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(57) ABSTRACT 

A configurable logic block (CLB) having a plurality of 
identical configurable logic element (CLE) slices is pro 
vided. Each CLE slice includes a plurality of function 
generators (lookup tables) that can be configured to form a 
random access memory (RAM). The width and depth of the 
RAM are selectable by controlling the routing of signals 
within the CLE slices. A hierarchy of wide function multi 
plexers (F5, F6, and F7 multiplexers) are provided to 
selectively route read data values from the lookup tables. 
Another set of multiplexers is used to selectively route write 
data values to the lookup tables. These multiplexers can be 
configured to provide a single write data value to all of the 
lookup tables to form a deep RAM. Alternatively, these 
multiplexers can be configured to provide one write data 
value to half of the lookup tables, and another write data 
value to the other half of the lookup tables. This pattern 
repeats down to the level where these multiplexers can be 
configured to provide a different write data value to each of 
the lookup tables. A write control circuit is also provided in 
each CLE slice to provide write enable signals to the lookup 
tables in a manner consistent with the selected RAM size. 
Read and write addresses are provided in a manner that 
enables the CLB to be operated as a dual-port RAM having 
selectable width and depth. 

12 Claims, 20 Drawing Sheets 
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FPGAARCHITECTURE WITH IDUAL-PORT 
DEEP LOOK-UP TABLE RAMS 

RELATED APPLICATIONS 

This application is a continuation-in-part of U.S. patent 
application Ser, No. X-275-1P) 09/253,313 filed Feb. 18, 
1999 which is a continuation in part of U.S. patent appli 
cation Ser. No. 08/754,421 filed Nov. 22, 1996 now U.S. 
Pat. No. 5.889,413 content of which is incorporated herein 
by reference. 

FIELD OF THE INVENTION 

The present invention relates to an architecture for 
enabling random access memory (RAM) structures in con 
figurable logic blocks (CLBs) of a field programmable gate 
array (FPGA). 

BACKGROUND OF THE INVENTION 

Xilinx, Inc. the assignee of the present application, manu 
factures FPGAs, the complexity of which continues to 
increase. Freeman in U.S. Pat. No. Reissue 34,363, incor 
porated herein by reference, which is a re-issue of original 
U.S. Pat. No. 4,870,302, describes the first FPGA. An FPGA 
is an integrated circuit chip which includes a plurality of 
programmable input/output pads, a plurality of configurable 
logic elements, and a programmable interconnect structure 
for interconnecting the plurality of logic elements and pads. 
Each logic element implements a logic function of the n 
inputs to the logic element according to how the logic 
element has been configured. Logic functions may use all n 
inputs to the logic element or may use only a subset thereof. 
A few of the possible logic functions that a logic element can 
be configured to implement are: AND, OR, XOR, NAND, 
NOR, XNOR and mixed combinations of these functions. 
One disclosed implementation of the logic element 

includes a configurable lookup table which is internal to the 
logic element and which includes 2" individual memory 
cells, where n is the number of input signals the lookup table 
can handle. At configuration, in this architecture a bitstream 
programs the individual memory cells of the lookup table 
with a desired function by writing the truth table of the 
desired function to the individual memory cells. Although 
the programming is described as being performed serially, 
other techniques for parallel programming are also known. 
One memory cell architecture appropriate for use in the 

lookup tables is shown in FIG. 1 and described by Hsieh in 
U.S. Pat. No. 4,821,233, incorporated herein by reference. A 
memory cell of this architecture is programmed by applying 
the value to be written to the memory cell on the data input 
line, "Data," and strobing the corresponding address line, 
"ADDR." Further, although this architecture uses five 
transistors, other known configurations, e.g., six transistor 
static memory cells, also are appropriate choices for imple 
menting the memory cells of the lookup table. As shown in 
FIG. 1, inverter 726 may be included to increase the drive of 
memory cell 700, and avoid effecting the value stored in 
memory cell 700 unintentionally via charge sharing with the 
read decoder. 

After configuration, to use a lookup table, the input lines 
of the configured logic element act as address lines which 
select a corresponding memory cell in the lookup table. For 
example, a logic element configured to implement a two 
input NAND gate would output the corresponding value 
{1,1,1,0} contained in the one of the four memory cells 
corresponding to the current input pair {00, 01, 10, 11}, 
respectively. 
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2 
This selection is performed by a decoding multiplexer 

which selects a memory cell from the lookup table on the 
basis of the logic levels of the input lines. A block diagram 
of an exemplary four-input lookup table composed of 16 
memory cells 700 through 700 and a decoding multi 
plexer 200 is shown in FIG. 2. The multiplexer propagates 
a value stored in one of the memory cells 700-700 of the 
lookup table to an output X of the lookup table as selected 
by the four input signals F0-F3. 

FIG. 3 is a schematic diagram of another embodiment of 
a lookup table. In this embodiment, the lookup table is 
implemented using four memory cells 700-700 and a 
two-input decoding multiplexer 200 with two input signals, 
F0 and F1. The two-input decoding multiplexer 200 is 
shown in detail as being implemented by a hierarchy of pass 
transistors which propagate the value stored in the selected 
memory cell to the output X of the logic element. In FIG. 3, 
the memory cells may be implemented as shown in FIG. 1. 
The above architecture was later augmented to enhance 

the functionality of the lookup tables. U.S. Pat. No. 5,343, 
406 to Freeman et al., incorporated herein by reference, 
describes how additional circuitry can enable lookup tables 
to behave as random access memories (RAMs) which can be 
both read and written after configuration of the logic device. 
When the option of allowing the user to write data to 
memory cells is available, there also must be provision for 
entering the user's data into these memory cells and reading 
from the memory cells. This capability is provided by 
including two means for accessing each dual function 
memory cell, one which is used to supply the configuration 
bitstream from off the chip, and another which is used during 
operation to storevalues from signals that are routed from 
the interconnect Lines of the FPGA, FIG. 4 shows the 
memory cell architecture described in U.S. Pat. No. 5,343, 
406 which allows memory cell 750 to be programmed both 
during and after configuration. During configuration, 
memory cell 750 is programmed using the same process for 
programming the memory cell of FIG. 1. 

After configuration, memory cell 750 is programmed 
differently. A value to be written to memory cell 750 is 
applied through the interconnect structure of the FPGA to 
the second data line 705, and then the corresponding write 
strobe line WS for the memory cell is pulsed. This pulse 
latches the value online 705 into memory cell 750. Like the 
lookup table of FIG. 2 which uses a series of memory cells 
from FIG. 1, a series of memory cells from FIG. 4 are 
combinable into a lookup table. 

FIG. 5 is a block diagram showing a four-input lookup 
table with synchronous write capability. There is a write 
strobe generator 504 which receives a clock signal, CK, and 
a write enable signal, WE, and creates a single write strobe 
signal, WS, for the lookup table. To write a value to a desired 
memory cell, say 750s, the value is applied on line D and 
the address of the desired memory cell 750s is applied to the 
input lines F0-F3 of demultiplexer 500. The value then is 
latched into the desired memory cell 750 by pulsing the 
write strobe. Conversely, to read a value stored in a different 
desired memory cell 750, the address of the memory cell 
750 is applied to the input lines F0-F3 of decoding mul 
tiplexer 200 (without pulsing the write strobe), as was 
described with reference to FIGS. 2 and 3. 

FIG. 6 is a schematic illustration of a two-input lookup 
table with synchronous write capability. FIG. 6 includes four 
memory cells 750, through 750. Detail of demultiplexer 
500 and multiplexer 200 is shown in FIG. 6. 
The implementation and operation of other logic array 

devices are described in "The Programmable Logic Data 
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Book," pages 4-1 to 4-372, copyright 1996 by Xilinx, 
available from Xilinx, Inc., 2100 Logic Drive, San Jose, 
Calif. 95124. This portion of "The Programmable Logic 
Data Book' is incorporated herein by reference. 
Because a 4-input lookup table is only capable of storing 

16-bits of data, it would be desirable to have an architecture 
that enables a plurality of lookup tables to be combined to 
from larger random access memories (RAMs) of selectable 
sizes. It would also be desirable if this architecture would 
enable dual-port RAMs of selectable sizes. It would further 
be desirable if this architecture did not significantly increase 
the complexity of the configurable logic elements (CLEs) in 
the FPGA. 
One or more 4-input lookup tables, such as those illus 

trated in FIGS. 2 and 5, are typically used to implement 
combinatorial function generators in a configuration logic 
element (CLE). Some CLEs include a function generator to 
select between the outputs of two 4-input lookup tables in 
order to enable the CLE to implement any 5-input function. 
One such CLE, implemented in the Xilinx XC4000-Series 
FPGAs, is described in pages 4-1 through 4-23 of the 
Xilinx 1996 Data Book entitled "The Programmable Logic 
Data Book", available front Xilinx, Inc., 2100 Logic Drive, 
San Jose, Calif. 95224. The function generator can be 
replaced by a 2-to-f multiplexer, with a signal selecting 
between the outputs of the two 4-input lookup tables, as 
disclosed in U.S. Pat. No. 5,349,250 entitled "Logic Struc 
ture and Circuit for Fast Carry" by Bernard J. New. Replac 
ing the function generator with a 2-to-1 multiplexer still 
provides any function of up to five inputs and reduces the 
silicon area required to implement a the function generator. 
An FPGA using two 4-input lookup tables and a 2-to-1 
multiplexer to implement a five input function generator is 
the XC5200TM family of products from Xilinx, Inc. The 
XC5200 CLE is described in pages 4-188 through 4-190 of 
the Xilinx 1996 Data Book. 
A configurable logic block (CLB) capable of generating 

6-input functions is described as implemented in the VIR 
TEXTM FPGAs from Xilinx Inc. This CLB includes two 
CLE slices, and is described in "The Programmable Logic 
Data Book 1999" pages 3-1 to 3-60, copyright 1999 by 
Xilinx, available from Xilinx, Inc., 2100 Logic Drive, San 
Jose, Calif. 95.24. 

It would be desirable to have a CLE structure that is 
capable of efficiently implementing functions larger than 
6-input functions. It would further be desirable if this CLE 
structure is easily expandable, without significantly increas 
ing the complexity of the CLE structure. 

SUMMARY OF THE INVENTION 

The present invention provides means and method for 
programming a configurable logic element so that the logic 
element can implement any one of a shift register and a 
combinatorial logic function using a lookup table. In one 
embodiment, the invention further provides for implement 
ing a random access memory in this same logic element. The 
lookup table includes a plurality of memory cells which are 
connected in series so that an output of a first memory cell 
is configurable as an input to a second memory cell of the 
same lookup table. Further, by connecting shift registers of 
plural logic elements in series, larger shift registers can be 
built from smaller shift registers. Previous architectures built 
n-bit shift registers out of n flip flops connected in series, 
thereby wasting interconnect resources and logic while 
achieving mediocre performance. 

In one mode, the memory cells which store the lookup 
table values are used as registers in a shift chain. When the 
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4 
logic element is in shift register mode, the Data-in value is 
shifted into the first cell and the value in each memory cell 
is, shifted to the next cell. When the logic element is in 
random access memory mode, the Data-in value is written to 
a cell addressed by F3-F0, as discussed above. When the 
logic element is in pure lookup table mode, no value can be 
written after configuration and the logic element continues 
to generate the function loaded in during configuration. 

According to another aspect of the invention, shift regis 
ters formed in a single lookup table can be cascaded together 
through cascade multiplexers to form larger shift registers. 
Each cascade multiplexer receives two input signals, the 
output signal from the last memory cell in a previous lookup 
table, and an input signal from the interconnect :structure (or 
other selectable source). The output signal from the cascade 
multiplexer provides the input signal to the first memory cell 
in the next lookup table. 

