HOUSING AND SUPPORT FOR PILOT LIGHTS

Clyde F. Bobbins, Milwaukee, Wis., assignor to
Cutter-Hammer, Inc., Milwaukee, Wis., a corpora-
tion of Delaware

Application September 2, 1942, Serial No. 457,661

10 Claims. (Cl. 177—329)

This invention relates to improvements in hous-
ing and supports for pilot lights.

An object of the invention is to provide a pilot
light device which is interchangeable (with or
respect to mounting) with any one of a number of
known forms of manually operable switching de-
vices in a push button station or the like.

Another object is to provide a pilot light device
employing a plurality of elements which are
standard with respect to switches of the afore-
mentioned character, whereby mass production
of the common elements is made possible.

Another object is to provide a so-called heavy
duty pilot light device of extremely simple, rugged
and durable construction.

Another object is to provide simple means en-
abling use of the pilot light device either with or
without one or more resistor elements, accord-
ing to the voltage of the circuit or circuits with
which it is associated.

Another object is to provide a novel form of
substantially unbreakable lens for use with the
pilot light, said lens having means formed inte-
grally therewith to provide for direct but remov-
able attachment thereof to a suitable support.

Another object is to provide a novel form of
one-piece molded insulating base for a pilot light
device of the character herein contemplated.

Another object is to provide a pilot light device
adapted for either base mounting, one-hole
mounting or flush-plate mounting.

Another object is to provide novel and ex-
tremely simple forms of center and screw thread
contacts for proper support of the pilot lamp.

Another object is to provide novel and simple
means for rendering such a pilot light device sub-
stantially liquid-tight.

Another object is to provide novel means loc-
ated interiorly of the supporting panel or cover
member to afford adequate ventilation of the lamp
bulb.

Another object is to provide a novel form of
bushing to adapt the device for one-hole mount-
ing.

Other objects and advantages of the invention
will hereinafter appear.

The accompanying drawings illustrate certain
embodiments of the invention which will now be
described, it being understood that the embo-
diments illustrated are susceptible of modification
in respect of certain structural details thereof
without departing from the scope of the appended
claims.

In the drawings,

Figure 1 is a side elevational view of a so-called
heavy duty pilot light device of the one-hole
mounting, liquid-tight type, the supporting panel
or cover member, to which the device is remov-
able attached, being shown in dotted lines, and a
pair of resistors being employed.

Fig. 2 is a similar view, taken at a right angle
to that of Fig. 1.

Fig. 3 is a vertical sectional view, on the line
3—3 of Fig. 2.

Fig. 4 is a transverse section, between the insu-
lating base member and the adapter, on the line
4—4 of Fig. 1, the lamp bulb being omitted.

Fig. 5 is a transverse section, on the line 5—5
of Fig. 1, with the lamp bulb removed.

Fig. 6 is a view, partly in side elevation and
partly in vertical section, of the pilot light device
when base mounted, the parts being arranged to
provide for attachment of a single resistor.

Fig. 7 is a bottom plan view of the device shown
in Fig. 6.

Fig. 8 is a fragmentary view, partly in vertical
section and partly in side elevation, showing the
adaptability of the pilot light device to flush-plate
mounting; and

Fig. 9 is a view substantially like that of Fig. 4,
but showing one possible arrangement of the lamp
socket contacts and their associated terminals
with respect to the insulating base when no resis-
tor is required.

Referring first to the heavy duty pilot light
device shown in Figs. 1 to 5, the numeral 10 des-
nignates the one-piece base which is preferably
hot molded from any suitable insulating material,
such as "Bakelite." Base 10 is provided at its
upper end with a portion 10a of rectangular con-
tour, portion 10b being provided with an upwardly
opening substantially rectangular recess 10c (Figs. 3
and 4). Recess 10c is provided with a flat bot-
tom wall 10d. At diagonally opposite corners said
bottom wall 10d is provided with openings or
passages (not shown) to accommodate the shanks
of a pair of like securing screws, which I have
designated by the numerals 11 and 12 (Fig. 4).
At the other diagonally opposite corners of bot-
tom wall 10d a pair of integral fillets are provided,
said fillets having flat upper surfaces 10e and 10f
of triangular contour offset upwardly from said
bottom wall. Inasmuch as recess 10c is not of
square contour I prefer to provide at the corre-
sponding side of each triangular surface 10e and
10f an integral vertical shoulder 10g and 10h,
respectively.

