(51) 国際特許分類: H01L 21/68, 21/027
(72) 発明者; および
(75) 発明者/出願人/米国についてのみ; 服部 健(HATTORI, Ken) [JP/IP], 長橋 晃(NAGAHASHI, Yoshitomo) [JP/IP], 中原 兼文(NAKAHARA, Kane- fundii) [JP/IP]; 〒100-8331 東京都千代田区丸の内3丁目2番3号 株式会社 ニコン内 Tokyo (JP).
(21) 国際出願番号: PCT/JP00/03266
(22) 国際出願日: 2000年5月22日 (22.05.2000)
(25) 国際出願の言語: 日本語
(26) 国際公開の言語: 日本語
(30) 優先権データ:
特願平11/139577 1999年5月20日 (20.05.1999) JP
(71) 出願人/米国を除く全ての指定国について; 株式会社 ニコン (NIKON CORPORATION) [JP/IP]; 〒100-8331 東京都千代田区丸の内3丁目2番3号 Tokyo (JP).

(54) Title: CONTAINER FOR HOLDER EXPOSURE APPARATUS, DEVICE MANUFACTURING METHOD, AND DEVICE MANUFACTURING APPARATUS

(57) Abstract: There are provided a container base (104) on which a holder container (106) having an openable/closable door (108) and capable of housing a wafer holder (68) in a sealed state, an opening/closing mechanism (112) for opening/closing the door (108) in a state where the inside of the container (106) placed on the container base (104) is isolated from the outside, and a transfer system (100) for exchanging the holder on a stage (WST) for the holder in the container (106). The transfer system (100) can exchange holders in a short time in a state where the inside of the system is isolated from the outside, so that the system stop time is as short as possible and that the cleanliness of the holders can be always maintained high. As a result, the productivities of devices such as semiconductor devices is improved.

(54) 発明の名称: ホルダ用コンテナ、露光装置及びデバイス製造方法、並びにデバイス製造装置
(84) 指定国 (広域): ARIPO 特許 (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), ユーラシア特許 (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), ヨーロッパ特許 (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI 特許 (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

添付公開書類:
- 国際調査報告書
- 2文字コード及び他の略語については、定期発行される各PCTガゼットの巻頭に掲載されている「コードと略語のガイダンスノート」を参照。

(57) 要約:

開閉可能な扉（108）を有し、基板ホルダ（68）を密閉状態で収納可能なホルダ用コンテナ（106）が設置されるコンテナ台（104）と、コンテナ台（104）上に設置されたコンテナ（106）の内部と外部を隔離した状態で扉（108）を開閉する開閉機構（112）と、開閉機構（112）により扉（108）が開放されたとき、ステージ（WST）上のホルダとコンテナ（106）内のホルダとを交換する搬送系（100）とを備える。このため、搬送系（100）では、短時間でホルダの交換を装置の内部と外部を隔離した状態で行うことができ、これにより、装置停止時間を極力短くすることができ、しかもホルダの清浄度を常時維持することができる。結果的に半導体素子等のデバイスの生産性を向上することができる。
明細書
ホールダ用コンテナ、露光装置及びデバイス製造方法、並びにデバイス製造装置

技術分野
本発明は、ホールダ用コンテナ、露光装置及びデバイス製造方法、並びにデバイス製造装置に係り、さらに詳しくは、半導体素子、液晶表示素子等を製造する際にリソグラフィ工芸で用いられる露光装置、該露光装置内で被露光基板を保持する基板ホルダの交換の際に用いられるホルダ用コンテナ、及び前記露光装置を用いるデバイス製造方法、並びに外部に比べて清浄度が高い空間内に物体を保持するホルダが配置されるデバイス製造装置に関する。

背景技術
従来より、半導体素子等を製造するためのリソグラフィ工芸では、いわゆるステッパやいわゆるスキャニングステッパ等の露光装置が主として用いられており、近時においては、これらの露光装置の露光用の光源としてθκθエキシマレーザ装置が比較的多く用いられるようになってきた。また、近時においては、これらの露光装置をコーテー・デベロッパ（Coater／Developer：以下、適宜「C／D」と略述する）とインライン接続したリソグラフィシステムが主流となりつつある。これは、リソグラフィ工芸では、レジスト塗布、露光、現像の各処理が一連の処理として行われ、いずれの処理工業においても装置内への塵等の侵入を防止する必要があるとともに上記の一連の処理を出来るだけ効率良く行う等のためである。

しかるに、半導体製造工場では、上記の露光装置又はリソグラフィシステムをクリーンルーム内に複数台並べて設置するが、近時においては、クリーンルームの建設コスト及びランニングコストを低減するため、クリーン度がクラス
100〜1000程度のクリーンルームに設置することが比較的多い。このようにしても、露光装置及びこれにインライン接続されたC/D等の内部はクリーン度をクラス1程度に保つことができるので、大きな問題は生じない。
ところそで、半導体露光装置では、被露光基板であるウエハを平坦な状態で動かないように保持するため、ウェハステージ上に取り付けられたウェハホルダによりウェハを吸着保持している。
しかし、ウェハを保持するウェハホルダとウェハとの間に埃又は塵等の異物が存在する状態でウェハを吸着すると、その異物によりウェハ露光面の平面度（平坦度）が悪化する。その露光面の平面度の悪化は、ウェハのガラ שרット領域に転写されるパターン像の位置ずれや解像不良などの原因となり、LSI等を製造する際の歩留まりを悪化させる大きな要因となっていた。そのため、従来は一定の間隔で露光を停止して、ウェハホルダを作業者の手が届く位置に移動させて、砥石や無塵布を用いて作業者が手を動かしてウェハホルダのウェハとの接触面の全面を拭いたり、ウェハホルダをウェハステージ上から取り外して露光装置内部で清掃したりしていた。
しかしながら、上述したクリーン度がクラス100〜1000程度のクリーンルームに露光装置を設置した場合、露光装置の外部の空気は装置内に比べてバーティクルを多く含む汚れた空気であり、前述したウェハホルダの清掃作業にはある程度の時間を要するため、清掃時に、その汚れた空気が装置内に侵入し、装置内のクリーン度を維持することが困難になる。
一方、ウェハホルダの清掃は、高精度な露光を行うためには、必要不可欠である。
このような背景の下、ウェハステージ上のウェハホルダの清浄度を常時維持してしかも装置停止時間を極力短くして、LSI等の生産性を向上することができる新技術の出現が待望されていた。
本発明は、かかる事情の下になされたもので、その第1の目的は、基板ホル
ダを密閉状態で搬送できるようにするとともにその搬送中に基板ホルダが損傷するのを防止するホルダ用コンテナを提供することにある。
また、本発明の第２の目的は、デバイスの生産性を向上させることができる露光装置及びデバイス製造方法を提供することにある。
また、本発明の第３の目的は、環境条件が維持されたクリーンな空間内でホルダを搬出入する際に、その空間内部のクリーン度を維持することができる搬送システムを提供することにある。
また、本発明の第４の目的は、ホルダの搬入・搬出にかかわりず、その内部の環境条件を良好に維持することができるデバイス製造装置及びその調整方法を提供することにある。

発明の開示

本発明は、第１の観点からすると、基板を保持する基板ホルダを収納するホルダ用コンテナであって、前記基板ホルダの基板との接触面と反対側の面の外周部の一部を支持する支持部材が設けられたコンテナ本体と；前記コンテナ本体に着脱自在に装着され、内部空間を外部から隔離する蓋部材と；前記蓋部材に設けられ、前記基板ホルダの前記基板との接触面側の前記接触面以外の部分を保持する保持部材と；前記コンテナ本体と前記蓋部材とを固定する解除可能なロック機構とを備えるホルダ用コンテナである。

本明細書において、「基板ホルダ」は、ダミーホルダをも含む。
これによれば、基板ホルダがコンテナ本体に設けられた支持部材によって基板との接触面と反対側の面の外周部の一部が支持された状態で、コンテナ本体に蓋部材が装着される。この蓋部材の装着状態では、蓋部材に設けられた保持部材によって基板ホルダの基板との接触面側の接触面以外の部分が保持される。そして、ロック機構がロックされ、コンテナ本体と蓋部材とが固定される。従って、本発明に係るホルダ用コンテナでは、その内部に密閉状態で基板ホルダ
が収納され、かつ支持部材と保持部材とで挟持された状態で固定される。このため、このホルダ用コンテナ内に収納した状態で基板ホルダを搬送することにより、基板ホルダを密閉状態で搬送できしかもその搬送中に基板ホルダが損傷するのを防止することができる。特に、基板ホルダの基板との接触面及びその反対の面侧の基板ステージとの接触部の損傷を確実に防止することができる。

この場合において、前記保持部材の少なくとも一部は、弾性部材によって構成されていることが望ましい。かかる場合には、その弾性部材の弾性力をより基板ホルダを常に適度な力で保持することができるので、搬送中に振動等が生じてもその表面が保持部材との摩擦でこすれたりして傷がつきたりすることがない。

本発明に係るホルダ用コンテナでは、前記保持部材は、当該支持部材によって支持された前記基板ホルダを搬出する搬出アームと干渉しない位置で前記基板ホルダを支持することが望ましい。

本発明は、第2の観点からすると、基板ステージ上で基板ホルダによって保持された基板を露出する露光装置であって、開閉可能な蓋部材を有し、前記基板ホルダを密閉状態で収納可能なホルダ用コンテナが設置されるコンテナ台と；前記コンテナ台上に設置されたホルダ用コンテナの内部と外部とを隔離した状態で前記蓋部材を閉閉する開閉機構と；前記開閉機構により前記蓋部材が開放されたとき、前記基板ホルダを前記ホルダ用コンテナと前記基板ステージとの間で搬送するホルダ搬送系を備える露光装置である。

これによれば、開閉機構によりコンテナ台上に設置されたホルダ用コンテナの内部と外部とを隔離した状態で蓋部材が開閉されるようになっている。そして、開閉機構により蓋部材が開放されたとき、ホルダ搬送系では、基板ホルダをホルダ用コンテナと基板ステージとの間で搬送する。例えば、ホルダ搬送系では、基板ステージ上の基板ホルダをホルダ用コンテナ内に搬送する動作と、ホルダ用コンテナ内の基板ホルダを基板ステージ上に搬送する動作とを行うこ
とにより、短時間が基板ホルダの交換を装置の内部と外部を隔離した状態で行うことができる。従って、本発明の露光装置によれば、装置停止時間を極力短くすことができ、しかも基板ホルダの清浄度を常時維持することができるので、結果的に半導体素子等のデバイスの生産性を向上することができる。

