
(12) United States Patent
Bauer et al.

HIH III
USOO6297665B

(10) Patent No.: US 6,297,665 B1
(45) Date of Patent: Oct. 2, 2001

(54) FPGA ARCHITECTURE WITH DUAL-PORT
DEEP LOOK-UP TABLE RAMS

(75) Inventors: Trevor J. Bauer; Steven P. Young,
both of San Jose, CA (US)

(73) Assignee: Xilinx, Inc., San Jose, CA (US)

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 0 days.

(21) Appl. No.: 09/574.445
(22) Filed: May 19, 2000

Related U.S. Application Data

(63) Continuation-in-part of application No. 09/253,313, filed on
Feb. 18, 1999, which is a continuation-in-part of application
No. 08/754,421, filed on Nov. 22, 1996, now Pat. No.
5,889,413.

(51) Int. Cl. ... H03K 19/177
(52) U.S. C. 326/40; 326/38
(58) Field of Search ... 326/37-4

(56) References Cited

U.S. PATENT DOCUMENTS

Re. 34,363 8/1993 Freeman.
4,821,233 4/989 Hsie.
4,870,302 9/1989 Freeman.
4,967,107 10/1990 Kaplinsky.
5,267,187 l 1993 Hsieh et al. .
5,29,079 3/1994 Goetting.
5,321,399 6/1994 Notain et al. .
5,325,109 61994 Duckworth.
5,343,406 8/1994 Freeman et al.
5,349,250 9/994 New .
5,352,940 10/1994 Watson.
5,386,156 fl95 Britto et al. .
5,394,031 2/1995 Britton et al. .
5.44,377 Sf1995 Freidi.
5,422,823 6/1995 Agrawal et al..
5.442,306 8/1995 Woo.

f396 Freeman et al. .
12/1997 Mahoney et al. .

OTHER PUBLICATIONS

5.488.316
5,694,056

Xilinx, Inc., “the Programmable Logic Data Book'', 1996,
available from Xilinx, Inc., 2100 Logic Drive, San Jose,
California 95124, pp. 4-1 through 4–372.
Xilinx, Inc., "The Programmable Logic Data Book 1999",
available from Xilinx, Inc., 200 Logic Drive, San Jose,
California 95124, pp. 3-1 to 3-60.

Primary Examiner-Michael Tokar
Assistant Examiner-Don Phu Le
(74) Attorney, Agent, or Firm-Edel M. Young
(57) ABSTRACT

A configurable logic block (CLB) having a plurality of
identical configurable logic element (CLE) slices is pro
vided. Each CLE slice includes a plurality of function
generators (lookup tables) that can be configured to form a
random access memory (RAM). The width and depth of the
RAM are selectable by controlling the routing of signals
within the CLE slices. A hierarchy of wide function multi
plexers (F5, F6, and F7 multiplexers) are provided to
selectively route read data values from the lookup tables.
Another set of multiplexers is used to selectively route write
data values to the lookup tables. These multiplexers can be
configured to provide a single write data value to all of the
lookup tables to form a deep RAM. Alternatively, these
multiplexers can be configured to provide one write data
value to half of the lookup tables, and another write data
value to the other half of the lookup tables. This pattern
repeats down to the level where these multiplexers can be
configured to provide a different write data value to each of
the lookup tables. A write control circuit is also provided in
each CLE slice to provide write enable signals to the lookup
tables in a manner consistent with the selected RAM size.
Read and write addresses are provided in a manner that
enables the CLB to be operated as a dual-port RAM having
selectable width and depth.

12 Claims, 20 Drawing Sheets

---. F7FF9Fs, NurPERADACENTCLB

Wr is a sm---i-(f7fdfx, in overadicates

US 6,297,665 B1 U.S. Patent

US 6,297,665 B1 Sheet 2 of 20 Oct. 2, 2001 U.S. Patent

WVN pue dmxoo"I JOJ [[90 KIOuIºIN KOL
„--- – – – – – + - - ~

US 6,297,665 B1 Sheet 3 of 20 Oct. 2, 2001 U.S. Patent

F-” – – – –*

U.S. Patent Oct. 2, 2001 Sheet 4 of 20 US 6,297,665 B1

<6
N

CD
m
s

re -a- ma

opious - u-hwan a

E E E E

- I em a in

US 6,297,665 B1 Sheet 5 of 20 Oct. 2, 2001 U.S. Patent

\ZI “?IH

?ou wvn 118-v0I “?IH

U.S. Patent Oct. 2, 2001 Sheet 6 of 20 US 6,297,665 B1

XIIITT T TO FIG. 13A
7343 FIG. 13B

7343 C. F.G. 13C

CTTCO FIG. 13D

Din FIG. 13E

Phi2 Il CT CIT Tl FIG. 13F

Phil 7 U F.G. 13G

F.G. 13H

1200 1204

REGISTER

F.G. 14

US 6,297,665 B1 Sheet 7 of 20 Oct. 2, 2001 U.S. Patent

EFTETETTIFTEDELEEF
??

VCCIP5)PS2P534 GNDP55P56

Fig.15 Prior Art

[] :Lr

P47

| = | #*BEEEEEEE| Ç| = | ?IT?T?T???T?JI (LEOTIZ?TIL GOTI?URIË

P45R16

9I “?IH

US 6,297.665 B1

| }}||||||||||||||||||||||||||||||||||||
##########?????#############? 008

U.S. Patent

f

:
r

y
w

e

US 6,297,665 B1 Sheet 11 of 20 Oct. 2, 2001 U.S. Patent

8.TO JIXRIN OL

U.S. Patent Oct. 2, 2001 Sheet 13 of 20 US 6,297,665 B1

SHIFTIN COUT

FXNB

: E g2 H G1

WGF
We ''
WG root ALTDG 5

E. A
BY 1011

C
SLICEWE2

SLICEWE w
SLICEWEO

i. F4

E-HE
F1

WF4
WF3
WF2 H
WF1

1O2

BX C

1. SHIFTOUT CN

FIG.21

BYOU
1031 FXNA P?i : Dt. BYNWOUT

FX
Y

DY

YG

DiG

F5

DX

XC

BXOUT

US 6,297,665 B1 Sheet 14 of 20 Oct. 2, 2001 U.S. Patent

- - - - - - - - - - - - - - - - - -

(F7) FROM FX, 1NUPPERADJACENT CLB
BY,

BX.

BY

BX.

BY,

BX,

BY

BX

(F7) To FX, IN LOWER ADJACENT CLB

FIG. 22

US 6,297,665 B1 Sheet 15 of 20 Oct. 2, 2001 U.S. Patent

S3
FX, Prs

(F8). FROM FX, INUPPERADJACEN CLB

3

| | | | | | | | | | | | | | | | | | l

(F6)

(F8)TOFX, IN LOWERADJACENTCLB
FIG. 23

U.S. Patent Oct. 2, 2001 Sheet 16 of 20 US 6,297,665 B1

(F7) FROM FX, INUPPER ADJACENT CLB

BY

BX,

BY

BX

FIG. 24 (F7)TOFX, IN LOWER ADJACENT CLB

U.S. Patent Oct. 2, 2001 Sheet 17 of 20 US 6,297,665 B1

tota----------
ALTDIG DINY,
BY, 3 DIG

3

BX.
S3 1016

- to----------
ALTDIG DINY G, | G BY D 2 DIG

2

DINX F
2 BX,

Se 1O1 6.

too----------
ALTDIG, DINY

BY, 1 DIG
1

BX,
S. 1016,

1010
ALTDIG DINY

BY O DIG
O

DNx BX

U.S. Patent Oct. 2, 2001 Sheet 18 of 20 US 6,297,665 B1

SLICEWE2

SLICEWE

SLICEWEO

FIG. 26

U.S. Patent Oct. 2, 2001 Sheet 19 of 20 US 6,297,665 B1

BYINVOUT - BY,h
WEG#, BYOUT - BY,
WC

BYINVOUT BY#
WEG#, BYOUTH BY,

BY, SLICEWE2
BYF SLICEWE1 WC
Bx, slicewEo 1009,

BY, SLICEWE2
BY SLICEWE1 WC
Bx. slicewEo 100 9

FIG. 27

U.S. Patent Oct. 2, 2001 Sheet 20 of 20 US 6,297,665 B1

AD(4:1)

GO-G3

WGO-WG3

AC4:1) FO-F3

WFO-WF3

AB(4:1)

AA4:1)

US 6,297,665 B1
1.

FPGAARCHITECTURE WITH IDUAL-PORT
DEEP LOOK-UP TABLE RAMS

RELATED APPLICATIONS

This application is a continuation-in-part of U.S. patent
application Ser, No. X-275-1P) 09/253,313 filed Feb. 18,
1999 which is a continuation in part of U.S. patent appli
cation Ser. No. 08/754,421 filed Nov. 22, 1996 now U.S.
Pat. No. 5.889,413 content of which is incorporated herein
by reference.

FIELD OF THE INVENTION

The present invention relates to an architecture for
enabling random access memory (RAM) structures in con
figurable logic blocks (CLBs) of a field programmable gate
array (FPGA).

BACKGROUND OF THE INVENTION

Xilinx, Inc. the assignee of the present application, manu
factures FPGAs, the complexity of which continues to
increase. Freeman in U.S. Pat. No. Reissue 34,363, incor
porated herein by reference, which is a re-issue of original
U.S. Pat. No. 4,870,302, describes the first FPGA. An FPGA
is an integrated circuit chip which includes a plurality of
programmable input/output pads, a plurality of configurable
logic elements, and a programmable interconnect structure
for interconnecting the plurality of logic elements and pads.
Each logic element implements a logic function of the n
inputs to the logic element according to how the logic
element has been configured. Logic functions may use all n
inputs to the logic element or may use only a subset thereof.
A few of the possible logic functions that a logic element can
be configured to implement are: AND, OR, XOR, NAND,
NOR, XNOR and mixed combinations of these functions.
One disclosed implementation of the logic element

includes a configurable lookup table which is internal to the
logic element and which includes 2" individual memory
cells, where n is the number of input signals the lookup table
can handle. At configuration, in this architecture a bitstream
programs the individual memory cells of the lookup table
with a desired function by writing the truth table of the
desired function to the individual memory cells. Although
the programming is described as being performed serially,
other techniques for parallel programming are also known.
One memory cell architecture appropriate for use in the

lookup tables is shown in FIG. 1 and described by Hsieh in
U.S. Pat. No. 4,821,233, incorporated herein by reference. A
memory cell of this architecture is programmed by applying
the value to be written to the memory cell on the data input
line, "Data," and strobing the corresponding address line,
"ADDR." Further, although this architecture uses five
transistors, other known configurations, e.g., six transistor
static memory cells, also are appropriate choices for imple
menting the memory cells of the lookup table. As shown in
FIG. 1, inverter 726 may be included to increase the drive of
memory cell 700, and avoid effecting the value stored in
memory cell 700 unintentionally via charge sharing with the
read decoder.

After configuration, to use a lookup table, the input lines
of the configured logic element act as address lines which
select a corresponding memory cell in the lookup table. For
example, a logic element configured to implement a two
input NAND gate would output the corresponding value
{1,1,1,0} contained in the one of the four memory cells
corresponding to the current input pair {00, 01, 10, 11},
respectively.

O

5

30

35

40

45

50

55

60

65

2
This selection is performed by a decoding multiplexer

which selects a memory cell from the lookup table on the
basis of the logic levels of the input lines. A block diagram
of an exemplary four-input lookup table composed of 16
memory cells 700 through 700 and a decoding multi
plexer 200 is shown in FIG. 2. The multiplexer propagates
a value stored in one of the memory cells 700-700 of the
lookup table to an output X of the lookup table as selected
by the four input signals F0-F3.