As shown in Fig. 4, the purpose of shoulders
10g and 10h is to insure proper positioning within
recess 10c of a symmetrically formed punched
and stamped sheet metal member 13, upon seat-
ing of either surface of the triangular end por-
tion 13a thereof upon either of the ledges or sur-
faces 10e or 10f. Each ledge 10f and 10h is pro-
vided with an opening or passage (not shown)
to accommodate the shanks of like securing
screws 14 and 15, which are preferably substan-
tially longer than the aforementioned screws 11
and 12.

As shown in Fig. 4, screw 14 is employed to
secure member 18 in position. The main body portion of member 18 is preferably of rectangular contour, as illustrated; the same having a circular opening 18a formed therein which is adapted to be concentrically positioned with respect to a relatively larger circular opening 18b (Figs. 3 and 4) formed at the bottom wall 18c of said recess. Member 18 is preferably provided with a slot 18d which extends from the free end thereof to an opening 18f, thus providing a pair of arms 18g and 18h, the arm 18g being bent downwardly at a predetermined angle (from a line adjacent the inner edge of opening 18f) and the arm 18h being bent upwardly at a corresponding angle from said line. The peripheral edge of opening 18f is thus arranged in the form of a spiral or thread of predetermined pitch, whereby the same is adapted to accommodate the screw shell contact 19 of an electric lamp 16 of suitable size and capacity. In practice I prefer to employ a miniature lamp having a rating of 6 watts at 120 volts, although lamps of other capacities may, of course, be employed.

Two resistors 17 and 18, of like or different values, are employed in the device of Figs. 1 to 5, and I provide for attachment and support thereof by means associated with the pairs of screws 14, 12 and 11, 16 (Fig. 4). Thus the screw 14 is adapted to take into a tapped opening in a flat plate 18 (Figs. 1 and 5) which acts as a nut therefor. Plate 18 also acts as a clamp for the looped end of a wire 20, whose other end is welded, brazed or otherwise electrically and mechanically connected to the terminal 17 of resistor 17.

Wire 20 may be of relatively heavy single strand type, or, if of the multiple strand type, it is desirable to make the same sufficiently stiff to support one end of resistor 17 in a given position, regardless of the angle of mounting of the complete device.

The pilot light device herein contemplated is particularly adapted for association with switches of the character disclosed in my copending application, Serial No. 449,756, filed July 4, 1942. Accordingly, to minimize the number of different parts required to produce both the switches and the pilot lights, I prefer that the plate 18 shall be in the form of the plate 18 shown in Fig. 26, for instance, of said application, Serial No. 449,756, the contact tips 42 of said plates 86, of course, not being required for use in this pilot light device.

Similarly the screw 12 takes into the tapped opening (see Figs. 1 and 5) of a terminal plate 21, whose inner end acts as a clamp for the looped end of a wire 22; the other end of which wire is attached to the terminal 17 of resistor 17. Wires 20 and 22 thus act to support and position resistor 17 in the manner best illustrated in Figs. 1 and 5. The outer end 21a of terminal plate 21 is tapped to accommodate the shank of a binding screw 23 to provide for attachment of a circuit wire, it being noted that screw 23 is accessible exteriorly of the main body of base 18 (see Fig. 4). In practice the terminal plate 21 of Fig. 5) which acts as a clamp for the center contact member 25, whose other end is attached to the terminal 18g of resistor 18 (Fig. 4). Screw 18 takes into a tapped opening in one end of a terminal plate 21, which end acts to clamp the looped end of a wire 28 in position, the other end of which wire is attached to the terminal 18h of resistor 18 (Fig. 2). As shown the base 10 has perforated lateral projections 10a and 10b formed integrally therewith. Said projections 10a and 10b are preferably of the same shape and size as the projections 10c and 10d of base 28 in Fig. 5. Instead of said application, Serial No. 449,756, and provide a like function. Thus, as shown in Fig. 3 hereof, projections 10a and 10b are respectively provided with openings or passages to accommodate the shanks of the pair of bolts 28, 28 which act to secure base 10 and its associated parts to an adapter member 27, which is preferably a metal die casting. Member 27 may be, and preferably is, identical with the adapter member shown at 80 in Fig. 15 of said application, Serial No. 449,756. Thus, member 27 is provided with a relatively large circular opening, at least a portion of which is threaded to accommodate the externally threaded lower end portion of a hollow metal bushing 28, the relatively larger head portion of which is designated by numeral 28a. Said head 28a thus provides a shoulder 28b which is adapted to clampingly engage the upper surface of a panel or cover member 28, which is provided with an opening to accommodate said threaded lower end 28c of the bushing.

