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(57) Abstract

A self-contained fully programmable digital signal processor (100) has two processors (101, 102) sharing, in parallel interleave fashion,
a math unit (103) such as a multiply-and-accumulate circuit. A background processor (102) controls an external dram and preprocesses the
information for a foreground processor (101). On-chip sram (107, 110) stores program parameters for both the foreground and background
processors and facilitate information transfer between the foreground and background processors. The sram is time-multiplexed to permit
access by the foreground processor, the background processor, and external devices without the expense of multiport sram. Flip-flops
maintain data signals to the math unit while the sram is being accessed. The foreground processor has a custom instruction set that optimizes
the implementation of complex music synthesis filter structures. An on-chip white noise generator quickly provides pseudorandom data for

some of the instructions.
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MUSICAL INSTRUMENT SIMULATION PROCES8SOR

BACKGROUND OF THE INVENTION

Field of the Invention
This invention relates to digital signal

10 processors, to methods for generating digital sound
signals, and to using parallel processors to execute,
without pipeline delays, sound synthesis models that
simulate the sounds of musical instruments.

15 Descriptijon of Related Art
A digital synthesizer typically generates a series

of digital values which represent sound amplitudes at a
series of discrete sampling times. Feeding the series
of values through a digital-to-analog converter (DAC)

20 or a coder-decoder (CODEC) to an amplifier and then to
speakers produces sound.

Synthesizers use many synthesis methods to produce

sounds that emulate the sounds of musical instruments.
One of the most accurate methods for emulating a

25 musical instrument is playing a recording of the
instrument. This is called sample synthesis and is
commonly used in drum machines. However, sample
synthesis cannot practically mimic every musical
instrument because some instruments produce many

30 different sounds, and storing digital recordings of
every sound requires too much memory. Accordingly,
synthesis models have been developed which use
computational power to reduce the required recorded
information while still producing accurate emulations.

35 Attack Decay Sustain Release (ADSR) curves are
used in many synthesis models. ADSR curves are
amplitude envelopes which control the volume and
duration of notes. For example, a synthesizer may
generate a series of steady state sound amplitude
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values and then multiply‘each sound amplitude value by

a corresponding value from an ADSR curve. The duration
of the note depends on how quickly the ADSR curve goes

to zero.

Wave table synthesis models musical instruments
using two circular sound tables. One table represent
sound. harmonics during the attack. The other table
represents the steady state. Two ADSR curves provide '
envelopes for the tables. For musical instruments that
don‘t have a steady state, a third ADSR curve can be
used to control filter parameters.

FM synthesis uses two or more ADSR curves that
control sine wave generators which are frequency
modulated to create a large spectrum of harmonics.

This technique allows a continuously changing spectrum
of harmonics to follow the ADSR curves. It also uses
no memory. A drawback of this technique 1s the
difficulty in determining model parameters which
provide a good emulation of a desired instrument.

Wave gulde synthesis emulates a musical instrument
using models based on the physics of the instrument.
The wave gulde models, being based on a physical
structure, are more intuitive for many developers of
music instrument emulations. The theory of lossless
wave guides simplifies calculations needed to make
modeling of many musical instruments achievable. The
Karplus Strong algorithm (Plucked String model) is a
predecessor of wave guide synthesis models. U.S.
patent No. 4,984,276 by Julius 0. Smith, issued January
8, 1991, provides an example appllication of wave guide
techniques and is Incorporated by referenae herein in
its entirety.

Synthesizers typlcally employ digital signal
processors (DSPs) that execute software which
implements synthesis models such as those described
above. DSPs typically include math units such as
multipliers and summers which are fed data and model
parameters from memory. Data is often pipelined into
the math unit, for example by decoding an instruction

SUBSTITUTE SHEET (RULE 26)
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and fetching data for the next cycle of the math
circuitry before the current cycle is complete. To
avoid delays with a pipelined system, the new data is
fed into the pipeline before the previous cycle is
finished. 1If data required for the next cycle depends
on the results of the current cycle, then the data is
not ready when required and operation of the math unit
is delayed until the required data travels through the
pipeline. Accordingly, pipeline delays make DSPs
slower because the math units have periods of
inactivity. When executing synthesis models such as
wave gulde models, iterative operations are often
required and pipeline delays can significantly decrease
effective performance. Accordingly, efficient
synthesizer architectures are needed which executed
synthesis models without experiencing pipeline delays.

8 F THE INVENTIO

The current invention provides a DSP that is fast,
relatively inexpensive, and well suited to implementing
musical instrument simulations models such as wave
guide models. One embodiment of the present invention

"is a DSP that includes first and second processors

which share a math unit. The two processors alternate
controlling data input to the shared math unit, so that
the shared math unit alternates between performing an
arithmetic operation for the first processor and
performing an arithmetic operation for the second
processor. Results of the math unit processing for the
first processor are stored while the math unit is
processing data for the second processor, so that the
results of the operation for the first processor are
made ready for the math unit when the math unit begins
the next operation for the first processor.

Alternately performing operations for the first and
second processors allows the math unit to keep
operating without pipeline delays even when programs
executed by one or both of the processors require
iterative operations. |

SUBSTITUTE SHEET (RULE 26)
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Typically, the first processor (often referred to
as the foreground processor) executes a program which
generates a sound amplitude value. The second
processor (often referred to as the background
processor) preprocesses data from an external memory
such as a DRAM, and stores the preprocessed data in a
memory for use by the foreground processor. The
external memory is often used for storing look-up table
values.

In another embodiment, two processors control a
multiplexer which supplies data to a math unit.
Typically, the math unit is a multiplier or a combined
multiply-and-accumulate circuit. Data is fed from the
multiplexer through a set of flip-~flops to the math
unit. While the math unit is processing data for one
of the two processors, the other processor salects the
data supplied to input leads of the flip-flops. Math
unit processing is not disturbed because signals from
the flip-flops are not changed until the flip-flops’
clock is triggered. Upon completion of processing by
the math unit, new data from the multiplexer is loaded
into the flip-flop set in response to a clock signal.
The math unit begins operating for the second
processor, and the first processor can change the data
supplied through the multiplexer.

Typically, one or more memories provide input data
to the multiplexer. If the access time of a memory is
less that half the processing time of the math unit,
the memory can be accessed more than once during each
operation by the math unit, even when the memory has a
single data port. For example, during two consacutive
operations by the math unit, the first processor can
access the memory at least once, the second processor
can access the memory at least once, and an external
device can access the memory at least once. The flip-
flop set maintains correct data for the math unit while
the memories are accessed. In addition to the
memories, a hardware white noise generator can be

SUBSTITUTE SHEET (RULE 26)
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connected to the multiplexer to supply pseudorandom
data.

A second set of flip-flops is often employed to
store output data from the math unit. The second flip-
flop set temporarily stores the output data from the
math unit so that the output data can be moved or
stored in a desired location while the math unit is
processing new data. For example, the math unit output
data in the second flip-flop set can be written to one
or many memory locations that are accessible by an
interface for a CODEC or a DAC. Data can also be
routed back as input to the multiplexer, so that the
output data is available for further manipylation by
the math unit.

In still another embodiment of the invention, a
digital signal processor includes a foreground
processor and a background processor which perform
different functions. The foreground processor executes
a program to create a digital representation of a sound
amplitude and is connected to a first memory which
stores parameters used by the foreground processor.

The background processor is operably connected to the
:irst memory and to a second memory which stores data,
particularly look-up table values. Typically, the
second memory is implemented using DRAM and may be
provided on one or more integrated circuit separate
from the integrated circuit containing the foreground
and background processors.

Look-up table values in the second memory can
represent any function and are commonly used for delay
lines, wave tables, and ADSR curves. The background
brocessor preprocesses data from the second memory.
Typical preprocessing performed by the background
processor includes operations such as interpolating
between look-up table values or changing an offset
within a look-up table representing an ADSR curve or
other function. Special incrementing algorithms can
control the rate at which an ADSR curve or other look-
up table is sampled.
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For performing interpolation, the packground
processor typically includes a third memory for storing
interpolation coefficients. The interpolation
coefficient are mathematically derived constants which
the background processor multiplies by look~up table
values and then sums to derive an interpolated value.
An exemplary derivation of interpolation coefficients
for performing a cubic polynomial interpolation is
disclosed below. The interpolation coefficients can be
stored in ROM.

BRIEFY DESCRIPTION OF THE DRAWINGS
Fig. 1 is a block diagram of a digital signal

processor having a foreground and a background
processor in accordance with an embodiment of the
present invention.

Fig. 2 is a block diagram of circuit blocks which
control data flow through a math unit in a digital
signal processor in accordance with the present
invention.

Fig. 3 is a group of timing diagrams showing an
example of how a port control interface, a foreground
processor, and a background processor share control of
a memory and a multiply-and-accumulate block in a
digital signal processor in accordance with the present
invention.

Fig. 4 is a memory map for an embodiment of the
present invention.

Fig. 5 is a block diagram of a background
proéessor and related elements in part of a digital
signal processor in accordance with an embodiment of

‘the present invention.

Fig. 6 is a flow diagram of an FIR filter
performed as a task of a background processor in
accordance with an embodiment of the present invention.

Fig. 7 shows plots of four types of ADSR curves.

Fig. 8 represents two pages of DRAM memory which
store portions of the same look-up table and shows data
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which is repeated in both pages of DRAM to speed up
access to data during interpolation.

Fig. 9 contains timing diagrams which illustrate
the execution of background tasks and foreground
instructions in a digital signal processor in
accordance with an embodiment of the present invention.

Similar or identical items in different figures

have the same reference symbols.

ET EBC TION

Fig. 1 shows a block diagram of a digital signal
processor (DSP) 100 in accordance with the present
invention. DSP 100 includes parallel processors 101
and 102 which operate in a parallel interleave fashion
and share a math unit 103. Processors 101 and 102
contain conventional processing circuitry such as
decoders for decoding instructions and control circuits
for generating control signal to implement
instructions.

Processors 101 and 102 are sometimes referred to
as foreground processor 101 and background processor
102 to indicate the different functions of processors
101 and 102. Background processor 102 preprocesses
information such as look-up table data from a DRAM (not
shown). Foreground processor 101 processes information
from background processor 102 and parameter memories
107 and 108 and then writes values representing sound
amplitudes to a parameter memory 109. The sound
amplitude values are typically accessed by a CODEC
(coder-decoder) or a DAC (digital-to-analog converter)
through a CODEC interface 111. The CODEC or DAC
converts the digital sound amplitude values into analog
sound signals.

Typically, an external device such as a personal
computer writes data and instructions to DSP 100
through a port control interface 106. Data to be
processed by DSP 100 is written into parameter memories
107 and 108. Instructions for foreground processor 101

are written into an instruction memory 110. Parameter

SUBSTITUTE SHEET (RULE 26)
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memories 107 and 108 and instruction memory 110 are
typically implemented as static random access memory
(SRAM) .
An external DRAM (not shown in Fig. 1) is

5 controlled by background processor 102 through a DRAM
interface 104. DRAM interface 104 typically uses a
timing generator for refresh cycles and access to the
DRAM. The timing generator may be an external
oscillator or an on chip ring oscillator time generator

10 such as described in U.S. patent application entitled
"Timing Generator", attorney docket number M-2235-US,
by Bryan J. Colvin and Masao Shindo which was co-filed
with the present application and is incorporated by
reference herein its entirety.

15 The external device also writes control values to
control registers 105. The control values include
configuration data such as used by CODEC interface 111.
CODEC interface 111 is configurable to provide digital
signals to one or more DAC (not shown) or both provide

20 and accept signals from one or more different CODECs
(not shown) at a programmable sampling rate. Such
CODEC interfaces are known in the art and not further
described here.

Control registers 105 also store mode values which

25 indicate tasks for background processor 102. Together
with parameter values in memories 107 and 108, the mode
values act as a program for background processor 102
and determine how background processor 102 processes
data. 1In one mode, background processor 102 uses DRAM

30 interface 104 to read data points from a look-up table
in the DRAM and then uses shared math unit 103 to
calculate an interpolated value between the data
points. The interpolated value is written into
parameter memory 107 or 108 for later use by foreground

35 processor 101. Other operating modes employed in a
specific embodiment of the invention are disclosed
below.

Foreground processor 101 operates according to a
program stored in instruction memory 110. The program
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generates sound amplitude values according to one or
more sound synthesis models. Generated values are
stored in parameter memory 109. Foreground processor
101 manipulates data from a number of sources including
parameter memories 107 and 108 which may contain data
that has been preprocessed by background processor 102,
parameter memory 109 which typically contains the
results of previous foreground processor operations, a
white noise generator (not shown in Fig. 1), and other
sources disclosed below.

Memory 109 may be an SRAM or a set of registers
and typically includes (a) storage locations dedicated
for output sound amplitude values and (b) general
purpose storage locations used during calculation of
sound amplitude values. Multiple output sound
amplitude values can be generated for multiple DACs or
CODECs. For example, two output sound amplitudes may
be generated for producing stereo sound. Values stored
in the locations dedicated to output are accessible
through CODEC interface 111 at intervals determined by
the programmable sampling rate. Sampling rate control
values stored in control registers 105 determine the
sampling rate and can be set through port control
interface 106. A programmable clock circuit (not
shown) provides a clock signal having a frequency
determined by the sampling rate control values.

