Providing a Scrolling Function for a Multiple Frame Web Page

A scroll device may be provided on a processor-based system to simultaneously scroll both of at least two frames in two separate windows. Thus, each frame is scrolled until a first frame reaches its beginning or end. At that point, the scrolling of the first frame stops automatically while the other frame continues to scroll.
Published: with international search report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.
PROVIDING A SCROLLING FUNCTION
FOR A MULTIPLE FRAME WEB PAGE

Background

This invention relates to processor-based systems and to scrolling displays of processor-based systems.

Internet web browsers are software typically running on a processor-based system that allow web pages to be displayed on a monitor or other display device. Web pages may contain one page of information that is optionally scrollable or they may contain multiple "frames" each of which may be independent scrollable. Scrolling is typically done using graphical user interfaces called scroll bars, for example in Microsoft® Windows®. Generally, one scroll bar is used for each frame.

In some processor-based systems, such as Internet appliances, it may be more desirable to provide a mechanical scrolling device to facilitate scrolling through the various frames making up a web page. This may provide simpler operation compared to using a graphical user interface scroll bar.

The mechanical scrolling device may be a scroll wheel, push-button switch or a rocker switch as examples. In each case, when the displayed object, such as a web page, has a length greater than a normal video display window, the object may be viewed by scrolling the display using the mechanical scrolling device.

A problem arises with a mechanical scrolling device when more than one frame is available to be scrolled at a given time on the same page. If the user operates the scrolling device, an ambiguity arises with respect to which frame should be scrolled.
Thus, there is a need for a better way to implement scrolling using a scrolling device.

Brief Description of the Drawings

Figure 1 is a screen display, in accordance with one embodiment of the present invention;

Figure 2 is another screen display, in accordance with one embodiment of the present invention;

Figure 3 is a screen display, in accordance with one embodiment of the present invention;

Figure 4 is a flow chart for software, in accordance with one embodiment of the present invention; and

Figure 5 is a block diagram for hardware, in accordance with one embodiment of the present invention.

Detailed Description

Referring to Figure 1, a scrolling function may be implemented through a graphical user interface 10 displayed on a display associated with a processor-based system. The processor-based system may be a conventional computer system, such as a desktop computer system or a laptop computer system. It may also be an appliance-like device, such as an Internet or web appliance. It may also be a handheld device, such as a handheld computer system or a cellular phone. The system may also be an embedded system such as an Internet tablet that may be dedicated to a limited application without an open operating system.

The interface 10 may include a pair of frames 12 and 16. Each frame 12 or 16 may include a graphical scroll bar 14 or 18 in one embodiment of the invention. Each scroll bar 14 or 18 enables each frame 12 or 16 to be scrolled relative to the other.

Each viewable window 24 displays only a portion of a frame 12 or 16. Thus, referring to Figure 1, each frame
includes a portion A or B which extends below the window 24a or 24b. Thus, in the illustrated embodiment, each frame 12 or 16 is larger than its corresponding window 24a or 24b respectively.

A scroll device 20 is provided for scrolling both frames 12 and 16 simultaneously. The scroll device 20 may be a rotary switch as one example. Rotating the scroll device 20 in the downward direction for example, causes the unexposed portion A of the frame 12 and the unexposed portion B of the frame 16 to come into view in each viewable window 24.

In other words, the portion A that is not displayed within the window 24a associated with the frame 12 is caused to extend into the window 24a while the portion C, shown in Figure 2, is caused to extend above the window 24a. Likewise, with the frame 16, the unexposed portion B below the window 24b may be scrolled upwardly into view within the window 24b while the portion D extends above the window 24b as shown in Figure 2. The portion D has extended upwardly beyond the upper edge of the window 24b, but because the frame 16 is bigger than the frame 12, a remaining portion E, is still not exposed within the window 24b.