According to yet another aspect of the invention, a 
hierarchy of multiplexers is provided to generate functions 
of more inputs than the lookup table can handle. For 
example, a lookup table having 16 memory cells can gen 
erate functions of four input signals. By combining the 
outputs of two lookup tables in a multiplexer (FS) controlled 
by a fifth input signal, any function of five input signals can 
be generated. Using a sixth signal to select between the 
outputs of two such FS multiplexers allows any function of 
six input signals to be generated, and so forth. In one 
embodiment, a configurable logic block (CLB) includes four 
slices, each having two four-input lookup tables (a total of 
eight lookup tables). The multiplexer hierarchy allows for all 
functions of eight input signals to be generated by selecting 
the output signal of one of the 16 lookup tables in a pair of 
CLBs. In addition to the eight lookup tables that generate 
functions of four input signals, the CLB includes four F5 
multiplexers, where each FS multiplexer receives input 
signals from two lookup tables and can generate all func 
tions of give input signals when the two lookup tables 
receive the same four input signals and the FS multiplexer is 
controlled by the fifth input signal. The CLB also includes 
two F6 multiplexers where each F6 multiplexer receives 
input signals from two of the F5 multiplexers. The CLB 
further includes an F7 multiplexer which receives the two F6 
signals. The CLB also includes an F8 multiplexer which 
receives the F7 multiplexer output signal and an F7 multi 
plexer output signal from an adjacent CLB. 

In one embodiment, this hierarchy of eight multiplexers is 
controlled by the same lines that provide shift register input 
signals. In this embodiment, the eight lookup tables are 
paired into 4 slices so that the downstream lookup table in 
each slice receives a shift register input signal on the line 
that also controls the F5 multiplexer for the slice. The 
upstream lookup table of the slice receives a shift register 
input signal on the line that controls an F6, F7 or F8 
multiplexer. This arrangement is advantageous because the 
structure can be configured as a variable length shift register, 
where the line carrying the most upstream signal is used for 
loading shift register data and the more downstream lines all 
control multiplexers. 

In accordance with another embodiment of the present 
invention, the plurality of function generators (lookup 
tables) present in the CLB are configured to form a random 
access memory (RAM). The width and depth of the RAM 
are selectable by controlling the routing of signals within the 
CLE slices. The hierarchy of multiplexers (e.g., the F5, F6, 
F7 multiplexers) are used to selectively route read data 
values from the lookup tables. 

Another set of multiplexers is used to selectively route 
write data values to the lookup tables. These multiplexers 
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can be configured to provide a single write data value to all 
of the lookup tables to form a deep RAM. Alternatively, 
these multiplexers can be configured to provide one write 
data value to half of the lookup tables, and another write data 
value to the other half of the lookup tables. This pattern 
repeats down to the level where these multiplexers can be 
configured to provide a different write data value to each of 
the lookup tables. Advantageously, each of the CLE slices 
includes the same multiplexer pattern, and each lookup table 
is accompanied by a corresponding multiplexer. 
A write control circuit is also provided in each CLE slice 

to provide write enable signals to the lookup tables in the 
CLE slice. Each write control circuit generates the write 
enable signals in response to a plurality of write control 
signals received from various CLE slices. This advanta 
geously enables the generation of many different patterns of 
write enable signals. Advantageously, each of the CLE slices 
includes an identical write control circuit. 

Dedicated routing resources are provided to enable read 
and write addresses to be provided to the CLE slices in a 
manner that enables the CLB to be operated as a dual-port 
RAM having selectable width and depth. 
The present invention will be more fully understood in 

view of the following description and drawings. 
BRIEF DESCRIPTION OF THE DRAWINGS 

FIG. 1 is a schematic illustration of a first prior art 
memory cell architecture used in lookup tables in FPGAs 
where a value of the memory cell is stored during configu 
ration. 

FIG. 2 is a block diagram of a prior art programmable 
4-input look-up table implemented by a sixteen-to-one 
decoding multiplexer and a series of sixteen memory cells. 

FIG. 3 is an expanded view of a schematic illustration of 
a prior art two-input lookup table and a decoding multi 
plexer implemented by a hierarchy of pass gates. 

FIG. 4 is a schematic illustration of a second prior art 
memory cell architecture used in lookup tables where the 
value of the memory cell is stored at configuration and 
remains dynamically readable and writable after configura 
On. 

FIG. 5 is a block diagram of a prior art logic element that 
is configurable to implement either a sixteen-by-one random 
access memory or a four-input lookup table. 

FIG. 6 is a schematic illustration of a prior art logic 
element that is configurable to implement either a four-bit 
random access memory or a two-input lookup table. 

FIG. 7 is a schematic illustration of a memory cell 
architecture according to the present invention which can 
alternatively be configured as a shift register or a lookup 
table. 

FIGS. 7A and 7B are waveform diagrams showing non 
overlapping signals Phil and Phi2 which cause a bit value to 
shift from a preceding memory cell into the current memory 
cell when Phi2 is asserted. 

FIG. 8 is a block diagram of a logic element according to 
the invention that can implement either a four-input lookup 
table or a 16-bit shift register. 

FIG. 9 is a circuit diagram of a logic element according 
to the invention that can implement either a 2-input lookup 
table or a 4-bit shift register, where the mode of the logic 
element controls the operation of the control logic, and may 
be stored in configuration memory. 

FIG. 10 is a schematic illustration of a memory cell for 
implementing any of a lookup table, a shift register, or a 
RAM. 
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FIG. 11 is a block diagram of a logic element that is 

configurable to implement any one of a four-input lookup 
table, a sixteen-bit shift register, and a sixteen-bit random 
access memory. $ 

FIG. 12 is a schematic diagram of a logic element 
according to the present invention that is configurable to 
implement any one of a two-input lookup table, a four-bit 
shift register, and a four-bit random access memory. 

FIG. 13 comprising FIGS. 13A through 13H shows wave 
form diagrams of the operation of the logic element when 
configured in shift-register mode. 

FIG. 14 is a block diagram of a logic element which 
includes both a shift register and a flip-flop. 

FIG. 15 is a block diagram of an FPGA. 
FIG. 16 shows a 64-bit variable length shift register 

formed by combining structures such as shown in FIG. 8. 
FIG. 17 shows a 64-bit variable length shift register 

formed using an architecture with an advantageous modifi 
cation to the structure of FIG. 8. 

FIG. 18 shows a logic slice structure from which the 
64-bit variable length shift register of FIG. 17 can be 
formed. 

FIG. 19 shows a layout of wiring for cascading adjacent 
lookup table slices by which interiors of adjacent lookup 
table slices can be identically laid out. 

FIG. 20 shows more detail of the structure of FIG. 19, 
illustrating the lookup table structures. 

FIG. 21 is a schematic diagram of a CLE slice S0 in 
accordance with one embodiment of the present invention. 

FIG. 22 is a block diagram illustrating a CLB that 
includes four CLE slices S0-S3, each of which is identical 
to the CLE slice S0 of FIG. 21. 

FIG. 23 is a block diagram of a CLB in accordance with 
another embodiment of the present invention. 

FIG. 24 is a block diagram of a CLB in accordance with 
yet another embodiment of the present invention. 

FIG.25 is a block diagram illustrating selected multiplex 
ers in the CLE slice of FIG. 21, as well as the associated 
function generators. 

FIG. 26 is a circuit diagram of the write control circuit of 
the CLE slice of FIG. 21 in accordance with one embodi 
ment of the present invention. 
FIG. 27 is a block diagram illustrating the write control 

circuits in the CLE slices of FIG.22 in accordance with one 
embodiment of the present invention. 

FIG. 28 is a block diagram illustrating the routing of the 
address signals to the function generators in the CLE slices 
of FIG. 22. 

DETAILED DESCRIPTION 
With an increase in logic gate density, a shift register can 

now be implemented as one element of a larger user 
configurable integrated circuit logic array. In a first embodi 
ment of the present invention, a logic element is config 
urable to implement both an n-bit shift register and a (log 
n)-input lookup table. FIG. 7 shows a schematic illustration 
of a memory cell 770 of the logic element architecture 
according to the present invention which, when configured 
to be in shift register mode, advantageously enables a value 
to be shifted from a preceding memory cell 770, into the 
memory cell 770. Memory cell 770 includes a pass tran 
sistor 706. The configuration value is written into memory 
cell 770 by pulsing configuration control line 702 of 
transistor 706, while applying the configuration value to the 
data line 704. 
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The output of memory cell 770 is programmably con 
nected to the input of a next memory cell 770 by pass 
transistors 720, inverted 726, and a next pass transistor 
708, not shown in FIG. 7. As shown by the timing diagrams 
in FIGS. 7A and 7B, during most of each cycle the clocking 
signal Phil on output control line 724 remains high, and thus 
the output signal 734 of memory cell 770, is applied 
through inverter 726 to shift input line 714 leading to the 
next memory cell 770. When Phil goes low at time t1, pass 
transistor 720 is turned off. Inverter 726 continues for a 
short time to hold as an output signal the logic level 
previously asserted by memory cell 770. In this way, the 
combination of transistor 720 and inverter 726 serves as a 
temporary latch. When a second clocking signal, Phi2 is 
asserted at time t2 on input control line 716, inverter 701 
receives both the output of inverter 703 of memory cell 770 
and the output of inverter 726 of the previous memory cell 
770. Each inverter 726 is designed to overpower the 
inverter 703 so that values can be shifted between adjacent 
memory cells. Therefore, the current value stored in memory 
cell 770 is overwritten by the output of the previous 
memory cell 770. When Phi2 returns low at time t3, 
memory cell 770 is once again latched, holding its current 
value independent of changes in shift input line 714. At 
time tá, Phil goes high, thus applying the new value to 
inverter 726. Thus in one clock cycle, a bit shifts on cell. In 
contrast, if Phil and Phi2 mistakenly overlapped, the value 
of the output 734 of each memory cell 770 would propagate 
from preceding memory cell 700, through memory cell 770 
to the next memory cell 770. This would not produce the 
desired single bit shift. However, by using non-overlapping 
two-phase clocking, as shown in FIGS. 7A and 7B, the 
memory cells shift one bit per cycle of Phil and Phi2. 

FIG. 8 shows a logic element which implements a 16-bit 
shift register and 4-input lookup table according to a first 
embodiment of the invention. For simplicity, in FIG. 8 the 
structures within memory cells 770 of FIG.7 have not been 
explicitly illustrated. 

In FIG. 8, when in shift register mode, a first memory cell 
770, of the memory is programmed with an initial value. 
The memory cell's value may be over written with a new 
value by applying the new value to the D terminal of the 
first memory cell 770 and strobing the clock line, CK. The 
strobing of CK in turn invokes the two-phase clocking cycle 
of FIGS. 7A and 7B.. As data is moved synchronously from 
left to right in the shift register, i.e., from the first memory 
cell 700 to a last memory cell 700, the logic element can 
continue to act as a lookup table though the function charges 
with every clock cycle. As in the prior art lookup tables, the 
decoding multiplexer 200 outputs on output line X the 
contents of the memory cell selected by the user inputs, i.e., 
FO-F3. 

FIG. 9 shows a structure for implementing a 2-input 
lookup table or a 4-bit shift register, and shows internal 
structure of multiplexer 200 and memory cells 770 through 
770, FIG. 9 is oriented on the page the same way as FIG. 
8, and thus assists in understanding the relationship between 
the elements that make up the lookup table/shift register 
embodiment. 

In a second embodiment of the present invention, a logic 
element is configurable to implement an n-bit shift register, 
an n-bit random access memory, and a (log2 n)-input lookup 
table. FIGS. 10-12 illustrate this embodiment. FIG. 0 
illustrates the memory cell. The memory cell of FIG. 10 can 
be loaded from three different sources. During configuration, 
memory cell 790 is loaded by applying configuration data 
to line 704 and strobing control line 702 of transistor 706. 
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8 
When memory cell 790 is in shift register mode, it is loaded 
through transistor 708, as discussed above. When memory 
cell 790 is in RAM mode, it is loaded through demulti 
plexer 500 on line 705. Write strobe line WS is pulsed, 
turning on transistor 707, and thus applying a data signal to 
node 730. 