Fig. 2 shows a block diagram of a data selection
circuit which includes parameter memories 107 to 109,
multiplexers 209 to 211, and interconnecting circuit
blocks for implementing data flow through shared math
unit 103 in a DSP in accordance with the present
invention. 1In this embodiment, shared math unit 103
includes a multiplier-accumulator (MAC) 215 which adds
a digital value 2z to the product of digital values X
and Y. .

Multiplexer 209 and a circuit block 213 provide
value X. Multiplexer 209 selects an output value X’
from a set including values MA and MB from parameter
memories 107 and 108 respectively, values C;, and C, from
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memory 109, and a value BPX from the background
processor. Block 213 transforms the value X’ according
to a control signal provided by either the foreground
or background processor. Examples of transforms that
can be selected are no-change so that X equals X/, a
2’s complement so that X equals -X’, and a pan so that
X equals (1-X’). The 2’s complement transformation
causes MAC 215 to subtract the‘product of the values X’
and Y from the value Z. Other transformations can be
implemented depending on the desired functions and
instruction set of the DSP. '

Multiplexer 210 provides the value Y which is
selected from a set including the value MB from
parameter memory 108, a pseudorandom value from a
hardware white noise generator 205, a value C, from
memory 109, a value from a circuit block 206 (FORCEl),
and a value from a circuit block 207 (ADSRB). Circuit
block 206 provides a value representing the number one.
When value Y represents the number one, MAC 215
performs a sum of value X plus value Z. Circuit block
207 provides an incremental increase or a percentage
decrease for an ADSR curve. The function of circuit
block 207 is disclosed more fully below in regard to
the foreground processor instruction set in Appendix A.

White noise generator 205 is a hardware random
number generator which provides a pseudorandom series
of digital values. Software random number generators
are commonly employed in wave guide synthesis models of
musical instruments. A hardware white noise generator
facilitates implementation of synthesis models by
permitting a single program instruction which
§enerates, multiplies, and accumulates a random number.
Any known or yet to be developed random number
generator may be used as white noise generator 205.

Multiplexer 211 provides the value Z which MAC 215
adds to the product of the values X and Y. Value Z is
selected from a value BPZ from the background
processor, value C, from memory 109, values MA and MB
from parameter memories 107 and 108 respectively, and a
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value representing zero from circuit block 208
(FORCEO). By selecting the value representing zero,
the output value from MAC 215 is the product of values
X and Y.

Memory 109 may simultaneously provide three values
C,, G, and C, and therefore has multiple data ports.
Parameter memories 107 and 108 each provide at most a
single value and are single data port memories. Single
data port memories require less space in an integrated
circuit, are less expensive than multi-port memories,
and therefore reduce the cost of the DSP in accordance
with the present invention when compared to a DSP with
multi-port memories.

Typically, a binary representation of value Z
contains more bits than binary representations of
values X and Y because value Z is used for
accumulations where overflows and round-off error are
critical. circuit blocks 212 convert values from
memories 107 and 108 to the proper binary
representation for value Z. For fixed point
representations, conversion is typically performed by a
logical shift and a sign extension. Similar conversion
of digital representation is provided by circuit blocks
204 and 218 which reduce the number of bits used in
parameter memory 109 to the number of bits appropriate
for values X or Y. Blocks 218 perform a truncation of
towards zero for both positive and negative values from
memory 109. Block 204, in addition to changing the
representation of value C,, may change the magnitude of
value C, during generation of an ADSR curve. During an
attack phase, block 204 provides a value representing 1
or 0.5 depending on whether a faster or a slower attack
is desired. During the decay and release phases, block
204 checks whether value C, will cause a discernable
decrease in an ADSR curve value and if the value C, will
not, block 204 provides a value which will cause a
minimal decrease in the ADSR curve value.

The foreground processor or background processor,

depending on which of the processors is using MAC 215,
SUBSTITUTE SHEET (RULE.26)
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generates select signals for multiplexers 209-211. The
foreground processor decodes instructions and provides
select signals to multiplexers 209-211 and address
signals to memories 107-109 typically while MAC 215
performs a multiply-and-accumulate cycle for the
background processor. The background processor decodes
a mode value and parameters from parameter memories 107
and 108 to generate appropriate values BPX, BPY, and
BPZ and select signals for multiplexers 209 to 211
while MAC 215 performs a multiply-and-accumulate cycle
for the foreground processor. The timing of the select
and address signals are disclosed below.

A set of flip-flops 214 stores one set of values
X, Y, and Z while a next set of values X, Y, and 2
selected by the foreground or background processor
propagates through the data selection circuit including
multiplexers 209 to 211. New values X, Y, and Z are
stored in flip-flop set 214 and provided to MAC 215
when a timing signal MAC_CLK is asserted. As is well
known, signal MAC_CLK is asserted "high" or asserted
"low" depending whether flip-flop set 214 is triggered
on the leading or trailing edge of signal MAC_CLK. A
flip-flop set 216 is also clocked by signal MAC_CLK and
stores an output value (Z+X*Y) from MAC 215 when MAC
215 begins processing the next values X, Y, and Z. The
numbers of flip-flops in flip-flop sets 214 and 216
depend on the numbers of bits used to represent values
X, ¥, and Z. In one embodiment, each multiplicand
value X or Y contains sixteen bits, and the addend
value Z contains thirty-two bits. In such an
embodiment, flip-flop set 214 stores 64 bits of
information, and flip-flop set 216 stores a 33-bit
value (the sum of two 32-bit numbers).

circuit block 217 (FPDP) tests the output value
stored by flip-flop set 216 and sets flags to indicate,
for example, that the output value is zero, negative,
overflows, or underflows the capacity of the storage
location in memory 109 where the output value is to be
stored. In the case of an overflow or underflow,
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circuit block 217 provides either a saturated value
(the most positive or the most negative value that can
be represented in the target register) or truncates the
most significant bit of the output value from MAC 215.
Whether the value provided by block 217 is saturated or
truncated depends on a configuration control value
SATF. The value from block 217 is directed to a
location in memory 109 indicated by an address signal
from the foreground processor or is directed to the
background processor on bus B_WRITE_DATA. In addition
to the output value from flip-flop set 216, values DA,
DB, MA, and MB are provided to circuit block 217 and
are written to memory 109 during move instructions
disclosed below.

Multiplexer 203 implements move instructions which
move values into memories 107 and 108. Values C,, G,
and C, from memory 109, a value BP from the background
processor, or a value MW from the port control
interface, can be routed through multiplexer 203 into
one or both of memories 107 and 108. Flip-flop sets
201 and 202 provide delayed values DA and DB from
memories 107 and 108. The delayed values DA and DB
change every time signal MAC_CLK is asserted and
indicate the previous values MA and MB provided by
parameter memories 107 and 108 respectively. Delayed
values DA and DB can be moved back into memories 107
and 108 through multiplexer 203 or into memory 109
through circuit block 217.

In Fig. 2, memories 107 to 109 are sufficiently
fast to provide valid data signals in less than about
half the time required for MAC 215 to execute a
ﬁultiply-and—accumulate cycle, and parameter memories
107 to 109 can be accessed twice during each multiply-
and-accumulate cycle of MAC 215. In accordance with
the present invention, control of paramater menories
107 and 108 and control of MAC 215 are time division
multiplexed. Time division multiplexing of memories
107 and 108 permits use of less expensive single port
memories even though memories 107 and 108 are accessed

SUBSTITUTE SHEET (RULE 26)
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by the foreground processor, the background processor,
and the port control interface.

Fig. 3 shows timing diagrams indicating control of
parameter memories 107 and 108 and control of MAC 215
for typical instructions executed by the foreground
processor. In this embodiment, the foreground
processor has sole control of memory 109, except at the
end of sampling periods, when the CODEC interface may
have access. In Fig. 3, FP indicates the foreground
processor has control, BP indicates the background
processor has control, and PC indicates that the port
control interface has control. Timing of memory
control can be varied according to particular
instructions executed by the foreground processor.
Example instructions and timing variations are
disclosed below.

Each foreground instruction is completed in one
instruction cycle time such as instruction cycle 310.
The instruction cycle is twice as long as a multiply-
and-accumulate cycle (MAC cycle) for MAC 215 and four
times as long as the memory access time for memories
107 to 109. Instruction cycle 310 includes four memory
access periods 330, 332, 334, and 336.

considering Figs. 2 and 3 together, during memory
access period 330, the foreground processor controls
parameter memories 107 and 108, and MAC 215 processes
data previously selected by the background processor.
Depending on the instruction being executed, the
foreground processor generates address signals for
parameter memories 107 to 109 and/or select signals for
multiplexers 209 to 211. Parameter memories 107 to 109
ﬁnd/or circuit blocks 205 to 208 provide valid data
values which propagate through multiplexers 209 to 211
to input leads of flip-flop set 214. MAC cycle 322 is
not disturbed because flip-flop set 214 maintains
previous values X, Y, and 2 on the input leads of MAC
215.

At the time T1, signal MAC_CLK is asserted and
flip-flop sets 201, 202, 214, and 216 are triggered.
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Flip flop set 214 stores new values X, Y, and 2
selected by the foreground processor and asserts the
new values X, Y, and Z to MAC 215. MAC 215 begins MAC
cycle 320 for the foreground processor. Also at time
T1l, flip-flop set 216 stores the output value from
previous MAC cycle 322 of MAC 215. The output value
from flip-flop set 216 is directed by circuit block 217
to the background processor via bus B_WRITE_ DATA.

For some instructions such as move instructions,
flip-flops sets 201 and 202 store the selected values
DA and DB at time Tl. Values DA and DB can be written
into any of memories 107, 108, or 109 during memory
access period 334, the next time that the foreground
processor has control of memories 107 and 108.

During access period 332, the background processor
controls memories 107 and 108. The action of the
background processor depends on the background
processor task and on the processing sequence for the
task. The sequence for processing of each task
typically requires more than one instruction cycle. 1In
the initial step of most tasks, the background
processor generates read addresses for memories 107 and
108 and reads parameter values from memories 107 and
108. The parameter values read from memories 107 and
108 and a mode value from the control registers
determine the task and subsequent processing sequence
of the background’processor. In the last step of a
typical processing sequence, the background processor
generates write addresses for memories 107 and/or 108
and writes values to memories 107 and/or 108.

Execution of background tasks can be pipelined so that
two or more background tasks are executed at once.

During MAC cycle 320, the background processor
controls multiplexers 209-211 and therefore controls
data flow to flip-flop set 214 even though the
foreground processor controls memories 107-109 during
access period 334. The background processor directly
provides data signals BPX, BPY, and BPZ so that new

data is ready for MAC 215 at time T3. Accordingly, MAC
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215 operates without pipeline delay. The operation of
the background processor is disclosed in more detail
below.

During memory access period 334, the foreground
processor controls memories 107-109. For instructions
that move data into parameter memory 107 or 108 from
memory 109 or from flip-flop sets 201 or 202, the
foreground processor generates write addresses for
memories 107 and 108 and select signals for multiplexer
203 so that selected values are written.

At time T3, flip-flop sets 214 and 216 are
triggered again. Flip-flop set 216 captures the output
value from MAC 215. The output value from flip-flop
set 216 can be stored at a write address provided to
memory 109 by the foreground processor during the
memory access period 336 because the foreground
processor does not share access of memory 109 with the
background processor or the port control interface.
The port control interface controls memories 107 and
108 during memory access period 336, and provides
select signals to multiplexer 203 for writing data MW
to memories 107 and 108.

A new instruction cycle 315 begins at time T4 and
proceeds in a manner similar to instruction cycle 310.

Fig. 4 shows a memory map of parameter memories
107 to 109 and instruction memory 110 of Fig. 1 in an®
exemplary embodiment in accordance with the invention.
Parameter memories 107 and 108 and instruction memory
110 each contain 512 16-bit words of data or
instructions and are partitioned into thirty-two slots

of sixteen words as shown by memory map 400. Memory

maps 407, 408, and 410 show a single slot from
parameter memory 107, parameter memory 108, and
instruction memory 110 respectively. Each slot in
instruction memory 110 corresponds to a slot in
parameter memory 107 and a slot in parameter memory
108. Typically, each collection of corresponding slots

operates together as program and parameters for a

SUBSTITUTE SHEET (RULE 26)



WO 95/27939 . PCT/US95/04354

10

15

20

25

30

35

17

distinct voice or emulation, but a number of slots may
be combined to represent a more complex emulation.

Control registers 105 in Fig. 1 contain 32 sets of
mode values which correspond to the 32 slots in
memories 107, 108, and 110. As disclosed below, the
mode values are combined with parameters from
corresponding slots in memories 107 and 108 to
determine which tasks are executed for that slot by
background processor 102.

