发明名称
一种用于靶点焦斑整形和光束匀滑的激光光路

摘要
本发明公开了一种用于靶点焦斑整形和光束匀滑的激光光路，其特征在于，包括，入射激光束，凸透镜，相位板，靶面，相位板由单轴晶体构成，且相位板的前后表面与单轴晶体的光轴平行，且前后表面的其中一面，其上有使用已有技术刻蚀的连续相位板面形；入射激光束进入光路时与凸透镜表面垂直，其偏振方向与单轴晶体光轴夹角 45 度角；相位板位于透镜和靶面之间并靠近透镜一侧，且其上刻蚀有连续相位板面形的一面与靶面相对。本发明在不降低激光驱动力性能的前提下，保留了焦斑整形和偏振匀滑的功能，取代了连续相位板和偏振匀滑晶体的组合，相比以前的方法更加简洁，同时降低了光束通过光学元件的总厚度，可有效地降低光学元件的损伤风险。
1. 一种用于靶点焦斑整形和光束匀滑的激光光路，其特征在于，包括，
入射激光束，凸透镜，相位板，靶面；其中，
所述相位板由单轴晶体构成，且所述单轴晶体被加工成前后表面与单轴晶体的光轴平行的晶体板，且所述晶体板前表面的其中一面，其上有使用己有技术刻蚀的连续相位板面形；
所述入射激光束进入光路时与凸透镜表面垂直，且其偏振方向与单轴晶体光轴夹 45 度角；
所述相位板位于透镜和靶面之间并靠近透镜一侧，且其上刻蚀有连续相位板面形的一面与靶面相对；
所述入射激光束经凸透镜聚焦后形成聚焦光束，且
所述聚焦光束进入相位板后产生双折射现象，被分成强度相等的寻常光（o 光）和非常光（e 光），且所述寻常光（o 光）和非常光（e 光）在出射时，光束上都带有连续相位板面形对应的相位分布，且
所述寻常光（o 光）和非常光（e 光）因折射率不同，使得寻常光（o 光）和非常光（e 光）的焦点在成像的位置上前后错开，且所述焦点之间的距离有位移差 Δz；
所述靶面的位置取位移差 Δz 的中间值进行设置。
2. 如权利要求 1 所述的一种用于靶点焦斑整形和光束匀滑的激光光路，其特征在于，所述相位板的制作方法为：
步骤 1，确定所述单轴晶体的光轴方向，
步骤 2，切割晶体，将所述单轴晶体前、后表面平行于单轴晶体光轴方向进行切割，得到晶体板，
步骤 3，加工面形，将所述晶体板前、后表面的其中一面，使用已有连续相位板的面形加工技术进行刻蚀。
3. 如权利要求 1、2 所述的一种用于靶点焦斑整形和光束匀滑的激光光路，其特征在于，所述相位板中寻常光（o 光）和非常光（e 光）的折射率不同，在出射后，寻常光（o 光）和非常光（e 光）之间有微小的偏移。
4. 如权利要求 1、2、3 所述的一种用于靶点焦斑整形和光束匀滑的激光光路，其特征在于，所述寻常光（o 光）和非常光（e 光）因相位板的折射，而产生焦点后移，且因寻常光（o 光）和非常光（e 光）的折射率不同，所述焦点后移量也不同，从而使得寻常光（o 光）和非常光（e 光）的焦点在成像位置上前后错开，且焦点之间的距离有位移差 Δz。
5. 如权利要求 1、2、3、4 所述的一种用于靶点焦斑整形和光束匀滑的激光光路，其特征在于，所述靶面上寻常光（o 光）和非常光（e 光）的分布不同，且寻常光（o 光）和非常光（e 光）的偏振态相互垂直，最终的焦斑分布为两束光错位后的非相干叠加。
一种用于靶点焦斑整形和光束匀滑的激光光路

技术领域

[0001] 本发明涉及一种在高功率固体激光驱动器中，应用激光远场焦斑整形技术和光束匀滑技术的光路系统，具体涉及一种用于靶点焦斑整形和光束匀滑的激光光路。

背景技术

[0002] 在高功率固体激光驱动器中，靶点焦斑整形和匀滑是激光驱动惯性约束聚变（ICF）实验中的关键技术。无论是在直接驱动还是在间接驱动中，为了提高靶的幅照均匀性，降低激光等离子体作用过程中的各种不稳定性，需要利用焦斑整形和光束匀滑技术获得特定形状的激光焦斑且在一定焦深内保持焦斑的形状和均匀性。目前用于焦斑整形的器件是连续相位板（ CPP），其原理是给光束近场附加特定的空间相位分布，以获得与之对应的焦斑形状。光束匀滑技术主要有光学色散匀滑（SSD）和偏振匀滑（PS）。其中偏振匀滑利用晶体的双折射性质将光束分为偏振态相互垂直的两束光进行非相干叠加，从而降低焦斑对比度。

