

(12) STANDARD PATENT

(11) Application No. AU 2007342320 B2

(19) AUSTRALIAN PATENT OFFICE

(54) Title
Molded monocomponent monolayer respirator with bimodal monolayer monocomponent media

(51) International Patent Classification(s)
A62B 7/10 (2006.01) **B01D 39/16** (2006.01)
A62B 7/00 (2006.01)

(21) Application No: **2007342320** (22) Date of Filing: **2007.07.17**

(87) WIPO No: **WO08/085544**

(30) Priority Data

(31) Number **11/461,145** (32) Date **2006.07.31** (33) Country **US**

(43) Publication Date: **2008.07.17**
(44) Accepted Journal Date: **2011.12.22**

(71) Applicant(s)
3M Innovative Properties Company

(72) Inventor(s)
Lindquist, Timothy J.;Brandner, John M.;Fox, Andrew R.;Stelter, John D.;Angadjivand, Seyed A.;Springett, James E.

(74) Agent / Attorney
Davies Collison Cave, Level 14 255 Elizabeth Street, Sydney, NSW, 2000

(56) Related Art
US 4714647 A
US 4315881 A
US 5641555 A
US 6315806 B
US 5480466 A

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
17 July 2008 (17.07.2008)

PCT

(10) International Publication Number
WO 2008/085544 A3

(51) International Patent Classification:
A62B 7/00 (2006.01)

(US). **FOX, Andrew, R.**; 3M Center, Post Office Box 33427, Saint Paul, Minnesota 55133-3427 (US). **STER, John, D.**; 3M Center, Post Office Box 33427, Saint Paul, Minnesota 55133-3427 (US). **LINDQUIST, Timothy, J.**; 3M Center, Post Office Box 33427, Saint Paul, Minnesota 55133-3427 (US). **BRANDNER, John, M.**; 3M Center, Post Office Box 33427, Saint Paul, Minnesota 55133-3427 (US). **SPRINGETT, James, E.**; 25898 Peterson Road, Webster, Wisconsin 54893 (US).

(21) International Application Number:
PCT/US2007/073645

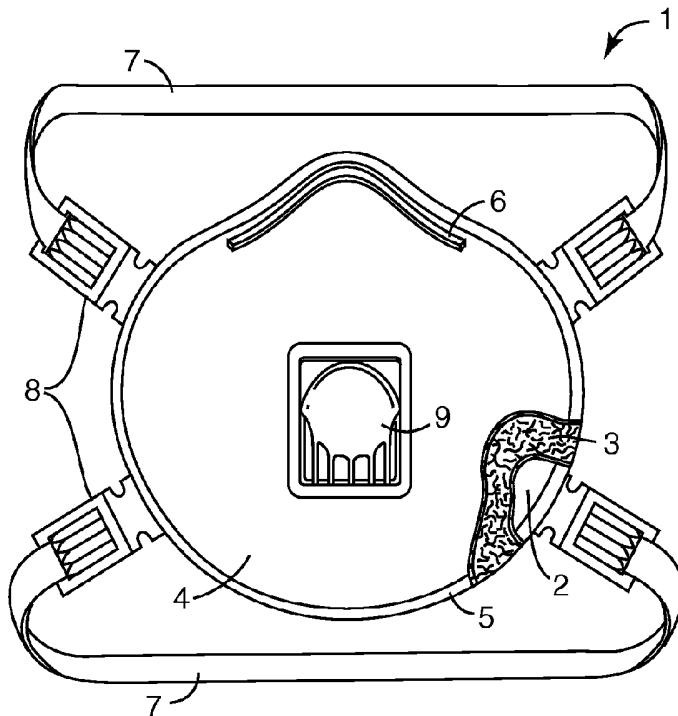
(22) International Filing Date: 17 July 2007 (17.07.2007)

(25) Filing Language: English

(26) Publication Language: English

(74) Agents: **HANSON, Karl, G.** et al.; 3M Center, Office of Intellectual Property Counsel, Post Office Box 33427, Saint Paul, Minnesota 55133-3427 (US).

(30) Priority Data:
11/461,145 31 July 2006 (31.07.2006) US


(81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PL

(71) Applicant (for all designated States except US): **3M INNOVATIVE PROPERTIES COMPANY** [US/US]; 3M Center, Post Office Box 33427, Saint Paul, Minnesota 55133-3427 (US).

(72) Inventors: **ANGADJIVAND, Seyed, A.**; 3M Center, Post Office Box 33427, Saint Paul, Minnesota 55133-3427

[Continued on next page]

(54) Title: MOLDED MONOCOMPONENT MONOLAYER RESPIRATOR WITH BIMODAL MONOLAYER MONOCOMPONENT MEDIA

(57) Abstract: A molded respirator is made from a monocomponent monolayer nonwoven web containing a bimodal mass fraction/fiber size mixture of intermingled continuous monocomponent polymeric microfibers and larger size fibers of the same polymeric composition. The respirator is a cup-shaped porous monocomponent monolayer matrix whose matrix fibers are bonded to one another at at least some points of fiber intersection. The matrix has a King Stiffness greater than 1 N. The respirator may be formed without requiring stiffening layers, bicomponent fibers, or other reinforcement in the filter media layer.

WO 2008/085544 A3

Fig. 1

PT, RO, RS, RU, SC, SD, SE, SG, SK, SL, SM, SV, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(84) Designated States (*unless otherwise indicated, for every kind of regional protection available*): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IS, IT, LT, LU, LV, MC, MT, NL, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Declarations under Rule 4.17:

- *as to applicant's entitlement to apply for and be granted a patent (Rule 4.17(ii))*
- *as to the applicant's entitlement to claim the priority of the earlier application (Rule 4.17(iii))*

Published:

- *with international search report*
- *before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments*

(88) Date of publication of the international search report:

30 October 2008

**MOLDED MONOCOMPONENT MONOLAYER RESPIRATOR
WITH BIMODAL MONOLAYER MONOCOMPONENT MEDIA**

[0001] This invention relates to molded (e.g., cup-shaped) personal respirators.

5

Background

[0002] Patents relating to molded personal respirators include U.S. Patent Nos. 4,536,440 (Berg), 4,547,420 (Krueger et al.), 5,374,458 (Burgio) and 6,827,764 B2 (Springett et al.). Patents relating to breathing mask fabrics include U.S. Patent Nos. 5,817,584 (Singer et al.), 6,723,669 (Clark et al.) and 6,998,164 B2 (Neely et al.). Other 10 patents or applications relating to nonwoven webs or their manufacture include U.S. Patent Nos. 3,981,650 (Page), 4,100,324 (Anderson), 4,118,531 (Hauser), 4,818,464 (Lau), 4,931,355 (Radwanski et al.), 4,988,560 (Meyer et al.), 5,227,107 (Dickenson et al.), 5,382,400 (Pike et al. '400), 5,679,042 (Varona), 5,679,379 (Fabbricante et al.), 15 5,695,376 (Datta et al.), 5,707,468 (Arnold et al.), 5,721,180 (Pike et al. '180), 5,877,098 (Tanaka et al.), 5,902,540 (Kwok), 5,904,298 (Kwok et al.), 5,993,543 (Bodaghi et al.), 6,176,955 B1 (Haynes et al.), 6,183,670 B1 (Torobin et al.), 6,230,901 B1 (Ogata et al.), 6,319,865 B1 (Mikami), 6,607,624 B2 (Berrigan et al. '624), 6,667,254 B1 (Thompson et al.), 6,858,297 B1 (Shah et al.) and 6,916,752 B2 (Berrigan et al. '752); European Patent 20 No. EP 0 322 136 B1 (Minnesota Mining and Manufacturing Co.); Japanese published application Nos. JP 2001-049560 (Nissan Motor Co. Ltd.), JP 2002-180331 (Chisso Corp. '331) and JP 2002-348737 (Chisso Corp. '737); and U.S. Patent Application Publication No. US2004/0097155 A1 (Olson et al.).

25

Summary of the Invention

[0003] Existing methods for manufacturing molded respirators generally involve some compromise of web or respirator properties. Setting aside for the moment any inner or outer cover layers used for comfort or aesthetic purposes and not for filtration or stiffening, the remaining layer or layers of the respirator may have a variety of 30 constructions. For example, molded respirators may be formed from bilayer webs made by laminating a meltblown fiber filtration layer to a stiff shell material such as a meltspun layer or staple fiber layer. If used by itself, the filtration layer normally has insufficient

rigidity to permit formation of an adequately strong cup-shaped finished molded respirator. The reinforcing shell material also adds undesirable basis weight and bulk, and limits the extent to which unused portions of the web laminate may be recycled. Molded respirators may also be formed from monolayer webs made from bicomponent fibers in which one fiber component can be charged to provide a filtration capability and the other fiber component can be bonded to itself to provide a reinforcing capability. As is the case with a reinforcing shell material, the bonding fiber component adds undesirable basis weight and bulk and limits the extent to which unused portions of the bicomponent fiber web may be recycled. The bonding fiber component also limits the extent to which charge 5 may be placed on the bicomponent fiber web. Molded respirators may also be formed by adding an extraneous bonding material (e.g., an adhesive) to a filtration web, with consequent limitations due to the chemical or physical nature of the added bonding material including added web basis weight and loss of recyclability.

10 [0004] Prior attempts to form molded respirators from monocomponent, monolayer webs have typically been unsuccessful. It has turned out to be quite difficult to obtain an appropriate combination of moldability, adequate stiffness after molding, suitably low pressure drop and sufficient particulate capture efficiency. We have now found monocomponent, monolayer webs which can be so molded to provide useful cup-shaped personal respirators.

15 [0005] The invention provides in one aspect a process for making a molded respirator comprising:

- 20 a) forming a monocomponent monolayer nonwoven web containing a bimodal mass fraction/fiber size mixture of intermingled continuous monocomponent polymeric microfibers and larger size fibers of the same polymeric composition,
- b) charging the web, and
- c) molding the charged web to form a cup-shaped porous monocomponent monolayer matrix, the matrix fibers being bonded to one another at at least some points of fiber intersection and the matrix having a King Stiffness greater 25 than 1 N.

30 [0006] The invention provides in another aspect a molded respirator comprising a cup-shaped porous monocomponent monolayer matrix containing a charged bimodal mass

fraction/fiber size mixture of intermingled continuous monocomponent polymeric microfibers and larger size fibers of the same polymeric composition, the fibers being bonded to one another at at least some points of fiber intersection and the matrix having a King Stiffness greater than 1 N.

5 [0007] The disclosed cup-shaped matrix has a number of beneficial and unique properties. For example, a finished molded respirator may be prepared consisting only of a single layer, but comprising a mixture of microfibers and larger size fibers. Both the microfibers and larger size fibers may be highly charged. The larger size fibers can impart improved moldability and improved stiffness to the molded matrix. The microfibers can
10 impart increased fiber surface area to the web, with beneficial effects such as improved filtration performance. By using microfibers and larger size fibers of different sizes, filtration and molding properties can be tailored to a particular use. And in contrast to the high pressure drop (and thus high breathing resistance) often characteristic of microfiber webs, pressure drops of the disclosed nonwoven webs are kept lower, because the larger
15 fibers physically separate and space apart the microfibers. The microfibers and larger size fibers also appear to cooperate with one another to provide a higher particle depth loading capacity. Product complexity and waste are reduced by eliminating laminating processes and equipment and by reducing the number of intermediate materials. By using direct-web-formation manufacturing equipment, in which a fiber-forming polymeric material is
20 converted into a web in one essentially direct operation, the disclosed webs and matrices can be quite economically prepared. Also, if the matrix fibers all have the same polymeric composition and extraneous bonding materials are not employed, the matrix can be fully recycled.

25 [0008] These and other aspects of the invention will be apparent from the detailed description below. In no event, however, should the above summaries be construed as limitations on the claimed subject matter, which subject matter is defined solely by the attached claims, as may be amended during prosecution.

Brief Description of the Drawing

30 [0009] **Fig. 1** is a perspective view, partially in section, of a disposable personal respirator having a deformation-resistant cup-shaped porous monolayer matrix disposed between inner and outer cover layers;

[0010] **Fig. 2** through **Fig. 4** are schematic side views and **Fig. 5** is a schematic perspective view, partially in section, of an exemplary process for making a monocomponent monolayer web using meltspinning and separately prepared smaller size fibers of the same polymeric composition;

5 [0011] **Fig. 6** is a schematic side view of an exemplary process for making a monocomponent monolayer web using meltblowing of larger fibers and separately prepared smaller size fibers of the same polymeric composition;

[0012] **Fig. 7** is an outlet end view of an exemplary meltspinning die spinneret having a plurality of larger and smaller orifices;

10 [0013] **Fig. 8** is an outlet end perspective view of an exemplary meltblowing die having a plurality of larger and smaller orifices;

[0014] **Fig. 9** is an exploded schematic view of an exemplary meltspinning die having a plurality of orifices supplied with polymers of the same polymeric composition flowing at different rates or with different viscosities;

15 [0015] **Fig. 10** is a cross-sectional view and **Fig. 11** is an outlet end view of an exemplary meltblowing die having a plurality of orifices supplied with polymers of the same polymeric composition flowing at different rates or with different viscosities;

[0016] **Fig. 12** is a graph showing % NaCl penetration and pressure drop for the molded matrices of Run Nos. 2-1M and 2-4M;

20 [0017] **Fig. 13** and **Fig. 14** are photomicrographs of the Run No. 6-8F flat web and the Run No. 6-8M molded matrix;

[0018] **Fig. 15** and **Fig. 16** are histograms of fiber count (frequency) vs. fiber size in μm for the Run No. 6-8F flat web and the Run No. 6-8M molded matrix;

25 [0019] **Fig. 17** is a graph showing % NaCl penetration and pressure drop for the molded matrix of Run No. 7-1M;

[0020] **Fig. 18**, **Fig. 19** and **Fig. 21** are histograms of mass fraction vs. fiber size in μm , and **Fig. 20** and **Fig. 22** are histograms of fiber count (frequency) vs. fiber size in μm , for a series of webs of Example 10;

30 [0021] **Fig. 23** is a plot of Deformation Resistance **DR** values vs. basis weight for several webs of Example 10;

[0022] **Fig. 24** is a graph showing % NaCl penetration and pressure drop for the molded respirator of Run No. 13-1M and **Fig. 25** is a similar graph for a commercial N95 respirator made from multilayer filtration media; and

5 [0023] **Fig. 26** and **Fig. 27** respectively are a photomicrograph of and a histogram of fiber count (frequency) vs. fiber size in μm for the Run No. 13-1M molded matrix.

[0024] Like reference symbols in the various figures of the drawing indicate like elements. The elements in the drawing are not to scale.

Detailed Description

10 [0025] The term “molded respirator” means a device that has been molded to a shape that fits over at least the nose and mouth of a person and that removes one or more airborne contaminants when worn by a person.

15 [0026] The term “cup-shaped” when used with respect to a respirator mask body means having a configuration that allows the mask body to be spaced from a wearer's face when worn.

[0027] The term “porous” means air-permeable.

20 [0028] The term “monocomponent” when used with respect to a fiber or collection of fibers means fibers having essentially the same composition across their cross-section; monocomponent includes blends (viz., polymer alloys) or additive-containing materials, in which a continuous phase of uniform composition extends across the cross-section and over the length of the fiber.

[0029] The term “of the same polymeric composition” means polymers that have essentially the same repeating molecular unit, but which may differ in molecular weight, melt index, method of manufacture, commercial form, etc.

25 [0030] The term “size” when used with respect to a fiber means the fiber diameter for a fiber having a circular cross section, or the length of the longest cross-sectional chord that may be constructed across a fiber having a non-circular cross-section.

30 [0031] The term “continuous” when used with respect to a fiber or collection of fibers means fibers having an essentially infinite aspect ratio (viz., a ratio of length to size of e.g., at least about 10,000 or more).

[0032] The term “Effective Fiber Diameter” when used with respect to a collection of fibers means the value determined according to the method set forth in Davies, C. N., “The

Separation of Airborne Dust and Particles", Institution of Mechanical Engineers, London, Proceedings 1B, 1952 for a web of fibers of any cross-sectional shape be it circular or non-circular.

[0033] The term "mode" when used with respect to a histogram of mass fraction vs.

5 fiber size in μm or a histogram of fiber count (frequency) vs. fiber size in μm means a local peak whose height is larger than that for fiber sizes 1 and 2 μm smaller and 1 and 2 μm larger than the local peak.

[0034] The term "bimodal mass fraction/fiber size mixture" means a collection of fibers having a histogram of mass fraction vs. fiber size in μm exhibiting at least two

10 modes. A bimodal mass fraction/fiber size mixture may include more than two modes, for example it may be a trimodal or higher-modal mass fraction/fiber size mixture.

[0035] The term "bimodal fiber count/fiber size mixture" means a collection of fibers having a histogram of fiber count (frequency) vs. fiber size in μm exhibiting at least two modes whose corresponding fiber sizes differ by at least 50% of the smaller fiber size. A 15 bimodal fiber count/fiber size mixture may include more than two modes, for example it may be a trimodal or higher-modal fiber count/fiber size mixture.

[0036] The term "bonding" when used with respect to a fiber or collection of fibers means adhering together firmly; bonded fibers generally do not separate when a web is subjected to normal handling.

20 [0037] The term "nonwoven web" means a fibrous web characterized by entanglement or point bonding of the fibers.

[0038] The term "monolayer matrix" when used with respect to a nonwoven web containing a bimodal mass fraction/fiber size mixture of fibers means having (other than with respect to fiber size) a generally uniform distribution of similar fibers throughout a 25 cross-section of the web, and having (with respect to fiber size) fibers representing each modal population present throughout a cross-section of the web. Such a monolayer matrix may have a generally uniform distribution of fiber sizes throughout a cross-section of the web or may, for example, have a depth gradient of fiber sizes such as a preponderance of larger size fibers proximate one major face of the web and a preponderance of smaller size 30 fibers proximate the other major face of the web.

[0039] The term "attenuating the filaments into fibers" means the conversion of a segment of a filament into a segment of greater length and smaller size.

[0040] The term "meltspun" when used with respect to a nonwoven web means a web formed by extruding a low viscosity melt through a plurality of orifices to form filaments, quenching the filaments with air or other fluid to solidify at least the surfaces of the filaments, contacting the at least partially solidified filaments with air or other fluid to attenuate the filaments into fibers and collecting a layer of the attenuated fibers.

[0041] The term "meltspun fibers" means fibers issuing from a die and traveling through a processing station in which the fibers are permanently drawn and polymer molecules within the fibers are permanently oriented into alignment with the longitudinal axis of the fibers. Such fibers are essentially continuous and are entangled sufficiently that it is usually not possible to remove one complete melts spun fiber from a mass of such fibers.

[0042] The term "oriented" when used with respect to a polymeric fiber or collection of such fibers means that at least portions of the polymeric molecules of the fibers are aligned lengthwise of the fibers as a result of passage of the fibers through equipment such as an attenuation chamber or mechanical drawing machine. The presence of orientation in fibers can be detected by various means including birefringence measurements and wide-angle x-ray diffraction.

[0043] The term "Nominal Melting Point" means the peak maximum of a second-heat, total-heat-flow differential scanning calorimetry (DSC) plot in the melting region of a polymer if there is only one maximum in that region; and, if there is more than one maximum indicating more than one melting point (e.g., because of the presence of two distinct crystalline phases), as the temperature at which the highest-amplitude melting peak occurs.

[0044] The term "meltblown" when used with respect to a nonwoven web means a web formed by extruding a fiber-forming material through a plurality of orifices to form filaments while contacting the filaments with air or other attenuating fluid to attenuate the filaments into fibers and thereafter collecting a layer of the attenuated fibers.

[0045] The term "meltblown fibers" means fibers prepared by extruding molten fiber-forming material through orifices in a die into a high-velocity gaseous stream, where the extruded material is first attenuated and then solidifies as a mass of fibers. Although meltblown fibers have sometimes been reported to be discontinuous, the fibers generally are long and entangled sufficiently that it is usually not possible to remove one complete

meltblown fiber from a mass of such fibers or to trace one meltblown fiber from beginning to end.