FIG. 11 shows a logic element which implements any one 
of a 16-bit shift register, a 16-bit random access memory, 
and 4-input lookup table according to the second embodi 
ment of the present invention. In this embodiment, a 
memory cell, say 790s, of the lookup table is programmed 
with an initial value during configuration, as discussed 
above. Subsequently, the initial value may be replaced in 
either of two ways, depending on the mode of the logic 
element: shift or RAM. 
When the lookup table including memory cells 790 is 

being used in RAM mode, each memory cell 790 receives its 
data input on RAM input line 705. To write to any memory 
cell 790, the write strobe line WS pulses, thereby driving the 
value of Din through demultiplexer 500 into the addressed 
memory cell via input line 730. 
The operation of the logic element in each of these modes 

is controlled by control logic 1000. Control bits which 
specify whether the logic element is in RAM mode, shift 
mode, or neither are inputs to control logic unit 1000. 
Control logic unit 1000 also receives the user clock signal 
and the write enable signal. From these inputs, control logic 
unit 1000 outputs Phil, Phi2 and write strobe signal WS to 
either shift data between memory cells, to write to a par 
ticular memory cell, or to leave the memory cell data 
untouched. When in shift register mode, as in FIG. 8, data 
is moved synchronously from left to right in the shift 
register, i.e., from the first memory cell 790 to a last 
memory cell 790, as described above, by invoking a 
two-phase clocking cycle when CK is strobed. On the other 
hand, when the logic element is configured as a random 
access memory (RAM), the addressing lines F0-F3 select 
one of the memory cells (790, through 790) to be written 
to and read from by using the demultiplexer 500 and the 
decoding multiplexer 200, respectively. When in shift reg 
ister mode, the first memory cell 790 receives as its input 
the signal applied to line D. When in RAM mode, memory 
cell 790 receives an input signal on line 705 from demul 
tiplexer 500. 

In RAM mode, to write to a given memory cell, say 700s, 
the write enable line WE must be active. When the user 
clock signal CK is asserted in conjunction with the active 
WE signal, control logic unit 1000 generates a write strobe 
WS. When the write strobe WS is high, memory cell 700 
addressed by address lines F0-F3 of the demultiplexer 500 
receives the value from data input line D. This value 
overwrites the previous contents of the memory cell 700s. 
No other memory cells receive the value applied to D since 
they are not addressed and therefore separated from D by 
high impedance connections from the demultiplexer 500. 

FIG. 12 is a schematic illustration which shows more 
detail of a logic element according to the second embodi 
ment of the present invention. Collectively, demultiplexer 
500, decoding multiplexer 200, pass transistors 708 and 720, 
inverters 726, and RAM mode pass transistors 707 form an 
interconnection network and are combined with memory 
cells (790, through 790) and control logic unit 1000 to 
implement the logic element according to the second 
embodiment. If the logic element of the second embodiment 
is not configured as a shift register, then the logic element 
acts as either a random access memory or a lookup table. In 
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either non-shift register mode, Phi2 is maintained at a low 
level, deactivating pass transistors 708, thereby blocking 
data from one memory cell 790, from affecting the next 
memory cell 790. Also, in the non-shift register modes, 
Phil is maintained at a high logic level, thereby feeding the 
outputs of the memory cells (790 to 790) through to the 
decoding multiplexer 200. As before, the output of the logic 
element is selected by the decoding multiplexer 200 accord 
ing to the user inputs F0 and F. 
When the logic element of FIG. 12 is configured as a shift 

register, the RAM mode pass transistors 707 are turned off 
because WS is held low, isolating the memory cells from the 
outputs of demultiplexer 500. Memory cell 790 is program 
mably connected to D through transistor 708. To shift 
values, control logic unit 1000 produces control signals Phil 
and Phi2, triggered while the write enable signal is active by 
a rising edge of the User Clock signal CK applied to control 
logic unit 1000 such that values are shifted from one 
memory cell to next memory cell, i.e., from memory cell 
790 to memory cell 790, and from memory cell 790, to 
memory cell 790. When control logic unit 1000 receives 
a rising edge of the user clock signal, control logic unit 1000 
first pulls Phil low, then pulses Phi2 high long enough to 
overwrite the contents of the memory cells (790 to 790, 
and lastly reasserts Phil after Phi2 has fallen. It is important 
for extremely low clocking frequencies that Phi2 be only a 
pulse since Phil must be off while Phi2 is on. To accomplish 
this, the control logic is designed so that Phil and Phi2 do 
not rely on the falling edge of the User Clock signal 1008, 
but rather are self-timed. 

FIG. 13 comprising FIGS. 13A through 13H are wave 
form diagrams of the operation of the logic element of FIG. 
12. When the logic element of FIG. 12 is configured in 
shift-register mode, setting F1 to 1 and F0 to 0 makes it 
function as a three-bit shift register. As shown in FIG. 13E, 
the input, D, to the three-bit shift register is maintained 
continuously at a high logic level throughout the example. 
Upon receiving a rising edge 1104 of a first user clock pulse 
1108, control logic unit 1000 pulls Phil to a low logic level, 
as shown in FIG. 13G, to deactivate pass transistors 720 
(FIG. 12). After temporarily having isolated the outputs 734 
through 734 of the memory cells (790, through 790) from 
inputs of inverters 726, through 726, the control logic unit 
1000 asserts Phi2, which propagates outputs of inverters 
726 through 726 to their corresponding next memory cells, 
i.e., memory cells 790 through 790. When Phi2 is asserted, 
the value on D is written to first memory cell 790. The 
non-overlapping Phi2 pulse is shown in FIG. 13F. As shown 
in FIG. 13D, the value stored in first memory cell 790, 
(corresponding to 734) changes shortly after Phi2 is 
asserted. This change is indicated by reference 1112. The 
new value of output 734 of the first memory cell 790 does 
not affect the second memory cell 790 (corresponding to 
734) because Phil is temporarily inactive. After asserting 
Phi2 long enough for the memory cells (790 to 790) to 
reach their new states, Phi2 is lowered, thereby latching the 
data values. Only after Phi2 has been lowered does control 
logic unit 1000 raise Phil. 
On receiving the rising edge of Phil, the values of outputs 

734, through 734 again pass through pass transistors 720 
through 720. Reference numeral 1116 shows that the 
change in the output X of the three-bit shift register is 
synchronized with the rising edge of Phil. As seen in FIGS. 
13G and 13H, the reassertion of Phil and the lowering of the 
User Clock are independent, thus logic designers need not 
depend on exact timing relationships between these two 
edges. Of course, Phil must be reasserted before the inputs 
of inverters 726 through 726 float to an invalid voltage. 
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10 
FIG. 14 is a block diagram of a logic element which 

includes both a logic element 1200 and a flip-flop 1204. The 
purpose of the flip-flop is to improve the clock-to-out delay 
of the output of the logic element 1200. This is simple and 
efficient in Xilinx FPGAs because function generators are 
historically paired with flip-flops in Xilinx logic elements. 
Further, when an n-bit, synchronous shift register is 
required, the logic element can be configured so that the shift 
register 1200 is an (n-1)-bit shift register and flip-flop 1204 
is the final register of the n-bit shift register. When config 
ured in this alternative fashion, the final bit XQ is available 
upon the rising edge 1104 of the User Clock pulse 1108, 
rather than on the rising edge 1116 of Phil. This provides a 
faster clock-to-out time for the overall n-bit shift register. 
By configuring the logic element to route XQ back to D, 

the present invention can also perform circular shifts. 
As discussed above (FIGS. 13A-13H), a shift register 

having fewer stages than the number of memory cells in a 
lookup table can be formed by directing a bit other than the 
last bit to output terminal X. Lookup tables likewise may be 
cascaded to create shift registers of a greater size than 
supported by a single lookup table. For example, it is 
possible to create a 20-bit shift register in a logic array 
composed of 16-bit lookup tables by cascading two logic 
elements. A first full 16-bit shift register 1200 and a second 
full 16-bit shift register 1200 combine to produce a 32-bit 
shift register. Thus, to achieve a 20-bit shift register, user 
input lines F0-F3 of the first logic element are set to lill 
and user input lines F0-F3 of the second logic element are 
0011, i.e., the second 16-bit shift register 1200 is pro 
grammed to pass the output of the fourth memory cell 790, 
which is the final output of the 20-bit shift register. 
Additionally, in order to improve the clock-to-out delay of 
the cascaded shift registers, an alternate embodiment uses a 
first full 16-bit shift register 1200 addressed to 1111, a 
second full 16-bit shift register 1200 addressed to 0010 and 
the flip-flop 1204. The output, X, of the second shift register 
feeds the input of flip-flop 1204 of the second shift register. 
If desired, the flip-flops 1204 can also be used to extend the 
number bits that can be shifted within a logic element. Fully 
utilizing both 16-bit shift registers 1200 and their flip-flops 
1204, cascaded shift registers can be built which are 17-bit, 
34-bit, 51-bit, etc. 
The novel shift register logic element is typically imple 

mented in an FPGA such as the FPGA of FIG. 15 having 
logic blocks 101, each comprising a portion of an intercon 
nect structure and a logic element. The FPGA of FIG. 15 is 
further discussed by Tavana et al. in the application Ser, No. 
08/618,445 incorporated herein by reference. 

FIG. 16 shows a 64-bit variable length shift register 
formed by combining structures such as shown in FIG. 8. 
Variable length shift registers are desired when building 
FIFOs (first-in-first-out storage devices). 

Conventional FIFOs are commonly composed of a block 
of RAM addressed by READ and WRITE pointers which 
each increment through the block and cycle to the bottom 
upon reaching the top. When a word is written (pushed) into 
the FIFO, it is written to the address pointed to by the 
WRITE pointer, and the WRITE pointer is then incremented 
to point to the next address. When a word is read (popped) 
from the FIFO, it is taken from the address pointed to by the 
READ pointer and the READ pointer is incremented to the 
next address. Thus the data in a RAM based FIFO are never 
shifted. Rather, the READ and WRITE pointers are incre 
mented independently. 

In the present case using a shift register, whenever a 
WRITE command is received, data are always written to one 
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location in a shift register and all other data are shifted one 
step through the shift register. In response to a WRITE 
command, a READ pointer is incremented. In response to a 
READ command, the READ pointer is decremented. There 
is no WRITE pointer. (The READ address represents the end 
of the string of stored data.) Such a shift register can be used 
to implement a variable length FIFO. If a shift register FIFO 
is desired that is no more than 16 words deep, then such a 
FIFO can be built in an FPGA using only one lookup table 
configured as a shift register for each bit of the word to be 
stored. If a FIFO is desired that can store more than 16 
words, a structure such as shown in FIG. 16 must be built for 
each bit of the word. For example, a 64-word FIFO with 
8-bit words would require 8 of the structures shown in FIG. 
16. The structure of FIG. 16 can store up to 64 bits, the 
DATA bits being written from the left on data input line Din 
and being read out on the line OUT. 

However, because the architecture of FIG.8 provides only 
a single output from each LUT, (outputs are labeled X and 
Y), it is necessary to duplicate the data, an upper bank being 
used to store data for writing to subsequent lookup tables, 
and a lower hank being used for providing the particular data 
bit that has been addressed during a READ operation. A long 
shift register requires that the last sequential bit (770) of 
each 16-bit shift register be shifted to the first bit of the 
subsequent shift register, and that every bit be addressable 
by the READ address applied to the LUT output multiplex 
ers 200. (If the FIFO is nearly empty, the READ address 
points to a memory cell near the left of the picture, for 
example cell 770 of LUT-G of slice S63. If the FIFO is 
nearly full, the READ address points to a memory cell near 
the right of the picture, for example cell 770 of LUT-F of 
slice S64. ) Data bits are routed from one slice to another 
using the general interconnect routing lines. (These lines are 
illustrated using dotted lines to indicate that they are pro 
grammably connectable and to distinguish from the routing 
lines that are part of the slice itself.) 