[0004] 在高功率固体激光驱动器中，对靶点的焦斑整形和匀滑技术，采用在技术 1 和在技术 2 的相位板组合，其缺点在于成本较高，且光束通过光学元件的总厚度较大，光学元件的损伤风险较高；而使用在技术 3，其相位板主要采用的是将光技术 1 和在技术 2 的面形进行叠加，以此完成对焦斑的整形和匀滑，其缺点在于相位板上的的楔面夹角的大小，由经过相位板的激光脉冲能量波长光束口径以及所述双轴晶体的双折射率来决定，不同的激光脉冲能量波长、光束口径需要不同楔面夹角的相位板，通用性不强，且加工工艺较为复杂。

发明内容

[0005] 本发明设计公开了一种用于靶点焦斑整形和光束匀滑的激光光路，在有效解决上述问题的同时，能可靠地实现在高功率固体激光驱动器中，对靶点上的焦斑的进行轮廓整
形和偏振均匀。
[0006] 本发明提供的技术方案为；
[0007] 一种用于靶点焦斑整形和光束均匀的激光光路，其特征在于，包括，入
[0008] 射激光束，凸透镜，相位板，靶面；其中，
[0009] 所述相位板由单轴晶体构成，且所述单轴晶体被加工成前后表面与单轴晶体的光
轴平行的晶体板，且所述晶体板前后表面的其中一面，其上有使用已有技术刻蚀的连续相
位板面形；
[0010] 所述入射激光束进入光路时与凸透镜表面垂直，且其偏振方向与单轴晶体光轴夹
45度角；
[0011] 所述相位板位于透镜和靶面之间并靠近透镜一侧，且其上有刻蚀有连续相位板面形
的一面与靶面相对；
[0012] 所述入射激光束经凸透镜聚焦后形成聚焦光束，且
[0013] 所述聚焦光束进入相位板后产生双折射现象，被分成强度相等的寻常光 (o 光) 和
非常光 (e 光)，且所述寻常光 (o 光) 和非常光 (e 光) 在出射时，光束上都有连续相位板
面形对应的相位分布，且
[0014] 所述寻常光 (o 光) 和非常光 (e 光) 因折射率不同，使得寻常光 (o 光) 和非常光
(e 光) 的焦点在成像的位置上前后错开，且所述焦点之间的距离有位移差 Δz；
[0015] 所述靶面的位置取位移差 Δz 的中间值进行设置。
[0016] 优选的是，所述相位板的制作方法为；
[0017] 步骤 1，确定所述单轴晶体的光轴方向，
[0018] 步骤 2，切割晶体，将所述单轴晶体前、后表面平行于单轴晶体光轴方向进行切割，
得到晶体板，
[0019] 步骤 3，加工面形，将所述晶体板前、后表面的其中一面，使用已有连续相位板的面
形加工技术进行刻蚀。
[0020] 优选的是，所述相位板中寻常光 (o 光) 和非常光 (e 光) 的折射率不同，在出射后，
寻常光 (o 光) 和非常光 (e 光) 之间有微小的偏移。
[0021] 优选的是，所述寻常光 (o 光) 和非常光 (e 光) 因相位板的折射，而产生焦点后移，
且因寻常光 (o 光) 和非常光 (e 光) 的折射率不同，其所述焦点后移动也不同，从而使得寻
常光 (o 光) 和非常光 (e 光) 的焦点在成像位置上前后错开，且焦点之间的距离有位移差
Δz。
[0022] 优选的是，所述靶面上寻常光 (o 光) 和非常光 (e 光) 的分布不同，且寻常光 (o
光) 和非常光 (e 光) 的偏振态相互垂直，最终的焦斑分布为两束光错位后的非相干叠加。
[0023] 本发明在不降低激光驱动器性能的前提下，保留了焦斑整形和偏振均匀的功能，
可以取代在先技术 1 的连续相位板和在先技术 2 的偏振均匀晶体模板的组合，将两个光学
元件合二为一，减少器件；也可以取代在先技术 3 中将连续相位板面形和楔板面形相叠加，
达到焦斑整形和偏振均匀的方法；本发明的激光光路，将相位板与透镜的位置进行调换，先
将入射激光束进行聚焦，再对其分束，整和，相比以前的方法更加简洁，成本更低；同时降低
了光束通过光学元件的总厚度，可有效地降低光学元件的损伤风险。
附图说明
[0024] 图 1 为本发明所述的一种用于靶点聚焦整形和光束匀滑的激光光路的光路示意图。
[0025] 图 2 为本发明所述的一种用于靶点聚焦整形和光束匀滑的激光光路中相位板的
晶体光轴与入射激光束偏振方向的关系示意图。
[0026] 图 3 为本发明所述的一种用于靶点聚焦整形和光束匀滑的激光光路中相位板的
实施例的面形示意图。
[0027] 图 4 是本发明所述的一种用于靶点聚焦整形和光束匀滑的激光光路所得到的激
光焦斑强度分布图。
[0028] 图 5 是分别使用普通连续相位板光路和本发明所述的一种用于靶点聚焦整形和
光束匀滑的激光光路所得到的激光焦斑强度分布图。
[0029] 图 6 是图 5 中激光焦斑的一维分布所得结果的对比图。
[0030] 图 7 是使用本发明的一种用于靶点焦斑整形和光束匀滑的激光光路和分别使用
普通连续相位板、普通连续相位板与偏振匀滑晶体楔板组合的光路，三种情况下所得焦斑
高于某程度的能量份额曲线对比图。