[0046] The term "microfibers" means fibers having a median size (as determined using microscopy) of 10 μm or less; "ultrafine microfibers" means microfibers having a median size of two μm or less; and "submicron microfibers" means microfibers having a median size one μm or less. When reference is made herein to a batch, group, array, etc. of a particular kind of microfiber, e.g., "an array of submicron microfibers," it means the complete population of microfibers in that array, or the complete population of a single batch of microfibers, and not only that portion of the array or batch that is of submicron dimensions.

[0047] The term "separately prepared smaller size fibers" means a stream of smaller size fibers produced from a fiber-forming apparatus (e.g., a die) positioned such that the stream is initially spatially separate (e.g., over a distance of about 1 inch (25 mm) or more from, but will merge in flight and disperse into, a stream of larger size fibers.

[0048] The term "charged" when used with respect to a collection of fibers means fibers that exhibit at least a 50% loss in Quality Factor **QF** (discussed below) after being exposed to a 20 Gray absorbed dose of 1 mm beryllium-filtered 80 KVp X-rays when evaluated for percent dioctyl phthalate (% DOP) penetration at a face velocity of 7 cm/sec.

[0049] The term "self-supporting" when used with respect to a monolayer matrix means that the matrix does not include a contiguous reinforcing layer of wire, plastic mesh, or other stiffening material even if a molded respirator containing such matrix may include an inner or outer cover web to provide an appropriately smooth exposed surface or may include weld lines, folds or other lines of demarcation to strengthen selected portions of the respirator.

[0050] The term "King Stiffness" means the force required using a King Stiffness Tester from J. A. King & Co., Greensboro, North Carolina to push a flat-faced, 2.54 cm diameter by 8.1 m long probe against a molded cup-shaped respirator prepared by forming a test cup-shaped matrix between mating male and female halves of a hemispherical mold having a 55mm radius and a 310 cm^3 volume. The molded matrices are placed under the tester probe for evaluation after first being allowed to cool.

[0051] Referring to **Fig. 1**, a cup-shaped disposable personal respirator **1** is shown in partial cross-section. Respirator **1** includes inner cover web **2**, monocomponent filtration layer **3**, and outer cover layer **4**. Welded edge **5** holds these layers together and provides a face seal region to reduce leakage past the edge of respirator **1**. Leakage may be further reduced by pliable dead-soft nose band **6** of for example a metal such as aluminum or a plastic such as polypropylene. Respirator **1** also includes adjustable head and neck straps **7** fastened using tabs **8**, and exhalation valve **9**. Aside from the monocomponent filtration layer **2**, further details regarding the construction of respirator **1** will be familiar to those skilled in the art.

[0052] The disclosed monocomponent monolayer web contains a bimodal mass fraction/fiber size mixture of microfibers and larger size fibers. The microfibers may for example have a size range of about 0.1 to about 10 μm , about 0.1 to about 5 μm or about 0.1 to about 1 μm . The larger size fibers may for example have a size range of about 10 to about 70 μm , about 10 to about 50 μm or about 15 to about 50 μm . A histogram of mass fraction vs. fiber size in μm may for example have a microfiber mode of about 0.1 to about 10 μm , about 0.5 to about 8 μm or about 1 to about 5 μm , and a larger size fiber mode of more than 10 μm , about 10 to about 50 μm , about 10 to about 40 μm or about 12 to about 30 μm . The disclosed web may also have a bimodal fiber count/fiber size mixture whose histogram of fiber count (frequency) vs. fiber size in μm exhibits at least two modes whose corresponding fiber sizes differ by at least 50%, at least 100%, or at least 200% of the smaller fiber size. The microfibers may also for example provide at least 20% of the fibrous surface area of the web, at least 40% or at least 60%. The web may have a variety of Effective Fiber Diameter (EFD) values, for example an EFD of about 5 to about 40 μm , or of about 6 to about 35 μm . The web may also have a variety of basis weights, for example a basis weight of about 60 to about 300 grams/ m^2 or about 80 to about 250 grams/ m^2 . When flat (viz., unmolded), the web may have a variety of Gurley Stiffness values, for example a Gurley Stiffness of at least about 500 mg, at least about 1000 mg or at least about 2000 mg. When evaluated at a 13.8 cm/sec face velocity and using an NaCl challenge, the flat web preferably has an initial filtration quality factor (QF) of at least about 0.4 $\text{mm}^{-1} \text{H}_2\text{O}$ and more preferably at least about 0.5 $\text{mm}^{-1} \text{H}_2\text{O}$.

[0053] The molded matrix has a King Stiffness greater than 1 N and more preferably at least about 2 N or more. As a rough approximation, if a hemispherical molded matrix

sample is allowed to cool, placed cup-side down on a rigid surface, depressed vertically (viz., dented) using an index finger and then the pressure released, a matrix with insufficient King Stiffness may tend to remain dented and a matrix with adequate King Stiffness may tend to spring back to its original hemispherical configuration. Some of the 5 molded matrices shown below in the working examples were also or instead evaluated by measuring Deformation Resistance (**DR**), using a Model TA-XT2i/5 Texture Analyzer (from Texture Technologies Corp.) equipped with a 25.4 mm diameter polycarbonate test probe. The molded matrix is placed facial side down on the Texture Analyzer stage. Deformation Resistance **DR** is measured by advancing the polycarbonate probe downward 10 at 10 mm/sec against the center of the molded test matrix over a distance of 25 mm. Using five molded test matrix samples, the maximum (peak) force is recorded and averaged to establish Deformation Resistance **DR**. Deformation Resistance **DR** preferably is at least about 75 g and more preferably at least about 200 g. We are not aware of a formula for converting King Stiffness values to Deformation Resistance values, but can observe that 15 the King Stiffness test is somewhat more sensitive than the Deformation Resistance test when evaluating low stiffness molded matrices.

[0054] When exposed to a 0.075 μm sodium chloride aerosol flowing at 85 liters/min, the disclosed molded respirator preferably has a pressure drop less than 20 mm H_2O and more preferably less than 10 mm H_2O . When so evaluated, the molded respirator also 20 preferably has a % NaCl penetration less than about 5%, and more preferably less than about 1%.

[0055] **Fig. 2** through **Fig. 9** illustrate a variety of processes and equipment which may be used to make preferred monocomponent monolayer webs. The process shown in **Fig. 2** through **Fig. 5** combines larger size meltspun fibers from a meltspinning die and smaller 25 size meltblown fibers from a meltblowing die. The process shown in **Fig. 6** combines larger size and smaller size meltblown fibers from two meltblowing dies. The die shown in **Fig. 7** produces larger size and smaller size meltspun fibers from a single meltspinning die which may be supplied with liquefied fiber-forming material from a single extruder. The die shown in **Fig. 8** produces larger size and smaller size meltblown fibers from a 30 single meltblowing die which may be supplied with liquefied fiber-forming material from a single extruder. The die shown in **Fig. 9** produces larger size and smaller size meltspun fibers from a single meltspinning die which may be supplied with liquefied fiber-forming

material from two extruders. The die shown in **Fig. 10** and **Fig. 11** produces larger size and smaller size meltblown fibers from a single meltblowing die which may be supplied with liquefied fiber-forming material from two extruders.

[0056] Referring to **Fig. 2**, a process is shown in schematic side view for making a moldable monocomponent monolayer bimodal mass fraction/fiber size web using meltspinning to form larger size fibers and meltblowing to form separately prepared smaller size fibers (e.g., microfibers) of the same polymeric composition. Further details regarding this process and the nonwoven webs so made are shown in U.S. Patent Application Serial No. (Attorney Docket No. 60928US002), filed even date herewith and entitled “FIBROUS WEB COMPRISING MICROFIBERS DISPERSED AMONG BONDED MELTSPUN FIBERS”, the entire disclosure of which is incorporated herein by reference. In the apparatus shown in **Fig. 2**, a fiber-forming material is brought to a melt-spinning extrusion head **10** -- in this illustrative apparatus, by introducing a polymeric fiber-forming material into a hopper **11**, melting the material in an extruder **12**, and pumping the molten material into the extrusion head **10** through a pump **13**. Solid polymeric material in pellet or other particulate form is most commonly used and melted to a liquid, pumpable state.

[0057] The extrusion head **10** may be a conventional spinnerette or spin pack, generally including multiple orifices arranged in a regular pattern, e.g., straight-line rows. Filaments **15** of fiber-forming liquid are extruded from extrusion head **10** and conveyed to a processing chamber or attenuator **16**. The attenuator may for example be a movable-wall attenuator like that shown in U.S. Patent No. 6,607,624 B2 (Berrigan et al.) whose walls are mounted for free and easy movement in the direction of the arrows **50**. The distance **17** the extruded filaments **15** travel before reaching the attenuator **16** can vary, as can the conditions to which they are exposed. Quenching streams of air or other gas **18** may be presented to the extruded filaments to reduce the temperature of the extruded filaments **15**. Alternatively, the streams of air or other gas may be heated to facilitate drawing of the fibers. There may be one or more streams of air or other fluid -- e.g., a first air stream **18a** blown transversely to the filament stream, which may remove undesired gaseous materials or fumes released during extrusion; and a second quenching air stream **18b** that achieves a major desired temperature reduction. Even more quenching streams may be used; for example, the stream **18b** could itself include more than one stream to

achieve a desired level of quenching. Depending on the process being used or the form of finished product desired, the quenching air may be sufficient to solidify the extruded filaments **15** before they reach the attenuator **16**. In other cases the extruded filaments are still in a softcned or molten condition when they enter the attenuator. Alternatively, no 5 quenching streams are used; in such a case ambient air or other fluid between the extrusion head **10** and the attenuator **16** may be a medium for any change in the extruded filaments before they enter the attenuator.

[0058] The continuous meltspun filaments **15** are oriented in attenuator **16** which are directed toward collector **19** as a stream **501** of larger size fibers (that is, larger in relation 10 to the smaller size meltspun fibers that will be added to the web; the fibers in attenuated stream **501** are smaller in size than the filaments extruded from extrusion head **10**). On its course between attenuator **16** and collector **19**, the attenuated larger size fiber stream **501** is intercepted by a stream **502** of meltblown smaller size fibers emanating from 15 meltblowing die **504** to form a merged bimodal mass fraction/fiber size stream **503** of larger and smaller size fibers. The merged stream becomes deposited on collector **19** as a self-supporting web **20** containing oriented continuous meltspun larger size fibers with meltblown smaller size fibers dispersed therein. The collector **19** is generally porous and a 20 gas-withdrawal device **114** can be positioned below the collector to assist deposition of fibers onto the collector. The distance **21** between the attenuator exit and the collector may be varied to obtain different effects. Also, prior to collection, the extruded filaments or fibers may be subjected to a number of additional processing steps not illustrated in Fig. 2, e.g., further drawing, spraying, etc. After collection the collected mass **20** may be heated and quenched as described in more detail below; conveyed to other apparatus such as 25 calenders, embossing stations, laminators, cutters and the like; or it may merely be wound without further treatment or converting into a storage roll **23**.

[0059] The meltblowing die **504** can be of known structure and operated in known 30 ways to produce meltblown smaller size fibers (e.g., microfibers) for use in the disclosed process. An early description of the basic meltblowing method and apparatus is found in Wente, Van A. "Superfine Thermoplastic Fibers," in Industrial Engineering Chemistry, Vol. 48, pages 1342 et seq. (1956), or in Report No. 4364 of the Naval Research Laboratories, published May 25, 1954, entitled "Manufacture of Superfine Organic Fibers" by Wente, V. A.; Boone, C. D.; and Fluharty, E. L. The typical meltblowing

apparatus includes a hopper **506** and extruder **508** supplying liquefied fiber-forming material to die **504**. Referring to **Fig. 3**, die **504** includes an inlet **512** and die cavity **514** through which liquefied fiber-forming material is delivered to die orifices **516** arranged in line across the forward end of the die and through which the fiber-forming material is extruded; and cooperating gas orifices **518** through which a gas, typically heated air, is forced at very high velocity. The high-velocity gaseous stream draws out and attenuates the extruded fiber-forming material, whereupon the fiber-forming material solidifies (to varying degrees of solidity) and forms a stream **502** of meltblown smaller size fibers during travel to its point of merger with the meltspun larger size fiber stream **501**.

10 [0060] Methods for meltblowing fibers of very small size including submicron sizes are known; see, for example, U.S. Patent No. 5,993,943 (Bodaghi et al.), e.g., at column 8, line 11 through column 9, line 25. Other techniques to form smaller size fibers can also be used, for example, as described in U.S. Patent Nos. 6,743,273 B2 (Chung et al.) and 6,800,226 B1 (Gerking).

15 [0061] The meltblowing die **504** is preferably positioned near the stream **501** of meltspun larger size fibers to best achieve capture of the meltblown smaller size fibers by the meltspun larger size fibers; close placement of the meltblowing die to the meltspun stream is especially important for capture of submicron microfibers. For example, as shown in **Fig. 3** the distance **520** from the exit of the die **504** to the centerline of the meltspun stream **501** is preferably about 2 to 12 in. (5 to 25 cm) and more preferably about 6 or 8 in. (15 or 20 cm) or less for very small microfibers. Also, when the stream **501** of meltspun fibers is disposed vertically as shown in **Fig. 3**, the stream **502** of meltblown smaller size fibers is preferably disposed at an acute angle θ with respect to the horizontal, so that a vector of the meltblown stream **502** is directionally aligned with the meltspun stream **501**. Preferably, θ is between about 0 and about 45 degrees and more preferably between about 10 and about 30 degrees. The distance **522** from the point of joinder of the meltblown and meltspun streams to the collector **19** is typically at least about 4 in. (10 cm) but less than about 16 in. (40 cm) to avoid over-entangling and to retain web uniformity. The distance **524** is sufficient, generally at least 6 in. (15 cm), for the momentum of the meltspun stream **501** to be reduced and thereby allow the meltblown stream **502** to better merge with the meltspun stream **501**. As the streams of meltblown and meltspun fibers merge, the meltblown fibers become dispersed among the meltspun fibers. A rather

uniform mixture is obtained, especially in the x-y (in-plane web) dimensions, with the distribution in the z dimension being controlled by particular process steps such as control of the distance **520**, the angle θ , and the mass and velocity of the merging streams. The merged stream **503** continues to the collector **19** and there is collected as the web-like mass **20**.

5 [0062] Depending on the condition of the meltspun and meltblown fibers, some bonding may occur between the fibers during collection. However, further bonding between the meltspun fibers in the collected web may be needed to provide a matrix having a desired degree of coherency and stiffness, making the web more handleable and 10 better able to hold the meltblown fibers within the matrix. However, excessive bonding should be avoided so as to facilitate forming the web into a molded matrix.

10 [0063] Conventional bonding techniques using heat and pressure applied in a point-bonding process or by smooth calender rolls can be used, though such processes may cause undesired deformation of fibers or compaction of the web. A more preferred 15 technique for bonding the meltspun fibers is taught in U.S. Patent Application Serial No. (Attorney Docket No. 60632US002), filed even date herewith and entitled "BONDED NONWOVEN FIBROUS WEBS COMPRISING SOFTENABLE ORIENTED SEMICRYSTALLINE POLYMERIC FIBERS AND APPARATUS AND METHODS FOR PREPARING SUCH WEBS", the entire disclosure of which is incorporated herein 20 by reference. In brief summary, as applied to the present invention, this preferred technique involves subjecting a collected web of oriented semicrystalline meltspun fibers which include an amorphous-characterized phase, intermingled with meltblown fibers of the same polymeric composition, to a controlled heating and quenching operation that includes a) forcefully passing through the web a fluid heated to a temperature high enough 25 to soften the amorphous-characterized phase of the meltspun fibers (which is generally greater than the onset melting temperature of the material of such fibers) for a time too short to melt the whole meltspun fibers (*viz.*, causing such fibers to lose their discrete fibrous nature; preferably, the time of heating is too short to cause a significant distortion of the fiber cross-section), and b) immediately quenching the web by forcefully passing 30 through the web a fluid having sufficient heat capacity to solidify the softened fibers (*viz.*, to solidify the amorphous-characterized phase of the fibers softened during heat treatment). Preferably the fluids passed through the web are gaseous streams, and

preferably they are air. In this context “forcefully” passing a fluid or gaseous stream through a web means that a force in addition to normal room pressure is applied to the fluid to propel the fluid through the web. In a preferred embodiment, the disclosed quenching step includes passing the web on a conveyor through a device we term a 5 quenched flow heater, or, more simply, quenched heater. As illustrated herein, such a quenched flow heater provides a focused or knife-like heated gaseous (typically air) stream issuing from the heater under pressure and engaging one side of the web, with a gas-withdrawal device on the other side of the web to assist in drawing the heated gas through the web; generally the heated stream extends across the width of the web. The 10 heated stream is much like the heated stream from a conventional “through-air bonder” or “hot-air knife,” but it is subjected to special controls that modulate the flow, causing the heated gas to be distributed uniformly and at a controlled rate through the width of the web to thoroughly, uniformly and rapidly heat and soften the meltspun fibers to a usefully high temperature. Forceful quenching immediately follows the heating to rapidly freeze 15 the fibers in a purified morphological form (“immediately” means as part of the same operation, i.e., without an intervening time of storage as occurs when a web is wound into a roll before the next processing step). In a preferred embodiment the gas-withdrawal device is positioned downweb from the heated gaseous stream so as to draw a cooling gas or other fluid, e.g., ambient air, through the web promptly after it has been heated and 20 thereby rapidly quench the fibers. The length of heating is controlled, e.g., by the length of the heating region along the path of web travel and by the speed at which the web is moved through the heating region to the cooling region, to cause the intended melting/softening of the amorphous-characterizing phase without melting whole meltspun fiber.

25 [0064] Referring to **Fig. 2**, **Fig. 4** and **Fig. 5**, in one exemplary method for carrying out the quenched flow heating technique, the mass **20** of collected meltspun and meltblown fibers is carried by the moving collector **19** under a controlled-heating device **200** mounted above the collector **19**. The exemplary heating device **200** comprises a housing **201** which is divided into an upper plenum **202** and a lower plenum **203**. The 30 upper and lower plenums are separated by a plate **204** perforated with a series of holes **205** that are typically uniform in size and spacing. A gas, typically air, is fed into the upper plenum **202** through openings **206** from conduits **207**, and the plate **204** functions as a

flow-distribution means to cause air fed into the upper plenum to be rather uniformly distributed when passed through the plate into the lower plenum **203**. Other useful flow-distribution means include fins, baffles, manifolds, air dams, screens or sintered plates, *viz.*, devices that even the distribution of air.

5 [0065] In the illustrative heating device **200** the bottom wall **208** of the lower plenum **203** is formed with an elongated slot **209** through which an elongated or knife-like stream **210** of heated air from the lower plenum is blown onto the mass **20** traveling on the collector **19** below the heating device **200** (the mass **20** and collector **19** are shown partly broken away in **Fig. 5**). The gas-withdrawal device **114** preferably extends sufficiently to lie under the slot **209** of the heating device **200** (as well as extending downweb a distance **218** beyond the heated stream **210** and through an area marked **220**, as will be discussed below). Heated air in the plenum is thus under an internal pressure within the plenum **203**, and at the slot **209** it is further under the exhaust vacuum of the gas-withdrawal device **114**. To further control the exhaust force a perforated plate **211** may be positioned under the collector **19** to impose a kind of back pressure or flow-restriction means which assures the stream **210** of heated air will spread to a desired extent over the width or heated area of the collected mass **20** and be inhibited in streaming through possible lower-density portions of the collected mass. Other useful flow-restriction means include screens or sintered plates. The number, size and density of openings in the plate **211** may be varied in different areas to achieve desired control. Large amounts of air pass through the fiber-forming apparatus and must be disposed of as the fibers reach the collector in the region **215**. Sufficient air passes through the web and collector in the region **216** to hold the web in place under the various streams of processing air. Sufficient openness is needed in the plate under the heating region **217** to allow treating air to pass through the web, while sufficient resistance is provided to assure that the air is evenly distributed. The temperature-time conditions should be controlled over the whole heated area of the mass. We have obtained best results when the temperature of the stream **210** of heated air passing through the web is within a range of 5 °C, and preferably within 2 or even 1 °C, across the width of the mass being treated (the temperature of the heated air is often measured for convenient control of the operation at the entry point for the heated air into the housing **201**, but it also can be measured adjacent the collected web with thermocouples). In addition, the heating apparatus is operated to maintain a steady

temperature in the stream over time, e.g., by rapidly cycling the heater on and off to avoid over- or under-heating. To further control heating, the mass 20 is subjected to quenching quickly after the application of the stream 210 of heated air. Such a quenching can generally be obtained by drawing ambient air over and through the mass 20 immediately 5 after the mass leaves the controlled hot air stream 210. Numeral 220 in **Fig. 4** represents an area in which ambient air is drawn through the web by the gas-withdrawal device 114 after the web has passed through the hot air stream. Actually, such air can be drawn under the base of the housing 201, e.g., in the area 220a marked on **Fig. 4**, so that it reaches the web almost immediately after the web leaves the hot air stream 210. And the gas- 10 withdrawal device 114 may extend along the collector 19 for a distance 218 beyond the heating device 200 to assure thorough cooling and quenching of the whole mass 20. For shorthand purposes the combined heating and quenching apparatus is termed a quenched flow heater.