本発明に係る露光装置では、ホルダ用コンテナは、1つだけ基板ホルダを収納可能な構造であっても良いが、複数の基板ホルダを同時に収納可能な構造であっても良い。

本発明に係る露光装置では、ホルダ用コンテナが、複数の基板ホルダを同時に収納可能な場合、前記ホルダ搬送系は、前記ホルダ用コンテナ内への前記基板ホルダの搬入動作と前記ホルダ用コンテナからの前記基板ホルダの搬出動作とを、別々の搬送経路により、並行して行うこととすることができる。かかる場合には、基板ホルダの搬入動作と搬出動作との同時並行処理により、短時間に基板ホルダの交換が可能となる。

本発明に係る露光装置では、ホルダ用コンテナが、複数の基板ホルダを同時に収納可能な場合、前記ホルダ搬送系は、前記基板ステージ上の前記基板ホルダを前記ホルダ用コンテナ内に搬送する動作と、前記ホルダ用コンテナ内の基板ホルダを前記基板ステージ上に搬送する動作をシーケンシャルに行うこととするとともできる。かかる場合には、ホルダ搬送系の構造を簡略化することができる。

本発明に係る露光装置では、前記ホルダ搬送系は、前記基板の搬送系の少なくとも一部を兼ねていても良い。かかる場合には、元々存在する基板の搬送系の少なくとも一部をホルダ搬送に共用することができるので、追加部品の点数を抑制することができる。

本発明に係る露光装置では、前記ホルダ用コンテナは、本発明に係るホルダ用コンテナであり、前記ホルダ搬送系は、前記基板材の開放時に、前記ホルダ用コンテナに対し前記基板ホルダを出し入れする搬送アームを含んでいても良い。
い。

リソグラフィ工程において、本発明の露光装置を用いて露光を行うことにより、基板ステージ上の基板ホルダを常に清浄な状態に維持し、これにより製造されるデバイスの歩留まりを向上することができ、しかも基板ホルダの交換のための装置停止時間は僅かであることから、高集積度のデバイスを生産性良く製造することが可能になる。従って、本発明は第3の観点からすると、本発明の露光装置を用いるデバイス製造方法であると言える。

本発明は、第4の観点からすると、環境条件が維持されたクリーンな空間内で物体を保持するホルダを搬送する搬送システムであって、前記ホルダを密閉状態で収納するコンテナの内部と外部をを隔離した状態で、前記コンテナに設けられた蓋部材を開閉する開閉機構と；前記開閉機構により前記蓋部材が開放されたとき、前記ホルダを前記コンテナと前記空間内部との間で搬送する搬送系と；を備える搬送システムである。

ここで、「環境条件が維持されたクリーンな空間」は、後述する実施形態中のホルダが配置される第1チャンバ12内の他、それに接続される第2チャンバ14内、さらにそのチャンバ14内に設けられるサブチャンバや予備室なども含む概念である。また、本明細書において、物体を保持する「ホルダ」は、ダミーホルダを含む。

これにより、開閉機構によりコンテナの内部と外部をを隔離した状態で蓋部材が開閉される。そして、開閉機構により蓋部材が開放されたとき、搬送系では、ホルダをコンテナとクリーンな空間内部との間で搬送する。この場合、例えば、ホルダはコンテナ内に密閉状態で収納された状態で搬送され、その後、外部と隔離された状態でコンテナからクリーンな空間内部に搬入される。このため、コンテナの内部をもともとクリーンな状態にしておけば、ホルダの清浄度を低下させるおそれはなく、ホルダを介して空間内部のクリーン度が低下することもない。この一方、空間内で搬送されたホルダが汚れた場合には、その
ホルダを空間内からコンテナ内に速やかに搬送した後、開閉機構により蓋部材を閉じても良い。これにより、空間内のクリーン度が低下することを防止することができる。

本発明は、第5の観点からすると、外部に比べて清浄度が高い空間内に物体を保持するホルダが配置されるデバイス製造装置であって、前記ホルダを密閉状態で収納するコンテナの内部を前記外部から隔離した状態で前記空間と連通させる開閉機構と；前記ホルダを前記コンテナと前記空間内部との間で搬送する搬送系と；を備えるデバイス製造装置である。

ここで、「外部に比べて清浄度が高い空間」は、上記の「環境条件が維持されたクリーンな空間」と同様の概念である。

これによれば、開閉機構により、ホルダを密閉状態で収納するコンテナの内部が外部から隔離した状態で前記清浄度が高い空間と連通される。この状態で、搬送系では、ホルダをコンテナ内部と空隙内と間で搬送する。例えば、搬送系が、清浄なホルダをコンテナ内部から空間内部に搬入する場合には、ホルダを介して空間内部の清浄度が低下するが、この一方、搬送系が、清浄度が低下したホルダを空間内部からコンテナ内に搬送（搬出）する場合には、搬出後ホルダをコンテナ内に密閉状態で収納すれば良い。これにより、空間内の清浄度が低下するのを防止することができる。ホルダの搬入搬出にかかわらず、空間内の清浄度を高く維持することができる。

この場合において、前記コンテナ内の不純物濃度を前記空間内部に対して同程度以下とすることが望ましい。

本発明は係るデバイス製造装置では、前記コンテナ内の雰囲気を前記空間内部とほぼ同一とすることとしても良い。この場合において、前記コンテナ内に前記空間内と実質的に同一特性の気体が封入されることとしても良い。いずれの場合も、空間内の清浄度を高く維持することができる。

本発明は係るデバイス製造装置では、前記ホルダは感応物体を保持し、前記
空間内に前記感応物体をエネルギービームで露光する露光本体部が配置されるところとしても良い。すなわち、本発明に係るデバイス製造装置は感応物体をエネルギービームで露光する露光装置であっても良い。この場合において、前記空間内に前記エネルギービームに対する透過率が高い化学的に清浄な気体が供給されることとしても良い。かかる場合には、照明光学系や投影光学系などの光学特性（透過率、照度均一性、収差など）を良好に維持することができる。

本発明は、第6の観点からすると、外部に比べて清浄度が高い空間内に物体を保持するホルダが配置されるデバイス製造装置の調整方法において、前記ホルダを密閉状態で収納するコンテナの内部を前記外部から隔離した状態で、前記空間と連通させるとともに、前記空間内のホルダを前記コンテナ内に搬出し、前記空間内に清浄なホルダを搬入することを特徴とするデバイス製造装置の調整方法である。

これによれば、ホルダを密閉状態で収納するコンテナの内部を外部から隔離した状態で、外部に比べて清浄度が高い空間と連通させるとともに、その空間内のホルダをコンテナ内に搬出し、空間内に清浄なホルダを搬入する。このため、空間内のホルダの清浄度が低下した場合、そのホルダと清浄なホルダを入れ替えるとともに、空間内の清浄度が低下するのを防止することができる。

図面の簡単な説明

図1は、本発明の一実施形態に係るレソグラフィシステムを示す概略平面図である。
図2は、図1の露光装置を矢印A方向から見た概略斜視図である。
図3は、図1の第2チャッバを一部破断して示す右側面図である。
図4は、図1の露光装置をウエハローダ系を中心として概略的に示す横断面図（平面断面図）である。
図5は、図4のコンテナ台近傍の様子を示す側面図である。
図6は、ウエハホルダを収納したホルダ用コンテナの他の実施形態を示す縦断面図である。

図7は、図6のホルダ用コンテナのコンテナ本体に対するカバーの装着方法を説明するための図である。

図8は、図6のホルダ用コンテナがコンテナ台上に載置された様子を示す図である。

図9は、図8のコンテナ台上に載置されたホルダ用コンテナのコンテナ本体とカバーとが分離した様子を示す図である。

図10は、本発明に係るデバイス製造方法の実施形態を説明するためのフローチャートである。

図11は、図10のステップ304における処理を示すフローチャートである。

発明を実施するための最良の形態

以下、本発明の一実施形態を図1〜図5に基づいて説明する。

図1には、本発明の一実施形態のリソグラフィシステムの平面図が示されている。このリソグラフィシステム1は、露光装置10と、この露光装置10にインライン接続された基板処理装置としてのコーチ・デベロッパ（以下「C／D」と略述する）200を備えている。このリソグラフィシステム1はクリーン度がクラス100〜1000程度のクリーンルーム内に設置されている。

以下においては、図1における紙面内上下方向（Y軸方向）を当該リソグラフィシステム1の前後方向とし、その内、+Y方向を後面（背面）側、-Y方向を前面側とし、また、図1における紙面内左右方向（X軸方向）をリソグラフィシステム1の左右方向（側面方向）として説明する。

前記露光装置10は、C／D200の左側に隣接して配置されC／D200にインラインにて接続された第1チャンパ12と、この第1チャンパ12の左
側に隣接して配置された第2チャンバ14とを備えている。ここでは、第1チャンバ12、第2チャンバ14及びC/D200等の内部は、環境条件（本実施形態では温度、気圧、湿度の他に、化学的な清浄度なども含む）が良好に維持され、クリーン度がクラス1程度となっている。

第2チャンバ14は、後述する露光装置本体が収納された第1部分14Aと、その前面側に位置し、後述するレチクル搬送系が収納された第2部分14Bと、第1、第2チャンバ12、14の上方に位置し、その内部に照明光学系が収納された第3部分14Cとの3部分を有している。そして、第3部分14C内の照明光学系にビームマッチングユニットBMUを介して露光光源としてのレーザ光源(ArFエキシマレーザ、KrFエキシマレーザあるいはF2レーザなど)210が接続されている。

図2には、BMU及びエキシマレーザ光源210を省略した露光装置10を図1の矢印A方向から見た概略斜視図が示されている。この図2に示されるように、第2チャンバ14は、YZ断面がL字状の第1部分14Aと、この第1部分14Aの上部前面側に位置し、該第1部分14Aとともに全体として直方体を形成する第2部分14Bと、第1チャンバ12の後面側かつ第2チャンバ14の第1部分14Aの側面側から上方に立ち上がり、前方に向けて曲折後、上方に伸びた後第1部分14Aの上方に向かって曲折したような突出部から成る前記第3部分14Cとを有している。

前記第1チャンバ12内には、後述するように、基板搬送系及びホルダ搬送系としてのウエハローダ系の大部分が収納されている。

図3には、第2チャンバ14の図1における右側面図が一部破断して示されている。この図3に示されるように、第2チャンバ14の第1部分14Aと第2部分14Bとは、仕切り部材119によって区画されている。但し、この仕切り部材119の図3における右側面の大部分は開口部（図示省略）を介して露光装置本体120が収納された第1部分14A側と連通している。
本体１２０は、ステップ・アンド・スキャン方式でマスクとしてのレチクルRのパターンを基板としてのウエハWに転写するものである。

露光装置本体１２０は、投影光学系P Lを保持するメインフレーム１２１と、このメインフレーム１２１の上面に設けられたサポートフレーム１２２と、メインフレーム１２１から吊り下げられたウエハステージベース１２３とを含む本体コラムを備えている。

