40mg
乳糖 60mg
聚氧乙烯 PEO WSR303 10mg
聚氧乙烯 PEO WSR N10 10mg
滑石粉 2mg

包衣液处方：醋酸纤维素
聚乙二醇 4000 5g
丙酮 1000ml

[0027] 制备工艺：将处方量的药物聚乙烯吡咯烷酮加入到乙醇－二氯甲烷（1：1）混
合溶剂中，超声，使其完全溶解。旋转蒸发，水浴温度60℃，蒸去有机溶剂。置真空干燥箱中继续干燥24小时，除去残留溶剂，即得银杏内酯固体分散体。将处方量银杏内酯固体分散体、微晶纤维素、滑石粉均过60目筛，混合均匀，即为含药层；将处方量的乳糖、聚氧乙烯PEO WSR303、聚氧乙烯PEO WSR N10、滑石粉均过60目筛，混合均匀，即为助推层。采用双层片压片机压制制成片，即得片芯。将处方量聚乙二醇4000溶于丙酮中，再将处方量醋酸纤维素溶解于该溶液中，即得包衣液。对片芯进行包衣，包衣增重为18%，包衣完毕后在烘箱中40℃固化12小时。然后在包衣片的含药层片面采用激光方式打直径为600μm释药小孔，即得银杏内酯渗透泵片。

实施例2

片芯处方：

银杏内酯 8mg
泊洛沙姆 96mg
可压性淀粉 16mg
蔗糖 70mg
聚氧乙烯PEO WSR N10 10mg
滑石粉 2mg

包衣液处方：

醋酸纤维素 40g
聚乙二醇4000 4g
丙酮 1000ml

制备工艺：将处方量的药物和泊洛沙姆加入到二氯甲烷中，超声，使其完全溶解。旋转蒸发，水浴温度60℃，蒸去有机溶剂。置真空干燥箱中继续干燥30小时，除去残留溶剂，即得银杏内酯固体分散体。将处方量银杏内酯固体分散体、可压性淀粉、滑石粉均过100目筛，混合均匀，即为含药层；将处方量的乳糖、聚氧乙烯PEO WSR N10、滑石粉均过100目筛，混合均匀，即为助推层。采用双层片压片机压制制成片，即得片芯。将处方量聚乙二醇4000溶于丙酮中，再将处方量醋酸纤维素溶于该溶液中，即得包衣液。对片芯进行包衣，包衣增重为12%，包衣完毕后在烘箱中40℃固化24小时。然后在包衣片的含药层片面采用激光方式打直径为400μm释药小孔，即得银杏内酯渗透泵片。

实施例3

片芯处方：

银杏内酯 8mg

[0033]
说明书

聚乙二醇 4000 40mg
乳糖 72mg
葡萄糖 50mg
聚氧乙烯 PEO WSR303 30mg
滑石粉 2mg
包衣液处方: 醋酸纤维素 40g
聚乙二醇 4000 8g
丙酮 1000ml

[0034] 制备工艺: 将处方量的药物和聚乙二醇 4000 加入到乙醇中, 超声, 使其完全溶解。旋转蒸发, 水浴温度 60℃, 蒸去有机溶剂。置真空干燥箱中继续干燥 12 小时, 除去残留溶剂, 即得银杏内酯固体分散体。将处方量银杏内酯固体分散体、乳糖、滑石粉均过 80 目筛, 混合均匀, 即为含药层; 将处方量的乳糖、聚氧乙烯 PEO WSR303、滑石粉均过 80 目筛, 混合均匀, 即为助推层。采用双层片压片机压制成片, 即得片芯。将处方量聚乙二醇 4000 溶于丙酮中, 再将处方量醋酸纤维素溶于该溶液中, 即得包衣液。对片芯进行包衣, 包衣增重为 20%, 包衣完毕后在烘箱中 40℃固化 12 小时。然后在包衣片的含药层片面采用激光方式打直径为 1000 μm 释药小孔, 即得银杏内酯渗透泵片。

[0035] 实施例 4

[0036] 片芯处方: 银杏内酯 8mg
聚乙酸乙烯酯-聚维酮混合物 (8:2) 72mg
微晶纤维素 40mg
乳糖 60mg
聚氧乙烯 PEO WSR303 10mg
聚氧乙烯 PEO WSR N10 10mg
滑石粉 2mg
包衣液处方: 醋酸纤维素 40g
聚乙二醇 4000 5g
丙酮 1000ml