Memory 109 contains sixteen locations C0-C15 which
are global to all slots. Eight locations C0-C7 are 24-
bit locations and accessible through CODEC interface
111. The 24-bit locations are paired into four sets
for four stereo CODEC channels. Each set contains left
and right sound amplitude values. The remaining eight
locations C8-Cl15 are 32-bit general purpose storage
that may be used for intermediate calculations,
accumulation, and passing values from one slot to
another.

In accordance with the exemplary embodiment of the
invention, memories 107 and 108 store 16-bit fixed
point representations of values between -2 and just
less than 2. The 16-bit representations have a sign
bit, an integer bit, and 14 bits representing a
fractional part. Memory 109 contains fixed point
binary representations of numbers between ~16 and just
less than 16. The fixed point binary representations
contain a sign bit, a 4-bit integer part, and either a
19-bit or a 27-bit fractional part depending on whether
the storage location is twenty-four or thirty-two bits.
The sound amplitudes provided through CODEC interface
111 are restricted to values between -2 and 2.

A complete instruction set for foreground
processor 101 of the exemplary embodiment as shown in
Fig. 1 is provided in the Appendix A. Each 16-bit
foreground processor instruction contains up to three
operands i, j, and k. The operands are indices which
identify data in parameter memories 107 to 109. 1In
Appendix A, the instruction words are to the left of
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one or more equations which describe the operation
performed by execution of the instruction. 1In Appendix
A, subscripted quantities A, B, and C are data values
from parameter memories 107, 108, and 109 respectively.

Operands which identify a data word from parameter
memories 107 and 108 contain up to four bits and are
offsets relative to a slot pointer which identifies the
slot that foreground 101 processor is executing.
Foreground processor 101 updates the slot pointer as
slots are completed. (Background processor 102 keeps a
separate slot pointer so that foreground and background
processor 101 and 102 can execute different slots.)
Data in memory 109 is also identified with 4-bit
operands, but the operands are global, i.e. independent
of the slot pointer.

There are twelve foreground processor instructions
that include three operands. The three operand
instructions are executed in a single MAC cycle using
the timing described above in reference to Fig. 3. For
example, during memory access period 330, the
foreground processor provides addresses and select
signals to the memories 107-109 and multiplexers 209-
211 according to the values on the right side of the
egquation describing the instruction. The result of MAC
cycle 320 is written into memory 109 between times T3
and T4. For the instruction 1001-i-j-k, a single value
Ci+A;*B, is calculated and written to two addresses C, and
Cis1» Values C;, A;,, and B, are read during the first
memory access period of the foreground processor, for
example during period 330 in Fig. 3 and new values C

and C,,, are written after MAC has completes a multiply-

and-accumulate cycle, for example during period 336 in
Fig. 3.

Group A of the instructions in Appendix A includes
two operand instructions. Group A instructions are
executed in a single MAC cycle with the above disclosed
timing. 'In some of the instruction, a value WN from
white noise generator 205 is multiplied by a valua from
parameter memory 107 or 108. In group A, instructions
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1011-0000-3~0i through 1011-0010-j-1i are for
multiplications of 32-bit multiplicands. One 32-bit
multiplicand is a value C. The other 32-bit
multiplicand has sixteen most significant bits in an A
value and sixteen least significant bits in a value B.
(For these instruction, operand i is a 3~bit value.)
Since MAC 215 in the exemplary embodiment multiplies
two 16-bit values, multiplication of 32-bit values
requires more that one MAC cycle. Values CH and CL
indicate the sixteen most significant and sixteen least
significant bits respectively in the value C. Value NF
is a sign for signed multiplication. The function
"abs(...)" is the absolute value.

Group B of the instructions in Appendix A includes
two operand instructions for addition and subtraction.
Group B instructions are executed in a single MAC cycle
using the timing described above. The foreground
processor causes block 206 (FORCEl) to provide a one as
value Y so that MAC 215 performs an addition or
substraction. For subtractions, foreground processor
causes circuit block 213 (NEG. PAN) to perform a 2’s
complement.

Group C of the instructions in Appendix A are two
operand instructions that are useful in constructing
filters. The instruction combines a multiply and a
move. During the foreground processor’s first memory
access period of an instruction cycle, for example
during memory access period 330 in Fig. 3, the
foreground processor generates address signals for
parameter memories 107 to 109 according to the first
equation describing the instructions in Appendix A. At
time T1, flip-flop set 214 latches input values for MAC
215. Flip-flop sets 201 and 202 also latch the values
from memories 107 and 108.

If the instruction moves a value from memory 109
or from one of flip-flop sets 201 and 202, then during
the second memory access period of the foreground
processor, time interval 334 in Fig. 3, the foreground
processor generates appropriate select and address
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signals for writing the moved value into the
appropriate memory 107 to 109. During the time
interval 336, the foreground processor generates
appropriate select and address signals for circuit
block 217 and memory 109, so that the result of the MAC
cycle is written into memory 109.

Special timing occurs for instructions such as
1101-0000-j-i which multiply and move data between
memory 107 and memory 108 when the moved data is not
supplied to MAC 215. 1In this special case, one of the
memories 107 or 108 is the source of the value moved,
and the other of the memories 108 or 107 is the
destination of the value moved. During memory access
period 330, the foreground processor generates address
signals for input values to MAC 215 according to the
right side of the first equation for the instruction.
The value to be moved between memory 107 and memory 108
is not read during period 330 and not stored in flip-
flop set 201 or 202. During memory access period 334,
the foreground processor grants control of the
destination memory 107 or 108 to the port control
interface, and generates address signals for reading
the value to be moved from the source memory 108 or
107. The read value is stored into one of flip-flop
sets 201 or 202 at time T3. During memory access
period 336, the foreground processor takes control of
the destination memory 107 or 108 from the port control
interface and generates address and select signals for
writing the value to the destination memory 107 or 108,
but the port control interface keeps control of the
source memory 108 or 107. Accordingly, for this
special case the foreground processor and the port
control interface swap memory accesses to one of the
memories 107 or 108, but both the foreground processor
and the port control interface retain the usual number
of accesses to memories 107 and 108 for the instruction
cycle.

Group D of the instructions in Appendix A contains
two operand move instructions. The instructions are
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completed in a single instruction cycle. Up to four
moves can be executed in a single instruction cycle,
one move into each memory 107 and 108, during each
access period in which the foreground processor has
control of memories 107 and 108. 32-bit values C can
be moved into or from two 16-bit values A and B, where
value A contains the 16 most significant bits and value
B contains the 16 least significant bit. Such combined
values A and B are indicated by AB in Appendix A. Move
instructions 1110-0011-j-i through 1110-1010-j-i move
and shift a value C. The shift can be performed by |
providing shift capabilities in multiplexer 203 of Fig.
2.

Group E of the instructions in Appendix A contains
two parameter instructions which provide special
functions for ADSR curves and decay curves. The
functions performed by the instructions depend on
control values in control register 105 which indicate
states "key on", "key off", "alt on", and “alt off" for
each slot. Functions ADRSO_K, ADRS1_K, and ADRS2 K
respond to key on and key off states. Functions
ADRSO_A, ADRS1_A, and ADRS2_A respond to alt on and alt
off states.

For each function ADRSO_K, ADRS1_K, or ADRS2 K,
when key on is initially indicated, bits 7 and 15 of a
value A which an argument of the function are zero
indicating an attack state. Functions ADSRO_K,
ADRS1_K, and ADRS2_K generate values appropriate for an
attack phase of an ADSR curve by incrementing a. value C
by a fixed increase. The fixed increase is given by
bits 0-6 of the value A times 1/8 for ADRSO_K and times
4 for ADRS1 K and ADRS2_K. Each time the instruction
is repeated incrementing continues until the value C
reaches 1, and then bit 7 of the value A is set
indicating a decay phase of the ADSR curve. In the
decay phase, each time the instruction implementing one
of the functions ADSRO_K, ADRS1_K, or ADRS2 K is
executed the value C is decrease by a fraction of the
value C where the fraction is indicated by bits 8-15 of
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the value B. For ADSRO_K and ADSR1_K, bits 8-15 of the
value B are shifted to the right three bits (divided by
eight) to determine the fraction. The decay continues
until the value C reaches a level indicated by bits 14-
12 of the value A then bit 15 of the valua A is set to
indicate a sustain phase of the ADSR curve. In the
sustain phase of the ADSR curve, the instructions leave
the value C is unchanged until a key off state arises
and then bit 7 of the value A is cleared indicating a
release phase of the ADSR curve. During the release
phase, the value C is decreased by a fraction of the
value C where the fraction is indicated by bits 7-0 of
the value B.

Functions ADSRO_A, ADRS1_A, and ADRS2_A perform in
the same manner as functions ADSRO_K, ADRS1_ K, and
ADRS2_K except that functions ADSRO_A, ADRS1_A, and
ADRS2_A respond to the conditions alt on and alt off.

The functions DECAY_A and DECAY K implement long
exponential decay function and are used with long table
modes. The instruction does nothing unless the
background processor mode which uses the value B as a
parameter is a long table mode, and the background
processor is accessing data in the last page of the
long table. (Long table background mode is disclosed
below.) On the last page, the instructions decrease a
value C by a fraction indicated by the value B if the
appropriate key off or alt off condition is set.

Group F of the instructions in Appendix A contains
one operand and no operand instructions used mostly for
conditional branching and manipulation of status flags.
The instructions only permit forward branching so that
no program loops are possible. Without loops, the
maximum time required to execute all of the
instructions in all of the slots can be limited to less
than the sampling period.

Group G of the instructions in Appendix A contains
one operand special move instructions which are useful
for controlling background tasks that are described in
detail below. Functions MOVH8 and MOVH10 move the most
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significant 8 and 10 bit respectively from a value C to
a value A.

Functions MOVADL and MOVADH are typically used
with background tasks which use a page size selector.
Some background tasks use a value A as a page size
selector which selects the location of a physical page
in a DRAM and the size of a logical page for storing a
look-up table or delay line. These background tasks
use a value B as a pointer within the physical page.
Physical memory pages in the DRAM may for example
contain 512 words. When the logical page is smaller
than the physical page, more than one look-up table or
delay line can be store in a single physical page of
DRAM. For example, if value A selects a logical page
size of 64 words, then value B may point to any of
eight 64-word logical pages in a 512-word physical
page. The most significant bits of the value B
indicate a logical page, and less significant bits
indicate a location within the logical page. MOVADL
and MOVADH move bits from a value C to selected bits of
a value B, either to the bits which indicate a location
within a logical page or the bits which indicate the
logical page. A value A (the page size selector)
determines the bits of the value B changed. MOVADH
instructions change just the bits indicating the
logical page and are useful for creating a faﬁily of
curves which can be selected algorithmically. MOVADL
instructions preserve the bits which indicate the
logical page and change the bits which indicate a
location with in the logical page.

Groups H and I of the instructions in Appendix A
Eontain instructions for special functions. Functions
UNPACKS and UNPACKU move four nibbles from a signed or
unsigned 32-bit value C into two value A and two values
B. Functions PACKU and PACKS moves nibbles from two
values A and two values B into one 32-bit value C.
Functions RSPP, SPPA, SPPR, and SPPL are for jumping
between instruction slots according to addresses given
by a value C. Functions FAR A and FAR B are for
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accessing parameter of other slots. pruinctions FKF,
FKO, FAF, and FAO set states "key off", "key on", "alt
off" and "alt on" respectively. Functions I and FAR I
are for accessing instructions in the current and in
another slot. 2zF indicates the zero flag. MW
indicates a background processor mode word.

Fig. 5 is a block diagram showing greater detail
of background processor 102. The tasks executed by
background processor 102 are determined by mode and
control values stored in control registers 105 and by
parameters stored in memories 107 and 108. Typically,
the mode values and control values are set by an
external device such as a personal computer connected
to the DSP through port control interface 106.
Parameter values in memories 107 and 108 are set or
changed by the external device, foreground processor
101, or background processor 102.

. One set of control values in control registers 105
indicates which slots are enabled and which slots are
disabled. Foreground processor 101 executes the
instructions for each enabled slot such as instructions
410 in Fig. 4, and background processor 102 executes
background tasks for each enabled slot as indicated by
mode values in control registers 105 and parameter
values in memories 107 and 108. The number of slots
enabled should not exceed the maximum number of slots
that can be executed within a single sampling period.
Foreground processor 101 must be fast enough to execute
all of the instructions in all enabled slots before an
amplitude value is required by the CODEC interface.
Overhead such as refresh cycles for attached DRAM must

‘also be handled during the sampling period. For a DSP

with 35.4 nS MAC cycle time, memory access periods less
than about 17.7 nS for memories 107 to 109, and a 283
nS DRAM refresh cycle, 32 slots can be enabled for
sampling frequency less than 27.19 KHz. At a 44.1 KHz
sampling rate, up to nineteen slots may be enabled.