In accordance with one embodiment of the present invention, when the scroll device 20 is operated in the upward direction, frame 12 no longer scrolls, since it has reached its bottom end 22. However, the frame 16 in the window 24b continues to scroll, as shown in Figure 3, until the bottom end 22 of the frame 16, reaches the bottom of the window 24b. At this point, a frame portion F has scrolled upwardly past the window 24b. Rotating the scroll device 20 in the upward direction no longer moves either frame 12 or frame 16. The same operation is achieved when the scroll device 20 is operated for downward scrolling.
Referring next to Figure 4, the software 34, implementing one embodiment of the scroll control feature, begins by determining whether a scroll command has been received from the scroll device 20, as determined at diamond 32. If so, each frame 12 or 16 is scrolled in the direction of operation of the scroll device 20, as indicated in block 34. A check at diamond 36 determines whether a frame end 22 has been reached. If so, that frame's scrolling is terminated as indicated in block 38. The other frame continues to be scrolled. A check at diamond 40 determines whether the other frame has reached its end 22. If so, the flow ends. If not, the flow iterates back to block 34.

Turning next to Figure 5, a processor-based system 48 may be in the form of an Internet appliance, in accordance with one embodiment of the present invention. It may include a controller 50 that may be a processor in one embodiment. The controller 50 is coupled to the scroll device 20. It is also coupled to a display 54 that displays the graphical user interface 10. The display 54 may be coupled to the system 48 by a wired or wireless link.

Likewise, the controller 50 may be coupled to a wireless interface 52 that provides a wireless Internet connection. The interface 52 may, for example, be a modem. The controller 50 also couples a storage 56 that may be a non-volatile memory, such as a hard disk drive or a flash memory. The storage 56 may store a browser as well as the software 30, shown in Figure 4.

In accordance with one embodiment of the present invention, when the scroll device 20 is operated, both frames 12 and 16 scroll automatically in the indicated direction. This avoids the need to provide each frame 12 or 16 with its own independent scroll device 20. On some systems, there is a relatively limited screen space for this
additional device 20. Moreover, added complexity may arise from using independent scroll devices 20. Alternatively, if only one scroll device 20 is used for two frames, a focus assigning system may be needed that may add operational complexity. With the embodiments of the present invention, the user does not need to indicate which frame to scroll, because both frames 12 and 16 are automatically scrolled, if possible.

While the present invention has been described with respect to a limited number of embodiments, those skilled in the art will appreciate numerous modifications and variations therefrom. It is intended that the appended claims cover all such modifications and variations as fall within the true spirit and scope of this present invention.

What is claimed is:
1. A method comprising:
 receiving a command to scroll each of a first
 frame for display in a first display window and a second
 frame for display in a second display window, said first and
 second frames having a beginning and an end, at least one of
 said frames being larger than its window;
 scrolling each frame in its window in response to
 said command;
 determining when the beginning or end of one of
 said frames is displayed in its window; and
 automatically stopping the scrolling of a frame
 when its beginning or end is displayed while continuing to
 scroll the other of said frames.

2. The method of claim 1 including enabling each
 frame to be scrolled relative to the other frame using a
 scroll bar associated with each frame.

3. The method of claim 1 wherein scrolling each frame
 includes operating a scroll device to scroll each frame.

4. The method of claim 3 wherein operating a scroll
 device includes rotating a scroll switch.

5. The method of claim 1 including organizing each
 frame with respect to a window at a different distance from
 its frame end and simultaneously scrolling both frames.

6. The method of claim 1 including providing only a
 single scroll device for more than one frame.

7. An article comprising a medium storing
 instructions that enable a processor-based system to:
receive a command to simultaneously scroll each of two frames in each of two windows;
determine when the beginning or end of one of said frames is displayed in its window; and
automatically stop the scrolling of a frame when its beginning or end is displayed while continuing to scroll the other of said frames.

8. The article of claim 7 further storing instructions that enable the processor-based system to enable each frame to be scrolled relative to the other frame using a scroll bar associated with each frame.

9. The article of claim 7 further storing instructions that enable the processor-based system to receive a command from a scroll device to scroll each frame.

10. The article of claim 9 further storing instructions that enable the processor-based system to receive a command from a scroll switch.