具体实施方式
[0031] 下面结合附图对本发明做进一步的详细说明，以令本领域技术人员参照说明书文
字能够依以实施。为简便，后文中以 CPP 表示普通连续相位板，以 CPP and PS 表示普通连
续相位板和偏振匀滑晶体楔板的组合，以 PS&CPP 表示本发明的一种用于靶点聚焦整形和
光束匀滑的激光光路中的相位板。
[0032] 一种用于靶点聚焦整形和光束匀滑的激光光路，如图 1 所示，入射光场 L 与凸透
镜 (1) 表面垂直，经凸透镜 (1) 聚焦后形成聚焦光束，聚焦光束在通过 PS&CPP (2) 时，被
PS&CPP (2) 分成强度相等寻常光 (o 光) 和非常光 (e 光)，且因 PS&CPP (2) 上刻有连续相位
面形，所以寻常光 (o 光) 和非常光 (e 光) 在经过 PS&CPP (2) 时，两束光都带有连续相位板
面形对应的相位分布，焦斑得到整形；因 PS&CPP (2) 中寻常光 (o 光) 和非常光 (e 光) 的折
射率不同，而使得光束在出射时光束之间有微小的平移，且两束光由于 PS&CPP (2) 的折射，
使得寻常光 (o 光) 和非常光 (e 光) 的成像焦点产生焦点后移，且因两束光的折射率不同，
其聚焦的焦点位置也不同，从而使两束光的焦点成像位置错开，非常光 (e 光) 的焦点
成像位置有焦平面 (4)，寻常光 (o 光) 的焦点成像位置有焦平面 (5)，且焦平面 (4) 和
焦平面 (5) 之间有位移差 d z，靶面 (3) 取焦平面 (4) 和焦平面 (5) 的中间值。由于寻常
光 (o 光) 和非常光 (e 光) 的偏振态相互垂直，所以最终投射在靶面 (3) 的焦斑分布为两
束光位后的非相干叠加，达到了偏振匀滑的效果。
[0033] 一种用于靶点聚焦整形和光束匀滑的激光光路的实施例：
[0034] 以单轴晶体 KDP 为例，PS&CPP 的制作方法分为三个步骤，确定 KDP 晶体的光轴方
向；切割晶体，如图 1 所示，将 KDP 晶体前后表面平行于 KDP 晶体的光轴方向（图中 y 方向）
进行切割，得到 KDP 晶体板；加工面形，将 KDP 晶体板的其中一面，使用已有在先技术 1 面形
加工技术进行刻蚀。获得的面形分布如图 2 中的实施例所示，其中图 2 中纵坐标已将基底
厚度扣除，其最终相位板的厚度分布函数为：
说明书

[0035] \[D(x, y) = D_0 D_{cpp}(x, y) \]

[0036] 其中，\(D_0 \) 为晶体基底厚度，\(D_{cpp}(x, y) \) 为连续相位板面形，可通过在光技术 1 中的设计方法获得，得到 PS&CPP 成品。

[0037] 设入射光场为单色线偏振简谐波，偏振方向与 PS&CPP 成品中的光轴夹 45 度角（如图 1 所示），其空间分布为径向 R 的方形均匀光场：

\[\vec{E}(x, y) = \frac{\sqrt{2}}{2} \text{rect} \left(\frac{x}{L} \right) \text{rect} \left(\frac{y}{L} \right) (\vec{e}_x + \vec{e}_y) \]