If the pilot light device is to be rendered substantially liquid-tight (or oil-tight) I prefer to interpose between the upper end of adapter 27 and the inner surface of panel 28 a gasket 30 of a shape corresponding to the contour of the upper surface of said adapter, said gasket preferably being punched from a sheet of "neoprene," or a similar synthetic rubber-like material which is highly resistant to penetration therethrough of, or deterioration thereof, by oil or grease. A perforated plate 31 is preferably interposed between shoulder 28a and the outer surface of panel 28, said plate having any desired legend engraved, embossed, printed or otherwise applied to the exposed surface portion 31a (Fig. 2) thereof. Plate 31 is provided with a downwardly bent lug which penetrates gasket 30 and panel 28 and engages the walls of one of the four recesses in the inner surface of plate 31. It is obvious from the foregoing that any oil or grease which may penetrate the opening in panel 28 is prevented by gasket 30 from passage to the exterior of adapter 27 or to the exterior of base 10. The threaded connection between bushing 28 and adapter 27 effectively prevents passage of oil or grease into the interior of the device.

When the device is attached to panel 28 by bushing 28, the lamp 18 may be inserted, or removed for replacement thereof, through the relatively large internally threaded upper end or head portion 28b of the bushing, either manually or by use of a suitable frictional gripping member (not shown).

As will be apparent from consideration of Fig. 3, the thread 32a in the head portion 28b of the bushing tapers exactly that in adapter 27, and the same is adapted to accommodate the externally threaded shank 32a (Fig. 3) of a molded, hollow lens member 32. Member 32 preferably consists of a synthetic thermoplastic material which is transparent, or at least highly translucent. For example, a thermoplastic material sold commercially under the trade name of "Lucite" is well adapted for this purpose. The dome or light-emitting portion of member 32 is
2,889,196

specially designed or shaped as illustrated to insure a large degree of visibility of the same when viewed against a dark background, with the objects upon which illumination of the lamp bulb. A peripheral portion of member 22 is preferably milled exteriorly as shown at 32 to facilitate manual insertion and tightening thereof.

The head portion 28 of bushing 25 is likewise peripherally milled, as shown, for a similar purpose.

As aforesaid the lateral projections 10 and 15 are extended downwardly to a degree corresponding to the length of the switch base shown at 35 in Fig. 1 of said application, Serial No. 449,756. The primary purpose of this arrangement is to provide for base mounting of the pilot light device, if desired, as shown hereinafter in Fig. 6. Additionally, however, said projections serve as proper barriers or spacers between the resistors 11 and 18 when employed, as shown in Figs. 1 and 2.

Also as shown in Figs. 1 and 3, projections 16 and 18 are integrally connected by a strut or reinforcement 19, of the thickness indicated by the upward extensions of said strut shown at 34 in Figs. 1, 3 and 5, and of the length shown in Fig. 4. The portion of strut 18 is enlarged to approximately cylindrical contour, as indicated at 20 in Fig. 1, said enlargement having an opening or passage of circular cross section extending therethrough, as shown at 19 in Fig. 3.

As best illustrated in Figs. 1, 2 and 3, relatively large spaces or openings are provided between base 10 and adapter 21, and in base 10 below and around the lamp bulb 18, so that adequate ventilation for the latter is provided at the rear of panel 28, notwithstanding the aforesaid liquid-tight connection between the device as a unit and said panel. The passage 18 is adapted to accommodate and position the lower end of a brass or other suitable metal stud (not shown), an intermediate threaded portion of which is clamped by opposed nuts to a specially perforated form (not shown) of substantially annular upper surface of said adapter. Annular sheet metal ring 33 may be attached to the outer surface of panel 31 as by means of a pair of bolts 34, 35 the threaded shanks of which take into suitable tapped openings in said panel 36, the heads of which bolts are located in countersinks or recesses in the upper surface of adapter 27. It is to be noted that when in the adapter 27 as shown in Fig. 3 the passages which communicate with recesses 27a and 27b are threaded for cooperation with the shanks of bolts 25, 26, in the adapter of Fig. 6 such passages are made sufficiently large to provide sliding clearance for the shanks of bolts 25, 26, for an obvious purpose.

