(54) 发明名称
一种制备苯溴马隆的方法
(57) 摘要
本发明涉及药物合成领域，具体公开了一种制备苯溴马隆的方法。其特征是以3,5-二溴-4-羟基苯甲酸和2-乙基苯并呋喃为原料经乙酰化反应、傅-克反应、水解反应等步骤制备苯溴马隆，本发明制备方法具有操作简单安全、后处理方便、产品纯度高、经济成本低、对环境污染小、更易实现工业化等优点。
1. 一种苯溴马隆（I）的制备方法，包括：

2. 权利要求1的制备方法，其中乙酰化反应的试剂为乙酸酐或乙酰氯。

3. 权利要求1的制备方法，其中由IV和V制备VI时，采用催化剂催化，所述催化剂选自三氯化铝、四氯化锡、三氯化铁、氯化锌、三氟化硼、四氯化钛或四氯化钛。

4. 权利要求1的制备方法，其中由IV和V制备VI时，反应溶剂选自二氯甲烷、二氯乙烷、四氯乙烷、石油醚、硝基苯或二硫化碳。

5. 权利要求1的制备方法，其中由IV和V制备VI时，采用的催化剂为三氯化铝，反应溶剂为二氯甲烷。

6. 权利要求1的制备方法，其中由IV和V制备VI时，反应温度为0～5℃。

7. 权利要求3的制备方法，其中催化剂、V和IV的摩尔比为1.1～5:0.5～1:1。

8. 权利要求1的制备方法，其中由VI制备I的水解反应中，采用的催化剂催化水解，所述催化剂选自氢氧化钠、氢氧化钾、碳酸钾或碳酸钠，反应溶剂选自甲醇、乙醇、水中的一种或几种。

9. 权利要求8的制备方法，其中反应物VI与催化剂的摩尔比为1:1～5。

10. 权利要求1的制备方法，其中由VI制备I的水解反应中，反应温度为40～45℃。
一种制备苯溴马隆的方法

技术领域
[0001] 本发明涉及药物化学合成领域，具体涉及一种制备苯溴马隆的方法。

背景技术
[0002] 苯溴马隆是治疗痛风病的优良药物。随着人民生活水平的提高，痛风病发病率呈上升趋势。苯溴马隆是一种强力去尿酸的苯并咪唑衍生物，该化合物不仅能抑制尿酸小管对尿酸的重吸收，促进尿酸排泄，而且是一种良好的嘌呤氧化酶抑制剂，能抑制尿酸的生成，对降低血尿酸浓度具有双重功能。

[0003] WO2012048058 报道了一种苯溴马隆的制备方法，工艺路线如下：

[0004]

[0005] 此路线第一步使用了氯丙酮，在受热的情况下会分解放出无色剧毒的光气；第二步酮羰基的还原反应温度高，使用肼作为催化剂，毒性大，具有强烈刺激性气味，为可疑致癌物质；第三步氯化反应使用了易燃、剧毒的二硫化碳，最后一步使用溴素，具有极强的腐蚀性。除此之外，此路线第二步收率为 55%，最后一步收率为 35%。

[0006] CN102659727 报道了另外一种苯溴马隆的制备方法，工艺路线如下：

[0007]
[0008] 此路线中避免了傅-克酰基化反应二硫化碳的使用以及最后一步溴素的使用，但在第二步脱甲基化反应中温度高达 200°C，不利于放大生产。

[0009] US5266711 也报道了一种苯溴马隆的制备方法，工艺路线如下：

[0010]

[0011] 此路线中使用了无色剧毒的光气，以及腐蚀性极强的溴素，不利于劳动保护。

[0012] 上述三种苯溴马隆的制备方法无一例外的在最后一步进行溴代反应，无法避免 2010 版中国药典中明确提到的杂质 I 和杂质 II 的生成，杂质 I 为单溴化物：(3-溴-4-羟基苯基)-(2-乙基-3-苯并呋喃基)甲酮；杂质 II 为双溴化物：(6-溴-2-乙基-3-苯并呋喃基)-(3,5-二溴-4-羟基苯基)甲酮，因此需要对苯溴马隆进行多次纯化来控制杂质 I 和杂质 II 的含量，这些都不利于苯溴马隆的工业化大生产。