前記サポートフレーム１２２の天板は、レチクルベース１２４とされており、このレチクルベース１２４上にレチクルRを保持するレチクルステージR S Tが配置されている。このレチクルステージR S Tは、例えば、磁気浮上型の2次元リニアアクチュエータから成る不図示のレチクルステージ駆動部によって、レチクルRの位置決めのため、第２チャンバ１４の第３部分１４Ｃに収納された照明光学系１３の光軸（投影光学系P Lの光軸A Xに一致）に垂直なX Y平面内で２次元的に微小駆動可能であるとともに、所定の走査方向（ここではX軸方向とする）に指定された走査速度で駆動可能となっている。このレチクルステージR S Tの位置は、不図示のレチクルレーザ干涉計によって例えば0.5～1 nm程度の分解能で常時検出され、その位置情報は不図示のステージ制御装置及びこれを介して不図示の主制御装置に送られている。

前記投影光学系P Lは、その光軸A Xの方向がZ軸方向とされ、ここでは両側テレセントリックで所定の投影倍率、例えば１/5（あるいは１/4）を有する縮小光学系が用いられている。このため、照明光学系１３からの露光用照明光によってレチクルRの所定の照明領域が照明されると、このレチクルRを通じた照明光により、投影光学系P Lを介して照明領域部分のレチクルRの回路パターンの縮小像（部分倒立像）が表面にレジスト（感光剤）を塗布されたウエハW上の露光領域に投影される。

前記ウエハステージW S Tは、ウエハステージベース１２３上に配置され、このウエハステージW S T上に基板ホルダとしてのウエハホルダ６８が真空吸
着によって固定されている。このウエハホルダ68上に不図示のバキュームチャック、静電チャック等を介して直径12インチのウエハWが吸着固定されており、これによりウエハステージWSTの移動中のウエハWのずれが防止されるようになっている。

ウエハステージWSTは、例えば、不図示の磁気浮上型の2次元リニアアクチュエータ等から成るウエハステージ駆動部によりX軸及びY軸の2次元方向に駆動される。すなわち、ウエハステージWSTは走査方向（X軸方向）の移動のみならず、ウエハW上の複数のショット領域を前記レチクル上の照明領域と共役な露光領域に位置させることができるように、走査方向に垂直な非走査方向（Y軸方向）にも移動可能に構成されており、ウエハW上の各ショット領域を走査（スキャン）露光する動作と、次のショットの露光のための走査開始位置まで移動する動作とを繰り返すステップ・アンド・スキャン動作を行う。

このウエハステージWSTの位置は、不図示のウエハレーザ干渉計によれば0.5～1μm程度の分解能で常時検出され、その位置情報は、不図示のステージ制御装置及びこれを介して主制御装置に送られている。

その他、この露光装置本体１２０には、ウエハW上の各ショット領域に付設されたアライメントマーク（ウエハマーク）の位置を検出するためのオフ・アクシス方式のアライメント顕微鏡や、ウエハWの光軸方向位置を検出するフォーカスセンサなどの検出系（いずれも図示省略）が設けられており、これらの検出系の計測結果が主制御装置に供給されるようになっている。

前記第2部分14Bの内部には、レチクルステージRSTにレチクルRを搬送するレチクルローダ系140が収納されている。本実施形態では、この図3からも明らかのように、ウエハステージWST及びこれを駆動する駆動部等から成るウエハステージ系150の上方に、レチクルローダ系140とレチクルステージRST及びこの駆動部等から成るレチクルステージ系160とが前後方向に並べて配置されている。また、ウエハステージ系150の図1における
右側に、ウエハローダ系を収納した第1チャンバ12が配置されている。

前記照明光学系13を構成する各光学部材を収納する照明系ハウジングは、
図2の斜視図に示される第2チャンバ14の第3部分14Cと同様の形状を有
しており、第3部分14C内部で、第1チャンバ12の背面側から所定高さの
位置まで立ち上がり、第1チャンバ12の上部を通るように前方に曲折した後、
再度立ち上がって第1部分14Aに沿って上方に延び、第1部分14Aの上部
で左向きに曲折されている。この場合、照明光学系13が収納された第2チャ
ンバ14の第3部分14Cの最後端の面は、第1部分14Aとほぼ同一面とな
っており、また、照明光学系13が収納された第3部分14Cの右側への張り
出し量は僅かであり第1チャンバ12より所定量引っ込んでいる。

図4には、露光装置10の横断面図（平面断面図）が基板搬送系及びホルダ
搬送系としてのウエハローダ系100を中心として概略的に示されている。な
お、図4においては、空調系等は図示が省略されている。また、露光装置本体
もウエハステージWS1のみが示されている。

ウエハローダ系は、第1チャンバ12内の後面寄りの部分に配置され、左右
方向（X軸方向）に延びるXガイド18と、このXガイド18の前面側に配置
され所定長さで前後方向（Y軸方向）に延びるYガイド20とを搬送ガイドと
して備えている。

この内、Xガイド18は、第1チャンバ12の右側壁の近傍の位置から第1
チャンバ12の開口12a及び第2チャンバ14の開口14aを介して第2チ
ャンバ14の内部にまでX軸方向に延びている。

また、第1チャンバ12内の前側のC/D200寄りの部分には、コンテナ
台104が配置され、このコンテナ台104上にコンテナとしてのホルダ用コ
ンテナ106が載置されている。

第1チャンバ12の前方側（-Y側）の側壁には、平面視でコンテナ台10
4に対向する位置にホルダ用コンテナ106を出し入れするための開口12d
が形成されている。開口12dは、例えば床面から高さ900mm付近から高さ1200mm近傍にかけて形成されている。

前記ホルダ用コンテナ106としては、基板用コンテナの一種であるフロントオープニングユニファイドボッド（Front Opening Unified Pod：以下、「ФОУП」と略述する）と同様の構造のものが用いられている。ここで、ФОУПとは、ウエハを複数枚上下方向に所定間隔を隔てて収納するとともに、一方の面のみに開口部が設けられ、該開口部を閉閉する扉を有する開閉型のコンテナ（ウエハカセット）であって、例えば特開平8-279546号公報に開示される搬送コンテナと同様のものである。

図5には、コンテナ台104近傍の様子が側面図にて示されている。この図5に示されるように、ホルダ用コンテナ106内には、複数段、ここでは2段の保持棚（図示省略）が設けられており、基板ホルダ（及び物体）としてのウエハホルダ68を3枚上下方向に所定間隔を隔てて収納できる構造となっている。また、このホルダ用コンテナ106には、一方（+Y側）の面のみに開口部が設けられ、該開口部を開閉する蓋部材としての扉108が設けられている。このホルダ用コンテナ106内のウエハホルダ68を取り出すためには、ホルダ用コンテナ106を仕切り壁102の開口部102aの部分に押し付けて、その扉108を該開口部102aを介して開閉する必要がある。そのため、本実施形態では、仕切り壁102の+Y側の部分に扉108の開閉機構（オープナ）112が配置されている。

前記開口部102aは、図5に示されるように、開口12dとほぼ同じ高さ位置、すなわち床面から高さ900mm付近から高さ1200mm近傍にかけて形成されている。

また、この図5に示されるように、コンテナ台104は、第1チャンバ12の底面に固定されたスライド機構114によってY方向に駆動される駆動軸116の上面に固定されている。このスライド機構114は、不図示の制御装置
によって制御される。

さらに、開閉機構112の内部には扉108を真空吸引あるいはメカニカル
連結して係合するとともに、その扉108に設けられた不図示のキーを解除す
る機構を備えた開閉部材110が収納されている。この開閉部材110は、通
常の状態（コンテナ106がセットされていない状態）では、仕切り壁102
の内側が外部に対して開放状態とならないように、開口部102aに嵌合して
該開口部102aを閉塞している。開閉機構112も不図示の制御装置によっ
て制御される。

ここで、ホルダ用コンテナ106の扉の開放動作について簡単に説明する。

PGV（手動型搬送车）、AGV（自走型搬送車）により搬送されて来たホル
ダ用コンテナ106が、チャネル12の開口12dを介してコンテナ台104
上に設置されると、不図示の制御装置では、スライド機構114を介してコン
テナ台104を+Y方向に駆動し、コンテナ台106を仕切り壁102に押し
付ける（図5参照）。次に、制御装置では、開閉機構112の開閉部材110を
用いて、ホルダ用コンテナ106の扉108を、図5中仮想線108”で示
される位置、すなわちコンテナ106が仕切り壁102に押し付けられた位置
から仮想線108’で示される位置を経由して、実線で示される開閉機構11
2の内部の収納位置まで移動して開放する。この扉108の開放動作の際に、
制御装置では、不図示のホルダ検知センサを用いてコンテナ内の各段のウエハ
ホルダの有無を検知し、その結果を不図示のメモリに記憶しているものとする。

なお、開閉機構112による扉108の開閉方法と同様の方法は、上記特開
平8-279546号公報等に詳細に開示されており、公知であるからここで
はこれ以上の詳細な説明は省略する。

図4に戻り、前記Yガイド20は、Xガイド18の近傍の位置から第1チャ
ンバ12のほぼ中央部までY軸方向に延びている。また、このYガイド20の
上面には、不図示のリニアモータ等により該Yガイド20に沿って駆動される
スライダ40が載置され、このスライダ40の上面には、Y軸ターンテーブル42が固定されている。このY軸ターンテーブル42は、スライダ40上面に固定され、基板としてのウエハW（図4においては符号W3で示される）を保持する基板保持部とこれを回転駆動する駆動装置とによって構成されている。
また、スライダ40には、支持部材を介して発光素子と受光素子（例えばフォトダイオードあるいはCCDラインセンサ等）からなるウエハエッジセンサ48が一体的に設けられている。このウエハエッジセンサ48は、後述するウエハWの概略位置合わせに用いられる。

Xガイド18の右端部（後述するアンロードX軸アーム52の右端移動位置（図4中の符号52参照）の上方に、C/D200側の搬送アーム（ロードアーム）と間でウエハWの受け渡しを行うためにインライン・インタフェース・ロードアーム（以下、「インラインI/F・ロードアーム」と略述する）30が配置されている。また、このインラインI/F・ロードアーム30の下方に、インライン・インタフェース・アンロードテーブル（以下、「インラインI/F・アンロードテーブル」と略述する）38が設けられている。

Yガイド20の右側（図4における+X側）でホルダ用コンテナ台104に対向する位置には、水平多関節型ロボット（スカラーロボット）32が配置されている。この水平多関節型ロボット32（以下、適宜「ロボット32」と略述する）は、伸縮及びXY面内での回転が自在のアーム34と、このアーム34を駆動する駆動部36とを備えている。ロボット32は、第1チャンバ12の床面に設置された上下動機構37（図4では図示せず、図5参照）によって上下方向（Z方向）に所定範囲内で駆動されるようになっている。従って、本実施形態では、ロボット32のアーム34は、伸縮及びXY面内での回転のみならず、上下動も可能な構造となっている。ロボット32は、ウエハの搬送の他、ウエハホルダの搬送にも用いられる。これらウエハ及びウエハホルダの搬送シーケンスについては後述する。
前記Xガイド18には、リニアモータの可動子を含む不図示の上下動・スライド機構によって駆動され、該Xガイド18に沿って移動するロードX軸アーム50及びアンロードX軸アーム52が設けられている。