As shown in Fig. 6 the outer panel or cover member shown in dotted lines at 37 is provided with a circular opening 31a to rather closely fit about the annular extension 21a on adapter 27, whereby panel 37 is adapted to seat against the substantial annular upper surface of said adapter. Annular sheet metal ring 33 may be attached to the outer surface of panel 31 as by means of a pair of drive screws 39, 39, whose shanks penetrate suitable clearance openings formed in ring 33 and act to form threads in the walls of drilled openings of suitable size formed in said panel 37. Ring 33 may have any suitable legible or indelible printed or otherwise applied to its outer or exposed surface. As will be noted, in the device of Fig. 6 the lens 32 is adapted to be threadedly attached directly to the internally threaded upper end of the passage through adapter 27.

In Fig. 6 the base 10 with its associated parts is attached by the bolts 25, 26 to the inner surface of a flush plate 30, said flush plate having a passage 30 extending therethrough to accommodate the upper end of lamp 16, and the reduced upper end portion of said passage being threaded, as shown at 39a to receive the threaded lower end portion 32a of lens 32. An annular sheet metal plate 40 is attached to the upper surface of plate 38, as by means of drive screws 41, 41, which penetrate suitable clearance openings in plate 40 and are adapted for formation of cooperating threads upon the walls of drilled recesses shown at 39b and 39c.

Flush plate 30 is provided with a flat peripheral flange portion 38b, between which and a panel 42 an oil-tightening gasket 43 is interposed. Gasket 43 preferably is punched to the desired rectan-
gular contour from a sheet of synthetic rubber-like material, such as "neoprene." The peripheral flange 39 is preferably provided along each of the four sides thereof with a plurality of openings which register with corresponding openings in gasket 42, and with tapped openings in panel 42 which cooperate with the shanks of securing screws, two of which are shown at 44, 44 in Fig. 8. As will be apparent, the lens 32 coats with the threaded opening or passage through flush plate 33 to provide an oil-tight connection between said parts, whereas gasket 43 coats with flush plate 33 and panel 42 to provide an oil-tight connection therebetween.

In Fig. 9 I have shown base 10 with the center contact member 13 attached thereto through the medium of screw 11 and a terminal plate 21, with a tapped opening in which the shank of screw 11 is adapted to engage. Similarly the head of screw 14 is adapted to clamp the screw-thread contact member 13 in the position illustrated, the shank of screw 14 taking into a tapped opening in a terminal plate 21 at the right-hand side of base 10. The arrangement illustrated provides a circuit through the pilot lamp (16 in the other figures) when no resistor (such as 17 or 18, of course) is inserted in the circuit. The arrangement illustrated the binding screws 23, 23 are accessible at the points illustrated. It is obvious, however, that if desired the groups of elements 11, 33 and 21 and 14, 13, and 21 may be transposed to diagonally opposite points, with respect to those illustrated, or either group only may be so transposed. Any desired arrangement of the pair of binding screws 23, 23 may thus be provided (to facilitate wiring in a particular installation, without in anywise affecting the electrical characteristics of the complete device. As will be understood the base 10, with its associated parts in Fig. 9 may be associated with other elements to provide for either one-hole mounting, base mounting, or flush plate mounting, as disclosed in the various other figures of the drawings.

Also, with reference to Fig. 7, it is to be understood that an equivalent result may be obtained by substituting for the right-hand plate shown in dotted lines at 19 a terminal plate 21, thus obviating the necessity for use of said plate 19 and the wire or bus member 34, the disadvantage (from a wiring viewpoint) of having the binding screws 23, 23 located at diagonally opposite corners of base 10 being relatively slight. Various other modifications and rearrangements of the parts of the devices will at once suggest themselves to those skilled in the art.

Referring again to Fig. 6, it will be noted that fiber or laminated paper washers 45, 46 are preferably employed for cooperation with the threaded shanks of bolts 38, 38 to provide for temporary retention of adapter 21 and base 10 in assembled relationship to each other prior to attachment of the unit to panel 35.

I claim:

1. A pilot light device, in combination, a one-piece molded insulating base having a relatively large substantially rectangular recess opening to the upper surface thereof, the bottom wall of said recess having a relatively smaller substantially circular opening formed therein, said opening providing downward clearance for the center and screw shell contacts of a lamp, a flat, punched sheet metal center socket contact member secured to said base and underlying the bottom wall of said recess and having a free end portion thereof aligned with said opening, a second punched sheet metal contact member insertable downwardly into and positioned within said recess in upwardly offset relation to the bottom wall of said recess having portions thereof projecting a substantial distance laterally beyond and at right angles to the respective side walls of said recess to facilitate wiring of the device, each of said terminal members being electrically connected with one of said contact members.

