(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date (10) International Publication Number

24 December 2003 (24.12.2003) PCT WO 03/107178 A2

(51) International Patent Classification’: GO6F 9/40 (74) Agent: HEFFAN, Ira, V., Testa, Hurwitz & Thibeault,
LLP, High Street Tower, 125 High Street, Boston, MA
(21) International Application Number: PCT/US03/17927 02110 (US).

(22) International Filing Date: 5 June 2003 (05.06.2003) (81) Designated States (national): AE, AG, AL, AM, AT, AU,
AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU,
CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH,

(25) Filing Language: English GM, HR, HU, ID, IL,, IN, IS, JP, KE, KG, KP, KR, KZ, L.C,
LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW,
(26) Publication Language: English MX, MZ, NI, NO, NZ, OM, PH, PL, PT, RO, RU, SC, SD,
SE, SG, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, UZ,
(30) Priority Data: VC, VN, YU, ZA, ZM, ZW.
60/388,112 12 June 2002 (12.06.2002) US
60/453,308 10 March 2003 (10.03.2003) US (84) Designated States (regional): ARIPO patent (GH, GM,
10/414,959 16 April 2003 (16.04.2003) US KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW),
10/414,958 16 April 2003 (16.04.2003) US Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
10/414,887 16 April 2003 (16.04.2003) US European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE,
ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO,
(71) Applicant: BLADELOGIC, INC. [US/US]; 100 Crosby SE, 8I, SK, TR), OAPT patent (BF, BJ, CF, CG, CI, CM,
Drive, Bedford, MA 01730 (US). GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).
(72) Inventors: KRAUS, Thomas, Martin; 7 Westview Road, ~Fublished:
Natick, MA 01760 (US). MANWANL Vijay, G.; 104 without international search report and to be republished
Parker Road, Needham, MA 02494 (US). MUDDANA, upon receipt of that report

Sekhar; 46 Trepanier Street, South Attleboro, MA 02703

(US). SRINIVASA, Balaji; 264 Grove Street, Newton, For two-letter codes and other abbreviations, refer to the "Guid-
MA 02466 (US). REDDY, Ravi; 11 Seaver Farm Lane, S. ance Notes on Codes and Abbreviations" appearing at the begin-
Grafton, MA 01560 (US). ning of each regular issue of the PCT Gazette.

(54) Titlee METHOD AND SYSTEM FOR SIMPLIFYING DISTRIBUTED SERVER MANAGEMENT

(57) Abstract: A method and system fox managing a large number of servers and their server components distributed throughout a
heterogeneous computing environment is provided. In one embodiment, an authenticated user, such as an IT system administrator,
can securely and simultaneously control and configure multiple servers, supporting different operating systems, through a "virtual
server." A virtual server is an abstract model representing a collection of actual target servers. To represent multiple physical servers
as one virtual server, abstract system calls that extend execution of operating-system-specific system calls to multiple servers, re-
gardless of their supported operating systems, are used. A virtual server is implemented by a virtual server client and a collection
o of virtual server agents associated with a collection of actual servers. A method and system for executing and undoing distributed
< server change operations for a collection of server objects across multiple target servers in a transaction-safe manner is provided. In

one embodiment, server change operations fox a collection of server objects, such as files and configuration file entries, are specified
QO in a transaction package. The target servers to which the specified change operation axe directed are also identified in the trans-
I~ action package. Parameter values for each of the identified target servers are specified through a parameter file in the transaction
= package. The transaction package is sent to the identified target servers, which execute the change operations on the target servers
in a transaction-safe manner using these parameter values. A method and system for configuring heterogeneous servers across a
— network through modules that can browse, snapshot, track changes, track compliance, correct server objects on each of the servers,
and provision new servers is provided. In one embodiment, server objects on multiple servers can be browsed in real time. While
) browsing, a collection of server object identifiers can be selected and collected in a template. The values of the server objects iden-
tified in the template can be recorded for a "gold server" through a "snapshot” process, which collects the values and saves them in a
reference model. By comparing other live servers to the reference model, discrepancies in configuration of the other live servers can
be identified and corrected. The reference models can also be used to provision a new server. Alternative to the reference model, an
arbitrary snapshot or scheduled snapshots of a server can be used to track change and compliance in that server.

/107

10

15

20

25

WO 03/107178 . PCT/US03/17927

METHOD AND SYSTEM FOR SIMPLIFYING
DISTRIBUTED SERVER MANAGEMENT

Cross-Reference To Related Application

[0001] This application claims priority to and the benefit of U.S. Provisional Patent Application
Serial No. 60/388,112 filed June 12, 2002, entitted METHOD AND SYSTEM FOR
SIMPLIFYING SERVER MANAGEMENT; U.S. Provisional Patent Application Serial No.
60/453,308 filed March 10, 2003, entitted METHOD AND SYSTEM FOR SIMPLIFYING
SERVER MANAGEMENT; U.S. Patent Application Serial No. 10/414,958 filed April 16, 2003,
entitted METHOD AND SYSTEM FOR EXECUTING AND UNDOING DISTRIBUTED
SERVER CHANGE OPERATIONS; U.S. Patent Application Serial No. 10/414,959 filed April 16,
2003, entitled METHOD AND SYSTEM FOR SIMPLIFYING DISTRIBUTED SERVER
MANAGEMENT; and U.S. Patent Application Serial No. 10/414,887 filed April 16, 2003, entitled
METHOD AND SYSTEM FOR MODEL-BASED HETEROGENEOUS SERVER
CONFIGURATION MANAGEMENT the entire disclosures of which are hereby incorporated by
reference.

Technical Field
[0002] This invention relates to the field of server management and, more particulatly, to the
management of servers in a heterogeneous computing environment.

Background Information

[0003] Information Technology (IT) administrators are facing new challenges due to a significant
increase in the number of servers in an enterprise’s IT infrastructure and the adoption of distributed
electronic business applications. These challenges have resulted from: (1) a transition from client-
servet to Internet-based architectures, resulting in frequent interactions between different types of
servets; and (2) the use of component application servers, such as J2EE (Java 2 Platform,
Enterptise Edition) and .NET, to generate components, tools, systems, and complex application
models. Faced with these challenges, an IT administrator may need to juggle hundreds of
incompatible software application configurations and track thousands of server components for the
thirty to forty servers he or she manages.

[0004] Cutrrently available configuration tools are inadequate to manage a latge number of software
application configuration and server components across multiple setvers in a heterogeneous

computing environment. To manage and configure heterogeneous servers, particularly in the

10

15

20

25

30

WO 03/107178 . o PCT/US03/17927

2.
complex business computing infrastructure, many IT administrators use enterprise systems
management (ESM) products offering monitoring tools to automate problem identification across
multiple servers. However, these monitoring tools do not provide a centralized management system
with a centralized configuration database, which can centrally keep track of current server
components and their interdependencies across the different servers.
[0005] In addition, these ESM products provide little or no help in correcting or configuring server
components in a heterogeneous computing environment. For UNIX and Linux operating system-
based servers, despite the open-source and internally developed tools and scripts to handle simple
configuration changes to J2EE configurations, neither the tools nor the scripts can be easily
extended to address complex distributed applications.
[0006] Microsoft Window- based operating system servers are even more difficult to correct and
configure than UNIX and Linux operating system based servers, due to a large number of server
components having complex interdependencies. Although system management tools are available
from Microsoft, they have been designed to target only small-scale homogenous Windows-based
computing environments, and not the large and heterogeneous computing environment supporting
multiple operating systems that most IT administrators have to manage.
[0007] Because of the inadequacies in currently available management tools, significant portions of
any setver configuration change operations have to be made manually by the I'T administrator for
each setvet. Accordingly, human etrors can occur from these manual change operations, and from
manual monitoring and tracking of each server’s configuration, resulting in frequent server
misconfigurations and system downtime.

Summary of the Invention
[0008] To alleviate this situation, systems and methods according to the invention can be used to
manage a lazge number of servers and their server components distributed throughout a
heterogeneous computing environment.
[0009] In one embodiment, an authenticated user, such as a IT system administrator, can securely
and simultaneously control and configure multiple servers, supporting different operating systems,
by implementing a vittual server from the user’s management system. In one embodiment, the user
is authenticated by an operating-system-user-context-inheritance model or standard authentication
protocols, such as a public key protocol, a Kerberos protocol, or a shared sectet protocol.
[0010] In some embodiments, a “virtual server” model is used. A virtual server is an abstract model
representing a collection of actual target servers. To represent these multiple physical servers as one
virtual server, the abstract system calls that extend execution of operating-system-specific system

calls to multiple servers regardless of their supported operating systems are used. A virtual server is

10

15

20

25

30

WO 03/107178 o PCT/US03/17927

-3-
implemented by a virtual server client and a collection of virtual server agents associated with a
collection of actual servers. The virtual server client may be implemented by a network-aware code
library, such as “libnc,” which is implemented as a network-aware vetsion of the “libc” library. In
another embodiment, the virtual server client is a library, such as “libnc.”
[0011] The user’s management system contains a software application system, such as a command
program (also referred to as a command line interface) or a configuration manager, which generates
abstract system calls to request services to be petformed on the target servers. In one embodiment,
the virtual server client receives the abstract system calls and instantiates the abstract system calls in
a thread-safe manner. The thread-safe instantiation ensures simultaneous execution of the system
calls on multiple target servers, while sharing the single virtual server client among these multiple
target servers and their associated virtual server agents. In the instantiating process, the virtual
server client identifies the target server(s) and their associate virtual server agent(s) to receive the
abstract system calls. In one embodiment, the virtual server client identifies the target server(s) in
response to a server identifiet included in the abstract system call. Examples of the server identifier
include a host name specified in a path and a network address. The server identifier may also be
inferred from a group of servers to which the target server belongs.
[0012] Also, in the instantiating process, the virtual setver client transmits the abstract system calls
to the identified virtual server agent for execution on the target server. Before the transmission of
the abstract system call, the virtual server client may encrypt the abstract system calls using standard
encryption protocols, such as the SSL protocol, the Kerberos protocol, or the shared secret
protocol, to secure communication between the virtual server client and the virtual server agent. In
addition, before the transmission of the abstract system call, the virtual server client may specify
ptiotity, CPU utilization, and/or memory utilization of the abstract system call on the identified
target server.
[0013] After the virtual server agent receives the abstract system calls from the virtual server client,
the virtual server agent translates the abstract system call into an operating system-specific system
call, so that system call can be executed on the operating system-specific target server. Before
translating the abstract system call, in one embodiment, the virtual server agent identifies the source
host of the user’s management system to determine the encryption protocol used on the abstract
system call. The virtual server agent decrypts the abstract system call after learning about the
encryption protocol used by the virtual server client. From the decrypted abstract system call, the
virtual server agent identifies the authenticated user. In addition, the virtual server agent contains
software modules that can map the authenticated user (presented user) to another user (effective

user) and locate a cotresponding local user identity on the target server for the effective user, and

10

15

20

25

30

WO 03/107178 o o PCT/US03/17927
-4-

impersonate the effective user as a local user on the target server associated with the virtual server
agent. In one embodiment, if the effective user is not identified as a recognized local user on the
target server, the user is designated as a local guest user on the target server. The virtual server agent
further restricts the user’s access to the target server through a software module that limits the user
to performing predetermined actions or accessing predetermines resoutces on the target setver,
based on a role-based access control model and/or access control lists (ACLs).
[0014] The translated system calls are then executed on the target server in a thread-safe mannet
and the results of the execution are transported from the virtual server agent to the virtual server
client. In one embodiment, the virtual server agent maintains an audit log to record the names of
users and the abstract system calls executed on the target server.
[0015] In another embodiment, the application system can aggregate multiple abstract system calls
into a single high-level abstract system call, which in turn is transported to the virtual server client.
After receiving the high-level abstract system call, the virtual server client disintegrates the high-level
abstract system call into the original multiple abstract system calls and instantiates these original
abstract system calls individually. Accordingly, the virtual server agent receives the individual
abstract system calls for execution on the associated target server.
[0016] In yet another embodiment, after receiving the high-level abstract system call from the
application program, the virtual server client instantiates the high-level abstract system call as a
whole. Thus, the identified virtual server agent receives the high-level abstract system call, rather
than the original multiple abstract system calls. The virtual server agent in turn translates the high-
level abstract system into the individual operating system-specific system calls to be executed on its
associated target server.
[0017] In another embodiment, the vittual server modifies an existing non-disttibuted application
supporting only one specific operating system to function as a network-aware application that is
applicable across servers or devices supporting different operating systems by substituting a non
network-aware system call with an abstract system call. In one exemplary embodiment, a non-
distributed Unix shell program can function as a network-aware application program that is
adaptable across multiple servers or devices supporting non-Unix operating systems. In another
exemplary embodiment, non-distributed scripting languages, such as Petl and Python, can function
as network aware-application programs that are applicable across multiple servers and devices
supporting different operating systems.
[0018] In another embodiment, software configuration components (also referred to as server
objects) having intricate interdependencies with other server components can be defined and

characterized under a single unified system. Through this unified system, fine-grain application

10

15

20

25

30

WO 03/107178 o PCT/US03/17927

-5-
change operations can be uniformly and simultaneously implemented across the heterogeneous
servers, rather than implementing different application change operations for each of the setvers
individually.

[0019] In yet another embodiment, a centralized management system can automatically track
changes, configure, and manage multiple servers to provide compliance in accordance with pre-
defined policies by incorporating the methods and systems described above.

[0020] This invention also relates to a method and system for executing and undoing distributed
server change operations for a collection of server objects across multiple target servers in a
transaction-safe manner. Here, transaction-safe means that all required steps of each server change
operation are completed before the distributed server change operation is deemed completed, and if
an error occurs while performing the required steps on the target servers, any changes made from
these steps are undone.

[0021] Examples of distributed sever change operations for a collection of server objects may be
installing, copying, updating, or deleting server objects. In one exemplary embodiment, a collection
of server objects can be copied from a single soutce to multiple remote target servers. Likewise, all
the changes caused by copying this collection of server objects can be reversed on the affected
multiple remote target servers.

[0022] In one embodiment, server change operations for a collection of server objects, such as files
and configuration file entries, are specified in a transaction package. In particular, server change
operations are specified in a transaction package to change code and content (files, applications,
compound components, etc.), configure parameters of multiple servers simultaneously, and roll-
back the changes in the event of a failure. Server change operations in the transaction package can
be specified to occur on primitive server objects, compound server objects, abstract configuration
server objects, and component server objects. A primitive server object is an elemental server object
that serves as a basis for all other types of server objects. A compound server object is a server
object containing primitive server objects and other related compound server objects. An abstract
configuration server object is a special type of a primitive server object that represents an entry in a
configuration file when the configuration file is mapped to a common abstract configuration file
format using a configuration file-specific grammar. A component server object is a sequenced
collection of server objects that contains prerequisite and inheritance information about other types

of server objects.

10

15

20

25

30

WO 03/107178 L PCT/US03/17927

-6-
[0023] In one embodiment, the server change operations in a transaction package are specified in
an XML-based instruction set. In another embodiment, the server change operations are specified

in a text-based instruction set.

[0024] In one embodiment, the transaction package includes a transaction context, a parameter file,
error handling actions, a sequencing instruction for the change operations, and target server
prerequisites for executing the change operations, in addition to the specified change operations.
The transaction context is identified by begin-transaction and end-transaction statements that
encapsulate the server object change operations. The parameter file specifies parameter values for
each of the identified target servers. These parameter values are communicated to the identified
target servers along with the transaction package. In one embodiment, the parameter file contains
parameters referencing parameter values that are identical across the target servers. In another
embodiment, the parameter file contains parameters referencing parameter values that are distinct
for each of the target servers. The transaction package supports several types of etrors, such as soft
errors and hard errots, in its error handling actions. The sequencing instruction provides an
execution sequence for the specified change operations. If this instruction is not provided locally
within the transaction package, an external dependency graph is accessed to provide an execution
sequence for the specified change operations. The transaction package also provides the
pretequisite information for the target servers to execute the specified change operations.