[0066] The amount and temperature of heated air passed through the mass 20 is 15 chosen to lead to an appropriate modification of the morphology of the larger size fibers. Particularly, the amount and temperature are chosen so that the larger size fibers are heated to a) cause melting/softening of significant molecular portions within a cross-section of the fiber, e.g., the amorphous-characterized phase of the fiber, but b) will not cause complete melting of another significant phase, e.g., the crystallite-characterized 20 phase. We use the term “melting/softening” because amorphous polymeric material typically softens rather than melts, while crystalline material, which may be present to some degree in the amorphous-characterized phase, typically melts. This can also be stated, without reference to phases, simply as heating to cause melting of lower-order crystallites within the fiber. The larger size fibers as a whole remain unmelted, e.g., the 25 fibers generally retain the same fiber shape and dimensions as they had before treatment. Substantial portions of the crystallite-characterized phase are understood to retain their pre-existing crystal structure after the heat treatment. Crystal structure may have been added to the existing crystal structure, or in the case of highly ordered fibers crystal structure may have been removed to create distinguishable amorphous-characterized and 30 crystallite-characterized phases.

[0067] One aim of the quenching is to withdraw heat before undesired changes occur in the smaller size fibers contained in the web. Another aim of the quenching is to rapidly

remove heat from the web and the larger size fibers and thereby limit the extent and nature of crystallization or molecular ordering that will subsequently occur in the larger size fibers. By rapid quenching from the molten/softened state to a solidified state, the amorphous-characterized phase is understood to be frozen into a more purified crystalline form, with reduced lower-order molecular material that can interfere with softening, or repeatable softening, of the larger size fibers. For such purposes, desirably the mass 20 is cooled by a gas at a temperature at least 50°C less than the Nominal Melting Point or the larger size fibers; also the quenching gas is desirably applied for a time on the order of at least one second. In any event the quenching gas or other fluid has sufficient heat capacity 5 to rapidly solidify the fibers.

10

[0068] An advantage of the disclosed quenched flow heater is that the smaller size meltblown fibers held within the disclosed web are better protected against compaction than they would be if present in a layer made up entirely of smaller size fibers (e.g., entirely of microfibers). The oriented meltspun fibers are generally larger, stiffer and stronger than the meltblown smaller size fibers, and the presence of the meltspun fibers 15 between the meltblown fibers and an object applying pressure limits application of crushing force on the smaller size meltblown fibers. Especially in the case of submicron fibers, which can be quite fragile, the increased resistance against compaction or crushing provided by the larger size fibers offers an important benefit. Even when the disclosed webs are subjected to pressure, e.g., by being rolled up in jumbo storage rolls or in secondary processing, the webs offer good resistance to compaction, which could otherwise lead to increased pressure drop and poor loading performance for filters made from such webs. The presence of the larger size meltspun fibers also adds other properties 20 such as web strength, stiffness and handling properties.

25 [0069] It has been found that the meltblown smaller size fibers do not substantially melt or lose their fiber structure during the bonding operation, but remain as discrete smaller size fibers with their original fiber dimensions. Meltblown fibers have a different, less crystalline morphology than meltspun fibers, and we theorize that the limited heat applied to the web during the bonding and quenching operation is exhausted in developing 30 crystalline growth within the meltblown fibers before melting of the meltblown fibers occurs. Whether this theory is correct or not, bonding of the meltspun fibers without

substantial melting or distortion of the meltblown smaller size fibers does occur and is beneficial to the properties of the finished bimodal mass fraction/fiber size web.

[0070] Referring to **Fig. 6**, another process is shown in schematic side view for making a moldable monocomponent monolayer bimodal mass fraction/fiber size web using meltblowing to form both larger size fibers and separately prepared smaller size fibers of the same polymeric composition. The **Fig. 6** apparatus employs two meltblowing dies **600** and **602**. Die **600** is supplied with liquefied fiber-forming material fed from hopper **604**, extruder **606** and conduit **608**. Die **602** may also be supplied with liquefied fiber-forming material from extruder **606** via optional conduit **610**. Alternatively, die **602** 5 may be separately supplied with liquefied fiber-forming material of the same polymeric composition fed from optional hopper **612**, extruder **614** and conduit **616**. Larger size fiber stream **618** from die **600** and smaller size fiber stream **620** from die **602** merge in flight to provide a stream **622** of intermingled larger fibers and smaller fibers which can land on rotating collector drum **624** to provide a self-supporting nonwoven web **626** 10 containing a bimodal mass fraction/fiber size mixture of such fibers. The apparatus shown in **Fig. 6** may be operated in several modes to provide a stream of larger size fibers from one die and smaller size fibers from the other die. For example, the same polymer may be supplied from a single extruder to die **600** and die **602** with larger size orifices being provided in die **600** and smaller size orifices being provided in die **602** so as to enable 15 production of larger size fibers at die **600** and smaller size fibers at die **602**. Identical polymers may be supplied from extruder **606** to die **600** and from extruder **614** to die **602**, with extruder **614** having a larger diameter or higher operating temperature than extruder **606** so as to supply the polymer at a higher flow rate or lower viscosity into die **602** and enable production of larger size fibers at die **600** and smaller size fibers at die **602**. 20 Similar size orifices may be provided in die **600** and die **602** with die **600** being operated at a low temperature and die **602** being operated at a high temperature so as to produce larger size fibers at die **600** and smaller size fibers at die **602**. Polymers of the same 25 polymeric composition but different melt indices may be supplied from extruder **606** to die **600** and from extruder **614** to die **602** (using for example a low melt index version of the polymer in extruder **606** and a high melt index of the same polymer in extruder **614**) so as 30 to produce larger size fibers at die **600** and smaller size fibers at die **602**. Those having ordinary skill in the art will appreciate that other techniques (e.g., the inclusion of a

solvent in the stream of liquefied fiber-forming material flowing to die **602**, or the use of die cavities with a shorter flow path in die **600** and a longer flow path in die **602**) and combinations of such techniques and the various operating modes discussed above may also be employed. The meltblowing dies **600** and **602** preferably are positioned so that the 5 larger size fiber stream **618** and smaller size fiber stream **620** adequately intermingle. For example, the distance **628** from the exit of larger size fiber die **600** to the centerline of the merged fiber stream **622** is preferably about 2 to about 12 in. (about 5 to about 25 cm) and more preferably about 6 to about 8 in. (about 15 to about 20 cm). The distance **630** from the exit of smaller size fiber die **602** to the centerline of the merged fiber stream **622** 10 preferably is about 2 to about 12 in. (about 5 to about 25 cm) and more preferably about 6 to about 8 in. (about 15 to about 20 cm) or less for very small microfibers. The distances **628** and **630** need not be the same. Also, the stream **618** of larger size fibers is preferably disposed at an acute angle θ' to the stream **620** of smaller size fibers. Preferably, θ' is 15 between about 0 and about 45 degrees and more preferably between about 10 and about 30 degrees. The distance **632** from the approximate point of joinder of the larger and smaller size fiber streams to the collector drum **624** is typically at least about 5 in. (13 cm) but less than about 15 in. (38 cm) to avoid over-entangling and to retain web uniformity.

[0071] Referring to **Fig. 7**, a meltspinning die spinneret **700** for use in making a moldable monocomponent monolayer bimodal mass fraction/fiber size web via yet 20 another process is shown in outlet end view. Spinneret **700** includes a body member **702** held in place with bolts **704**. An array of larger orifices **706** and smaller orifices **708** define a plurality of flow passages through which liquefied fiber-forming material exits spinneret **700** and forms filaments. In the embodiment shown in **Fig. 7**, the larger orifices **706** and smaller orifices **708** have a 2:1 size ratio and there are 9 smaller orifices **708** for 25 each larger orifice **706**. Other ratios of larger:smaller orifice sizes may be used, for example ratios of 1:1 or more, 1.5:1 or more, 2:1 or more, 2.5:1 or more, 3:1 or more, or 3.5:1 or more. Other ratios of the number of smaller orifices per larger orifice may also be used, for example ratios of 5:1 or more, 6:1 or more, 10:1 or more, 12:1 or more, 15:1 or more, 20:1 or more or 30:1 or more. Typically there will be a direct correspondence 30 between the number of smaller orifices per larger orifice and the number of smaller size fibers (e.g., microfibers under appropriate operating conditions) per larger size fiber in the collected web. As will be appreciated by persons having ordinary skill in the art,

appropriate polymer flow rates, die operating temperatures and orienting conditions should be chosen so that smaller size fibers are produced from oriented filaments formed by the smaller orifices, larger size fibers are produced from oriented filaments formed by the larger orifices, and the completed web has the desired properties. The remaining portions 5 of the associated meltspinning apparatus will be familiar to those having ordinary skill in the art.

[0072] Referring to **Fig. 8**, a meltblowing die **800** for use in making a moldable monocomponent monolayer bimodal mass fraction/fiber size web via yet another process is shown in outlet end perspective view, with the secondary attenuating gas deflector 10 plates removed. Die **800** includes a projecting tip portion **802** with a row **804** of larger orifices **806** and smaller orifices **808** which define a plurality of flow passages through which liquefied fiber-forming material exits die **800** and forms filaments. Holes **810** receive through-bolts (not shown in **Fig. 8**) which hold the various parts of the die together. In the embodiment shown in **Fig. 8**, the larger orifices **806** and smaller orifices 15 **808** have a 2:1 size ratio and there are 9 smaller orifices **808** for each larger orifice **806**. Other ratios of larger:smaller orifice sizes may be used, for example ratios of 1.5:1 or more, 2:1 or more, 2.5:1 or more, 3:1 or more, or 3.5:1 or more. Other ratios of the number of smaller orifices per larger orifice may also be used, for example ratios of 5:1 or more, 6:1 or more, 10:1 or more, 12:1 or more, 15:1 or more, 20:1 or more or 30:1 or 20 more. Typically there will be a direct correspondence between the number of smaller orifices per larger orifice and the number of smaller size fibers (c.g., microfibers under appropriate operating conditions) per larger size fiber in the collected web. As will be appreciated by persons having ordinary skill in the art, appropriate polymer flow rates, die operating temperatures and attenuating airflow rates should be chosen so that smaller size 25 fibers are produced from attenuated filaments formed by the smaller orifices, larger size fibers are produced from attenuated filaments formed by the larger orifices, and the completed web has the desired properties. Further details regarding the associated process and the nonwoven webs so made are shown in U.S. Patent Application Serial No. (Attorney Docket No. 61726US003), filed even date herewith and entitled 30 “MONOCOMPONENT MONOLAYER MELTBLOWN WEB AND MELTBLOWNING APPARATUS”, the entire disclosure of which is incorporated herein by reference.

[0073] Referring to **Fig. 9**, a meltspinning die **900** for use in making a moldable monocomponent monolayer bimodal mass fraction/fiber size web via yet another process is shown in exploded schematic view. Die **900** may be referred to as a “plate die”, “shim dic” or “stack dic”, and includes an inlet plate **902** whose fluid inlets **904** and **906** each 5 receive a stream of liquefied fiber-forming material. The streams have the same polymeric composition but different flow rates or different melt viscosities. The polymer streams flow through a series of intermediate plates **908a**, **908b**, etc. whose passages **910a**, **910b**, etc. repeatedly divide the streams. The thus serially-divided streams flow through a plurality (e.g., 256, 512 or some other multiple of the number of fluid inlets) of fluid outlet 10 orifices **914** in outlet plate **916**. The various plates may be fastened together via bolts or other fasteners (not shown in **Fig. 9**) through holes **918**. Each fluid outlet orifice **914** will communicate via a unique flow path with one or the other of the fluid inlets **904** or **906**. The remaining portions of the associated meltspinning apparatus will be familiar to those having ordinary skill in the art, and may be used to process the liquefied fiber-forming 15 materials into a nonwoven web of meltspun filaments having a bimodal mass fraction/fiber size mixture of intermingled larger size fibers and smaller size fibers of the same polymeric composition.

[0074] Referring to **Fig. 10** and **Fig. 11**, meltblowing die **1000** for use in making a moldable monocomponent monolayer bimodal mass fraction/fiber size web via yet another process is shown in cross-sectional and outlet end view. Die **1000** is supplied with liquefied fiber-forming material fed from hopper **1004**, extruder **1006** and conduit **1008** at a first flow rate or first viscosity. Die **1000** is separately supplied with liquefied fiber-forming material of the same polymeric composition fed from hopper **1012**, extruder **1014** and conduit **1016** at a second, different flow rate or viscosity. The conduits **1008** and 20 **1016** are in respective fluid communication with first and second die cavities **1018** and **1020** located in first and second generally symmetrical parts **1022** and **1024** which form outer walls for die cavities **1018** and **1020**. First and second generally symmetrical parts **1026** and **1028** form inner walls for die cavities **1018** and **1020** and meet at seam **1030**. Parts **1026** and **1028** may be separated along most of their length by insulation **1032**. As 25 also shown in **Fig. 11**, die cavities **1018** and **1020** are in respective fluid communication via passages **1034**, **1036** and **1038** with a row **1040** of orifices **1042** and **1044**. Dependent upon the flow rates into die cavities **1018** and **1020**, filaments of larger and smaller sizes

may be extruded through the orifices **1042** and **1044**, thereby enabling formation of a nonwoven web containing a bimodal mass fraction/fiber size mixture of intermingled larger size fibers and smaller size fibers of the same polymeric composition. The remaining portions of the associated meltblowing apparatus will be familiar to those having ordinary skill in the art, and may be used to process the liquefied fiber-forming materials into a nonwoven web of meltblown filaments having a bimodal mass fraction/fiber size mixture of intermingled larger size fibers and smaller size fibers of the same polymeric composition.

5 [0075] For the embodiment shown in **Fig. 11**, the orifices **1042** and **1044** are arranged in alternating order and are in respective fluid communication with the die cavities **1018** and **1020**. As will be appreciated by persons having ordinary skill in the art, other arrangements of the orifices and other fluid communication ratios may be employed to provide nonwoven webs with altered fiber size distributions. Persons having ordinary skill in the art will also appreciate that other operating modes and techniques (e.g., like those discussed above in connection with the **Fig. 6** apparatus) and combinations of such techniques and operating modes may also be employed.

10 [0076] The disclosed nonwoven webs may have a random fiber arrangement and generally isotropic in-plane physical properties (e.g., tensile strength), or if desired may have an aligned fiber construction (e.g., one in which the fibers are aligned in the machine direction as described in the above-mentioned Shah et al. U.S. Patent No. 6,858,297) and anisotropic in-plane physical properties.

15 [0077] A variety of polymeric fiber-forming materials may be used in the disclosed process. The polymer may be essentially any thermoplastic fiber-forming material capable of providing a charged nonwoven web which will maintain satisfactory electret properties or charge separation. Preferred polymeric fiber-forming materials are non-conductive resins having a volume resistivity of 10^{14} ohm-centimeters or greater at room temperature (22° C). Preferably, the volume resistivity is about 10^{16} ohm-centimeters or greater. Resistivity of the polymeric fiber-forming material may be measured according to standardized test ASTM D 257-93. The polymeric fiber-forming material also preferably is substantially free from components such as antistatic agents that could significantly increase electrical conductivity or otherwise interfere with the fiber's ability to accept and hold electrostatic charges. Some examples of polymers which may be used in chargeable

webs include thermoplastic polymers containing polyolefins such as polyethylene, polypropylene, polybutylene, poly(4-methyl-1-pentene) and cyclic olefin copolymers, and combinations of such polymers. Other polymers which may be used but which may be difficult to charge or which may lose charge rapidly include polycarbonates, block 5 copolymers such as styrene-butadiene-styrene and styrene-isoprene-styrene block copolymers, polyesters such as polyethylene terephthalate, polyamides, polyurethanes, and other polymers that will be familiar to those skilled in the art. The fibers preferably are prepared from poly-4-methyl-1 pentene or polypropylene. Most preferably, the fibers are prepared from polypropylene homopolymer because of its ability to retain electric charge, 10 particularly in moist environments.

15 [0078] Electric charge can be imparted to the disclosed nonwoven webs in a variety of ways. This may be carried out, for example, by contacting the web with water as disclosed in U.S. Patent No. 5,496,507 to Angadjivand et al., corona-treating as disclosed in U.S. Patent No. 4,588,537 to Klasse et al., hydrocharging as disclosed, for example, in U.S. Patent No. 5,908,598 to Rousseau et al., plasma treating as disclosed in U.S. Patent No. 6,562,112 B2 to Jones et al. and U.S. Patent Application Publication No. US2003/0134515 A1 to David et al., or combinations thereof.

20 [0079] Additives may be added to the polymer to enhance the web's filtration performance, electret charging capability, mechanical properties, aging properties, coloration, surface properties or other characteristics of interest. Representative additives include fillers, nucleating agents (e.g., MILLAD™ 3988 dibenzylidene sorbitol, commercially available from Milliken Chemical), electret charging enhancement additives (e.g., tristearyl melamine, and various light stabilizers such as CHIMASSORB™ 119 and CHIMASSORB 944 from Ciba Specialty Chemicals), cure initiators, stiffening agents 25 (e.g., poly(4-methyl-1-pentene)), surface active agents and surface treatments (e.g., fluorine atom treatments to improve filtration performance in an oily mist environment as described in U.S. Patent Nos. 6,398,847 B1, 6,397,458 B1, and 6,409,806 B1 to Jones et al.). The types and amounts of such additives will be familiar to those skilled in the art. For example, electret charging enhancement additives are generally present in an amount 30 less than about 5 wt. % and more typically less than about 2 wt. %.

[0080] The disclosed nonwoven webs may be formed into cup-shaped molded respirators using methods and components that will be familiar to those having ordinary

skill in the art. The disclosed molded respirators may if desired include one or more additional layers other than the disclosed monolayer matrix. For example, inner or outer cover layers may be employed for comfort or aesthetic purposes and not for filtration or stiffening. Also, one or more porous layers containing sorbent particles may be employed 5 to capture vapors of interest, such as the porous layers described in U.S. Patent Application Serial No. 11/431,152 filed May 8, 2006 and entitled PARTICLE- CONTAINING FIBROUS WEB, the entire disclosure of which is incorporated herein by reference. Other layers (including stiffening layers or stiffening elements) may be included if desired even though not required to provide a molded respirator having the 10 recited Deformation Resistance **DR** value.

15 [0081] It may be desirable to monitor flat web properties such as basis weight, web thickness, solidity, EFD, Gurley Stiffness, Taber Stiffness, pressure drop, initial % NaCl penetration, % DOP penetration or the Quality Factor **QF**, and to monitor molded matrix properties such as King Stiffness, Deformation Resistance **DR** or pressure drop. Molded matrix properties may be evaluated by forming a test cup-shaped matrix between mating male and female halves of a hemispherical mold having a 55mm radius and a 310 cm³ volume.

20 [0082] EFD may be determined (unless otherwise specified) using an air flow rate of 32 L/min (corresponding to a face velocity of 5.3 cm/sec), using the method set forth in Davies, C. N., "The Separation of Airborne Dust and Particles", Institution of Mechanical Engineers, London, Proceedings 1B, 1952.