2. In a pilot light device, in combination, a one-piece molded insulating base having a relatively large substantially rectangular recess opening to the upper surface thereof, the bottom wall of said recess having a relatively smaller substantially circular opening formed therein, said opening providing downward clearance for the center and screw shell contacts of a lamp, a flat, punched sheet metal center socket contact member secured to said base and underlying the bottom wall of said recess and having a free end portion thereof aligned with said opening, a second punched sheet metal contact member insertable downwardly into and positioned within said recess in upwardly offset relation to the bottom wall of the latter, said second contact member having a portion thereof aligned with said opening and formed to accommodate the screw shell contact of a lamp, and a pair of terminal members secured to and also underlying the bottom wall of said recess and having portions thereof projecting a substantial distance laterally beyond and at right angles to the respective side walls of said recess to facilitate wiring of the device, each of said terminal members being electrically connected with one of said contact members.

3. In a pilot light device, in combination, a one-piece molded insulating base having a recess opening to the upper surface thereof, the bottom wall of said recess having an opening formed therein, said opening providing clearance for the center and screw shell contacts of a lamp, a flat, punched sheet metal center socket contact member secured to said base and underlying the bottom wall of said recess and having a free end portion thereof aligned with said opening, a second punched sheet metal contact member positioned within said recess in upwardly offset relation to the bottom wall of said recess, said second contact member having a portion thereof aligned with said opening and formed to accommodate the screw shell contact of a lamp, a pair of terminal members secured to the bottom wall of said recess and having portions thereof projecting laterally beyond the side walls of said recess to facilitate top or bottom wiring of the
device, each of said terminal members being electrically connected with one of said contact members, a die-cast metal member to the lower end of said insulating base is removably secured, said metal member having a threaded opening formed therein, a hollow metal bushing having a reduced and threaded lower end portion adapted for cooperative engagement with said threaded opening, a panel adapted to said metal member and having an opening to provide clearance for the lower end of said bushing, the relatively large upper end of said bushing having an annular shoulder overlying said panel to provide for one-hole mounting of said pilot light device as a unit with respect thereto on a given adjustment of said bushing, said enlarged upper end of the bushing having an internal thread of a diameter corresponding to that of said metal member, and a molded hollow dome-shaped lens of highly translucent substantially unbreakable material having an externally threaded lower end portion for cooperative engagement with the internal thread on said bushing.

4. In a pilot light device, in combination, a one-piece molded insulating base having a recess opening to the upper surface thereof, the bottom wall of said recess having an opening formed therein, said opening providing clearance for the center and screw shell contacts of a lamp, a flat, punched sheet metal center socket contact member secured to said base and underlying the bottom wall of said recess and having a free end portion thereof aligned with said opening, a second punched sheet metal contact member insertable downwardly into and positioned within said recess to facilitate top wiring of the device, each of said terminal members being electrically connected to and also underlying the bottom wall of said recess and having portions thereof projecting a substantially distance laterally beyond the right angles to the respective side walls of said recess to provide for base mounting of said pilot light device.

5. In a pilot light device, in combination, a one-piece molded insulating base having a recess opening to the upper surface thereof, the bottom wall of said recess having an opening formed therein, said opening providing downward clearance for the center and screw shell contacts of a lamp, a flat, punched sheet metal center socket contact member secured to said base and underlying the bottom wall of said recess and having a free end portion thereof aligned with said opening, a second punched sheet metal contact member insertable downwardly into and positioned within said recess in upwardly offset relation to the bottom wall of the latter, said second contact member having a portion thereof aligned with said opening and formed to accommodate the screw shell contact of a lamp, a pair of terminal members secured to the bottom wall of said recess and having portions thereof projecting laterally beyond the side walls of said recess to facilitate top or bottom wiring of the device, each of said terminal members being electrically connected with one of said contact members, a die-cast metal member to the lower end of which said insulating base is removably secured, said metal member having a threaded opening formed therein, a hollow metal bushing having a reduced and threaded lower end portion adapted for cooperative engagement with said threaded opening, a panel adapted to overlie said metal member and having an opening to provide clearance for the lower end of said bushing, a molded hollow dome-shaped lens of highly translucent substantially unbreakable material having an externally threaded lower end portion for cooperative engagement with the internal thread on said bushing, said engagement between said lens and said bushing being substantially liquid-tight.