Using the architecture of FIG. 8, five slices S1 through S5 
are used. A slice includes two lookup tables LUT-F and 
LUT-G, each comprising 16 memory cells 770 through 
770, a multiplexer 200-F or 200-G, four LUT input lines 
F1 through F4 or G1 through G4 and a LUT output line X 
or Y. The slice also includes a clocking structure 800 
receiving write enable signal WE, clock input signal CK, 
and a shift control signal from, for example, a configuration 
memory cell. Clocking structure 800 generates two non 
overlapping clocking signals Phil and Phi2, as discussed 
earlier (See FIGS. 7A and 7B). These clocking signals Phil 
and Phi2 operate to shift bits to the right in response to clock 
signal CK when the shift memory cell contains a logic 1 and 
when the write enable signal WE is logic 1. In order to 
provide that the last bit 770 of lookup table LUT-G of slice 
S61 is fed to lookup table LUT-F of slice S63, while 
simultaneously allowing an addressed bit to be read from 
any of four lookup tables (two in slice S63 and two in slice 
S64 ), it is necessary to duplicate three of the four lookup 
tables and to configure the lookup tables so that in one 
lookup table the last bit is always routed out through 
multiplexer 200-F or 200-G to the first bit of the next shift 
register, and in the duplicate lookup table, the addressed bit 
is read. Thus, the addressed bit is read from the addressed 
lookup tables LUT G of slice S63, LUT-F of slice S63, 
LUT-G of slice S64, or LUT-F of slice S64 while the last bit 
of lookup table LUT-G of slice S61, LUT-F of slice S61, or 
LUT-G of slice S62 is shifted in to the first bit of lookup 
table LUT-F of slice S63, LUT-G of slice S64 of LUT-F of 
slice S64, respectively, regardless of which address is being 
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12 
read out. Since lookup table LUT-F of slice S64 is the last 
in the chain, it is not necessary to form a duplicate in lookup 
table LUT-F of slice S62. (Recall that the data stored in slice 
S61 is identical to the data stored in slice S63, and the data 
stored in LUT-G of slice S62 is identical to the data stored 
in LUT-G of slice S64.) 
As another aspect of the particular architecture of FIG. 8, 

discussed by Young. Chaudhary, and Bauer in pending U.S. 
patent application Ser. No. 08/806,997 the content of which 
is incorporated herein by reference, multiplexers are 
included for generating five (FS) and six (F6) input functions 
by combining the outputs of the four-input lookup tables 
LUT-F and LUT G. But in that described embodiment, the 
same input signal that feeds the Din signal also serves as the 
control signal on the F5 multiplexer. Thus, it is not possible 
to use an address signal for controlling the F5 multiplexer 
when also using that signal for supplying data. Thus a fifth 
slice S65 is used. The LUT-F and LUT-G lookup tables and 
an F5 multiplexer of slice S65 are configured to implement 
a four-to-one multiplexer, the output signal from this mul 
tiplexer being the addressed bit. 

FIG. 17 shows a 64-bit variable length shift register 
formed using an architecture with an advantageous modifi 
cation to the structure of FIG. 8. By changing the architec 
ture to add a two-to-one multiplexer to the data input of each 
shift register and feeding the output signal of the last 
memory cell of the previous shift register to that multiplexer 
(in addition to the signal from the interconnect structure that 
exists in FIG. 8), a variable length shift register can be 
formed using no more than half the number of lookup tables 
of FIG. 16. The structure of FIG. 17 is configured as a 64-bit 
variable length shift register, just as is the structure of FIG. 
16. But since the structure of FIG. 17 includes multiplexers 
M71 and M72 as inputs to the respective lookup table shift 
registers, each lookup table has both a variable-tap output 
through multiplexer 200 and a fixed output from cell 770 
This is advantageous for making a FIFO because each 
lookup table now has the two outputs required when cas 
cading together logic elements to build a long variable-tap 
shift register, so no duplication of logic is required. And the 
READ address dynamically addresses one of the 64 memory 
cells via the four lookup table input signals and the F5 and 
F6 multiplexers. Note that using the shift input of the newly 
added multiplexer M71 or M72 allows the BY or BX input 
of the newly added multiplexer to be used for another 
function, in this case controlling an F5 or F6 multiplexer. 

FIG. 18 shows a logic slice structure from which the 
64-bit variable length shift register of FIG. 17 can be 
formed, and in particular shows connections of the F5 
multiplexer and another multiplexer labeled FX. A preferred 
architecture combines four of these slices into one config 
urable logic block (CLB). The FX multiplexer can be an F6. 
F7, or F8 multiplexer, depending upon the position of the 
illustrated slice in the CLB, where an F6 multiplexer selects 
between outputs of two F5 multiplexers, an F7 multiplexer 
selects from two F6 multiplexers, and an F8 multiplexer 
selects from two F7 multiplexers. FIG. 18 illustrates that the 
BX input signal goes two places: to multiplexer M72 and to 
the control terminal of the FS multiplexer. Similarly, the BY 
input signal goes to multiplexer M71 and to the control 
terminal of the FX multiplexer. Note that the input signals to 
the FX multiplexer are labeled FXin0 and FXinl. These 
input signals come from other F5 or FX multiplexers within 
the CLB, and hey are most conveniently illustrated in FIG. 
19. In a preferred embodiment, a logic slice structure such 
as that of FIG. 18 will include additional elements, for 
example flip flops, fast carry circuits, and routing structures 
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(see, for example, U.S. Pat. No. 5,267,187 to Hsieh et al., 
and U. S. Pat. No. 5,349.250 to New, as well as U.S. patent 
application Ser. No. 03/806,997 referenced above). 
However, to avoid obscuring the present invention, these 
additional structures have not been shown here. 

FIG. 19 shows a layout of wiring for cascading adjacent 
lookup table slices by which interiors of adjacent lookup 
table slices can be identically laid out and by which a single 
input line BX or BY can serve a function in an earlier 
architecture as well as a new function discussed here (so the 
new architecture discussed here can implement designs that 
have been implemented in the previous architecture illus 
trated in FIG.16). FIG. 19 illustrates one configurable Logic 
block (CLB) comprising four slices, each having two lookup 
tables (LUTs). Each slice is equivalent to that of FIG. 18. 
Whereas FIG. 18 shows one F5 multiplexer and one FX 
multiplexer (in addition to the two M71 and M72 multi 
plexers discussed earlier), FIG. 19 shows the different 
interconnections to the FX multiplexer in different parts of 
one CLB. These wide function multiplexers are now labeled 
F6, F7, and F8 to show the number of input signals they can 
provide all function of. Thus, the F8 multiplexer selects from 
the output signals of two F7 multiplexers and an F7 multi 
plexer selects from two F6 multiplexers and so on. The 
lookup tables themselves provide all functions of four input 
signals. Note that the F8 multiplexer receives one input 
signal from the F7 multiplexer of its own CLB and another 
input signal from the F7 multiplexer of an adjacent CLB. 
Note also that one CLB includes four F5 multiplexers, two 
F6 multiplexers, one F7 multiplexer, and one F8 multiplexer. 
The novel and advantageous placement of these wide 

function multiplexers always allows the control signal BX or 
BY to serve the dual function of providing shift-in data and 
controlling a corresponding multiplexer. This is because 
only one of the BX or BY terminals will be used for shifting 
in data to a shift register, and the sharing is arranged so that 
the highest order multiplexer is placed at the beginning of 
the shift register for that length. In the case of a 64-bit shift 
register, two slices will be used (see FIG. 17). The address 
will be six bits long and will use two FS multiplexers and 
one F6 multiplexer. Looking at FIG. 19, this can be accom 
plished in either the upper two slices S3 and S2 or in the 
lower two slices S1 and S0. In either case, data will be 
shifted in on line BY of slice S3 or S1, and multiplexer M71 
of the slice will be set to receive the BY signal. The F7 or 
F8 multiplexer will not be used since the desired output 
signal is provided by the F6 multiplexer of slice S2 or S0. 
Thus there is no conflict that the line used for controlling the 
F7 or F8 multiplexer is used in this case as a data input line 
to the shift register. 

If a 128-bit shift register is desired, the entire CLB of FIG. 
19 will be used. Data will be shifted in on the BY line of slice 
S3 and the output signal will be taken from the F7 multi 
plexer. The F8 multiplexer will not be used. Thus, again, 
there is no conflict in the fact that the line used for control 
ling multiplexer F8 is used to provide data to the shift 
register. Similarly, if a 256-bit shift register is desired, two 
CLBs of the type shown in FIG. 19 will be used, data being 
shifted in to the upper of the two CLBs and the output signal 
taken from the F8 multiplexer of the lower CLB. So again 
there is no conflict. Knowing this relationship, architectures 
can be provided having longer patterns of multiplexers for 
providing larger functions. All this is possible because for 
n-input lookup tables we need (n-1) lines for controlling 
multiplexers and 1 line for shifting in data to a shift register. 
The (n-1) multiplexer control signals plus 1 data-in signal 
exactly match the n lines provided. 
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Shift registers of sizes other than powers of two can also 

be formed by combining the appropriate number of slices. 
For example, if a user wanted a 200-bit variable length shift 
register, this could be implemented in seven slices using 13 
LUTs, seven F5 multiplexers, four F6 multiplexers, two F7 
multiplexers, and one F8 multiplexer. The three LUTs not 
needed in the eight slices that feed the F8 multiplexer could 
be used for other functions. To avoid generating an errone 
ous output signal if one of the unused lookup tables is 
addressed, the control inputs for the F5 and F6 multiplexers 
associated with partially used slices are preferably tied to a 
constant value. 

FIG. 20 shows more detail of the structure of FIG. 19, 
illustrating the lookup table structures and clocking struc 
tures discussed earlier. Since the additional details of FIG. 
20 have been discussed earlier, they are not discussed again 
here. 

FIG. 21 is a schematic diagram of CLE slice S0 in 
accordance with one embodiment of the present invention. 
CLE slice S0 includes G and F function generators 100 and 
1002, exclusive OR gates 1003-1004, D–Q flip flops 
1005-1006, AND gates 1007-1008, write control logic 
1009, multiplexers 1010-1031, inverter 1040, and multi 
plexers FS and FX. Slice S0 includes shift register circuitry 
consistent with that described above. The shift input data 
(e.g., SHIFTIN or BY) is provided to G function generator 
1001 by multiplexer 1010. Data is shifted out of G function 
generator 1001 to multiplexer 1016. Note that multiplexer 
1016 is also coupled to the output terminals of multiplexers 
1010 and 1012. Data is shifted into F function generator 
1002 from multiplexer 1016. Data is then shifted out of F 
function generator 1002 as the SHIFTOUT signal. Write 
control circuit 1009 controls the writing of data values to G 
and F function generators 1001 and 1002. Multiplexers 
1010-1031 are configured to control the routing of the 
various signals in slice S0. 
F function generator 1002 can be configured to implement 

a 4-input lookup table that provides an output signal F that 
is any function of the input signals F4-F1. The output signal 
F is routed to an input terminal of multiplexer FS. G 
function generator 1001 can be configured to implement a 
4-input lookup table that provides an output signal G' that is 
any function of the input signals G4-G1. The output signal 
G' is routed to another input terminal of multiplexer F5. 
Multiplexer F5 is controlled by the bypass signal BX (or 
BXi, which is the inverse of BX). By routing the signals 
F1-F4 to the four input terminals of the G function generator 
1001, multiplexer FS can be used to provide an output signal 
F5" that can be any function of the five input signals F4-F1 
and BX. 
The output signal G' is also routed to an input terminal of 

multiplexer 1025. In accordance with the described 
embodiment, Multiplexer 1025 is configured to route the 
output signal G' as the output signal Y. 