For disabled slots, background processor 102
either skips the slot and begins execution of the next
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slot or executes a block transfer from parameter
memories 107 and 108 to DRAM 502. Block transfers
permit an external device connected to port control
interface 106 to access DRAM 502. To transfer data to
DRAM 502, the external device disables a slot and
during memory access periods of the port control
interface 106, writes a DRAM address and data to
locations in memories 107 and 108 corresponding to the
disabled slot. The external device then sets a flag in
control registers 105 to indicate that the disabled
slot contains data to be written to DRAM 502. When
background processor 102 reaches the disabled slot,
background processor 102 transfers the data from
memories 107 and 108 to DRAM 502, and foreground
processor 101 executes no operations. For the external
device to read from DRAM 502, the external device
writes a DRAM address to memory 107 or 108 and sets a
second flag for the disabled slot. Background
processor 102 transfers data from DRAM 502 to memory
107 and 108 where port control interface 106 can read
the data in subsequent memory access periods.
Typically, DRAM 502 is provided on one or more
separate integrated circuits while the remaining
circuits shown in Fig. 5 are situated together on a
single monolithic integrated circuit. DRAM 502 may
include multiple banks of paged memory for data such as
look-up tables, ADSR curves, delay lines, and any
desired wave tables. ADSR curves, delay lines, and
wave tables are generically referred to herein as look-
up tables.
) Look-up tables in DRAM 502 provide output values
that represent values y, of a function Y for a range of
discrete values n. The value n is indicated by the
address provided to DRAM 502. In some emulations,
function values Y(n+x) are needed for fractional values
x, and interpolation between look-up table values y, and
Y.:s; i8 required. The background processor may perform
interpolations. One interpolation technique
approximates the function Y as a polynomial for a range
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having values between n and n+l. When the values n and
n+l are inserted into the polynomial, the polynomial
yields values y, and y,,, respectively. For example, a
cubic polynomial approximates the function Y(n+x) as

Y(n+x) = K + Kx? + Kx + K, (eq. 1)
Using linear algebra, it can be shown that eq. 1 yields
values y,,, Y., Yus;, and Yo+2 fOr x equal -1, 0, 1, and 2
respectively if the values K;, K,, K;, and K, are as
shown in eqs. 2-5.

Ky = (Yas2 = 341 + 3Ya = Yau) /6 (eq. 2)
K; = (3Ya41 = 6y, + 3Y,)/6 (eq. 3)
Ki = (=Yas2 + 6¥o41 = 3Y, = 2Y,4)/6 (eq. 4)
K =y, (eq. 5)

Combining egs. 2-5 with eq. 1 yields
Y(n+x) =y, * (-x*+3x-2) /6 + y," (3x°-6x’-3x+6) /6 +
Yasr® (=3X+3%7+6X) /6 + Y40 (X*-X) /6 (eq. 6)
Y(n+x) from eq. 6 is a sum of four terms, each term
being the product of one look-up table values y,,, Y.,
Yas1r OF Y,y and a coefficient that depends on the
fraction x.

Background processor 102 of Fig. 5 can interpolate
by approximating look-up table functions with cubic
polynomials. The coefficients from eq. 6 for desired
values of fraction x are stored in a table in an
interpolation ROM 501. In one embodiment of the
invention, coefficient values are stored in
interpolation ROM 501 for fractions x from 1/128 to
127/128 in steps of 1/128. Appendix B shows a table of
coefficient values referred to as "Lagrange Data" for a
step size of 1/128. Interpolated values Y(n+x) between
any two consecutive look-up table values Y., and y,,, are
determine in four multiply-and-accumulate cycles using
eqg. 6.

Once the background processor determines that
interpolation is required, address generator 507
generates a DRAM read address for the point Ysie The
address generated depends on the mode values in control
register 105 and on parameter values in memories 107
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and 108 as disclosed in more detail below. Address
generator 507 supplies an address for the first of four
consecutive location in DRAM 502 to be written into
FIFO buffer 503. The address generator 507 also
provides an address in interpolation ROM 501 for the
interpolation coefficients corresponding to the
fractional value x. In four multiply-and-accumulate
operation of shared MAC 215, values BPX, BPY, and BPZ
are provided from interpolation ROM 501, FIFO 503, and
an accumulator 509 respectively. The output value from
MAC 215 is stored into accumulator 509 until the last
multiply-and-accumulate cycle provides the desired
interpolated value. The interpolated value is stored
in memory 107 or 108 for later use by foreground
processor 101. :

A problem with the interpolation disclosed above
arises when interpolation is used to provide values in
a wave table representing a higher frequency sound. 1In
such situations, interpolating a series of values from
a wave table is equivalent to a filter operation. The
Lagrange Data coefficients provide very smooth
interpolation of points but in a filter operation, tend
to introduce higher frequency components in the results
which cause aliasing. A second table coefficient
values entitled "Minimum Sidelobe Data" shown in
Appendix B performs a filter operation which reduces
the aliasing. The Minimum Sidelobe Data coefficient
values may be used in place of the Lagrange Data
coefficients where aliasing may be a problem.

In accordance with the exemplary embodiment of the
invention, parameter memories 107 and 108 and
instruction memory 110 are divided into slots as shown
in Fig. 4. Each slot in memory 107 contains eight
words A,-A; used by background processor 102, and each
slot in memory 108 contains eight words B,-B; used by
background processor 102. Control registers 105
contain one 16-bit mode value for each slot.

Background processor 102 executes four background tasks
per enabled slot. Each background task is determined
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by a nibble from the mode value and two parameters from
each of the corresponding parameter slots. If the
nibbles in the mode value are indexed by an integer n
between 0 and 3, a task decoder 506 reads nibble n and
parameters A,, A,,,, B,, and B,,, to determine a task to
be executed. Once the task is determined, a state
controller 504 and pipeline timing circuit 505 controls
the sequence of operations for completion of the task.
The operations for the tasks are pipelined as described
below in regard to Fig. 9.

The exemplary embodiment of the invention has
sixteen background tasks indicated by mode nibbles.
Nibble 0000 indicates no background task. The first
mode (0001) is referred to as delay line mode and is
primarily used for wave guide synthesis. Delay line
mode provides an interpolated value from a delay line
in DRAM 502 and optionally writes a value to the delay
line.

Background processor 102 maintains an 18-bit
master write pointer used when determining where data
is read or written in DRAM 502. The nine most
significant bits of the master write pointer are
referred to as the absolute pointer and the nine least
significant bits of the master write pointer are
referred to as the write index pointer. The write
index pointer is decremented after each sample period
and used for determining addresses that should change
every sampling period. The absolute pointer is set
every time a background task is executed in absolute
mode and is used to define a base for a series of
background tasks.

For the delay line mode, parameter A, indicates
the write address in DRAM 502 if data is written. Bit
15 of A, indicates whether DRAM access is in absolute
or relative mode. Bit 14 of A, is set if data is to be
written. Bits 11-13 of A, indicate a logic page size
which determines the amount of memory used to generate
the delay line. Page sizes range from 512 words to
four words in powers of two. Bits 9 and 10 of A,
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indicate which of four DRAM circuit contains the
desired address. 1In relative mode, an address
indicated by the bits 0-8 of A, is added to the write
index pointer, the sum is wrapped around a logical page
boundary to provide the nine least significant bits of
the write address. The absolute pointer provides the
nine most significant bits of the write address. 1In
absolute mode, the absolute pointer is set to the value
given by bits 0-8 of A,, and the write address has nine
most significant bits given by bits 0-8 of A, and nine
least significant bits given by the write index pointer
wrapped around a page boundary.

Parameter A,,,; indicates the value to write.
Parameter B, indicates the delay line length (an offset
relative to the write address for reading from the
delay line). Offsets beyond a logical page boundary
wrap around. The delay line length includes a
fractional part for interpolation. At the end of the
delay line mode background task, an interpolated result
is written to the parameter B,,;.

FIR filter mode is mode nibble 0010 binary and
implements a two tap finite impulse response (FIR)
filter illustrated in Fig. 6. The FIR filter performs
the sum of three products B, , *A,,; + DRAMO*A, +
DRAM1#*B, and writes the result into parameter B,,,. The
values DRAMO and DRAM1 are read from a page of DRAM at
an address given by a control value in control
registers 105. The page is divided in sections. Each
section correspond to slot and contains values DRAMO
and DRAM1 for FIR filter mode tasks.

) Read only look-up table mode has mode value nibble
0011 binary and interpolates a value from a look-up
table contained in one or more pages of memory.
Parameter A, indicates the starting page and the number
of pages in the look-up table. Parameter B, indicates
an offset relative to the start of the look-up table,
including a fractional part for interpolation if the
look-up table is one page or less. One bit of
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parameter A, may be used to indicate ir wrap around or
truncation occurs when the offset provides an address
past a boundary of the look-up table. The result
(interpolated or otherwise) is written into B,,, upon
completion of the task.

Mode nibbles 0100 through 0111 indicate modes for
generating four types of ADSR curves. Plots of the
four ADSR curves as a function of time are shown in
Fig. 7. Each type of ADSR curve has a look-up table
stored in DRAM and a sampling rate that is given by a
variable increment that is added to an offset every
sampling period. Mode 0100 is a single shot ADSR curve
which when initiated by a key-on state 710, runs at a
constant sampling rate through the ADSR look-up table
once and thereafter returns a value zero. Mode 0101 is
a drum roll type ADSR curve which starting with a key-
on state 720 repeatedly runs at constant sampling rate
through the ADSR look-up table until a key-off state
722 occurs. Mode 0110 is a piano ADSR curve which
starts with a key-on state 730 and fast sampling rate
but switches to a slow sampling rate after a fixed time
722. The fast sampling rate permits more points in the
look-up during the critical attack portion of a note
and relatively fewer points thereafter. When a key-off
state occurs, the sampling rate of the piano ADSR curve
returns to the fast sampling rate and runs through the
remaining points of the look-up table as shown by a
faster decay curve 734. If the key-off state does not
occur, the slow sampling rate is maintained and a
slower decay curve 736 is provided. Faster and slower
decay curves 734 and 736 use the same look-up table but
sampla through the values at different rates. Mode
0111 is an organ ADSR which starts with a key-on
condition 740 and after a fixed time 742, stays at a
fixed point in the look-up table, until a key off state
744 occurs then sampling continues.

For each of the modes 0100-0111, parameter A,
indicates a speed shift factor, a starting physical
page, and a logical page size for the ADSR look-up
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table. Parameter B, indicates an offset within the
ADSR table including a fractional part for
interpolation. Parameter A,,, indicates a time step
constant and the least significant bits (LSBs) of the
offset in the ADSR look-up table. The LSBs from the
parameter A,,, gives offset resolution finer than the
interpolation capabilities of the background processor.
The added accuracy in offset value may be necessary to
avoid round-off or truncation error during changes of
the offset. Each sampling period, the background
processor increments the offset by an amount given by
the time step constant shifted by the speed shift
factor. For long duration notes, the increment can be
small, perhaps only a change only in the LSBs provided
by A, An interpolated result from the ADSR table is
written into parameter B,,,.

Mode nibble 1000 binary indicates Read-Only Wave
Table mode. 1In this mode, parameter A, indicates an
absolute address and size of a wave table and indicates
how often the offset within the wave table should be
changed, for example once every sampling period or once
every two sampling period. Parameter B, indicates an
offset including a fractional part for interpolation.
The offset wraps around if the offset is past an end of
the wave table. Parameter A,,, is a signed step rate
which is added to the offset when the background
processor changes the offset. An interpolated result
is written to parameter B,,,.

Mode 1001 binary is long table mode which is used
when a look-up table is contained in more than one page
of DRAM as shown in Fig. 8. Parameter A, indicates a
starting page number and the number of pages containing
the look-up table. Parameter A, also indicates whether
offset should wrap around from one end of the look-up
table to the other or be truncated. Parameter B,
indicates a current page index and offset within the
page. Parameter A,,, indicates a step rate for changing
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the offset and an interpolation fraction for
interpolating baetween values in the look-up table.

As described above, four values Yy,,, Y., Ya.s1r and
Y.+: are read from a look-up table for interpolation.
Because access to four data values in two or more
physical pages takes more time than access to four
value in a single page, the data values in the last
four locations of each page are repeated in the first
four locations of the next page. For example, memory
locations 820 in DRAM Page 1 contain the same data as
locations 810 in DRAM Page 0. The very last page has
final values copied to the beginning of the first page
in look-up table when wrap around enabled.

Modes 1010 and 1011 are long table modes with 2-
to-1 and 4-to-1 compression, and operate in .
substantially the same manner as long table mode 1001.
The primary difference of the three modes is long table
mode'bperates on a look-up table containing 16-bit word
values, long table modes with 2~-to-1 compression
operates on a look-up table containing byte values, and
long table modes with 4-to-1 compression operates on a
look-up table containing nibble values.

Mode 1100 is a long read-write delay line mode
that both reads and writes to a delay line that extends
over several pages of DRAM. Parameter A, indicates a
starting page and the number of pages containing the
delay line. Parameter B, indicates the delay line
length as a page index and an offset within the page.
No fractional offset is provided and therefore no
interpolation is done in this mode. For large look-up
tables, the accuracy provided by a large number of data
pointas makes interpolation less important. Parameter
A,., stores data to be written at an address indicated
by a write index pointer maintained by background
processor 102. The value read from the delay line is
written to parameter B,,,.