ロードX軸アーム50は、不図示の上下動・スライド機構により駆動され、図4中に、仮想線50'で示される位置近傍から実線50で示される所定のローディング位置（ウエハ受け渡し位置）まで移動可能でかつ上下方向にも所定範囲で可動となっている。前記ローディングポジションの近傍には、後述するステージ受け渡しアーム54が配置されている。また、アンロードX軸アーム52は、不図示の上下動・スライド機構により駆動され、図4中に、仮想線52'で示される位置から前述したステージ受け渡しアーム54の位置まで、ロードX軸アーム50の移動面より下方の移動面に沿って移動可能でかつ上下方向にも所定範囲で可動となっている。

前記ステージ受け渡しアーム54は、不図示のブラライメント装置の一部を構成するものである。このブラライメント装置は、ステージ受け渡しアーム54を支持して上下動及び回転する不図示の上下動・回転機構と、ステージ受け渡しアーム54の上方に配置された3つのCCDカメラ88a、88b、88cとを備えている。CCDカメラ88a、88b、88cは、ステージ受け渡しアーム54に保持されたウエハの外縁をそれぞれ検出するためのものである。CCDカメラ88a、88b、88cは、ここでは、ステージ受け渡しアーム54に保持された1インチウエハ（図4ではウエハW5として図示されている）のノッチを含む外縁を撮像可能な位置に配置されている。この内、中央のCCDカメラ88bがノッチ（V字状の切り欠き）を検出するためのものである。

ブラライメント装置では、3つのCCDカメラ88a、88b、88cによってウエハWの外縁（外形）を検出し、この検出結果の情報に基づいてウエハWのX、Y、θ誤差を求め、この内のθ誤差を補正すべく上下動・回転機構
を介してステージ受け渡しアーム54の回転を制御する。

ウエハステージWST上のウエハホルダ68の上面（ウエハ載置面）側のY方向の両端部には、図4に示されるように、前述したステージ受け渡しアーム54、アンロードX軸アーム52の先端の爪部が挿入できるX方向に延びる一対の所定深さの切り欠き68a、68bが形成されている。

第1チャンバ12の右側（＋X側）の側壁には、図4に示されるように、該チャンバ12内にウエハを搬入及び該チャンバ12からウエハを搬出するための開口12bが形成され、この開口12bを介してC/D200がインライン接続されている。

なお、これまでの説明ではその説明を省略したが、ウエハW又はウエハホルダ68を保持し、搬送する上記各アーム、各テーブルには、ウエハホルダ68と同様に、動作中のウエハWのずれを防止する手段、例えばバキュームチャック、静電チャック等がそれぞれ設けられている。

次に、上述のようにして構成された本実施形態のリソグラフィシステム1の動作についてウエハ及びウエハホルダの搬送シーケンスを中心として、図4に基づいて説明する。

なお、以下動作説明においては、説明の煩雑化を避けるため、ウエハ又はウエハホルダの受け渡しの際のバキュームチャック等のオン・オフ動作についての説明は省略するものとする。まず、ウエハの搬送について説明する。

レジスト塗布終了したウエハWを保持した図示のC/D側ロードアームが開口12bを介してチャンバ12内に挿入され、そのウエハWがC/D側ロードアームからインラインI/F・ロードアーム30に渡される。ここで、C/D側ロードアームは、このウエハWの受け渡しの際に、インラインI/F・ロードアーム30と干渉しないような形状となっている。このウエハWの受け渡しは、例えばC/D側ロードアームの下降（あるいはインラインI/F・ロードアーム30の上昇）により行われる。図4では、この受け渡しが完了した
ウエハWが符号W１で示されている。

上記の受け渡し完了後、不図示のＣ／Ｄ側ロードアームが開口１２ｂを介してチャンバ１２外へ退避する。このＣ／Ｄ側ロードアームの退避を不図示のセンサを介して確認後、不図示の制御装置が、ロボット３２の駆動部３６を介してアーム３４をインライン１／Ｆ・ロードアーム３０に保持されたウエハWの下方に挿入した後、例えば上下動機構３７によりロボット３２を上昇させ（あるいはインライン１／Ｆ・ロードアーム３０を下降させ）て、インライン１／Ｆ・ロードアーム３０からロボット３２のアーム３４にウエハを受け渡す。

次に、制御装置では、ウエハWを保持したロボット３２のアーム３４を回転及び伸縮させて、ウエハWを仮想線W３で示される位置まで搬送する。このとき、制御装置では、ウエハW及びロボット３２のアーム３４が、インライン１／Ｆ・ロードアーム３０、チャンバ１２、ウエハエッジセンサ４８の支持部材等に干渉しないよう軌跡となるようにロボット３２を制御する。このとき、Ｙ軸ターンテーブル４２は図４中に実線で示される位置に移動している。

次に、制御装置では、ロボット３２を下降駆動（あるいはＹ軸ターンテーブル４２を上昇駆動）してウエハWをロボット３２のアーム３４からＹ軸ターンテーブル４２に渡す。

次に、制御装置では、Ｙ軸ターンテーブル４２を回転して、該Ｙ軸ターンテーブル４２に保持されたウエハWを回転させる。このウエハWの回転中にウエハエッジセンサ４８から出力される光量信号に基づき、ウエハWのノッチのウエハ中心に対する方向と、ウエハ中心のＹ軸ターンテーブル４２中心に対するXY２次元方向の偏心量とを求める。なお、このノッチ方向とウエハ中心の偏心量の求め方の具体的方法は、例えば特開平１０－１２７０９号公報に詳細に開示されており、公知であるからここでは詳細な説明は省略する。オリエンテーション・フラットが形成されたウエハについても同様の方法により、ウエハエッジセンサ４８を用いてウエハの回転量と偏心量とを求めることができる。

19
制御装置では、上で求めたノッチの方向が所定の方向、例えば+X方向に一致するようにY軸ターンテーブル42の回転角度を制御する。また、制御装置では、そのときのウエハ中心の偏心量のY方向成分に応じて、Y軸ターンテーブル42をY方向に微小駆動する。制御装置では、このようにしてウエハWの回転とY方向位置ずれを補正する。

上記のウエハWの回転とY方向位置ずれの補正が終了する時点では、ロードX軸アーム50は、図4に仮想線50'で示される位置の近傍まで移動して来ており、制御装置では、ウエハW中心とロードY軸アーム50の爪部の中心が一致するようにロードX軸アーム50の停止位置を制御する。これにより、上記の偏心量のX方向成分が補正される。

すなわち、制御装置では、このようにしてウエハWの概略位置合わせ（第1段階のプリアライメント）を行う。

上記のウエハWの概略位置合わせが終了すると、制御装置では、Y軸ターンテーブル42からロードX軸アーム50に対するウエハWの受け渡しを行う。このウエハWの受け渡しは、例えばロードX軸アーム50の上昇（あるいはY軸ターンテーブル42の下降）によって行われる。

上記のウエハWのロードX軸アーム50への受け渡し終了後、制御装置では、ロードX軸アーム50を図4の仮想線50'の位置から実線で示されるローディングポジションまで移動する。これにより、ウエハWが仮想線W5で示される位置まで搬送される。

但し、前シーケンスのウエハが仮想線W5で示されるローディングポジッションに残っている場合は、制御装置では、仮想線W4で示される位置にウエハW、すなわちロードX軸アーム50を待機させる。

ロードX軸アーム50が、ローディングポジションまで移動すると、制御装置では、ウエハWをロードX軸アーム50からステージ受け渡しアーム54に受け渡す。この受け渡しは、ステージ受け渡しアーム54の上昇（あるいはロ
ードX軸アーム50の下降）により行われる。この受け渡しが終了すると、次のウエハの搬送のため、制御装置では、ロードX軸アーム50を仮想線50'で示される位置へ向かって移動を開始させる。この時ロードX軸アーム50を、仮想線W3の位置にあるウエハWと干渉しない範囲で仮想線50'で示される位置に近づけることは可能である。

ロードX軸アーム50がローディングポジションから退避したことを確認すると、制御装置では、不図示のブリアライメント装置を構成する上下動・回転機構を介してウエハWを保持したステージ受け渡しアーム54を所定量上方へ駆動する。次いで制御装置ではブリアライメント装置に指示を与え、3つのCCDカメラ88a、88b、88cを用いてウエハWの外縁（外周）を検出し、この検出結果に基づいてウエハWのX、Y、θ誤差を求め、この内のθ誤差を補正すべく上下動・回転機構を介してステージ受け渡しアーム54の回転を制御する。このウエハWのX、Y、θ誤差の検出（第2段階のブリアライメント）は、先に行った第1段階の概略位置合わせ後の残留誤差およびその後の搬送、受け渡し動作で新たに発生した誤差を補正するために行われるものであるから、一層高精度に行われる。

なお、ブリアライメント装置によるウエハ外形計測に基づいて求められたX、Y誤差は、制御装置を介して不図示の主制御装置に送られ、主制御装置により、例えば後におけるウエハのサーチアライメント動作時にそのX、Y誤差分のオフセットを加えることで補正される。勿論、X、Y誤差を補正するために、ローディングポジションにおけるウエハステージWSの位置を調整しても構わない。

上記の第2段階のブリアライメントが行われている間、ウエハステージWS上では別のウエハWの露光処理（アライメント、露光）が行われている。また、この露光中、アンロードX軸アーム52は、ローディングポジションで、ステージ受け渡しアーム54の真下で待機している。
そして、ウエハステージWST上でウエハWの各ショット領域に対してレチクルRのパターンの露光が終了すると、不図示の主制御装置からの指示に基づき不図示のステージ制御装置によってウエハステージWSTが図4に示される露光終了位置からローディングポジションに向けて移動され、露光済みのウエハWがアンローディングポジション（すなわちローディングポジション）まで搬送される。

このウエハステージWSTのローディングポジションへの移動の際に、アンロードX軸アーム52先端の吸着部が設けられた爪部がウエハホルダ68の切り欠き68a、68bに係合する。

上記のウエハステージWSTの移動が終了すると、主制御装置からの指示に基づき、制御装置ではアンロードX軸アーム52を所定量上昇駆動してウエハステージWST上のウエハホルダ68上から露光済みのウエハWをアンロードX軸アーム52に移載してウエハホルダ68上からアンロードする。