25 [0083] Gurley Stiffness may be determined using a Model 4171E GURLEY™ Bending Resistance Tester from Gurley Precision Instruments. Rectangular 3.8 cm x 5.1 cm rectangles are die cut from the webs with the sample long side aligned with the web transverse (cross-web) direction. The samples are loaded into the Bending Resistance Tester with the sample long side in the web holding clamp. The samples are flexed in both directions, *viz.*, with the test arm pressed against the first major sample face and then against the second major sample face, and the average of the two measurements is recorded as the stiffness in milligrams. The test is treated as a destructive test and if 30 further measurements are needed fresh samples are employed.

[0084] Taber Stiffness may be determined using a Model 150-B TABER™ stiffness tester (commercially available from Taber Industries). Square 3.8 cm x 3.8 cm sections

are carefully vivisected from the webs using a sharp razor blade to prevent fiber fusion, and evaluated to determine their stiffness in the machine and transverse directions using 3 to 4 samples and a 15° sample deflection.

[0085] Percent penetration, pressure drop and the filtration Quality Factor **QF** may be determined using a challenge aerosol containing NaCl or DOP particles, delivered (unless otherwise indicated) at a flow rate of 85 liters/min, and evaluated using a TSI™ Model 8130 high-speed automated filter tester (commercially available from TSI Inc.). For NaCl testing, the particles may be generated from a 2% NaCl solution to provide an aerosol containing particles with a diameter of about 0.075 µm at an airborne concentration of about 16-23 mg/m³, and the Automated Filter Tester may be operated with both the heater and particle neutralizer on. For DOP testing, the aerosol may contain particles with a diameter of about 0.185 µm at a concentration of about 100 mg/m³, and the Automated Filter Tester may be operated with both the heater and particle neutralizer off. The samples may be loaded to the maximum NaCl or DOP particle penetration at a 13.8 cm/sec face velocity for flat web samples or an 85 liters/min flowrate for molded matrices before halting the test. Calibrated photometers may be employed at the filter inlet and outlet to measure the particle concentration and the % particle penetration through the filter. An MKS pressure transducer (commercially available from MKS Instruments) may be employed to measure pressure drop (ΔP, mm H₂O) through the filter. The equation:

$$QF = \frac{-\ln\left(\frac{\% \text{Particle Penetration}}{100}\right)}{\Delta P}$$

may be used to calculate **QF**. Parameters which may be measured or calculated for the chosen challenge aerosol include initial particle penetration, initial pressure drop, initial Quality Factor **QF**, maximum particle penetration, pressure drop at maximum penetration, and the milligrams of particle loading at maximum penetration (the total weight challenge to the filter up to the time of maximum penetration). The initial Quality Factor **QF** value usually provides a reliable indicator of overall performance, with higher initial **QF** values indicating better filtration performance and lower initial **QF** values indicating reduced filtration performance.

[0086] Deformation Resistance **DR** may be determined using a Model TA-XT2i/5 Texture Analyzer (from Texture Technologies Corp.) equipped with a 25.4 mm diameter polycarbonate test probe. A molded test matrix (prepared as described above in the definition for King Stiffness) is placed facial side down on the Texture Analyzer stage.

5 Deformation resistance is measured by advancing the polycarbonate probe downward at 10 mm/sec against the center of the molded test matrix over a distance of 25 mm. Using five molded test matrix samples, the maximum (peak) force is recorded and averaged to establish the **DR** value.

10 [0087] The invention is further illustrated in the following illustrative examples, in which all parts and percentages are by weight unless otherwise indicated.

Example 1

[0088] Four webs were prepared using an apparatus as shown in **Fig. 2** through **Fig. 5** from polypropylene meltspun fibers and polypropylene meltblown microfibers. The 15 meltspun fibers were prepared from TOTALTM 3860 polypropylene having a melt flow index of 70 from Total Petrochemicals, to which was added 0.75 wt. % of CHIMASSORB 944 hindered-amine light stabilizer from Ciba Specialty Chemicals. The extrusion head 10 had 16 rows of orifices, with 32 orifices in a row, making a total of 512 orifices. The orifices were arranged in a square pattern (meaning that orifices were in alignment 20 transversely as well as longitudinally, and equally spaced both transversely and longitudinally) with 0.25 inch (6.4 mm) spacing. The polymer was fed to the extrusion head at different rates, noted below in Table 1A, where the polymer was heated to a temperature of 235° C (455° F). Two quenching air streams (**18b** in **Fig. 2**; stream **18a** was not employed) were used. A first, upper quenching air stream was supplied from 25 quench boxes 16 in. (406 mm) in height at an approximate face velocity of 83 ft/min (0.42 m/sec) for Run Nos. 1-1 through 1-3 and 93 ft/min (0.47 m/sec) for Run No. 1-4, at a temperature of 45° F (7.2° C). A second, lower quenching air stream was supplied from quench boxes 7.75 in. (197 mm) in height at an approximate face velocity of 31 ft/min (0.16 m/sec) for Run Nos. 1-1 through 1-3 and 43 ft/min (0.22 m/sec) for Run No. 1-4, at 30 ambient room temperature. A movable-wall attenuator like that shown in U.S. Patent No. 6,607,624 B2 (Berrigan et al.) was employed, using an air knife gap (**30** in Berrigan et al.) of 0.030 in. (0.76 mm), air fed to the air knife at a pressure of 14 psig (0.1 MPa), an

attenuator top gap width of 0.20 in. (5 mm), an attenuator bottom gap width of 0.185 in. (4.7 mm), and 6 in. (152 mm) long attenuator sides (36 in Berrigan et al.). The distance (17 in **Fig. 2**) from the extrusion head 10 to the attenuator 16 was 31 in. (78.7 cm), and the distance (524 plus 522 in **Fig. 3**) from the attenuator 16 to the collection belt 19 was 27 in. (68.6 cm). The meltspun fiber stream was deposited on the collection belt 19 at a width of about 14 in. (about 36 cm). Collection belt 19 was made from 20-mesh stainless steel and moved at a rate of 29 ft/min (about 8.8 meters/min) for Run Nos. 1-1 through 1-3 and 47 ft/min (about 14.3 meters/min) for Run No. 1-4. Based on similar samples, the meltspun fibers of Run Nos. 1-1 through 1-3 were estimated to have a median fiber diameter of approximately 11 μ m. The meltspun fibers of Run No. 1-4 were measured with scanning electron microscopy (SEM) and found to have a median diameter (44 fibers measured) of 15 μ m.

[0089] The meltblown fibers were prepared from TOTAL 3960 polypropylene having a melt flow index of 350 from Total Petrochemicals, to which was added 0.75wt. % CHIMASSORB 944 hindered-amine light stabilizer. The polymer was fed into a drilled-orifice meltblowing die (504 in **Fig. 2** and **Fig. 3**) having a 10-inch-wide (254 mm) nosetip, with twenty-five 0.015 in. diameter (0.38 mm) orifices per inch (one orifice per mm), at a rate of 10 pounds per hour (4.54 kg per hour). The die temperature was 325° C (617° F) and the primary air stream temperature was 393° C (740° F). The flow of air in the primary air stream was estimated to be about 250 scfm (7.1 standard m^3 / min). The relationship of the meltblowing die to the spunbond fiber stream 1 was as follows: the distance 520 was 4 in. (about 10 cm); the distance 522 was 8.5 in. (about 22 cm); the distance 524 was 19 in. (about 48 cm); and the angle θ was 20°. The meltblown fiber stream was deposited on the collection belt 19 at a width of about 12 in. (about 30 cm). The meltblown fibers of Run No. 1-4 were measured with SEM and found to have a median diameter (270 fibers measured) of 1.13 μ m. The meltblown fibers of Run Nos. 1-1 through 1-3 were assumed to have the same fiber sizes as the meltblown fibers of Run No. 1-4 since they all were produced using the same meltblowing process conditions.

[0090] The vacuum under collection belt 19 was estimated to be in the range of 6-12 in. H_2O (1.5-3 kPa). The region 215 of the plate 211 had 0.062-inch-diameter (1.6 mm) openings in a staggered spacing resulting in 23% open area; the web hold-down region 216 had 0.062-inch-diameter (1.6 mm) openings in a staggered spacing resulting in 30 %

open area; and the heating/bonding region **217** and the quenching region **218** had 0.156-inch-diameter (4.0 mm) openings in a staggered spacing resulting in 63% open area. Air was supplied through the conduits **207** at a rate sufficient to present 500 ft.³/min (about 14.2 m³/min) of air at the slot **209**, which was 1.5 in. by 22 in. (3.8 by 55.9 cm). The 5 bottom of the plate **208** was $\frac{3}{4}$ to 1 in. (1.9-2.54 cm) from the collected web **20** on collector **19**. The temperature of the air passing through the slot **209** (as measured by open junction thermocouples at the entrance of the conduits **207** to the housing **201**) is given in Table 1A for each web.

[0091] Essentially 100% of the meltblown fibers were captured within the meltspun stream. The web of Run No. 1-4 was cross-sectioned and microfibers were found to be distributed through the full thickness of the web. At the polymer flow rates reported in Table 1A, the webs of Run Nos. 1-1 through 1-3 had a ratio of about 64 parts by weight of meltspun fibers to 36 parts by weight meltblown fibers, and the web of Run No. 1-4 had a ratio of about 82 parts by weight of meltspun fibers to 18 parts by weight meltblown 10 fibers.

[0092] The web leaving the quenching area **220** was bonded with sufficient integrity to be handled by normal processes and equipment; the web could be wound by normal windup into a storage roll or could be subjected to various operations such as heating and compressing the web over a hemispherical mold to form a molded respirator. Upon 20 microscopic examination the meltspun fibers were found to be bonded at fiber intersections and the meltblown fibers were found to be substantially unmelted and having limited bonding to the meltspun fibers (which could have developed at least in part during mixing of the meltspun and microfiber streams).

[0093] Other web and forming parameters are described below in Table 1A, where the 25 abbreviations “QFH” and “BMF” respectively mean “quenched flow heater” and “meltblown microfibers”.

Table 1A

Run No.	Basis weight, gsm	QFH temp, °C	Meltspun rate, g/h/m	Meltspun rate, lb/hr	BMF rate, lb/in/hr	BMF rate, lb/hr	BMF% mass
1-1F	107	155	0.30	20.3	1.00	10.0	36%
1-2F	107	159	0.30	20.3	1.00	10.0	36%
1-3F	107	151	0.30	20.3	1.00	10.0	36%
1-4F	110	147	0.80	54.2	1.00	10.0	18%

[0094] The four collected webs were hydrocharged with deionized water according to the technique taught in U. S. Patent No. 5,496,507 (Angadjivand et al. '507) and allowed to dry by hanging on a line overnight at ambient conditions. The charged flat webs were evaluated using a DOP challenge aerosol as described above to determine the flat web properties shown below in Table 1B:

Table 1B

Run No.	Basis Wt., gsm	EFD, μm	Thickness, mm	Pressure Drop, mm H_2O	Initial Penetration, % DOP	Quality Factor, 1/ mm H_2O (DOP)
1-1F	107	8.0	-	13.66	0.48	0.39
1-2F	107	8.0	1.05	11.52	1.73	0.35
1-3F	107	8.0	-	14.42	0.36	0.39
1-4F	110	11.3	1.14	5.00	4.34	0.63

10

[0095] The webs were next formed into smooth, cup-shaped molded respirators using a heated, hydraulic molding press and a 0.20 in. (5.1 mm) mold gap. The webs were molded with the collector side of the web (the side of the web that directly contacted the collector surface during web collection) both up and down, to examine whether fiber intermixing or the collection surface affected the loading behavior. The resulting cup-shaped molded matrices had an approximate external surface area of 145 cm^2 and good stiffness as evaluated manually. A molded respirator made from the Run No. 1-2F web was evaluated to determine its King Stiffness value, and found to have a King Stiffness of 0.68 N (0.152 lb). Based on similar samples and the data in Example 10 and Fig. 23

(discussed below), a modest basis weight increase of about 20 to 50 gsm should increase the molded matrix King Stiffness to more than 1 N.

[0096] The molded matrices were load tested using a NaCl challenge aerosol as described above to determine the initial pressure drop and initial % NaCl penetration, 5 maximum pressure drop and maximum % NaCl penetration, milligrams of NaCl at maximum penetration (the total weight challenge to the filter up to the time of maximum penetration) and the Quality Factor **QF**. A commercial multilayer N95 respirator was tested for comparison purposes. The results are shown below in Table 1CB:

Table 1C

Run No.	Flat Web of Run No.	Run Collector Side	Mold temp, °C	Mold Time, sec	Initial Pressure Drop, mm H ₂ O at 85 liters/min	Initial NaCl Penetration, %	Initial NaCl Penetration, %	Maximum Pressure Drop, mm H ₂ O at 85 liters/min	Maximum NaCl Penetration, %	Maximum NaCl Penetration, mg	Challenge Factor, QF (NaCl)
1-5M	1-1F	Down	135	5	9.4	0.034	34.3	0.25	75.2	0.85	
1-6M	1-1F	Up	121	10	12.0	0.075	15.6	0.08	5.1	0.60	
1-7M	1-1F	Up	121	5	11.9	0.094	17.5	0.12	7.3	0.59	
1-8M	1-1F	Up	135	5	11.8	0.117	15.7	0.13	4.7	0.57	
1-9M	1-1F	Up	135	5	10.8	0.097	13.8	0.10	4.8	0.64	
1-10M	1-2F	Down	135	5	5.9	0.066	9.6	0.29	91.8	1.24	
1-11M	1-2F	Down	135	5	7.9	0.295	13.9	1.06	25.7	0.74	
1-12M	1-2F	Down	135	5	5.1	0.092	7.2	0.16	63.0	1.37	
1-13M	1-2F	Down	135	5	8.4	0.150	15.5	0.62	26.8	0.77	
1-14M	1-2F	Up	121	5	8.5	0.226	12.3	0.34	6.6	0.72	
1-15M	1-2F	Up	121	5	9.2	0.305	13.8	0.44	6.6	0.63	
1-16M	1-2F	Up	135	5	9.7	0.723	12.8	0.81	4.4	0.51	
1-17M	1-2F	Up	135	5	9.1	0.515	12.8	0.55	6.6	0.58	
1-18M	1-3F	Down	135	5	11.9	0.065	21.7	0.17	28.1	0.62	
1-19M	1-3F	Up	121	10	13.8	0.048	16.2	0.06	2.9	0.55	
1-20M	1-3F	Up	121	5	12.0	0.177	15.1	0.19	4.4	0.53	
1-21M	1-3F	Up	135	5	15.1	0.113	15.1	0.11	-	0.45	
1-22M	1-3F	Up	135	5	13.4	0.095	17.6	0.10	5.0	0.52	
1-23M	1-4F	Down	135	5	4.2	0.520	9.0	4.45	41.9	1.25	
1-24M	1-4F	Up	135	5	4.3	0.699	9.4	1.73	17.4	1.15	
1-25	Commercial Multilayer N95 respirator				6.3	0.104	8.5	0.43	167.5	0.86	

[0097] As the results in Table 1C show, many of the samples start with pressure drop less than 10 mm H₂O and experience maximum penetration < 5%, and some of the samples start with pressure drop less than 10 mm H₂O and experience maximum penetration < 1%. It is also noted that some of the samples (e.g., Run Nos. 1-10M through 5 1-13M) are replicates of one another which exhibited moderate variability between replicates; the variability is believed to be due to variations in setting the mold gap during the respirator forming process. The most preferred embodiments in Table 1C are Run Nos. 1-10M, 1-12M and 1-23M. Run Nos. 1-10M and 1-12M exhibit penetration and pressure drop loading results very similar to the commercial respirator. Run No. 1-23M 10 was made from a web formed at a significantly higher collector speed, has low initial pressure drop, and has maximum penetration less than 5%. Other preferred embodiments in Table 1C include Run Nos. 1-5M, 1-11M, 1-13M and 1-24M, because they exhibit initial pressure drop of less than 10 mm H₂O, maximum penetrations of less than 5%, and moderate NaCl challenge at maximum penetration (meaning that they do not plug up too 15 rapidly).

Example 2

[0098] Using a meltblowing die like that shown in **Fig. 8** and procedures like those described in Wente, Van A. "superfine Thermoplastic Fiber", Industrial and Engineering 20 Chemistry, vol. 48. No. 8, 1956, pp 1342-1346 and Naval Research Laboratory Report 111437, Apr. 15, 1954, four monocomponent monolayer meltblown webs were formed from TOTAL 3960 polypropylene to which had been added 1 % tristearyl melamine as an electret charging additive. The polymer was fed to a Model 20 DAVIS STANDARD™ 2 in. (50.8mm) single screw extruder from the Davis Standard Division of Crompton & 25 Knowles Corp. The extruder had a 20/1 length/diameter ratio and a 3/1 compression ratio. A Zenith 10 cc/rev melt pump metered the flow of polymer to a 10 in. (25.4 cm) wide drilled orifice meltblowing die whose original 0.012 in. (0.3 mm) orifices had been modified by drilling out every 21st orifice to 0.025 in. (0.6 mm), thereby providing a 20:1 30 ratio of the number of smaller size to larger size holes and a 2:1 ratio of larger hole size to smaller hole size. The line of orifices had 25 holes/inch (10 holes/cm) hole spacing. Heated air attenuated the fibers at the die tip. The airknife employed a 0.010 in. (0.25 mm) positive set back and a 0.030 in. (0.76 mm) air gap. No to moderate vacuum was

pulled through a medium mesh collector screen at the point of web formation. The polymer output rate from the extruder was varied from 1.0 to 4.0 lbs/in/hr (0.18 to 0.71 kg/cm/hr), the DCD (die-to-collector distance) was varied from 12.0 to 25.0 in. (30.5 to 63.5 cm) and the air pressure was adjusted as needed to provide webs with a basis weight and EFD as shown below in Table 1A. The webs were hydrocharged with distilled water according to the technique taught in U. S. Patent No. 5,496,507 (Angadivand et al. '507) and allowed to dry. Set out below in Table 2A are the Run Number, basis weight, EFD, web thickness, initial pressure drop, initial NaCl penetration and Quality Factor **QF** for each web at a 13.8 cm/sec face velocity.

10

Table 2A

Run No.	Basis Wt., gsm	EFD, μm	Thickness, mm	Pressure Drop, mm H_2O	Initial Penetration, %	Quality Factor, 1/ mm H_2O
2-1F	240	14.6	3.3	6.10	0.368	0.92
2-2F	243	18	2.54	4.43	1.383	0.97
2-3F	195	18.4	2.16	3.93	1.550	1.06
2-4F	198	14.6	2.74	5.27	0.582	0.98

[0099] The Table 2A webs were next molded to form cup-shaped molded matrices for use as personal respirators. The top mold was heated to about 235° F (113° C), the bottom mold was heated to about 240° F (116° C), a mold gap of 0.050 in. (1.27 mm) was employed and the web was left in the mold for about 9 seconds. Upon removal from the mold, the matrix retained its molded shape. Set out below in Table 2B are the Run Number, King Stiffness, initial pressure drop, and the initial (and for Run Nos. 2-1M and 2-4M, the maximum loading) NaCl penetration values for the molded matrices.

Table 2B

Run No.	King Stiffness, N	Pressure Drop, mm H ₂ O	Initial Penetration, %	Maximum Loading Penetration, %
2-1M	1.87	7.37	0.269	2.35
2-2M	2.89	4.97	0.541	-
2-3M	2.00	3.93	0.817	-
2-4M	1.60	5.77	0.348	3.95

[00100] **Fig. 12** is a graph showing % NaCl penetration and pressure drop for the molded matrices of Run Nos. 2-1M and 2-4M. Curves **A** and **B** respectively are the % NaCl penetration results for Run Nos. 2-1M and 2-4M, and Curves **C** and **D** respectively are the pressure drop results for Run Nos. 2-1M and 2-4M. **Fig. 12** shows that the molded matrices of Run Nos. 2-1M and 2-4M provide monocomponent, monolayer molded matrices which pass the N95 NaCl loading test of 42 C.F.R. Part 84.