FIG. 3 is a schematic diagram of another embodiment of
a lookup table. In this embodiment, the lookup table is
implemented using four memory cells 700-700 and a
two-input decoding multiplexer 200 with two input signals,
F0 and F1. The two-input decoding multiplexer 200 is
shown in detail as being implemented by a hierarchy of pass
transistors which propagate the value stored in the selected
memory cell to the output X of the logic element. In FIG. 3,
the memory cells may be implemented as shown in FIG. 1.
The above architecture was later augmented to enhance

the functionality of the lookup tables. U.S. Pat. No. 5,343,
406 to Freeman et al., incorporated herein by reference,
describes how additional circuitry can enable lookup tables
to behave as random access memories (RAMs) which can be
both read and written after configuration of the logic device.
When the option of allowing the user to write data to
memory cells is available, there also must be provision for
entering the user's data into these memory cells and reading
from the memory cells. This capability is provided by
including two means for accessing each dual function
memory cell, one which is used to supply the configuration
bitstream from off the chip, and another which is used during
operation to storevalues from signals that are routed from
the interconnect Lines of the FPGA, FIG. 4 shows the
memory cell architecture described in U.S. Pat. No. 5,343,
406 which allows memory cell 750 to be programmed both
during and after configuration. During configuration,
memory cell 750 is programmed using the same process for
programming the memory cell of FIG. 1.

After configuration, memory cell 750 is programmed
differently. A value to be written to memory cell 750 is
applied through the interconnect structure of the FPGA to
the second data line 705, and then the corresponding write
strobe line WS for the memory cell is pulsed. This pulse
latches the value online 705 into memory cell 750. Like the
lookup table of FIG. 2 which uses a series of memory cells
from FIG. 1, a series of memory cells from FIG. 4 are
combinable into a lookup table.

FIG. 5 is a block diagram showing a four-input lookup
table with synchronous write capability. There is a write
strobe generator 504 which receives a clock signal, CK, and
a write enable signal, WE, and creates a single write strobe
signal, WS, for the lookup table. To write a value to a desired
memory cell, say 750s, the value is applied on line D and
the address of the desired memory cell 750s is applied to the
input lines F0-F3 of demultiplexer 500. The value then is
latched into the desired memory cell 750 by pulsing the
write strobe. Conversely, to read a value stored in a different
desired memory cell 750, the address of the memory cell
750 is applied to the input lines F0-F3 of decoding mul
tiplexer 200 (without pulsing the write strobe), as was
described with reference to FIGS. 2 and 3.

FIG. 6 is a schematic illustration of a two-input lookup
table with synchronous write capability. FIG. 6 includes four
memory cells 750, through 750. Detail of demultiplexer
500 and multiplexer 200 is shown in FIG. 6.
The implementation and operation of other logic array

devices are described in "The Programmable Logic Data

US 6,297,665 BI
3

Book," pages 4-1 to 4-372, copyright 1996 by Xilinx,
available from Xilinx, Inc., 2100 Logic Drive, San Jose,
Calif. 95124. This portion of "The Programmable Logic
Data Book' is incorporated herein by reference.
Because a 4-input lookup table is only capable of storing

16-bits of data, it would be desirable to have an architecture
that enables a plurality of lookup tables to be combined to
from larger random access memories (RAMs) of selectable
sizes. It would also be desirable if this architecture would
enable dual-port RAMs of selectable sizes. It would further
be desirable if this architecture did not significantly increase
the complexity of the configurable logic elements (CLEs) in
the FPGA.
One or more 4-input lookup tables, such as those illus

trated in FIGS. 2 and 5, are typically used to implement
combinatorial function generators in a configuration logic
element (CLE). Some CLEs include a function generator to
select between the outputs of two 4-input lookup tables in
order to enable the CLE to implement any 5-input function.
One such CLE, implemented in the Xilinx XC4000-Series
FPGAs, is described in pages 4-1 through 4-23 of the
Xilinx 1996 Data Book entitled "The Programmable Logic
Data Book", available front Xilinx, Inc., 2100 Logic Drive,
San Jose, Calif. 95224. The function generator can be
replaced by a 2-to-f multiplexer, with a signal selecting
between the outputs of the two 4-input lookup tables, as
disclosed in U.S. Pat. No. 5,349,250 entitled "Logic Struc
ture and Circuit for Fast Carry" by Bernard J. New. Replac
ing the function generator with a 2-to-1 multiplexer still
provides any function of up to five inputs and reduces the
silicon area required to implement a the function generator.
An FPGA using two 4-input lookup tables and a 2-to-1
multiplexer to implement a five input function generator is
the XC5200TM family of products from Xilinx, Inc. The
XC5200 CLE is described in pages 4-188 through 4-190 of
the Xilinx 1996 Data Book.
A configurable logic block (CLB) capable of generating

6-input functions is described as implemented in the VIR
TEXTM FPGAs from Xilinx Inc. This CLB includes two
CLE slices, and is described in "The Programmable Logic
Data Book 1999" pages 3-1 to 3-60, copyright 1999 by
Xilinx, available from Xilinx, Inc., 2100 Logic Drive, San
Jose, Calif. 95.24.

It would be desirable to have a CLE structure that is
capable of efficiently implementing functions larger than
6-input functions. It would further be desirable if this CLE
structure is easily expandable, without significantly increas
ing the complexity of the CLE structure.

SUMMARY OF THE INVENTION

The present invention provides means and method for
programming a configurable logic element so that the logic
element can implement any one of a shift register and a
combinatorial logic function using a lookup table. In one
embodiment, the invention further provides for implement
ing a random access memory in this same logic element. The
lookup table includes a plurality of memory cells which are
connected in series so that an output of a first memory cell
is configurable as an input to a second memory cell of the
same lookup table. Further, by connecting shift registers of
plural logic elements in series, larger shift registers can be
built from smaller shift registers. Previous architectures built
n-bit shift registers out of n flip flops connected in series,
thereby wasting interconnect resources and logic while
achieving mediocre performance.

In one mode, the memory cells which store the lookup
table values are used as registers in a shift chain. When the

O

5

35

40

45

50

55

65

4
logic element is in shift register mode, the Data-in value is
shifted into the first cell and the value in each memory cell
is, shifted to the next cell. When the logic element is in
random access memory mode, the Data-in value is written to
a cell addressed by F3-F0, as discussed above. When the
logic element is in pure lookup table mode, no value can be
written after configuration and the logic element continues
to generate the function loaded in during configuration.

According to another aspect of the invention, shift regis
ters formed in a single lookup table can be cascaded together
through cascade multiplexers to form larger shift registers.
Each cascade multiplexer receives two input signals, the
output signal from the last memory cell in a previous lookup
table, and an input signal from the interconnect :structure (or
other selectable source). The output signal from the cascade
multiplexer provides the input signal to the first memory cell
in the next lookup table.

According to yet another aspect of the invention, a
hierarchy of multiplexers is provided to generate functions
of more inputs than the lookup table can handle. For
example, a lookup table having 16 memory cells can gen
erate functions of four input signals. By combining the
outputs of two lookup tables in a multiplexer (FS) controlled
by a fifth input signal, any function of five input signals can
be generated. Using a sixth signal to select between the
outputs of two such FS multiplexers allows any function of
six input signals to be generated, and so forth. In one
embodiment, a configurable logic block (CLB) includes four
slices, each having two four-input lookup tables (a total of
eight lookup tables). The multiplexer hierarchy allows for all
functions of eight input signals to be generated by selecting
the output signal of one of the 16 lookup tables in a pair of
CLBs. In addition to the eight lookup tables that generate
functions of four input signals, the CLB includes four F5
multiplexers, where each FS multiplexer receives input
signals from two lookup tables and can generate all func
tions of give input signals when the two lookup tables
receive the same four input signals and the FS multiplexer is
controlled by the fifth input signal. The CLB also includes
two F6 multiplexers where each F6 multiplexer receives
input signals from two of the F5 multiplexers. The CLB
further includes an F7 multiplexer which receives the two F6
signals. The CLB also includes an F8 multiplexer which
receives the F7 multiplexer output signal and an F7 multi
plexer output signal from an adjacent CLB.

In one embodiment, this hierarchy of eight multiplexers is
controlled by the same lines that provide shift register input
signals. In this embodiment, the eight lookup tables are
paired into 4 slices so that the downstream lookup table in
each slice receives a shift register input signal on the line
that also controls the F5 multiplexer for the slice. The
upstream lookup table of the slice receives a shift register
input signal on the line that controls an F6, F7 or F8
multiplexer. This arrangement is advantageous because the
structure can be configured as a variable length shift register,
where the line carrying the most upstream signal is used for
loading shift register data and the more downstream lines all
control multiplexers.

In accordance with another embodiment of the present
invention, the plurality of function generators (lookup
tables) present in the CLB are configured to form a random
access memory (RAM). The width and depth of the RAM
are selectable by controlling the routing of signals within the
CLE slices. The hierarchy of multiplexers (e.g., the F5, F6,
F7 multiplexers) are used to selectively route read data
values from the lookup tables.

Another set of multiplexers is used to selectively route
write data values to the lookup tables. These multiplexers

US 6,297,665 B1
5

can be configured to provide a single write data value to all
of the lookup tables to form a deep RAM. Alternatively,
these multiplexers can be configured to provide one write
data value to half of the lookup tables, and another write data
value to the other half of the lookup tables. This pattern
repeats down to the level where these multiplexers can be
configured to provide a different write data value to each of
the lookup tables. Advantageously, each of the CLE slices
includes the same multiplexer pattern, and each lookup table
is accompanied by a corresponding multiplexer.
A write control circuit is also provided in each CLE slice

to provide write enable signals to the lookup tables in the
CLE slice. Each write control circuit generates the write
enable signals in response to a plurality of write control
signals received from various CLE slices. This advanta
geously enables the generation of many different patterns of
write enable signals. Advantageously, each of the CLE slices
includes an identical write control circuit.

Dedicated routing resources are provided to enable read
and write addresses to be provided to the CLE slices in a
manner that enables the CLB to be operated as a dual-port
RAM having selectable width and depth.
The present invention will be more fully understood in

view of the following description and drawings.
BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a schematic illustration of a first prior art
memory cell architecture used in lookup tables in FPGAs
where a value of the memory cell is stored during configu
ration.

FIG. 2 is a block diagram of a prior art programmable
4-input look-up table implemented by a sixteen-to-one
decoding multiplexer and a series of sixteen memory cells.

FIG. 3 is an expanded view of a schematic illustration of
a prior art two-input lookup table and a decoding multi
plexer implemented by a hierarchy of pass gates.

FIG. 4 is a schematic illustration of a second prior art
memory cell architecture used in lookup tables where the
value of the memory cell is stored at configuration and
remains dynamically readable and writable after configura
On.

FIG. 5 is a block diagram of a prior art logic element that
is configurable to implement either a sixteen-by-one random
access memory or a four-input lookup table.

FIG. 6 is a schematic illustration of a prior art logic
element that is configurable to implement either a four-bit
random access memory or a two-input lookup table.

FIG. 7 is a schematic illustration of a memory cell
architecture according to the present invention which can
alternatively be configured as a shift register or a lookup
table.

FIGS. 7A and 7B are waveform diagrams showing non
overlapping signals Phil and Phi2 which cause a bit value to
shift from a preceding memory cell into the current memory
cell when Phi2 is asserted.

FIG. 8 is a block diagram of a logic element according to
the invention that can implement either a four-input lookup
table or a 16-bit shift register.

FIG. 9 is a circuit diagram of a logic element according
to the invention that can implement either a 2-input lookup
table or a 4-bit shift register, where the mode of the logic
element controls the operation of the control logic, and may
be stored in configuration memory.

FIG. 10 is a schematic illustration of a memory cell for
implementing any of a lookup table, a shift register, or a
RAM.

O

5

30

35

40

45

50

55

65

6
FIG. 11 is a block diagram of a logic element that is

configurable to implement any one of a four-input lookup
table, a sixteen-bit shift register, and a sixteen-bit random
access memory. $

FIG. 12 is a schematic diagram of a logic element
according to the present invention that is configurable to
implement any one of a two-input lookup table, a four-bit
shift register, and a four-bit random access memory.

FIG. 13 comprising FIGS. 13A through 13H shows wave
form diagrams of the operation of the logic element when
configured in shift-register mode.

FIG. 14 is a block diagram of a logic element which
includes both a shift register and a flip-flop.

FIG. 15 is a block diagram of an FPGA.
FIG. 16 shows a 64-bit variable length shift register

formed by combining structures such as shown in FIG. 8.
FIG. 17 shows a 64-bit variable length shift register

formed using an architecture with an advantageous modifi
cation to the structure of FIG. 8.

FIG. 18 shows a logic slice structure from which the
64-bit variable length shift register of FIG. 17 can be
formed.