[0025] In one embodiment, the user may optionally elect to proceed with a dry run. The dry run
provides an additional set of tests to see if the server object change operations can be carried out by

the recipient target servers before making any changes.

[0026] After the transaction package is communicated to the target servers, the specified change
operations ate executed on each of the identified target servers in a transaction-safe manner using

the parameter values.

[0027] In one embodiment, the specified change operations can be reversed when a user makes an
explicit request or when an error is detected in a transaction log maintained for the transaction
package, after a partial or full execution of the change operations. The transaction log keeps track of
details of all the steps petformed, so that each performed step of a change operation can be retraced

and reversed from the affected target servers.

[0028] In another embodiment, multiple transaction packages can be assembled into a transaction
project. All the change operations specified in a transaction project can be executed in 2

transaction-safe manner.

10

15

20

25

30

WO 03/107178 o PCT/US03/17927

-7-

[0029] This invention also relates to 2 method and system for configuring heterogeneous servers
across a network by providing modules that can browse, snapshot, track changes, track compliance,
restore previous configuration, make updates on each of the servers, and provision new servers and

applications.

[0030] A server object is one or a collection of related configuration parameters and server assets,
such as files, directories, registties, patches, packages, services, and applications. In one
embodiment, thete are four types of server objects: a primitive server object, a compound server
object, an abstract configuration server object, and a component server object. A primitive server
object is an elemental server object that serves as a basis for all other types of server objects. A
compound server object is a setver object containing primitive server objects and other related
compound server objects. An abstract configuration server object is a special type of a primitive
server object that represents an entry in a configuration file when the configuration file is mapped to
a common abstract configuration file format using a configuration file-specific grammar. A
component server object is a sequenced collection of server objects that contains prerequisite and

inheritance information about other types of server objects.

[0031] In one embodiment, server objects in multiple servers can be browsed in real time. While
browsing, a collection of server object identifiers (without values) can be selected and manually
collected in a template. In another embodiment, the template may be imported from an external
vendor. In yet another embodiment, the template may include one or more previously defined

templates.

[0032] The values of the server objects identified in the template can be recorded for a specific
setver (also referred to as a “gold server”) through a process called “snapshot,” which collects the
values (also referred to as “snapshot results”) and saves them in a reference model. In one
embodiment, the reference model may be an imported reference model created by an external
vendor. In another embodiment, the reference model may include one ore more previously defined
reference models. In one embodiment, the reference model may be used to derive compliance rules,
such as baseline configuration values and compliance ranges, from the collected values for other
servers on the network. By comparing other live servers to the reference model, the systems and

methods track compliance and changes in the configuration of the other servers on the network.

[0033] Alternatively, instead of saving the snapshot results in the reference model, a snapshot result
can be used to capture the configuration of a server at an arbitrary point in time. The configuration

may include server objects that are explicitly selected from a server or that are implicitly selected via

10

15

20

25

30

WO 03/107178 ; PCT/US03/17927

-8-
the template. In another embodiment, the snapshot results can also be recutring snapshots of a
server taken at scheduled time intervals. In this embodiment, the first snapshot serves as a baseline
for subsequent snapshots, so that for the subsequent snapshots, only the changes against the
baseline are captured. Thus, any snapshot can be reconstructed to show the entire configuration of
a server at a specific time in the time intervals by combining the baseline with the incremental
changes saved for the particular snapshot results. In addition, these snapshots taken over a period
of time can be used by the user to analyze changes on the server over time. Moreover, a single
snapshot or recurring snapshots can be used to track change at an arbitrary point in time ot over a

scheduled period of time.

[0034] After comparing servers on the network and identifying the discrepancies present in the
compared servers, server change operations are generated to correct these discrepancies. In one
embodiment, these server change operations can be presented to the servers as a transaction
package so that the change operations can be executed across multiple servers in a transaction-safe
manner to synchronize the target servers to the reference model or to the snapshots. Similarly, to
update target servers, the user updates the reference model and packages the updates in a transaction

packages to synchronize the target servers to the reference model.

[0035] In one embodiment, the reference model can be used to provision a new server that is newly

added to the network to ensure consistency in the configuration of the servers on the network.

[0036] In another embodiment, the servers on the network can restore their previous configuration
from the reference model or the snapshots, so that in case of setver failure, the server can be

restored to recover its existing configuration and contents.

[0037] In yetanother embodiment, a live server can be compared against another live server by
comparing the server objects identified in the template. In another embodiment, the user can
explicitly select server objects that are commonly shared between these live servers and compare

them accordingly.

[0038] In one embodiment, the systems and methods according to the invention manage
categorically related configuration parameters across different servers by modeling the parameters in
templates. Server objects (also referred to as configuration parameters) are categorized in a template
per server type categoties, such as an application server category, a database server category, and a
web server category. In the same template, the server objects are then categorized by configuration
patameter type categories (e.g., network parameters, capacity parameters, availability parameters,

performance parameters, and security parameters), sub-categories, and associate key words based on

10

15

20

25

30

WO 03/107178 o PCT/US03/17927

-9.

its function. A new template can be derived from the first template that combines the categorically
related server objects across the server categories manages the configuration parametets as if they
belonged to a single server. For example, the configuration parameters of an individual web server
related to security can be changed in concert with security parameters of an application server and a

database server.
Brief Description of the Drawings

[0039] In the drawings, like reference characters generally refer to the same parts throughout the
different views. Also, the drawings are not necessarily to scale, emphasis instead generally being
placed upon illustrating the principles of the invention.

[0040] FIG. 1 is a block diagram depicting an embodiment of a system for managing multiple
servers in a heterogeneous computing environment.

[0041] FIG. 2 is a block diagram depicting a virtual server client in accordance with an embodiment
of the invention.

[0042] FIG. 3 is a block diagram depicting a virtual server agent in accordance with an embodiment
of the invention.

[0043] FIG. 4 is a flowchart depicting an embodiment of a method for receiving and executing a
system call from an application program.

[0044] FIG. 5 is a flowchart depicting the details of instantiating an abstract system call in one
embodiment of the method of FIG. 4.

[0045] FIG. 6 is a screen shot of an embodiment of a system implementing the method of FIG. 4.
[0046] FIG. 7 is a block diagram depicting an embodiment of a system for executing and undoing
distributed server change operations in a transaction-safe manner.

[0047] FIG. 8 is a flowchart depicting an embodiment of a system for executing and undoing
distributed server change operations in a transaction-safe manner.

[0048] FIG. 9 is a flowchart depicting an embodiment of a method for executing and undoing
distributed server change operations in a transaction-safe manner.

[0049] FIG. 10 is a block diagram depicting an embodiment of a system for configuring multiple
servers in a heterogeneous computing environment.

[0050] FIG. 11 is a flowchart depicting an embodiment of a method for configuring multiple
servers in a heterogeneous computing environment.

[0051] FIG. 12 is a block diagram depicting an embodiment of a system for managing server
objects as described in a embodiment of the invention.

[0052] FIG. 13 is a block diagram depicting an exemplary embodiment of the system of FIG. 12.

10

15

20

25

30

WO 03/107178 e , PCT/US03/17927

-10-
[0053] FIG. 14 is a user interface display in an embodiment for a system implementing the method
of FIG. 11.

Detailed Description
[0054] Referring to FIG. 1, a user 10, such as a system administrator, manages a number of setvers
15A, 15B, 15C, 15D, generally 15, which are computers, each of which can be of the same ot of
different types than the other servers 15. The servers 15 are typically server-class general-purpose
computers, which provide services (e.g. software applications and/or data) to other computers via
one or more computer networks. For example, the servers may be application setvers, routets,
firewalls, load balancers, storage controllers, or a combination of these or other computers or
network devices.
[0055] Examples of application setvers are databases, such as the Oracle database from Oracle
Corporation of Redwood City, California or other business applications. Application servers may
also include web servers, such as the Apache web server from the Apache Foundation, and Internet
Information Server (IIS) from Microsoft Corporation of Redmond, WA. In addition to these
examples, other programs can be provided by the servers 15. It should be understood that as used
herein, the term “server” is not limited to server-class computers or application setvers, but refers
generally to computers on which the embodiments of the invention operate, which may include
other types of computers or network devices.
[0056] As shown, each of the servers 15 may use a different operating system. For example, server
15A uses MICROSOFT WINDOWS (e.g., WINDOWS NT and WINDOWS 2000), available from
Microsoft Corporation of Redmond, WA; server 15B uses SUN SOLARIS, available from Sun
Microsystems, Inc. of Santa Clara, CA; server 15C uses RED HAT LINUX, available from Red Hat,
Inc. of Durtham, N.C.; and server 15D uses IBM AIX, available from IBM of Armonk, NY. It will
be understood that this is just one example of the operating systems that may be used on the servers
15, and other combinations and operating systems may be used on the setvers 15 in accordance with
embodiments of the invention. One of the benefits of the system is its ability to operate in an
environment having heterogeneous servers.
[0057] In one embodiment, the user 10 manages the servers 15 via a management system 20. The
management system 20 is typically a server-class computer that provides the user 10 with an ability
to manager servers 15 in a consistent manner through use of application programs 25. The
management system 20 may be one of the servers 15, or any server-class computer that can
communicate with the servers 15 over a network. Any of the target servers 15 can be designated as
the management system, as long as the designated server includes appropriate application programs

and software modules to manage remotely located setvers.

10

15

20

25

30

WO 03/107178 o PCT/US03/17927

-11-
[0058] Application programs 25 in the management system 20 can include one or more of a
command-line shell program 25A and related programs for executing shell commands (e.g., UNIX
shell commands such as Is, mv, rm, etc.), a configuration manager 25B for managing system
configuration, and/or other applications 25C. The application programs 25, which in some
implementations are “network-aware,” communicate abstract system calls to a virtual setver client
30, which in turn communicates the abstract system calls to the servers 15 that are the target(s) for
execution of the operations requested by the abstract system calls. Advantageously, through use of
the abstract system calls, the “network-aware” applications are able to request services from
heterogeneous servers supporting different operating systems without having to modify their
architecture to support each of the different operating systems.

[0059] For example, the user 10 enters commands, such as Unix shell commands, to the shell
program 25A via a command line interface. Commands can be entered, for example, to distribute
files, directories, software packages, and patches to the target servers 15. Commands can also be
entered to edit configuration files of the target servers 15. In addition, commands can be entered to
remotely reboot the target servers 15, and stop and start change operation on the target servers 15.
[0060] For example, in one implementation, the Unix shell command “Is,” which requests a setver
computer to list a directory of files, may be modified to be used with the user’s management system
20 and the virtual server client 30 to list a directory of files from any of the target servers 15. From
the user’s 10 perspective, the “Is” command is used in the normal manner, except that the user 10
can identify a target server 15 for the command in a path associated with the command. For
example, if the target server 15A is named “targetserverl,” the user 10 may enter the command “Is
/ /targetserverl/path/> to list the files in the specified path on the target server 15A.

[0061] To implement this Is command of the shell program 25A on the user’s management system
20, the shell program 25A translates the system calls called by the “Is” command into one or motre
abstract system calls. These abstract system calls are sent to the virtual server client 30, which in
turn sends the abstract system calls to appropriate target servers 15, in this case, the target setver
15A. After execution of the command on the target servers 15, the results are communicated back
to the user 10 via the application programs 25 and the virtual server client 30.

[0062] Other programs can be made “network aware”. For example, in some implementation,
script interpreters, such as interpreters for the Perl and Python scripting languages can be modified
to work with the virtual server client 30. Generally, selected system calls made by an application
program are translated into abstract system calls, which are communicated through the virtual server

client 30 to the servers 15.

10

15

20

25

30

WO 03/107178 L PCT/US03/17927

-12 -
[0063] In addition to providing shell commands and other application programs, the management
system 20 may include a configuration manager 25B. In one embodiment, the configuration
manager 25B 1s used to configure one or more of the servers 15. The configuration manager is a
software application program that implements server change operations that are in turn translated
into the corresponding operating system specific commands on the target servers 15.
[0064] In one implementation, an application program 25 directs abstract system calls to specific
target servers 15. In another implementation, the application program 25 can also direct abstract
system calls to a group of servers. A group of servers can be pre-defined or dynamically defined
based on attributes such as operating systems, capacity, IP address ranges, and installed applications.
For example, the application program 25 can direct an abstract system call to a group of servers,
consisting of a subset of servers 15 running the Linux operating system. Application program 25
thus can deploy a command onto a server in this group without specifying a particular server in the
subset. In this way, the application program 25 does not need to keep track of each server, nor
determine which servers have sufficient capacity or features to run the program,; rather, the
application program 25 can deploy commands (or change operations) to a predetermined group, and
the virtual server client 30 decides which specific server should run these operations.
[0065] The virtual server client 30, which may be included in the management system 20, presents
the servers 15 to the application programs 25 as a single “virtual server” on which system call
operations can be executed. The virtual server client 30 is implemented by a software library, which
in one implementation is roughly analogous to the C library, libc. The application programs 25 can
be statically or dynamically linked to the virtual server library, which is called libnc. In one
embodiment, non network-aware application programs 25 are converted to network-aware
programs by replacing calls to the libc library with equivalent calls to the libnc library, which
provides abstract network-aware system calls.
[0066] In an alternative embodiment, the virtual server client 30 may be implemented as part of an
operating system. For example, the operating system running the user’s management system 20 can
receive abstract system calls and communicate them to the remote target servers 15. Accordingly,
for purposes of executing an abstract system call a target servers 15, the source of the abstract
system call is immaterial.
[0067] In some embodiments, the virtual server client 30 communicates with the servers 15 through
virtual server agents 35 associated with the servers 15, which will be described in detail below. The
virtual server client 30 communicates with virtual server agents 35 to present the multiple physical
target servers 15 as a single virtual server to the application programs 25. As an abstract

representation of a collection of the physical servers 15, the virtual server intercepts the abstract

10

15

20

25

30

WO 03/107178 o PCT/US03/17927

-13 -
system calls via the virtual server client 30 and routes the abstract system calls to the virtual server
agents 35.

[0068] When the virtual server client 30 receives an abstract system call from an application
program 25, the virtual server client 30 checks the abstract system call to determine whether this
system call is a local call or a remote call. If the abstract system call is a local call, then the operating
system running the management system 20 executes the system call locally. If the abstract system
call is determined to be a remote call, the virtual server client 30 sends the abstract system call to a
virtual server agent 35 associated with a target server 15 via a message protocol. For example, when
an “ropen” abstract system call, representing a remote file open command, is received by the virtual
server client 30, the data representing the “ropen” command and parameters associated with the
“ropen” command are sent to appropriate virtual server agents 35. The target-servers 15 for a
system call are identified by the user 10 or the application programs 25. The vittual serv;er client 30
identifies the target servers 15 from their virtual server agents 35 and determines where the system
call should be directed.

[0069] The virtual server agents 35 receive abstract system calls from the virtual server client 30 and
prepare the abstract system calls for their associated target servers 15. When the virtual server client
30 determines to which virtual setver agents an abstract system call should be directed, each of the
virtual server agents 35 receives the abstract system call. As a part of preparing the abstract system
call for the associated target servers 15, the virtual server agents 35 provide security measures to
ensure that the user 10 is authorized to access the target servers 15, and that the virtual server agent
35 controls the user access, as provided by the associated target server 15. Once the user 10 is
authorized, the virtual server agent 35 translates the abstract system call into an operating system
specific call directed to its associated target server 15. The target server 15 executes the abstract
system call and returns the results back to the virtual server agent 35, which in turn sends the results
back to the appropriate application programs 25 via the virtual server client 30.