10

Example 3

[00101] Using the general method of Example 2, webs were made from 100% TOTAL 3960 polypropylene and then 1) corona charged or 2) corona and hydrocharged with distilled water. Set out below in Table 3A are the Run Number, charging technique, basis weight, EFD, web thickness, initial pressure drop, initial NaCl penetration and Quality Factor **QF** for each web.

Table 3A

Run No.	Charging Technique	Basis Wt., gsm	EFD, μ m	Thickness, mm	Pressure Drop, mm H ₂ O	Initial Penetration, %	Quality Factor, 1/ mm H ₂ O
3-1F	Corona	237	14.2	3.23	6.70	32.4	0.17
3-2F	Corona/ Hydrocharged	237	14.2	3.23	6.77	13.2	0.30
3-3F	Corona	197	13.3	2.82	5.73	28.7	0.22
3-4F	Corona/ Hydrocharged	197	13.3	2.82	5.93	6.3	0.47

[00102] The Table 3A webs were next molded using the method of Example 2 to form cup-shaped molded matrices for use as personal respirators. Set out below in Table 3B are the Run Number, King Stiffness, initial pressure drop, and initial NaCl penetration for the molded matrices.

5

Table 3B

Run No.	King Stiffness, N	Pressure Drop, mm H ₂ O	Initial Penetration, %
3-1M	1.82	8.37	16.867
3-2M	1.82	10.27	7.143
3-3M	1.65	6.47	16.833
3-4M	1.65	7.47	5.637

[00103] The data in Table 3B show that these molded matrices had greater penetration than the Example 2 molded matrices but that they also had appreciable King Stiffness.

10

Example 4

[00104] Using the method of Example 2, webs were made from TOTAL 3960 polypropylene to which had been added 0.8 % CHIMASSORB 944 hindered amine light stabilizer from Ciba Specialty Chemicals as an electret charging additive and then hydrocharged with distilled water. Set out below in Table 4A are the Run Number, basis weight, EFD, web thickness, initial pressure drop, initial NaCl penetration and Quality Factor **QF** for each web.

15

Table 4A

Run No.	Basis Wt., gsm	EFD, μ m	Thickness, mm	Pressure Drop, mm H ₂ O	Initial Penetration, %	Quality Factor, 1/ mm H ₂ O
4-1F	246	17.9	2.95	4.27	0.811	1.13
4-2F	203	18	2.41	3.37	2.090	1.15

20

[00105] The Table 4A webs were next molded using the method of Example 2 to form cup-shaped molded matrices for use as personal respirators. Set out below in Table 4B are the Run Number, King Stiffness, initial pressure drop, and initial NaCl penetration for the molded matrices.

5

Table 4B

Run No.	King Stiffness, N	Pressure Drop, mm H ₂ O	Initial Penetration, %
4-1M	2.89	5.30	0.591
4-2M	1.96	3.90	1.064

[00106] The data in Table 4B show that these molded matrices had greater penetration than the Example 2 molded matrices but that they also had appreciable King Stiffness.

10

Example 5

[00107] Using the method of Example 4, webs were made from TOTAL 3868 polypropylene having a melt flow index of 37 from Total Petrochemicals to which had been added 0.8 % CHIMASSORB 944 hindered amine light stabilizer from Ciba Specialty Chemicals as an electret charging additive and then hydrocharged with distilled water. Set out below in Table 5A are the Run Number, basis weight, EFD, web thickness, initial pressure drop, initial NaCl penetration and Quality Factor **QF** for each web.

15

Table 5A

Run No.	Basis Wt., gsm	EFD, μ m	Thickness, mm	Pressure Drop, mm H ₂ O	Initial Penetration, %	Quality Factor, 1/ mm H ₂ O
5-1F	243	22.2	2.67	3.13	4.040	1.02
5-2F	196	18.9	2.46	2.73	4.987	1.10

20

[00108] The Table 5A webs were next molded using the method of Example 2 to form cup-shaped molded matrices for use as personal respirators. Set out below in Table 5B are

the Run Number, King Stiffness, initial pressure drop, and initial NaCl penetration for the molded matrices.

Table 5B

Run No.	King Stiffness, N	Pressure Drop, mm H ₂ O	Initial Penetration, %
5-1M	2.14	4.87	0.924
5-2M	1.78	3.43	1.880

5

[00109] The data in Table 5B show that these molded matrices had greater penetration than the Example 2 molded matrices but that they also had appreciable King Stiffness.

Example 6

10 [00110] Using the method of Example 3, webs were made from EXXONTM PP3746G 1475 melt flow rate polypropylene available from Exxon Mobil Corporation and then 1) corona charged or 2) corona and hydrocharged with distilled water. Set out below in Table 6A are the Run Number, charging technique, basis weight, EFD, web thickness, initial pressure drop, initial NaCl penetration and Quality Factor **QF** for each web.

Table 6A

Run No.	Charging Technique	Basis Wt., gsm	EFD, μm	Thickness, mm	Pressure Drop, mm H_2O	Initial Penetration, %	Quality Factor, $1/\text{mm H}_2\text{O}$
6-1F	Corona	247	14.7	4.22	10.63	17.533	0.16
6-2F	Corona/ Hydrocharged	247	14.7	4.22	14.6	7.55	0.18
6-3F	Corona	241	17.9	3.02	6.3	23.533	0.24
6-4F	Corona/ Hydrocharged	241	17.9	3.02	7.53	6.52	0.36
6-5F	Corona	200	14	3.10	7.87	12.667	0.26
6-6F	Corona/ Hydrocharged	200	14	3.10	10.43	7.06	0.25
6-7F	Corona	203	18.3	2.45	4.27	17.333	0.41
6-8F	Corona/ Hydrocharged	203	18.3	2.45	5.2	6.347	0.53

[00111] The Table 6A webs were next molded using the method of Example 2 to form 5 cup-shaped molded matrices for use as personal respirators. Set out below in Table 6B are the Run Number, King Stiffness, initial pressure drop, and initial NaCl penetration for the molded matrices.

Table 6B

Run No.	King Stiffness, N	Pressure Drop, mm H ₂ O	Initial Penetration, %
6-1M	2.05	10.63	17.533
6-2M	2.05	14.60	7.550
6-3M	2.85	6.30	23.533
6-4M	2.85	7.53	6.520
6-5M	1.51	7.87	12.667
6-6M	1.51	10.43	7.060
6-7M	2.05	4.27	17.333
6-8M	2.05	5.20	6.347

[00112] The Run No. 6-8F flat web and 6-8M molded matrix were analyzed using scanning electron microscopy (SEM), at magnifications of 50 to 1,000X made using a 5 LEO VP 1450 electron microscope (from the Carl Zeiss Electron Microscopy Group), operated at 15 kV, 15 mm WD, 0° tilt, and using a gold/palladium-coated sample under high vacuum. **Fig. 13** and **Fig. 14** are photomicrographs of the Run No. 6-8F flat web and the Run No. 6-8M molded matrix. Histograms of fiber count (frequency) vs. fiber size in 10 μm were obtained from SEM images at magnifications of 350 to 1,000X taken from each side of the flat web or matrix. About 150-200 fibers from the SEM image for each side were counted and measured using the UTHSCSA IMAGE TOOL image analysis program 15 from the University of Texas Health Science Center at San Antonio, and then the observations for the two sides were combined. **Fig. 15** and **Fig. 16** are histograms of fiber count (frequency) vs. fiber size in μm for the Run No. 6-8F flat web and the Run No. 6- 8M molded matrix. Further details regarding the fiber size analyses for these webs are 15 shown below in Table 6C:

Table 6C

(Values in μm):	6-8F Flat Web	6-8M Molded Matrix
Mean	5.93	5.67
Std. Dev.	5.36	4.30
Min.	1.39	1.35
Max.	42.62	36.83
Median	4.24	4.44
Mode	4.06	3.94
Fiber Count	324	352

Example 7

[00113] Using the method of Example 2, webs were made from EXXON PP3746G polypropylene to which had been added 1 % trisacryl melamine as an electrical charging additive and then hydrocharged with distilled water. Set out below in Table 7A are the Run Number, basis weight, EFD, web thickness, initial pressure drop, initial NaCl penetration and Quality Factor QF for each web.

10

Table 7A

Run No.	Basis Wt., gsm	EFD, μm	Thickness, mm	Pressure Drop, mm H_2O	Initial Penetration, %	Quality Factor, 1/ mm H_2O
7-1F	247	14.2	3.63	6.20	0.537	0.84
7-2F	204	14.3	3.05	5.77	0.596	0.89

15

[00114] The Table 7A webs were next molded using the method of Example 2 to form cup-shaped molded matrices for use as personal respirators. Set out below in Table 7B are the Run Number, King Stiffness, initial pressure drop, and initial NaCl penetration for the molded matrices.

Table 7B

Run No.	King Stiffness, N	Pressure Drop, mm H ₂ O	Initial Penetration, %	Maximum Loading Penetration, %
7-1M	1.91	12.07	0.282	2.39
7-2M	1.33	9.17	0.424	5.14

[00115] **Fig. 17** is a graph showing % NaCl penetration and pressure drop for the molded matrix of Run No. 7-1M. Curves **A** and **B** respectively are the % NaCl penetration and pressure drop results. **Fig. 17** and the data in Table 7B show that the molded matrix of Run No. 7-1M provides a monocomponent, monolayer molded matrix which passes the N95 NaCl loading test of 42 C.F.R. Part 84.

Example 8

[00116] Using the method of Example 4, webs were made from EXXON PP3746G polypropylene to which had been added 0.8 % CHIMASSORB 944 hindered amine light stabilizer from Ciba Specialty Chemicals as an electret charging additive and then hydrocharged with distilled water. Set out below in Table 8A are the Run Number, basis weight, EFD, web thickness, initial pressure drop, initial NaCl penetration and Quality Factor **QF** for each web.

Table 8A

Run No.	Basis Wt., gsm	EFD, μ m	Thickness, mm	Pressure Drop, mm H ₂ O	Initial Penetration, %	Quality Factor, 1/ mm H ₂ O
8-1F	244	14.4	3.86	6.50	0.129	1.02
8-2F	239	18.5	3.02	4.20	0.883	1.13
8-3F	204	14.6	3.10	5.67	0.208	1.09
8-4F	201	18.7	2.46	3.43	1.427	1.24

[00117] The Table 8A webs were next molded using the method of Example 2 to form cup-shaped molded matrices for use as personal respirators. Set out below in Table 8B are

the Run Number, King Stiffness, initial pressure drop, and the initial (and, for Run No. 8-3M, the maximum loading) NaCl penetration values for the molded matrices.

Table 8B

Run No.	King Stiffness, N	Pressure Drop, mm H ₂ O	Initial Penetration, %	Maximum Loading Penetration, %
8-1M	2.49	12.07	0.057	
8-2M	2.89	6.87	0.485	
8-3M	1.65	8.83	0.153	4.89
8-4M	1.87	4.73	0.847	

5

[00118] The data in Table 8B show that at least the molded matrix of Run No. 8-3M provides a monocomponent, monolayer molded matrix which passes the N95 NaCl loading test of 42 C.F.R. Part 84.. The Run No. 8-1M, 8-2M and 8-4M molded matrices were not tested to determine their maximum loading penetration.

10

Example 9

[00119] Using the method of Example 3, webs were made from EXXON PP3746G polypropylene to which had been added 1 % tristearyl melamine as an electret charging additive and then hydrocharged with distilled water. The resulting flat webs were formed into molded respirators whose other layers were like those in U.S. Patent Nos. 6,041,782 (Angadjivand et al. '782) and 6,923,182 B2 (Angadjivand et al. '183). The respirators included a blown microfiber outer cover layer web, a PE85-12 thermoplastic nonwoven adhesive web from Bostik Findley, the flat web of this Example 9, another PE85-12 thermoplastic nonwoven adhesive web and another blown microfiber inner cover layer web. The layers were formed into a cup-shaped respirator using a mold like that described above but having a ribbed front surface. The resulting molded respirators were evaluated according to ASTM F-1862-05, "Standard Test Method for Resistance of Medical Face Masks to Penetration by Synthetic Blood (Horizontal Projection of Fixed Volume at a Known Velocity)", at test pressures of 120 mm Hg and 160 mm Hg. The 120 mm Hg test employed a 0.640 sec. valve time and a 0.043 MPa tank pressure. The 160 mm Hg test

15

20

25

employed a 0.554 sec. valve time and a 0.052 MPa tank pressure. The respirators passed the test at both test pressures. Set out below in Table 9 are the Run Number, and the basis weight, EFD, thickness, initial pressure drop and initial NaCl penetration for the molded monocomponent web.

5

Table 9

Run No.	Basis Wt., gsm	EFD, μm	Flat Web Thickness, mm	Pressure Drop, mm H_2O after molding	Initial Penetration, %
9-1M	199	11.9	3.22	8.7	0.269
9-2M	148	12.2	2.4	9.6	0.75

Example 10

10 [00120] Using the method of Comparative Example 3 of U.S. Patent No. 6,319,865 B1 (Mikami), webs were prepared using a 10 in. (25.4 cm) wide drilled orifice die whose tip had been modified to provide a row of larger and smaller sized orifices. The larger orifices had a 0.6 mm diameter (Da), the smaller orifices had a 0.4 mm diameter (Db), the orifice diameter ratio R (Da/Db) was 1.5, there were 5 smaller orifices between each pair of larger orifices and the orifices were spaced at 30 orifices/in. (11.8 orifices/cm). A single screw extruder with a 50 mm diameter screw and a 10cc melt pump were used to supply the die with 100% TOTAL 3868 polypropylene. The die also had a 0.20 mm air slit width, a 60° nozzle edge angle, and a 0.58 mm air lip opening. A fine mesh screen moving at 1 to 50 m/min was employed to collect the fibers. The other operating 15 parameters are shown below in Table 10A:

15

20

Table 10A

Parameter	Value
Polymer melt flow rate	37 MFR
Extruder barrel temp	320° C
Screw speed	8 rpm
Polymer flow rate	4.55 kg/hr
Die temp	300° C
DCD	200 mm
Die Air temp	275° C
Die Air rate	5 Nm ³ /min
Larger Orifice diameter Da	0.6 mm
Smaller Orifice diameter Db	0.4 mm
Orifice Diameter ratio R (Da/Db)	1.5
Number of smaller orifices per larger orifice	5
Average Fiber Diameter, μm	2.44
St Dev Fiber Diameter, μm	1.59
Min Fiber Diameter, μm	0.65
Max Fiber Diameter, μm	10.16
EFD, μm	9.4
Shot	Many

[00121] Using the above-mentioned operating parameters, a shot-free web was not obtained. Had shot-free web been formed, the observed Effective Fiber Diameter value would likely have been less than the 9.4 μm value reported above. Shot-containing webs were nonetheless prepared at four different basis weights, namely; 60, 100, 150 and 200 gsm, by varying the collector speed.

[00122] **Fig. 18** is a histogram of mass fraction vs. fiber size in μm for the 200 gsm web. The web exhibited modes at 2 and 7 μm . Local peaks also appeared at 4 and 10 μm . The 4 μm peak did not have a larger height than fiber sizes 2 μm smaller and 2 μm larger and did not represent a mode, and the 10 μm peak did not have a larger height than fiber

sizes 2 μm smaller and did not represent a mode. As shown in **Fig. 18**, the web did not have a larger size fiber mode greater than 10 μm .

[00123] The 200 gsm web was molded using the general method of Example 2 to form a cup-shaped molded matrix. The heated mold was closed to a 0.5 mm gap and an 5 approximate 6 second dwell time was employed. The molded matrix was allowed to cool, and found to have a King Stiffness value of 0.64 N.

[00124] It was determined that shot could be reduced by employing a higher melt flow index polymer and increasing the DCD value. Using 100% TOTAL 3860X 100 melt flow rate polypropylene available from Total Petrochemicals and the operating parameters 10 shown below in Table 10B, webs with substantially reduced shot were formed at 60, 100, 150 and 200 gsm by varying the collector speed. The resulting webs had considerably more fibers with a diameter greater than 10 μm than was the case for the webs produced using the Table 10A operating parameters.

Table 10B

Parameter	Value
Polymer melt flow rate	100 MFR
Extruder barrel temp	320° C
Screw speed	8 rpm
Polymer flow rate	4.55 kg/hr
Die temp	290° C
DCD	305 mm
Die Air temp	270° C
Die Air rate	4.4 Nm ³ /min
Larger Orifice diameter Da	0.6 mm
Smaller Orifice diameter Db	0.4 mm
Orifice Diameter ratio R (Da/Db)	1.5
Number of smaller orifices per larger orifice	5
Average Fiber Diameter, μm	3.82
St Dev Fiber Diameter, μm	2.57
Min Fiber Diameter, μm	1.33
Max Fiber Diameter, μm	20.32
EFD, μm	13.0
Shot	Not Many

[00125] **Fig. 19** is a histogram of mass fraction vs. fiber size in μm for the 200 gsm web. The web exhibited modes at 4, 10, 17 and 22 μm . Local, non-modal peaks also 5 appeared at 8 and 13 μm . As shown in **Fig. 19**, the web had larger size fiber modes greater than 10 μm . **Fig. 20** is a histogram of fiber count (frequency) vs. fiber size in μm for the same 200 gsm web.

[00126] The 200 gsm web was molded using the general method of Example 2 to form a cup-shaped molded matrix. The heated mold was closed to a 0.5 mm gap and an 10 approximate 6 second dwell time was employed. The molded matrix was allowed to cool, and found to have a King Stiffness value of 0.98 N.

[00127] It was also determined that shot could be reduced by employing a die with a greater number of smaller orifices per larger orifice than the Mikami et al. dies. Webs

with minimal shot were also produced at 60, 100, 150 and 200 gsm using both TOTAL 3868 and TOTAL 3860X polymers and a different 10 in. (25.4 cm) wide drilled orifice die. The die tip for this latter die had been modified to provide a row of larger and smaller sized orifices with a greater number of smaller orifices between larger orifices than
5 disclosed in Mikami et al. The larger orifices had a 0.63 mm diameter (Da), the smaller orifices had a 0.3 mm diameter (Db), the orifice diameter ratio R (Da/Db) was 2.1, there were 9 smaller orifices between each pair of larger orifices and the orifices were spaced at 25 orifices/in. (9.8 orifices/cm). A single screw extruder with a 50 mm diameter screw and a 10cc melt pump were used to supply the die with polymer. The die also had a 0.76
10 mm air slit width, a 60° nozzle edge angle, and a 0.86 mm air lip opening. A fine mesh screen moving at 1 to 50 m/min and the operating parameters shown below in Table 10C were employed to collect webs at 60, 100, 150 and 200 gsm:

Table 10C

Parameter	Value	
Polymer melt flow rate	37 MFR	100 MFR
Extruder barrel temp	320° C	320° C
Screw speed	9 rpm	10 rpm
Polymer flow rate	4.8 kg/hr	4.8 kg/hr
Die temp	295° C	290° C
DCD	395 mm	420 mm
Die Air temp	278° C	274° C
Die Air rate	4.8 Nm ³ /min	4.8 Nm ³ /min
Larger Orifice diameter Da	0.63 mm	0.63 mm
Smaller Orifice diameter Db	0.3 mm	0.3 mm
Orifice Diameter ratio R (Da/Db)	2.1	2.1
Number of smaller orifices per larger orifice	9	9
Average Fiber Diameter, μm	2.31	2.11
St Dev Fiber Diameter, μm	4.05	3.12
Min Fiber Diameter, μm	0.17	0.25
Max Fiber Diameter, μm	23.28	23.99
EFD, μm	10.4	11.2
Shot	Not Many	Not Many

[00128] **Fig. 21** is a histogram of mass fraction vs. fiber size in μm for the 200 gsm 100 MFR web. The web exhibited modes at 15, 30 and 40 μm . As shown in **Fig. 21**, the web had a larger size fiber mode greater than 10 μm . **Fig. 22** is a histogram of fiber count (frequency) vs. fiber size in μm for the same 200 gsm web.