[0037] 制备工艺: 将处方量的药物和聚乙酸乙烯酯-聚维酮混合物 (8:2) 混合均匀, 采用热熔挤出机制备固体分散体, 温度 160~170℃, 螺杆转速 30rpm。冷却后粉碎, 过 60 目筛, 即得银杏内酯固体分散体。将处方量银杏内酯固体分散体、微晶纤维素、滑石粉均过 60 目筛, 混合均匀, 即为含药层; 将处方量的乳糖、聚氧乙烯 PEO WSR303、聚氧乙烯 PEO WSR N10、滑石粉均过 60 目筛, 混合均匀, 即为助推层。采用双层片压片机压制成片, 即得片芯。将处方量聚乙二醇 4000 溶于丙酮中, 再将处方量醋酸纤维素溶于该溶液中, 即得包衣液。对片芯进行包衣, 包衣增重为 18%, 包衣完毕后在烘箱中 40℃固化 12 小时。然后在包衣片的含药层片面采用激光方式打直径为 600 μm 释药小孔, 即得银杏内酯渗透泵片。
[0038] 实施例 5
[0039]
片芯处方：
银杏内酯 8mg
共聚维酮 96mg
可压性淀粉 16mg
蔗糖 70mg
聚氧乙烯 PEO WSR N10 10mg
滑石粉 2mg
包衣液处方：
醋酸纤维素 40g
聚乙二醇 4000 4g
丙酮 1000ml

[0040] 制备工艺：将处方量的药物和共聚维酮混合均匀，采用热熔挤出机制备固体分散体，温度 120-130℃，螺杆转速 30rpm。冷后粉碎，过 60 目筛，即得银杏内酯固体分散体。将处方量银杏内酯固体分散体、可压性淀粉、滑石粉均过 60 目筛，混合均匀、即为含药层；将处方量的蔗糖、聚氧乙烯 PEO WSR N10、滑石粉均过 60 目筛，混合均匀，即为助推层。采用双层片压片机压制成片，即得片芯。将处方量聚乙二醇 4000 溶于丙酮中，再将处方量醋酸纤维素溶于该溶液中，即得包衣液。对片芯进行包衣，包衣增重为 15%，包衣完毕后在烘箱中 40℃固化 12 小时。然后在包衣片的含药层片面采用激光方式打直径为 800 μm 释药小孔，即得银杏内酯渗透泵片。

[0041] 实施例 6
[0042]
片芯处方：
银杏内酯 8mg
Soluplus 40mg

[0043]
乳糖 72mg
葡萄糖 60mg
聚氧乙烯 PEO WSR303 20mg
滑石粉 2mg
包衣液处方：
醋酸纤维素 40g
聚乙二醇 4000 8g
丙酮 1000ml

[0044] 制备工艺：将处方量的药物和 Soluplus 混合均匀，采用热熔挤出机制备固体分散体，温度 120-130℃，螺杆转速 30rpm。冷后粉碎，过 60 目筛，即得银杏内酯固体分散体。将处方量银杏内酯固体分散体、乳糖、滑石粉均过 60 目筛，混合均匀，即为含药层；将处方量的葡萄糖、聚氧乙烯 PEO WSR303、滑石粉均过 60 目筛，混合均匀，即为助推层。采用双层片压片机压制成片，即得片芯。将处方量聚乙二醇 4000 溶于丙酮中，再将处方量醋酸纤维素溶于该溶液中，即得包衣液。对片芯进行包衣，包衣增重为 15%，包衣完毕后在烘箱中 40℃固化 12 小时。然后在包衣片的含药层片面采用激光方式打直径为 800 μm 释药小孔，即得银杏内酯渗透泵片。
素溶于该溶液中，即得包衣液。对片芯进行包衣，包衣增重为 10%，包衣完毕后在烘箱中 40℃固化 12 小时。然后在包衣片的含药层片面采用激光方式打直径为 400 μm 释药小孔，即得银杏内酯渗透泵片。

实施例 7

<table>
<thead>
<tr>
<th>片芯处方</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>银杏内酯</td>
<td>8mg</td>
<td>微晶纤维素</td>
<td>72mg</td>
</tr>
<tr>
<td></td>
<td></td>
<td>可压性淀粉</td>
<td>40mg</td>
</tr>
<tr>
<td></td>
<td></td>
<td>乳糖</td>
<td>60mg</td>
</tr>
<tr>
<td></td>
<td></td>
<td>聚氨乙烯 PEO WSR303</td>
<td>10mg</td>
</tr>
<tr>
<td></td>
<td></td>
<td>聚氨乙烯 PEO WSR N10</td>
<td>10mg</td>
</tr>
<tr>
<td></td>
<td></td>
<td>滑石粉</td>
<td>2mg</td>
</tr>
<tr>
<td>包衣液处方</td>
<td></td>
<td>醋酸纤维素</td>
<td>40g</td>
</tr>
<tr>
<td></td>
<td></td>
<td>聚乙二醇 4000</td>
<td>5g</td>
</tr>
<tr>
<td></td>
<td></td>
<td>丙酮</td>
<td>1000ml</td>
</tr>
</tbody>
</table>

实施例 8

<table>
<thead>
<tr>
<th>片芯处方</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>银杏内酯</td>
<td>8mg</td>
<td>β-环糊精</td>
<td>96mg</td>
</tr>
<tr>
<td></td>
<td></td>
<td>微晶纤维素</td>
<td>16mg</td>
</tr>
<tr>
<td></td>
<td></td>
<td>蔗糖</td>
<td>60mg</td>
</tr>
<tr>
<td></td>
<td></td>
<td>聚氨乙烯 PEO WSR N10</td>
<td>20mg</td>
</tr>
<tr>
<td></td>
<td></td>
<td>滑石粉</td>
<td>2mg</td>
</tr>
<tr>
<td>包衣液处方</td>
<td></td>
<td>醋酸纤维素</td>
<td>40g</td>
</tr>
<tr>
<td></td>
<td></td>
<td>聚乙二醇 4000</td>
<td>4g</td>
</tr>
<tr>
<td></td>
<td></td>
<td>丙酮</td>
<td>1000ml</td>
</tr>
</tbody>
</table>