[0070] In one embodiment, the virtual server agents 35 (also referred to as Remote System Call
Daemon or RSCD agents) are software modules attached to their corresponding target servers 15.
In another embodiment, the virtual server agents 35 are software modules that are not attached to
their corresponding target servers 15, but are in communication with their associated remotely
located target servers 15.

[0071] In some embodiments, instead of acting as a messenger that sends an abstract system call to
a specific target server 15, one of the virtual server agents 35 can represent a group of physical

servers. Thus, if the same command needs to be executed on multiple servers, these servers can be

10

15

20

25

30

WO 03/107178 PCT/US03/17927

-14-
aggregated into a group, represented by a single virtual server agent 35, so that appropriate system
calls can be made to a group of servers simultaneously via that virtual server agent 35.

[0072] Generally, abstract system calls may include all types of system calls including file system
calls, operating system calls, and the like. An abstract system call typically is implemented as a
modification of an analogous standard operating system specific call. For example, the abstract
system call “ropen” is analogous to a standard system call “open,” which opens a file on a setver.
[0073] With minor modifications to an application program’s source code, any application program
can make operating system agnostic abstract system calls. By changing the system calls to abstract
system calls, any generic application program can be made into a network aware-application that can
operate transparently across servers supporting different operating systems.

[0074] In one embodiment, only the system calls that are applicable to all of the target servers 15
can be modeled as abstract system calls. For example, if the target servers 15 include Unix-based
servers, it may not be possible to model a system call to update a registry as an abstract system call,
since a registry, which is a Windows specific object, does not exist and has no relevance for Unix-
based server platforms.

[0075] Referring to FIG. 2, in one embodiment, the virtual server client 30 includes various
software modules which implement its functionality. These modules include a receiver 40 that
receives an abstract system call made by an application program 25, and forwards the abstract
system call to an instantiator 42. The receiver 40 is a software module that acts a messenger
between the software application programs 25 and the instantiator 42. In one embodiment, the
receiver 40 receives the abstract system call from one of the software application programs 25 used
by the user 10. The receiver 40 then forwards the abstract system call directly to the instantiator 42.
In another embodiment, the receiver 40 may receive standard operating system specific system calls
from an application program 25. The receiver forwards such standard system calls to the
instantiator 42 for the instantiator 42 to decide to where the system calls should be directed.

[0076] The instantiator 42 instantiates abstract system calls in a thread-safe manner. The thread-
safe instantiation shares a single resource between multiple operations without requiring changes to
the architecture of the application programs requesting the operations. Typically, thread-safe
instantiation shares the same virtual server client 30 between multiple simultaneous execution of
system calls. The use of the shared resoutce, such as the virtual server client 30, is coordinated, so
that the execution of one operation does not impact the execution of other operations. In one
embodiment of the thread-safe instantiation, the application programs 25 can instantiate multiple
commands (or operations) via the instantiator 42. For example, the application programs 25 may

invoke multiple “ropen” system calls that are directed to one or more target servers 15. The

10

15

20

25

30

WO 03/107178 PCT/US03/17927

-15-
“ropen” system call is received by the instantiator 42 in the virtual server client 30. The instantiator
42 then distributes the “ropen” abstract system call to each of the virtual server agents associated
with the target servers, so that multiple “ropen” calls can be executed simultaneous by the target
servers 15.
[0077] In one embodiment, the instantiator 42 is implemented as a software library that provides
routines that represent the abstract system calls. One particular implementation of the software
library is called “libnc.” Libnc is a “network-aware” library that is analogous to the standard C
library. The Libnc library supports the network aware application programs 25 by instantiating the
abstract system calls generated by the application programs 25.
[0078] In one embodiment, the instantiator 42 determines to which virtual server agents 35 an
abstract system call should be directed. The instantiator 42 identifies target servers 15 by finding the
target server identifiers specified in the abstract system call. The target server identifier may include
a path name, which in turn may include a host name or a network address (e.g., IP address) for the
server. The target server 15 may also be identified by server names explicitly stated in a file which is
to be run on specific named setvers. Alternatively, the server identity may be inferred from a subset
of servers or a group of servers (e.g., a group of Linux servers) to which the target server 15 belongs.
[0079] Before transmitting the abstract system call to the virtual server agents 35, the instantiator 42
can also specify the priority, CPU utilization, and memory utilization of the system call for the target
setvers 15, so that the identified target server 15 platforms can petform the requested services as
specified by the virtual server client 30. Once the abstract system call has been instantiated, it is sent
to an encryptor 44 for further processing.
[0080] The encryptor 44 encrypts the abstract system call before sending it to a transmitter 46 for
transmission to the virtual setver agents 35. The enctyptor 44 uses standard encryption protocols
and algorithms to secure communication between the virtual server client 30 and the virtual server
agents 35. Examples of standard encryption protocols include, but are not limited to, SSL (Secure
Sockets Layer), Kerberos, and Shared Secret protocols. SSL uses a public key to encrypt data.
Kerberos assigns a unique key to each authorized user. Standard encryption algorithm includes, but
are not limited to, DES (Data Encryption Standard), 3DES (Triple DES), Blowfish, and AES
(Advanced Encryption Standard).
[0081] The encryption protocol and algorithm used by the encryptor 44 must be supported by each
virtual server agent 35 with which the virtual server client 30 will communicate. For example, if the
virtual server client 30 supports SSL, the virtual server agent 35 must be able to support SSL for that
protocol to be used. If the virtual server client 30 supports Kerberos, the virtual server agent 35

must also be able to support Kerberos for that protocol to be used.

10

15

20

25

30

WO 03/107178 L PCT/US03/17927

-16 -
[0082] The transmitter 46 uses a network interface protocol, such as TCP/IP or Ethernet, to send
the abstract system call over a network to the virtual server agents 35. The transmitter transmits the
same abstract system call to each target virtual server agent. In one embodiment, the transmitter 46
uses an IP address to determine to which of the target servers 15 an abstract system call should be
sent. An IP address may be directly included in the abstract system call or may be inferred from a
server identifier included in the abstract system call. The virtual server agent 35 accepts the abstract
system call containing the IP address of the target server 15 associated with that virtual setver agent
35. Once the virtual server agent 35 receives the abstract system call, the virtual server agent 35
processes the abstract system call for execution on the target server 15.

[0083] Referring to FIG. 3, each virtual server agent 35 includes software modules that implement
its functionality. These modules include a receiver 50, which receives abstract system calls from the
virtual server client 30, and transfers the abstract system calls to a decryptor module 52.

[0084] Before the user 10 can access the user’s management system 20, the user 10 is authenticated
to ensure that the user 10 is in fact the person he or she claims to be. The user 10 can be
authenticated in many ways. In one embodiment, the user 10 is authenticated by the operating
system of the management system 20 and the target servers 15 subsequently inherit the user’s 10
identity. In another embodiment, SRP (Secure Remote Password) or PKI Cryptography (X.509
Certificates) is used to authenticate user 10. In yet another embodiment, the Kerberos 5 system can
be used to authenticate the user 10 by assigning a unique private key to the user 10.

[0085] The source identifier module 52 identifies the soutce machine, e.g., the user’s management
system 20. The source identifier module 52 first determines the source machine through a network
address (e.g., IP address) that was submitted to the virtual server agent 35 from the virtual server
client 30 with the abstract system call and checks to see if the source host is authorized.

[0086] By identifying the source machine, the source module 52 determines the security protocols
to be used by the virtual server agent 35 for encryption and dectyption. In one embodiment, the
virtual server agent 35 can support different security protocols. For example, the virtual server
agent 35 can flexibly support either SSL or Kerberos based on the security protocol of the incoming
data from the virtual setver client 30. Next, the abstract system call is sent to a dectyptor 54, which
decrypts the abstract system call. From the decrypted abstract system call, the user identifier module
55 identifies the user 10 invoking the application programs 25 from the source machine and verifies
that the user 10 is authorized to access the source machine.

[0087] After the user is identified by the user identifier 55, an identity mapper 56 and an
impersonator 58 provide additional security measures as the user 10 tries to access the remote target

servers 15 from the uset’s management system 20. The identity mapper 56 optionally maps the

10

15

20

25

30

WO 03/107178 o PCT/US03/17927

-17 -
authenticated user (presented user) to another user (effective user) and locates a local user identity
on the target server 15 that corresponds to the authenticated identity of the effective user. Through
the impersonator 58, the user 10 is impetsonated on a remote target server 15, so that if the effective
user 1s identified and exists as a local user on the remote target server 15, the user 10 takes on the
local identity of the effective user and the permissions provided by that identity on the remote target
server 15. Thus, the user’s 10 access to the remote target server 15 is further restricted to the
appropriate levels provided by the permissions granted to the effective user’s local identity on the
remote server 15. For example, if the user 10 is authenticated as “Joe” on the management system
20 and mapped to an effective user “Jane”, local permissions of “Jane” will be available to the user
10 on the remote target server 15. If “Jane” does not exist on the remote target server 15, then the
user 10 will be given a guest account. In one embodiment, the combination of the presented user
and the role, which is defined by Role Based Access Control (RBAC), is mapped to an effective
user. For example, user “Joe” having the role of a junior administrator can be mapped to an
effective user named “junior administrator.” Another user “Bob” also having the role of a junior
administrator can be mapped to the same effective user named “junior administrator.”
[0088] The effective user’s access for presented user 10 is further restricted by an authorizer 60,
which permits the user 10 to perform predetermined actions or access predetermined resources on a
particular target server 15. This is achieved by using Access Control Lists (ACLs) to manage the
effective user’s access to resources on the remote target servers 15. The ACL informs the operating
systems of the remote target servers 15 of the access rights of the effective user on specific server
tesources, such as files or directories. For example, if the user 10 is mapped to the effective user
“junior administrator”, then the user 10 is only permitted to perform read-only commands on
certain directories or files of a group of remote target servers 15 and cannot effect any changes to
the target setvers 15.
[0089] After the user is authorized, a translator 62 translates the abstract system call into a standard
operating system call that is understandable and executable by the target server 15. The translator
62 examines the abstract system call and identifies a standard operating system specific system call
that is analogous to the abstract system call and is supported by the operating system running the
associated target server 15. Once the analogous standard system call is identified, the translator
changes the abstract system call to the standard system call. This standard operating system call 1s
forwarded to an executor 66 for execution on the target server 15.
[0090] Once the executor 66 teceives a standard operating system call, the executor 66 performs the
services that are requested by the standard system call. In one embodiment, the executor 66 is the

operating system running on the target server 15. The operating system examines system calls and

10

15

20

25

30

WO 03/107178 PCT/US03/17927

-18 -
carries out the operations requested by the system call by, for example, communicating with other
applications running on the target server 15.

[0091] An audit log 64 is maintained by each virtual server agent 35 to keep track of the names of
the users and all the activities performed by each user, and to troubleshoot server changes and
configuration etrots. For example, the audit log 64 saves information about the activities requested
and performed by authorized users, information about data, such as the system calls and the results
of the system calls, that were transferred back and forth between the virtual server client 30 and the
virtual server agent 35, as well as all parameters associated with the abstract system call. The content
of the audit log 64 is then transmitted to a centralized aggregated log kept for all of the virtual server
agents 35.

[0092] A first example of security measures incorporated in an embodiment of the virtual setver
implementation follows. First, the user 10 logs into the management system and is authenticated as
“Joe” during the login process. This authentication process can be achieved by using a known
network authentication server, such as NTLM, K5, AD, APM, NIS, etc., depending on the
operating system running on the management system 20. After the user “Joe” is authenticated in
the management system 20, the user “Joe” is authenticated for the target servers 15 by inheriting the
user “Joe” identity through the management system 20.

[0093] Next, the user 10 enters a “ls” command, requesting a listing of files on the remote target
server 15A, through the shell command program 25A on the management system 20. The shell
command program 25A generates an abstract system call in response to the command and sends the
abstract system call to the virtual server client 30 to proceed with the user’s 10 request. The virtual
server client 30 examines the security configuration of the abstract system call and encrypts the
system call using a shared secret key scheme with a encryption algorithm, such as DES, 3DES, or
Blowfish. Once the abstract system call is encrypted, the system call is communicated across a
network to the virtual server agent 35A of the target server 15A. |

[0094] When the virtual server agent 35A receives the abstract system call, the target server’s 15A
agent 35A attempts to decrypt the message using the secret key shared with the virtual server client
30. The virtual server agent 35A checks to see if the user “Joe” is recognized as a local user on the
tatget server 15A through an effective user. If the user “Joe” is recognized as a local user, then the
virtual server agent examines the access control list to determine if the combination of the user
“Joe” 10, target server 15A, and the abstract system call is allowed. If the combination is allowed,
then the access control list is used to determine whether any further restrictions apply to the user’s
10 access to the target server 15A. The virtual server agent 35A executes the system call in

accordance with any security restrictions, encrypts the results using the same-shared secret key. The

10

15

20

25

30

WO 03/107178 L PCT/US03/17927

-19-
results of the “Is” command are sent back to the virtual server client 30, where they are decrypted
and displayed to the user.

[0095] In a second example of security measures incotporated in an embodiment of the virtual
server, the user 10 is authenticated using of SRP or PKI Certificates. Once the user 10 is
authenticated the user 10 enters an “Is” command, requesting a listing of files on the remote server
15A, through the shell command program 25A on the management system 20. The shell command
program 25A generates an abstract system call in response to the command and sends the abstract
system call to the virtual server client 30. The virtual server client 30 examines the secutrity
configuration of the abstract system call and encrypts the abstract system call using public key
cryptography, standard encryption algorithms, such as DES, 3DES, or Blowfish, may be used for
exchange of session key between the virtual server client 30 and the target server agent 35A to
establish a communication session between them.

[0096] After decrypting the abstract system call received by the virtual server agent 35A, the vittual
server agent 35A checks to see if the user “Joe” is recognized as a local user on the target server 15A
through an effective user. If the user “Joe” is recognized as a local user, then the virtual server agent
35A examines the ACL to determine if the combination of the user 10, target server 15A, and the
abstract system call is allowed. If the combination is allowed, then the access control list is used to
determine whether any further restrictions apply to the user’s 10 access to the target server 15A.
The virtual server agent 35A executes the system call in accordance with any secutity restrictions,
and encrypts the results using the established session key. The results of the “Is” command are then
sent back to the virtual server client 30, where they are decrypted and displayed to the user.

[0097] A third example of security measures incorporated in an embodiment of the virtual server
implementation follows. If the management system 20 has an existing Kerberos 5 (K5)
infrastructure in place, the user 10 can be authenticated by entering a Kerberos password to the
management system 20. Once the user 10 is logged in as the authenticated user “Joe,” the user 10
enters the “Is” command, requesting a listing of files on the remote target server 15A, through the
shell command program 25A on the management system 20. The shell command program 25A
generates an abstract system call in response to the command and sends the abstract system call to
the virtual server client 30 to proceed with the uset’s 10 request. The virtual server client 30 then
sends the abstract system call and a Kerberos ticket, which is retrieved from a Kerberos Domain
Controller (KDC) to the virtual server agent 35A.