11. The article of claim 7 further storing instructions that enable the processor-based system to organize each frame with respect to a window at a different distance from its frame end and simultaneously scroll both frames.

12. The article of claim 7 further storing instructions that enable the processor-based system to receive a command from a single scroll device to scroll more than one frame in more than one window.

13. A system comprising:
a processor-based device; and
a storage coupled to said processor-based device
storing instructions that enable the processor-based device
to receive a command to simultaneously scroll each of two
frames in each of two windows on said display, determine
when the beginning or end of one of said frames is displayed
in its window and automatically stop the scrolling of a
frame when its beginning or end is displayed while
continuing to scroll the other of said frames.

14. The system of claim 13 wherein said scroll device
is a rotary scroll switch.

15. The system of claim 13 wherein said storage stores
instructions that enable the processor-based device to
receive a command from a single scroll device to scroll more
than one frame in more than one window.
Scroll Control

Scroll Command?

Yes

Scroll Each Frame In Indicated Direction

No

Frame End?

Yes

Stop Scroll For That Frame

No

Last Frame Ends?

Yes

End

FIG. 4
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

IPC 7 G06F3/033

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC 7 G06F G06K

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the International search (name of data base and, where practical, search terms used)

EPO-Internal, WPI Data, PAJ, IBM-TDB, INSPEC

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>US 5 726 669 A (OBATA ET AL.) 10 March 1998 (1998-03-10) column 1, line 32 -column 2, line 24 column 3, line 37 -column 4, line 59; claims 1,9,10; figures 2-4</td>
<td>1,5-7,9, 11-13,15</td>
</tr>
<tr>
<td>A</td>
<td>ANON.: "Moving split bar in a customized details view" IBM TECHNICAL DISCLOSURE BULLETIN, vol. 34, no. 7a, December 1991 (1991-12), pages 426-428, XP000255654 Armonk, NY US the whole document</td>
<td>1,2,7,8, 13</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of box C.

X Patent family members are listed in annex.

* Special categories of cited documents:

'A' document defining the general state of the art which is not considered to be of particular relevance
'E' earlier document but published on or after the international filing date
'L' document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
'C' document referring to an oral disclosure, use, exhibition or other means
'P' document published prior to the international filing date but later than the priority date claimed

* Further documents listed in the continuation of box C.

Date of the actual completion of the international search

19 September 2001

Date of mailing of the international search report

26/09/2001

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk
Tel. (+31-70) 349-2040, Tx. 31 651 epo nl, Fax. (+31-70) 349-3016

Authorized officer

Taylor, P
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>PATENT ABSTRACTS OF JAPAN</td>
<td>1,7,13</td>
</tr>
<tr>
<td></td>
<td>vol. 1996, no. 02,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>29 February 1996 (1996-02-29)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>& JP 07 261992 A (MATSUSHITA ELECTRIC IND. CO. LTD.),</td>
<td></td>
</tr>
<tr>
<td></td>
<td>13 October 1995 (1995-10-13)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>abstract</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>PATENT ABSTRACTS OF JAPAN</td>
<td>1,7,13</td>
</tr>
<tr>
<td></td>
<td>vol. 017, no. 045 (P-1476),</td>
<td></td>
</tr>
<tr>
<td></td>
<td>& JP 04 259034 A (FUJITSU LTD.),</td>
<td></td>
</tr>
<tr>
<td></td>
<td>14 September 1992 (1992-09-14)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>abstract</td>
<td></td>
</tr>
<tr>
<td>Patent document cited in search report</td>
<td>Publication date</td>
<td>Patent family member(s)</td>
</tr>
<tr>
<td>--------------------------------------</td>
<td>-----------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>US 5726669 A</td>
<td>10-03-1998</td>
<td>CA 1323941 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 68928299 D1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 68928299 T2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 8912859 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KR 9301358 B1</td>
</tr>
<tr>
<td>JP 07261992 A</td>
<td>13-10-1995</td>
<td>NONE</td>
</tr>
</tbody>
</table>