发明专利申请公开说明书

[22] 申请日 2004.12.2
[21] 申请号 200410089016.0
[71] 申请人 浙江华孚色纺有限公司
 地址 312300 浙江省上虞经济开发区人民中路 1088 号
[72] 发明人 孙伟挺 陈 峰 蒋永根 毛小娟

[74] 专利代理机构 上海光华专利事务所
 代理人 余明伟

[54] 发明名称 大豆纤维素纤维染色加工方法
[57] 摘要

本发明提供一种大豆纤维素纤维加工方法，包括对大豆纤维的煮炼或漂白前处理、染色、后处理、烘干等步骤。所述的染色采用活性染料，根据不同的色泽要求，染料配比，在染缸中加入螯合分散剂、元明粉、纯碱，然后进行水洗，加入冰醋酸中和，在皂煮时加入净洗剂皂煮，之后进行固色柔软处理。本发明方法不需要特殊设备就可以生产，特别适合规模不大的中小企业生产，通过本发明方法生产的大豆纤维，颜色鲜艳，色彩多样，手感柔软，光泽丰满，保暖性好，强度高，蓬松，柔软小，生产稳定性高，且解决了浮色、褪色、沾色、色牢度等问题，最关键的是解决了大豆纤维天然较黄的难题，为市场提供了艳丽多彩的服装和面料。
1、一种大豆纤维素纤维染色加工方法，包括对大豆纤维素纤维进行前处理、染色、后处理、烘干等步骤，其特征在于：所述染色工艺中采用活性染料，根据不同的色调要求，染料配方为，在染液中加入螯合分散剂，元明粉、纯碱，在60~70℃时染色30~60分钟，然后进行水洗室温，加入冰醋酸进行中和，酸洗10分钟，在皂煮时加入净洗剂，以每分钟1~3℃速率升温至80~90℃，皂煮15分钟，皂煮1~3次，水洗降温至50℃以下，加入固色剂Y和柔软剂cws进行固色柔软处理，时间为8~12分钟。

2、根据权利要求1所述的大豆纤维素纤维染色加工方法，其特征在于：所述前处理工艺为煮炼工艺，所述煮炼工艺的步骤包括在常温下加入浴比为5~20的水中，加入2~3克/升螯合分散剂和2~3克/升皂洗剂，直接升温至80~90℃，保温30~60分钟，再降温到染色需要的温度后进行染色。

3、根据权利要求1所述的大豆纤维素纤维染色加工方法，其特征在于：所述前处理工艺为漂白工艺，所述漂白工艺步骤包括在常温下加入浴比为5~20的水中，加入2~3克/升螯合分散剂和30g/L浓度为27.5%的过醋酸，用NaOH调节pH=7，双氧水稳定剂硅酸钠3g/L，以每分钟1~2℃速率升温至60~70℃，保温30~60分钟，排掉残液，水洗10分钟，加入去氧酶2~4g/L，40℃保温10分钟，水洗10分钟，再降温到染色需要的温度后进行染色。

4、根据权利要求1、2或3所述的大豆纤维素纤维染色加工方法，其特征在于：所述后处理工艺步骤包括在45℃~60℃下中和10~15分钟，加入0.4~0.8克/升浓度为98%的冰醋酸，接着在80℃~90℃下皂洗10~20分钟，加入2克/升的皂洗剂，在45℃~60℃热洗5~10分钟，视颜色深浅做1~2次，最后在45℃~60℃下进行固色柔软处理10~20分钟，加入2~3克/升的固色剂后上2~5克/升的柔软剂。
说明书

大豆纤维弹纤维染色加工方法

技术领域

本发明涉及一种大豆纤维的染色加工方法，特别涉及一种使用活性染料的大豆纤维的染色工艺。

背景技术

大豆纤维的组成中蛋白质和聚乙烯醇含量分别为23%~55%和45%~77%，所以大豆蛋白纤维具有化学纤维和合成纤维的机械特性，又含有天然桑丝的性能。而且大豆纤维具有远红外、防紫外线和抗菌功能，大豆纤维手感柔软、色泽柔和、保暖性强、弹性度较高、抗静电性能优于合成纤维等优点，因传统的化学纤维多用石油资源，能源紧缺且再生能力差而周期长，为了节约能源，保护生态资源，采用大豆纤维取材容易，再生能力强，周期又十分短，性能优越，被人们越来越重视，开发染色加工工艺十分必要。

在中国专利 CN-91112719 中公开了一种棉花散纤维的染色方法，但这种染色工艺仅仅是采用直接染料染色，且只是染棉花，不适合对其它种类的散纤维染色，存在较大的局限性。

发明内容

本发明的目的在于提供一种大豆纤维的染色加工方法，将传统的先纺后染的工艺改成用活性染料的染色后纺的工艺，解决了大豆纤维天然较黄的难题，为市场提供了艳丽多彩的服装和面料，并且符合环保的要求。