[00129] The webs from Table 10A, Table 10B and Table 10C were molded using the general method of Example 2 to form cup-shaped molded matrices. The heated mold was closed to a zero gap for webs with basis weights of 60 and 100 gsm, and closed to a 0.5 mm gap for webs with basis weights of 150 and 200 gsm. An approximate 6 second dwell time was employed. The 200 gsm molded matrices were evaluated to determine King Stiffness, and found to have respective King Stiffness values of 1.2 N (37 MFR polymer)

and 1.6 N (100 MFR polymer). The 60, 100 and 150 gsm webs were below the threshold of measurement and thus were not evaluated to determine King Stiffness.

[00130] The molded matrices from all webs were also evaluated to determine their Deformation Resistance **DR**. The results are shown below in Table 10D:

5

Table 10D

Web made according to operating parameters of:	Polymer Melt Flow Rate	Basis Weight, gsm			
		60	100	150	200
		Deformation Resistance DR, g			
Table 10A	37	7.35	23.56	46.37	75.81
Table 10B	100	7.35	23.59	71.78	108.01
Table 10C	37	20.16	46.21	92.58	134.67
Table 10C	100	12.8	34.58	121.01	187.56

[00131] **Fig. 23** shows a plot of Deformation Resistance **DR** values vs. basis weight. Curves **A**, **B**, **C** and **D** respectively show webs made according to Table 10A (37 gsm, 5:1 10 Db/Da ratio), Table 10B and Table 10C (37 gsm) and Table 10C (100 gsm). As shown in Table 10D and **Fig. 23**, webs made according to Mikami et al. Comparative Example 5 using a polymer like the 40 melt flow rate polymer employed by Mikami et al. had relatively low Deformation Resistance **DR** values. Employing a higher melt flow rate polymer than the Mikami et al. polymer or using a die with a greater number of smaller 15 orifices per larger orifice than the Mikami et al. dies provided webs having significantly greater Deformation Resistance **DR** values.

Example 11

[00132] Using an apparatus like that shown in **Fig. 6** and procedures like those 20 described in Wente, Van A. "superfine Thermoplastic Fiber", Industrial and Engineering Chemistry, vol. 48. No. 8, 1956, pp 1342-1346 and Naval Research Laboratory Report 111437, Apr. 15, 1954, a monocomponent monolayer web was formed using meltblowing of larger fibers and separately prepared smaller size fibers of the same polymeric 15 composition. The larger size fibers were formed using TOTAL 3960 polypropylene (a

350 melt flow rate polymer) to which had been added 0.8 % CHIMASSORB 944 hindered amine light stabilizer as an electret charging additive and 1 % POLYONE™ No. CC10054018WE blue pigment from PolyOne Corp. to aid in assessing the distribution of larger size fibers in the web. The resulting blue polymer blend was fed to a Model 20 5 DAVIS STANDARD™ 2 in. (50.8mm) single screw extruder from the Davis Standard Division of Crompton & Knowles Corp. The extruder had a 60 in. (152 cm) length and a 30/1 length/diameter ratio. The smaller size fibers were formed using EXXON PP3746 polypropylene (a 1475 melt flow rate polymer) available from Exxon Mobil Corporation to which had been added 0.8 % CHIMASSORB 944 hindered amine light stabilizer. This 10 latter polymer was white in color and was fed to a KILLION™ 0.75 in. (19 mm) single screw extruder from the Davis Standard Division of Crompton & Knowles Corp. Using 10 cc/rev ZENITH™ melt pumps from Zenith Pumps, the flow of each polymer was metered to separate die cavities in a 20 in. (50.8 cm) wide drilled orifice meltblowing die employing 0.015 in. (0.38 mm) diameter orifices at a spacing of 25 holes/in. (10 holes/cm) 15 with alternating orifices being fed by each die cavity. Heated air attenuated the fibers at the die tip. The airknife employed a 0.010 in. (0.25 mm) positive set back and a 0.030 in. (0.76 mm) air gap. A moderate vacuum was pulled through a medium mesh collector screen at the point of web formation. The polymer output rate from the extruders was 1.0 lbs/in/hr (0.18 kg/cm/hr), the DCD (die-to-collector distance) was 22.5 in. (57.2 cm) and 20 the collector speed was adjusted as needed to provide webs with a 208 gsm basis weight. A 20 µm target EFD was achieved by changing the extrusion flow rates, extrusion temperatures and pressure of the heated air as needed. By adjusting the polymer rate from each extruder a web with 75% larger size fibers and 25% smaller size fibers was produced. The web was hydrocharged with distilled water according to the technique taught in U. S. 25 Patent No. 5,496,507 (Angadjivand et al. '507) and allowed to dry. Set out below in Table 11A are the Run Number, basis weight, EFD, web thickness, initial pressure drop, initial NaCl penetration and Quality Factor **QF** for the flat web at a 13.8 cm/sec face velocity:

Table 11A

Run No.	Basis Wt., gsm	EFD, μm	Thickness, mm	Pressure Drop, mm H_2O	Initial Penetration, %	Quality Factor, 1/ mm H_2O
11-1F	208	20.3	4.49	2.9	4.1	1.10

[00133] The Table 11A web was next molded to form a cup-shaped molded matrix for use as a personal respirator. The top mold was heated to about 235° F (113° C), the bottom mold was heated to about 240° F (116° C), a mold gap of 0.020 in. (0.51 mm) was employed and the web was left in the mold for about 6 seconds. Upon removal from the mold, the matrix retained its molded shape. Set out below in Table 11B are the Run Number, King Stiffness, initial pressure drop, initial NaCl penetration and maximum loading penetration for the molded matrix.

Table 11B

Run No.	King Stiffness, N	Pressure Drop, mm H_2O	Initial Penetration, %	Maximum Loading Penetration, %
11-1M	1.33	5.2	6.5	17.1

[00134] The data in Table 11B shows that the molded matrix had appreciable stiffness

15

Example 12

[00135] Example 11 was repeated without using the electret charging additive in either the larger size or smaller size fibers. The web was plasma charged according to the technique taught in U. S. Patent No. 6,660,210 (Jones et al.) and then hydrocharged with distilled water according to the technique taught in U. S. Patent No. 5,496,507 (Angadjivand et al. '507) and allowed to dry. Set out below in Table 12A are the Run Number, basis weight, EFD, web thickness, initial pressure drop, initial NaCl penetration and Quality Factor QF for the flat web at a 13.8 cm/sec face velocity:

Table 12A

Run No.	Basis Wt., gsm	EFD, μm	Thickness, mm	Pressure Drop, mm H_2O	Initial Penetration, %	Quality Factor, 1/ mm H_2O
12-1F	204	13.4	4.92	5.2	1.9	0.76

[00136] The Table 12A web was next molded according to the method of Example 11.

5 Upon removal from the mold, the matrix retained its molded shape. Set out below in Table 12B are the Run Number, King Stiffness, initial pressure drop, initial NaCl penetration and maximum loading penetration for the molded matrix.

Table 12B

Run No.	King Stiffness, N	Pressure Drop, mm H_2O	Initial Penetration, %	Maximum Loading Penetration, %
12-1M	1.47	8.6	1.95	3.67

10

[00137] The data in Table 12B shows that this molded matrix provides a monocomponent, monolayer filtration layer which passes the N95 NaCl loading test of 42 C.F.R. Part 84.

15

Example 13

[00138] Using the method of Example 11, a monocomponent monolayer web was formed. The larger size fibers were formed using TOTAL 3868 polypropylene (a 37 melt flow rate polymer) to which had been added 0.8 % CHIMASSORB 944 hindered amine light stabilizer from Ciba Specialty Chemicals as an electret charging additive and 2 %

20

POLYONE™ No. CC10054018WE blue pigment. The smaller size fibers were formed using EXXON PP3746G polypropylene to which had been added 0.8 % CHIMASSORB 944 hindered amine light stabilizer. The polymer output rate from the extruders was 1.5 lbs/in/hr (0.27 kg/cm/hr), the DCD (die-to-collector distance) was 13.5 in. (34.3 cm) and the polymer rate from each extruder was adjusted to provide a web with 65% larger size fibers and 35% smaller size fibers. The web was hydrocharged with distilled water

25

according to the technique taught in U. S. Patent No. 5,496,507 (Angadjivand et al. '507) and allowed to dry. Set out below in Table 13A are the Run Number, basis weight, EFD, web thickness, initial pressure drop, initial NaCl penetration and Quality Factor **QF** for the flat web at a 13.8 cm/sec face velocity:

5

Table 13A

Run No.	Basis Wt., gsm	EFD, μm	Thickness, mm	Pressure Drop, mm H_2O	Initial Penetration, %	Quality Factor, $1/\text{mm H}_2\text{O}$
13-1F	226	15.1	3.76	3.8	1.3	1.06

[00139] The Table 13A web was next molded to form a cup-shaped molded matrix for use as a personal respirator. The top and bottom of the mold were both heated to about 10 230° F (110° C), a mold gap of 0.040 in. (1.02 mm) was employed and the web was left in the mold for about 9 seconds. Upon removal from the mold, the matrix retained its molded shape. Set out below in Table 13B are the Run Number, King Stiffness, initial pressure drop, initial NaCl penetration and maximum loading penetration for the molded matrix.

15

Table 13B

Run No.	King Stiffness, N	Pressure Drop, mm H_2O	Initial Penetration, %	Maximum Loading Penetration, %
13-1M	2.88	3.4	0.053	2.26

[00140] **Fig. 24** is a graph showing % NaCl penetration and pressure drop for the molded respirator of Run No. 13-1M and **Fig. 25** is a similar graph for a commercial N95 20 respirator made from multilayer filtration media. Curves **A** and **B** respectively are the % NaCl penetration and pressure drop results for the Run No. 13-1M respirator, and Curves **C** and **D** respectively are the % NaCl penetration and pressure drop results for the commercial respirator. **Fig. 24** and the data in Table 13B show that the molded matrix of Run No. 13-1M provides a monocomponent, monolayer filtration layer which passes the

N95 NaCl loading test of 42 C.F.R. Part 84, and which may offer longer filter life than the commercial respirator.

[00141] **Fig. 26** and **Fig. 27** respectively are a photomicrograph of and a histogram of fiber count (frequency) vs. fiber size in μm for the Run No. 13-1M molded matrix. Set out below in Table 13C is a summary of the fiber size distribution counts, and set out below in Table 13D is a summary of fiber size statistics for the Run No. 13-1M molded matrix.

Table 13C

Size, μm	Frequency	Cumulative %
0	0	.00%
2.5	30	22.56%
5	46	57.14%
7.5	20	72.18%
10	11	80.45%
12.5	0	80.45%
15	4	83.46%
17.5	2	84.96%
20	3	87.22%
22.5	2	88.72%
25	3	90.98%
27.5	1	91.73%
30	3	93.98%
32.5	2	95.49%
35	2	96.99%
37.5	1	97.74%
40	2	99.25%
More	1	100.00%

Table 13D

Statistic	Value, μm
Average Fiber Diameter, μm	8.27
Standard Deviation Fiber Diameter, μm	9.56
Min Fiber Diameter, μm	0.51
Max Fiber Diameter, μm	46.40
Median Fiber Diameter, μm	4.57
Mode, μm	2.17
Fiber Count	133

[00142] **Fig. 26** shows that the matrix fibers are bonded to one another at at least some points of fiber intersection. **Fig. 27** and the data in Table 13C show that the mixture of 5 larger size fibers and smaller size fibers was polymodal, with at least three local modes.

Example 14

[00143] Using the method of Example 2, webs were made from EXXON PP3746G polypropylene to which had been added 1 % tristearyl melamine as an electret charging 10 additive. For Run Nos. 14-1F and 14-2F a Zenith 10 cc/rev melt pump metered the flow of polymer to a 20 in. (50.8 cm) wide drilled orifice meltblowing die whose original 0.012 in. (0.3 mm) orifices had been modified by drilling out every 9th orifice to 0.025 in. (0.6 mm), thereby providing a 9:1 ratio of the number of smaller size to larger size holes and a 2:1 ratio of larger hole size to smaller hole size. The line of orifices had 25 holes/inch (10 holes/cm) hole spacing. Heated air attenuated the fibers at the die tip. The airknife 15 employed a 0.010 in. (0.25 mm) positive set back and a 0.030 in. (0.76 mm) air gap. No to moderate vacuum was pulled through a medium mesh collector screen at the point of web formation. The polymer output rate from the extruder was varied from 2.0 to 3.0 lbs/in/hr (0.18 to 0.54 kg/cm/hr), the DCD (die-to-collector distance) was varied from 18.0 to 20.5 in. (45.7 to 52.1 cm) and the air pressure was adjusted as needed to provide webs 20 with a basis weight and EFD as shown below in Table 14A. For Example 14-3F, a 20 in. (50.8 cm) wide drilled orifice meltblowing die with 0.015 in. (0.38 mm) orifices at 25 holes/inch (10 holes/cm) hole spacing was used. The polymer output rate from the extruder was 3.0 lbs/in/hr (0.54 kg/cm/hr), the DCD (die-to-collector distance) was 31 in.

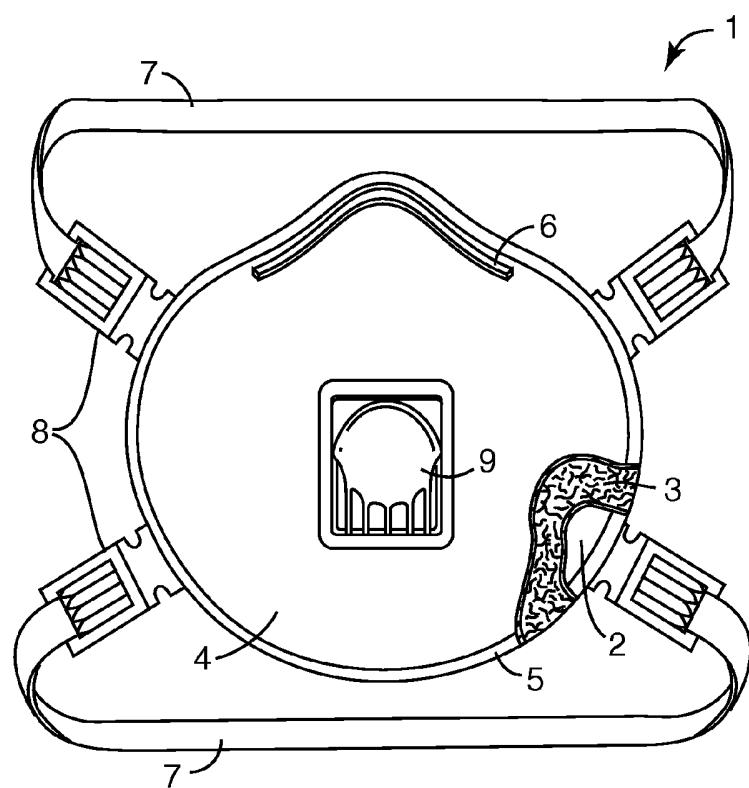
(78.7 cm) and the air pressure was adjusted as needed to provide webs with a basis weight and EFD as shown below in Table 14A.

Table 14A

Run No.	Polymer Rate kg/cm/hr	Basis Wt., gsm	EFD, μm	Thickness, mm	Pressure Drop, mm H ₂ O	Collector Distance cm
14-1F	0.18	151	11.7	2.59	5.2	45
14-2F	0.54	151	11.7	2.69	5.1	52
14-3F	0.54	150	11.5	2.87	5.1	78

[00144] A number of embodiments of the invention have been described. Nevertheless, it will be understood that various modifications may be made without departing from the invention. Accordingly, other embodiments are within the scope of the following claims.

[00145] The reference in this specification to any prior publication (or information derived from it), or to any matter which is known, is not, and should not be taken as, an acknowledgement or admission or any form of suggestion that that prior publication (or information derived from it) or known matter forms part of the common general knowledge in the field of endeavour to which this specification relates.


[00146] Throughout this specification and the claims which follow, unless the context requires otherwise, the word "comprise", and variations such as "comprises" or "comprising", will be understood to imply the inclusion of a stated integer or step or group of integers or steps but not the exclusion of any other integer or step or group of integers or steps.

The claims defining the present invention are as follows:

1. A process for making a molded respirator including:
 - a) forming a monocomponent monolayer nonwoven web containing a bimodal mass fraction/fiber size mixture of continuous monocomponent meltblown attenuated polymeric microfibers and continuous monocomponent meltblown or meltspun attenuated polymeric larger size fibers, the microfibers and larger size fibers being intermingled with each other and being of the same polymeric composition,
and wherein the microfibers have a size of about 0.1 to about 5 μm and the larger size fibers have a size of about 15 to about 50 μm ,
 - b) charging the web, and
 - c) molding the charged web to form a cup-shaped porous monocomponent monolayer matrix, the matrix fibers being bonded to one another at at least some points of fiber intersection and the matrix having a King Stiffness greater than 1 N.
- 15 2. A process according to claim 1 wherein a histogram of mass fraction vs. fiber size in μm exhibits a larger size fiber mode of about 10 to about 50 μm .
3. A process according to claim 1 wherein a histogram of mass fraction vs. fiber size in μm exhibits a larger size fiber mode of about 10 to about 40 μm .
- 20 4. A process according to claim 1 wherein a histogram of mass fraction vs. fiber size in μm exhibits a microfiber mode of about 1 to about 5 μm and a larger size fiber mode of about 12 to about 30 μm .
- 25 5. A process according to claim 1 wherein a histogram of fiber count (frequency) vs. fiber size in μm exhibits at least two modes whose corresponding fiber sizes differ by at least 50% of the smaller fiber size.
6. A process according to claim 1 including collecting a web containing microfibers
30 having a size of about 0.1 to about 10 μm and larger size fibers having a size of about 10 to about 70 μm .

7. A process according to claim 1 including collecting a web containing microfibers having a size of about 0.1 to about 5 μm and larger size fibers having a size of about 15 to about 50 μm .
- 5 8. A molded respirator including a cup-shaped porous monocomponent monolayer matrix containing a charged bimodal mass fraction/fiber size mixture of continuous monocomponent meltblown attenuated polymeric microfibers and continuous monocomponent meltblown or meltspun attenuated polymeric larger size fibers, the microfibers and larger size fibers being intermingled with each other and being of the same 10 polymeric composition, the fibers being bonded to one another at at least some points of fiber intersection and the matrix having a King Stiffness greater than 1 N;
and wherein the microfibers have a size of about 0.1 to about 5 μm and the larger size fibers have a size of about 15 to about 50 μm .
- 15 9. A molded respirator according to claim 8 wherein a histogram of mass fraction vs. fiber size in μm exhibits a larger size fiber mode of about 10 to about 50 μm .
10. A molded respirator according to claim 8 wherein a histogram of mass fraction vs. fiber size in μm exhibits a larger size fiber mode of about 10 to about 40 μm .
- 20 11. A molded respirator according to claim 8 wherein a histogram of mass fraction vs. fiber size in μm exhibits a microfiber mode of about 1 to about 5 μm and a larger size fiber mode of about 12 to about 30 μm .
- 25 12. A molded respirator according to claim 8 wherein a histogram of fiber count (frequency) vs. fiber size in μm exhibits at least two modes whose corresponding fiber sizes differ by at least 50% of the smaller fiber size.
- 30 13. A molded respirator according to claim 8 wherein the matrix has a King Stiffness of at least 2 N.
14. A process for making a molded respirator, substantially as herein described.