次に、制御装置では、アンロードX軸アーム52を、図4中に仮想線52'で示される位置に駆動する。これにより、アンロードX軸アーム52によってウエハWが仮想線W5で示されるローディングポジションから仮想線W1で示される位置の真下まで搬送される。このとき、制御装置では、Y軸ターンテーブル42をスライド40と一体的に仮想線42'で示される位置に退避させる。但し、次のウエハに対して第1段階のブリアライメント動作が行われているときには、そのブリアライメント動作が終了するまで制御装置ではアンロードX軸アーム52を実線で示される位置近傍で待機させる。

アンロードX軸アーム52がローディングポジションから退避すると、制御装置では、ブリアライメント装置に指示を与え、上下動・回転機構を介してステージ受け渡しアーム54を下方に駆動して、未露光のウエハWをステージ受け渡しアーム54からウエハホルダ68上に渡してロードする。このステージ受け渡しアーム54の下降の際には、ステージ受け渡しアーム54先端の吸着部
が設けられた爪骨がウェハホルダ68の切り欠き68a、68bに係合する。

ステージ受け渡しアーム54がウェハWの裏面から所定量離れる位置まで下降したことを確認すると、主制御装置ではステージ制御装置にウェハステージWSTの露光シーンの開始位置への移動を指示する。これにより、ステージ制御装置ではウェハステージWSTを-X方向に駆動して露光シーンの開始位置（図4に示される位置）へ移動する。その後、ウェハホルダ68上のウェハWに対する露光シーン（サーチアライメント、EGA等のファインアライメント、露光）が開始される。なお、この露光シーンは、ウェハステージ上でフォトセンサによるウェハの位置ずれ計測が行われない点を除き、通常のスキャンニングステージと同様であるので、詳細な説明は省略する。

上記の露光シーンの開始位置へのウェハステージWSTの移動の際にも、ウェハホルダ68に切り欠き68a、68bが形成されていることから、ステージ受け渡しアーム54の爪部にウェハホルダ68が接触することなく、ウェハステージWSTが円滑に移動される。

このように、本実施形態では、ウェハホルダ68上のウェハの交換に際して、ウェハステージWSTの高速移動動作を効率的に利用するので、ウェハ交換時間の短縮が可能であり、スルーパットの向上が可能である。

ウェハステージWSTがローディングポジションから退避したことの確認信号を主制御装置から受けると、制御装置では次のウェハの搬送のため、ステージ受け渡しアーム54をローディングポジションでロードX軸アーム50とのウェハ受け渡し位置まで上昇駆動する。

一方、仮想線W1で示される位置の真下の位置までウェハWが搬送されると、制御装置では、例えばアシロードX軸アーム52を下降（あるいはインライン1/F・アシロードテーブル38を上昇）させて、アシロードX軸アーム52からインライン1/F・アシンロードテーブル38にウェハWを渡す。

この受け渡しが終了すると、制御装置では、次のウェハの搬送のため、アシン
ロード×軸アーム52をローディングポジションに移動して次のウエハのアンロードのために待機させる。

アンロード×軸アーム52が第1チャンバ12の開口12a近傍まで移動したことを確認すると、制御装置では、C／D 200側にその旨を通知する。これにより、不図示のC／D側アンロードアームが開口12bを介してチャンバ12内に挿入され、そのウエハWがインラインI／F・アンロードテーブル38からC／D側アンロードアームに渡される。このウエハWの受け渡しは、例えばC／D側アンロードアームの上昇（あるいはインラインI／F・アンロードテーブル38の下降）により行われる。なお、C／D側アンロードアームは、前述のC／D側ロードアームをそのまま使用しても良い。

上記の受け渡し完了後、不図示のC／D側アンロードアームがウエハWを保持して開口12bを介してチャンバ12外へ退避する。

露光装置10では、上記のようにしてウエハホルダ68上のウエハを交換しながら、露光を繰り返し行うが、ウエハに塗布されたレジスト等の飛沫やステージの移動時に発生し、露光装置内に浮遊しているパーティクルがウエハホルダ68に付着し堆積すると、前述の如くウエハの平坦度を保てなくなる。かかる不都合を防止すべく、露光装置10では、所定ロットのウエハの露光終了の度每等所定の間隔でウエハホルダの交換が行われるようになっている。

次に、このウエハホルダの交換シーケンスについて、不図示の制御装置の制御動作を中心として説明する。

前提として、前述の如くしてホルダ用コンテナ106の扉108が開放され、その扉108の開放動作の際に、制御装置により不図示のホルダ検知センサを用いてコンテナ内の各段のウエハホルダの有無が検知され、その結果が不図示のメモリに記憶されているものとする。

上記所定ロットのウエハの露光が終了すると、主制御装置からの指示に基づきステージ制御装置によってウエハステージWSTが図4に示される露光終了
位置からアンローディングポジション（すなわちローディングポジション）に向かってゆっくりと移動される。この移動中に、ステージ制御装置によって、ウェハステージWST上のウェハホルダ68が図示の受け渡し機構を介して所定量持ち上げられる。

上記のウェハステージWSTの移動が終了し、アンローディングポジションにウェハステージWSTが到着したときには、ウェハホルダ68の下方にアンロードY軸アーム52が挿入されている。次に、主制御装置からの指示に基づき、制御装置ではアンロードY軸アーム52を所定量上昇駆動してウェハステージWST上のウェハホルダ68をアンロードY軸アーム52に移載してウェハステージWST上からアンロードする。

次に、制御装置では、アンロードY軸アーム52を、図4中に仮想線W3で示される位置の近傍まで移動する。これにより、アンロードY軸アーム52によってウェハホルダ68がローディングポジションから仮想線68”で示される位置まで搬送される。このとき、Y軸ターンテーブル42は、図4に実線で示される位置に待機している。

仮想線68”で示される位置までウェハホルダ68が搬送されると、制御装置では、例えばY軸ターンテーブル42を上昇（あるいはアンロードY軸アーム52を下降）させて、アンロードY軸アーム52からY軸ターンテーブル42にウェハホルダ68を渡す。

この受け渡しが終了すると、制御装置では、アンロードY軸アーム52をローディングポジションに向けて所定量移動させ、位置W3から退避させる。

アンロードY軸アーム52がY軸ターンテーブル42上のウェハホルダと干渉しない位置まで移動したことを確認すると、制御装置では、スライダ40と一体的にY軸ターンテーブル42を図1中の仮想線42’で示される位置まで駆動する。これにより、ウェハホルダ68が図4中に仮想線68”で示される位置から仮想線68’で示される位置まで搬送される。
次いで、制御装置では、ロボット3２のアーム3４を伸縮・回転及び下降させて、仮想線6８’の位置にあるウエハホルダ6８の下方に挿入した後、所定量上昇駆動してウエハホルダ6８をY軸ターンテーブル4２からアーム3４に移載する。

次に、制御装置では、ウエハホルダ6８を仮想線6８’で示される位置からホルダ用コンテナ106内の位置まで搬送する。具体的には、制御装置ではメモリ内に記憶された各段のウエハホルダ6８の有無の情報を基に、ロボット3２のアーム3４によりウエハホルダ6８を収納すべき高さまで搬送し、ロボット3２のアーム3４を伸ばしてホルダ用コンテナ106内の収納段の遠かに上方にウエハホルダ6８を挿入した後、ロボット3２のアーム3４を下降させてウエハホルダ6８を収納段に渡し、ロボット3２のアーム3４を縮めてホルダ用コンテナ106外に退避する。

この一方、ウエハホルダ6８のウエハステージWST上へのロードは次のようにして行われる。

まず、制御装置では、メモリ内に記憶された各段のウエハホルダ6８の有無の情報を基に、アクセスすべきウエハホルダの高さに応じてロボット3２を上下方向に駆動する。すなわち、アクセスすべきウエハホルダとその下に存在する障害物（ウエハホルダあるいはコンテナ106の底部）の隙間にロボット3２のアーム3４が挿入できるような高さまでロボット3２を駆動する。

次に、制御装置では、駆動部3６を介してアーム3４を回転及び伸縮させて目的のウエハホルダ6８の下方にロボット3２のアーム3４を挿入した後、僅かに上昇させてウエハホルダ6８をアーム3４に載せ、ロボット3２のアーム3４を縮めてウエハホルダ6８をホルダ用コンテナ106外に取り出す。次いで、制御装置では、ロボット3２のアーム3４を回転、伸縮及び下降させてウエハホルダ6８を図4中に仮想線6８’で示される位置まで搬送する。このとき、Y軸ターンテーブル4２は仮想線4２’で示される位置に移動している。
次に、制御装置では、ロボット３２のアーム３４を下降駆動（あるいはＹ軸ターンテーブル４２を上昇駆動）してウェハホルダ６８をロボット３２のアーム３４からＹ軸ターンテーブル４２に渡す。

次に、制御装置では、スライダ４０と一体的にＹ軸ターンテーブル４２を＋Ｙ方向に駆動して、ウエハホルダ６８を仮想線６８”で示される位置まで搬送する。

次に、制御装置では、図４中に実線で示される位置に待機しているアンロードＸ軸アーム５２を仮想線３で示される位置の近傍まで移動し、Ｙ軸ターンテーブル４２からアンロードＹ軸アーム５２に対するウエハホルダ６８の受け渡しを行う。このウエハホルダ６８の受け渡しは、例えばアンロードＹ軸アーム５２の上昇（あるいはＹ軸ターンテーブル４２の下降）によって行われる。

上記のウエハホルダ６８のアンロードＹ軸アーム５２への受け渡し終了後、制御装置では、アンロードＹ軸アーム５２を図４の仮想線３の位置からローディングポジションまで移動する。これにより、ウェハホルダ６８がローディングポジションまで搬送される。

アンロードＹ軸アーム５２が、ローディングポジションまで移動すると、制御装置では、ウェハホルダ６８をアンロードＹ軸アーム５２からローディングポジションで待機中のウェハステージＷＳＴ上の不図示の受け渡し機構に受け渡す。この受け渡しは、アンロードＹ軸アーム５２の下降により行われる。

これに次いで、ステージ制御装置により、受け渡し機構が下降駆動され、ウェハホルダ６８がウェハステージＷＳＴ上にロードされる。なお、ウェハホルダ６８は真空吸着又は静電吸着などによってウェハステージＷＳＴ上に固定される。

このようにして、ウェハホルダの交換が所定のインターバルで実行される。

以上説明したように、本実施形態によると、不図示の制御装置の管理の下、開閉機構１１２によりコンテナ台１０４上に設置されたホルダ用コンテナ１０
6の内部と外部を隔離した状態で扉108が開閉される。そして、開閉機構
112により扉108が開放されたとき、ウエハローダ系100では、ウエハ
ステージWST上のウエハホルダ68をホルダ用コンテナ106内に搬送する
（アンロードする）動作と、ホルダ用コンテナ106内のウエハホルダ68を
ウエハステージWST上に搬送する（ロードする）動作とをシーケンシャルに
行う。すなわち、本実施形態によると、短時間でウエハホルダの交換を装置の
内部と外部を隔離した状態で行うことができ、これによりウエハホルダの清
浄度を常時維持してしかも装置停止時間を極力短くすることができ、歩留まり
の向上とあいまって結果的に半導体素子等のデバイスの生産性を向上すること
ができる。