FIG. 19 shows a layout of wiring for cascading adjacent
lookup table slices by which interiors of adjacent lookup
table slices can be identically laid out.

FIG. 20 shows more detail of the structure of FIG. 19,
illustrating the lookup table structures.

FIG. 21 is a schematic diagram of a CLE slice S0 in
accordance with one embodiment of the present invention.

FIG. 22 is a block diagram illustrating a CLB that
includes four CLE slices S0-S3, each of which is identical
to the CLE slice S0 of FIG. 21.

FIG. 23 is a block diagram of a CLB in accordance with
another embodiment of the present invention.

FIG. 24 is a block diagram of a CLB in accordance with
yet another embodiment of the present invention.

FIG.25 is a block diagram illustrating selected multiplex
ers in the CLE slice of FIG. 21, as well as the associated
function generators.

FIG. 26 is a circuit diagram of the write control circuit of
the CLE slice of FIG. 21 in accordance with one embodi
ment of the present invention.
FIG. 27 is a block diagram illustrating the write control

circuits in the CLE slices of FIG.22 in accordance with one
embodiment of the present invention.

FIG. 28 is a block diagram illustrating the routing of the
address signals to the function generators in the CLE slices
of FIG. 22.

DETAILED DESCRIPTION
With an increase in logic gate density, a shift register can

now be implemented as one element of a larger user
configurable integrated circuit logic array. In a first embodi
ment of the present invention, a logic element is config
urable to implement both an n-bit shift register and a (log
n)-input lookup table. FIG. 7 shows a schematic illustration
of a memory cell 770 of the logic element architecture
according to the present invention which, when configured
to be in shift register mode, advantageously enables a value
to be shifted from a preceding memory cell 770, into the
memory cell 770. Memory cell 770 includes a pass tran
sistor 706. The configuration value is written into memory
cell 770 by pulsing configuration control line 702 of
transistor 706, while applying the configuration value to the
data line 704.

US 6,297,665 B1
7

The output of memory cell 770 is programmably con
nected to the input of a next memory cell 770 by pass
transistors 720, inverted 726, and a next pass transistor
708, not shown in FIG. 7. As shown by the timing diagrams
in FIGS. 7A and 7B, during most of each cycle the clocking
signal Phil on output control line 724 remains high, and thus
the output signal 734 of memory cell 770, is applied
through inverter 726 to shift input line 714 leading to the
next memory cell 770. When Phil goes low at time t1, pass
transistor 720 is turned off. Inverter 726 continues for a
short time to hold as an output signal the logic level
previously asserted by memory cell 770. In this way, the
combination of transistor 720 and inverter 726 serves as a
temporary latch. When a second clocking signal, Phi2 is
asserted at time t2 on input control line 716, inverter 701
receives both the output of inverter 703 of memory cell 770
and the output of inverter 726 of the previous memory cell
770. Each inverter 726 is designed to overpower the
inverter 703 so that values can be shifted between adjacent
memory cells. Therefore, the current value stored in memory
cell 770 is overwritten by the output of the previous
memory cell 770. When Phi2 returns low at time t3,
memory cell 770 is once again latched, holding its current
value independent of changes in shift input line 714. At
time tá, Phil goes high, thus applying the new value to
inverter 726. Thus in one clock cycle, a bit shifts on cell. In
contrast, if Phil and Phi2 mistakenly overlapped, the value
of the output 734 of each memory cell 770 would propagate
from preceding memory cell 700, through memory cell 770
to the next memory cell 770. This would not produce the
desired single bit shift. However, by using non-overlapping
two-phase clocking, as shown in FIGS. 7A and 7B, the
memory cells shift one bit per cycle of Phil and Phi2.

FIG. 8 shows a logic element which implements a 16-bit
shift register and 4-input lookup table according to a first
embodiment of the invention. For simplicity, in FIG. 8 the
structures within memory cells 770 of FIG.7 have not been
explicitly illustrated.

In FIG. 8, when in shift register mode, a first memory cell
770, of the memory is programmed with an initial value.
The memory cell's value may be over written with a new
value by applying the new value to the D terminal of the
first memory cell 770 and strobing the clock line, CK. The
strobing of CK in turn invokes the two-phase clocking cycle
of FIGS. 7A and 7B.. As data is moved synchronously from
left to right in the shift register, i.e., from the first memory
cell 700 to a last memory cell 700, the logic element can
continue to act as a lookup table though the function charges
with every clock cycle. As in the prior art lookup tables, the
decoding multiplexer 200 outputs on output line X the
contents of the memory cell selected by the user inputs, i.e.,
FO-F3.

FIG. 9 shows a structure for implementing a 2-input
lookup table or a 4-bit shift register, and shows internal
structure of multiplexer 200 and memory cells 770 through
770, FIG. 9 is oriented on the page the same way as FIG.
8, and thus assists in understanding the relationship between
the elements that make up the lookup table/shift register
embodiment.

In a second embodiment of the present invention, a logic
element is configurable to implement an n-bit shift register,
an n-bit random access memory, and a (log2 n)-input lookup
table. FIGS. 10-12 illustrate this embodiment. FIG. 0
illustrates the memory cell. The memory cell of FIG. 10 can
be loaded from three different sources. During configuration,
memory cell 790 is loaded by applying configuration data
to line 704 and strobing control line 702 of transistor 706.

O

15

30

35

40

45

50

55

65

8
When memory cell 790 is in shift register mode, it is loaded
through transistor 708, as discussed above. When memory
cell 790 is in RAM mode, it is loaded through demulti
plexer 500 on line 705. Write strobe line WS is pulsed,
turning on transistor 707, and thus applying a data signal to
node 730.

FIG. 11 shows a logic element which implements any one
of a 16-bit shift register, a 16-bit random access memory,
and 4-input lookup table according to the second embodi
ment of the present invention. In this embodiment, a
memory cell, say 790s, of the lookup table is programmed
with an initial value during configuration, as discussed
above. Subsequently, the initial value may be replaced in
either of two ways, depending on the mode of the logic
element: shift or RAM.
When the lookup table including memory cells 790 is

being used in RAM mode, each memory cell 790 receives its
data input on RAM input line 705. To write to any memory
cell 790, the write strobe line WS pulses, thereby driving the
value of Din through demultiplexer 500 into the addressed
memory cell via input line 730.
The operation of the logic element in each of these modes

is controlled by control logic 1000. Control bits which
specify whether the logic element is in RAM mode, shift
mode, or neither are inputs to control logic unit 1000.
Control logic unit 1000 also receives the user clock signal
and the write enable signal. From these inputs, control logic
unit 1000 outputs Phil, Phi2 and write strobe signal WS to
either shift data between memory cells, to write to a par
ticular memory cell, or to leave the memory cell data
untouched. When in shift register mode, as in FIG. 8, data
is moved synchronously from left to right in the shift
register, i.e., from the first memory cell 790 to a last
memory cell 790, as described above, by invoking a
two-phase clocking cycle when CK is strobed. On the other
hand, when the logic element is configured as a random
access memory (RAM), the addressing lines F0-F3 select
one of the memory cells (790, through 790) to be written
to and read from by using the demultiplexer 500 and the
decoding multiplexer 200, respectively. When in shift reg
ister mode, the first memory cell 790 receives as its input
the signal applied to line D. When in RAM mode, memory
cell 790 receives an input signal on line 705 from demul
tiplexer 500.

In RAM mode, to write to a given memory cell, say 700s,
the write enable line WE must be active. When the user
clock signal CK is asserted in conjunction with the active
WE signal, control logic unit 1000 generates a write strobe
WS. When the write strobe WS is high, memory cell 700
addressed by address lines F0-F3 of the demultiplexer 500
receives the value from data input line D. This value
overwrites the previous contents of the memory cell 700s.
No other memory cells receive the value applied to D since
they are not addressed and therefore separated from D by
high impedance connections from the demultiplexer 500.

FIG. 12 is a schematic illustration which shows more
detail of a logic element according to the second embodi
ment of the present invention. Collectively, demultiplexer
500, decoding multiplexer 200, pass transistors 708 and 720,
inverters 726, and RAM mode pass transistors 707 form an
interconnection network and are combined with memory
cells (790, through 790) and control logic unit 1000 to
implement the logic element according to the second
embodiment. If the logic element of the second embodiment
is not configured as a shift register, then the logic element
acts as either a random access memory or a lookup table. In

US 6,297,665 B1

either non-shift register mode, Phi2 is maintained at a low
level, deactivating pass transistors 708, thereby blocking
data from one memory cell 790, from affecting the next
memory cell 790. Also, in the non-shift register modes,
Phil is maintained at a high logic level, thereby feeding the
outputs of the memory cells (790 to 790) through to the
decoding multiplexer 200. As before, the output of the logic
element is selected by the decoding multiplexer 200 accord
ing to the user inputs F0 and F.
When the logic element of FIG. 12 is configured as a shift

register, the RAM mode pass transistors 707 are turned off
because WS is held low, isolating the memory cells from the
outputs of demultiplexer 500. Memory cell 790 is program
mably connected to D through transistor 708. To shift
values, control logic unit 1000 produces control signals Phil
and Phi2, triggered while the write enable signal is active by
a rising edge of the User Clock signal CK applied to control
logic unit 1000 such that values are shifted from one
memory cell to next memory cell, i.e., from memory cell
790 to memory cell 790, and from memory cell 790, to
memory cell 790. When control logic unit 1000 receives
a rising edge of the user clock signal, control logic unit 1000
first pulls Phil low, then pulses Phi2 high long enough to
overwrite the contents of the memory cells (790 to 790,
and lastly reasserts Phil after Phi2 has fallen. It is important
for extremely low clocking frequencies that Phi2 be only a
pulse since Phil must be off while Phi2 is on. To accomplish
this, the control logic is designed so that Phil and Phi2 do
not rely on the falling edge of the User Clock signal 1008,
but rather are self-timed.

FIG. 13 comprising FIGS. 13A through 13H are wave
form diagrams of the operation of the logic element of FIG.
12. When the logic element of FIG. 12 is configured in
shift-register mode, setting F1 to 1 and F0 to 0 makes it
function as a three-bit shift register. As shown in FIG. 13E,
the input, D, to the three-bit shift register is maintained
continuously at a high logic level throughout the example.
Upon receiving a rising edge 1104 of a first user clock pulse
1108, control logic unit 1000 pulls Phil to a low logic level,
as shown in FIG. 13G, to deactivate pass transistors 720
(FIG. 12). After temporarily having isolated the outputs 734
through 734 of the memory cells (790, through 790) from
inputs of inverters 726, through 726, the control logic unit
1000 asserts Phi2, which propagates outputs of inverters
726 through 726 to their corresponding next memory cells,
i.e., memory cells 790 through 790. When Phi2 is asserted,
the value on D is written to first memory cell 790. The
non-overlapping Phi2 pulse is shown in FIG. 13F. As shown
in FIG. 13D, the value stored in first memory cell 790,
(corresponding to 734) changes shortly after Phi2 is
asserted. This change is indicated by reference 1112. The
new value of output 734 of the first memory cell 790 does
not affect the second memory cell 790 (corresponding to
734) because Phil is temporarily inactive. After asserting
Phi2 long enough for the memory cells (790 to 790) to
reach their new states, Phi2 is lowered, thereby latching the
data values. Only after Phi2 has been lowered does control
logic unit 1000 raise Phil.
On receiving the rising edge of Phil, the values of outputs

734, through 734 again pass through pass transistors 720
through 720. Reference numeral 1116 shows that the
change in the output X of the three-bit shift register is
synchronized with the rising edge of Phil. As seen in FIGS.
13G and 13H, the reassertion of Phil and the lowering of the
User Clock are independent, thus logic designers need not
depend on exact timing relationships between these two
edges. Of course, Phil must be reasserted before the inputs
of inverters 726 through 726 float to an invalid voltage.