制备工艺：将处方量的药物和微晶纤维素略混，置研钵中，采用研磨法制备固体分散体，研钵转速 250rpm，研磨时间 60min，即得银杏内酯固体分散体。将处方量银杏内酯固体分散体、可压性淀粉、滑石粉均过 60 目筛，混合均匀，即为含药层；将处方量的乳糖、聚氨乙烯 PEO WSR303、聚氨乙烯 PEO WSR N10、滑石粉均过 60 目筛，混合均匀，即为助推层。采用双层片压片机压制成片，即得片芯。将处方量聚乙二醇 4000 溶于丙酮中，再将处方量醋酸纤维素溶于该溶液中，即得包衣液。对片芯进行包衣，包衣增重为 18%，包衣完毕后在烘箱中 40℃固化 12 小时。然后在包衣片的含药层片面采用激光方式打直径为 600 μm 释药小孔，即得银杏内酯渗透泵片。
散体，研钵转速 500rpm，研磨时间 25min，即得银杏内酯固体分散体。将处方量银杏内酯固体分散体、微晶纤维素、滑石粉均过 120 目筛，混合均匀，即为药粉层；将处方量的蔗糖、聚氧乙烯 PEO WSR N10、滑石粉均过 120 目筛，混合均匀，即为助推层。采用双层片压片机压制成片，即得片芯。将处方量聚乙二醇 4000 溶于丙酮中，再将处方量醋酸纤维素溶于该溶液中，即得包衣液。对片芯进行包衣，包衣增重为 18%，包衣完毕后在烘箱中 40℃固化 12 小时。然后在包衣片的含药层片面采用激光方式打直径为 600 μm 释药小孔，即得银杏内酯渗透泵片。

实施例 9

片芯处方：
- 银杏内酯 8mg
- 乳糖 40mg
- 微晶纤维素 72mg
- 葡萄糖 60mg
- 聚氧乙烯 PEO WSR 303 20mg

包衣液处方：
- 滑石粉 2mg
- 醋酸纤维素 40g
- 聚乙二醇 4000 8g
- 丙酮 1000ml

制备工艺：将处方量的药物和乳糖略混，置研钵中，采用研磨法制备固体分散体，研钵转速 300rpm，研磨时间 45min，即得银杏内酯固体分散体。将处方量银杏内酯固体分散体、微晶纤维素、滑石粉均过 120 目筛，混合均匀，即为药粉层；将处方量的葡萄糖、聚氧乙烯 PEO WSR 303、滑石粉均过 120 目筛，混合均匀，即为助推层。采用双层片压片机压制成片，即得片芯。将处方量聚乙二醇 4000 溶于丙酮中，再将处方量醋酸纤维素溶于该溶液中，即得包衣液。对片芯进行包衣，包衣增重为 18%，包衣完毕后在烘箱中 40℃固化 12 小时。然后在包衣片的含药层片面采用激光方式打直径为 600 μm 释药小孔，即得银杏内酯渗透泵片。

实施例 10

本实施例采用体外释放度实验，对银杏内酯渗透泵片中四种有效成分的体外释放行为进行评价，以验证本发明的有益效果。

实施例 1、实施例 4、实施例 7 的释放曲线分别如图 1、图 2、图 3 所示。结果显示四种有效成分在银杏内酯渗透泵片的 0 ～ 12 小时体外释放行为均为零级释放，相关系数 r 均大于 0.97，且四种成分间的相似因子 f² 均大于 50。故本发明制得的渗透泵片可使银杏
内酯中的复杂成分实现同步恒速缓慢释放。结果与本发明一致。

[0059] 实施例 11

[0060] 本实施例采用 beagle 犬实验对实施例 1 的体内释药行为进行评价,以验证本发明的有益效果。

[0061] 实验方案:采用二周期交叉试验,取健康 Beagle 犬 6 只,随机分为两组,实验前禁食 12h,给药后 6h 进食,整个实验过程中自由饮水,给药间隔为 1.5 周。按 5.6mg/kg 银杏内酯原料计,分别口服给药银杏内酯普通片和银杏内酯渗透片,给药后即刻给 50ml 水,于给药前和给药后 0.5,0.75,1.0,1.25,1.5,1.75,2,3,4,6,8,10,12,16,24h,从股静脉取血 3ml,取血浆测定。

[0062] 结果如图 4 所示。结果表明与银杏萜内酯普通片相比,银杏萜内酯渗透片中白果内酯、银杏内酯 A、银杏内酯 B 的 Cmax 均显著降低, Tmax 均显著延长,均具有明显的缓释作用。
图 3

白果内酯

- 银杏内酯原料药
- 银杏内酯渗透泵片
银杏内酯A

银杏内酯B

图4