Mode 1101 1s'long read only mode and is the same
as mode 1100 except that no data is written.

SUBSTITUTE SHEET (RULE 26)
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Mode 1110 is either a sample record mode or a line
input mode. Bits in parameter A, distinguish the
sample record mode from the line input mode. Sample
record mode records or stores into DRAM sound amplitude
values generated by the DSP. Parameter A, contains a
starting address and a data size for writing of data
into DRAM. Data may be written in word, byte, or
nibble sizes. Parameter B, contains a sample counter
which indicates a current page index and an offset in
the current page for writing data. The offset is
incremented by the background processor as data is
written. Parameter A,,, contains the data to be
written. Parameter B,,, contains an index for writing
byte or nibble values and flags for stopping and
starting recording.

Line input mode moves data from the CODEC
interface into parameter memory. Up to four stereo
CODECs or analog-to-digital converters (ADCs) can be
connected to the CODEC interface. For recording of a
sound, CODECs or ADCs write sound amplitude values to
registers in the CODEC interface. Four pairs of
registers are provided in the CODEC interface to store
four pairs of values from the CODECs or ADCs, each pair
of values being a left value and a right value as are
common for stereo sound.. Typically, the sound
amplitude values are changed once every sampling
period. 1In line input mode, parameter A, contains a
flag which indicates line input mode rather than sample
record mode and contains a code which indicates which
of the four pairs values are transferred. The
background processor transfers the left value of the
pair indicated to parameter A,,, and the right value of
the pair indicated to parameter B,,. Parameter B,,, is
not used in this mode.

Mixer mode (1111 binary) performs two
multiplications. Data is not read or written to DRAN,
so that during this background task refresh cycles for
the DRAM can be executed. Parameter A, indicates a

SUBSTITUTE SHEET (RULE 26)
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slot pointer, a parameter index for a multiplicand A,
and a parameter index for a multiplicand B. Each
parameter index has a code bit which indicates whether
the parameter is in the current slot or the slot
indicated by the slot pointer. The product of A and B
is store in A,,,,. Parameter B, indicates a slot pointer
and two parameter indices for multiplicands A’ and B’
which are either in the current slot or the slot
pointed to by the slot pointer. The product of A’ and
B’ is store in B, ..

Referring again to Fig. 5, for enabled slots,
background processor 102 performs background tasks as
indicated by mode values from control registers 105 and
parameters from parameter memories 107 and 108. There
are four background processor mode values for each slot
indicating four background tasks. Each task requires
up to four multiply-and-accumulate operations.
Accordingly, background processor 102 executes up to
sixteen multiply-and-accumulate operations per slot
which is exactly the same as the maximum number of
instruction executed per slot by foreground processor
101.

Typically, foreground processor 101 processes a
slot after background processor 102 has completed all
of the background tasks for the slot. For example, at
the beginning of a sampling period, background
processor 102 starts processing background tasks for
slot 0 and foreground processor 101 is idle.

Foreground processor 101 starts processing slot 0 after
background processor 102 has completed slot 0 and
written preprocessed data into parameter memories 107
and 108, so that although background processor 102 and
foreground processor 101 share math unit 103 in
parallel interleave fashion, foreground and background
processors 101 and 102 do not simultaneously process
the same slot.

Fig. 9 shows timing diagrams indicating an example
of the operation of background processor 102 in
accordance with the present invention as shown in Fig.
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5. Each sampling period, a sample clock asserts a
signal START BP which starts operation background
processor 102. Backgrbund processor starts decoding
and executing background tasks starting with slot 0 (or
the first enabled slot). Execution of operations to
complete background tasks are pipelined and controlled
by timing signals generated by a pipeline timing
circuit 505.

Decoding by task decoder 506 begins with reading
of mode values from control registers 105 and parameter
values from memories 107 and 108. Background processor
102 has access to memories 107 and 108 once per
instruction cycle of foreground processor 101.
Accordingly, background 102 can read two parameters per
instruction cycle, one from each or memories 107 and
108.

A signal RAOBO is asserted low during instruction
cycles in which background processor 102 reads even
indexed parameters A, and B, from memories 107 and 108.
For example, during instruction cycle 901, background
processor 102 reads parameters A, and B, from slot zero.
A signal RA1B1 is asserted low during instruction
cycles in which back§round processor 102 reads odd
indexed parameters A,,, and B,,, from memories 107 and
108. For example, during instruction cycle 902,
background processor 102 reads parameters A; and B, from
slot zero.

After parameters A,, By, A, and B, and the mode
nibble are read, task decoder 506 determines the task
to execute. Fig. 9 illustrates the example of a delay
line mode background task described above. The deiay
line mode background task requires one write to DRAM
502, four reads from DRAM 502, and four multiply-and-
accumulates operations. A row address signal RAS is
asserted to DRAM 502 at time 951 after task decoder 506
and DRAM controller 510 have determined a row address
(or physical page) for memory 502. For delay line
mode, the physical page is determined from parameter A,
the write index pointer, and the absolute pointer as
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described above. While signal RAS remains asserted, a
column address signal CAS is asserted five times, once
for a write and four times for reads from the same page
in DRAM 502. Data read from DRAM 502 goes into FIFO
buffer 503.

Execution of background tasks is pipe lined.
While the signal RAS is assert, background processor
102 continues to access memories 107 and 108 and begins
reading parameters for the next background task.
During instruction cycle 905, signal RAOBO is asserted,
and background processor 102 reads parameters A, and B,
from slot zero. During instruction cycle 906, signal

RA1B1 is asserted, and background processor 102 reads

parameters A, and B, from slot zero. Accordingly,
during instruction cycles 905 and 906, background
processor 102 is reading parameters for the second
background task of slot 0 and is accessing DRAM 502 for
the first background task of slot 0. During
instruction cycle 909, background processor 102 is
controlling a multiply-and-accumulate operation for the
first task of slot 0, accessing DRAM 502 for the second
task of slot 0, and reading parameters for a third task
of slot 0.

Each background task has four opportunities to use
shared MAC 215. Signals MKO, MK1, MK2, and MK4 are
asserted low if the background task actually uses
shared MAC 215 during the first, second, third, or
fourth opportunity, respectively. For interpolation,
each of the four opportunities is used. Signal MKO is
asserted low during instruction cycle 906, and MAC 215
multiplies a value from FIFO buffer 503 (the first
value read from DRAM 502 after time 951 when signal RAs
was asserted) by a first interpolation coefficient from
interpolation ROM 501. During instruction cycles 907,
908, and 909 successive values from FIFO buffer 503 are
multiplied by corresponding values from interpolation
ROM 501 and the results are accumulated. After four
multiplications, the accumulated results is the desired
interpolated value.

QURBSTITUTE SHEET (RULE 26)
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Signals WAOBO and WA1Bl are asserted low during
instruction cycles when background processor 102 writes
to memories 107 and 108. For the first task of slot 0,
signal WA1Bl1 is asserted low during instruction cycle
911, and background processor 102 writes the desired
interpolated value to parameter B,. In the embodiment
described above, interpolated values are always written
to odd parameters, typically B,,,. Values written to
even number parameters do not require interpolation or
shared MAC 215. Accordingly, assertion of signal WAOBO
during instruction cycle 904 corresponds to the first
task of slot 0 and even though the last write operation
for the first task of slot 0 doeé occur until
instruction cycle 911. This timing is maintained for
all background tasks regardless of the number of
multiply-and-accumulate operations actually employed by
a particular background task.

The second, third, and fourth task of slot zero
proceed in the same manner as described above, and
background processor 102 writes final results to
memories 107 and 108 during instruction cycles 915,
919, and 923 respectively. Reading parameter values
for slot 1 begins with instruction cycle 917 which is
before the third and fourth task of slot 0 are
complete.

After instruction cycle 923, all the background
tasks for slot 0 are completed and slot 0 is ready to
be processed by foreground processor 101. A signal
START_FP is asserted low to commence processing by
foreground processor 101. Foreground processor 101
executes the instructions in instruction memory 110

while background processor 102 continues processing

tasks for another slot. Because the time required for
background processor 102 to complete a slot equals the
time réquired for foreground processor 101 to complete
a slot, background processor 102 completes each slot
before'foreground processor 101 begins the slot.
Processing continues in this fashion until all
enabled slots have been processed by both foreground
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processor 101 and background processor 102. Foreground
processor 101 then transfers eight sound amplitude
values from parameter memory 109 to CODEC interface 111
where one or more DAC or CODEC can access the sound
amplitudes. Foreground processor 101 and background
processor 102 are then idle until a sample rate clock
causes signal START_BP to be asserted again, and
background processor 102 begins again with slot 0. 1In
some embodiments, background processor 102 begins
before the CODEC interface has read all the sound
amplitude values. This is possible because background
processor 102 does not disturb the sound amplitude
values.

Although the present invention has been described
with reference to particular embodiments, the
description is only an example of the invention’s
application and should not be taken as a limitation.
Accordingly, various modifications, adaptations,
substitutions and combinations of different features of
the specific embodiments can be practiced without
departing from the scope of the invention set forth in
the appended claims.
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APPENDIX A

PCT/US95/04354

These instructions use a multi-operand structure to

enhance random access use of all memories. There are

no time hits with respect to pipe-line delays. All

instructions are one cycle execution time.

Three operand instructions:

There are 12 different types of three operand

instruction.

The remaining instructions require 2

operands or less and use an additional 4 bits for

defining instruction types.

0000~-kkkk=-jjjj-iiii c=A*B, ; MUL
0001-kkkk-j3jj-iiii c=A;*C, ; Note 1
0010-kkkk-jjjj-iiii c=B*cC, ; Note 1
0011-kkkk-jjjj-iiii c=C*C, ; Note 1
0100-kkkk-33jjj-iiii c=c+A*B, ; MAC
0101-kkkk=-3jjj-iiii Cc=Ci+A;*C, ; Note 2
0110-kkkk-jjjj-iiii c=cC;+B*C, ; Note 2
0111-kkkk=-j3jjj-iiii c=C+C*C, ; Note 2
1000-kkkk-0j3jj-iiii c=CitC*(1-A,,) ; J {0..7} PAN
1000-kkkk-1jJjj-iiii C=Ci+C,*(1-B;,y) ; J {0..7}
1001-kkkk=-3jjjj-iiii c, =C=C;+A*B, ; Biquad

1010-kkkk-j33j-11ii

1011
1100
1101
1110

Note 1

Note

Expanded Instruction Group A
Expanded Instruction Group B
Expanded Instruction Group C
Expanded Instruction Group D
1111 Expanded Instruction Group E

C values are pre-truncated.

C=C;-B;, ; (Scattering junction.)

A or B values are pre-expanded.
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1011~0000-jj3j-0iii
1011-0000-3333-1iii

1011-0001~-333j-0iii
1011-0001-j33j3-1iii
1011-0010-j3§j-0iii

1011-0010-j33j3-1iii

1011-0011-j3j3j-iiii
1011-0100-0§3j3j-1iiii
1011-0100-1j3§j-iiii
1011-0101-003j-1iiii
1011-0101-013j-iiii
1011-0101-10jj-iiii
1011-0101-11jj-iiii
1011-0110-33§j-11ii
1011-0111-3§33j-11ii
1011-1000-333j-1iii
1011-1001-333j-11i1
1011-1010-333jj-iiid
1011-1011-j3j3j-1iii
1011-1100-333j-11ii
1011-1101-j3§33-iiii
1011-1110-§§33-1111
1011-1111-j3jJ-iiii

40

PCT/US95/04354

NF=(C;,;{31}"A;{15}) *(-2)+1,

Ci.g=abs (CL;jy7*Aj) *NF

NF=(Ci,s{31}"A{15}) *(-2)+1,

Ci+s=abs (CL;,o*AJ) *NF
Cisy=abs (B*CH,,; ) *NF
Ci,y=abs (B;*CH,,y ) *NF

Ci43=(Ci44>>16) +tA;*CH,yy 7

Note: Sign extended

Ciss=(Ci4s>>16) + A*CHyy ;

Note: Sign extended
Ci=Bi-Ci

Cir=Aj+s+Bj*C; ;7 £ (x)=m(x)+b

Cis1=Ay4s+Bj s *C
CBLHA,*C,
C=B3+A,*C,
Ci=B5+A,,*C;
CB7+A,¢*C;

C=A+B1*C, ; Scale output of BP

Ci=Aj+B 3% Ci
C=A+B5*C
C=A+BT*C,

C=A*WN ; White Noise

C/=B/*WN
C=C+A*WN
Ci=C;+B;*WN
C=C;*WN
C=Ci+C*WN
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Group B: (Adds and Subtracts)

1100-Ins{0..15}-Pi[0..15]-Pj[0..15]
1100-0000-333j-iiii c= C+C
1100-0001-jjjj-iiii C= Ci+a
1100-0010-3jjj-iiii ¢c= C;+B,
1100-0011-0j33=0iii Ci 4= A,+B1 ; i, I={ 0..7 }
1100-0011~0333=11ii Cyy= Aj,4+B3
1100-0011-133J-0iii Cg= A;;4+B5
1100-0011-1333~14ii C 4= A 4+B7
1100-0100-3j3j-iiii ¢,=Ci#+C; ; i-1 wraps around
1100-0101-33jj-1iii ¢, =C+a
1100-0110-3j3j-iiii C;,=C+B,
1100-0111-3333-1iii C=A-C
1100-1000~3jjj-iiii ¢,=C-C
1100-1001-3333-11ii ¢, =C;-
1100-1010-33jj-iiii ¢=C-¢
1100-1011-3333-11ii c=¢~cC,
1100-1100-3333-1iii ¢, =A~C,
1100-1101-3j3jjj-1iiii c,;=B-C
1100-1110-3333-iiil c,;=C;-a
1100-1111-3j33-1iii c=c;-

Note: saturation occurs if value C greater than 15.99
or less than -15.99.
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These instructions include an additional move after a

multiply operation and may be used for filters.