O

5

20

25

30

35

40

45

50

55

60

65

10
FIG. 14 is a block diagram of a logic element which

includes both a logic element 1200 and a flip-flop 1204. The
purpose of the flip-flop is to improve the clock-to-out delay
of the output of the logic element 1200. This is simple and
efficient in Xilinx FPGAs because function generators are
historically paired with flip-flops in Xilinx logic elements.
Further, when an n-bit, synchronous shift register is
required, the logic element can be configured so that the shift
register 1200 is an (n-1)-bit shift register and flip-flop 1204
is the final register of the n-bit shift register. When config
ured in this alternative fashion, the final bit XQ is available
upon the rising edge 1104 of the User Clock pulse 1108,
rather than on the rising edge 1116 of Phil. This provides a
faster clock-to-out time for the overall n-bit shift register.
By configuring the logic element to route XQ back to D,

the present invention can also perform circular shifts.
As discussed above (FIGS. 13A-13H), a shift register

having fewer stages than the number of memory cells in a
lookup table can be formed by directing a bit other than the
last bit to output terminal X. Lookup tables likewise may be
cascaded to create shift registers of a greater size than
supported by a single lookup table. For example, it is
possible to create a 20-bit shift register in a logic array
composed of 16-bit lookup tables by cascading two logic
elements. A first full 16-bit shift register 1200 and a second
full 16-bit shift register 1200 combine to produce a 32-bit
shift register. Thus, to achieve a 20-bit shift register, user
input lines F0-F3 of the first logic element are set to lill
and user input lines F0-F3 of the second logic element are
0011, i.e., the second 16-bit shift register 1200 is pro
grammed to pass the output of the fourth memory cell 790,
which is the final output of the 20-bit shift register.
Additionally, in order to improve the clock-to-out delay of
the cascaded shift registers, an alternate embodiment uses a
first full 16-bit shift register 1200 addressed to 1111, a
second full 16-bit shift register 1200 addressed to 0010 and
the flip-flop 1204. The output, X, of the second shift register
feeds the input of flip-flop 1204 of the second shift register.
If desired, the flip-flops 1204 can also be used to extend the
number bits that can be shifted within a logic element. Fully
utilizing both 16-bit shift registers 1200 and their flip-flops
1204, cascaded shift registers can be built which are 17-bit,
34-bit, 51-bit, etc.
The novel shift register logic element is typically imple

mented in an FPGA such as the FPGA of FIG. 15 having
logic blocks 101, each comprising a portion of an intercon
nect structure and a logic element. The FPGA of FIG. 15 is
further discussed by Tavana et al. in the application Ser, No.
08/618,445 incorporated herein by reference.

FIG. 16 shows a 64-bit variable length shift register
formed by combining structures such as shown in FIG. 8.
Variable length shift registers are desired when building
FIFOs (first-in-first-out storage devices).

Conventional FIFOs are commonly composed of a block
of RAM addressed by READ and WRITE pointers which
each increment through the block and cycle to the bottom
upon reaching the top. When a word is written (pushed) into
the FIFO, it is written to the address pointed to by the
WRITE pointer, and the WRITE pointer is then incremented
to point to the next address. When a word is read (popped)
from the FIFO, it is taken from the address pointed to by the
READ pointer and the READ pointer is incremented to the
next address. Thus the data in a RAM based FIFO are never
shifted. Rather, the READ and WRITE pointers are incre
mented independently.

In the present case using a shift register, whenever a
WRITE command is received, data are always written to one

US 6,297,665 Bl
11

location in a shift register and all other data are shifted one
step through the shift register. In response to a WRITE
command, a READ pointer is incremented. In response to a
READ command, the READ pointer is decremented. There
is no WRITE pointer. (The READ address represents the end
of the string of stored data.) Such a shift register can be used
to implement a variable length FIFO. If a shift register FIFO
is desired that is no more than 16 words deep, then such a
FIFO can be built in an FPGA using only one lookup table
configured as a shift register for each bit of the word to be
stored. If a FIFO is desired that can store more than 16
words, a structure such as shown in FIG. 16 must be built for
each bit of the word. For example, a 64-word FIFO with
8-bit words would require 8 of the structures shown in FIG.
16. The structure of FIG. 16 can store up to 64 bits, the
DATA bits being written from the left on data input line Din
and being read out on the line OUT.

However, because the architecture of FIG.8 provides only
a single output from each LUT, (outputs are labeled X and
Y), it is necessary to duplicate the data, an upper bank being
used to store data for writing to subsequent lookup tables,
and a lower hank being used for providing the particular data
bit that has been addressed during a READ operation. A long
shift register requires that the last sequential bit (770) of
each 16-bit shift register be shifted to the first bit of the
subsequent shift register, and that every bit be addressable
by the READ address applied to the LUT output multiplex
ers 200. (If the FIFO is nearly empty, the READ address
points to a memory cell near the left of the picture, for
example cell 770 of LUT-G of slice S63. If the FIFO is
nearly full, the READ address points to a memory cell near
the right of the picture, for example cell 770 of LUT-F of
slice S64.) Data bits are routed from one slice to another
using the general interconnect routing lines. (These lines are
illustrated using dotted lines to indicate that they are pro
grammably connectable and to distinguish from the routing
lines that are part of the slice itself.)

Using the architecture of FIG. 8, five slices S1 through S5
are used. A slice includes two lookup tables LUT-F and
LUT-G, each comprising 16 memory cells 770 through
770, a multiplexer 200-F or 200-G, four LUT input lines
F1 through F4 or G1 through G4 and a LUT output line X
or Y. The slice also includes a clocking structure 800
receiving write enable signal WE, clock input signal CK,
and a shift control signal from, for example, a configuration
memory cell. Clocking structure 800 generates two non
overlapping clocking signals Phil and Phi2, as discussed
earlier (See FIGS. 7A and 7B). These clocking signals Phil
and Phi2 operate to shift bits to the right in response to clock
signal CK when the shift memory cell contains a logic 1 and
when the write enable signal WE is logic 1. In order to
provide that the last bit 770 of lookup table LUT-G of slice
S61 is fed to lookup table LUT-F of slice S63, while
simultaneously allowing an addressed bit to be read from
any of four lookup tables (two in slice S63 and two in slice
S64), it is necessary to duplicate three of the four lookup
tables and to configure the lookup tables so that in one
lookup table the last bit is always routed out through
multiplexer 200-F or 200-G to the first bit of the next shift
register, and in the duplicate lookup table, the addressed bit
is read. Thus, the addressed bit is read from the addressed
lookup tables LUT G of slice S63, LUT-F of slice S63,
LUT-G of slice S64, or LUT-F of slice S64 while the last bit
of lookup table LUT-G of slice S61, LUT-F of slice S61, or
LUT-G of slice S62 is shifted in to the first bit of lookup
table LUT-F of slice S63, LUT-G of slice S64 of LUT-F of
slice S64, respectively, regardless of which address is being

10

5

30

35

45

50

55

60

65

12
read out. Since lookup table LUT-F of slice S64 is the last
in the chain, it is not necessary to form a duplicate in lookup
table LUT-F of slice S62. (Recall that the data stored in slice
S61 is identical to the data stored in slice S63, and the data
stored in LUT-G of slice S62 is identical to the data stored
in LUT-G of slice S64.)
As another aspect of the particular architecture of FIG. 8,

discussed by Young. Chaudhary, and Bauer in pending U.S.
patent application Ser. No. 08/806,997 the content of which
is incorporated herein by reference, multiplexers are
included for generating five (FS) and six (F6) input functions
by combining the outputs of the four-input lookup tables
LUT-F and LUT G. But in that described embodiment, the
same input signal that feeds the Din signal also serves as the
control signal on the F5 multiplexer. Thus, it is not possible
to use an address signal for controlling the F5 multiplexer
when also using that signal for supplying data. Thus a fifth
slice S65 is used. The LUT-F and LUT-G lookup tables and
an F5 multiplexer of slice S65 are configured to implement
a four-to-one multiplexer, the output signal from this mul
tiplexer being the addressed bit.

FIG. 17 shows a 64-bit variable length shift register
formed using an architecture with an advantageous modifi
cation to the structure of FIG. 8. By changing the architec
ture to add a two-to-one multiplexer to the data input of each
shift register and feeding the output signal of the last
memory cell of the previous shift register to that multiplexer
(in addition to the signal from the interconnect structure that
exists in FIG. 8), a variable length shift register can be
formed using no more than half the number of lookup tables
of FIG. 16. The structure of FIG. 17 is configured as a 64-bit
variable length shift register, just as is the structure of FIG.
16. But since the structure of FIG. 17 includes multiplexers
M71 and M72 as inputs to the respective lookup table shift
registers, each lookup table has both a variable-tap output
through multiplexer 200 and a fixed output from cell 770
This is advantageous for making a FIFO because each
lookup table now has the two outputs required when cas
cading together logic elements to build a long variable-tap
shift register, so no duplication of logic is required. And the
READ address dynamically addresses one of the 64 memory
cells via the four lookup table input signals and the F5 and
F6 multiplexers. Note that using the shift input of the newly
added multiplexer M71 or M72 allows the BY or BX input
of the newly added multiplexer to be used for another
function, in this case controlling an F5 or F6 multiplexer.

FIG. 18 shows a logic slice structure from which the
64-bit variable length shift register of FIG. 17 can be
formed, and in particular shows connections of the F5
multiplexer and another multiplexer labeled FX. A preferred
architecture combines four of these slices into one config
urable logic block (CLB). The FX multiplexer can be an F6.
F7, or F8 multiplexer, depending upon the position of the
illustrated slice in the CLB, where an F6 multiplexer selects
between outputs of two F5 multiplexers, an F7 multiplexer
selects from two F6 multiplexers, and an F8 multiplexer
selects from two F7 multiplexers. FIG. 18 illustrates that the
BX input signal goes two places: to multiplexer M72 and to
the control terminal of the FS multiplexer. Similarly, the BY
input signal goes to multiplexer M71 and to the control
terminal of the FX multiplexer. Note that the input signals to
the FX multiplexer are labeled FXin0 and FXinl. These
input signals come from other F5 or FX multiplexers within
the CLB, and hey are most conveniently illustrated in FIG.
19. In a preferred embodiment, a logic slice structure such
as that of FIG. 18 will include additional elements, for
example flip flops, fast carry circuits, and routing structures

US 6,297,665 B1
13

(see, for example, U.S. Pat. No. 5,267,187 to Hsieh et al.,
and U. S. Pat. No. 5,349.250 to New, as well as U.S. patent
application Ser. No. 03/806,997 referenced above).
However, to avoid obscuring the present invention, these
additional structures have not been shown here.

FIG. 19 shows a layout of wiring for cascading adjacent
lookup table slices by which interiors of adjacent lookup
table slices can be identically laid out and by which a single
input line BX or BY can serve a function in an earlier
architecture as well as a new function discussed here (so the
new architecture discussed here can implement designs that
have been implemented in the previous architecture illus
trated in FIG.16). FIG. 19 illustrates one configurable Logic
block (CLB) comprising four slices, each having two lookup
tables (LUTs). Each slice is equivalent to that of FIG. 18.
Whereas FIG. 18 shows one F5 multiplexer and one FX
multiplexer (in addition to the two M71 and M72 multi
plexers discussed earlier), FIG. 19 shows the different
interconnections to the FX multiplexer in different parts of
one CLB. These wide function multiplexers are now labeled
F6, F7, and F8 to show the number of input signals they can
provide all function of. Thus, the F8 multiplexer selects from
the output signals of two F7 multiplexers and an F7 multi
plexer selects from two F6 multiplexers and so on. The
lookup tables themselves provide all functions of four input
signals. Note that the F8 multiplexer receives one input
signal from the F7 multiplexer of its own CLB and another
input signal from the F7 multiplexer of an adjacent CLB.
Note also that one CLB includes four F5 multiplexers, two
F6 multiplexers, one F7 multiplexer, and one F8 multiplexer.
The novel and advantageous placement of these wide

function multiplexers always allows the control signal BX or
BY to serve the dual function of providing shift-in data and
controlling a corresponding multiplexer. This is because
only one of the BX or BY terminals will be used for shifting
in data to a shift register, and the sharing is arranged so that
the highest order multiplexer is placed at the beginning of
the shift register for that length. In the case of a 64-bit shift
register, two slices will be used (see FIG. 17). The address
will be six bits long and will use two FS multiplexers and
one F6 multiplexer. Looking at FIG. 19, this can be accom
plished in either the upper two slices S3 and S2 or in the
lower two slices S1 and S0. In either case, data will be
shifted in on line BY of slice S3 or S1, and multiplexer M71
of the slice will be set to receive the BY signal. The F7 or
F8 multiplexer will not be used since the desired output
signal is provided by the F6 multiplexer of slice S2 or S0.
Thus there is no conflict that the line used for controlling the
F7 or F8 multiplexer is used in this case as a data input line
to the shift register.