また、本実施形態では、ウエハステージWSTからのウエハのアンロード及
びウエハステージWSTに対するウエハのロードを行うウエハローダ系100
を、ウエハホルダの搬送系に共用しているので、新たに専用のウエハホルダ搬
送系を設ける必要がないので、コストの上昇を防止することができる。但し、
ウエハホルダ専用の搬送系を別に設けても構わない。

なお、上記実施形態では、同一の搬送経路により、ウエハステージWST上
のウエハホルダ68をホルダ用コンテナ106内に搬送する（アンロードする）
動作と、ホルダ用コンテナ106内のウエハホルダ68をウエハステージWST
上に搬送する（ロードする）動作とをシーケンシャルに運行場合について説
明したが、本発明がこれに限定されるものではなく、基板ホルダの搬送系では、
基板ステージ上の基板ホルダをホルダ用コンテナ内に搬送する動作と、ホルダ
用コンテナ内の基板ホルダを基板ステージ上に搬送する動作とを少なくとも一
部並行して行っても良い。この場合には、基板ホルダの搬送経路として、ロー
ド側の経路とアンロード側の経路が必要となるが、上記2つの動作の同時並
行処理によりホルダ交換時間の短縮が可能となる。

また、上記実施形態では、ホルダ用コンテナとして、複数のウエハホルダを
同時に収納可能ないわゆるFOPと同様の構造の開閉型のコンテナを用いる場合について説明したが、これに限らず、ホルダ用コンテナは、基板ホルダを１つだけ収納可能な構造であっても良い。

図6には、この種のホルダ用コンテナの一例が示されている。このホルダ用コンテナ70は、いわゆるSMIF（standard mechanical interface）ポッドタイプのホルダ用コンテナである。このホルダ用コンテナ70は、ウエハホルダ68のウエハとの接触面71と反対側の面の外周部の一部（ウエハステージWSTに対する吸着面以外の部分）を支持する一対の支持部材72A、72Bが設けられたコンテナ本体74と、このコンテナ本体74に着脱自在に装着され、内部空間を外部から隔離する蓋部材としてのカバー76とを備えている。前記支持部材72A、72Bは、コンテナ本体74の上面に突設され、図6における紙面直交方向に延びる相互に対向する断面L字状帯材によって構成されている。これらの支持部材72A、72Bの内部側には、段部73がそれぞれ形成され、この段部73の上面によってウエハホルダ68の周囲の一部が下方から支持されるようになっている。また、支持部材72A、72Bの外面側（段部73と反対側）の面とカバー76の内面との間には、図6に示されるように、所定の空隙が設けられている。これは、後述するカバー76の開放動作時に、支持部材72A、72Bとカバー76とが擦れるのを防止し、塵等が極力発生しないようにするためである。

カバー76は、コンテナ本体74に上方から嵌合する段付きの開口部が一方の面に形成されており、その内底面（図6における上面）には、ゴム等の弾性部材から成る一対の保持部材78A、78Bが設けられている。この一対の保持部材78A、78Bの先端は、カバー76をコンテナ本体74に装着した状態では、図6に示されるように、ウエハホルダ68の左右の切り欠き68a、68b部分のウエハホルダ68上面に所定圧力で圧接するようになっている。また、コンテナ本体74とカバー76との間には、ロック機構80が設けられ
ており、このロック機構80が、不図示の開閉機構によって後述するようにして解除されるようになっている。

このホルダ用コンテナ70では、図7に示されるように、ウエハホルダ68がコンテナ本体74に設けられた一対の支持部材72A、72Bによってウエハとの接触面71と反対側の面の外周部の一部が支持された状態で、カバー76を矢印C、C'で示されるように上方から被せることにより、カバー76の段部とコンテナ本体74の外周部とが嵌合し、ワンタッチでカバー76をコンテナ本体74に装着することができる。このカバー76の装着状態では、図6に示されるように、該カバー76に設けられた保持部材78A、78Bによってウエハホルダのウエハとの接触面71側の接触面以外の部分が保持される。そして、ロック機構80をロックすることにより、コンテナ本体74とカバー76が固定される。

すなわち、ホルダ用コンテナ70では、その内部に密閉状態でウエハホルダ68が収納され、かつ支持部材72A、72Bと保持部材78A、78Bとで挟持された状態で固定される。このため、このホルダ用コンテナ70内に収納した状態でウエハホルダ68を搬送することにより、ウエハホルダ68を密閉状態で搬送でき、しかもその搬送中にウエハホルダ68が損傷するのを防止することができる。この場合、ウエハホルダ68のウエハとの接触面及びその反対の面側のウエハステージWSTとの接触部（吸着部）75の損傷を確実に防止することができる。また、保持部材78A、78Bがゴム等の弾性部材によって形成されていることから、その弾性部材の弾性力によりウエハホルダ68を常に適度な力で保持することができ、搬送中に振動等が生じてもその表面が保持部材78A、78Bとの摩擦でこすれたりして傷がついたりすることがない。

なお、ホルダ用コンテナ70を構成するコンテナ本体74、カバー76等は、帯電防止素材を用いることが望ましく、帯電防止機能を備えた透明部材によって
て形成しても良い。

前記ホルダ用コンテナ70は、例えば図8に示されるようなコンテナ台90上に載置される。このコンテナ台90は、上方よりホルダ用コンテナ70を載置するタイプのコンテナ台であり、例えばウエハローダ系が収納された第1チャンバ12の一部に外方に突出した突出部を形成することにより、その突出部をコンテナ台90とすることができる。このコンテナ台90に対するホルダ用コンテナの搬入及び搬出は、PGV（手動型搬送車）、AGV（自走型搬送車）等の床面走行タイプの搬送車によって行っても良いが、ＯＨＴ等の天井走行タイプの搬送車を用いて行っても良い。

コンテナ台90の一部には、コンテナ本体74より一回り大きな開口90aが設けられている。この開口90aは、通常は、不図示の開閉機構を構成する開閉部材82によって閉塞されている。この開閉部材82は、コンテナ本体74を真空吸引あるいはメカニカル連結して係合するとともに、そのコンテナ本体74に設けられたロック機構80を解除する不図示の機構（以下、便宜上「係合・ロック解除機構」と呼ぶ）を備えている。

開閉機構では、開閉部材82の係合・ロック解除機構により、ロック機構80を解除するとともに、コンテナ本体74を係合した後、開閉部材82を下方に所定量移動することにより、装置の内部と外部とを隔離した状態で、図9に示されるように、ウエハホルダ68を保持したコンテナ本体74をカバー76から分離させることができる。換言すれば、装置の内部と外部とを隔離した状態で、ホルダ用コンテナ70のカバー76を開放することができる。

そして、このようにしてコンテナ本体74とカバー76が分離されると、図9に示されるように、ホルダ搬送系としてのウエハローダ系を構成するロボット32のアーム34の先端部34a、34bが挿入され、所定量上昇することにより、ウエハホルダ68がコンテナ本体74から搬出される。この場合、アーム34がウエハホルダ68と干渉しない位置で、支持部材72A、72B
によってウエハホルダ68が支持されているので、上記の搬出動作を円滑に行なうことができる。

また、ホルダ用コンテナ70は、ウエハホルダ68を1枚のみ収納可能な構造であるが、ホルダ用コンテナ70のコンテナ本体74からの清浄なウエハホルダ68の搬出後、コンテナ本体74に対する汚れたウエハホルダ68の搬入を行うようなシーケンスを採用することにより、ウエハステージ上のウエハホルダの交換が可能である。

このようにホルダ用コンテナ70を用いる場合にも、上記実施形態と同様に、ウエハホルダの交換を装置の内部と外部とを隔離した状態で行うことができ、これによりウエハホルダの清浄度を常時維持してしかも装置停止時間を極力短くすることができ、歩留まりの向上とあいまって結果的に半導体素子等のデバイスの生産性を向上することができる。

なお、上記実施形態で説明した第1、第2チャンバ、レチクルローダ系、ウエハステージ系、ウエハローダ系の配置、構成等は一例であって、本発明がこれに限定されないことは勿論である。例えば、第1チャンバ12内にウエハローダ系100の大部分を配置する代わりに、第2チャンバ14内にウエハローダ系100の全て、又は大部分を配置しても良い。この場合、第2チャンバ14内でレチクル搬送系が収納される第2部分14Bの下にウエハローダ系100を収納する部分（サブチャンバ）を設けることができる。特に、第2チャンバ14内にウエハローダ系100の全てを配置する場合には、第1チャンバ12を設けなくても良いし、あるいはC／D200との間のインタフェース部（搬送系、パッファ部など）のみを第1チャンバ12に設けても良い。

また、ウエハローダ系100の一部と専用の搬送系とを組み合わせてホルダ搬送系を構成しても良い。例えば、図4中に仮想線で示される位置W5とホルダ用コンテナとの間でウエハホルダを搬送する機構（ロボットアームなど）をウエハローダ系とは別に設けても良い。さらに、ホルダ用コンテナ（及びこれ
が載置されるコンテナ台）を第1チャンパ12以外に設けても良く、要は、前述の環境条件が良好に維持されている空間（第2チャンパ14、C/D200など）に対してホルダ用コンテナ（及びこれが載置されるコンテナ台）を設ければ良い。例えば、第2チャンパ14に対してその外部にホルダ用コンテナ（及びこれが載置されるコンテナ台）を設けるとき、ウエハローダ系100の少なくとも一部をホルダ搬送系として共用するか否かに関係なく、ホルダ搬送系を第2チャンパ14内に配置することが望ましい。

また、上記実施形態では、環境条件が良好に維持されている空間に対してその外部にホルダ用コンテナ（及びこれが載置されるコンテナ台）を設けるものとしたが、その空間内にホルダ用コンテナを収納する、すなわちその空間の一部にホルダ用コンテナを搬入し、かつその一部の空間内の気体を清浄な気体と置換してから他の空間と連通させるようにしても良い。また、本実施形態では、第1チャンパ12、第2チャンパ14、及びC/D200の各仕切板にウエハやウエハホルダが通過可能な開口を設けておくものとしたが、その開口を開閉する高速シャッタを設け、その通過時ののみ開口を開放するようにしても良い。

さらに、上記実施形態では、ホルダ用コンテナ内と上記空間内とでその雰囲気を同一にしておく、換言すれば、コンテナ内に清浄な気体を封入して清浄度を上記空間内と同程度以上としておく（不純物濃度を上記空間内と同程度以下としておく）と良い。また、露光装置10が2つのウエハステージを有するときにも本発明を適用して同様の効果を得ることができる。また、反射レチクルをパターン面と反対側でまばらに渡って吸着するレチクルホルダを用いる場合などでも本発明を適用してその交換を行うようにしても良い。