1101-Ins{0..15)-Pi..15]-Pj0..15]

1101-0000-33jj3-1iii

1101-0001-j§3j-11iii
1101-0010-33§33-11id
1101-0011-j3j3j-1iii
1101-0100-3§3§3-11i4d
1101-0101-jjj3-iiid
1101-0110-j9§3J-1iii

1101-0111-3§9§3-iiii
1101-1000-3333-iiii
1101-1001-jjjj-iiii
1101-1010-3j33-iiii
1101-1011-§§§3-iiii
1101-1100-§jj3-1iii
1101-1101-j333-11ii
1101-1110-333j3j-11ii
1101-1111-§9§3§-i1ii

C=C{+A;*B;, A=B, ;
Filter with Post Move

C=C;+B;j*A;, B=A,

CEAME;  ATBy

C=B;*A; , BFA;,

C=C+A*B; , A=C,

C=C+Bj*A; , B=C,

Ci+1=C;-Aj*B, , C,=A; ; Lattice Filter,
i+1 and i-1 wrap around.

Cit1=Ci-A*B; , C; =B

Ci=Ci+Aj*Bj ’ A]=B b
C=C+A¥B; , A=B3
C=C+A*B; , A=B5

C=C+A*B, , A=B7
C=A*B, , A=B1
C=A*B, , A~B3
C~=A*B, , A=B5
C=A*B, , A=B7
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Group D: (Moves)

1110-0000-j3jj-iiii
1110-0001-3j3jj-iiii
1110-0010-jjjj-o0iii
1110-0010-j3jjj=-1iii
1110-0011-j3jjj-iiii
1110-0100-j33j-1iii
1110~-0101-jj3j-iiii
1110-0110-3j3j-iiii
1110-0111-33jjj-iiidi
1110-1000-33jj-1iii
1110-1001-3333-1iii
1110-1010-j3jj~-iiii
1110-1011-03j3j-0iii
1110-1011-13jjj-0iii
1110-1011-0j3j-1iii
1110-1011-1jjj-1iii
1110-1100-00jj-001ii
1110-1100-00jj-01ii
1110-1100-0033j-10i1i
1110-1100-00jj-111ii
1110-1100-0133j-000i

1110-1100-0133j-0011

1110-1100-0139-010i
1110-1100-0133j-011i

1110-1100-0100-11ii
1110-1100-0101-1iii
1110~-1100-0110-1iii
1110-1100-0111-1iii
1110-1100-1kii-0011

1110-1100-1kii-0110
1110-1100-1kii-1100

PCT/US95/04354

43
Bi=Aj
Bi=Bj
Ajy.=Aj
Ay41=Bj
Aj=Ci*4; shift by 2 bits
Bj=Ci*4
Aj=Ci*g8 ; shift by 3 bits
Bj=Ci*8
A=C (truncates toward 0)
B=C; ; (truncates toward 0)
C=A; ; (expands)
C=B; ; (expands)
Ciy=ABj, ; 1, J {0..7}
AB;,,=C;;; ; Save state of Cj,;

Cu=ABy , Cyuy=ABy,,

ABy=Cy ABy . 1=Cus1

A=Cs + Byir=Cuist + A4s2™Chsz + Byss™Cuua
B4=Cy + A4y+1=Cus1 + Bys2™Cas2 + Ayss=Cuss
Ai=Cyy + Byar=Cu + Ay+2™Cus1 + Byss™Cyuy
Bi=Cai1 ¢ A4y+s1=Ca + Bya2™Cusr + Ayss™Cuss
A y=Chss By,s=Ciiro + A 12=Chsr0 »
B;+12=Cui+n1

Al=Cyiy Bj+!éc4i+9 v Aa17™Casr0 ¢
B;+12=Caisns

Al=Cg,s, By=Cys9 + A3=Cgypo + Bjpy™Cysn
A1=Cg s, By=Ciso, A3=Cgsr0 ¢+ Byar=Ciinii
if j=3, 23+2 > 0
Cisy=Bl+A;;;y , Aj4=Bl ;
Ciss=B3+A;,; , A;=B3
Ciys=B5+A;,; , Aj=B5
Ciss=B7+A; , Ay =B7
Boui=Cis12 ¢ Braw=Cisrs 7 K={0,1},
i={0-3}, Overflow wraps to Cl2,
example: B8=Cl15 , B10=Cl2

i={0-7}

By+sx=Ci+12 + Basax=Cisns

Bi+sx=Cisn2 ¢+ Bs+rs=Cisns
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1110-1100-1kii-1001
1110-1100-1kii-0101
1110-1100-1kii-1010
1110-1100-1kii-0010
1110-1100-1kii-0111
1110-1100-1kii-1101
1110-1100-1kii-1000
1110-1100-1kii-0100
1110-1100-1kii-1011
1110-1100-1kii-0000
1110-1100-1kii-0001
1110-1100-1kii~-1110

1110-1100-1kii-1111
1110-1101 1-0P
1110-1110 1-0P
1110-1111 1-0P

44

Bo+six=Ci+n2
Bo+x=Cisn2
Byysx=Cis12
Ap+=Ci+n2
A3 5x=Cisnz
Ay x=Cisn2
A ak=Cisr2
AL x=Cisn
A3 5=Cis2
Bo+sk=Cisn2
By +x=Cis12
Bi+ix=Cis12
Bs+sx=Cis12
group I

group F

group G

B+ =Cis13
By+sk=Cis13
Be+sk=Cis13
Ay45k=Cis1s
A 5x=Cis1a
A7,8x=Cis13
A741x=Cis13
A, 5x=Cis13
A7 5x=Cisn3
Apesx=Cisns
A34+k=Cisns

A5 5x=Cis13
A7, x=Cis1s

PCT/US95/04354
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Group E (Envelope Instructions)

Many of the Group E
which are described

1111-0000-j3jjj-0iii

1111-0000-3j33-11ii
1111-0001-§j3j-0iii

1111-0001-jj33-1iii
1111-0010-3jjj3-0iii

1111-0010-3j3j-11ii
1111-0011-§j3j-0iii
1111-0011-jj39-14ii
1111-0100-j333-0iii

1111-0100-33j3j-1iii
1111-0101-3jj3j-0iii
1111-0101-3333-14iii
1111-0110-3jj3j-0iii
1111~0110~3§3j33-11ii
1111-0111-kk3j-00ii
1111-0111-kkjj-01ii
1111-0111-kkjj-10ii
1111-0111-kkjj-11ii
1111-1000-j33j-1iii
1111-1001-3j3j-iiii
1111-1010-3333-1iii
1111-1011-333j-1iii
1111-1100-jj33-1iid
1111-1101-j3j3)-iiii
1111-1110-jj33-00ii
1111-1110-3333-01id
1111-1110-j3jj-10ii
1111-1110-3j33-11ii
1111-1111 1-0P

Instruction depend on functions
on the following pages.

Ci+s=ADSRO_K(C;,y, A;, B) ;
Slow Attack, Slow Release
Ci+s=ADSRO_A(Ciyy, A, By)
C,+y=ADSR1_K(Ciyy, A;, B) ;
Fast Attack,
Ci+s=ADSR1_A(Ciyy, Ay, B))
C,+s=ADSR2_K(C;y, A;, B)) ;

Fast Attack, Fast Release
C;+s=ADSR2_A(Cisy, A, B;))
C,ss=DECAY_K(Ci,y,B) ; i={ 0..7 }
C;+s=DECAY_A(C;,4,BJ)

Ci+s=ADRO_K(Ciyy, A;, B;) ; ADR is like
ADSR but ADR has no sustain.
Ci+s=ADRO_A (Ci,y, A, B))

Ci+s=ADR1_K(Ci,y, A;, B))
Ci++=ADR1_A(Cisy, Ay, B))

C,.s=ADR2_K(Ci,y, A, B)
Ci+s=ADR2_A(Ci,y, Ay, B)

By +1=Cis1ar Cia12=B1l¥*Ay,,

Bu+1=Cis1zr Cisz=B3%*Rg4,

Bu4+s=Cis1zr Cis12=B5%*2y4,

Br+1=Cis1zr Cis12=B7*Aj4y

C=A*Bl, Al=C,

C=A*B3, A3=C,

C=A*BS, A5=C;,

C=Aj*B7, A7=Cy

C += C,, A=CH

C, += Cy, B=Cy

Ci.1z=AJ*B1l, BO=Cj,,

Ci+17=AJ*B3, B2=C;y,

Cis12=AJ*B5, B4=Cy,

Cisz=AJ*B7, B6=Ciy,

Group H

Slow Release
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ADSR and ADR Envelope Instructions:

The envelope instructions perform different .
operations depending‘on control values and whether the
envelope is in an attack, a decay, a sustain, or a
release phase.

Attack:

After Key On Edge, the attack phase begins, and
the instruction performs

Ci=Ci+Aj[6..0]*4 for ADSR2 and ADSR1l, or

Ci=Ci+Aj[6..0]*(1/8) for ADSRO (slow attack).
Decay: ‘

If Ci reaches 1 or higher, the decay phase begins,
and Aj[7]) is set. During the decay phase (Key On and
Aj[7) set), the instruction performs

Ci=Ci-ci*Bj[15..8] for ADSR2 (note: i=j) or

Ci=Ci-(ci/8)*Bj[15..8] for ADSR 1 and ADSRO.

At -75dB, the decay speeds up to the fast rata.
Sustain:

If Ci <= Aj[14..8) the sustain phase begins,
Aj(15]) is set, and otherwise the instruction performs
NOP. A sustain phase does not apply to ADR.

Release: ’

If Key Off, the release phase begins, and the
instruction performs

Ci=Ci-Ci*Bj[7..0); AJ7=0 for ADSR2 or

Ci=Ci-(Ci/8)*Bj(7..0] for ADSR 1 and ADSRO.

At -75dB, the release speeds up to Fast rate.

ADRO through ADR2 instructions work the same as
ADSRO through ADSR2 instructions except that there is
no sustain point.

Note: C, will be lost unless saved into and out of an A
or B parameter. This means that the Foreground
Envelope Generator requires two overhead instructions
(get state and save state). C, must be saved before it
is modified. Below is an example program which uses an
envelope instruction:

SUBSTITUTE SHEET (RULE 26)
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C15=AB15; Get previous value.
C15=ADSR2(C15, Al14,Bl14); Cl15 is the new Envelope value.
*AB=%C, *C=%C%A9; Store and use Envelope value.

Decay Instruction:

The decay instruction augments the Long Table modes.
The last page may be looped in these modes. This
instruction creates an exponentially decaying envelope
during that last page as it repeats. This instruction
requires'Z additional instructions to save and restore
the C register. The instruction functions as follows:

Default Condition: NOP
Last Page Detected: Ci=Ci-(Ci/8)*Bj ;

Example Program:

C14=AB15 ; Get previous envelope data.

C14=DECAY(C14, B7); Ci4 is the envelope Data.
AB15=Cl14 ; Save new envelope data.

Note: if the Decay flag is not true, B7 would simply be
copied to C14, otherwise C14=C14*B7.

Estimation of Exponential Decays:
This uses -80dB as the target level.