15. A molded respirator, substantially as herein described with reference to the accompanying drawings.

Fig. 1

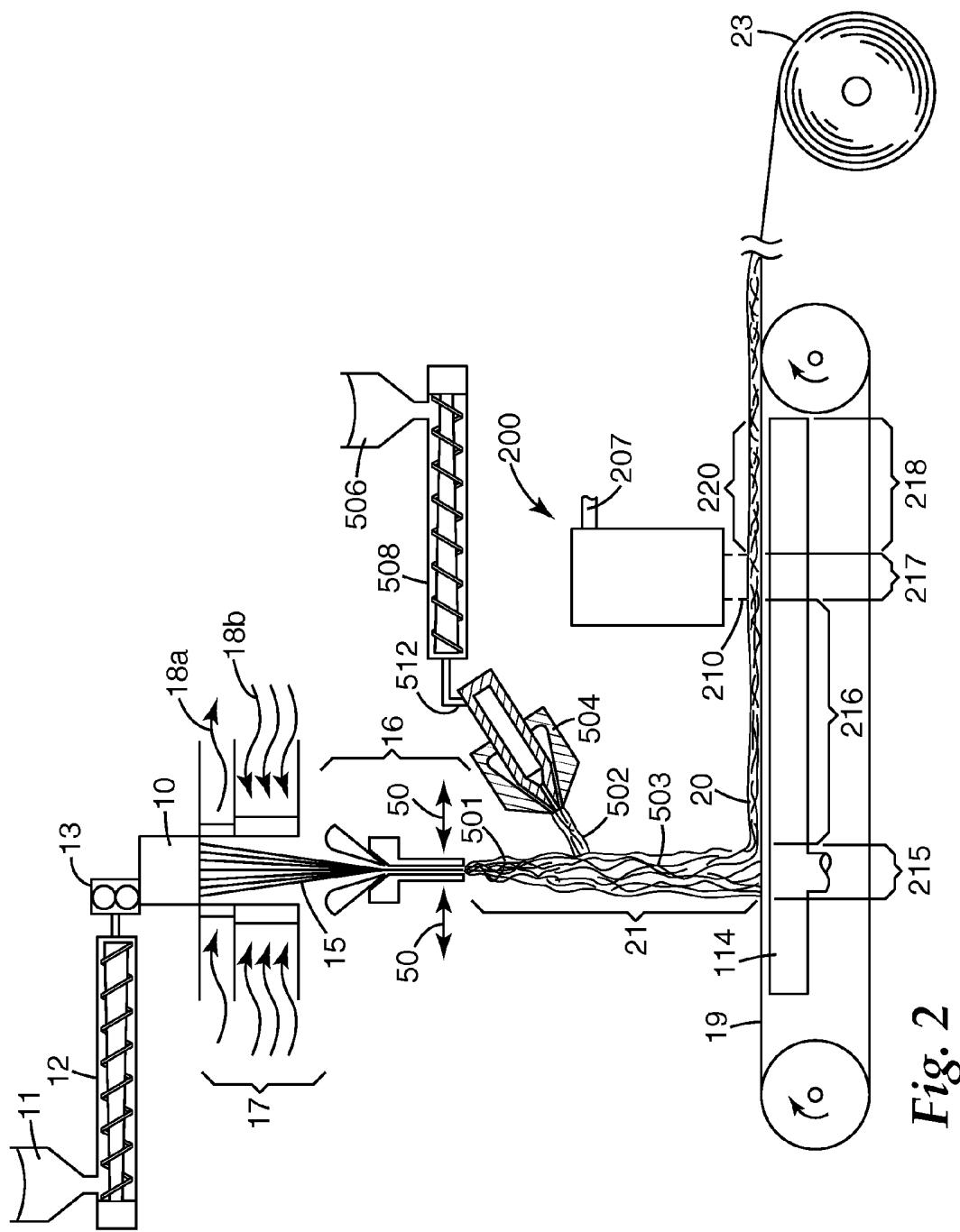
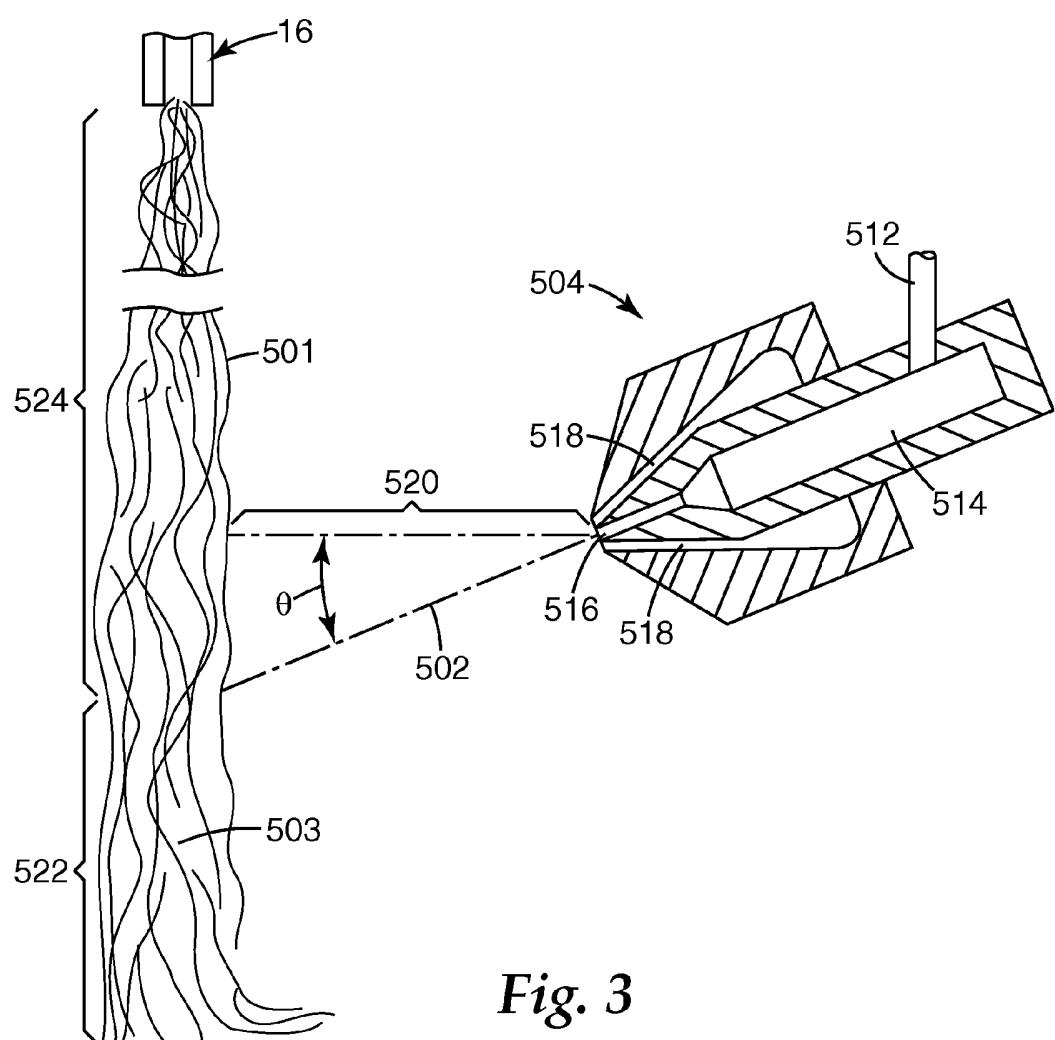



Fig. 2

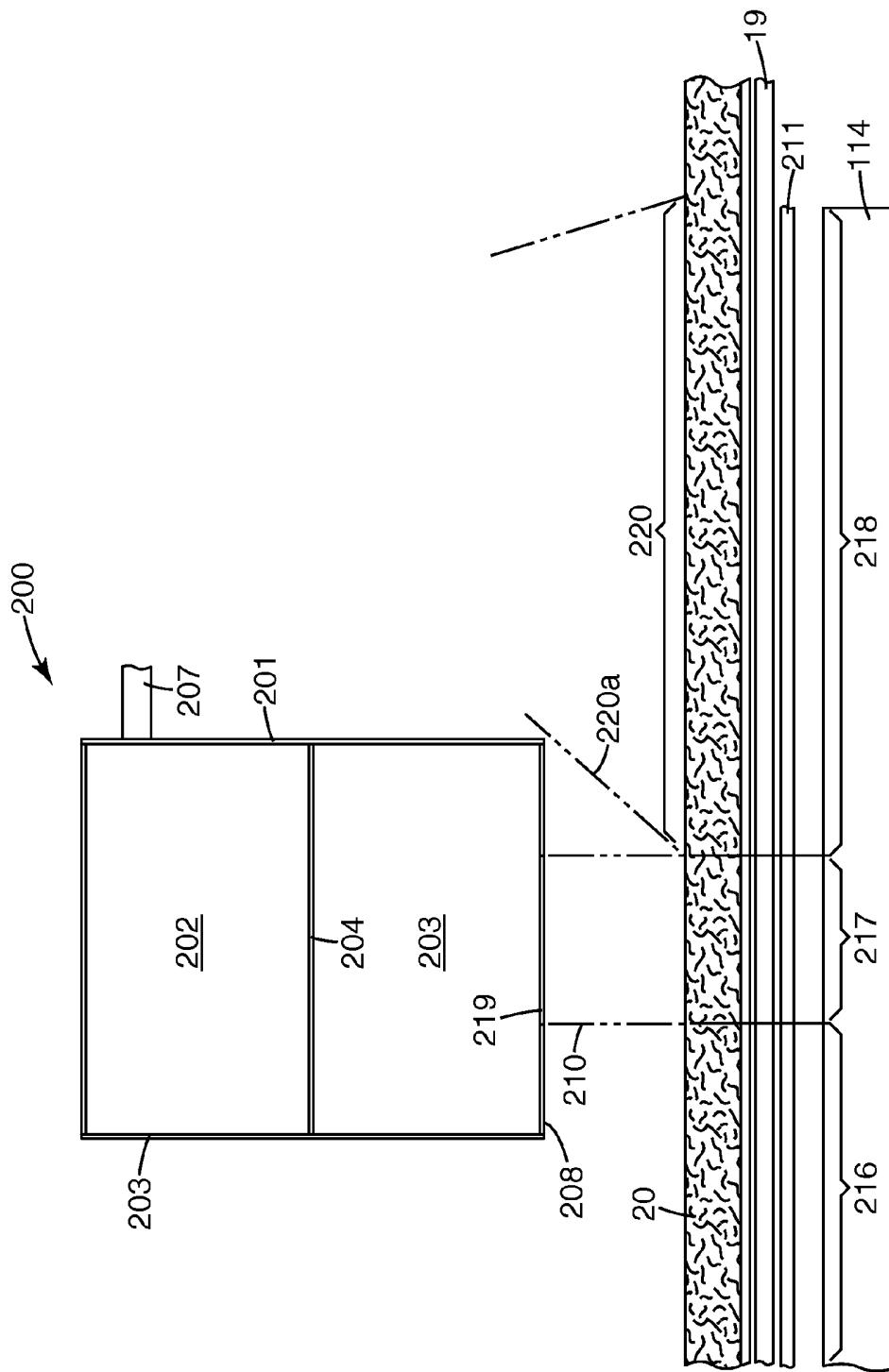
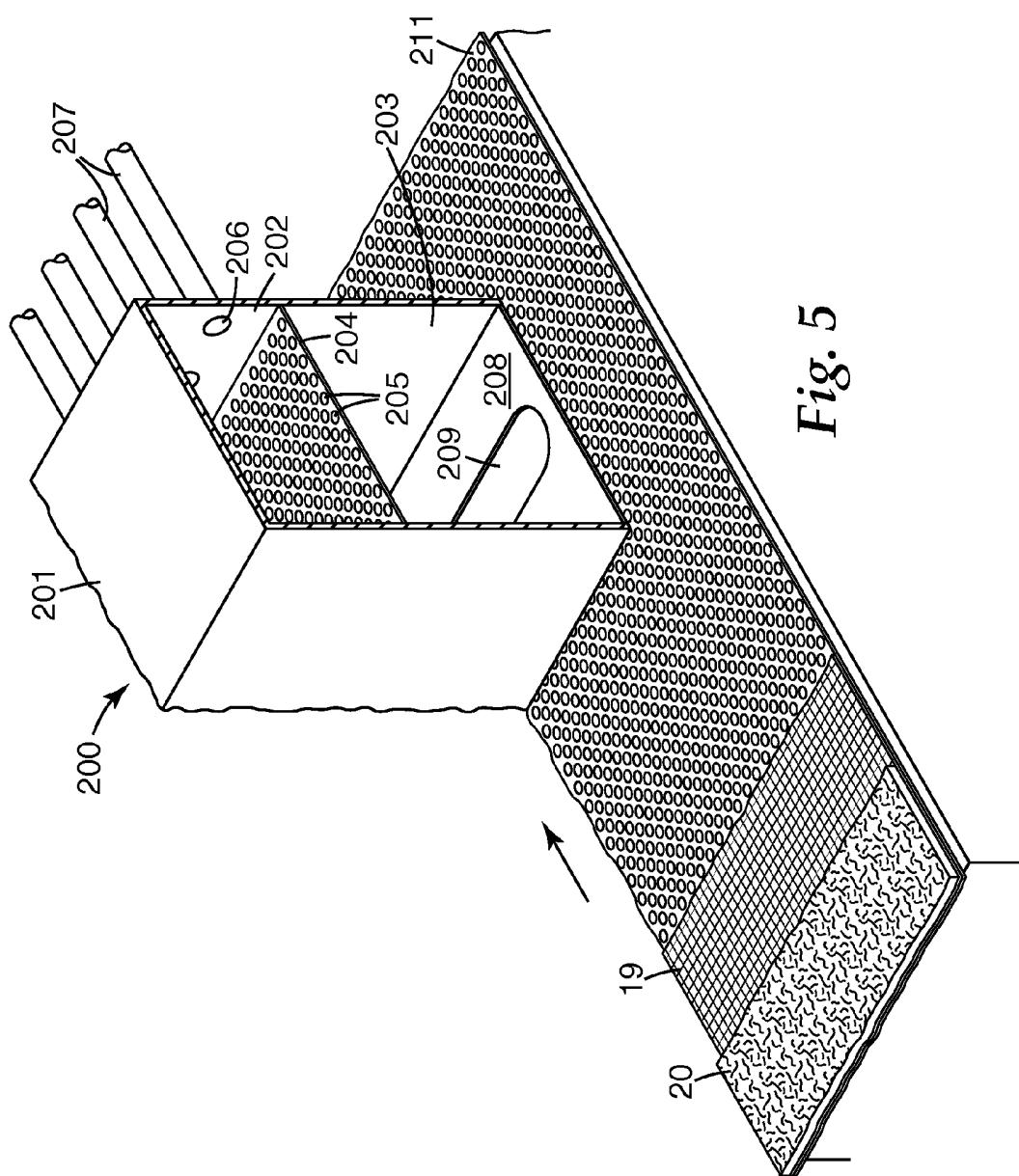



Fig. 4

6/17

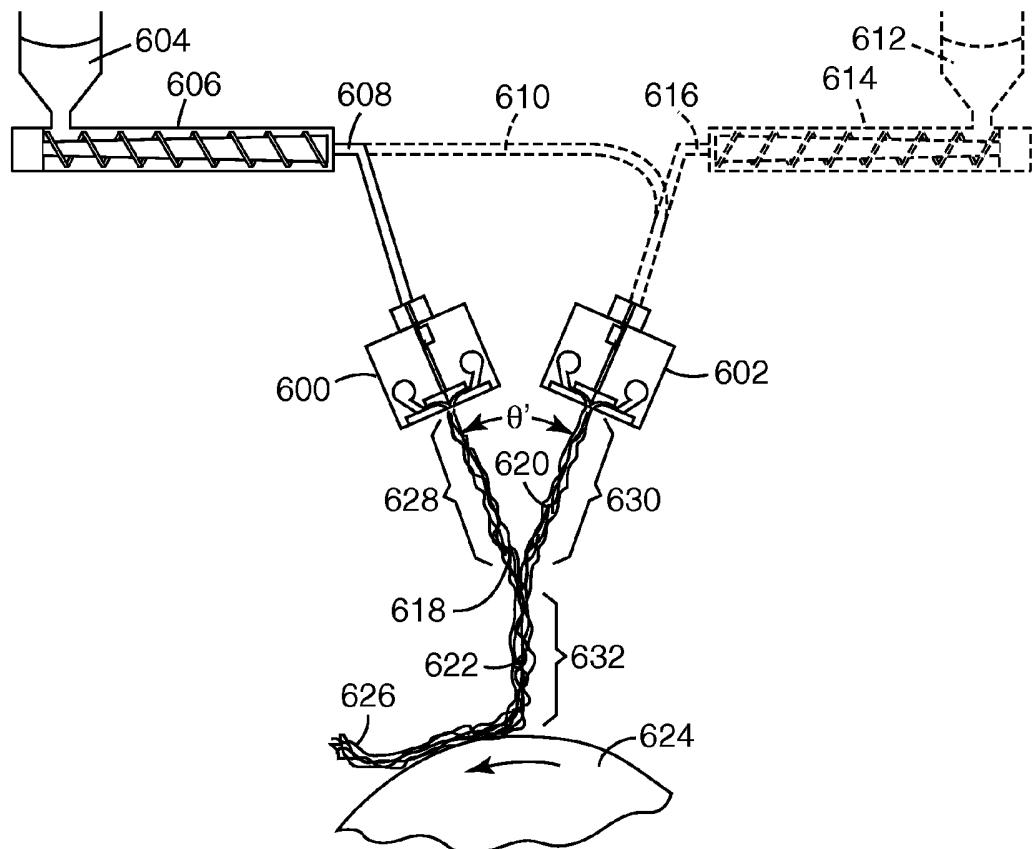


Fig. 6

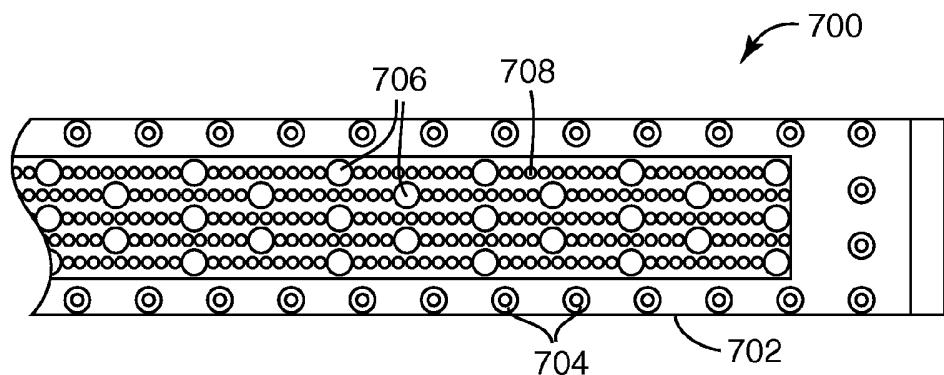
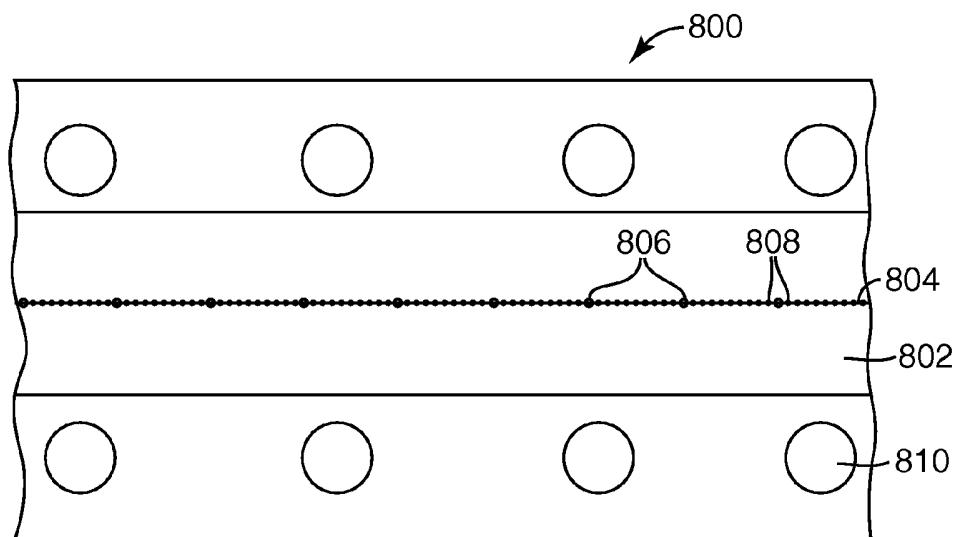
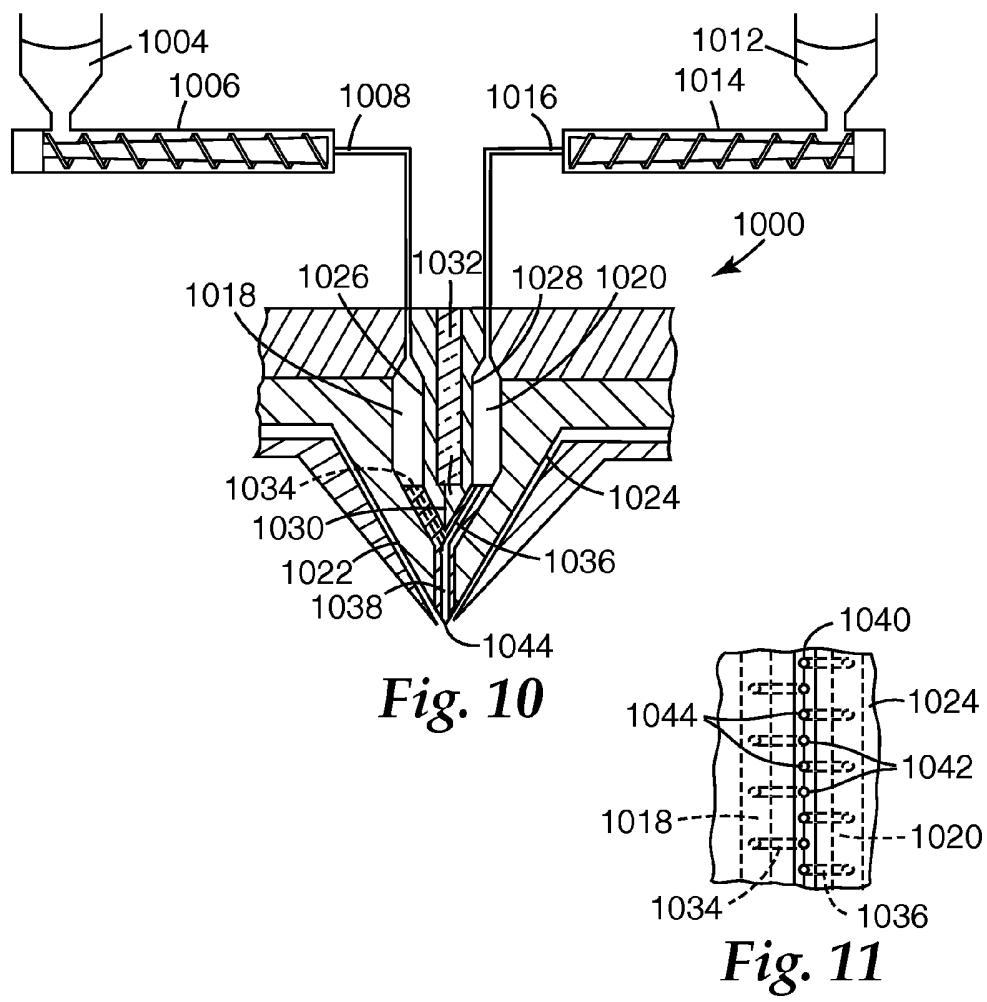