また、上記実施形態では、露光装置10をC/D200とインライン接続することを前提としていたが、C/Dとのインライン接続を行わない露光装置であっても本発明を適用できる。さらに、本発明は露光装置だけでなく、リソグラフィ工程を含むデバイス製造工程で用いられ、その内部の環境条件が良好に
維持される製造装置（検査装置を含む）などに対しても適用することができる。
また、上記実施形態では、ウエハステージW S Tからウエハホルダ6 8を搬出しこれとは別のウエハホルダをウエハステージW S T上に載置するものとして、ウエハステージW S Tから搬出したウエハホルダの清掃などを行った後、そのウエハホルダを再度ウエハステージ上に載置するようにしても良い。
また、ウエハホルダと同様に、ウエハステージW S Tに対して搬入（ロード）及び搬出（アンロード）する必要があるものとして、同一デバイス製造ラインの複数の号機（露光装置）間の露光量マッチングの基準となる基準照度計がある。従来、この基準照度計のウエハステージに対する搬入・搬出は、ウエハホルダの手作業による清掃と同様に、オペレータが露光装置本体が収納されたチャンパ（上記実施形態のチャンパ1 4）の扉を開けて手作業によって行っていた。しかしながら、かかる基準照度計の搬入・搬出動作は、チャンパ内のクリーン度を低下させる要因となるため、基準照度計のウエハステージW S Tに対する搬入・搬出動作を自動化することが、チャンパ内クリーン度を維持する観点からは望ましい。例えば、露光に用いられるウエハホルダ6 8と同一形状の円形基板に基準照度計を埋め込んだダミーホルダを用意しておき、前述したウエハローダ系（ウエハホルダ搬送系）により前述と同様にして、ウエハステージW S T上のウエハホルダ6 8をダミーホルダに交換し、その基準照度計で露光用照明光を検出して、露光装置における露光量制御の基準となるインテグレータセンサのキャリプレーション（校正）等の各種校正を行うようにしても良い。この場合、基準照度計による露光用照明光の検出結果を制御系に伝えるための手段として、例えば、公知のテレピリモコンセンサと同様の無線式（赤外光方式）を容易に採用することができる。具体的には、超小型電源、赤外光L E D、及び基準照度計の出力である光電変換信号を赤外光L E Dの駆動信号に変換する、エンコーダ、ドライバ等を含む回路素子（I Cチップ）を、上記ダミーホルダに基準照度計とともに埋め込み、上記赤外光L E Dに対応する受光
部（受光素子であるp i nフォトダイオード及びデコード等）を露光装置のコラムの所定の一部に配置するようにすれば良い。勿論、基準照度計に従来と同様に配線（コード）を接続した有線式を採用することも可能であるが、かかる場合には、そのコードにケミカル処理（例えばテフロンコーティングなど）を施して、そのコードからの脱ガス等が露光装置に悪影響を与えるのを防止することが必要となる。

なお、上記施設形態では、基板ホルダ（及びホルダ）としてのウエハホルダ（ダミーホルダを含む）が搬送される環境条件が維持されたクリーンな空間がチャンバである場合について説明したが、本発明がこれに限定されるものではない。例えば、F₂レーザ等の真空紫外光源を露光光源として用いる露光装置などでは、露光光の光路部分は勿論、ウエハやレチクルの搬送路等の他の部分も、空間内部の環境条件を維持しクリーン度を維持すべく、窒素、ヘリウム等の不活性ガスでバージすることが一般的に行われるが、このような空間内への物体の搬入及び搬送にも本発明を好適に適用することができる。すなわち、本発明にいう環境条件が維持されたクリーンな空間は、チャンバに限らず、搬送路その他の空間も含まれる。一例としては、第2チャンバ14内でウエハステージWSTを収納するサブチャンバの内部が不活性ガスでバージされるが、このサブチャンバに対してその外部にホルダ用コンテナを設け、サブチャンバ内のホルダ搬送系によってウエハホルダの交換を行っても良いし、あるいはホルダ搬送系の少なくとも一部が配置される予備室をサブチャンバに接続し、この予備室内、又は予備室に対してその外部にホルダ用コンテナを設けるようにしても良い。また、そのサブチャンバに接続され、ウエハローダ系の少なくとも一部が配置される予備室内、又はその外部にホルダ用コンテナを設け、ウエハローダ系をホルダ搬送系として共用する、あるいはウエハローダ系とは別にホルダ搬送系を予備室内に配置するようにしても良い。このとき、予備室は1つに限られるものではなく、複数の予備室を接続して搬送路を複数に区切るようにし
ても良く、どの予備室に対してホルダ用コンテナを設けても良い。なお、ホルダ用コンテナ内を不活性ガスで置換しておく、換言すれば、コンテナ内の雰囲気を上記空間（チャンバ、予備室など）内とほぼ同一にしておくことが望ましい。このとき、特に露光光を減衰させたり、照明光学系や投影光学系などの光学特性（透過率、照度均一性、収差など）を低下させる不純物（酸素、水分、有機物など）の濃度を、その空間内に比べて同程度以下にしておくことが望ましい。また、コンテナ内に供給する不活性ガスは、上記空間内と同一である必要はなく、異なっていても良いし、複数の不活性ガスを混合したものでも良い。さらに、サブチャンバとそれに接続される予備室とで不純物の濃度が異なるときは、コンテナが設けられる空間内の不純物濃度を基準としてその濃度を設定すれば良い。

なお、上記実施形態では、露光装置本体１２０がステップ・アンド・スキャン方式の走査露光を行う場合について説明したが、本発明がこれに限定されるものではなく、露光装置本体はステーショング・アンド・レピート方式で静止露光を行うものであっても良い。さらに、本発明は、ステップ・アンド・スティッチ方式の投影露光装置、ミラープロジェクション・アライナー、プロキシミティ方式の露光装置、及びフォトリピータなどにも適用することができる。また、電子線やイオンビームなどの荷電粒子線、あるいはX線（レーザプラズマ光源又はＳＯＲから発生する軟X線領域、例えば波長１３．４ｎｍ又は１１．５ｎｍのＥＵＶ（Extreme Ultraviolet）光を含む）などを露光用照明光として用いる露光装置にも本発明を適用することができる。なお、前述の荷電粒子線やX線を用いる露光装置では、その本体部が真空チャンバ内に収納される。

《デバイス製造方法》

次に、上述したリソグラフィシステムをリソグラフィ工程で使用したデバイスの製造方法の実施形態について説明する。

図１０には、デバイス（ＬＩＣやLSI等の半導体チップ、液晶パネル、ＣＣ
D、薄膜磁気ヘッド、マイクロマシン、DNAチップ等の製造例のフローチャートが示されている。図10に示されるように、まず、ステップ301（設計ステップ）において、デバイスの機能・性能設計（例えば、半導体デバイスの回路設計等）を行い、その機能を実現するためのパターン設計を行う。引き続き、ステップ302（マスク製作ステップ）において、設計した回路パターンを形成したマスクを製作する。一方、ステップ303（ウエハ製作ステップ）において、シリコン等の材料を用いてウエハを製造する。

次に、ステップ304（ウエハ処理ステップ）において、ステップ301～ステップ303で用意したマスクとウエハを使用して、後述するように、リソグラフィ技術等によってウエハ上に実際の回路等を形成する。次いで、ステップ305（デバイス組立ステップ）において、ステップ304で処理されたウエハを用いてデバイス組立を行う。このステップ305には、ダイシング工程、ボンディング工程、及びパッケージング工程（チップ封入）等の工程が必要に応じて含まれる。

最後に、ステップ306（検査ステップ）において、ステップ305で作製されたデバイスの動作確認テスト、耐久性テスト等の検査を行う。こうした工程を経た後にデバイスが完成し、これが出荷される。

図11には、半導体デバイスの場合における、上記ステップ304の詳細なフロー例が示されている。図11において、ステップ311（酸化ステップ）においてはウエハの表面を酸化させる。ステップ312（CVDステップ）においてはウエハ表面に絶縁膜を形成する。ステップ313（電極形成ステップ）においてはウエハ上に電極を蒸着によって形成する。ステップ314（イオン打込みステップ）においてはウエハにイオンを打ち込む。以上のステップ311～ステップ314それぞれは、ウエハ処理の各段階の前処理工程を構成しており、各段階において必要な処理に応じて選択されて実行される。

ウエハプロセスの各段階において、上述の前処理工程が終了すると、以下の
ようにして後処理工程が実行される。この後処理工程では、まず、ステップ３１５（レジスト形成ステップ）において、ウエハに感光剤を塗布する。引き続き、ステップ３１６（露光ステップ）において、上記説明したリソグラフィーシステム（露光装置）によってマスクの回路パターンをウエハに転写する。次に、ステップ３１７（現像ステップ）においては露光されたウエハを現像し、ステップ３１８（エッチングステップ）において、レジストが残存している部分以外の部分の露出部材をエッチングにより取り去る。そして、ステップ３１９（レジスト除去ステップ）において、エッチングが済んで不要となったレジストを取り除く。

これらの前処理工程と後処理工程を繰り返し行うことによって、ウエハ上に多重に回路パターンが形成される。

以上説明した本実施形態のデバイス製造方法を用いれば、露光工程（ステップ３１６）において上記のリソグラフィーシステム１を構成する露光装置１０が用いられるので、ウエハステージＷＳＴ上のウエハホルダ６８を常に清浄な状態に維持して製造されるデバイスの歩留まりを向上することができ、しかもウエハホルダの交換のための装置停止時間は僅かであることから、高集積度のデバイスを生産性良く製造することが可能になる。

産業上の利用可能性

以上説明したように、本発明に係るホルダ用コンテナは、基板ホルダを密閉状態で搬送するのに適している。また、本発明に係る露光装置及びデバイス製造方法は、半導体素子等のマイクロデバイスの生産に適している。また、本発明に係る搬送システムは、環境条件が維持されたクリーンな空間内に外部から物体を搬入するのに適している。
請求の範囲