[0098] After the virtual server agent 35A receives the abstract system call and the ticket, the virtual
server agent 35A validates the abstract system call by verifying the ticket via the KDC. Once

validated, the virtual server agent 35A checks to see if the user “Joe” is recognized as a local user on

10

15

20

25

30

WO 03/107178) PCT/US03/17927

-20 -
the target server 15A through an effective user. If the user “Joe” is recognized as a local uset, then
the virtual server agent examines the ACL to determine if the combination of the user “Joe” 10,
target server 15A, and the abstract system call is allowed. If the combination is allowed, then the
access control list is used to determine whether any further restrictions apply to the uset’s 10 access
to the target server 15A. The virtual server agent 35A executes the system call in accordance with
any security restrictions, encrypts the results using a Kerberos key. The results of the “Is” command
are sent back to the virtual server client 30, where they are decrypted and displayed to the user.
[0099] Referring now to FIG. 4, a method for managing multiple servers as a single virtual server is
described. First, in step 400, the system represents multiple servers as a single virtual server. Next,
in step 410, based on a user’s request for operations to be performed on target servers, the virtual
server client 30 receives an abstract systems call from an application program 25. Finally, in step
420, the virtual server client instantiates the abstract system calls and sends the abstract system call
to the virtual server agents 35 for execution.
[0100] FIG. 5 shows steps involved in instantiating an abstract system call. First in step 422, the
virtual server client 30 identifies the target servers 15 through target server identifiers provided
within the abstract system call. Once the target servers are identified, in step 424, the abstract
system call is transmitted to the virtual server agents associated with the identified target servers.
The virtual server agents 35 prepate the abstract system call for the target setvers 15, so that the
abstract system call can be the executed on the target servers 15. For example, for the target server
15A, the abstract system calls are translated into standard Windows N'T/W2K specific system calls
that are executable by the operating system running on the target server 15A. Upon completion of
execution of the system call, in step 426, the virtual server client 30 receives the results of the
execution from the virtual server agents 35.
[0101] In one embodiment, multiple commands generate multiple system calls, which can be
aggregated into a single high-level abstract system call by an application program 25. For example, if
two commands, such as copy and change permission commands, are to be made to a target server
15A, the abstract system calls carrying out these commands, such as ropen, rread, rwrite, and
rchmod system calls, can be aggregated into one high-level abstract system call. When received by
the virtual server client 30, the virtual server client 30 can disintegrate the high level abstract system
call into the original abstract system calls and transmit the abstract system calls separately to virtual
server agent 35. In another embodiment, instead of disintegrating the high-level system call into the
original abstract system calls at the virtual server client 30, the high-level abstract system call is
received by a virtual server agent 35, which in turn translates the high-level abstract system call into

separate operating system specific system calls to be executed on the target server 15.

10

15

20

25

30

WO 03/107178 PCT/US03/17927

271 -
[0102] FIG. 6 is a screenshot showing a command being issued to multiple servers through the
management system 20. As shown here, server names used as parameters for commands are
preceded by two slashed to distinguish them from a path name, which is generally separated by a
slash. For examples, ““/ /redhatbiz1/etc” specifies the /etc path on the server named “redhatbiz1.”
Thus, as seen in the screenshot, to compare the “/etc/hosts” file on two different servers, one
named “redhatbiz1,” and the other named “redhatbiz2,” the user 10 enters the command “diff

/ /redhatbiz1/etc/hosts // redhatbiz2/etc/hosts.”

[0103] Referring back to FIG. 1, in an alternative embodiment, the user 10 manages the target
servers 15 by executing and undoing distributed server change operations across the target servers
15 in a transaction safe-manner, using the virtual server implementation described above.
Distributed server change operations request the operating systems of the target setvers 15 to
update, delete, install, and/or copy setver assets and/or configuration file entties of the target
servers 15. Transaction-safe server change operations ensure that all of the required steps of each
server change operation are completed before the distributed server change operations are deemed
completed. Further, if an error occurs while performing the required steps on the target servers 15,
any changes made from these steps are undone, and values of the target servers’ 15 assets and/or
configuration entries are returned to the values they had before execution of the server change
operations. In one embodiment, the application programs 25 can generate a transaction package
that bundles an instruction set and necessaty server contents for the operating system of each of the
target servers 15 to carry out the server change operations.

[0104] Referring to FIG. 7, in one embodiment, the configuration manager 25B generates a
transaction package 700 that includes files or configuration file entries 705 (together referred to as
server objects), a parameter file 710, and an instruction set 715 to carry out the server change
operations on one or more target servers 15 that are specified by an external file, as requested by the
configuration manager 25B.

[0105] In one embodiment, the instruction set 715 includes an execution sequence of the server
change operations provided for the operating systems of the target servers 15 that carry out the
server change operations. If this information is not provided in the instruction set 715 in the
transaction package 700, an external dependency graph 720 is accessed to provide an execution
sequence of the server change operations. For example, the external dependency graph 720 can
provide information about directional relationships between server objects. In particular, if NT-
based progtram A is a prerequisite for another NT-based program B, to successfully execute
programs A and B, program A must start before program B and program B must stop before

program A. Although the sequence information is used to order the sequence of change operations

10

15

20

25

30

WO 03/107178 . PCT/US03/17927

-22 -
for the server objects that are specified in the transaction package, the sequence information is also
used to add implied server object change operations for related server objects, such as server objects
that depend on and/or depend from these specified server objects, that are not specified in the
transaction package. In particular, continuing from the previous example, if the only change
instruction provided in a transaction package is to stop program A, the sequence information adds
the implied instruction to stop program B and then stop program A based on the ditectional
relationship between programs A and B. Thus, the sequence information from the dependency
graph determines the sequences of server change operations to be performed not only on the
specified server objects, but also on their related server objects. If an error occurs while performing
the service change operations, the sequence information also causes the server change operations to
stop and to be reversed not only on the specified servers, but also on the related server objects.
[0106] As described above, if the instruction set 715 provides the sequence information for the
server change operations, the instruction set 715 overrides the sequence information provided by
the dependency graph 720. Similar to the sequence information provided by the dependency graph
720, the instruction set 715 provides the information related to the order in which the server change
operations should be performed. The related server objects of the specified server objects are
provided, so that the server change operations can effect changes on the related server objects, as
well as the specified server objects. The instruction set 715 also provides dependency information
between types of servers. For example, if an application server depends on a database server, the
sequence information provided in the instruction set 715 will instruct the execution of the database
server change operations before the execution of the application server change operations.
[0107] In one embodiment, the instruction set 715 specifies setver change operations to occur on
any of the four types of server objects 705: primitive server objects, compound server objects,
abstract configuration server objects, and component server objects. A primitive server object is an
elemental setver object that serves as a basis for all other types of server objects. For example, for
Linux-based setvers, primitive server objects include, but are not limited to, files, directories, Redhat
Package Manager files, and configuration file entries for text configuration files, such as the
“inetd.conf” file. For Solaris-based setvers, primitive setver objects include, but are not limited to,
files, directoties, packages, patches, and configuration files entries for configuration files, such as the
“inetd.conf” file. For MS NT or W2K-based servers, primitive server objects include, but are not
limited to, files, file ACLs, directoties, directory ACLs, application programs, hot fixes, the registry
entries, registry entry ACLs, COM/COM+ (component object model) catalog entries, Metabase

entries, users, accounts, and configuration file entries for all configuration files, such as “.ini” files.

10

15

20

25

30

WO 03/107178 e PCT/US03/17927

223 .

[0108] A compound server object is a server object containing primitive server objects and other
related compound setver objects. For example, an extended component object model (COM+)
object, an NT or W2K-based compound server object, contains primitive server objects, such as a
COM+ catalog entry, NT registry entries, and DLL files. In yet another example, an Enterprise
JavaBeans (EJB) object, a compound server object, contains primitive server objects including a Java
Archive (JAR) file and multiple configuration file entries. In another example, a server process is a
compound setver object, containing primitive server objects, such as configuration file entries (e.g., a
permission entry, a priotity entty, a control signal entry), files, and executables.

[0109] An abstract configuration server object is a special type of a primitive server object that
represents an entry in a configuration file via a corresponding entty in an abstract configuration file,
where mapping of a configuration file to a common abstract configuration format is provided by a
configuration file-specific grammar. For example, in the MS NT/W2K environment, configuration
file entries are stored in “.in1” files or XML configuration files. In the UNIX environment,
configuration file entries are stored in text files such as “inetd.conf” files or “httpd.conf”, or XML
configuration files.

[0110] To reconcile the difference between the configuration file entry formats across different
servers, a common abstract configuration format is provided by normalizing configuration file
entties through a supported configuration file-specific grammar. By modeling each configuration
file entry as an abstract configuration file entry through this normalization process, server change
operations may be made based on the normalized abstract configuration file entries. The change
operations requested by the abstract configuration file entries are performed, and the changes are
then communicated to the actual configuration file entries. Thus, in this embodiment, configuration
file entries can be individually managed through use of abstract configuration file entries, without
having to change the entire configuration file each time a server change operation changes an
individual entry. Configuration file-specific grammars may be provided for numerous systems,
including Solasis, Linux, NT4/W2K, Apache, Web Logic, and Web Sphere.

[0111] A component server object is a sequenced collection of server objects. For example, an NT
Service Pack is a sequenced collection of NT Hot Fixes to be applied in a predefined order.
Accordingly, a collection of predefined related change operations can be effected in order through a
component setver.

[0112] In addition to the constituencies of the instruction set 715 described above, the instruction
set 715 specifies the server change operations to be made across the target servers 15 on a collection
of predetermined server objects by communicating with the server objects (e.g., files or

configuration file entries 705), the dependency graph 720, and the parameter file 710. Server change

10

15

20

25

30

WO 03/107178 L PCT/US03/17927

-2 -

operations can be used to deploy or copy files, directories, and software packages to the target
servers 15. Change operations can also be used to edit configuration file entries 705 without having
to log into each target server 15. In one embodiment, the instruction set 715 provides the
information needed by the target servers 15 and their associated virtual server agents 35 to carry out
the setver change operations. In one embodiment, the instruction set 715 provides a transaction
context that is identified by begin-transaction and end-transaction statements encapsulating the
server object change operations. After the begin-transaction statement is made, the instruction set
provides the necessary information to perform the change operations requested by the application
programs 25.

[0113] The instruction set 715 also provides error-handling instructions for the target servers and
their associated virtual server agents. In one embodiment, several types of errors are available. Soft
errors are available to alert the target servers and their virtual server agents of a likelihood of
occurrence of an error during server change operations. Because no actual error has occurred, the
user 10 may ignore the soft etrors and continue with the execution of the server change operations.
Alternatively, the user 10 may instruct the virtual server agents to explicitly undo all the changes
made from the execution of the server change operations after reviewing the error information
returned by the soft errors.

[0114] Hard errors are available to notify the virtual setver agents of an occutrence of an error
during the performance of server change operations on the target servers. In one embodiment, the
hard etrors can be programmed to automatically trigger undo operations to undo any of the changes
made during the execution of the server change operations. In another embodiment, the hard errors
can be programmed to abort the execution of the remainder of transaction package change
operations. The hard errors are triggered by error conditions set forth in the instruction set 715.
These error conditions specify that if certain conditions occur, the hard errors should be sent to the
target servers and their associated virtual server agents.

[0115] The instruction set 715 also includes prerequisite information for the instructions. An
example of this prerequisite information can include, but are not limited to, the minimum set of
change operation instructions that must be specified in a transaction package for its successful
execution. For example, to successfully add a COM+ component on the target servers, instructions
for adding the COM+ entry in the catalog, the corresponding Registry entty, and the corresponding
DLL file must be specified in the transaction package. Another example of the prerequisite
information can include types of permissions needed to carry out the change operations, minimum
disk space required by the target servers 15, and the type of operating system required. In addition,

the prerequisite information can also include implicit instructions for hierarchical setver objects.

10

15

20

25

30

WO 03/107178) PCT/US03/17927

-25-
For example, to add a file in the target servers, the parent directory for the file should exist in the
target servers, so that the file can be created under the specified parent directory in these servers.
[0116] In one embodiment, the instruction set 715 defines the changes that need to be made on the
server objects by using named parametets, and later replacing the parameters with actual values
obtained from a parameter file 710. The virtual server agents 35 receive the transaction package 700
on behalf of their associated target servers 15, and replace the named parameters with values
obtained from the parameter file 710. These named parameters are particularly useful when
performing server change operations on server objects that are directed to multiple target servers 15,
because the narﬁed parameter representing the identity of each target server can be replaced with the
actual server identifiers by the virtual server agents 35. For example, named parameters of an
instruction can reference a path name for a target server 15 that includes a host name or an IP
address of the target server 15. These parameters are replaced with actual server identifiers for each
target server 15, as provided in the parameter file(s) 710.
[0117] In one embodiment, the parameter file 710 can be either a global parameter file or a host-
specific parameter file. A global parameter file contains parameters that are configured by the user
10, thus the identical global parameter file is passed to all target servers 15. A host specific
parameter file contains parameters that are specific to each of target servers 15, thus the host
specific parameter file is different for each of target servers 15. Parameter values contained in the
global parameter file are useful when copying the same server object to the same destination on
multiple target servers 15. Examples of this type of parameter are the user’s name and password.
For parameter values contained in the host-specific parameter file, the parameter values are resolved
by each of the target servers 15. Examples of these parameters are host names, and path names of
the target servers 15. In addition, there are intrinsic parameters that are resolved through host
environment variables on the target server. In one embodiment, one or more parameter files 710
are associated with one or more target servers. For example, for a Window-based target server,
“windir” and IP address are examples of host environment variables that can be used to resolve
intrinsic parameters associated with one or more target servers and passed via the transaction
package 700.
[0118] Referring to FIGS. 1 and 7, in one embodiment, instead of using abstract system calls to
carry out server change operations generated by the application programs 25, a transaction package
700 can be used to carry out these change operations using an XML-based instruction set 715. To
accommodate both system call level commands and XML-based instruction sets, each virtual server
agent 35 is divided into two parts. One part of the virtual server agent 35 is an XML API that can

interpret the XML-based instruction set 715 contained in the transaction package 700, and the other

10

15

20

25

30

35

WO 03/107178 . PCT/US03/17927

-26 -
part of the virtual server agent 35 is a system call API that can interpret abstract system calls. Thus,
when a virtual server agent 35 receives an XML-based transaction package 700 through the virtual
server client 30, the XML-based instruction set 715 in the transaction package 700 can be
interpreted via the XML APIL In an alternative embodiment, the transaction package 700 can be
implemented with a text-based instruction set 715. The commands of the text-based instruction set
715 are translated into abstract system calls that are in turn interpreted by the system call APIL.

[0119] Below is an example of an XML-based transaction package, named “Package_1.XML,”
specifying a prerequisite, transaction context, compound server object, sequence, and error handling
information using an XML-based instruction set 715.