Multiplexer FX is a 2-to-1 multiplexer having two input 
terminals coupled to receive the FXA and FXB input signals, 
which are provided by the general interconnect located 
outside of CLE slice S0. Multiplexer FX is controlled by the 
bypass signal BY (or BY#, which is the inverse of BY). As 
described in more detail below, multiplexer FX is capable of 
operating as any multiplexer wider than an F5 multiplexer 
(i.e., F6, F7, F8, F9, F10, etc.), depending on the configu 
ration of the CLE slice in a larger CLB circuit. These wider 
multiplexers are capable of providing any function of greater 
numbers of input signals. Thus, an F6 multiplexer is capable 
of providing any function of up to six input signals, and an 
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F10 multiplexer is capable of providing any function of up 
to ten input signals. In the CLB circuit described below in 
connection with FIG.22, the largest FX multiplexer is an F8 
multiplexer. 

FIG. 22 is a block diagram illustrating a CLB 1100 that 
includes four CLE slices S0-S3, each of which is identical 
to the CLE slice S0 of FIG. 21. FIG. 22 only illustrates G 
and F function generators and multiplexers F5 and FX in 
each of CLE slices S0-S3. Multiplexers FS and FX are 
labeled as multiplexers F5 and FX in CLE slice SN. For 
example, within CLE slice S2, multiplexers FS and FX are 
labeled as multiplexers FS and FX. Similarly, the control 
signals BX and BY are labeled as control signals BX and 
BY in CLE slice SN. 
The output terminals of multiplexers F5 and FS are 

connected to the input terminals of multiplexer FX in CLE 
slice S0. As a result, multiplexer FX is configured as an F6 
multiplexer (i.e., a multiplexer capable of providing an 
output signal that is any function of six input signals). This 
F6 multiplexer is capable of providing an output signal that 
is any function of the four F/G input signals to CLE slices 
S0-S1 (note that the same four input signals are provided to 
each F and G function generator in CLE slices S0 and S1), 
the BX/BX input signal (note that the same input signal is 
provided to control the F5 and F5 multiplexers), and the 
BYo input signal. 
The output terminals of multiplexers FS and FS are 

connected to he input terminals of multiplexer FX in CLE 
slice S2. As a result, multiplexer FX is also configured as 
an F6 multiplexer. This F6 multiplexer is capable of pro 
viding an output signal that is any function of the four F/G 
input signals to CLE slices S2-S3 (note that the same four 
input signals are provided to each F and G function genera 
tor in CLE slices S2 and S3 ), the BX/BX input signal 
(note that the same input signal is provided to control the F5. 
and FS, multiplexers), and the BY input signal. 
Because the F6 multiplexer has a total of 19 inputs, an F6 

multiplexer can also be configured to provide some (but not 
all) functions of up to 19 input signals. For example, the F6 
multiplexer can be used to implement an 8-to-l multiplexer, 
which is a function of ll input signals (i.e., 8 input signals-3 
control signals). 
The output terminals of F6 multiplexers FX and FX are 

connected to the input terminals of multiplexer FX in CLE 
slice S1. As a result, multiplexer FX is configured as an F7 
multiplexer (i.e., a multiplexer capable of providing an 
output signal that is any function of seven input signals). 
This F7 multiplexer is capable of providing an output signal 
that is any function of the four F/G input signals to CLE 
slices S0-S3 (note that the same four input signals are 
provided to each F and G function generator in CLE slices 
S0-S3), the BX/BX/BX/BX input signal (note that the 
same input signal is provided to control the FSo F5, F5. 
and F5, multiplexers), the BY/BY input signal (note that 
the same input signal is provided to control the FX and FX 
multiplexers), and the BY input signal, which is provided 
to control the FX multiplexer. 

Because the F7 multiplexer has a total of 39 inputs, an F7 
multiplexer can also be configured to provide some (but not 
all) functions of up to 39 input signals. For example, the F7 
multiplexer can be used to implement an 16-to-l 
multiplexer, which is a function of 20 input signals (i.e., 16 
input signals--4 control signals). 
The output terminal of F7 multiplexer FX is connected to 

an input terminal of multiplexer FX in CLE slice S3. The 
other input terminal of multiplexer FX is connected to an 
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output terminal of an F7 multiplexer in an upper adjacent 
CLB (not shown). The F7 multiplexer in the upper adjacent 
CLB is configured in the same manner as multiplexer FX 
in CLB 1100. Because multiplexer. FX is configured to 
receive input signals from two F7 multiplexers, multiplexer 
FX functions as an F8 multiplexer (i.e., a multiplexer 
capable of providing an output signal that is any function of 
eight input signals). 

Because the F8 multiplexer has a total of 79 inputs, an F8 
multiplexer can also be configured to provide some (but not 
all) functions of up to 79 input signals. For example, the F8 
multiplexer can be used to form a 32-to-1 multiplexer, which 
is a function of 37 input signals (i.e., 32 input signals--5 
control signals). In addition, the F8 multiplexer can be used 
to form a 256-bit variable tap shift register. Note that the F8 
multiplexer requires the use of 2 CLBs. 
The output terminal of F7 multiplexer FX is also con 

nected to a lower adjacent CLB. More specifically, the 
output terminal of multiplexer FX is connected to an input 
terminal corresponding to the upper input terminal of mul 
tiplexer FX. 
CLB 1100 is connected to a plurality of identical CLBs 

1100, thereby providing an array of CLBs that are capable 
of providing F5, F6, F7 and F8 functions. The structure of 
the F8 multiplexer extends across CLB boundaries in a 
regular manner. As a result, CLB 1100 can be connected to 
either the upper adjacent CLB or the lower adjacent CLB to 
implement an F8 multiplexer. This advantageously provides 
flexibility in the configuration of the resulting FPGA. 

In addition, each of the CLE slices in the various CLBs 
has an identical logic (transistor) layout. This advanta 
geously simplifies the configuration software of the resulting 
FPGA, as well as the physical layout of the CLB array on a 
silicon substrate. 
The above-described CLB structure can be easily 

expanded to provide for arbitrarily large functions. As 
described above in connection with FIG. 22, an F8 multi 
plexer structure can be created with four CLE slices. By 
doubling the number of CLE slices per CLB, a multiplexer 
structure having an additional input can be implemented. 
Thus, an F9 multiplexer can be created with eight CLE slices 
per CLB, and an F10 multiplexer can be created with sixteen 
CLE slices per CLB. 

FIG. 23 is a block diagram of a CLB 1200 in accordance 
with another embodiment of the present invention. CLB 
1200 includes eight CLE slices identical to CLE slice S0. 
These slices S0-S7 are configured to provide a CLB array 
that is capable of providing an F9 multiplexer that can 
provide any function of up to nine input signals. CLE slices 
S0-S7 of FIG.23 are Illustrated in the same manner as CLE 
slices SO-S3 in FIG. 22. 

In CLB 1200, multiplexers FX, FX, FX and FX are all 
configured as F6 multiplexers. More specifically, the input 
terminals of multiplexer FX are connected to the output 
terminals of multiplexers FS and F5. The input terminals 
of multiplexer FX are connected to the output terminals of 
multiplexers F5, and F5. The input terminals of multiplexer 
FX are connected to the output terminals of multiplexers 
F5, and F5. The input terminals of multiplexer FX are 
connected to the output terminals of multiplexers FS and 
F5,. 

Multiplexers FX and FXs are configured as F7 multi 
plexers. More specifically, the input terminals of multiplexer 
FX1 are connected to the output terminals of F6 multiplex 
ers FX and FX. The input terminals of multiplexer FX are 
connected to the output terminals of F6 multiplexers FX 
and FX. 
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Multiplexer FX is configured as an F8 multiplexer. More 
specifically the input terminals of multiplexer FX are 
connected to the output terminals of F7 multiplexers FX 
and FX. 

Finally multiplexer FX is configured as an F9 multi 
plexer. More specifically, one input terminal of multiplexer 
FX, is connected to the output terminal of F8 multiplexer 
FX. The other input terminal of multiplexer FX, is con 
nected to the output terminal of an F8 multiplexer in an 
upper adjacent CLB (not shown). This F8 multiplexer is 
located in a CLE slice identical to CLE slice S3 of CLB 
1200. Note that the output terminal of F8 multiplexer FX in 
CLE 1200 is also routed to a lower adjacent CLB (not 
shown). More specifically, the output terminal of multi 
plexer FX is connected to the input terminal of the F9 
multiplexer in the lower adjacent CLB. 
The structure of the F9 multiplexer extends across CLB 

boundaries. However, each of the CLE slices and each of the 
CLBs are identical. This advantageously simplifies the con 
figuration software of the resulting FPGA, as well as the 
layout of the FPGA on silicon. 

In FIG. 21, CLE slice 1100 is defined to include a pair of 
function generators 1001-1002 and a pair of multiplexers F5 
and FX. However, this is not necessary. In another 
embodiment, each CLE slice includes a single function 
generator and a single multiplexer that corresponds with 
either multiplexer F5 or multiplexer FX. FIG. 24 is a block 
diagram of a CLB 1200 in accordance with such an embodi 
ment. CLB 1200 includes eight CLE slices So-S, wherein 
each of the CLE slices So-S7 is defined to include one 
function generator and a corresponding multiplexer. (The 
other elements of CLE slices S-S are not shown for 
purposes of clarity.) Similar elements in FIGS. 22 and 24 are 
labeled with similar reference numbers. The CLB structures 
illustrated by FIGS. 22 and 24 are similar. However, in FIG. 
24, each of the F5 and FX multiplexers receives input 
signals from the general interconnect structure, and does not 
receive input signals from within the CLE slice. Thus, each 
of CLE slices S-S includes a multiplexer that receives a 
user-defined control signal (i.e., BX or BY) and input signals 
from outside the CLE slice. (Note that a user-defined signal, 
as used herein, is not a signal provided by a configuration 
memory cell, but rather from a signal routed by the user on 
the general interconnect structure.) These identical CLE 
slices So-S7 can be cascaded as illustrated to form wide 
function multiplexers (e.g., FS, F6, F7, and F8 multiplexers). 

Returning to CLB 1100 of FIG. 22, in accordance with 
another embodiment of the present invention, CLE slices 
S0-S3 are connected in a manner that enables the function 
generators Fo-F and Go-G in these CLE slices to be 
selectively connected to form random access memories 
(RAMs) of various sizes. As described above, each of the 
CLE slices S0-S3 has an identical transistor layout, thereby 
simplifying the design and configuration software of the 
resulting FPGA. In the described embodiment, CLB 1100 
includes four CLE slices S0-S3 that can be configured to 
form RAMs having dimensions of 128x1, 64x2, 64x1, 
32x4, 32X2, 32x1, 16x8, 16x4, 16x2 and 16x1. In other 
embodiments, this CLB structure can be expanded to 
include other numbers of CLE slices. In these embodiments, 
RAMs having other dimensions can be implemented. The 
manner of expanding the described CLB structure to include 
other numbers of CLE slices will be apparent to one of 
ordinary skill in the art in view of the following disclosure. 
As described above, each 4-input F and G function 

generator includes sixteen memory cells that can be 
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accessed in response to four address signals. In the described 
example, each F function generator is addressed by four read 
address signals F1-F4 and four write address signals 
WF1-WF4. The read address signals F1-F4 are separate 
from the write address signals WF1-WF4 to enable dual port 
access to the F function generator. Each G function genera 
tor is similarly configured to be accessed in response to read 
address signals G1-G4 and write address signals 
WG1-WG4. 
Read Operations 
To read one of the sixteen data values stored in an For G 

function generator, a read address F1-F4 or G1-G4 is 
applied to the function generator. In response, the F or G 
function generator provides a data value corresponding to 
the read address as an output signal F or G'. 