0.0001 = (Fraction)®

Where n=Number of samples to achieve the targeted
decay. Fraction equals [1-B] for fast modes and [1-
B/8] for slow modes. For ADSR functions, B may take on
a maximum value of 7.8E-3 for fast modes; this produces
a fraction equal to 0.992. 1In slow mode, B may take on
an effective value of 3.8E-6 producing the fraction
equal to 0.999996. The decay time is as follows:

-4
SRxLOG,, (Fraction)

Decay =

Where SR is defined as the sample rate.
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1110-1110-0000~0nnn

1110-1110-0000-1nnn
1110-1110-0001-0nnn
1110-1110-0001-1nnn
1110-1110-0010-0nnn
1110-1110-0010-1nnn
1110-1110-0011-0nnn
1110-1110-0011-1nnn
1110-1110-0100-0nnn
1110-1110-0100-1nnn
1110-1110-0101-0nnn
1110-1110-0101-1nnn
1110-1110-0110-0nnn
1110-1110-0110-1nnn
1110-1110-0111-0nnn
1110-1110-0111-1nnn
1110-1110-1000~0nnn
1110-1110-1000-1nnn
1110-1110~1001-0nnn
1110-1110-1001-1nnn
1110-1110-1010-0nnn

1110-1110-1010-1nnn
1110-1110-1011-0nnn
1110-1110-1011-1nnn
1110-1110-1100-0nnn
1110-1110-1100-1nnn

1110-1110-1101-0nnn

1110-1110-1101-1nnn
1110-1110-1110-nnnn
1110-1110-1111-0000
1110-1110-1111-0001

11i0—1110-1111-0010
1110-1110-1111-0011
1110-1110-1111-0100

PCT/US95/04354
48
SKIP n if KEY ON ; Note: n={0..7},
If n=0 then skip 8.
SKIP n if not KEY ON
SKIP n if ALT KEY ON
SKIP n if not ALT KEY ON
SKIP n if KEY ON EDGE
SKIP n if not KEY ON EDGE
SKIP n if ALT KEY ON EDGE
SKIP n if not ALT KEY ON EDGE
SKIP n if DECAY FLAG
SKIP n if not DECAY FLAG
SKIP n if KEY OFF EDGE
SKIP n if not KEY OFF EDGE
SKIP n if ALT KEY OFF EDGE
SKIP n if not ALT KEY OFF EDGE
SKIP n if > EFFECTIVE ZERO
SKIP n if < or = EFFECTIVE ZERO
SKIP n if > or = EFFECTIVE ZERO
SKIP n if LESS THAN EFFECTIVE ZERO
SKIP n if EFFECTIVE ZERO
SKIP n if not EFFECTIVE ZERO
SKIP n if OVERFLOW or SAT
(C-Reg > (+-)15.999)
SKIP n if not OVERFLOW or SAT
SKIP n if GEA2 ; (> or = 2)
SKIP n if not GEA2 ; (not > or = 2)
SKIP n if GEAl ; (> or = 1)
SKIP n if not GEAl ; (not > or = 1)
SKIP if ABS ZERO
SKIP if not ABS ZERO
SKIP always (n=0 if set to zero)
NOP ; No Operation.
DSRS ; Disable all Sample Record
modes next Sample
SF ; Save arithmetic Flag
GF ; Get arithmetic Flag
FDA2 ; Force DRQ-A2
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1110-1110-1111-0101
1110-1110-1111-0110

1110-1110-1111-0111
1110-1110-1111-1000

1110-1110-1111-1001
1110-1110-1111-1010

1110-1110-1111-1011

1110-1110-1111-1100

1110-1110-1111-1101

1110-1110-1111-1110

1110-1110-1111-1111

PCT/US95/04354
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or writes)

DRQ-A4 (4 DMA Reads)
DRQ~B2

or writes)

DRQ-B4 (4 DMA Reads)
execute instructions in

(2 DMA Reads
FDA4 ;
FDB2 ;
(2 DMA Reads
FDB4 ;
Jup([C8] ;
new slot.

Force

Force

Force

RET ; return to normal slot.

GDS ; Get DMA Status.

Zero Flag='1’ means data not ready.
FDR ; Get DMA Error.

Zero Flag=’1’ means no error.

FKI ;
Current Slot

FAI ; Force AltKey Interrupt of
Current Slot

IKZ ; Interrupt if KEY OFF and
effective zero

IAZ ; Interrupt if ALTKEY OFF and
effective zero

Force Key Interrupt of
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Group G
1110-1111-0000-0ii1i

1110-1111-0001-01i{
1110-1111-0010-01ii
1110-1111-0011-01ii
1110-1111-0100-04i1i
1110~1111-0101-04ii
1110-1111-0110-0iii
1110-1111-0111-0iii
1110-1111-1000-04i1i

'1110-1111-1001-04ii

1110-1111-1010-0iii
1110~1111-1011-01iii
1110-1111-1100-0iii

1110-1111-1101-01i1
1110-1111-1110~04ii
1110-1111-1111-0iii
1110-1111-0000-1ii4
1110-1111-0001-11i4
1110~1111-0010-1iii
1110-1111-0011-11i4
1110-1111-0100-14i1
1110-1111-0101-1111
1110-1111-0110-14i1
1110-1111-0111-141]
1110-1111-1000-11ii
1110-1111-1001-1111
1110-1111-1010-1111
1110-1111-1011-111i
1110-1111-1100-1i41
1110-1111-1101-1444
1110-1111-1110-1141
1110-1111-1111-1i44

50

A1=MOVH8 (Al, C;) ;
Long Table Step Rate
A3=MOVHB (A3, C,)

A5=MOVHS (A5, Ci,,)

A7=MOVHS8 (A7, C;)

A1=MOVH10(Al, C,) ;
A3 =MOVH10(A3, C4)
A5=MOVH10 (A5, C;,)
A7=MOVH10(A7, Ci4)
BO=MOVADL(AO0 , BO,
B2=MOVADL(A2 , B2,
B4=MOVADL(A4 , B4,
B6=MOVADL (A6 , B6,
BO=MOVADH(AO , BO,
Look Up Table
B2=MOVADH (A2 ,
B4=MOVADH (A4 , B4,
B6=MOVADH(A6 , B6,
A1=MOVHS (A1, Ci) ,
A3=MOVHS (A3, C,) ,
A5=MOVH8 (A5, C,,) ,
A7=MOVHS (A7, C,,) ,
Al=MOVH10(Al, Cy,) ,
A3=MOVH10 (A3, C,,) ,
A5=MOVH10 (AS, Civs)
A7=MOVH10(A7, Cyy) .,
BO=MOVADL(AO , BO,
B2=MOVADL(A2 , B2,
B4=MOVADL (A4 , B4,
B6=MOVADL (A6 , B6,
BO=MOVADH (A0 , BO,
B2=MOVADH(A2 , B2,
B4=MOVADH (A4 , B4,
B6=MOVADH (A6 , B6,

B2,

Civs) 7
Cise)
Ciss)
Cise)
Cite)

Cisa)
Cins)
Cisve)
Civs)
Civs)
Cisvt)
Civs)
Civs)

PCT/US95/04354

ADSR Step Rate

Delay Line

Ciss)

Ciss)

Ciss)
B2=C,,,
B4=C,,,
B6=C, ,
BO=C,

B2=C;,,
B4=C;,,
B6=C,,,
BO=C; ¢
¢ Al=C,,,
A3=Cy,
A5=Ci,
A7=Cyyy
A3=C;,,
A5=Cy,
A7=Ciyy
Al=Cy,
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Group H
1111-1111~-0000-001ii
1111-1111-0000-01ii

1111-1111-0000-10ii
1111-1111-0000-11ii
1111-1111-0001-iiii
1111-1111-0010-iiii
1111-1111-0011-iiii
1111-1111-0100-0000
1111-1111-0100-0001

1111-1111-0100-0010
1111-1111-0100-0011
1111-1111-0100-0100

1111-1111-0100-0101
1111-1111-0100-0110
1111-1111-0100-0111
1111-1111-0100-1000

1111-1111-0100-1001
1111-1111-0100-1010
1111-1111-0100-1011
1111-1111-0100-1100

©1111-1111-0100-1101

1111-1111-0100-1110
1111-1111-0100-1111
1111-1111-0101~-0iii

1111-1111-0101-1iii

1111-1111-0110-04iii
1111-1111-0110-10ii

: PCT/US95/04354
51

UNPACKS (&A14,&B14,&A15,&B15,C ;)
Align A,B[15-12)

UNPACKU (&Al4, &B14,&A15,&B15,Cyy;) 7
Align A,B[14-11]
C;»17=PACKU(A14,B14,A15,B15)
C,+1;=PACKS (A14,B14,A15,B15)

Bl14=A1l | B15 ; Bit-wise OR

Al4=Ai & B15 ; Bit-wise AND

Bl4=Ai ~ B15 ; Bit-wise XOR

RSPP ; Return to Initial Slot
SPPA[C8] ; Set Slot Parameter
Pointer Absolute
SPPR[C8] ; Set Slot
Pointer Relative to
SPPL[CB] ; Set Slot
Pointer Relative to
FAR A[C9)=FAR A[C8)
Relative Moves

FAR A[C9)=FAR B([C8)
FAR B[C9]=FAR A[C8]
FAR B[C9)=FAR B[C8]
A[C9)=A[C8] ; Near Relative to
Relative Moves

A[C9]=B[C8)

B[C9]=A[C8]

B[C9]=B[C8]

FKF[C8] ; force KEY OFF

FKO[C8) ; force KEY ON

FAF([C8] ; force ALTKEY OFF

FAO[C8] ; force ALTKEY ON

C;,s=GSN ; C={0,0,0,0,0,0,5N[4-0),0,
0}, SN=Current Slot Number
C,,4=WP ; €={0,0,0,0,wpl6,wpls5,...,
wpl,wp0)}-rev2

Reserved

B,,; =FAR I[C8] ; Get Instruction
Word

Parameter
Initial Slot
Parameter
Current Slot
; Relative to
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1111-1111-0110-1144 B, ,,;=I{C8] ; Get Instruction Word
1111-1111-0111-nnnn ZF=B15{(n)} ; n is the nth bit of B15
where n=0 is the LSB Bit.
1111-1111-1000~-1i1ii1 Bi=MW(C8] ; This gets current Mode
Word
1111-1111-1001~-11ii Mw[cB]=Bl ; This changes the
Background task.
1111-1111-1010-4411 *AB=*C, *C=#C*C, ; Index* = Jlast i
of last instruction
1111-1111-1011-11i1 *AB=*C, *C=*CkA,
1111-1111-1100-1111 *AB=#*C, *C=%C*B, ; Envelope use and

-

state save
1111-1111-1101-1ii] #*AB=#C, *C=*C*C+C,,, ; Index *

defined as previous instrﬁction i
1111-1111-1110-11i1 *AB=*C, *C=*C*Ai+Bi
1111-1111-1111-1ii1 *AB=*C, #C=*C*Bi+A{i

~e

e

Relative Addressing:

Parameter in square brackets such as (C8] are relative
addresses which permit accessing parameters and
instructions from any slot. Only (C8) and [C9) may be
used as Relative Addresses. A relative address
contains five bits S0 to S4 which indicate a slot
number and four bits PO to P3 which indicate a
parameter within the sglot. Additionally, the relative
address contains two bits RO and Rl which indicate the
addressing mode. The two bits R1 and RO function as
follows:

R1=0 RO=0 Absolute Pointer to Slot Space.

R1=0 RO=1 Local to Current Slot. S4-50 are ignored.
R1=1 RO=0 Relative to Parameter Pointer.

R1l=1 RO=1 Relative to Current Slot.

The relative address is defined as the sum of the slot
pointer S4-S0 and either the current slot or the
parameter pointer. The sum output wraps around.