If a 128-bit shift register is desired, the entire CLB of FIG.
19 will be used. Data will be shifted in on the BY line of slice
S3 and the output signal will be taken from the F7 multi
plexer. The F8 multiplexer will not be used. Thus, again,
there is no conflict in the fact that the line used for control
ling multiplexer F8 is used to provide data to the shift
register. Similarly, if a 256-bit shift register is desired, two
CLBs of the type shown in FIG. 19 will be used, data being
shifted in to the upper of the two CLBs and the output signal
taken from the F8 multiplexer of the lower CLB. So again
there is no conflict. Knowing this relationship, architectures
can be provided having longer patterns of multiplexers for
providing larger functions. All this is possible because for
n-input lookup tables we need (n-1) lines for controlling
multiplexers and 1 line for shifting in data to a shift register.
The (n-1) multiplexer control signals plus 1 data-in signal
exactly match the n lines provided.

10

5

30

35

45

50

55

65

14
Shift registers of sizes other than powers of two can also

be formed by combining the appropriate number of slices.
For example, if a user wanted a 200-bit variable length shift
register, this could be implemented in seven slices using 13
LUTs, seven F5 multiplexers, four F6 multiplexers, two F7
multiplexers, and one F8 multiplexer. The three LUTs not
needed in the eight slices that feed the F8 multiplexer could
be used for other functions. To avoid generating an errone
ous output signal if one of the unused lookup tables is
addressed, the control inputs for the F5 and F6 multiplexers
associated with partially used slices are preferably tied to a
constant value.

FIG. 20 shows more detail of the structure of FIG. 19,
illustrating the lookup table structures and clocking struc
tures discussed earlier. Since the additional details of FIG.
20 have been discussed earlier, they are not discussed again
here.

FIG. 21 is a schematic diagram of CLE slice S0 in
accordance with one embodiment of the present invention.
CLE slice S0 includes G and F function generators 100 and
1002, exclusive OR gates 1003-1004, D–Q flip flops
1005-1006, AND gates 1007-1008, write control logic
1009, multiplexers 1010-1031, inverter 1040, and multi
plexers FS and FX. Slice S0 includes shift register circuitry
consistent with that described above. The shift input data
(e.g., SHIFTIN or BY) is provided to G function generator
1001 by multiplexer 1010. Data is shifted out of G function
generator 1001 to multiplexer 1016. Note that multiplexer
1016 is also coupled to the output terminals of multiplexers
1010 and 1012. Data is shifted into F function generator
1002 from multiplexer 1016. Data is then shifted out of F
function generator 1002 as the SHIFTOUT signal. Write
control circuit 1009 controls the writing of data values to G
and F function generators 1001 and 1002. Multiplexers
1010-1031 are configured to control the routing of the
various signals in slice S0.
F function generator 1002 can be configured to implement

a 4-input lookup table that provides an output signal F that
is any function of the input signals F4-F1. The output signal
F is routed to an input terminal of multiplexer FS. G
function generator 1001 can be configured to implement a
4-input lookup table that provides an output signal G' that is
any function of the input signals G4-G1. The output signal
G' is routed to another input terminal of multiplexer F5.
Multiplexer F5 is controlled by the bypass signal BX (or
BXi, which is the inverse of BX). By routing the signals
F1-F4 to the four input terminals of the G function generator
1001, multiplexer FS can be used to provide an output signal
F5" that can be any function of the five input signals F4-F1
and BX.
The output signal G' is also routed to an input terminal of

multiplexer 1025. In accordance with the described
embodiment, Multiplexer 1025 is configured to route the
output signal G' as the output signal Y.

Multiplexer FX is a 2-to-1 multiplexer having two input
terminals coupled to receive the FXA and FXB input signals,
which are provided by the general interconnect located
outside of CLE slice S0. Multiplexer FX is controlled by the
bypass signal BY (or BY#, which is the inverse of BY). As
described in more detail below, multiplexer FX is capable of
operating as any multiplexer wider than an F5 multiplexer
(i.e., F6, F7, F8, F9, F10, etc.), depending on the configu
ration of the CLE slice in a larger CLB circuit. These wider
multiplexers are capable of providing any function of greater
numbers of input signals. Thus, an F6 multiplexer is capable
of providing any function of up to six input signals, and an

US 6,297,665 B1
15

F10 multiplexer is capable of providing any function of up
to ten input signals. In the CLB circuit described below in
connection with FIG.22, the largest FX multiplexer is an F8
multiplexer.

FIG. 22 is a block diagram illustrating a CLB 1100 that
includes four CLE slices S0-S3, each of which is identical
to the CLE slice S0 of FIG. 21. FIG. 22 only illustrates G
and F function generators and multiplexers F5 and FX in
each of CLE slices S0-S3. Multiplexers FS and FX are
labeled as multiplexers F5 and FX in CLE slice SN. For
example, within CLE slice S2, multiplexers FS and FX are
labeled as multiplexers FS and FX. Similarly, the control
signals BX and BY are labeled as control signals BX and
BY in CLE slice SN.
The output terminals of multiplexers F5 and FS are

connected to the input terminals of multiplexer FX in CLE
slice S0. As a result, multiplexer FX is configured as an F6
multiplexer (i.e., a multiplexer capable of providing an
output signal that is any function of six input signals). This
F6 multiplexer is capable of providing an output signal that
is any function of the four F/G input signals to CLE slices
S0-S1 (note that the same four input signals are provided to
each F and G function generator in CLE slices S0 and S1),
the BX/BX input signal (note that the same input signal is
provided to control the F5 and F5 multiplexers), and the
BYo input signal.
The output terminals of multiplexers FS and FS are

connected to he input terminals of multiplexer FX in CLE
slice S2. As a result, multiplexer FX is also configured as
an F6 multiplexer. This F6 multiplexer is capable of pro
viding an output signal that is any function of the four F/G
input signals to CLE slices S2-S3 (note that the same four
input signals are provided to each F and G function genera
tor in CLE slices S2 and S3), the BX/BX input signal
(note that the same input signal is provided to control the F5.
and FS, multiplexers), and the BY input signal.
Because the F6 multiplexer has a total of 19 inputs, an F6

multiplexer can also be configured to provide some (but not
all) functions of up to 19 input signals. For example, the F6
multiplexer can be used to implement an 8-to-l multiplexer,
which is a function of ll input signals (i.e., 8 input signals-3
control signals).
The output terminals of F6 multiplexers FX and FX are

connected to the input terminals of multiplexer FX in CLE
slice S1. As a result, multiplexer FX is configured as an F7
multiplexer (i.e., a multiplexer capable of providing an
output signal that is any function of seven input signals).
This F7 multiplexer is capable of providing an output signal
that is any function of the four F/G input signals to CLE
slices S0-S3 (note that the same four input signals are
provided to each F and G function generator in CLE slices
S0-S3), the BX/BX/BX/BX input signal (note that the
same input signal is provided to control the FSo F5, F5.
and F5, multiplexers), the BY/BY input signal (note that
the same input signal is provided to control the FX and FX
multiplexers), and the BY input signal, which is provided
to control the FX multiplexer.

Because the F7 multiplexer has a total of 39 inputs, an F7
multiplexer can also be configured to provide some (but not
all) functions of up to 39 input signals. For example, the F7
multiplexer can be used to implement an 16-to-l
multiplexer, which is a function of 20 input signals (i.e., 16
input signals--4 control signals).
The output terminal of F7 multiplexer FX is connected to

an input terminal of multiplexer FX in CLE slice S3. The
other input terminal of multiplexer FX is connected to an

O

15

30

35

40

45

50

55

60

65

16
output terminal of an F7 multiplexer in an upper adjacent
CLB (not shown). The F7 multiplexer in the upper adjacent
CLB is configured in the same manner as multiplexer FX
in CLB 1100. Because multiplexer. FX is configured to
receive input signals from two F7 multiplexers, multiplexer
FX functions as an F8 multiplexer (i.e., a multiplexer
capable of providing an output signal that is any function of
eight input signals).

Because the F8 multiplexer has a total of 79 inputs, an F8
multiplexer can also be configured to provide some (but not
all) functions of up to 79 input signals. For example, the F8
multiplexer can be used to form a 32-to-1 multiplexer, which
is a function of 37 input signals (i.e., 32 input signals--5
control signals). In addition, the F8 multiplexer can be used
to form a 256-bit variable tap shift register. Note that the F8
multiplexer requires the use of 2 CLBs.
The output terminal of F7 multiplexer FX is also con

nected to a lower adjacent CLB. More specifically, the
output terminal of multiplexer FX is connected to an input
terminal corresponding to the upper input terminal of mul
tiplexer FX.
CLB 1100 is connected to a plurality of identical CLBs

1100, thereby providing an array of CLBs that are capable
of providing F5, F6, F7 and F8 functions. The structure of
the F8 multiplexer extends across CLB boundaries in a
regular manner. As a result, CLB 1100 can be connected to
either the upper adjacent CLB or the lower adjacent CLB to
implement an F8 multiplexer. This advantageously provides
flexibility in the configuration of the resulting FPGA.

In addition, each of the CLE slices in the various CLBs
has an identical logic (transistor) layout. This advanta
geously simplifies the configuration software of the resulting
FPGA, as well as the physical layout of the CLB array on a
silicon substrate.
The above-described CLB structure can be easily

expanded to provide for arbitrarily large functions. As
described above in connection with FIG. 22, an F8 multi
plexer structure can be created with four CLE slices. By
doubling the number of CLE slices per CLB, a multiplexer
structure having an additional input can be implemented.
Thus, an F9 multiplexer can be created with eight CLE slices
per CLB, and an F10 multiplexer can be created with sixteen
CLE slices per CLB.

FIG. 23 is a block diagram of a CLB 1200 in accordance
with another embodiment of the present invention. CLB
1200 includes eight CLE slices identical to CLE slice S0.
These slices S0-S7 are configured to provide a CLB array
that is capable of providing an F9 multiplexer that can
provide any function of up to nine input signals. CLE slices
S0-S7 of FIG.23 are Illustrated in the same manner as CLE
slices SO-S3 in FIG. 22.

In CLB 1200, multiplexers FX, FX, FX and FX are all
configured as F6 multiplexers. More specifically, the input
terminals of multiplexer FX are connected to the output
terminals of multiplexers FS and F5. The input terminals
of multiplexer FX are connected to the output terminals of
multiplexers F5, and F5. The input terminals of multiplexer
FX are connected to the output terminals of multiplexers
F5, and F5. The input terminals of multiplexer FX are
connected to the output terminals of multiplexers FS and
F5,.

Multiplexers FX and FXs are configured as F7 multi
plexers. More specifically, the input terminals of multiplexer
FX1 are connected to the output terminals of F6 multiplex
ers FX and FX. The input terminals of multiplexer FX are
connected to the output terminals of F6 multiplexers FX
and FX.

US 6,297,665 Bl
17

Multiplexer FX is configured as an F8 multiplexer. More
specifically the input terminals of multiplexer FX are
connected to the output terminals of F7 multiplexers FX
and FX.

Finally multiplexer FX is configured as an F9 multi
plexer. More specifically, one input terminal of multiplexer
FX, is connected to the output terminal of F8 multiplexer
FX. The other input terminal of multiplexer FX, is con
nected to the output terminal of an F8 multiplexer in an
upper adjacent CLB (not shown). This F8 multiplexer is
located in a CLE slice identical to CLE slice S3 of CLB
1200. Note that the output terminal of F8 multiplexer FX in
CLE 1200 is also routed to a lower adjacent CLB (not
shown). More specifically, the output terminal of multi
plexer FX is connected to the input terminal of the F9
multiplexer in the lower adjacent CLB.
The structure of the F9 multiplexer extends across CLB

boundaries. However, each of the CLE slices and each of the
CLBs are identical. This advantageously simplifies the con
figuration software of the resulting FPGA, as well as the
layout of the FPGA on silicon.