In the described embodiment, multiplexers FX-FX and 
F5-F5, of CLE slices S0-S3 are connected as described 
above in connection with FIG. 22. As described in more 
detail below, these multiplexers are used to route read data 
values from function generators Fo-F and Go-G to an 
appropriate output terminal. 
128x1 
More specifically, to operate CLB 1100 as a 128xl RAM, 

the 128 memory cells in the Fo-F and Go-G function 
generators of CLE slices S0-S3 are used to store 128 data 
values. The Fo-F and Go-G function generators are 
addressed by the same four read address signals (i.e., F1/G1, 
F2/G2, F3/G3, F4/G4) during a read operation. These four 
read address signals are hereinafter referred to as address 
signals A-A. A single bypass signal (i.e., BX/BX/BX/ 
BX) is used to control multiplexers F5, F5, F5. and F5. 
thereby selecting either the output signals of the Fo-F 
function generators or the output signals of the Go-G 
function generators. The bypass signal BX/BX/BX/BX. 
is thereby used as a fifth address signal As. In the described 
embodiment, if the fifth address signal As has a logic "I' 
value, then multiplexers F5, F5, F5, and F5 route the 
output signals of the Fo-F function generators. Conversely, 
if the fifth address signal As has a logic “0” value, then 
multiplexers F5, F5, F5, and F5 route the output signals 
of the Go-G function generators. 

Another bypass signal (i.e., BYo/BY) is used to control 
F6 multiplexers FX and FX, thereby selecting either the 
output signals of the FS and FS multiplexers or the output 
signals of the F5 and F5 multiplexers. The bypass signal 
BYo/BY is thereby used as a sixth address signal A. In the 
described embodiment, if the sixth address signal A has a 
logic “1” value, then multiplexers FX and FX route the 
output signals of the FSo and F5 multiplexers, respectively. 
Conversely, if the sixth address signal A has a logic “0” 
value, then multiplexers FX and FX route the output 
signals of the F5 and F5 multiplexers, respectively. 

Another bypass signal (i.e., BY) is used to control F7 
multiplexerFX, thereby selecting either the output signal of 
F6 multiplexer FX or the output signal of F6 multiplexer 
FX as the read data output signal. The bypass signal BY 
is thereby used as a seventh address signal A. In the 
described embodiment, if the seventh address signal A, has 
a logic “1” value, then multiplexer FX routes the output 
signal of the FX multiplexer as the read output data value. 
Conversely, if the seventh address signal A has a logic “0” 
value, then multiplexer FX routes the output signal of the 
FX multiplexer as the read output data value. 
As described in more detail below, the address signals 

As-A are also, used to address the 128xl RAM during 
write operations. As also described in more detail below, the 
unused bypass signal BY is used to provide a write data 
value to the 128x1 RAM during write operations. 
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64x2, 64xl 
To operate CLB 1100 as a 64x2 RAM, the 64 memory 

cells in the Fo, Go F and G function generators of CLE 
slices S0 and S1 are used to store a first set of 64 data values, 
and the 64 memory cells in the F, G, F and G. function 
generators of CLE slices S2 and S3 are used to store a 
second set of 64 data values. In general, one of the 64 data 
values in function generators Fo, Go, F and G is read out 
through multiplexers FS F5 and FX as a first bit of the 
two bit output signal. Similarly, a corresponding one of the 
64 data values in function generators F, G, F and G is 
read out through multiplexers FS F5, and FX as a second 
bit of the two bit output signal. 
More specifically, the Fo-F and Go-G function genera 

tors are addressed by the same four read address signals 
A-A during a read operation. Multiplexers F5-F5, are 
controlled by the fifth address signal A (i.e., BX/BX/ 
BX/BX), such that these multiplexers select either the 
output signals of the Fo-F function generators or the output 
signals of the Go-G function generators. F6 multiplexers 
FX and FX are controlled by the sixth address signal A 
(i.e., BYo/BY), such that these multiplexers select either the 
output signals of multiplexers FSo and F5 or the output 
signals of multiplexers FS and F5. In this manner, F6 
multiplexer FX provides one bit of the read output signal, 
and F6 multiplexer FX provides the other bit of the read 
output signal in the 64x2 RAM. 
As described in more detail below, the address signals 

As-A are also used to address the 64x2 RAM during write 
operations. As also described in more detail below, the 
unused bypass signals BY and BY are used to provide 
write data values to the 64x2 RAM. 
A 64x1 RAM, which uses only CLE slices S0 and S1, is 

a subset of the 64x2 RAM, which uses CLE slices S0, S1, 
S2, and S3. The 64xl RAM is accessed in the same manner 
as the 64x2 RAM. An independent 64x1 RAM can not be 
implemented in S2 and S3 because the write addresses of S2 
and S3 are tied to S0 and S1. 
32x4, 32X2, 32X 
To operate CLB 1100 as a 32x4 RAM, the 32 memory 

cells in the Fo and Go function generators of CLE slice S0 
are used to store a first set of 32 data values, the 32 memory 
cells in the F and G function generators of CLE slice S1 
are used to store a second set of 32 data values, the 32 
memory cells in the F and G. function generators of CLE 
slice S2 are used to store a third set of 32 data values, and 
the 32 memory cells in the F and G. function generators of 
CLE slice S3 are used to store a fourth set of 32 data values. 

In general, one of the 32 data values in function genera 
tors Fo and Go is read out through multiplexer FSo as a first 
bit of the four bit output signal. Similarly, a corresponding 
one of the 32 data values in function generators F and G 
is read out through multiplexer F5 as a second bit of the 
four bit output signal. A corresponding one of the 32 data 
values in function generators F and G is read out through 
multiplexer FS, as a third bit of the four bit output signal. 
Finally, a corresponding one of the 32 data values in 
function generators F and G is read out through multi 
plexer F5 as a fourth bit of the four bit output signal. 
More specifically, the Fo-F and GoG function genera 

tors are addressed by the same four read address signals 
A-A during a react operation. Multiplexers FS-F5 are 
controlled by the fifth address signal A (i.e., BX/BX/ 
BX/BX), such that these multiplexers select either the 
output signals of the Fo-F function generators or the output 
signals of the Go-G function generators. In this manner, 
multiplexers FS-F5 provide the four bits of the read output 
signal in the 32x4 RAM. 
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As described in more detail below, the address signal As 

is also used to address the 32x4 RAM during write opera 
tions. As also described in more detail below, the unused 
bypass signals BYo-BY are used to provide write data 
values to the 32x4 RAM. 
A 32X2 RAM is a subset of the 32x4 RAM, which uses 

only CLE slices S0 and S1. Similarly, a 32X 1 RAM is a 
subset of the 32x4 RAM, which uses only CLE slice S0. The 
32X2 and 32xl RAMs are accessed in the same manner as 
the 32x4 RAM. 
16X8, 6x4, 16x2, 16x1 

It is noted that CLB 1100 can be operated as a 16x8, 16x4, 
16X2 or 16xl RAM by using the data values read directly 
out of the lookup tables F0-F3 and G0-G3. In these RAMs. 
it is not necessary to use multiplexers F5-F5, and FX-FX, 
to Select the read data values. As described in more detail 
below, in the 16X8, 6x4, 16x2 or 16x1 RAMs, the unused 
bypass signals BXo-BX and BYo-BY are used to provide 
up to eight write data values to the 16x8 RAM. 

In the foregoing manner, read data values for 128x, 
64x2, 64Xl, 32X4, 32X2, 32x1, 16x8, 16x4, 16x2 and 16xl 
RAMs can be routed out of CLB 1100 through multiplexers 
F5-F5, and FX-FX. 
Write Operations 

In order to operate CLE 1100 as a 128x1, 64x2, 64x1, 
32X4, 32X2, 32X, 6x8, 6x4, 16x2 and 16xl RAM, it is 
necessary to provide a mechanism for routing input data 
values to the function generators Fo-F, and Go-G in a 
manner consistent with the various RAM configurations. As 
described in more detail below, this mechanism is largely 
provided by multiplexers 1010 and 1016 of CLE slice S0 
(FIG. 21). 

In addition, it is necessary to provide a mechanism for 
providing write enable signals to the various function gen 
erators Fo-F and Go-G in a manner consistent with the 
various RAM configurations. As described in more detail 
below, this mechanism is largely provided by write control 
logic 1009, along with multiplexers 1030-1031 and inverter 
1040 (FIG 21). 
Write Data Routing 

FIG. 25 is a block diagram illustrating the multiplexers 
corresponding with multiplexers 1010 and 1016 in CLE 
slices S0-S3, as well as function generators FF, and 
Go-G. These multiplexers are labeled with the reference 
numbers 1010 and 1016, where N is the number slice in 
which the multiplexers are located. For example, multiplex 
ers 1010 and 1016 in CLE slice S2 are labeled with the 
reference numbers 1010 and 1016, respectively. Many 
elements of CLE slices S0-S3 are not shown for purposes of 
clarity. In addition, the SHIFTIN input signals to multiplex 
ers 1010-1010 and the input signals from the Go-G 
function generators to multiplexers 1016-1016 are not 
shown in FIG. 25, as these signals are not material to the 
present embodiment. 

Each of multiplexers 1010-1010, is coupled to receive a 
corresponding one of alternate data input signals 
ALTDIGo-ALTDIG and a corresponding one of bypass 
signals BYo-BY. Each of multiplexers 1016-1016, is 
coupled to receive an output signal from a corresponding 
one of multiplexers 1010-1010 and a corresponding one 
of bypass signals BXo-BX. The output signals provided by 
multiplexers 1010-1010 are routed from CLE slices 
S0-S3 as data signals DIGo-DIG, respectively. Data signal 
DIG is routed to provide input data signals ALTDIG and 
ALTDIG in CLE slices S2 and S1. Data signal DIG is 
routed to provide input data signal ALTDIGo in CLE slice 
SO. 
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The output signals of multiplexers 1010-1010 are also 
provided to G function generators Go-G as write data input 
signals DINYo-DINY, respectively. The output signals of 
multiplexers 1016-1016 are provided to F function gen 
erators Fo-F, as write data input signals DINXo-DINX, 
respectively. 