Package_1.XML

<blpackage schema-version="2.0" created-date="02/12/03" modified-
date="02/22/02" revision="23">

<name>

name of the blpackage

</name>

<description>
description of the package

</description>
<source type="host">web-demol</source>

<!-- default parameters -->
<param name="$APP_PATH"> c:\program files\app </param>

<param-file>foo.params</param-file>

<applies-to>
<condition>
<os>"$ (os) = Windows"</os>
<os-version>$ (os-version) > 5</os-versions
<service-pack>2</service-pack>
</condition>

</applies-to>

<!-- requires the following items before we deploy this package -->
<depends>

<condition>

10

15

20

25

30

35

40

WO 03/107178 — PCT/US03/17927

-27-
<application>SQL server</application>
<version>$ (version) = 8.0 </version>

</condition>

</depends>

<!-- failure conditions if the following exit on target --»>
<FailIf>

<ErrorLevel <4

/>
</Faillf >

<transaction id="0">
<command id = "1005" undo="net start w3svc">net stop w3svc</command>
<service action="add" refid="1003" key="RSCDsvc'">
<depends>

<file refid="1002"/>

</depends>
</service>
<command id = "1006" undo="net stop w3svc">net start w3svc </command>

<file action="add" key="%WINDIR%ado.dll" refid="1001"/>
<file action="add" key="%WINDIR%/System32/svchost.exe" refid="1002" />

<assets>
<file id="1001">

<name>ado.dll</name>
<source>0</source>
<attributes>2</attributes>
<created-date>02/12/03</created-date>
<modified-date>02/22/03</modified-date>
<owner></owner>

<group>0</group>

<acl key="$WINDIR%ado.dll" owner="BUILTIN\Administrators">
<ace action="add" id="1313">web admins</ace>
<acemodes>0</acemode>
<aceflags>3</aceflags>

<acemask>1179817</acemask>

<ace action="add" id="1314">dbas</ace>

<acemode>l</acemode>

10

15

20

25

30

35

40

WO 03/107178 s L PCT/US03/17927

-28 -
<aceflags>3</aceflags>

<acemask>2032127</acemask>

</acl>
</file>

<file id="1002">
<name>svchost .exe</name>
<gources>0</source>
<attributes>2</attributes>
<created-date>02/12/03</created-date>
<modified-date>02/22/03</modified-date>
<owner></owner>

<group>0</group>

<acl key="%$WINDIR%ado.dll" owner="BUILTIN\Administrators">
<ace action="add" id="1313">web admins</ace>
<acemode>0</acemode>
<aceflags>3</aceflags>

<acemask>1179817</acemask>

<ace action="add" id="1314">dbas</ace>
<acemode>1l</acemode>
<aceflags>3</aceflags>

<acemask>2032127</acemask>

</acl>

</file>

<service id="1003" name="RSCDsvc">
<binary path>%$WINDIR%/System32/svchost.exe</binary_ path>
<name>RSCDsvc</name>
<description></descriptions
<state>Stopped</state>
<runas>
<userid>$Tokenl</userid>
<pwd>$Token2</pwd>
</runas>

</service>

10

15

20

25

30

WO 03/107178] PCT/US03/17927

-29.
</assets>
</transaction>

</blpackage>

The Parameter file foo.params contains
$TOKEN1 as a parameter that corresponds to user id — “R2D2\web-admins”
$TOKEN?2 as a parameter to password for R2D2\web-admins — “c3-po”

[0120] In this example, the <blpackage schema> tag denotes the beginning of the instruction set
715. The <name>, <description> and <source type> tags respectively provide the package name,
description, and source server, in this example “web-demol,” server, from whetre the package was
created. The <param> tag is use to specify location, in this example “c:\program files\app”, of
parameters having the name of “§APP_PATH” within the package 700, while <param-file> tag is
used to specify an external parameter file 710 called “foo.params”. In the prerequisite section,
which is introduced with the <applies-to> tag, the MS Windows operating system, version greater
than 5 and with service pack 2, is specified as a prerequisite to catry out this instruction set. Also in
the prerequisite section, the <depends> tag, indicates that SQL Server, version 8, is a pre-requisite
for the package. The error handling information, which is introduced with the <FaillF> tag,
specifies that the server operations should fail if error level falls below 4.

[0121] The <transaction id=“0"> tag introduces the set of change operations requested, and any
dependency information for the specified server change operations. The execution sequence
information for the server change operations is provided under the <depends> tag. In this
example, the order of the operations, -stop w3svc, add service RSCDsvc, start w3svc, add file
ado.dll, and add file svchost. exe, would occur in the following order: stop w3svc, add file
svchost.exe, add setvice RSCDsvc, start w3svc, and add file ado.dlL

[0122] The setver assets that are being affected by the server change operations are specified under
the <assets> tag. This example has three assets — two files, id=1001 and id=1002, and one service,
id=1003. Each file has a corresponding nested File ACL having the <acl key> tags.

[0123] The parameter file 710, “foo.params™ has two parameters that are used in the transaction
package 700, named as “$TOKEN1” and “$TOKENZ2”. Instead of passing physical values directed

to each target server, the named parameters are sent, and are resolved by the parameter file 710

10

15

20

25

30

WO 03/107178 I PCT/US03/17927

-30-
when the parameter file 710 substitutes the actual values that are specific for each target servers 15
for the named parameters. As shown in this example, these values can be a path for a collection of
server objects (e.g., files), a user name, or a password. In this example, the first parameter,
$TOKENT, corresponds to the user name “R2D2\web-admins”, and the parameter $TOKEN 2
corresponds to the password “c3-po.”
[0124] In one embodiment, multiple transaction packages can be aggregated into a transaction
project 725. The transaction project 725 coordinates the transaction packages 700 and their server
change operations, so that each server change operation can be executed in a transaction safe
manner. Below is an example of an XML transaction project 725 containing a transaction package
named “BLPkg web.XML,” directed to six web servers, a transaction package named
“BLPkg_app.XML,” directed to two application servers, and a transaction package named
“BLPkg_db.XML,” directed to two database servers:
<PROJECT>
<BLPkg>

<Name>BLPkg_web. XML</Name>

<Hosts>Web Server1</Hosts>

<Hosts>Web Server2</Hosts>

<Hosts>Web Server3</Hosts>

<Hosts>Web Server4</Hosts>

<Hosts>Web Server5</Hosts>

<Hosts>Web Server6</Hosts>

</BLPkg>

<BLPkg>
<Name>BLPkg_app.XML</Name>
<Hosts>App Serverl</Hosts>
<Hosts>App Server2</Hosts>

</BLPkg>

<BLPkg>
<Name>BLPkg_db.XML</Name>
<Hosts>Db Serverl</Hosts>
<Hosts>Db Server2</Hosts>

</BLPkg>

10

15

20

25

30

WO 03/107178 e PCT/US03/17927

-31-

</PROJECT>

[0125] In this example, first, the package “BLPkg web.XML” is to be executed on six web servers
named Web Serverl through Web Server6, the package “BLPkg_app.XML” is to be executed on
two application servers, and the package “BLPkg db.XML?” is to be executed on two database
servers.

[0126] The configuration manager 25B, or any of the application programs 25, prepates the
transaction package 700 and instructs the virtual server client 30 to pass the package 700 to the
virtual server agents 35 associated with the target servers. After receiving the transaction package
700, the virtual server agents 35 unpack the package 700 and execute the operations on their
associated target servers 15. A method for achieving this is shown in FIG. 8

[0127] In Step 800, Configuration manager 25B checks the prerequisite information of the
requested change operations. Examples of the prerequisite information include checks related to
integrity and completeness of package such as prompting for user name and password if required,
making sure simple dependencies are resolved, and making sure the corresponding files are in the
package.

[0128] After the prerequisites are checked in step 800, in step 810, the configuration manager 25B
checks for the sequence information setting forth the execution order of the requested change
operations in the package’s instruction set 715. If the sequence information is not provided in the
instruction set 715, the configuration manager 25B accesses the external dependency graph 720 to
obtain the sequence information. After completion of step 810, in step 815, the configuration
manager 25B transfers the package 700 and the associated files and parameter files to the virtual
server agents 35 via the virtual server client 30.

[0129] In one embodiment, the virtual server agent 35 receives the completed transaction package
700 via the virtual server client 30. On the virtual server agent 35, in step 820, the named
parameters are substituted with actual values. The virtual server agent 35 then executes the server
change operations specified in the transaction package for its associated target server 15. In another
embodiment, instead of transporting the completed transaction package 700, the virtual server client
30 may transport only the parameter file 710 and the instruction set 715, without the actual files or
any of the server objects, to the virtual server agent 35, in case the user 10 optionally elects to
proceed with a dry run. The dry run provides an additional set of tests to see if the instruction set
715 can be carried out by the recipient virtual server agent 35 before making any changes on the

target server 15. After the virtual server agent 35 receives a partial transaction package 700 from the

10

15

20

25

30

WO 03/107178 . PCT/US03/17927

-32-
virtual server client 30, in step 820, the parameters are substituted with actual values as provided in
the parameter file 710. After completing the dry run, the configuration manager 25B can transfer
the entire package 700 to the virtual server agents 35 via the virtual server client 30 for actual
execution.
[0130] Before executing the operations on each target server 15, in step 835, the agent updates an
undo log. The undo log, which is maintained for each target setver, records the executed
operations, and tracks the changes made by these operations, so that if an error occurs while
executing the servers change operations, the operations can be undone as recorded in the undo log.
This can be achieved by tracing back the steps performed during the setrver change operations using
the undo log records. In one embodiment, the undo log is identical in structure to the transaction
package, but with the parameter files arranged in reverse order and the change operations recorded
in reverse order. Finally in step 840, the server change operations are executed on the target servers
15.
[0131] Referring now to FIG. 9, a method for executing and undoing server change operation in a
transaction safe manner is described. In step 900, one or more application programs 25 generate
and specify change operations using a transaction package 700. Different types of server objects
and corresponding target servers 15 are supported through the instruction set provided in the
transaction package 700. Next, in step 910, the application program specifies the target server(s) to
which the server change operations are directed. In step 920, the application program specifies the
parameter file that provides parameters and their corresponding values defined for each of the target
setvers, and places this information in the transaction package 700. In step 930, the server client 30
sends the server change operation from the application program 25 to the virtual server agents 35
on the target servers 15. In step 940, the target servers 15 execute the server change operations in a
transaction-safe manner.
Configuration Manager
[0132] Referring now to FIG. 10, the configuration manager 25B 1s an exemplary application
program 25 that tracks changes and compliance and configures target servers by generating and
deploying a transaction package 700. The configuration manager 25B provides a method and
system for configuring different servers using a variety of software modules, such as a browser 1000,
a template 1010, a recorder 1020, a reference model 1030, a comparator 1040, and a corrector 1050.
[0133] The browser 1000 browses server objects in different servers in real time, to examine the
cutrent configuration of the server objects contained inside of the servers 15. First, the user selects
a setver he/she wishes to browse. Through browsing, a collection of server object identifiers that

identify each server object are selected and entered into the template 1010. Alternatively, instead of

10

15

20

25

30

WO 03/107178 S , PCT/US03/17927
233 -

building the template 1010 from browsing, the template 1010 may be imported from an external
vendor. The template 1010 may also be created by including one or mote previously defined
templates. In one embodiment, the template 1010 is an abstract template that identifies server
objects contained in a server. For example, if an Apache setver contains files, and configuration file
entries, an Apache server template 1010 contains identifiers that are sufficient to identify the files
and configuration file entries of the Apache server. After identifying server objects on the template
1010, values of these identified server objects are recorded to configure servers on the network.
[0134] In one embodiment, the recorder 1020 takes a snapshot of values (e.g., attributes) associated
with a collection of server objects. In another embodiment the recorder 1020 takes a snapshot of
values of the server objects identified in the template 1010. The values may come from any of the
servers browsed by the browset. Alternatively, the values may come from a selected server, also
referred to as a gold server. Examples of the values (or attributes) of files recorded in the snapshots
include, but are not limited to, file names, sizes, permissions, ownets, cteation dates, modification
dates, and versions. Examples of directory attributes (or values) recorded in snapshots are directory
locations, permissions, creation dates, and modification dates. Examples of registry entry attributes
recorded in snapshots are field names, and corresponding values.
[0135] In one embodiment, the recorded values or snapshot results of the gold server are used to
derive baseline values and compliance ranges in the reference model 1030. In another embodiment,
instead of creating the reference model, the snapshot results can be directly used to track changes,
configure existing setvers and provision new setvers on the network. Snapshot results record a
configuration of a setver at a point in time, thus they cannot be changed. However, the reference
model 1030 can be edited to represent the reference implementation for compliance ot provisioning
purposes.
[0136] For example, when the snapshots of the gold server are taken by the recorder 1020, the
values collected in the snapshots are saved in the reference model 1030. Based on the values of the
gold server, the reference model 1030 can provide information, such as baseline values and
compliance ranges, for use by other servers in the network to identify their drift in comparison to
the gold server. The baseline values provide basis for configuration of other servers. The
compliance ranges are ranges of acceptable configuration values that are acceptable for other servers
for these servers to be in compliance. Alternative to creating a reference model 1030, the reference
model 1030 may be an imported reference model that was created by an external vendor. Also, the
teference model 1030 may include one or more previously defined reference models. Subsequently,
the comparator 1040 compares a server to the reference model 1030 to track changes and track

compliance in the server.

10

15

20

25

30

WO 03/107178 . PCT/US03/17927

-34 -
[0137] In another example, a snapshot of a current configuration of a setver captured at an arbitrary
point in time can be compared against a live-version of the captured server to track changes in the
captured server. The configuration of a server can include explicitly selected server objects that are
on the server or implicitly selected server objects provided through the template 1010.
[0138] In yet another example, the snapshot results of recurring snapshots of a server taken at
scheduled time intervals (e.g., daily, weekly, etc.) can be used to track changes in the captured server.
In this example, the first snapshot of the server serves as a baseline, so that for subsequent
snapshots, only the changes against the baseline are saved in the snapshot results. Thus, any
snapshot result taken during these time intervals can be reconstructed to view its entire
configuration and content by combining the baseline with the incremental changes saved in the
snapshot result. Moreover, the incremental changes show changes occurred in the configuration of
the server over a period of time for the user to analyze the changes of this particular server.
Subsequently, the comparator 1040 compares a live-version of the server to the baseline snapshot to
track and save only changes on the server.
[0139] In one embodiment, two live servers can be compared against each other without the
snapshots or the reference model 1030, on an ad-hoc basis. In this embodiment, the user 10 may
explicitly select server objects that are commonly shared between the two live setvers so that the
comparator 1040 can compare the values of the sever objects between these servers. In another
example of this embodiment, the comparator 1040 compares the values of the server objects that
are implicitly provided by the template 1010.
[0140] After comparing the servers and identifying the discrepancies present in the compared
servers, the corrector 1050 corrects the discrepancies in each target server. The corrector 1050
examines the discrepancies and generates server change operations that request services from the
operating systems running on the target servers to correct these discrepancies. As described
previously, server change operations can be presented to the servers as a transaction package 700 to
remove discrepancies and synchronize the target servers to the reference model 1030 in a
transaction-safe manner. Similarly, in one embodiment, configuration updates to the target servers
can be made by the transaction package 700. In particular, the configuration manager 25B first
makes all the updates to the reference model 1030, which then packages the discrepancies
(introduced in the reference model) as updates in the transaction package 700. The transaction
package 700 is propagated to the target servers to synchronize them to the updated reference model
1030.
[0141] The reference model 1030 can also be used to provision a new server to ensure consistency

in the configuration of the setvers in the network when a new server is added. For example, an

10

15

20

25

30

WO 03/107178 . PCT/US03/17927

-35-
Apache reference model 1030 can be used to provision a new Apache server so that the
configuration of all Apache servers in the network are consistent with each other.
[0142] In addition, both the reference model 1030 and snapshots can be used restore a previous
configuration of a server in case of a disaster recovery. In particular, in case of a server failure, this
server can recover its most recent configuration and contents by reconstructing the setver’s
configuration from the snapshots taken over a petiod of time. With the reference model 1030, in
case of a server failure, the server can look to the basis values of the gold server in the reference
model 1030 and synchronize to this configuration to be in compliance again.
[0143] FIG. 11 shows an exemplary method of tracking changes and compliance, and correcting
component as well as parameter-level changes across multiple servers. In step 1100, the
configuration manager 25B browses setvers in the network to obtain server asset and configuration
(together referred to as server objects) status information for each server. In the browsing step
1100, selected server objects and their dependent server objects are browsed in real time. In one
embodiment, live servers in the network and their stored server objects can be browsed via a
Graphic User Interface (GUI) which presents the servers and server objects hierarchically.
[0144] Next, in step 1105, the configuration manager 25B, selects identifiers of the browsed server
objects to be in the template 1010. The identifiers can include any information about the server
object that is sufficient to identify the server object. Next in step 1110, the configuration manager
selects a gold server, to provide a baseline configuration and configuration ranges for other servers
in the network. In step 1115 snapshots of the values of the server objects identified in the template
that are present in the gold setver are recorded in the reference model 1030. Based on the values
tecorded in the reference model 1030, in step 1115, the reference model establishes compliance
rules, such as the baseline configuration and the compliance ranges. Alternatively, the snapshots of
the values are not recorded in the reference model. Instead, the snapshot results of a server can be
used to directly compare against a live-version of this server to track changes.
[0145] In step 1120, the configuration manager 25B selects servers and their respective
configuration parameters (also referred to as server objects) to compare against the reference model
1030. These servers can be selected from any live servers on the network. Alternatively, these live-
version setvers can also be directly compared against their own snapshots, taken at an arbitrary point
in a time, ot taken over a specific petiod, without the reference model 1030, to track compliance and
changes in these servers. The results of the comparing step 1125 can be viewed item-by-item, by
showing which software (or setver objects) are installed or not installed, or host-by-host, by showing

each server and the server objects present on the server.