1. 基板を保持する基板ホルダを収納するホルダ用コンテナであって、

前記基板ホルダの基板との接触面と反対側の面の外周部の一部を支持する支
持部材が設けられたコンテナ本体と；

前記コンテナ本体に着脱自在に装着され、内部空間を外部から隔離する蓋部
材と；

前記蓋部材に設けられ、前記基板ホルダの前記基板との接触面側の前記接触
面以外の部分を保持する保持部材と；

前記コンテナ本体と前記蓋部材をを固定する解除可能なロック機構と；を備
えるホルダ用コンテナ。

2. 請求項1に記載のホルダ用コンテナであって、

前記保持部材の少なくとも一部は、弾性部材によって構成されていることを
特徴とするホルダ用コンテナ。

3. 請求項1又は2に記載のホルダ用コンテナにおいて、

前記支持部材は、当該支持部材によって支持された前記基板ホルダを搬出す
る搬出アームと干渉しない位置で前記基板ホルダを支持することを特徴とする
ホルダ用コンテナ。

4. 基板ステージ上で基板ホルダによって保持された基板を露光する露光装
置であって、

前記基板ホルダを収納した開閉可能な蓋部材を有するホルダ用コンテナが設
置されるコンテナ台と；

前記コンテナ台上に設置されたホルダ用コンテナの内部と外部とを隔離した
状態で前記蓋部材を開閉する開閉機構と；

前記開閉機構により前記蓋部材が開放されたとき、前記基板ホルダを前記ホルダ用コンテナと前記基板ステージとの間で搬送するホルダ搬送系と；を備える露光装置。

5. 請求項4に記載の露光装置において、

前記ホルダ用コンテナは、複数の基板ホルダを同時に収納可能であることを特徴とする露光装置。

6. 請求項5に記載の露光装置において、

前記ホルダ搬送系は、前記ホルダ用コンテナ内への前記基板ホルダの搬入動作と前記ホルダ用コンテナからの前記基板ホルダの搬出動作とを並行して行うことを特徴とする露光装置。

7. 請求項5に記載の露光装置において、

前記ホルダ搬送系は、前記基板ステージ上の前記基板ホルダを前記ホルダ用コンテナ内に搬送する動作と、前記ホルダ用コンテナ内の前記基板ホルダを前記基板ステージ上に搬送する動作とをシーケンシャルに行うことを特徴とする露光装置。

8. 請求項4に記載の露光装置において、

前記ホルダ搬送系は、前記基板の搬送系の少なくとも一部を兼ねることを特徴とする露光装置。

9. 請求項4に記載の露光装置において、

前記ホルダ用コンテナは、前記基板ホルダの基板との接触面と反対側の面の
外周部の一部を支持する支持部材が設けられたコンテナ本体と、前記コンテナ本体に着脱自在に装着され、内部空間を外部から隔離する蓋部材と、前記蓋部材に設けられ、前記基板ホルダの前記基板との接触面側の前記接触面以外の部分を保持する保持部材と、前記コンテナ本体と前記蓋部材とを固定する解除可能なロック機構を有し、

前記ホルダ搬送系は、前記蓋部材の開放時に、前記ホルダ用コンテナに対し前記基板ホルダを出し入れする搬送アームを含むことを特徴とする露光装置。

１０．リソグラフィ工程を含むデバイス製造方法であって、

前記リソグラフィ工程で請求項４〜９のいずれか一項に記載の露光装置を用いて露光を行うことを特徴とするデバイス製造方法。

１１．環境条件が維持されたクリーンな空間内で物体を保持するホルダを搬送する搬送システムであって、

前記ホルダを密閉状態で収納するコンテナの内部と外部とを隔離した状態で、前記コンテナに設けられた蓋部材を開閉する開閉機構と;

前記開閉機構により前記蓋部材が開放されたとき、前記ホルダを前記コンテナと前記空間内部との間で搬送する搬送系と；を備える搬送システム。

１２．外部に比べて清浄度が高い空間内に物体を保持するホルダが配置されるデバイス製造装置であって、

前記ホルダを密閉状態で収納するコンテナの内部を前記外部から隔離した状態で前記空間と連通させる開閉機構と;

前記ホルダを前記コンテナと前記空間内部との間で搬送する搬送系と；を備えるデバイス製造装置。
13. 請求項12に記載のデバイス製造装置において、
前記コンテナ内の不純物濃度を前記空間内部に対して同程度以下とすることを特徴とするデバイス製造装置。

14. 請求項12又は13に記載のデバイス製造装置において、
前記コンテナ内の雰囲気を前記空間内部とほぼ同一とすることを特徴とするデバイス製造装置。

15. 請求項14に記載のデバイス製造装置において、
前記コンテナ内に前記空間内と実質的に同一特性の気体が封入されることを特徴とするデバイス製造装置。

16. 請求項12に記載のデバイス製造装置において、
前記ホルダは感応物体を保持し、前記空間内に前記感応物体をエネルギービームで露光する露光本体部が配置されることを特徴とするデバイス製造装置。

17. 請求項16に記載のデバイス製造装置において、
前記空間内に前記エネルギービームに対する透過率が高い化学的に清浄な気体が供給されることを特徴とするデバイス製造装置。

18. 外部に比べて清浄度が高い空間内に物体を保持するホルダが配置されるデバイス製造装置の調整方法において、
前記ホルダを密閉状態で収納するコンテナの内部を前記外部から隔離した状態で、前記空間と連通させるとともに、前記空間内のホルダを前記コンテナ内に搬出し、前記空間内に清浄なホルダを搬入することを特徴とするデバイス製造装置の調整方法。
Fig. 6
Fig. 10

301
設計
（機能、性能、パターン）

302
マスク製作

304
ウエハ処理

305
デバイス組立

306
検査

(出荷)

ウエハ製造

10/11
INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP00/03266

A. CLASSIFICATION OF SUBJECT MATTER

Int.Cl. H01L21/68, H01L21/027

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

Int.Cl. H01L21/68, H01L21/027

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

- Jitsuyo Shinan Koho 1926-1996
- Toroku Jitsuyo Shinan Koho 1994-2000
- Kokai Jitsuyo Shinan Koho 1971-2000
- Jitsuyo Shinan Toroku Koho 1996-2000

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>JP, 11-102952, A (Kokusai Electric Co., Ltd.), 13 April, 1999 (13.04.99), Column 5, line 39 to Column 9, line 11 (Family: none)</td>
<td>1-18</td>
</tr>
<tr>
<td>Y</td>
<td>JP, 10-74815, A (Hitachi, Ltd.), 17 March, 1998 (17.03.98), Column 5, line 16 to Column 9, line 7; Figs. 5 to 6 (Family: none)</td>
<td>1-18</td>
</tr>
<tr>
<td>Y</td>
<td>JP, 9-283611, A (Nikon Corporation), 31 October, 1997 (31.10.97), Column 3, lines 9 to 33 (Family: none)</td>
<td>1-18</td>
</tr>
<tr>
<td>Y</td>
<td>US, 5382127, A (International Business Machines Corporation), 17 January, 1995 (17.01.95), Column 26, line 36 to Column 27, line 16 & JP, 6-104333, A (International Business Machines Corporation), 15 April, 1994 (15.04.94), Column 31, line 37 to Column 32, line 35</td>
<td>1-3</td>
</tr>
</tbody>
</table>

- Further documents are listed in the continuation of Box C.

- See patent family annex.

- **A** Special categories of cited documents: document defining the general state of the art which is not considered to be of particular relevance
- **E** Earlier document but published on or after the international filing date
- **L** Document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- **O** Document referring to an oral disclosure, use, exhibition or other means
- **P** Document published prior to the international filing date but later than the priority date claimed

- **T** Later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- **X** Document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- **Y** Document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
- **&** Document member of the same patent family

Date of the actual completion of the international search

15 August, 2000 (15.08.00)

Date of mailing of the international search report

29 August, 2000 (29.08.00)

Name and mailing address of the ISA/Authorized officer

Japanese Patent Office

Facsimile No.

Telephone No.

Form PCT/ISA/210 (second sheet) (July 1992)
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>JP, 10-199958, A (Sony Corporation), 31 July, 1998 (31.07.98) (Family: none)</td>
<td>1-18</td>
</tr>
</tbody>
</table>
国際調査報告

国際出願番号 PCT／JP00／03266

A. 発明の属する分野の分類（国際特許分類（IPC））

Int. C17 H01L21／68, H01L21／027

B. 調査を行った分野

調査を行った最小限資料（国際特許分類（IPC））

Int. C17 H01L21／68, H01L21／027

最小限資料以外の資料で調査を行った分野に含まれるもの

日本国実用新案公報 1926－1996年
日本国公開実用新案公報 1971－2000年
日本国登録実用新案公報 1994－2000年
日本国実用新案登録公報 1996－2000年

国際調査で使用した電子データベース（データベースの名称、調査に使用した用語）

C. 関連すると認められる文献

<table>
<thead>
<tr>
<th>引用文献のカテゴリ－＊</th>
<th>引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示</th>
<th>関連する請求の範囲の番号</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>JP, 11－102952, A（国際電気株式会社）, 13.4月, 1999（13.04.99）, 第5欄第39行－第9欄第1行（ファミリーなし）</td>
<td>1－18</td>
</tr>
<tr>
<td>Y</td>
<td>JP, 10－74815, A（株式会社日立製作所）, 17.3月, 1998（17.03.98）, 第5欄第16行－第9欄第7行, 図5－6（ファミリーなし）</td>
<td>1－18</td>
</tr>
<tr>
<td>Y</td>
<td>JP, 9－283611, A（株式会社ニコン）, 31.10月, 1997（31.10.97）, 第3欄第9－33行（ファミリー）</td>
<td>1－18</td>
</tr>
</tbody>
</table>

△ C欄の続きにも文献が列挙されている。

△ パテントファミリーに関する別紙を参照。

＊ 引用文献のカテゴリ－
「A」特に関連のある文献ではなく、一般的技術水準を示すもの
「E」国際出願日以降に公表されたもの
「L」優先権主張に疑義を持つもの
「O」口頭による開示、使用、展示等に言及する文献
「P」国際出願日以前、かつ優先権の主張の基礎となる出願
「T」国際出願日以前に公表された文献

国際調査を完了した日 15.08.00
国際調査報告の発送日 29.08.00

国際調査機関の名称及びあて先
日本国特許庁（ISA／JP）
郵便番号 100－8915
東京都千代田区霞が関三丁目4番3号

特許庁審査官（権限のある職員） 3S 7523
柴沼 雅樹

電話番号 03－3581－1101 内線 3390

様式 PCT／ISA／210（第2ページ）（1998年7月）
<table>
<thead>
<tr>
<th>ページ</th>
<th>引用文献のカテゴリー</th>
<th>引用文献名</th>
<th>及び一部の箇所が関連するときは、その関連する箇所の表示</th>
<th>関連する請求の範囲の番号</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Y</td>
<td>US, 5382127, A (International Business Machines Corporation), 17. 1月. 1995 (17. 01. 95), 第26欄第36行－第27欄第16行 & JP, 6－104333, A (インターショナル・ビジネス・マシーンズ・コーポレーション), 15. 4月. 1994 (15. 04. 94), 第31欄第37行－第32欄第35行</td>
<td>1－3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>A</td>
<td>JP, 10－199958, A (ソニー株式会社), 31. 7月. 1998 (31. 07. 98), (ファミリーなし)</td>
<td>1－18</td>
<td></td>
</tr>
</tbody>
</table>

様式PCT／ISA／210 (第2ページの続き) (1998年7月)