Multiplexers 1010-1010 and 1016-1016 are con 
trolled as follows to route write data values to function 
generators Fo-F and Go-G. 
128x 
When CLB 1100 is to operate as a 128x1 RAM, multi 

plexers 1010-1010 and 1016-1016 are configured to 
route the bypass signal BY to the data input terminals of 
function generators FF and Go-G. As a result, DINY= 
DINX=DINY =DINX=DINY=DINX=DINY= 
DINXo-BYs. Note that the bypass signal BY is routed from 
CLE slice S3 to CLE slices S2 and S1 as the data signal 
DIG. Similarly, the bypass signal BY is routed from CLE 
slice S1 to CLE slice S0 as the data signal DIG. As 
described in more detail below, a write enable control signal 
will be applied to one of function generators Fo-F, and 
Go-G, thereby enabling the write data input signal (BY) to 
be written to this write-enabled function generator. The 
generation of this write enable control signal is controlled by 
the bypass signals BXo-BX and BYo-BY (i.e., the bypass 
signals other than BY). 
64x2, 64x1 
When CLB 1100 is to operate as a 64x2 RAM, the bypass 

signal BY operates as a first write data input signal, and the 
bypass signal BY operates as a second write data input 
signal. More specifically, multiplexers 1010-1010 and 
1060-1016 are configured to route the bypass signal BY 
to the write data input terminals of function generators 
Fo-F and Go-G. As a result, DINY=DINX=DINYo 
DINX=BY. Similarly, multiplexers 1010-1010 and 
1016-1016 are configured to route the bypass signal BY 
to the write data input terminals of function generators 
F-F and G-G. As a result, DINY=DINX=DINY= 
DINX=BY. 
As described in more detail below, during a write 

operation, a first write enable control signal is applied to one 
of function generators For F, Go and G, and a second write 
enable control signal is applied to a corresponding one of 
function generators F, F, G, and G. In response, the write 
input data signals (BY and BY) are written to the two 
function generators receiving the first and second write 
enable control signals. As described in more detail below, 
these first and second write enable control signals are 
generated in response to the bypass signals BXo-BX, BYo 
and BY (i.e., tie bypass signals not used as write data input 
signals). 
When CLB 1100 is to operate as a 64x1 RAM, CLE slices 

S0 and S1 are configured in the same manner described 
above for the 64x2 RAM. Thus, bypass signal BY is used 
as the write input data signal and the bypass signals 
BXo-BX and BY are used to generate the required write 
enable signal. In the 64x1 RAM configuration, function 
generators F-F and G-G are free to perform other 
functions. 
32x4, 32X2, 32xl. 
When CLB 1100 is to operate as a 32x4 RAM, the bypass 

signals BYo-BY operate as four write data input signals. 
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Thus, multiplexers 1010-1010 are configured to route the 
bypass signals BYo-BY to function generators Go-Go, 
respectively. Similarly, multiplexers 1016-1016 are con 
figured to route the bypass signals BYo-BY to function 
generators Fo-F, respectively. Thus, DINY=DINX=BY, 
DINY=DINX=BY DINY=DINX=BY, and DINYo 
DINX=BYo. 
As described in more detail below, during a write 

operation, a set of four write enable control signals is applied 
to either function generators Fo-F, or to function generators 
Go-G. In response, the write input data signals (BYo-BY) 
are written to the four function generators receiving the 
write enable control signals. As described in more detail 
below, the set of four write enable control signals are 
generated in response to the bypass signals BXo-BX (i.e., 
the bypass signals not used as write data input signals). 
When CLB 1100 is to operate as a 32x2 RAM, CLE slices 

S0 and S1 are configured in the same manner described 
above for the 32x4 RAM. Thus, bypass signals BYo and 
BY are used as the write input data signal and the bypass 
signals BXo-BX are used to generate the required write 
enable signals. In the 32X2 RAM configuration, function 
generators F-F and G-G are free to perform other 
functions. 

Similarly, when CLB 1100 is to operate as a 32xl RAM. 
CLE slice S0 is configured in the same manner described 
above for the 32x4 RAM. Thus, bypass signal BY is used 
as the write input data signal and the bypass signal BX is 
used to generate the required write enable signals. In the 
32x1 RAM configuration, function generators F-F and 
G-G are free to perform other functions. 

In the foregoing manner, multiplexers 1010-1010 and 
1016-1016 provide a structure that enables the flexible 
application of write data values to function generators Fo-F 
and Go-G. Advantageously, many variations are possible, 
even though each of the CLE slices S0-S3 has an identical 
transistor layout. 

In the 128x1, 64x2, 32X4, and 16x8 RAMS, the write 
address terminals WFO-WF3 and WGO.WG3 of each of the 
function generators F0-F3 and G0-G3 are coupled to 
receive the A-A address signals. This is because these 
configurations all have shared read and write addresses. 
However, these write address signals are only effective 
within the associated function generator if the write enable 
signal corresponding to the function generator is asserted 
low. 
Write Enable Control Signals 
The mechanism for generating the write enable control 

signals for the various RAMs will now be described. Within 
each CLE slice, a pair of write enable control signals are 
generated by write control circuit 1009 (FIG. 22). In the 
present description, the write control circuits in CLE slices 
S0-S3 are labeled as write control circuits 1009-1009, 
respectively. 

FIG. 26 is a circuit diagram of write control circuit 1009 
of CLE slice S0 in accordance with one embodiment of the 
present invention. Write control circuit 1009 includes 
NAND gates 2501-2502, multiplexers 2503-2504 and 
inverter 2505. If multiplexer 2503 is configured to route the 
SLICEWE0 signal, then multiplexer 2503 provides the 
SLICEWE0 signal to NAND gate 2502. If multiplexer 2504 
is configured to pass the output signal provided by inverter 
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2505, then multiplexer 2504 provides the inverse of the 
SLICEWE0 signal (SLICEWE0#) to NAND gate 2501. 
Under these conditions, the SLICEWE0 signal is said to be 
enabled within write control circuit 1009 (Note that if 
multiplexers 2503 and 2504 are configured to pass logic "1" 
values, then NAND gates 2501 and 2502 will receive these 
logic "l' values, thereby effectively disabling he 
SLICEWE0 signal). 

Assuming chat the SLICEWE0 signal is enabled in write 
control circuit 1009, NAND gate 2501 generates a write 
enable control signal WEG# in response to the SLICEWE2 
signal, the SLICEWE1 signal, and the SLICEWE0# signal. 
Similarly, NAND gate 2502 generates a write enable control 
signal WEF# in response to the SLICEWE2 signal, the 

O 
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and BY# signals at the BYOUT and BYINVOUT output 
terminals. 
128x 

The writes control structure of CLB 1100 operates as 
follows. When CLB 1100 is to be operated as a 128xl RAM, 
the bypass signals BYo-BY, BYoff-BY# and BX-BX 
provided to write control circuits 1009-1009 are all 
enabled. Bypass signals BXo-BX are identical, and corre 
spond with the fifth address signal As. Bypass signal BYo 
corresponds with the sixth address signal A and bypass 
signal BY corresponds with the seventh address signal A. 
Table below summarizes the manner in which write 
control circuits 1009-1009 assert the write enable signals 5 

SLICEWE1 signal, and the SLICEWE0 signal. The WEG#. WEG#-WEG#, and WEF# WEF# in response to the 
and WEF# write control signals are provided to the write address signals A-As. 

TABLE 1. 

A-As WEG#, WEF#, WEG#, WEF#, WEG#, WEF#, WEG#, WEF: 
000 O l l l 
00 O 1 
00 l O 1 
Oil l O 
100 O l 
Ol O 1 1. 
10 1. O l 

l 1 () 
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enable input terminals of function generators Go and Fo, As shown in Table 1, a different one of the function 
respectively. When one of the WEG# and WEF# write generators F0-F3, G0-G3 is write-enabled for each instance 
control signals is asserted LOW, a write operation is enabled of the address signals A-As. Thus, the addressing scheme 
in the corresponding function generator Go or Fo. As of the write control structure corresponds with the address 
described in more detail below, bypass output signals 35 ing scheme of the read control structure described above. 
BYOUT and inserted bypass output signals BYINVOUT are 64x2 or 64x1 
generally provided as the SLICEWE2 and SLICEWE1 When CLB 1100 is to be operated as a 64x2 or 64x1 
signals. The bypass output signals BXOUT are generally RAM, bypass signals BYo, BYofi, and BXo-BX, provided 
provided as the SLICEWE0 signals. to write control circuits 1009-1009 are enabled. Bypass 

FIG. 27 is a block diagram illustrating the write control 40 signals BY BY# provided to write control circuits 
circuits 1009-1009 and function generators Fo-F, Go-G 1009-1009 are disabled (i.e., set to logic “1” values) by 
in CLE sluices S0-S3 of CLB 1100 in accordance with the appropriately configuring the multiplexers 1030-1031 in 
described embodiment. The other elements of CLE slices CLE slice S1. As described above, bypass signal BY is used 
S0-S3 are not shown in FIG. 27 for purposes of clarity. as a write data value in this configuration. Bypass signals 
Write control circuit 1009, is connected to receive bypass BXo-BX, are identical, and correspond with the fifth 
signals BY, BYo, and BXo. Write control circuit 1009 is address signal As. Bypass signal BYo corresponds with the 
connected to receive bypass signals BY, BYofi, and BX. sixth address signal A. Table 2 below summarizes the 
Write control circuit 1009 is connected to receive bypass manner in which write control circuits 1009-1009 assert 
signals BYi, BYo and BX. Write control circuit 1009, is the write enable signals WEG#-WEG# and 
connected to receive bypass signals BY#, BYofi, and BX. WEF#o-WEF# in response to the address signals A-A- 

TABLE 2 

As-As WEG#, WEF#, WEG#, WEF#, WEG#, WEF#, WEG#, WEF# 
00 0 1 O l 
Ol O 1 O 1 
O 0 O 
1. l O () 

Referring to FIG. 21, it is noted that the BY and BY# As shown in Table 2, a different pair of the function 
bypass signals, which are provided as output signals at the generators F0-F3, G0-G3 is write-enabled for each instance 
BYOUT and BYINVOUT terminals, can be disabled (i.e., of the address signals A-As. Thus, the addressing scheme 
set at logic “1” values) by configuring multiplexers 1030 and 65 of the write control structure corresponds with the address 
1031 in the appropriate manner. Conversely, these multi 
plexers 1030 and 1031 can be configured to enable the BY 

ing scheme of the read control structure described above. 
32X4, 32X2 or 32x1 
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When CLB 1100 is to be operated as a 32X4, 32X2 or 
32xl RAM, the bypass signals BXo-BX provided to write 
control circuits 1009-1009, are enabled. Bypass signals 
BYo-BY and BYoff-BY# provided to write control cir 
cuits 1009-1009 are disabled (i.e., set to logic “1” values) 
by appropriately configuring the multiplexers 1030 and 
1031 in CLE slices S0-S3. As described above, bypass 
signals BY and BYo are used as write data values in this 
configuration. Bypass signals BXo-BX are identical, and 
correspond with the fifth address signal As. Table 3 below 
summarizes the manner in which write control circuits 
1009-1009 assert the write enable signals 
WEG#-WEG#, and WEF#-WEF# in response to the 
address signal 
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Address AA4:1) is also provided as a read address signal 
(i.e., F0-F3 or G0-G3) to function generators Fo and Go 

Address AB4:1 ) is provided as a write address signal 
(i.e., WF0–WF3 or WG0–WG3) to function generators F, 
G, F and G. Address AB(4:1) is also provided as a read 
address signal (i.e., F0-F3 or G0-G3) to function generators 
F and G. 

Address AC4:1 is provided as a read address signal (i.e., 
F0-F3 or G0-G3) to function generators F. and G. Address 
AD(4:1) is provided as a read address signal (i.e., F0-F3 or 
G0-G3 to function generators F and G. 
Note that in the above-described single-port 

embodiments, AA4:1 =AB4:1 =AC4:1 =AD4:1 = 
A-A. However, in the dual-port embodiments addressing 
is implemented as follows. 

TABLE 3 

As WEG#, WEF#, WEG#, WEF#, WEG#, WEF#, WEG# WEF# 
O O O l 0 0. l 
l O O l O O 

As shown in Table 3, a different set of four function 
generators is write-enabled for each instance of the address 
signal As. Thus, the addressing scheme of the write control 
structure corresponds with the addressing scheme of the read 
control structure described above. 

In the foregoing manner, the write enable signals are 
provided to function generators Fo-F and Go-G. 
Advantageously, a wide variety of write enable signal pat 
terns can be provided to the function generators Fo-F, and 
Go-G in the CLB 1100, with relatively little overhead. In 
addition, because the transistor layout of each of the CLE 
slices is identical, the layout and software configuration of 
the resulting FPGA is simplified. 
The functionality of the bypass signals BXo-BX and 

BYo-BY in the 128x1, 64x2, 32x4 and 16x8 RAM 
embodiments is summarized below in Table 4. 