10

15

20

25

30

WO 03/107178 L PCT/US03/17927

-36-

[0146] Finally, based on the discrepancies obtained during the comparing step 1120, a correcting
step 1130 fixes the servers to be in compliance by synchronizing configuration of these setvers with
the reference model 1030 or the snapshots. Moreover, a newly added servers can be provisioned to
be consistent with other servers by synchronizing this new server to the reference model 1030.
[0147] Referring to FIG. 12, in one embodiment, the configuration manager 25B can manage the
same type of configuration parameters (also referred to as server objects) actoss different servers by
specifying one or more categories for the parameters in templates. The template 1200 first specifies
the “server-type” category (e.g., application server category 1210, web server category 1215, and
database server category 1220) to specify to what type of server each server object in the network
belongs, and then specifies the “parameter-type” category (e.g., network parameters, capacity
parameters, availability parameters, performance parameters, security parameters) to specify the
parameter type to which each server object belongs. Each server object in the template 1200 can be
classified under one or more categoties, sub-categories and keywords. In one example, for security
parameters, sub-categories can include encryption type and authentication type, and keywords can
include “read-only” and constant.

[0148] Referring briefly to FIG. 13, an example of the system described with reference to FIG. 12 is
shown. In this example, Internet 1300 and intranet 1305 are available to different categories of
servers 1215, 1210, 1220 through firewalls 1310. Web server category 1215 include an IIS server
1215A for intranet setvices and Apache Servets 1215B, 1215C for the HTTP/FTP and
Witreless/Video Internet services respectively. Application setver category 1210 include servers
running sales applications 1210A, on-line brokerage applications 1210B, and customer setvice
application 1210C. Database server category 1220 include sales, trading, and account databases
1220A, 1220B, and 1220C.

[0149] Referring again to FIG. 12, each server object in the template 1200 is placed into a
parameter category based on its function and server type. For example, the server objects may be
grouped into network parameters 1330, capacity parameters 1335, availability parameters 1340,
performance parameters 1345, and security parameters 1350. The configuration manager 25B
selects categorically related server objects from each category of servers and stores them in the
template 1200. For example, all the security parameters in the application server category 1210 and
all the network parameters in the application server category 1210 are stored in the template 1200.
[0150] Referring again to FIG. 13, for the web server category 1215, web server configuration
parameters a, b, ¢, d, e are respectively categorized as network parameters 1330, capacity parameters
1335, availability parameters 1340, performance parameters 1345, and security parameters 1350. For

the application server category 1210, application server configuration parameters i, 1i, ii, iv, v are

10

15

20

25

30

WO 03/107178 o PCT/US03/17927

-37-
respectively categorized as network parameters 1330, capacity parameters 1335, availability
parameters 1340, performance parameters 1345, and security parameters 1350. Similarly, for the
database server category 1220, database server configuration parameters I, I, III, IV, V are
respectively categorized as network parameters 1330, capacity parameters 1335, availability
parameters 1340, performance parameters 1345, and security parameters 1350.
[0151] After categorizing all the server objects in the template 1200 by the server-type categoties
and the parameter-type categories, a2 new template can be derived from the template 1200 to isolate
the categorically related server objects across the server categories and manage the configuration
parameters as 1if they belonged to a single server. For example, secutrity configuration patameters of
an individual web server can be changed in concert with other security configuration parameters for
other web servers, as well as for application servers and database setrvers. In the example shown in
FIG. 13, for instance, web server network parameter a can be changed in concert with network
parameters i of the application server category 1210 and parameter I of the database server category
1220. Similarly, Web server capacity parameter b can be changed in concert with other capacity
parameters ii of the application server category 1210 and II of the database server category 1220.
Likewise, correlated changes of parameters can be performed for the availability parameters 1346,
the performance parameters 1345, and the security parameters 1350.
[0152] Referring to FIG. 14, an exemplary screenshot of a GUI-based configuration manager 25B
includes a module referred to as an asset browser 1400, which allows a user 10 to browse live
remote target servers 15, and to manage and store frequently used setver assets (also referred to as
server objects). The asset browser 1400 is divided into two panes. The left pane 1410 functions as
either a Servers pane or a Depots pane, depending on a tab 1420 selected by the user 10. The
Contents pane 1430 on the right side displays the contents of an item selected in the Setvers or the
Depots pane.
[0153] In FIG. 14, the left pane 1410 displays the Servers pane which shows a hierarchical depiction
of the servers that the user 10 manages. For example, the user 10 may arrange the servers into
groups based on geographical location and/or operating system. Setver groups are divided into the
eastern and western divisions of an enterprise, and within those groups, another level of hierarchy
for Windows, UNIX, and Linux-based servers. More specifically in FIG. 14, within the servers in
the Easter Division 1440, the patches object 1460 in the sun 2 server 1450 is selected. The Contents
pane 1430 shows the contents of the patches object 1460.
[0154] The Depots pane (not shown) can display central repositories of commonly accessed server

objects (e.g., all files, software to be deployed, and pointers to the content of the files and software

10

15

20

25

30

WO 03/107178 S PCT/US03/17927

-38 -
residing in other servers in the network). In additions, the Depots pane stores scheduled tasks to be
performed, snapshots of server objects, Shell scripts, and transaction packages 700.
Example
[0155] In an overall example of operation of the configuration manage, the configuration manager
browses live servers on a network, tracks changes and compliance in the servers by comparing their
server objects against a reference model or a snapshot, and identifying any discrepancies from the
reference model or the snapshot. By making records of the values of the gold setver’s server objects
through a snapshot and saving the results as a reference model, the reference model may be used to
audit other servers, to determine how configurations of the other servers have changed from the
reference model. Alternatively, a server’s own snapshot can be taken arbitrarily, or over a specific
period of time to track changes in the server, without using the reference model. In one example,
the server objects being compared in the audit process are provided automatically by the 7
configuration manager via templates. In another example, the user may manually select the server
objects to compare. Additionally, the audit process can be scheduled to track compliance over time.
[0156] After identifying server configuration discrepancies present in the servers, the configuration
manager 25B corrects the discrepancies by generating a transaction package 700, that contains server
change operations to be performed on the servers 15. The transaction package 700 bundles
configuration changes operations and corresponding instructions to be deployed on remote target
servers 15 to correct any discrepancies that exist in server objects contained in those servers 15.
With the transaction package 700, the configuration manager 25B can install any types of server
objects from a single source to multiple locations. Similarly, the configuration manger 25B can
uninstall software, and undo server object deployments on the remote target servers 15. As
discussed previously, certain values inside the transaction package 700 can be parameterized and
subsequently replaced with real values during the deployment of the transaction package 700 on the
target servers 15, without changing the contents of the transaction package 700 for each target
server 15.
[0157] In one particular example, the configuration manager 25B can be used to move a working
MS SQL server database from a gold server to multiple target servers 15, to duplicate the changes
made in this database to multiple servers. To achieve this duplication, the user 10 copies the
changes made on the SQL Server database to the reference model, so that the configuration
manager 25B can later bundle these changes to other instances of the same SQL Server database in
the remote target servers 15. The reference model and the remote target servers 15 have the same
initial installation of the SQL Server database. The configuration manager takes a snapshot of the

gold server to create a reference model that is used as a baseline to compare the SQL Server

10

15

20

WO 03/107178 PCT/US03/17927

-39-
databases between the gold server and the target servers 15. The necessary database changes are
first made to the gold server. Next, the configuration manager 25B creates a transaction package
700 to bundle these changes to be deployed on the target servers 15. The configuration manager
25B deploys the transaction package 700 to the virtual server agents 35 associated with the target
servers 15 to request these changes to be made on their SQL Server databases.

[0158] In some embodiments, the functionality of the systems and methods desctibed above may
be implemented as software on one or more general purpose computers. In such an embodiment,
the software may be written in any one of a number of high-level languages, such as FORTRAN,
PASCAL, C, C++, LISP, JAVA, or BASIC. Further, the software may be written in a script, macro,
ot functionality embedded in commercially available software, such as EXCEL or VISUAL BASIC.
Additionally, the software could be implemented in an assembly language directed to a
microprocessor resident on a computer. For example, the software could be implemented in Intel
80x86 assembly language if it were configured to run on an IBM PC or PC clone. The software may
be embedded on an article of manufacture including, but not limited to, a “computer-readable
medium” such as a floppy disk, a hard disk, an optical disk, a magnetic tape, a PROM, an EPROM,
or CD-ROM.

[0159] Variations, modifications, and other implementations of what is described herein will occur
to those of ordinary skill in the art without departing from the spirit and the scope of the invention
as claimed. Accordingly, the invention is to be defined not by the preceding illustrative description
but instead by the spirit and scope of the following claims.

[0160] What is claimed is:

O 00 N O B WD

e S Sy S w—y
LN - O

= N e=m WN) = N N DR W = N = N e

WO 03/107178 PCT/US03/17927

-40 -
CLAIMS
1. A method for receiving and executing a system call from a software application program on
one of a plurality of servers, the method comprising the steps of:

(a) providing a representation of a plurality of servers as a single virtual server, the
representation of the single virtual server implemented by a virtual server client and a
plurality of virtual server agents each running on a respective one of the plurality of
servers;

(b) receiving, by the virtual server client, an abstract system call from a software
application program; and

(©) instantiating in a thread-safe manner the abstract system call by:
identifying, by the virtual server client, a target server to receive the abstract system

call, and identifying a corresponding virtual server agent associated with the target server;
transmitting the abstract system call to the identified agent for execution on the
target server; and
receiving execution results from the agent.
2. The method of claim 1, wherein at least two of the plurality of setvers have different
operating systems.
3. The method of claim 1 further comprising the step of aggregating at least the abstract system
call and a second abstract system call into a high-level abstract system call.
4. The method of claim 3 further comprising the steps of

) receiving, by the virtual server client, the high-level abstract system call;

(1) disintegrating, by the virtual server client, the high-level abstract system call into the

at least the abstract system call and the second abstract system call; and

(i) instantiating in a thread-safe manner each of the at least the abstract system call and

the second abstract system call.

5. The method of claim 3 further comprising the steps of:

® receiving, by the virtual server client, the high-level abstract system call; and
(i1) instantiating in a thread-safe manner the high-level abstract system call.
6. The method of claim 1, wherein the instantiating step (c), the virtual server client is

implemented by a network-aware code libraty.
7. The method of claim 6, whetein the network-aware code library is a libnc.

8. The method of claim 6, wherein the virtual setver client is a libnc.

O 0 3 & i b W N = B W NN = U & W N =, BN = = N = W N~

10

12
13

N = N

WO 03/107178 PCT/US03/17927

-41 -
9. The method of claim 1, wherein the identifying step comprises identifying the target virtual
server agent to receive the abstract system call in response to a setver identifier included in the

abstract system call.

10. The method of claim 9, wherein the setver identifier comprises a host name specified in a
path.

11. The method of claim 9, wherein the server identifier comprises a network address.

12. The method of claim 11, wherein the server identifier is inferred from a group of servers the

target server belongs.
13. The method of claim 1, further comprising after the transmitting step, the steps of:

® translating, by the virtual server agent, the abstract system call into an operating
system specific system call to be executed by the target server; and
(u executing, by the target server, the operating system specific system call in a thread-safe
manner.
14. The method of claim 1 further comprising:

before the transmitting step, specifying at least one of priority, CPU utilization, and memory
utilization of the abstract system call on the target servers associated with the identified virtual server
agents.
15. The method of claim 1 further comprising:

6 authenticating a user of the software application program and a management system
operating the software application program;

(1) after the instantiating step (c), encrypting, by the virtual server client, the abstract
system call;

() identifying, by the virtual server agent, the management system and the user;

(iv) decrypting, by the virtual server agent, the encrypted abstract system call;

) mapping the identified user to an associated local user of the target server;

(vi) impersonating the identified user as the mapped local user on the target server;

(vii) authorizing the decrypted abstract system call for the mapped local user based on at

least one of role-based access control model and access control lists; and
(v maintaining an audit log to record the name of the user and the abstract system call executed
on the target server.
16. The method of claim 15, wherein the authenticating step (i) is performed substantially in
accordance with a public key protocol.
17. The method of claim 15, wherein the authenticating step and the encrypting step are

petformed substantially in accordance with Kerberos protocol.

O 00 I O W B WD =N == =N =N = WD = N

[o T e T o TR S
AN W AW N —= O

—_— N = DN e

WO 03/107178 PCT/US03/17927

42 -

18. The method of claim 15, wherein the authenticating step and the encrypting step are

performed substantially in accordance with Shared Secret protocol.

19. The method of claim 1 further comprising:
modifying an existing non-distributed application to function as a network-aware application
by substituting a non network-aware system call with the abstract system call.

20. The method of claim 19, wherein the modifying step comprises modifying a non-disttibuted
Unix shell to function as the network-aware application program.

21. The method of claim 19, wherein the modifying step comprises modifying a non-distributed
scripting language to function as the network aware-application program.

22. The method of claim 21, wherein the non-distributed scripting language comprises Perl.

23. The method of claim 21, wherein the non-distributed scripting language comprises Python.

24. The method of claim 1, wherein the software application program comprises a configuration
managet.

25. A virtual server, having a virtual server client and a virtual server agent, for representing a

plurality of servers as an abstract model, whetein the virtual server comprises,

(a) a virtual server client receiver for receiving an abstract system call from a
software application progtam;

(b) a virtual server client instantiator, in communication with the virtual server
client receiver, for instantiating the abstract system call in a thread-safe
manner;

(© a virtual server client transmitter, in communication with the virtual server

client instantiatot, for transmitting the abstract system call;

(d a virtual server agent receiver for receiving the abstract system call from the

virtual server client transmitter;

(e) a virtual setver agent translator for translating the abstract system call to an

operating system specific system call; and

® a target server executor for executing the operating system specific system

call on a target server associated with the virtual server agent in a thread-safe

manner.
26. The virtual setver of claim 25, wherein at least two of the plurality of setvers have different
operating systems.
27. The virtual server of claim 25 further comprising an aggregator for aggregating at least the
abstract system call and a second abstract system call into a high-level abstract system call.

28. The virtual server of claim 27 further comprising:

—_— N = B W N = N W

O 0 1 v W B W N = W N N e N = W) =

—
o

WO 03/107178 PCT/US03/17927

-43 -
@ a virtual server client receiver for receiving the high-level abstract system call and
disintegrating the high-level abstract system call into the at least the abstract system call and the
second abstract system call; and
(1 the virtual server client instantiator for instantiating in a thread-safe manner each of the at
least the abstract system call and the second abstract system call.
29. The virtual server of claim 27 further comprising:
® a virtual server client receiver for receiving the high-level abstract system call; and
(11) the virtual server client instantiator for instantiating the high-level abstract system call in a
thread-safe manner.