In FIG. 21, CLE slice 1100 is defined to include a pair of
function generators 1001-1002 and a pair of multiplexers F5
and FX. However, this is not necessary. In another
embodiment, each CLE slice includes a single function
generator and a single multiplexer that corresponds with
either multiplexer F5 or multiplexer FX. FIG. 24 is a block
diagram of a CLB 1200 in accordance with such an embodi
ment. CLB 1200 includes eight CLE slices So-S, wherein
each of the CLE slices So-S7 is defined to include one
function generator and a corresponding multiplexer. (The
other elements of CLE slices S-S are not shown for
purposes of clarity.) Similar elements in FIGS. 22 and 24 are
labeled with similar reference numbers. The CLB structures
illustrated by FIGS. 22 and 24 are similar. However, in FIG.
24, each of the F5 and FX multiplexers receives input
signals from the general interconnect structure, and does not
receive input signals from within the CLE slice. Thus, each
of CLE slices S-S includes a multiplexer that receives a
user-defined control signal (i.e., BX or BY) and input signals
from outside the CLE slice. (Note that a user-defined signal,
as used herein, is not a signal provided by a configuration
memory cell, but rather from a signal routed by the user on
the general interconnect structure.) These identical CLE
slices So-S7 can be cascaded as illustrated to form wide
function multiplexers (e.g., FS, F6, F7, and F8 multiplexers).

Returning to CLB 1100 of FIG. 22, in accordance with
another embodiment of the present invention, CLE slices
S0-S3 are connected in a manner that enables the function
generators Fo-F and Go-G in these CLE slices to be
selectively connected to form random access memories
(RAMs) of various sizes. As described above, each of the
CLE slices S0-S3 has an identical transistor layout, thereby
simplifying the design and configuration software of the
resulting FPGA. In the described embodiment, CLB 1100
includes four CLE slices S0-S3 that can be configured to
form RAMs having dimensions of 128x1, 64x2, 64x1,
32x4, 32X2, 32x1, 16x8, 16x4, 16x2 and 16x1. In other
embodiments, this CLB structure can be expanded to
include other numbers of CLE slices. In these embodiments,
RAMs having other dimensions can be implemented. The
manner of expanding the described CLB structure to include
other numbers of CLE slices will be apparent to one of
ordinary skill in the art in view of the following disclosure.
As described above, each 4-input F and G function

generator includes sixteen memory cells that can be

()

5

30

35

40

45

50

55

60

65

18
accessed in response to four address signals. In the described
example, each F function generator is addressed by four read
address signals F1-F4 and four write address signals
WF1-WF4. The read address signals F1-F4 are separate
from the write address signals WF1-WF4 to enable dual port
access to the F function generator. Each G function genera
tor is similarly configured to be accessed in response to read
address signals G1-G4 and write address signals
WG1-WG4.
Read Operations
To read one of the sixteen data values stored in an For G

function generator, a read address F1-F4 or G1-G4 is
applied to the function generator. In response, the F or G
function generator provides a data value corresponding to
the read address as an output signal F or G'.

In the described embodiment, multiplexers FX-FX and
F5-F5, of CLE slices S0-S3 are connected as described
above in connection with FIG. 22. As described in more
detail below, these multiplexers are used to route read data
values from function generators Fo-F and Go-G to an
appropriate output terminal.
128x1
More specifically, to operate CLB 1100 as a 128xl RAM,

the 128 memory cells in the Fo-F and Go-G function
generators of CLE slices S0-S3 are used to store 128 data
values. The Fo-F and Go-G function generators are
addressed by the same four read address signals (i.e., F1/G1,
F2/G2, F3/G3, F4/G4) during a read operation. These four
read address signals are hereinafter referred to as address
signals A-A. A single bypass signal (i.e., BX/BX/BX/
BX) is used to control multiplexers F5, F5, F5. and F5.
thereby selecting either the output signals of the Fo-F
function generators or the output signals of the Go-G
function generators. The bypass signal BX/BX/BX/BX.
is thereby used as a fifth address signal As. In the described
embodiment, if the fifth address signal As has a logic "I'
value, then multiplexers F5, F5, F5, and F5 route the
output signals of the Fo-F function generators. Conversely,
if the fifth address signal As has a logic “0” value, then
multiplexers F5, F5, F5, and F5 route the output signals
of the Go-G function generators.

Another bypass signal (i.e., BYo/BY) is used to control
F6 multiplexers FX and FX, thereby selecting either the
output signals of the FS and FS multiplexers or the output
signals of the F5 and F5 multiplexers. The bypass signal
BYo/BY is thereby used as a sixth address signal A. In the
described embodiment, if the sixth address signal A has a
logic “1” value, then multiplexers FX and FX route the
output signals of the FSo and F5 multiplexers, respectively.
Conversely, if the sixth address signal A has a logic “0”
value, then multiplexers FX and FX route the output
signals of the F5 and F5 multiplexers, respectively.

Another bypass signal (i.e., BY) is used to control F7
multiplexerFX, thereby selecting either the output signal of
F6 multiplexer FX or the output signal of F6 multiplexer
FX as the read data output signal. The bypass signal BY
is thereby used as a seventh address signal A. In the
described embodiment, if the seventh address signal A, has
a logic “1” value, then multiplexer FX routes the output
signal of the FX multiplexer as the read output data value.
Conversely, if the seventh address signal A has a logic “0”
value, then multiplexer FX routes the output signal of the
FX multiplexer as the read output data value.
As described in more detail below, the address signals

As-A are also, used to address the 128xl RAM during
write operations. As also described in more detail below, the
unused bypass signal BY is used to provide a write data
value to the 128x1 RAM during write operations.

US 6,297,665 B1
19

64x2, 64xl
To operate CLB 1100 as a 64x2 RAM, the 64 memory

cells in the Fo, Go F and G function generators of CLE
slices S0 and S1 are used to store a first set of 64 data values,
and the 64 memory cells in the F, G, F and G. function
generators of CLE slices S2 and S3 are used to store a
second set of 64 data values. In general, one of the 64 data
values in function generators Fo, Go, F and G is read out
through multiplexers FS F5 and FX as a first bit of the
two bit output signal. Similarly, a corresponding one of the
64 data values in function generators F, G, F and G is
read out through multiplexers FS F5, and FX as a second
bit of the two bit output signal.
More specifically, the Fo-F and Go-G function genera

tors are addressed by the same four read address signals
A-A during a read operation. Multiplexers F5-F5, are
controlled by the fifth address signal A (i.e., BX/BX/
BX/BX), such that these multiplexers select either the
output signals of the Fo-F function generators or the output
signals of the Go-G function generators. F6 multiplexers
FX and FX are controlled by the sixth address signal A
(i.e., BYo/BY), such that these multiplexers select either the
output signals of multiplexers FSo and F5 or the output
signals of multiplexers FS and F5. In this manner, F6
multiplexer FX provides one bit of the read output signal,
and F6 multiplexer FX provides the other bit of the read
output signal in the 64x2 RAM.
As described in more detail below, the address signals

As-A are also used to address the 64x2 RAM during write
operations. As also described in more detail below, the
unused bypass signals BY and BY are used to provide
write data values to the 64x2 RAM.
A 64x1 RAM, which uses only CLE slices S0 and S1, is

a subset of the 64x2 RAM, which uses CLE slices S0, S1,
S2, and S3. The 64xl RAM is accessed in the same manner
as the 64x2 RAM. An independent 64x1 RAM can not be
implemented in S2 and S3 because the write addresses of S2
and S3 are tied to S0 and S1.
32x4, 32X2, 32X
To operate CLB 1100 as a 32x4 RAM, the 32 memory

cells in the Fo and Go function generators of CLE slice S0
are used to store a first set of 32 data values, the 32 memory
cells in the F and G function generators of CLE slice S1
are used to store a second set of 32 data values, the 32
memory cells in the F and G. function generators of CLE
slice S2 are used to store a third set of 32 data values, and
the 32 memory cells in the F and G. function generators of
CLE slice S3 are used to store a fourth set of 32 data values.

In general, one of the 32 data values in function genera
tors Fo and Go is read out through multiplexer FSo as a first
bit of the four bit output signal. Similarly, a corresponding
one of the 32 data values in function generators F and G
is read out through multiplexer F5 as a second bit of the
four bit output signal. A corresponding one of the 32 data
values in function generators F and G is read out through
multiplexer FS, as a third bit of the four bit output signal.
Finally, a corresponding one of the 32 data values in
function generators F and G is read out through multi
plexer F5 as a fourth bit of the four bit output signal.
More specifically, the Fo-F and GoG function genera

tors are addressed by the same four read address signals
A-A during a react operation. Multiplexers FS-F5 are
controlled by the fifth address signal A (i.e., BX/BX/
BX/BX), such that these multiplexers select either the
output signals of the Fo-F function generators or the output
signals of the Go-G function generators. In this manner,
multiplexers FS-F5 provide the four bits of the read output
signal in the 32x4 RAM.

5

O

15

30

35

40

45

50

55

60

65

20
As described in more detail below, the address signal As

is also used to address the 32x4 RAM during write opera
tions. As also described in more detail below, the unused
bypass signals BYo-BY are used to provide write data
values to the 32x4 RAM.
A 32X2 RAM is a subset of the 32x4 RAM, which uses

only CLE slices S0 and S1. Similarly, a 32X 1 RAM is a
subset of the 32x4 RAM, which uses only CLE slice S0. The
32X2 and 32xl RAMs are accessed in the same manner as
the 32x4 RAM.
16X8, 6x4, 16x2, 16x1

It is noted that CLB 1100 can be operated as a 16x8, 16x4,
16X2 or 16xl RAM by using the data values read directly
out of the lookup tables F0-F3 and G0-G3. In these RAMs.
it is not necessary to use multiplexers F5-F5, and FX-FX,
to Select the read data values. As described in more detail
below, in the 16X8, 6x4, 16x2 or 16x1 RAMs, the unused
bypass signals BXo-BX and BYo-BY are used to provide
up to eight write data values to the 16x8 RAM.

In the foregoing manner, read data values for 128x,
64x2, 64Xl, 32X4, 32X2, 32x1, 16x8, 16x4, 16x2 and 16xl
RAMs can be routed out of CLB 1100 through multiplexers
F5-F5, and FX-FX.
Write Operations

In order to operate CLE 1100 as a 128x1, 64x2, 64x1,
32X4, 32X2, 32X, 6x8, 6x4, 16x2 and 16xl RAM, it is
necessary to provide a mechanism for routing input data
values to the function generators Fo-F, and Go-G in a
manner consistent with the various RAM configurations. As
described in more detail below, this mechanism is largely
provided by multiplexers 1010 and 1016 of CLE slice S0
(FIG. 21).

In addition, it is necessary to provide a mechanism for
providing write enable signals to the various function gen
erators Fo-F and Go-G in a manner consistent with the
various RAM configurations. As described in more detail
below, this mechanism is largely provided by write control
logic 1009, along with multiplexers 1030-1031 and inverter
1040 (FIG 21).
Write Data Routing

FIG. 25 is a block diagram illustrating the multiplexers
corresponding with multiplexers 1010 and 1016 in CLE
slices S0-S3, as well as function generators FF, and
Go-G. These multiplexers are labeled with the reference
numbers 1010 and 1016, where N is the number slice in
which the multiplexers are located. For example, multiplex
ers 1010 and 1016 in CLE slice S2 are labeled with the
reference numbers 1010 and 1016, respectively. Many
elements of CLE slices S0-S3 are not shown for purposes of
clarity. In addition, the SHIFTIN input signals to multiplex
ers 1010-1010 and the input signals from the Go-G
function generators to multiplexers 1016-1016 are not
shown in FIG. 25, as these signals are not material to the
present embodiment.

Each of multiplexers 1010-1010, is coupled to receive a
corresponding one of alternate data input signals
ALTDIGo-ALTDIG and a corresponding one of bypass
signals BYo-BY. Each of multiplexers 1016-1016, is
coupled to receive an output signal from a corresponding
one of multiplexers 1010-1010 and a corresponding one
of bypass signals BXo-BX. The output signals provided by
multiplexers 1010-1010 are routed from CLE slices
S0-S3 as data signals DIGo-DIG, respectively. Data signal
DIG is routed to provide input data signals ALTDIG and
ALTDIG in CLE slices S2 and S1. Data signal DIG is
routed to provide input data signal ALTDIGo in CLE slice
SO.