TABLE 4 

Signal 128 x 64 x 2 32 x 4 6 x 

BY DATA DATA DATA DATA 
BY As As DATA DATA 
BY A7 DATA DATA DATA 
BYo As As DATA DATA 
BX. As As As DATA 
BX. As As As DATA 
BX As As As DATA 
BX As As As DATA 

In accordance with yet another embodiment of the present 
invention, CLB 1100 can be operated as a dual-port RAM of 
various sizes. In the above-described single-port RAM 
embodiments, the address signals A-A are provided to 
each of the function generators Fo-F and Go-G used to 
implement the single-port RAM. The routing of address 
signals A-A in the single-port embodiments is therefore 
straightforward. However, in the case of a dual-port 
implementation, the routing of the address signals A1-A4 
becomes more complex. 
FIG.28 is a block diagram of CLB 1100, which illustrates 

the connections to the four address inputs of function 
generators Fo-F and Go-G in accordance with one 
embodiment of the present invention. Address AA4:1) is 
provided as a write address signal (i.e., WF0-WF3 or 
WGO-WG3) to function generators F, G, F and G. 
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64x1 Dual-Port 
CLB 1100 can be configured to operate as a 64x dual 

port RAM in the following manner. In general, function 
generators FF and Go-Gi are used to implement a write 
port of the dual-sort memory, and function generators F-F 
and G-G are used to implement a read-only port of the 
dual-port memory. Note that data values can also be read 
from function generators FF and Go-G, thereby making 
the write port a read/write port, if desired. Data values are 
written to the 64x1 dual-port memory as follows. The write 
control circuits 1009-1009 are configured in the manner 
described above for a 64x2 RAM array. As a result, write 
enable signals are provided to pairs of function generators as 
shown in Table 2. Data input multiplexers 1010-1010 and 
1016-1016 are configured in the manner described above 
for a 64x2 RAM array. Thus, a single data signal is routed 
to both BY and BY, and is thus provided to the data input 
terminal of each of the function generators Fo-F, and 
Go-G. 
The desired write address signals A-A are applied to the 

write address terminals of function generators Fo-F and 
Go-G as address signals AA(4:1) and AB(4:1. As 
described above in connection with the 64x2 RAM, write 
operations will be enabled in one of function generators 
F-F and Go-G, and in a corresponding one of function 
generators F-F and G-G. For example, a write operation 
may be enabled in function generators F and F. (See, Table 
2). As a result, the data written to CLB 1100 is stored in two 
locations, namely, at one location in function generators 
Fo-F and Go-G, and at a corresponding location in func 
tion generators F-F and G-G. 

Data can be read from the read-only port of 64x1 dual 
port RAM as follows. The desired read address signals 
A-A are applied to the read address terminals of function 
generators FF and G-G as address signals AC(4:1) and 
AD(4:1). As a result, read operations will be enabled in all 
four of these function generators F-F and G-G at the 
address location identified by the read address signals 
A-A. The wide function multiplexers F5, F5 and FX 
are configured as described above in the 64x2 single-port 
RAM embodiment. These multiplexers F5, F5, and FX are 
controlled to select the appropriate read output signal from 
function generators F-F and G-G in response to the 
address signals. As and A. 
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32X2, 3 x 1 Dual-Port RAM 
CLB 1100 can be configured to operate as a 32x2 dual 

port memory in the following manner. In general, function 
generators F-F and Go-G and are used to implement a 
write port of the dual-port memory, and function generators 
F-F and G-G are used to implement a read-only port of 
the dual-port memory. Note that data values can also be read 
from function generators Fo-F and Go-G, thereby making 
the write port a read/write port, if desired. Data values are 
written to the 32X2 dual-port memory as follows. The write 
control circuits 1009-1009 are configured in the manner 
described above for a 32x4 RAM array. As a result, write 
enable signals are provided to sets of four function genera 
tors as shown in Table 3. Data input multiplexers 
1010-1010 and 1016-1016 are configured in the manner 
described above for a 32X4 RAM array. A first data signal 
(BY/BYo) is provided to the data input terminal of each of 
the function generators F. F. and Go, and G. A second data 
signal (BY/BY) is provided to the data input terminal of 
each of the function generators F, F, and G, and G. 
The desired write address signals A-A are applied to the 

write address terminals of function generators Fo-F and 
Go-G as address signals AA(4:1) and AB(4:1). As 
described above in connection with the 32X4 RAM, write 
operations will be enabled in one of the function generators 
in each of the CLE slices So-S. For example, write opera 
tions may be enabled at the address identified by write 
address A-A in function generators For F, F, and F (or 
in function generators Go G, G and G). (See, Table 3). As 
a result, the first data signal (BY/BY) written to CLB 1100 
is stored in two locations, namely, at one location in function 
generators Fo and Go and at a corresponding location in 
function generators F and G. Similarly, the second data 
signal (BY/BY) written to CLB 1100 is stored in two 
locations, namely, at one location in function generators F. 
and G and at a corresponding location in function genera 
tors F, and G. 

Data can be read from the read-only port of 32x2 dual 
port RAM as follows. The desired read address signals 
A-A are applied to the read address terminals of function 
generators F-F, and G-G as address signals AC(4:1) and 
AD(4:1). As a result, read operations will be enabled in all 
four of these function generators F-F, and G-G at the 
address location identified by the read address signals 
A-A. The wide function multiplexers F5-F5 are con 
figured as described above in the 32x4 single-port RAM 
embodiment. Multiplexers F5 and F5 are controlled to 
select the appropriate read output signal from function 
generators F-F and G-G in response to the address 
signal As. 
A32X1 dual-port RAM can be implemented by using only 

half of the 32X2 dual-port RAM. For example, a 32x1 
dual-port RAM can be implemented by using function 
generators Fo and Go to form the write port, and function 
generators F. and G to form the read-only port. 
16x4, 16x2, 16x1 Dual-Port RAM 
CLB 1100 be configured to operate as a 16x4 dual-port 

memory in the following manner. In general, function gen 
erators Fo-F and Go-G and are used to implement a write 
port of the dual-port memory, and function generators F-F 
and G-G are used to implement a read-only port of the 
dual-port memory. Note that data values can also be read 
from function generators Fo-F and Go-G, thereby making 
the write port a read/write port, if desired. Data values are 
written to the 16x4 dual-port memory as follows. The write 
control circuits 1009-1009 are configured in the manner 
described above for a 16x8 RAM array. The input data 
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values are routed through multiplexers 1010-1010 and 
1016-1016 to function generators Fo-F and Go-G as 
described above for a 16x8 RAM array. The desired write 
address signals A-A are applied to the write address 
terminals of function generators Fo-F and Go-G as 
address signals AA4:1) and AB4:1). As described above in 
connection with the 16x8 RAM, write operations will be 
enabled in each of the function generators in CLE slices 
So-S. As a result, a first bit written to CLB 1100 is stored 
in two locations, namely, at one location in function gen 
erator F and at a corresponding location in function gen 
erator F. Similarly, a second bit is stored at one location in 
function generator Go and at a corresponding location in 
function generator G. A third bit is stored at location in 
function generator F and at a corresponding location in 
function generator F. Finally, a fourth bit is red in one 
location in function generator G and a responding location 
in function generator G. 

Data can be read from the read-only port of 16x4 dual 
port RAM as follows. The desired read address signals 
A-A applied to the read address terminals of function 
generators F-F and G-G as address signals. AC4:1) and 
AD4:1). As a result, read operations will be enabled in all 
four of these function generators F-F, and G-G at the 
address location identified by the read address signals 
A-A. As described above in the 16x8 single-port RAM 
embodiment, these four signals are routed directly from the 
function generators as read output signals. 
A 16x2 or 16x1 dual-port RAM can be implemented by 

using only a half or a quarter, respectively, of the 16x8 
dual-port RAM. For example, a 16x1 dual-port RAM can be 
implemented by using function generator Fo to form the 
write port, and function generator F to form the read-only 
port. 

Numerous modifications and variations of the present 
invention are possible in light of the above teachings. 
Although FIGS. 7 and 10 show a memory cell programmed 
through only one node of the latch, the invention can also be 
used with memory cells in which some data signals are 
inverted and applied to both nodes of the latch, or in which 
different control signals are applied to different nodes of the 
latch. Further, in FIG. 10 the three transistors 706, 708, and 
707 can be implemented as a multiplexer receiving input 
signals on lines 704, 714, and 705. And transistors 706, 708, 
707, and 720 can be replaced by transmission gates. While 
particular multiplexer and demultiplexer implementations 
are shown, the invention can use other implementations as 
well. And, of course, different structures and methods for 
generating signals such as Phil, Phi2, and WS can be used 
with the invention. Further, although the above embodi 
ments show a single multiplexer with a single output ter 
minal for selecting one signal from a plurality of memory 
cells, other embodiments can select more than one memory 
cell from which to provide an output signal. And although 
FIGS. 19 and 20 show a CLB with lookup tables and 
multiplexers for generating functions of up to 8 input 
signals, other embodiments can use CLBs with more lookup 
tables and higher order multiplexers, for example CLBs with 
16 or 32 lookup tables with F9 and F10 multiplexers. A 
lookup table can have fewer or more than the 16 memory 
cells shown. For example, a 6-input lookup table would use 
64 memory cells (configurable as a shift register) and the 
combining multiplexers would start with F7. Further, 
although the cascading aspect of the invention has been 
discussed in comparison to FIG. 8, this aspect also applies 
to structures with demultiplexing, such as shown in FIG. 11. 
More fundamentally, although the above invention has been 
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described in connection with an FPGA, a shift register with 
cascade multiplexers can be formed in other structures than 
FPGAs, and formed not in connection with lookup tables, 

It is therefore to be understood that within the scope of the 
appended claims, the invention may be practiced otherwise 
than as specifically described above. 
We claim: 
1. A configurable logic block (CLB) comprising: 
a plurality of function generators, each having a read 

address port and a write address port and an output data 
terminal; 

a first set of multiplexers (F5, F5, FX) configured to 
route data values from the output data terminals of a 
first set of the function generators (For Go, F, GI); 

a second set of multiplexers (F5, F5, FX.) configured to 
route data values from the output data terminals of a 
second set of the function generators (F, G, F, G); 
and 

a first set of dedicated address lines (AA4:1) coupled to 
the read and write address ports of a third set of the 
function generators and to the write address ports of a 
fourth set of the function generators, wherein the third 
set of function generators is a subset of the first set of 
function generators, and the fourth set of function 
generators is a subset of the second set of function 
generators. 

2. The CLB of claim 1, further comprising a second set of 
dedicated address lines (AC4:1) coupled to the read 
address ports of the fourth set of function generators. 

3. The CLB of claim 1, further comprising a second set of 
dedicated address lines (AB4:1) coupled to the read and 
write address ports of a fifth set of the function generators 
and to the write address ports of a sixth set of the function 
generators, wherein the fifth set of function generators is a 
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subset of the first set of function generators, and the sixth set 
of function generators is a subset of the second set of 
function generators. 

4. The CLB of claim 3, further comprising a third set of 
dedicated address lines (AD(4:1) coupled to the read 
address ports of the sixth set of function generators. 

5. The CLB of claim 3, wherein the third and fifth sets of 
the function generators are mutually exclusive. 

6. The CLB of claim 5, wherein the fourth and sixth sets 
of the function generators are mutually exclusive. 

7. The CLB of claim 1, wherein the first set of multiplex 
ers comprises a plurality of hierarchically connected multi 
plexers. 

8. The CLB of claim 7, wherein the second set of 
multiplexers comprises a plurality of hierarchically con 
nected multiplexers. 

9. The CLB of claim 1, wherein the third and fourth sets 
of function generators form a dual-port random access 
memory (RAM). 

10. The CLB of claim 3, wherein the third, fourth, fifth 
and sixth sets of function generators form a dual-port 
random access memory (RAM). 

11. A configurable logic block (CLB) comprising: 
2' function generators, where N is an integer greater than 

one, each of the function generators having a write 
enable port; and 

a plurality of write control circuits, each being coupled to 
the write enable ports of a pair of the function 
generators, and each generating a pair of write control 
signals in response to N write control signals. 

12. The CLB of claim 11, further comprising circuitry for 
enabling and disabling at least one of the N write control 
signals. 