发明内容

[0013] 本发明公开了一种操作简单安全、反应时间短、后处理方便、产品纯度高、经济成本低、对环境污染小、更易实现工业化的制备苯溴马隆的方法。

[0014] 具体制备方法如下：

[0015]
[0016] 其中乙酰化反应中，乙酰化试剂优选乙酸酐或乙酰氯。原料 II 与乙酸酐或乙酰氯的摩尔比优选 1:3。
[0017] 将 III 与氯化亚砜反应可制得酰氯 IV。
[0018] 将 IV 与 2- 乙基苯并呋喃(V)进行傅-克反应可得到 VI、VI 经脱乙酰基即得苯溴马隆(I)。
[0019] 将 IV 与 V 反应制得成式 VI 步骤中，优选使用催化剂催化剂，所述的催化剂优选三氯化铝、四氯化锡、三氯化铁、氯化锌、三氯化磷、三氯化钛或三氯化钛。更优选的催化剂为三氯化铝。本步骤反应中，优选在以下任一反应溶剂中反应：二氯甲烷、二氯乙烷、四氯乙烷、石油醚、硝基苯或二硫化碳。本步骤的反应温度优选 -50℃至溶剂回流温度，更优选 0～5℃。本步反应时间优选 1 小时至 10 小时。更优选 3～5 小时。本步反应中，催化剂/反应物 V、IV 三者的摩尔比优选 1.1 ～ 5:0.5 ～ 1:1，更优选 2.3:0.87:1。
[0020] 将 VI 通过水解制备 I 步骤中，优选采用催化剂。催化剂优选氢氧化钠、氢氧化钾、碳酸钠或碳酸钠，更优选氢氧化钠。本水解反应的反应溶剂优选甲醇、乙醇、水中的一种或几种。更优选乙醇和水的混合溶剂。本步反应温度优选 0℃至溶剂的回流温度，更优选 40 至 45℃。本步反应时间优选 1 小时至 8 小时，更优选 3 小时左右。反应物 VI 与催化剂的摩尔比优选 1:1～5。更优选 1:1.5。
[0021] 与现有的苯溴马隆合成方法的相比，我们使用了本领域常用的简单的技术步骤，并且避免了极端环境的反应（例如高温反应、高危险性反应）。为了保护官能团，我们使用在合成过程中稳定的，可以通过简单而廉价的方式构建并且容易脱去的保护基团。

具体实施方式
[0022] 实施例 1
[0023] 3,5- 二溴 -4- 乙酰氧基苯甲酸(III) 的制备：
[0024] 向反应瓶中加入氯甲烷 125ml 和乙酸酐 3.67g，搅拌下加入 3,5- 二溴 -4- 羟基苯甲酸(II)10g，加入浓硫酸 5 ～ 6 烷，泥封 30 ～ 35℃，反应 2h，向反应瓶中加入 250ml 饱和氯化钠溶液，搅拌 1h，静置分层，弃去水层，有机层用饱和氯化钠洗至中性，无水硫酸镁干燥有机层，滤除无机盐，滤液浓缩至干，得白色粉末固体 3,5- 二溴 -4- 乙酰氧基苯甲酸(III)10.4g，收率 91.23%。
说明书

[0025] 熔点：194~196℃
[0026] 1H NMR数据：(400MHz, DCl_3, 25℃) δ 2.43 (s, 3H), 8.29 (s, 2H), 11.03 (s, 1H) ppm。
[0027] 3,5-二溴-4-乙酰氧基苯甲酰氯（IV）的制备：
[0028] 向反应瓶中依次加入3,5-二溴-4-乙酰氧基苯甲酰氯（III）10g，氯化亚砜175ml，并滴加一滴DMF，室温下搅拌反应0.5小时，反应液澄清，呈淡黄色，控温60~65℃，反应2h，减压浓缩出氯化亚砜，得白色固体3,5-二溴-4-乙酰氧基苯甲酰氯（IV），直接用于下一步反应。3,5-二溴-4-乙酰氧基苯甲酰氯（IV）和2-乙基苯并呋喃（V）3.76g，控温0~5℃，加入三氯化铝9.07g，反应4h，搅拌下缓慢加入冰水250ml，静置分层，弃去水层，有机层用饱和氯化钠洗涤，无水硫酸镁干燥有机层，滤除无机盐，减压浓缩滤液至干，得暗黄色状物（3,5-二溴-4-乙酰氧基苯甲酰氯（IV）和2-乙基苯并呋喃（V）8.97g，收率74.8%。
[0030] 1H NMR数据：(400MHz, DCl_3, 25℃) δ 1.33~1.37 (t, 3H), 2.42 (s, 3H), 2.88~2.93 (q, 2H), 7.21~7.31 (m, 2H), 7.39~7.49 (m, 2H), 8.01 (s, 2H) ppm。
[0031] 终产物苯溴马隆（I）的制备：
[0032] 向反应瓶中加入50ml乙醇（3,5-二溴-4-乙酰氧基苯甲酰氯（IV）和2-乙基苯并呋喃（V）8.5g，将1.1g氢氧化钠溶于50ml纯化水中，然后加入上述溶液中，控温40~45℃，反应3h，减压浓缩出乙醇，有黄色固体析出，乙酸乙酯萃取，饱和氯化钠洗	涤有机层，无水硫酸钠干燥过夜，滤除无机盐，减压浓缩滤液至干，得白色固体7.08g，收率91.7%。
[0033] 熔点：149~152℃
[0034] 1H NMR数据：(400MHz, DCl_3, 25℃) δ 1.34 (t, 3H), 2.90 (q, 2H), 3.50 (s, 1H), 7.28 (dd, 1H), 7.36 (m, 1H), 7.47 (d, 1H), 7.58 (d, 1H), 8.00 (s, 2H) ppm。
[0035] 实施例2
[0036] 3,5-二溴-4-乙酰氧基苯甲酰氯（IV）的制备：
[0037] 向反应瓶中加入二氯甲烷50ml和乙酸酐5.5g，搅拌下加入3,5-二溴-4-羟基苯甲酰氯（II）5g，加入浓硫酸2~3滴，控制30~35℃，反应2h，向反应瓶中加入100ml饱和氯化钠溶液，搅拌1h，静置分层，弃去水层，有机层用饱和氯化钠洗至中性，无水硫酸镁干燥有机层，滤除无机盐，滤液浓缩至干，得白色粉末固体3,5-二溴-4-乙酰氧基苯甲酰氯（IV）4.62g，收率81%。
[0038] 3,5-二溴-4-乙酰氧基苯甲酰氯（IV）的制备：
[0039] 向反应瓶中依次加入3,5-二溴-4-乙酰氧基苯甲酰氯（IV）4g，氯化亚砜70ml，井滴加一滴DMF，室温下搅拌反应0.5小时，反应液澄清，呈淡黄色，控温60~65℃，反应2h，减压浓缩出氯化亚砜，得白色固体3,5-二溴-4-乙酰氧基苯甲酰氯（IV），直接用于下一步反应。
[0040] 3,5-二溴-4-乙酰氧基苯甲酰氯（IV）的制备：
[0041] 向反应瓶中加入二氯甲烷125ml，搅拌下加入上步得到的3,5-二溴-4-乙酰氧基苯甲酰氯（IV）和2-乙基苯并呋喃（V）1.56g，控温0~5℃，加入四氯化锡9.25g，反应
4h，搅拌下缓慢加入冰水100ml，静置分层，弃去水层，有机层用饱和氯化钠洗涤，无水硫酸镁干燥有机层，滤除无机盐，减压浓缩滤液至干，得暗黄色状物（3,5-二溴-4-乙酰氧基苯基）-（2-乙基-3-苯并呋喃基）甲酮（VI）3.1g，收率62.3%。