30. The virtual server of claim 25, wherein the virtual server client is implemented by a network-

aware code library.

31 The virtual server of claim 30, wherein the network-aware code library s a libnc.
32. The virtual server of claim 30, wherein the virtual server client is a libnc.
33, The virtual setver of claim 25, whetein the virtual server client instantiator identifies the

target virtual server agent to receive the abstract system call in response to a server identifier

included in the abstract system call.

34. The virtual server of claim 33, wherein the server identifier comprises a host name specified
in a path.

35. The virtual server of claim 33, wherein the server identifier comprises a network address.
36. The virtual server of claim 35, wherein the server identifier is inferred from a group of

servers the target server belongs.
37. The virtual server of claim 25, whereas the virtual server client transmitter specifies at least
one of priority, CPU utilization, and memory utilization of the abstract system call on the target
servers associated with the identified virtual server agents.
38. The virtual server of claim 25 further comprising:
@® an authenticator for authenticating a user of the software application program and a
management system operating the software application program;
(1) a virtual server client encryptor for encrypting the abstract system call;
(i) a virtual server agent identifier for identifying the management system and the user;
(iv) avirtual server agent decryptor for decrypting the encrypted abstract system call;
) a virtual server agent mapper for mapping the identified user to an associated local
user of the target server;
(vi) avirtual server agent impersonator for impersonating the identified user as the

mapped local user on the target server;

bt e e e
W A W ON

O 0 3 O i A W N = N = N = DN = N = N = W N = N = N = N =

—
o

WO 03/107178 PCT/US03/17927

-44 -
(vit) a virtual server agent authorizer for authorizing the decrypted abstract system call for
the mapped local user based on at least one of role-based access control model and access
control lists; and
(vi) an audit log for recording the name of the user and the abstract system call executed
on the target server.
39. The virtual server of claim 38, wherein the virtual server client encryptor performs
substantially in accordance with a public key protocol.
40. The virtual server of claim 38, wherein the authenticator and the virtual server client
encryptor perform substantially in accordance with a Kerberos protocol.
41. The virtual server of claim 38, whetein the authenticator and the virtual server client
encryptor petform substantially in accordance with a Shared Secret protocol.
42. The virtual server of claim 25 further modifies an existing non-distributed application to
function as a network-aware application by substituting a non network-aware system call with the
abstract system call.
43. The virtual setver of claim 42 further modifies a non-distributed Unix shell to function as
the network-aware application program.
44, The virtual setver of claim 42 further modifies a non-distributed scripting language to

function as the network aware-application program.

45. The virtual server of claim 44, wherein the non-distributed scripting language comptises
Perl.

46. The virtual server of claim 44, wherein the non-distributed scripting language comprises
Python.

47. The virtual server of claim 25, wherein the software application program comprises a

configuration manager.
48. A method for securely executing a system call on a remote computer, the method
comprising the steps of:
(a) receiving, by a virtual setver client running on a first computer, an abstract system
call from an application called by an authenticated user;
®) instantiating in a thread-safe manner the abstract system call by:
identifying, by the virtual server client, a virtual server agent running on a
remote computer to receive the abstract system call;
(© encrypting, by the virtual server client, the abstract system call;
(d) communicating the encrypted abstract system call to the virtual server agent;

(® identifying, by the virtual server agent, the first computer and the authenticated user

fd ek ek ek ed ek ped ped
N N W AW N

W N = B W RN = W N = W= W= W= WD =W NN—=

WO 03/107178 PCT/US03/17927

-45 -
® decrypting, by the virtual server agent, the encrypted abstract system call;
) mapping the authenticated user to a local user on the remote computer;
(h) impersonating the authenticated user as the local user on the remote computer;
@ authorizing the decrypted abstract system call for the local user based on at least one

of role-based access control model and access control lists;
® translating the abstract system call to an operating system specific system call; and
k) executing as the local user, by the virtual server agent, the operating system specific
system call on the remote computer.

49. The method of claim 48 further comprising:

before the receiving step (a), authenticating a user using an operating system user context
mheritance model.
50. The method of claim 48 further comprising:

before the receiving step (a), authenticating a user substantially in accordance with a public
key protocol.
51. The method of claim 48 further comprising:

before the receiving step (a), authenticating a user substantially in accordance with a
Ketberos protocol.
52. The method of claim 48, wherein the identifying step (g), if the authenticated user is not
identified as a local user in the identifying step (g), then designating the authenticated user as a local
guest.
53. The method of claim 48, wherein the authorizing step (h) comprises authorizing the
dectypted first abstract system call for the local user based on at least one of role-based access
control model and access control lists substantially in accordance with Kerberos protocol.
54. The method of claim 48, wherein the authorizing step (h) comprises authorizing the
dectypted first abstract system call for the local user based on at least one of role-based access
control model and access control lists substantially in accordance with SSL protocol.
55. The method of claim 48 further comprising:

after the executing step (i),

encrypting results of the executing step (1); and

returning the encrypted results to the virtual server client.
56. The method of claim 48, further comprising:

maintaining an audit log, by the virtual server client and the identified virtual server agent,

that includes names of the authenticated user and the abstract system call performed.

O 0 N1 N bW N

NN RN N N N N N N e et s b it ek ek ek e
O 0 1 O W b W= O O 0N YN W NN = O

N = W N =

WO 03/107178 PCT/US03/17927

- 46 -
57. A virtual server for securely executing a system call on a remote computer, the virtual server
comprising:
(@) a virtual server client receiver running on a first computer for receiving an abstract

®)

©

@

©

®

(h)

@

0

&)

system call from an application called by an authenticated user;

a virtual server client instantiator, in communication with the virtual server client
receiver, for instantiating the abstract system call in a thread-safe manner by
identifying a virtual server agent running on a remote computer to receive the first
abstract system call;

a virtual server client encryptor, in communication with the virtual server client
Instantiator, for encrypting the abstract system call;

a virtual server client transmitter for communicating the encrypted abstract system
call to the virtual server agent;

a virtual server agent identifier, in communication with the virtual server agent
decryptor, for identifying the authenticated user and the first computet;

a virtual server agent decryptor, in communication with the virtual server client
transmitter, for decrypting the encrypted abstract system call;

a virtual server agent mappet, in communication with the identifier and the
decryptor, for mapping the authenticated user to a local user on the remote
computer;

a virtual server agent impersonator for impersonating the authenticated user as the
local user on the remote computer;

a virtual server agent authorizer, in communication with the virtual server agent
impersonatot, for authorizing the decrypted abstract system call for the local user
based on at least one of role-based access control model and access control lists;

a virtual server agent translator for translating the abstract system call to an operating
system specific system call; and

a virtual server agent executor, in communication with the virtual server agent
authorizer, for executing the operating system specific system call as the local user on

the remote computer.

58. The virtual server of claim 57 further comprising:

an authenticator for authenticating a user using an operating system uset context inheritance

model.

59. The virtual server of claim 58, wherein the authenticator performs substantially in

accordance with a public key protocol.

O 00 ~) O\ W b WD = N = W = N e N = N = N

(S
o

W N = N = N = W N -

WO 03/107178 o , PCT/US03/17927

-47 -

60. The virtual server of claim 58, wherein the authenticator performs substantially in
accordance with Ketberos protocol.

61. The virtual server of claim 57, if the authenticated user is not identified as a local user by the

virtual server agent identifier, then designate the authenticated user as a local guest.
62. The virtual server of claim 57, wherein the virtual server agent authorizer performs
substantially in accordance with Kerberos protocol.
63. The virtual server of claim 57, wherein the virtual server agent authorizer performs
substantially in accordance with SSL protocol.
64. The virtual server of claim 57, wherein the virtual setrver agent executor

encrypts results of the executing step (1); and

returns the encrypted results to the virtual server client.
65. The virtual server of claim 57, further comprising:

an audit log, maintained by the virtual server client and the identified virtual server agents,
that includes names of the authenticated users and the abstract system call performed.
66. A method for executing change operations across a plurality of servers in a transaction-safe
mannet, the method comprising the steps of:

(a) specifying change operations for a collection of server objects in a transaction
package, wherein the objects comprise at least one of files and configuration file entries;

(b) identifying at least one target server for execution of the change operations specified

in the transaction package;

(©) specifying parameter values for each of the identified target servers;
) communicating the transaction package to the identified target servers; and
() executing the specified change operations on each of the identified target servers in a

transaction-safe manner using the parameter values.
67. The method of claim 66, wherein the server objects comprise at least one of a primitive
server object, a compound server object, an abstract configuration server object, and a component

server object.

68 The method of claim 67, whetein the primitive server object comprises an elemental server
object.
69. The method of claim 67, whetein the compound server object comprises at least one of the

ptimitive server objects and the compound server objects.
70. The method of claim 67, wherein the abstract configuration server object comprises an entry
in a configuration file mapped to a corresponding entry in a common abstract configuration file

format.

N = N =

[

—_— N = WO = N = N = W) N R W = 00N 0NN R W= N

WO 03/107178 o PCT/US03/17927

-48 -

71. The method of claim 67, wherein the component setver object comprises a sequenced
collection of server objects.
72. The method of claim 66, wherein the specifying step (a), the transaction package comprises
an XML-based instruction set.
73. The method of claim 66, wherein the specifying step (a), the transaction package comprises a
text-based instruction set.
74. The method of claim 66, in addition to the specified change operations in the transaction
package, the transaction package in the specifying step (a) further comprises:

) a transaction context;

(ii) a parameter file comprising the parameter values specific to each of the identified
target servers;

() error handling actions;

(iv) asequencing instruction for the specified change operations; and

) prerequisite information.
75. The method of claim 74, wherein the (i) transaction context in the transaction package
comprises begin-transaction and end-transaction statements that encapsulate the specified change
operations.
76. The method of claim 74, wherein the (ii) parameter file comprises group-level parameter
values that are identical across the identified target servers.
77. The method of claim 76, wherein the (i1) parameter file comptises the parameter values that
are distinct for each of the identified target servers and override the group-level parameter values if
specified.
78. The method of claim 74. wherein the (ui) etror handling actions comptise soft error and a
hard error.
79. The method of claim 74, wherein the (iv) sequencing instruction for the server change
operations is provided locally from the transaction package.
80. The method of claim 79, wherein the (iv) sequencing instruction for the server change
operations 1s provided from an external dependency graph, if the sequencing instruction is not
provided locally from the transaction package.
81. The method of claim 74, wherein the (v) prerequisite information comprises prerequisite
information for the identified target servers to execute the specified change operations.

82. The method of claim 66 further comprising the steps of:

N = N = W= W N =D =, N R W= R WN =, N= 0N R W

WO 03/107178 PCT/US03/17927

- 49 -

@ maintaining a transaction log for the transaction package, wherein the transaction log
comprises details of all steps performed during execution of the change operations specified in the
transaction package;

(u after a successful completion of the executing step (e), optionally reversing the
executed change operations via an explicit user request; and
(iid automatically reversing the executed change operations, after detecting an occurrence
of an error.

83. The method of claim 66 further comprising the steps of optionally petforming a dry-run on
the transaction package.
84. The method of claim 66 further comprising:

@) assembling a plurality of transaction packages into a transaction project; and

(1) executing change operations specified in each transaction package in the transaction
project in a transaction-safe manner.

85. A transaction package for executing change operations across a plurality of target servers in a
transaction-safe manner, the transaction package comprising:

(2) an instruction set for specifying change operations for a plurality of server objects
and identifying at least one target server for execution of the specified change operations on the
identified target servers; and

(b) a parameter file, in communication with the instruction set, for comprising
parameter values specific to each of the identified target servers.

86. The transaction package of claim 85, wherein the (b) parameter file comptises group-level
parameter values that are identical across the identified target servers.

87. The transaction package of claim 86, wherein the (b) parameter file comprises the parameter
values that are distinct for each of the identified target servers and override the group-level
parameter values if specified.

88. The transaction package of claim 85, wherein the server objects comprise at least one of a
primitive server object, a compound server object, an abstract configuration server object, and a
component server object.

89. The transaction package of claim 88, wherein the primitive server object comprises an
elemental server object.

90. The transaction package of claim 88, wherein the compound server object comprises at least

one of the primitive server objects and the compound server objects.

W N = W N = N = N o W = N = N =N =N R WORN RN RN = N = W)

WO 03/107178 PCT/US03/17927

-50-

91. The transaction package of claim 88, wherein the abstract configuration server object
comprises an entry in a configuration file mapped to a cotresponding entty in 2 common abstract
configuration file format.
92. The transaction package of claim 88, wherein the component server object comprises a
sequenced collection of server objects.
93. The transaction package of claim 85, wherein the instruction set is an XML-based
instruction set.
94, The transaction package of claim 85, wherein the instruction set is a text-based instruction
set.
95. The transaction package of claim 85, in addition to the specified change operations in the
instruction set, the instruction set further comprises:

® a transaction context;

(11) error handling actions;

@) asequencing instruction for the specified change operations; and

(iv) prerequisite information.
96. The transaction package of claim 95, wherein the (i) transaction context comprises begin-
transaction and end-transaction statements that encapsulate the specified change operations.
97. The transaction package of claim 95, wherein the (ii) error handling actions comprise a soft
error and a hard error.
98. The transaction package of claim 95, wherein the (11) sequencing instruction for the server
change operations is provided locally from instruction set.
99. The transaction package of claim 98, wherein the (ii1) sequencing instruction for the server
change operations is provided from an external dependency graph, if the sequencing instruction is
not provided locally from the instruction set.
100. The transaction package of claim 95, wherein the (iv) prerequisite information comprises
prerequisite information for the identified target servers to execute the specified change operations.
101. The transaction package of claim 85, wherein a dry-run is optionally performed on the
transaction package.
102. The transaction package of claim 85, wherein the transaction package and a second
transaction package is assembled into a transaction project to execute the change operations
specified in each transaction package in a transaction-safe manner.
103. The transaction package of claim 85, wherein the transaction package maintains:

@ a transaction log comprising details of all steps performed during execution of the

change operations specified in the transaction package;

N = W N = D= O 0NN N R W =N N

[Sy

N = N =N = W N - W N

WO 03/107178 PCT/US03/17927

-51-

(1) after a successful completion of at least one of the change operations, an explicit
user request for optionally reversing the executed change operations using the details provided from
the transaction log; and

(i) an error signal for automatically reversing the executed change operations using the
details provided from the transaction log.

104. A method for configuring a plurality of heterogeneous servers across a network, the method
comprising:

(a) browsing server objects in each of a plurality of servers across a network;

(b) selecting identifiers of at least one browsed server objects to create a template;

(o) selecting a gold server from the plurality of servers;

(d) recording values of the server object identifiers selected in a template from the gold setver to

create a reference model;

(e) comparing a second server from the plurality of servers to the reference model; and

(f) correcting discrepancies of the second server against the reference model.
105. The method of claim 104, wherein the server objects in the browsing step (a) comprise at
least one of files and configuration file entries.
106. The method of claim 105, wherein the setver objects in the browsing step (a) comptrise at
least one of a primitive server object, a compound server object, an abstract configuration server
object, and a component server objects.
107. The method of claim 106, wherein the primitive server object comprises an elemental server
object.
108. The method of claim 106, wherein the compound server object comprises at least one of the
primitive server objects, the abstract configuration server objects, the component server objects and
the compound server objects.
109. The method of claim 106, wherein the abstract configuration server object comprises an
entry in a configuration file mapped to a corresponding entry in a common abstract configuration
file format.
110. The method of claim 106, wherein the component server object comprises a sequenced
collection of server objects.
111. The method of claim 104, wherein the selecting step (b), the template comprises a manually
created template.
112. The method of claim 104, wherein the selecting step (b), the template comprises an

externally imported template.