[0038] 如图 1 所示，入射单色线偏振简谐波 L 与与凸透镜 (1) 表面垂直的, 经凸透镜 (1) 聚焦后形成聚焦光束，聚焦光束在经过 PS&CPP(2) 时，被 PS&CPP(2) 分成强度相等的寻常光 (o 光) 和非常光 (e 光)，且因 PS&CPP(2) 上刻有连续相位形面，所以寻常光 (o 光) 和非常光 (e 光) 在经过 PS&CPP(2) 时，两束光都带有连续相位板面形对应的相位分布，焦斑得到整形; 因 PS&CPP(2) 中寻常光 (o 光) 和非常光 (e 光) 的折射率不同，使得光束在出射时光束之间有微小的不平移，且两束光由于 PS&CPP(2) 的折射，使得寻常光 (o 光) 和非常光 (e 光) 的成像点在焦场后移，且因两束光的折射率不同，其聚焦的焦点后移量也不同，从而使得两束光的焦点成像位置错开，非常光 (e 光) 的焦点成像位置有焦面 (4)，寻常光 (o 光) 的焦点成像位置有焦面 (5)，且焦面 (4) 和焦面 (5) 之间有位移差 \(\Delta z \)，靶面 (3) 取焦面 (4) 和焦面 (5) 的中间值。由于寻常光 (o 光) 和非常光 (e 光) 的偏振态相互垂直，所以最终投射在靶面 (3) 的焦斑分布为两束光射出的光相位叠加，达到了偏振均匀的效果。

[0039] 利用惠更斯 - 菲涅尔衍射理论对光束经过本发明所述的一种用于靶点焦斑成像和光束均匀的激光光路进行远场数值模拟，可以得到焦斑分布如图 4 所示，达到焦斑成像和偏振均匀的效果。

[0040] 对实施例中所得到的 PS&CPP 成品，通过本发明所述的激光光路和使用 CPP 的光路，利用惠更斯 - 菲涅尔衍射理论分别进行远场数值模拟，得到焦斑分布如图 5 所示。由图 5 可以很容易看出，使用本发明所述的激光光路和使用 CPP 的光路所得到的焦斑，在形状和尺寸上大致相同，与设计值符合，符合靶点焦斑的整形需求。实现了焦斑整体。

[0041] 另外，在图 5 中我们也可以看出，使用本发明所述的激光光路得到的焦斑顶部更为均匀，与使用 CPP 的光路进行比较，焦斑的最大功率密度从 8.5 \times 10^{15} \text{W/cm}^2 降低至 4.9 \times 10^{15} \text{W/cm}^2。

[0042] 为了对比本发明所述的激光光路和 CPP 光路的焦斑的调制深度，画出图 5 中两个焦斑的一维分布，如图 6 所示。在图 6 中，右图为左图的局部放大，图中实线表示使用 CPP 光路的焦斑的调制深度，虚线表示使用本发明所述的 PS&CPP 激光光路的焦斑调制深度，很容易看出，采用本发明所述的 PS&CPP 激光光路后，在焦斑的调制深度上有明显的降低。

[0043] 再者，为了对比 CPP、CPP and PS 和本发明所述的 PS&CPP 三种光路对焦斑的均匀效果，我们计算出使用 CPP and PS 光路后得到的焦斑，分别作出使用三种光路情况下焦斑的 F0PAI 曲线（基于某強度的能量份额曲线），如图 7 所示，其中实线表示使用 CPP 光路的焦斑峰值，虚线表示使用 PS&CPP 的本发明激光光路焦斑峰值，点划线表示使用 CPP and PS 光路的焦斑峰值。一般情况下，曲线越靠左代表焦斑峰值越低，均匀效果越好，由此可见，使用本发明中 PS&CPP 的激光光路与 CPP 光路相比较，其对降低焦斑的峰值强度作用显
著; 使用本发明中 PS & CPP 的激光光路与 CPP and PS 光路相比较，其对降低焦斑的峰值强度的效果与 CPP and PS 光路相当，达到了偏振均匀的效果。

【0045】综上所述，本发明的一种用于靶点焦斑整形和光束匀滑的激光光路，能够实现在高功率固体激光驱动器中，对靶点的焦斑整形和光束匀滑。

【0046】本发明在不降低激光驱动器性能的前提下，保留了焦斑整形和偏振均匀的功能，可以取代在先技术 1 的连续相位板和在先技术 2 的偏振匀滑晶体模板的组合，将两个光学元件合二为一，减少器件。也可以取代在先技术 3 中将连续相位板面形和楔板面形相叠加，达到焦斑整形和偏振均匀的方法。本发明的激光光路，将相位板与透镜的位置进行调换，先将入射激光束进行聚焦，再对其分束，整合，相比以前的方法更加简洁，成本更低；同时降低了光束通过光学元件的总厚度，可有效地降低光学元件的损伤风险。

【0047】尽管本发明的实施方案已公开如上，但其并不仅仅限于说明书和实施方式中所列运用，它完全可以被适用于各种适合本发明的领域，对于熟悉本领域的人员而言，可容易地实现另外的修改，因此在不背离权利要求及等同范围所限定的一般概念下，本发明并不限于特定的细节和这里示出与描述的图例。