US 6,297,665 B1
21

The output signals of multiplexers 1010-1010 are also
provided to G function generators Go-G as write data input
signals DINYo-DINY, respectively. The output signals of
multiplexers 1016-1016 are provided to F function gen
erators Fo-F, as write data input signals DINXo-DINX,
respectively.

Multiplexers 1010-1010 and 1016-1016 are con
trolled as follows to route write data values to function
generators Fo-F and Go-G.
128x
When CLB 1100 is to operate as a 128x1 RAM, multi

plexers 1010-1010 and 1016-1016 are configured to
route the bypass signal BY to the data input terminals of
function generators FF and Go-G. As a result, DINY=
DINX=DINY =DINX=DINY=DINX=DINY=
DINXo-BYs. Note that the bypass signal BY is routed from
CLE slice S3 to CLE slices S2 and S1 as the data signal
DIG. Similarly, the bypass signal BY is routed from CLE
slice S1 to CLE slice S0 as the data signal DIG. As
described in more detail below, a write enable control signal
will be applied to one of function generators Fo-F, and
Go-G, thereby enabling the write data input signal (BY) to
be written to this write-enabled function generator. The
generation of this write enable control signal is controlled by
the bypass signals BXo-BX and BYo-BY (i.e., the bypass
signals other than BY).
64x2, 64x1
When CLB 1100 is to operate as a 64x2 RAM, the bypass

signal BY operates as a first write data input signal, and the
bypass signal BY operates as a second write data input
signal. More specifically, multiplexers 1010-1010 and
1060-1016 are configured to route the bypass signal BY
to the write data input terminals of function generators
Fo-F and Go-G. As a result, DINY=DINX=DINYo
DINX=BY. Similarly, multiplexers 1010-1010 and
1016-1016 are configured to route the bypass signal BY
to the write data input terminals of function generators
F-F and G-G. As a result, DINY=DINX=DINY=
DINX=BY.
As described in more detail below, during a write

operation, a first write enable control signal is applied to one
of function generators For F, Go and G, and a second write
enable control signal is applied to a corresponding one of
function generators F, F, G, and G. In response, the write
input data signals (BY and BY) are written to the two
function generators receiving the first and second write
enable control signals. As described in more detail below,
these first and second write enable control signals are
generated in response to the bypass signals BXo-BX, BYo
and BY (i.e., tie bypass signals not used as write data input
signals).
When CLB 1100 is to operate as a 64x1 RAM, CLE slices

S0 and S1 are configured in the same manner described
above for the 64x2 RAM. Thus, bypass signal BY is used
as the write input data signal and the bypass signals
BXo-BX and BY are used to generate the required write
enable signal. In the 64x1 RAM configuration, function
generators F-F and G-G are free to perform other
functions.
32x4, 32X2, 32xl.
When CLB 1100 is to operate as a 32x4 RAM, the bypass

signals BYo-BY operate as four write data input signals.

10

5

30

35

45

50

55

60

65

22
Thus, multiplexers 1010-1010 are configured to route the
bypass signals BYo-BY to function generators Go-Go,
respectively. Similarly, multiplexers 1016-1016 are con
figured to route the bypass signals BYo-BY to function
generators Fo-F, respectively. Thus, DINY=DINX=BY,
DINY=DINX=BY DINY=DINX=BY, and DINYo
DINX=BYo.
As described in more detail below, during a write

operation, a set of four write enable control signals is applied
to either function generators Fo-F, or to function generators
Go-G. In response, the write input data signals (BYo-BY)
are written to the four function generators receiving the
write enable control signals. As described in more detail
below, the set of four write enable control signals are
generated in response to the bypass signals BXo-BX (i.e.,
the bypass signals not used as write data input signals).
When CLB 1100 is to operate as a 32x2 RAM, CLE slices

S0 and S1 are configured in the same manner described
above for the 32x4 RAM. Thus, bypass signals BYo and
BY are used as the write input data signal and the bypass
signals BXo-BX are used to generate the required write
enable signals. In the 32X2 RAM configuration, function
generators F-F and G-G are free to perform other
functions.

Similarly, when CLB 1100 is to operate as a 32xl RAM.
CLE slice S0 is configured in the same manner described
above for the 32x4 RAM. Thus, bypass signal BY is used
as the write input data signal and the bypass signal BX is
used to generate the required write enable signals. In the
32x1 RAM configuration, function generators F-F and
G-G are free to perform other functions.

In the foregoing manner, multiplexers 1010-1010 and
1016-1016 provide a structure that enables the flexible
application of write data values to function generators Fo-F
and Go-G. Advantageously, many variations are possible,
even though each of the CLE slices S0-S3 has an identical
transistor layout.

In the 128x1, 64x2, 32X4, and 16x8 RAMS, the write
address terminals WFO-WF3 and WGO.WG3 of each of the
function generators F0-F3 and G0-G3 are coupled to
receive the A-A address signals. This is because these
configurations all have shared read and write addresses.
However, these write address signals are only effective
within the associated function generator if the write enable
signal corresponding to the function generator is asserted
low.
Write Enable Control Signals
The mechanism for generating the write enable control

signals for the various RAMs will now be described. Within
each CLE slice, a pair of write enable control signals are
generated by write control circuit 1009 (FIG. 22). In the
present description, the write control circuits in CLE slices
S0-S3 are labeled as write control circuits 1009-1009,
respectively.

FIG. 26 is a circuit diagram of write control circuit 1009
of CLE slice S0 in accordance with one embodiment of the
present invention. Write control circuit 1009 includes
NAND gates 2501-2502, multiplexers 2503-2504 and
inverter 2505. If multiplexer 2503 is configured to route the
SLICEWE0 signal, then multiplexer 2503 provides the
SLICEWE0 signal to NAND gate 2502. If multiplexer 2504
is configured to pass the output signal provided by inverter

US 6,297,665 Bl
23

2505, then multiplexer 2504 provides the inverse of the
SLICEWE0 signal (SLICEWE0#) to NAND gate 2501.
Under these conditions, the SLICEWE0 signal is said to be
enabled within write control circuit 1009 (Note that if
multiplexers 2503 and 2504 are configured to pass logic "1"
values, then NAND gates 2501 and 2502 will receive these
logic "l' values, thereby effectively disabling he
SLICEWE0 signal).

Assuming chat the SLICEWE0 signal is enabled in write
control circuit 1009, NAND gate 2501 generates a write
enable control signal WEG# in response to the SLICEWE2
signal, the SLICEWE1 signal, and the SLICEWE0# signal.
Similarly, NAND gate 2502 generates a write enable control
signal WEF# in response to the SLICEWE2 signal, the

O

24
and BY# signals at the BYOUT and BYINVOUT output
terminals.
128x

The writes control structure of CLB 1100 operates as
follows. When CLB 1100 is to be operated as a 128xl RAM,
the bypass signals BYo-BY, BYoff-BY# and BX-BX
provided to write control circuits 1009-1009 are all
enabled. Bypass signals BXo-BX are identical, and corre
spond with the fifth address signal As. Bypass signal BYo
corresponds with the sixth address signal A and bypass
signal BY corresponds with the seventh address signal A.
Table below summarizes the manner in which write
control circuits 1009-1009 assert the write enable signals 5

SLICEWE1 signal, and the SLICEWE0 signal. The WEG#. WEG#-WEG#, and WEF# WEF# in response to the
and WEF# write control signals are provided to the write address signals A-As.

TABLE 1.

A-As WEG#, WEF#, WEG#, WEF#, WEG#, WEF#, WEG#, WEF:
000 O l l l
00 O 1
00 l O 1
Oil l O
100 O l
Ol O 1 1.
10 1. O l

l 1 ()

30

enable input terminals of function generators Go and Fo, As shown in Table 1, a different one of the function
respectively. When one of the WEG# and WEF# write generators F0-F3, G0-G3 is write-enabled for each instance
control signals is asserted LOW, a write operation is enabled of the address signals A-As. Thus, the addressing scheme
in the corresponding function generator Go or Fo. As of the write control structure corresponds with the address
described in more detail below, bypass output signals 35 ing scheme of the read control structure described above.
BYOUT and inserted bypass output signals BYINVOUT are 64x2 or 64x1
generally provided as the SLICEWE2 and SLICEWE1 When CLB 1100 is to be operated as a 64x2 or 64x1
signals. The bypass output signals BXOUT are generally RAM, bypass signals BYo, BYofi, and BXo-BX, provided
provided as the SLICEWE0 signals. to write control circuits 1009-1009 are enabled. Bypass

FIG. 27 is a block diagram illustrating the write control 40 signals BY BY# provided to write control circuits
circuits 1009-1009 and function generators Fo-F, Go-G 1009-1009 are disabled (i.e., set to logic “1” values) by
in CLE sluices S0-S3 of CLB 1100 in accordance with the appropriately configuring the multiplexers 1030-1031 in
described embodiment. The other elements of CLE slices CLE slice S1. As described above, bypass signal BY is used
S0-S3 are not shown in FIG. 27 for purposes of clarity. as a write data value in this configuration. Bypass signals
Write control circuit 1009, is connected to receive bypass BXo-BX, are identical, and correspond with the fifth
signals BY, BYo, and BXo. Write control circuit 1009 is address signal As. Bypass signal BYo corresponds with the
connected to receive bypass signals BY, BYofi, and BX. sixth address signal A. Table 2 below summarizes the
Write control circuit 1009 is connected to receive bypass manner in which write control circuits 1009-1009 assert
signals BYi, BYo and BX. Write control circuit 1009, is the write enable signals WEG#-WEG# and
connected to receive bypass signals BY#, BYofi, and BX. WEF#o-WEF# in response to the address signals A-A-

TABLE 2

As-As WEG#, WEF#, WEG#, WEF#, WEG#, WEF#, WEG#, WEF#
00 0 1 O l
Ol O 1 O 1
O 0 O
1. l O ()

Referring to FIG. 21, it is noted that the BY and BY# As shown in Table 2, a different pair of the function
bypass signals, which are provided as output signals at the generators F0-F3, G0-G3 is write-enabled for each instance
BYOUT and BYINVOUT terminals, can be disabled (i.e., of the address signals A-As. Thus, the addressing scheme
set at logic “1” values) by configuring multiplexers 1030 and 65 of the write control structure corresponds with the address
1031 in the appropriate manner. Conversely, these multi
plexers 1030 and 1031 can be configured to enable the BY

ing scheme of the read control structure described above.
32X4, 32X2 or 32x1

US 6,297,665 B1
25

When CLB 1100 is to be operated as a 32X4, 32X2 or
32xl RAM, the bypass signals BXo-BX provided to write
control circuits 1009-1009, are enabled. Bypass signals
BYo-BY and BYoff-BY# provided to write control cir
cuits 1009-1009 are disabled (i.e., set to logic “1” values)
by appropriately configuring the multiplexers 1030 and
1031 in CLE slices S0-S3. As described above, bypass
signals BY and BYo are used as write data values in this
configuration. Bypass signals BXo-BX are identical, and
correspond with the fifth address signal As. Table 3 below
summarizes the manner in which write control circuits
1009-1009 assert the write enable signals
WEG#-WEG#, and WEF#-WEF# in response to the
address signal

26
Address AA4:1) is also provided as a read address signal
(i.e., F0-F3 or G0-G3) to function generators Fo and Go

Address AB4:1) is provided as a write address signal
(i.e., WF0–WF3 or WG0–WG3) to function generators F,
G, F and G. Address AB(4:1) is also provided as a read
address signal (i.e., F0-F3 or G0-G3) to function generators
F and G.

Address AC4:1 is provided as a read address signal (i.e.,
F0-F3 or G0-G3) to function generators F. and G. Address
AD(4:1) is provided as a read address signal (i.e., F0-F3 or
G0-G3 to function generators F and G.
Note that in the above-described single-port

embodiments, AA4:1 =AB4:1 =AC4:1 =AD4:1 =
A-A. However, in the dual-port embodiments addressing
is implemented as follows.

TABLE 3

As WEG#, WEF#, WEG#, WEF#, WEG#, WEF#, WEG# WEF#
O O O l 0 0. l
l O O l O O

As shown in Table 3, a different set of four function
generators is write-enabled for each instance of the address
signal As. Thus, the addressing scheme of the write control
structure corresponds with the addressing scheme of the read
control structure described above.