SUBSTITUTE SHEET (RULE 26)
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Group I

1110-1101-0000~1iii

1110-1101-0001-iiii
1110-1101-0010-iiii
1110-1101-0011-iiii
1110~-1101-0100-iiii

1110-1101-0101-iiii
1110-1101-0110-iiii
1110-1101-0111-iiii
1110-1101-1000-iiii

1110-1101-1001-iiii
1110-1101-1010-1iii
1110-1101-1011~-iiii
1110-1101-1100-iiii

1110-1101-1101-1iii
1110-1101-1110-1iii
1110-1101-1111~-iiii

53

FAR B[C8]=Al
from Local
FAR B[C8)=Bi
FAR A[C8]=Al
FAR A(C8]=Bi
Ai=FAR B[C8]
from Far
Bi=FAR B([C8]
Ai=FAR A[C8]
Bi=FAR A[C8]

PCT/US95/04354

Relative Store Far

Relative Store Local

B[(C8])=A1 ; Relative Store Local to

Local

B[C8]=Bi
A[C8]=Al
A[c8)=Bi

Ai=B[C8] ; Relative Store Local to

Local

Bi=B([C8)
Ai=A[C8]
Bi=A[C8)
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71£1
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Scf7
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OaeS
Obfs
0doc
O0e23
0f3a
1053
116d
1288
13a4
14¢2
15e0
1700
1821
1942
l1a65
1b8s
lcac
1ddi
lef?7
2014
2144
226cC
2394
24bc
25e$5
270e
2838
2962
2a8c
2bbe
2cel
2e0b
2£36
3061
318b
32b6
33e0
350a
3634
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3888
39b1
3ad9
3c01
3d29
3eS0
3£77
409d
41¢c2
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440a
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464e
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Lagrange Data

ffeb
ffct
££96
ff6b
££41
£ffl6
feec
fec2
fes?
feéd
fed4
fela
£dfo
fdc?7
fdSe
£47s
fd4c
£d24
fcfce
£odd
fcac
fc8s
fcSe
fc3s
fcl1
fbec
fbce
fbal
£b7d
£bs9
£fb3s
£fb12
faef
facd
faab
faga
fa6a
fada
fa2a
falc
f9ed
£9do
£9b3
£997
£97b
£960
f946
£92d
£914
f8fc
faes
f8cf
£8b9
f8as
£891
fB7e
£86c
f8s5a
f84a
f83a
£82c
f8le
£812
f806
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APPENDIX B

00cO
00c1
00c2
00c3
00c4
00cS
00cé6
00c?
00c8
00c9
00ca
00cb
00cc
00cd
00ce
00cft
00do
00d1
0042
00d3
0044
00ds
00de
00d7
00ds
0049
00da
00db
00dc
00dd
00de
00df
00e0
00el
00e2
00es
00e4
00e5
00eé6
00e7
00eB
00eS
0Qea
00eb
00ec
00ed
00ee
00ef
00fo0
00f1
-00£2
00£3
00£4
00£S
00£6
00f7
00f8
00£9
00fa
00fb
00fc
00fd
00fe
00ff

£806
£812
fB8le
f82c
£f83a
f84a
£f85a
f86c
f87e
£891
f8as
£8b9
f8ct
f8es
f8fc
£914
£924
946
£f96C
£97b
£997
£f9b3
£9d0
f9ed
falc
fa2a
fad4a
faca
faga
faab
facd
faef
fbi2
fb3is

£b59

£fb7d
fbal
fbcé
fbec
fcll
fcis
fcSe
fc8s
fcac
fcd4
fcfe
fd24
fd4c
£47s
fdle
f£dc7
fdfo
fela
fe44
fe6d
fe97
fec2
feec

"££16

f£f41
ffeb
f£96
ffcl
ffeb

SUBSTITUTE SHEET (RULE 26)

PCT/US95/04354

476fF
464e
452c
440a
42e6
41c2
409d
3£77
3eS0
3429
3c0l
3adsg
39b1l
3888
37Se
3634
350a
33e0
32b6
318b
3061
2£36
2e0b
2cel
2bbé
2a8c
2962
2838
270e
25eS
24bc
2394
226cC
2144
201d
lef?
1dd1
lcac
1b8s
la6S
1942
1821
1700
15e0
14c2
13a4
1288
116d
1053
0f3a
0ea23
0doc
Obfsg
QaeS
09d3

08c3.

07b4
06as
059c¢
0493
038b
0286
0182
0080

488f
49ae
4acc
4bes
4d0S
4elf
4£38
5050

5167

527c¢
S38f
S4al
55b2
56cl
S57cf
58da
59e4
S5aed
Sbf3
Scf£7
sdfa
Sefb
SE£f9
60£6
61f0
62e9
63df
64d3
65cS
66b4
67al
688b
6973
6as9
6b3c
Rclc
6cf9
6dd4
6ead
6£82
7054
7124
71f1
72ba
7381
7444
7505
75¢2
767c
7733
77e6
7896
7943
79ec
7a92
7b34
7bd2
7ced
7404
7d9s8
7e27
7eb3
7£3b
7fbf

£7fb
£7£2
£7e9
f7el
f7db
f£7ds
£7d1
£f7ce
£7cc
£f7cb
f7cb
f7cc
flce
£742
£747
£7d44
£7e4
f7ed
£7€7
£802
£80e
f8ic
£82b
f83c
f84e
£861
£875
f88b
£8a3
f8bc
f£8de
fef2
£90f
£92e
£94f€
£970
£994
£9b9
f9e0
faos
fa32
fasd
faga
fabg
fae9
fblc
fb4f
£bhas
fbbc
fbfs
fc30
fced
fcab
fcec
fd2e
£472
fdbs
fdff
fe49
feds
fee2
££31
££83
f£de
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0002
0003
0004
0005
0006
0007
0008
0009
000a -
000b
000c
good
000e
000f
0010
0011
0012
0013
0014
0015
0016
0017
0018
0019
001la
001b
001c
001d
001le
001f
0020
0021
0022
0023
0024
0025
0026
0027
0028
0029
002a
002b
002c
002d
002e
002f
0030
0031
0032
0033
0034
0035
0036
0037
0038
0039
003a
003b
003c
003d
003e
003f

Ofof
0eB2
0d£7
odef
Oce9
0c66
ObeS
0b67
Oaeb
0a72
09fc
0988
0916
08a?7
083a
0740
0769
0704
06al
0640
05e3
0587
052e
0447
0483
0431
03el
0393
0348
02€€f
02b8
0273
0231
01£f0
01b2
0176
013b
0103
00cd
0099
0066
0036
0007
ffdb
f£bo
££87
f£60
ffia
ff16
fef3l
fed2
feb3
feds
fe79
feSe
fe4s
fe2d
felé
fell
fded
fdda
fdc9
fdbs
fdag

62a8
62a2
6298
6288
6274
625b
623d
62la
61£3
61¢?
6196
6160
6126
60e?7
60a3
605b
600f
Sfbe
S5£68
Sf0e
Seaf
Sedd
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We claim:
1. A digital signal processor comprising:
a first processor;
a second processor;
5 a math unit which periodically accepts input

signals representing data, performs an arithmetic
operation on the data, and provides a digital
value representing a result of the arithmetic
operation; and

10 a data selection circuit which provides input
data to the math unit, wherein the first and
sacond processors alternate controlling the data
selection circuit to select the input data
provided to the math unit.

15
2. The digital signal processor of claim 1,

further comprising:
' a first memory operably connected to the
first and second processors;

20 a secbnd memory operably connected to the
second processor, the second memory storing look-
up table values, wherein the second processor
controls processing of the look-up table values
from the second memory and controls writing of

25 results of the processing to the first memory.

3. The digital signal processor of claim 2,
wherein: ‘
the math unit performs a multiply-and-
30 accumulate operation;
the second processor comprises a non-volatile
memory containing interpolation coefficients; and
the second processors controls processing
look-up table values by causing the data selection
35 circuit to select a look-up table value from the
second memory and an interpolation coefficient
from the non-volatile memory as the input data
provided to the math unit.
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4. The digital signal processor of claim 2,
further comprising a CODEC interface circuit, wherein
the first processor executes a program for generating a
sound amplitude value and provides the sound amplitude
value to the CODEC interface.

5. The digital signal processor of claim 4,
further comprising a third memory operably connected to
the first processor, wherein the third memory contains
the program executed by the first processor to generate
the sound amplitude value.

6. The digital signal processor of claim 5,
further comprising a timing circuit which periodically
asserts a start signal which causes the first processor
to begin processing the program, wherein the time
between successive assertions of the start signal is
sufficient for the first processor to complete
execution of the program and generate the sound
amﬁlitude value.

7. The digital signal processor of claim 5,
wherein:

each of the first and the third memories are
partitioned into slots;

each slot in the third memory has a
corresponding slot in the first memory; and

in each slot of the third memory, an
instruction in the slot has a parameter which is
given by a value in a corresponding slot of the
first memory.

8. The digital signal processor of claim 7,
further comprising a timing circuit which periodically
asserts a start signal which causes the first processor
to begin processing the program, wherein the time
between successive assertions of the start signal is
sufficient for the first processor to complete
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execution of the program and generate tne sound
amplitude value.

9. The digital signal processor of claim 8,
wherein the second processor controls writing to a slot
in the first memory before the first processor executes
an instruction in a corresponding slot in the third

memory .

10. A digital signal processor comprising:

a foreground processor which executes a
program to create a digital representation of
sound;

a first memory operably connected to the
foreground processor, the first memory storing
parameters used by the foreground processor;

a second memory which stores look-up table
values; and

a background processor operably connected to
the first and second memories, the background
processor operating in parallel with the
foreground processor, wherein the background
processor processes look-up table values and
writes processed values to the first memory for
use by the foreground processor.

11. The digital signal processor of claim 10,
wherein the background processor processes the look-up
table values by generating a value interpolated from
the look-up table values.

12. The digital signal processor of claim 11,
further comprising a third memory for storing
interpolation coefficients, wherein the background
processor processes the look-up table values by
performing a sum of the products of a look-up table
value from the second memory and an interpolation
coefficient from the third memory.
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13. +vhe digital signal processor of claim 12,
wherein:
the foreground processor, the background
processor, and the first and third memories are
5 formed in a first integrated circuit; and
the second memory comprises a dynamic random
access memory which includes a second integrated

circuit.
10 14. The digital signal processor of claim 13,
wherein:

the first memory comprises a static random
access memory having a single data port; and
the third memory comprises a read-only
15 memory.

15. The digital signal processor of claim 10,
wherein the function represented by the look-up table
is a delay line.

20
16. The digital signal processor of claim 10,
wherein the function represented by the look-up table
is an ADSR curve.
25 17. A digital signal processor comprising:
a first processor;
a second processor;
a multiplexer operably connected to the first
and second processors so that the first processor
30 can select output signals of the multiplexer and

the second processor can select the output signals
of the multiplexer;
a flip-flop set operably connected to the

multiplexer so that in response to assertion of a
35 clock signal, the flip-flop set stores the output

signals from the multiplexer and assert data

signals which are determined by the signals

stored; and
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a math unit operably coupled to the flip-flop
set to receive the data signals asserted by the
flip-flop set,

wherein the clock signal has a period between
assertions which is sufficient for the math unit to
process the data signals received and generate valid
output signals, and the first and second processors
alternate selecting the output signals of the
multiplexer so that the math unit alternates between
receiving data signals selected by the first processor
and receiving data signals selected by the second

processor.

18. The digital signal processor of claim 17,
further comprising a memory coupled to the multiplexer
so that the memory supplies input signals to the
multiplexer.

19. The digital signal processor of claim 18,
wherein:

the memory comprises a single data port
memory having an address bus coupled to the first
and second processors;

the first processor provides address signals
to the memory when the first processor selects the
output signals of the multiplexer; and

the second processor provides address signals
to the memory when the first processor is not
providing address signals to the memory.

20. The digital signal processor of claim 19,
wherein:

the memory has an access time which is less
than about half the period of the clock signal;
and

each processor is permitted at least one
access to the memory during any two consecutive
periods of the clock signal.



WO 95/27939

10

15

20

25

30

35

PCT/US95/04354
61

21. The digital signal processor of claim 20,
further comprising an interface circuit coupled to the
memory, wherein the interface circuit is permitted at
least one access to the memory during any two
consecutive periods of the clock signal.

22. The digital signal processor of claim 17,
further comprising a white noise generator coupled the
multiplexer so that the white noise generator supplies
to the multiplexer input signals representing a
pseudorandom number.

23. The digital signal processor of claim 17,
further comprising:

a memory;

a CODEC interface circuit operably connected
to the memory to enable external access of the
memory through the CODEC interface;

a second flip-flop set coupled to the math
unit, wherein the second flip-flop set
periodically stores output signals from the math
unit; and

means for connecting the second flip-flop set
to the memory and writing data from the second
flip-flop set to the memory.

24. The digital signal processor of claim 23,
wherein the memory has a data port operably connected
to the multiplexer so that the memory provides input
signals to the multiplexer.

25. The digital signal processor of claim 17,
wherein the math unit comprises a multiply-and-
accumulate circuit which processes data signals
representing three values A, B, and C and generates
output signals representing a sum of the value C with
the a product of the values A and B. |
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26. A programmable digital signal processor,
comprising:
a control circuit which generates control
signals for executing a plurality of different
5 types of instructions; and
a hardware white noise generator operably
connected to the control circuit, wherein the
white noise generator produces a pseudorandom
sequence of digital signals in response to control
10 signals for executing instructions of a first

type.

27. A method for generating a series of digital
values representing sound amplitudes, comprising the

15 steps of: A
executing a series of instructions which

generates a sound amplitude value from parameters
stored in a first memory, wherein execution of an
instruction in the series causes a math unit to

20 perform an arithmetic operation on a parameter

from the first memory; and

executing a series of tasks which generates
parameters for use by the series of instructions,
wherein execution of a task from the series of

25 tasks comprises the steps of:

reading a value from a second memory;

asserting to the math unit a signal
indicating the value read from the second
memory;

30 performing, with the math unit, an
arithmetic operation on the value from the
second memory to generate a resultant value,
wherein the performance of the arithmetic
operation on the value from the second memory

35 begins immediately after completion of the
arithmetic operation on the parameter so that
the math unit operates continuously and
without pipeline delays; and
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writing the resultant value to the first
memory for use by the series of instructions.

28. The method of claim 27, further comprising
5 the steps of:
partitioning the series of instructions, the
first memory, and the series of tasks into a
plurality of slots, wherein each slot in series of
instructions corresponds to a slot in the first
10 memory and a slot in the series of tasks, each
slot in the series of instructions uses a
parameter from a corresponding slot of the first
memory, and each slot in the series of tasks
writes a value to a corresponding slot in the
15 first memory; and
for each slot in the series of instructions,
executing tasks in a corresponding slot of the
series of tasks before executing instructions in
the slot of the series of instructions.
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