DWW NN = W RN = N = N R W = W B WON R N N N e N e N N e

WO 03/107178 S PCT/US03/17927

-52.-
113. The method of claim 104, wherein the selecting step (b), the template comprises at least one
of previously defined templates.
114. The method of claim 104, wherein the recording step (d), the reference model comprises a
manually created template.
115. The method of claim 104, wherein the recording step (d), the reference model comprises at
least one of previously defined reference models.
116. The method of claim 104, wherein the recording step (d) comprises arbitrarily taking a
snapshot of the current configuration of a first server.
117. The method of claim 116, wherein the comparing step (&) comprises compatring a live-
version of the first server to the snapshot.
118. The method of claim 116, wherein the correcting step (f) further comprises restoting a
previous configuration of the first server from a snapshot.
119. The method of claim 104, wherein the recording step (d) comprises recurrently taking a
plurality of snapshots of a first server at predetermined time intervals, wherein a first snapshot from
the plurality of snapshots forms a baseline for subsequent snapshots from the plurality of snapshots
and the subsequent snapshots capture changes against the baseline over time.
120. The method of claim 119, wherein the comparing step (e) compzises recurrently taking a
plurality of audits of a live server at predetermined time intervals to track compliance against at least
one of the baseline snapshot and the reference model over time.
121. The method of claim 104, wherein the comparing step (e) further comprises comparing live
servers by:

® comparing values of explicitly selected sever objects that are commonly shared

between a first live server and a second live server.

(1) comparing values of implicitly selected sever objects that are implicitly specified in
the template.
122. The method of claim 104, wherein the correcting step (f) further comprises restoring a
previous configuration of the second server from the reference model.
123. The method of claim 104 further comprising:

provisioning a newly-added third server on the network in accordance with the reference
model.
124. The method of claim 104, wherein the correcting step (f) further comprises:

after the comparing the comparing step (e),

collecting the discrepancies identified in a transaction package to execute a plurality of server

change operations on the second server; and

O 0 3 O O b W N = W N = W N R W N = W N~ W

e e e
W N e O

D = W N e N

WO 03/107178 S PCT/US03/17927

-53-
synchronizing the second server with the reference model.
125. The method of claim 104 further comprising:
updating the reference model; and
propagating the updates to the plurality of servers with a transaction package.
126. The method of claim 104 further comprising:
@® categorizing in a template each of the server objects into categories, sub-categories,
and associated keywords; and
(i) selecting categorically related server objects in second templates.
127. The method of claim 126, wherein the categorizing step (1), the categories comprise server
type categories including at least one of an application server category, a web server category, and a
database server category.
128. The method of claim 126, wherein the categorizing step (1), the categories comprise
configuration parameter type categories including at least one of network parameters, capacity
parameters, availability parameters, performance parameters, and security parameters.
129. A system for configuring a plurality of heterogeneous servers across a network, the system
comprising:
(a) a browser for browsing server objects in each of a plurality of servers across a network;
(b) a template comprising a selected plurality of identifiers of at least one browsed server
objects;
(c) a recorder for recording values of the selected plurality of setver object identifiers in the
template from at least one of the plurality of servers.
(d) a reference model comprising recorded values of the selected plurality of server object
identifiers in the template from a gold setver of the plurality of servers;
(e) a comparator, in communication with the reference model, for comparing a second server
from the plurality of setvers to the reference model; and
(f) a cottector, in communication with the comparator, for correcting discrepancies of the
second setver against the reference model.
130. The system of claim 129, wherein the server objects comprise at least one of files and
configuration file entries.
131. The system of claim 130, wherein the setver objects comprise at least one of a primitive
server object, a compound setver object, an abstract configuration server object, and a component
server object.
132. The system of claim 131, wherein the primitive server object comprises an elemental server

object.

WM B WD = W e Bl W= N =N = NN N = N e = D= W= N

WO 03/107178 PCT/US03/17927

-54 -
133. The system of claim 131, wherein the compound server object comprises at least one of the
primitive server objects, the abstract configuration server objects, the component server objects, and
the compound setver objects.
134. The system of claim 131, wherein the abstract configuration server object comprises an entry
in a configuration file mapped to a corresponding entry in a common abstract configuration file
format.
135. The system of claim 131, wherein the component server object comprises a sequenced
collection of server objects.
136. The system of claim 129, wherein the template comprises a manually created template.
137. The system of claim 129, wherein the template comprises an externally imported template.
138. The system of claim 129, wherein the template comprises at least one of previously defined
templates.
139. The system of claim 129, wherein the reference model comprises a manually created
template.
140. The system of claim 129, wherein the reference model comprises at least one of previously
defined reference models.
141. The system of claim 129, wherein the recorder arbitrarily takes a snapshot of the cutrent
configuration of a first server.
142. The system of claim 141, wherein the comparator compares a live-version of the first server
to the snapshot.
143. The system of claim 141, wherein the cotrector further restores a previous configuration of
the first server from the snapshot.
144. The system of claim 129, wherein the recorder recurrently takes a plurality of snapshots of a
first server at predetermined time intervals, wherein a first snapshot from the plurality of snapshots
forms a baseline for subsequent snapshots of the plurality of snapshots and the subsequent
snapshots capture changes against the baseline over time.
145. The system of claim 144, wherein the comparator recurrently takes a plurality of audits of a
live server at predetermined time intervals to track compliance against at least one of the baseline
snapshot and the reference model over time.
146. The system of claim 129, wherein the comparator compares live servers by:
6] comparing values of explicitly selected sever objects that are commonly shared
between a first live server and a second live server.
(i comparing values of implicitly selected sever objects that are implicitly specified in

the template.

N = W N = N = Bl WN = W= R WD =W N = N

WO 03/107178 o PCT/US03/17927

-55-

147. The system of claim 129, wherein the cottector further restores a previous configuration of
the second server from the reference model.
148. The system of claim 129 further comprising:

provisioning a newly-added third server on the netwotk in accordance with the reference
model.
149. The system of claim 129, wherein the cortecting step further

collects the discrepancies identified in a transaction package to execute a plurality of setver
change operations on the second server; and

synchronizing the second server with the reference model.
150. The system of claim 129 further comprising:

an updater for updating the reference model and

propagating the updates to the plurality of servers with a transaction package.
151. The system of claim 129 further compmising:

6] a first template categorizing each of the server objects into categories, sub-categories,
and associated keywords; and

(i) second templates including a selected group of categorically related server objects by
server type categoties.
152. The system of claim 151, wherein the categoties comprise server type categoties including at
least one of an application server category, a web server category, and a database server category.
153. The system of claim 151, wherein the categories comptise configuration parameter type
categories including at least one of network parameters, capacity parameters, availability parameters,
petformance parameters, and security parameters.
154. The system of claim 129, wherein the reference model comprises an externally imported

template.

PCT/US03/17927

WO 03/107178

1/14

I O

- ast ase
Xiv VSA
®
_ \ Q62
G uonen|ddy Jaylo
o
551 os | |2
xnun VSA ﬂ,,v\o \ sjinsay N
\\00///%0@\ v mmN
.o@/, o6 Jabeuep
acv eI < uoneinbyuon
FETNETS
[enuIA
< 50 ¥ Iled
— - my%\m% oenSqy
ast g5€ |a-ge™ —
suejos VSA 0/ vse
X/ weiboid puewwo)
g/g
&V\ %
/g
€
S— 0c
VST vse waysks ‘W
MZMWLIN VSA Juswabeuep
sJasn

ol
198N

PCT/US03/17927

WO 03/107178

2/14

GE
sjuaby

¢ OIA

IBNISS «
|enpiA o

or
Jspiwsues |

v
J0ydAoug

;

v
(ouqr)
Jojenue)su|

ov
JEYVEGEN

=

JSIQ IsnSg [BNUIA

ned
woalsAg
peldsqy

PCT/US03/17927

WO 03/107178

3/14

o€

&£ OIA

OSAOl «

I_I

99
(1oniag 10bie])
loynoax3y

¥9
6o ypny

| _—

29
loje|suel)

09
Jszuoyny

Jojeuosiaduw|

85

9G
Jaddepy
Ayuap)

€

[535;
Jaynusp)
Jesn

~

¥
10ydAiosg

|

2S5
1aynuap]
2031n0g

!

0S
SETNELEN

| o¢
DS/ wou

vSse |ummmmw\\\\

aby Jaalag |enpIp

|*|.

.. PCT/US03/17927

WO 03/107178

4/14

v OIA

ozv d31s” LA

a)enuelsu|

H

oLy da1s” A

l1eo wajsks
J0BIISqQY SAI909Y

00t daLs” LA

uonejussalday v apinoid

PCT/US03/17927

WO 03/107178

5/14

§ OIA

ozy deig Bunenuejsu) \

azy n_m.rm\/\

f s)insay uonnosxy
Buinieoey

|

ey n_m.rm\,,\

[lBD WaSAS joelSqQy
Buiwsues

it B EICAY

r Janiag 19bie] e Buifjnuap|

A

PCT/US03/17927

WO 03/107178

6/14

9 OIA

2l pleooyjsoy|eoo] Lzigieypal woo-oibojepelq eb | zigyeypal 1’00221 >

%[owap/o/ ZoHIHD@aI8p]
}SOY 20| Ulewo

PIBOO|'IS0Y|e00| ZZIGIeypal Wod o1Bojepe|q eb zziqyeypal 1'00°221 <

}SOY |eo0| utewo

€9¢
s}sou/0)e/ | ZIgieypal)/ SISOy ole/ | ZIqieupal// JIp Ylowap/o; ZoHIH@MIap]

ous iomioN FiSN

PCT/US03/17927

WO 03/107178

7/14

0}
OSAOL <«

L OIA

0cL
ydelo
Aouspuadaqg

/

01z
3|4 Jeyeweled

00
abexoed
uonoesuel]

Si.
uononJsu|

GO0Z sauu3 sji4
Byuoo 1o s34

<

ga6¢
1abeuepy uoneinbyuod

| o

gcl
108lo1g
onoesuel |
\

WO 03/107178

+

PCT/US03/17927
8/14
Check Prerequisite |7\ ~ STEP 800
v Configuration
Manager 25B
Check for
Sequence Information /\/ STEP 810
Ship to VSA /\/ STEP 815
viaVSC
3
VSA 35A
Substitute STEP 820
Parameters /\'/
Dry run /\/ STEP 825
P
o\ STEP 835
» Update Undo Log
Execute
Instructions /\/ STEP 840
if error) Eﬁ?w%li)te) UpdaLtggUndo

FIG. 8

PCT/US03/17927

WO 03/107178

9/14

6 OId

o¥6 d31S -~

suonelado
ajnoaxgy

06 d31S ~— |

Janieg yobie)
0} 9}e2Iunwwo)

026 d31S]

sanjeA Jejeweled
Aoadg

016 daLs -~

slanag Jobie]
Anusp

006 d31s -~

suoneladp sbuey)
Ayoads

PCT/US03/17927

WO 03/107178

10/14

01 ‘OIA

00Z
abexoed
uonoesuel |
ol
A
- J10jesedwo A [®PON - 5 ayedwsa |
10}931109))} 9] s0UBIa)eY J19plooay
0001
Jasmoug
0l
i|sn
as¢

JabBeueyy uoneinbyuo)

—

PCT/US03/17927

WO 03/107178

11/14

Il "OIA

G2l d3Ls — - oaliod
A
ocilbdals —) _~ asedwo)
SLLLd3als —) joysdeug
A
JSAID (o}
ObLL d3LS — - Homm%w_ °
J21lua
S0LL d3LS —) m“_mwu_
00i) d3LS — 7~ ssmo.g

PCT/US03/17927

WO 03/107178

12/14

cl OIAd

0sEl G¥El ovEL geel IR
Aunosg soueuLIouad Aupgejieay Aoede)n NIOMISN
Ve = ...o......... \\\\““\4
o/ ~ II:' - 7 N TN\ T g \\\\\\ /
NS e e] X </
;/ = ”....I . I A e \\
) /o N IV\I \\\\\ \\
N\ _ et B el Pt S \
/o\\\\\\\\\ S N \\
0ce GlLcl oLclL
18n19S 9d BTN =TSN T Janag ddy

0ccl GLelL oLci
Janeg | Jemag | Jenes

aa asm ddy
oocl
ajeldwa | < 0021
aleldwsa |

asz W

Jabeuepy uoijeinbyuo)

PCT/US03/17927

WO 03/107178

13/14

+

&1 °OIA

Ssoclt
ENEN]

slsjsweled sispweled slejoweled
Janes gq Janisg ddy 1oAI8S o
0G€E L Ajunoag - A A 2
G€ 1 sduewlopad Al Al P
ovel Allgeeay 4 1mI m s
GgegL Ayoede) 4 I ! q
0EE | SHOMIDN - I ! v
- JSICH
— 1] ¥4 (ayoedy)
00ccei AVINSG O9pIA
gq 100V lawojsn) /SS3IBIM
1sul9iu|
aa —e aotel —— gGicl
s[oelO mmomﬁ abeiayoiq OLEL (ayoedy)
HipelL BUIUO lIEM 211 dl4/d1IH
SETIE|
laneg p—
Tos-sw| Voeer YOIzt Amwv_mr
SoIes SSles Jauenu|
02z) sianeg ga 012} sieneg ddy

\T

S1Z1 SISAISS g3

oLel
[IeM Bl

00gL
IENIE)V]]

PCT/US03/17927

WO 03/107178

14/14

ocvl
/

"~

vl "OIA

(894 :591AU J0 JSQWNN) SIUB JO SUAVOD

[] !

_/ﬂf r UWOMOANNS "10-268801 _\.... J :

SMNNS TIEMMNNS ‘ISIMNNS NSIMNNG ISIMNNS NSIMNNS 10528801 |- :

JEIMNNS "WEIMNNS 10-72880} 5T
SMNNS NUPESMNNS IUPESMNNS 'WUSESMNNS “IAILMNNS 10-698804 47

1SPIPMNNS 10-5€880} ¥ m

ISIMNNS MSIMNNS v0-L7880} 4% !

NSIMNNS 10-5z8804 47| ;

NSSMNNS vo-ezesos 7| .a_”_n..w_m.o_mnﬁw "

ISIMNNS MSIMNNS 10-02880L ¥ nsouM g

UBLUMNNS 01-808801 -7 LSODZUM -] |]
NPABAANNS YPADMNNS PAIDMNNS 10-908804 ¥ o weisks & 09pL

EBUMNNS EIMNNS ‘ISIMNNS v0-L22801 T m%uﬂm_.mm E

" E3UMNNS TXSIMNNS WEIMNNS JSIMNNS 'NSIMNNG 20-5TL804 47 waisks o3 K5-& | | |
XIBIMNNG ISIMNNS ro-e22804 |} zuns @ H—p—— 0GVL

XEQIPMNNS ‘SEQPMNNS " To-riLs0s AT wns @ |
BLIMAMNNS ‘JUIMKAMNNS MAWMNNS HIMMNNS TUMMNNS * 51259804 7 wwuﬁuwu L 2! ovvl
: UIEIPMNNS 10609804 57| jossey W o \

XPOUIMNNS ‘MYGUMNNS 'YGUMNNS 10-808801 -7 eye10d @ B i 174 4%

1SEMANNS 70-695801 7 uorswa wiaise3 8 |

v A - Pt | I—— 4

uondusseq| 7 oWeN _ﬂo%o

ERE P BiewE xE T

Gi5H Si001 SUORYY MelA WP3 el

	Abstract
	Bibliographic
	Description
	Claims
	Drawings