In the foregoing manner, the write enable signals are
provided to function generators Fo-F and Go-G.
Advantageously, a wide variety of write enable signal pat
terns can be provided to the function generators Fo-F, and
Go-G in the CLB 1100, with relatively little overhead. In
addition, because the transistor layout of each of the CLE
slices is identical, the layout and software configuration of
the resulting FPGA is simplified.
The functionality of the bypass signals BXo-BX and

BYo-BY in the 128x1, 64x2, 32x4 and 16x8 RAM
embodiments is summarized below in Table 4.

TABLE 4

Signal 128 x 64 x 2 32 x 4 6 x

BY DATA DATA DATA DATA
BY As As DATA DATA
BY A7 DATA DATA DATA
BYo As As DATA DATA
BX. As As As DATA
BX. As As As DATA
BX As As As DATA
BX As As As DATA

In accordance with yet another embodiment of the present
invention, CLB 1100 can be operated as a dual-port RAM of
various sizes. In the above-described single-port RAM
embodiments, the address signals A-A are provided to
each of the function generators Fo-F and Go-G used to
implement the single-port RAM. The routing of address
signals A-A in the single-port embodiments is therefore
straightforward. However, in the case of a dual-port
implementation, the routing of the address signals A1-A4
becomes more complex.
FIG.28 is a block diagram of CLB 1100, which illustrates

the connections to the four address inputs of function
generators Fo-F and Go-G in accordance with one
embodiment of the present invention. Address AA4:1) is
provided as a write address signal (i.e., WF0-WF3 or
WGO-WG3) to function generators F, G, F and G.

30

35

45

50

55

65

64x1 Dual-Port
CLB 1100 can be configured to operate as a 64x dual

port RAM in the following manner. In general, function
generators FF and Go-Gi are used to implement a write
port of the dual-sort memory, and function generators F-F
and G-G are used to implement a read-only port of the
dual-port memory. Note that data values can also be read
from function generators FF and Go-G, thereby making
the write port a read/write port, if desired. Data values are
written to the 64x1 dual-port memory as follows. The write
control circuits 1009-1009 are configured in the manner
described above for a 64x2 RAM array. As a result, write
enable signals are provided to pairs of function generators as
shown in Table 2. Data input multiplexers 1010-1010 and
1016-1016 are configured in the manner described above
for a 64x2 RAM array. Thus, a single data signal is routed
to both BY and BY, and is thus provided to the data input
terminal of each of the function generators Fo-F, and
Go-G.
The desired write address signals A-A are applied to the

write address terminals of function generators Fo-F and
Go-G as address signals AA(4:1) and AB(4:1. As
described above in connection with the 64x2 RAM, write
operations will be enabled in one of function generators
F-F and Go-G, and in a corresponding one of function
generators F-F and G-G. For example, a write operation
may be enabled in function generators F and F. (See, Table
2). As a result, the data written to CLB 1100 is stored in two
locations, namely, at one location in function generators
Fo-F and Go-G, and at a corresponding location in func
tion generators F-F and G-G.

Data can be read from the read-only port of 64x1 dual
port RAM as follows. The desired read address signals
A-A are applied to the read address terminals of function
generators FF and G-G as address signals AC(4:1) and
AD(4:1). As a result, read operations will be enabled in all
four of these function generators F-F and G-G at the
address location identified by the read address signals
A-A. The wide function multiplexers F5, F5 and FX
are configured as described above in the 64x2 single-port
RAM embodiment. These multiplexers F5, F5, and FX are
controlled to select the appropriate read output signal from
function generators F-F and G-G in response to the
address signals. As and A.

US 6,297,665 B1
27

32X2, 3 x 1 Dual-Port RAM
CLB 1100 can be configured to operate as a 32x2 dual

port memory in the following manner. In general, function
generators F-F and Go-G and are used to implement a
write port of the dual-port memory, and function generators
F-F and G-G are used to implement a read-only port of
the dual-port memory. Note that data values can also be read
from function generators Fo-F and Go-G, thereby making
the write port a read/write port, if desired. Data values are
written to the 32X2 dual-port memory as follows. The write
control circuits 1009-1009 are configured in the manner
described above for a 32x4 RAM array. As a result, write
enable signals are provided to sets of four function genera
tors as shown in Table 3. Data input multiplexers
1010-1010 and 1016-1016 are configured in the manner
described above for a 32X4 RAM array. A first data signal
(BY/BYo) is provided to the data input terminal of each of
the function generators F. F. and Go, and G. A second data
signal (BY/BY) is provided to the data input terminal of
each of the function generators F, F, and G, and G.
The desired write address signals A-A are applied to the

write address terminals of function generators Fo-F and
Go-G as address signals AA(4:1) and AB(4:1). As
described above in connection with the 32X4 RAM, write
operations will be enabled in one of the function generators
in each of the CLE slices So-S. For example, write opera
tions may be enabled at the address identified by write
address A-A in function generators For F, F, and F (or
in function generators Go G, G and G). (See, Table 3). As
a result, the first data signal (BY/BY) written to CLB 1100
is stored in two locations, namely, at one location in function
generators Fo and Go and at a corresponding location in
function generators F and G. Similarly, the second data
signal (BY/BY) written to CLB 1100 is stored in two
locations, namely, at one location in function generators F.
and G and at a corresponding location in function genera
tors F, and G.

Data can be read from the read-only port of 32x2 dual
port RAM as follows. The desired read address signals
A-A are applied to the read address terminals of function
generators F-F, and G-G as address signals AC(4:1) and
AD(4:1). As a result, read operations will be enabled in all
four of these function generators F-F, and G-G at the
address location identified by the read address signals
A-A. The wide function multiplexers F5-F5 are con
figured as described above in the 32x4 single-port RAM
embodiment. Multiplexers F5 and F5 are controlled to
select the appropriate read output signal from function
generators F-F and G-G in response to the address
signal As.
A32X1 dual-port RAM can be implemented by using only

half of the 32X2 dual-port RAM. For example, a 32x1
dual-port RAM can be implemented by using function
generators Fo and Go to form the write port, and function
generators F. and G to form the read-only port.
16x4, 16x2, 16x1 Dual-Port RAM
CLB 1100 be configured to operate as a 16x4 dual-port

memory in the following manner. In general, function gen
erators Fo-F and Go-G and are used to implement a write
port of the dual-port memory, and function generators F-F
and G-G are used to implement a read-only port of the
dual-port memory. Note that data values can also be read
from function generators Fo-F and Go-G, thereby making
the write port a read/write port, if desired. Data values are
written to the 16x4 dual-port memory as follows. The write
control circuits 1009-1009 are configured in the manner
described above for a 16x8 RAM array. The input data

O

5

30

35

40

45

50

55

60

65

28
values are routed through multiplexers 1010-1010 and
1016-1016 to function generators Fo-F and Go-G as
described above for a 16x8 RAM array. The desired write
address signals A-A are applied to the write address
terminals of function generators Fo-F and Go-G as
address signals AA4:1) and AB4:1). As described above in
connection with the 16x8 RAM, write operations will be
enabled in each of the function generators in CLE slices
So-S. As a result, a first bit written to CLB 1100 is stored
in two locations, namely, at one location in function gen
erator F and at a corresponding location in function gen
erator F. Similarly, a second bit is stored at one location in
function generator Go and at a corresponding location in
function generator G. A third bit is stored at location in
function generator F and at a corresponding location in
function generator F. Finally, a fourth bit is red in one
location in function generator G and a responding location
in function generator G.

Data can be read from the read-only port of 16x4 dual
port RAM as follows. The desired read address signals
A-A applied to the read address terminals of function
generators F-F and G-G as address signals. AC4:1) and
AD4:1). As a result, read operations will be enabled in all
four of these function generators F-F, and G-G at the
address location identified by the read address signals
A-A. As described above in the 16x8 single-port RAM
embodiment, these four signals are routed directly from the
function generators as read output signals.
A 16x2 or 16x1 dual-port RAM can be implemented by

using only a half or a quarter, respectively, of the 16x8
dual-port RAM. For example, a 16x1 dual-port RAM can be
implemented by using function generator Fo to form the
write port, and function generator F to form the read-only
port.

Numerous modifications and variations of the present
invention are possible in light of the above teachings.
Although FIGS. 7 and 10 show a memory cell programmed
through only one node of the latch, the invention can also be
used with memory cells in which some data signals are
inverted and applied to both nodes of the latch, or in which
different control signals are applied to different nodes of the
latch. Further, in FIG. 10 the three transistors 706, 708, and
707 can be implemented as a multiplexer receiving input
signals on lines 704, 714, and 705. And transistors 706, 708,
707, and 720 can be replaced by transmission gates. While
particular multiplexer and demultiplexer implementations
are shown, the invention can use other implementations as
well. And, of course, different structures and methods for
generating signals such as Phil, Phi2, and WS can be used
with the invention. Further, although the above embodi
ments show a single multiplexer with a single output ter
minal for selecting one signal from a plurality of memory
cells, other embodiments can select more than one memory
cell from which to provide an output signal. And although
FIGS. 19 and 20 show a CLB with lookup tables and
multiplexers for generating functions of up to 8 input
signals, other embodiments can use CLBs with more lookup
tables and higher order multiplexers, for example CLBs with
16 or 32 lookup tables with F9 and F10 multiplexers. A
lookup table can have fewer or more than the 16 memory
cells shown. For example, a 6-input lookup table would use
64 memory cells (configurable as a shift register) and the
combining multiplexers would start with F7. Further,
although the cascading aspect of the invention has been
discussed in comparison to FIG. 8, this aspect also applies
to structures with demultiplexing, such as shown in FIG. 11.
More fundamentally, although the above invention has been

US 6,297,665 B1
29

described in connection with an FPGA, a shift register with
cascade multiplexers can be formed in other structures than
FPGAs, and formed not in connection with lookup tables,

It is therefore to be understood that within the scope of the
appended claims, the invention may be practiced otherwise
than as specifically described above.
We claim:
1. A configurable logic block (CLB) comprising:
a plurality of function generators, each having a read

address port and a write address port and an output data
terminal;

a first set of multiplexers (F5, F5, FX) configured to
route data values from the output data terminals of a
first set of the function generators (For Go, F, GI);

a second set of multiplexers (F5, F5, FX.) configured to
route data values from the output data terminals of a
second set of the function generators (F, G, F, G);
and

a first set of dedicated address lines (AA4:1) coupled to
the read and write address ports of a third set of the
function generators and to the write address ports of a
fourth set of the function generators, wherein the third
set of function generators is a subset of the first set of
function generators, and the fourth set of function
generators is a subset of the second set of function
generators.

2. The CLB of claim 1, further comprising a second set of
dedicated address lines (AC4:1) coupled to the read
address ports of the fourth set of function generators.

3. The CLB of claim 1, further comprising a second set of
dedicated address lines (AB4:1) coupled to the read and
write address ports of a fifth set of the function generators
and to the write address ports of a sixth set of the function
generators, wherein the fifth set of function generators is a

0.

5

30

30
subset of the first set of function generators, and the sixth set
of function generators is a subset of the second set of
function generators.

4. The CLB of claim 3, further comprising a third set of
dedicated address lines (AD(4:1) coupled to the read
address ports of the sixth set of function generators.

5. The CLB of claim 3, wherein the third and fifth sets of
the function generators are mutually exclusive.

6. The CLB of claim 5, wherein the fourth and sixth sets
of the function generators are mutually exclusive.

7. The CLB of claim 1, wherein the first set of multiplex
ers comprises a plurality of hierarchically connected multi
plexers.

8. The CLB of claim 7, wherein the second set of
multiplexers comprises a plurality of hierarchically con
nected multiplexers.

9. The CLB of claim 1, wherein the third and fourth sets
of function generators form a dual-port random access
memory (RAM).

10. The CLB of claim 3, wherein the third, fourth, fifth
and sixth sets of function generators form a dual-port
random access memory (RAM).

11. A configurable logic block (CLB) comprising:
2' function generators, where N is an integer greater than

one, each of the function generators having a write
enable port; and

a plurality of write control circuits, each being coupled to
the write enable ports of a pair of the function
generators, and each generating a pair of write control
signals in response to N write control signals.

12. The CLB of claim 11, further comprising circuitry for
enabling and disabling at least one of the N write control
signals.