为实现上述目的，本发明的大豆纤维分散纤维加工方法，包括对大豆纤维的前处理（煮炼或漂白），染色，后处理，烘干等步骤。所述染色工艺中采用活性染料，根据不同的色泽要求，染料配比，在染缸中加入螯合分散剂，元明粉、纯碱，在60~70℃时染色30~60 分钟，然后进行水洗室温，加入冰醋酸进行中和，酸洗 10 分钟，在皂煮时加入净洗剂，以每分钟 1~3℃速率升温至80~90℃，皂煮 15 分钟，皂煮 1~3 次，水洗降温至50℃以下，加入固色剂 Y 和柔软剂 cws 进行固色柔软处理，时间为 8~12 分钟。

作为本发明方法的一种改进，所述前处理工艺为煮炼工艺，该煮炼工艺的步骤包括在常温下加入浴比为 5~20 的水中，加入2~3 克/升螯合分散剂和2~3 克/升皂洗剂，直接升温至 80~90℃，保温 30~60 分钟，再降温到染色需要的温度后进行染色。

作为本发明方法的另一种改进，所述前处理工艺为漂白工艺，该漂白工艺步骤包括在常
温下加入浴比为5~20的水中，加入2~3克/升螯合分散剂和30g/L浓度为27.5%的过醋酸，用NaOH调节pH=7，双氧水稳定剂硫酸钠3g/L，以每分钟1~2℃速率升温至60~70℃，保温30~60分钟，排出残液，水洗10分钟，加入去氧酶2~4g/L，40℃保温10分钟，水洗10分钟，再降温到染色所需的温度后进行染色。

作为本发明方法的再一改进，所述后处理工艺步骤包括在45℃~60℃下中和10~15分钟，加入0.4~0.8克/升浓度为98%的冰醋酸，接着在80℃~90℃下皂洗10~20分钟，加入2克/升的皂洗剂，在45℃~60℃热水10~20分钟，将颜色深浅做1~2次，最后在45℃~60℃下进行固色柔软处理10~20分钟，加入2~3克/升的固色剂后上2~5克/升的柔软剂。

本发明方法不需要特殊设备就可以生产，特别适合规模不大的中小企业生产，通过本发明方法生产的大豆纤维，颜色鲜艳、色彩多样、手感柔软、光泽丰满、保暖性好、强度度高、蓬松、缸差小、生产稳定性高，且解决了浮色、褪色、沾色、色欧盟等问题，最关键的是解决了大豆纤维天然较黄的难题，为市场提供了艳丽多彩的服装和面料。

具体实施方式

以下结合具体实施例进一步说明本发明。

实施例一

选用200公斤大豆纤维丝纤维，在常温下放入浴比为1:8且含有2克/升的螯合分散剂的溶液中，2~3克/升皂洗剂，升温到85℃保温30分钟，放掉脚水，用水溢流出液。采用活性染料，根据不同色泽要求、染料配比，将染料和1/5元明粉一起倒入染缸内料15~20分钟，常温运转30分钟，然后以1℃/分钟升温到染料所需的温度，根据不同的染料特性选择合适的加碱速率曲线加入染料，加碱速率要先慢后快，加碱时间为40分钟，持温15分钟就排液，后处理包括在50℃下，中和10分钟，加入0.8克/升过酸（浓度为98%），接着在85℃下皂洗20分钟，加入2克/升的皂洗剂，在60℃下，热洗5分钟，视颜色深浅做1~2次，最后在50℃下，固色柔软处理20分钟，加入2克/升的固色剂后和2克/升柔软剂，之后进行烘干。

实施例二

选用200公斤大豆纤维丝纤维，在常温下放入浴比为1:15且含有3克/升的螯合分散剂的溶液中，3克/升皂洗剂，升温到85℃保温30分钟，放掉脚水，用水溢流出液。采用活性染料，根据不同色泽要求、染料配比，将染料和1/5元明粉一起倒入染缸内料20分钟，常温运转30分钟，然后以1℃/分钟升温到染色所需的温度，根据不同的染料特性选择合适的加碱速率曲线加入纯碱，如图3所示，加碱速率要先慢后快，加碱时间为40分钟，持温15分钟
就排液，后处理包括在 50℃下，中和 10 分钟，加入 0.8 克/升冰醋酸（浓度为 98%），接着在 85℃下皂洗 20 分钟，加入 2 克/升的皂洗剂，在 60℃下，热洗 5 分钟，视颜色深浅做 2 次，最后在 50℃下，固色柔软处理 20 分钟，加入 3 克/升的固色剂后和 4 克/升柔软剂，之后进行烘干。

上述两大豆纤维散纤维染色加工方法不需要特殊设备就可以生产，通过该方法生产的大豆纤维颜色鲜艳、色彩多样，手感柔软，光泽丰满，保暖性好，强度高，蓬松、缸差小、生产稳定性高，且解决了浮色、褪色、沾色、色牢度等问题，解决了大豆纤维天然较黄的难题，为市场提供了艳丽多彩的服装和面料。