【0042】产物苯溴马隆（1）的制备：

【0043】向反应瓶中加入30ml乙醇和（3,5-二溴-4-乙酰氧基苯基）-（2-乙基-3-苯并呋喃基）甲酮（VI）3g，将0.72g氢氧化钾溶于20ml纯化水中，然后加入上述溶液中，控温40～45°C，反应3h，减压浓缩出乙醇，有黄色固体析出，乙酸乙酯萃取、饱和氯化钠洗涤有机层，无水硫酸钠干燥过夜，滤除无机盐，减压浓缩滤液于干，得白色固体2.3g，收率84.25%。

【0044】实施例3

【0045】3,5-二溴-4-乙酰氧基苯甲酸（III）的制备：

【0046】向反应瓶中加入二氯甲烷80ml和3,5-二溴-4-羟基苯甲酸（II）8g，加入浓硫酸2～3滴，控温30～35°C，滴加乙酰氯10.6g，反应2h，向反应瓶中加入200ml饱和氯化钠溶液，搅拌1h，静置分层，弃去水层，有机层用饱和氯化钠洗涤至中性，无水硫酸镁干燥有机层，滤除无机盐，滤液浓缩至干，得白色粉末固体3.5-二溴-4-乙酰氧基苯甲酸（III）7.1g，收率77.7%。3,5-二溴-4-乙酰氧基苯甲酸（IV）的制备：

【0047】向反应瓶中依次加入3,5-二溴-4-乙酰氧基苯甲酸（III）7g，氯化亚砜150ml，并滴加一滴DMF，室温下搅拌反应0.5小时，反应液澄清，呈深黄色，控温60～65°C，反应2h，减压浓缩出氯化亚砜，得白色固体3,5-二溴-4-乙酰氧基苯甲酰氯（IV），直接用于下一步反应。

【0048】（3,5-二溴-4-乙酰氧基苯基）-（2-乙基-3-苯并呋喃基）甲酮（VI）的制备：

【0049】向反应瓶中加入二氯甲烷100ml，搅拌下加入上步得到的3,5-二溴-4-乙酰氧基苯甲酰氯（IV）和2-乙基苯并呋喃（V）2.73g，控温0～5°C，加入氯化锌11.3g，反应5h，搅拌下缓慢加入冰水150ml，静置分层，弃去水层，有机层用饱和氯化钠洗涤，无水硫酸镁干燥有机层，滤除无机盐，减压浓缩滤液至干，得暗黄色状物（3,5-二溴-4-乙酰氧基苯基）-（2-乙基-3-苯并呋喃基）甲酮（VI）4.79g，收率55%。

【0050】产物苯溴马隆（1）的制备：

【0051】向反应瓶中加入40ml乙醇和（3,5-二溴-4-乙酰氧基苯基）-（2-乙基-3-苯并呋喃基）甲酮（VI）4.5g，将1.93g氢氧化钠溶于40ml纯化水中，然后加入上述溶液中，控温40～45°C，反应3h，减压浓缩出乙醇，有黄色固体析出，乙酸乙酯萃取，饱和氯化钠洗涤有机层，无水硫酸钠干燥过夜，滤除无机盐，减压浓缩滤液至干，得类白色固体3.2g，收率78%。