6. In a pilot light device, in combination, a one-piece molded insulating base having a recess opening to the upper surface thereof, the bottom wall of said recess having an opening formed therein, said opening providing clearance for the center and screw shell contacts of a lamp, a flat, punched sheet metal center socket contact member secured to said base and underlying the bottom wall of said recess and having a free end portion thereof aligned with said opening, a second punched sheet metal contact member insertable downwardly into and positioned within said recess to facilitate top wiring of the device, each of said terminal members being electrically connected to and also underlying the bottom wall of said recess and having portions thereof projecting a substantially distance laterally beyond the right angles to the respective side walls of said recess to provide for base mounting of said pilot light device.
member secured to said base and underlaying the bottom wall of said recess and having a free end portion thereof aligned with said opening, a second punched sheet metal contact member positioned within said recess in upwardly offset relation to the bottom wall of the latter, said second contact member having a portion thereof aligned with said opening and formed to accommodate the screw shell contact of a lamp, a pair of terminal members secured to the bottom wall of said recess and having portions thereof projecting laterally beyond the side walls of said recess to facilitate top wiring of the device, each of said terminal members being electrically connected with one of said contact members, said base having a pair of integral lateral projections extending like distances above and below the side walls of said recess, a metal member overlying said insulating base, said metal member and said projections having aligned passages formed therein, a pair of headed bolts the shanks of which are positioned within said passages, the passages in said metal member being tapped, the threaded shanks of said bolts being adapted to cooperatively engage said tapped passages to retain said base and said metal member in assembled relation, said metal member having a relatively large centrally located threaded opening formed therein, and a shouldered hollow metal bushing having an externally threaded lower end engageable with said threaded opening to provide for one-hole mounting of said device to a perforated panel or the like.

8. In a pilot light device, in combination, a molded insulating base having a relatively large substantially rectangular recess opening to the upper surface thereof, the bottom wall of said recess having a substantially circular recess formed therein to provide downward clearance for the center and screw shell contacts of a lamp, the bottom wall of said first mentioned recess having a pair of integral ledges formed thereon at diagonally opposite corners thereof, a punched and stamped sheet metal socket contact member having one end thereof seated upon one of said ledges and removably attached thereto, said member having a substantially circular opening formed therein adjacent to the other end thereof, said member having a slot formed therein and extending from said last mentioned end to said opening to provide for a pair of arms, said arms being respectively bent in opposite directions from the initial plane thereof to deform the peripheral edge of said opening into the form of a spiral to accommodate the screw-shell contact of an electric lamp, a center socket contact comprising a flat, punched sheet metal member underlaying the bottom wall of said first mentioned recess and removably secured thereto, the free end portion of said last mentioned contact being aligned with said opening for cooperation with the center contact of a lamp, a pair of wire terminal members also underlaying the bottom wall of said recess and projecting laterally beyond to facilitate attachment of circuit wires, each of said wiring terminal members being electrically connected with one of said socket contacts, a die-cast metal member superimposed upon said base and removably attached to the latter, said die-cast member having an opening formed therein to accommodate a lamp bulb, and means including an externally threaded hollow metal bushing associated with said die-cast member and adapted to provide for one-hole mounting thereof to a suitable support.

10. In a pilot light device, in combination, a one-piece molded insulating base having a relatively large recess opening to the upper surface thereof, the bottom wall of said recess having an opening formed therein, said opening providing downward clearance for the center and screw shell contacts of a lamp, a flat, punched sheet metal center socket contact member secured to said base and underlaying the bottom wall of said recess and having a free end portion thereof aligned with said opening, a second punched sheet metal contact member having a substantially circular opening formed therein aligned with said opening for cooperation with the center contact of a lamp, a pair of wire terminal members being electrically connected with one of said contact members, and means associated with said base to alternatively provide for base mounting or one-hole mounting of the device as a unit to a suitable support, said means comprising a perforated die-cast metal member superimposed upon said base, a pair of perforated legs formed integrally with said base and projecting downwardly a substantial distance therefrom, and a pair of bolts the shanks of which are positioned within the perforations in said metal member and said legs.

CLYDE F. ROBBINS.