Fig. 7

7/17

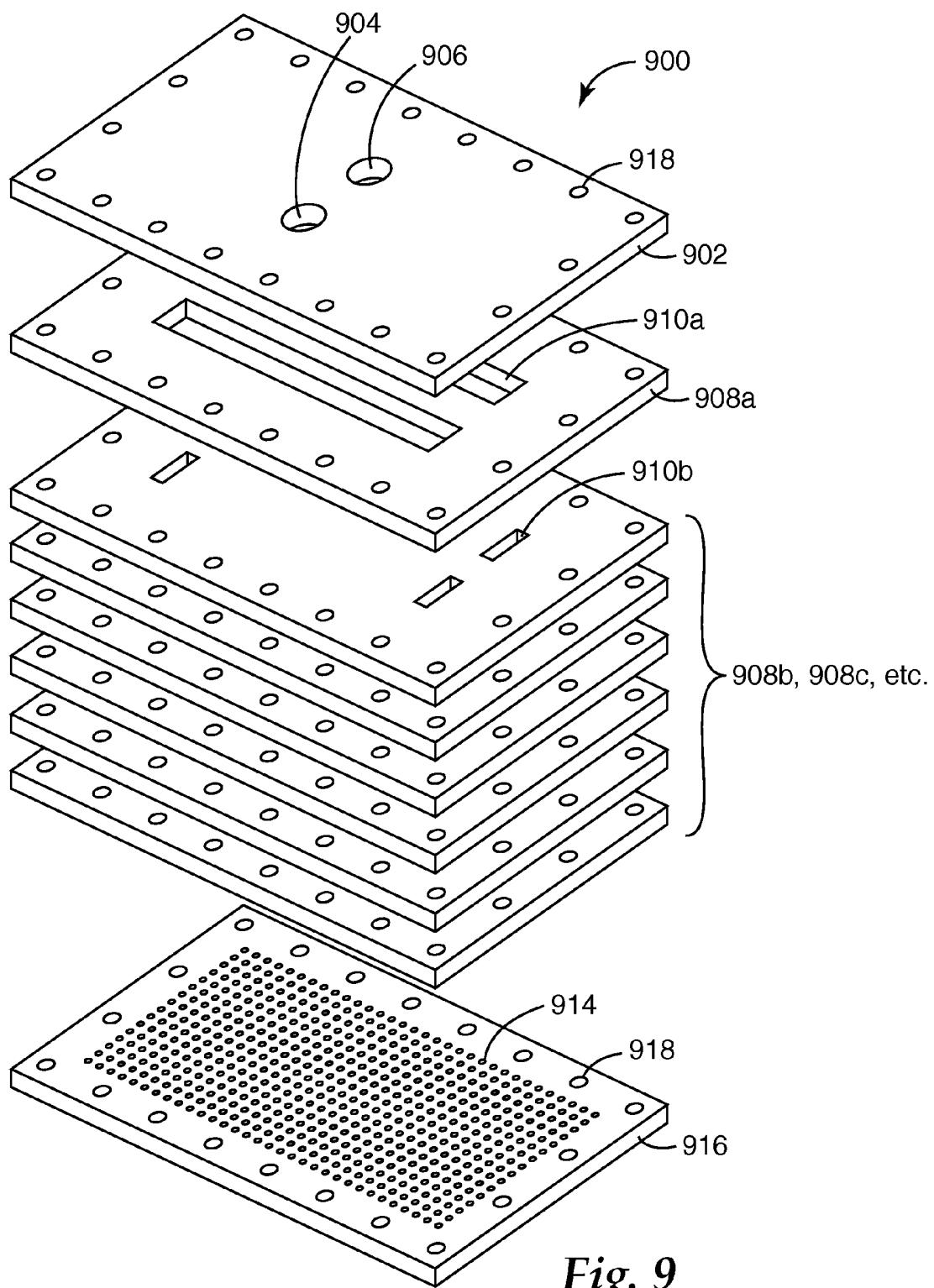
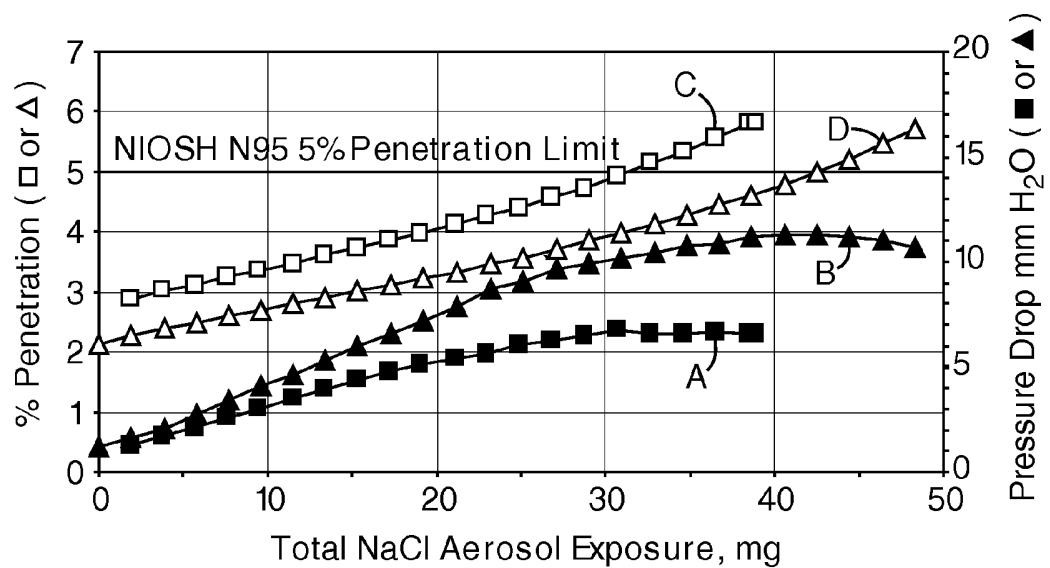
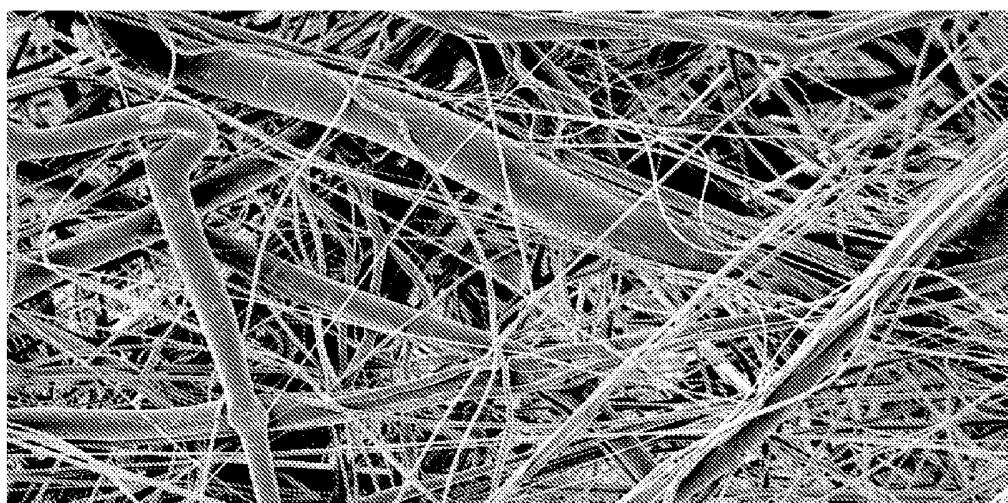


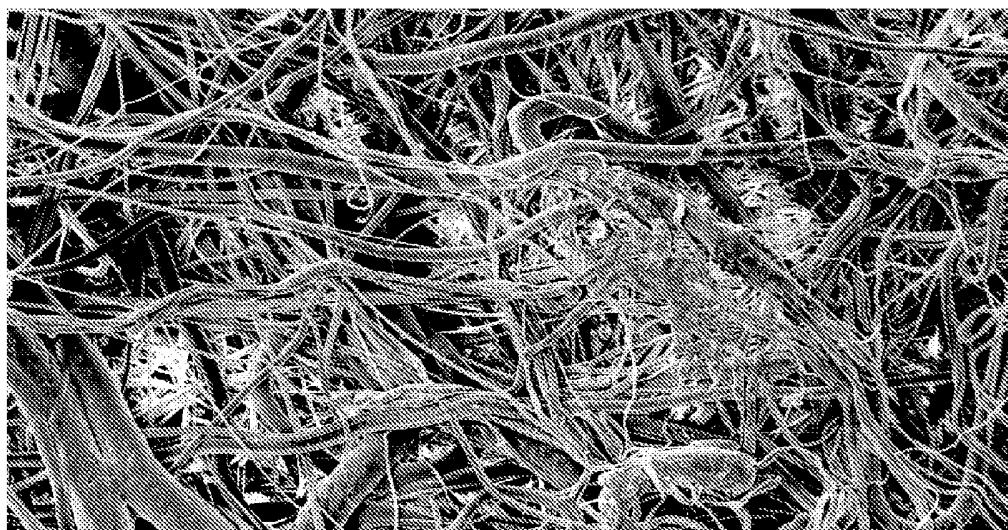
Fig. 8

Fig. 10

Fig. 11

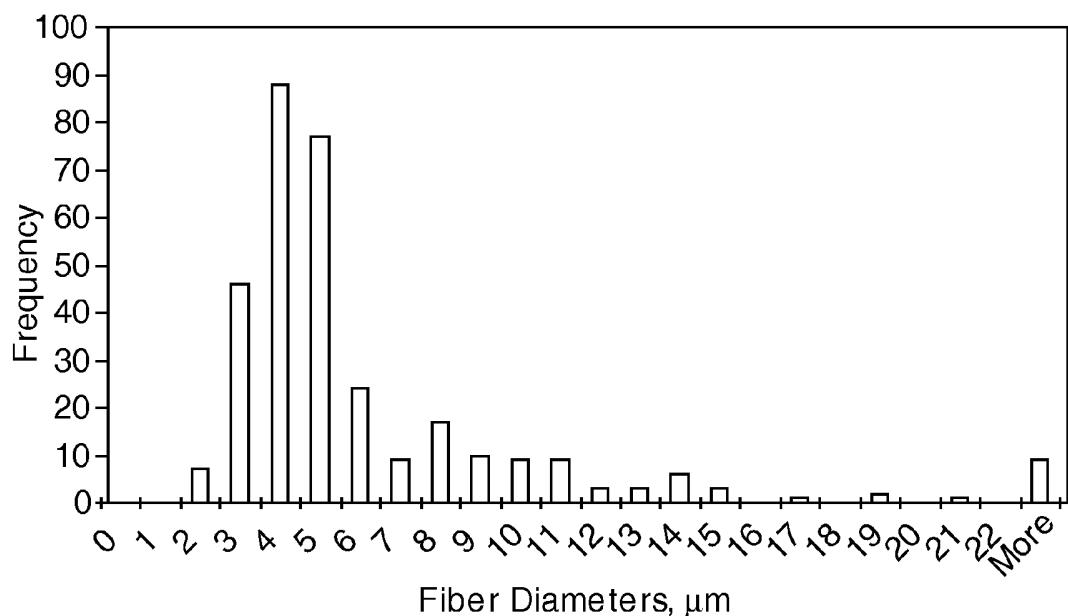
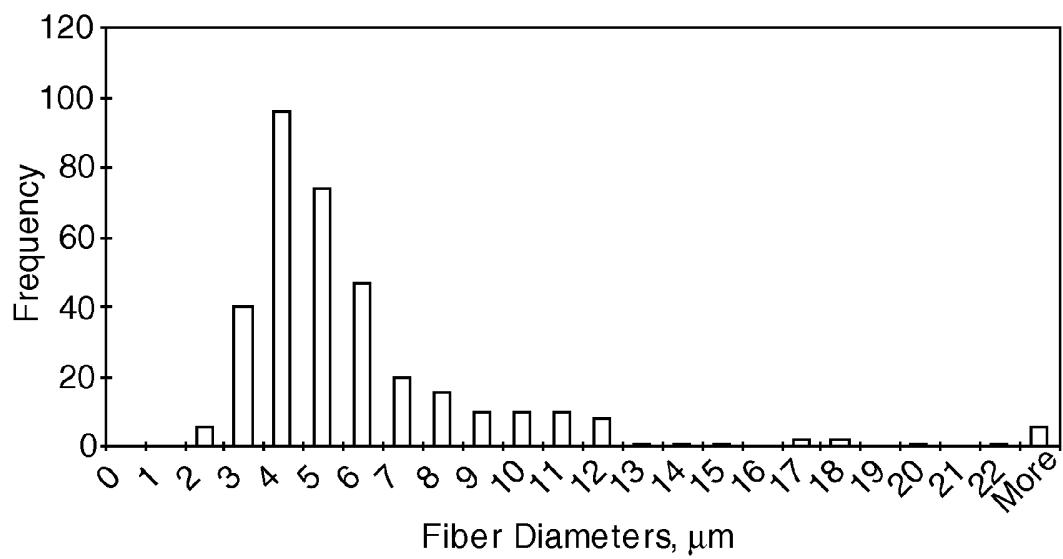
Fig. 9

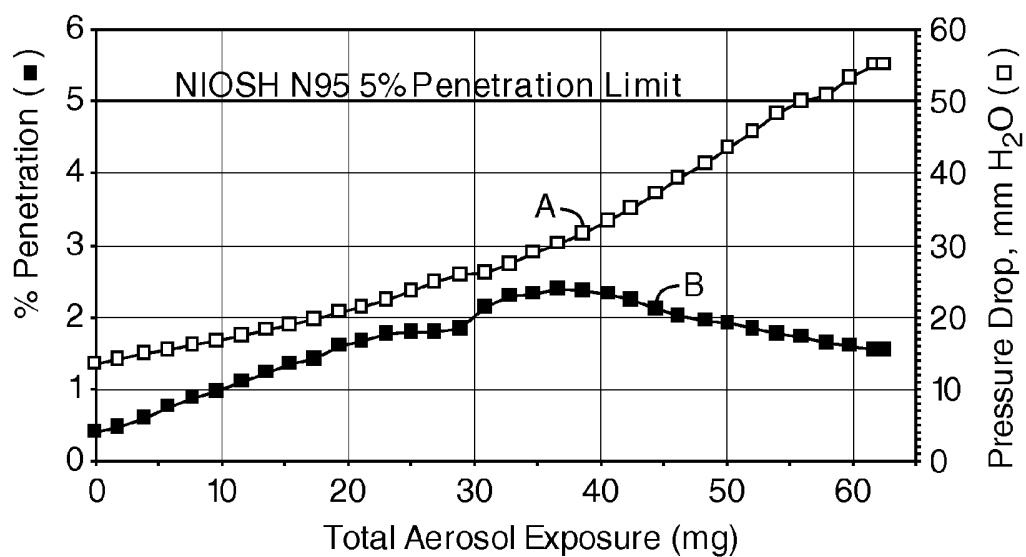
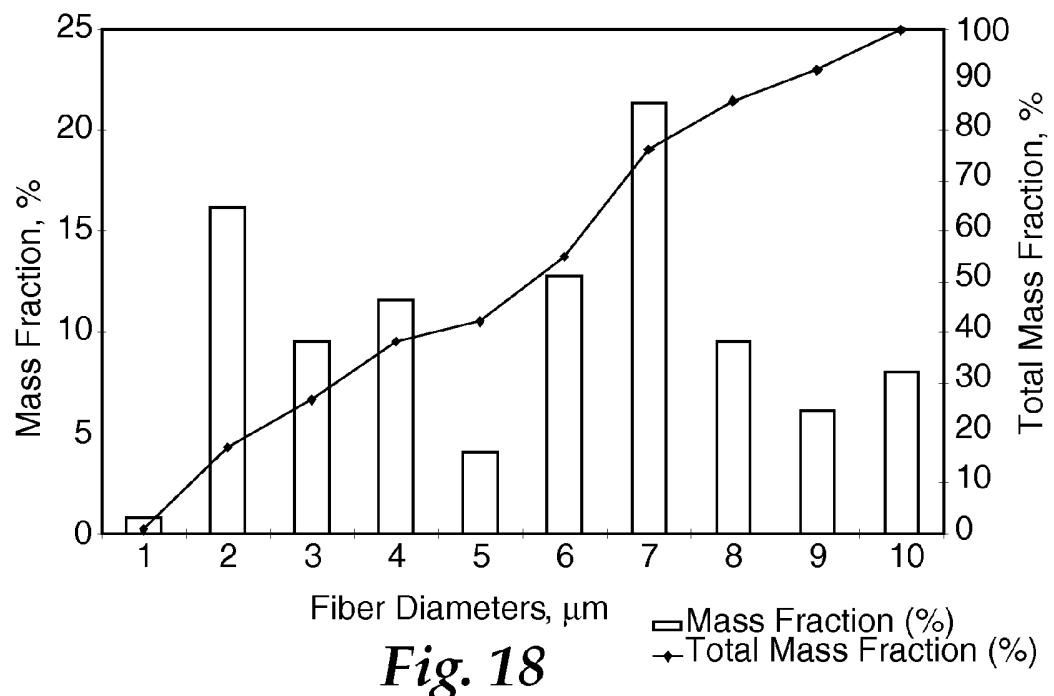




Fig. 12

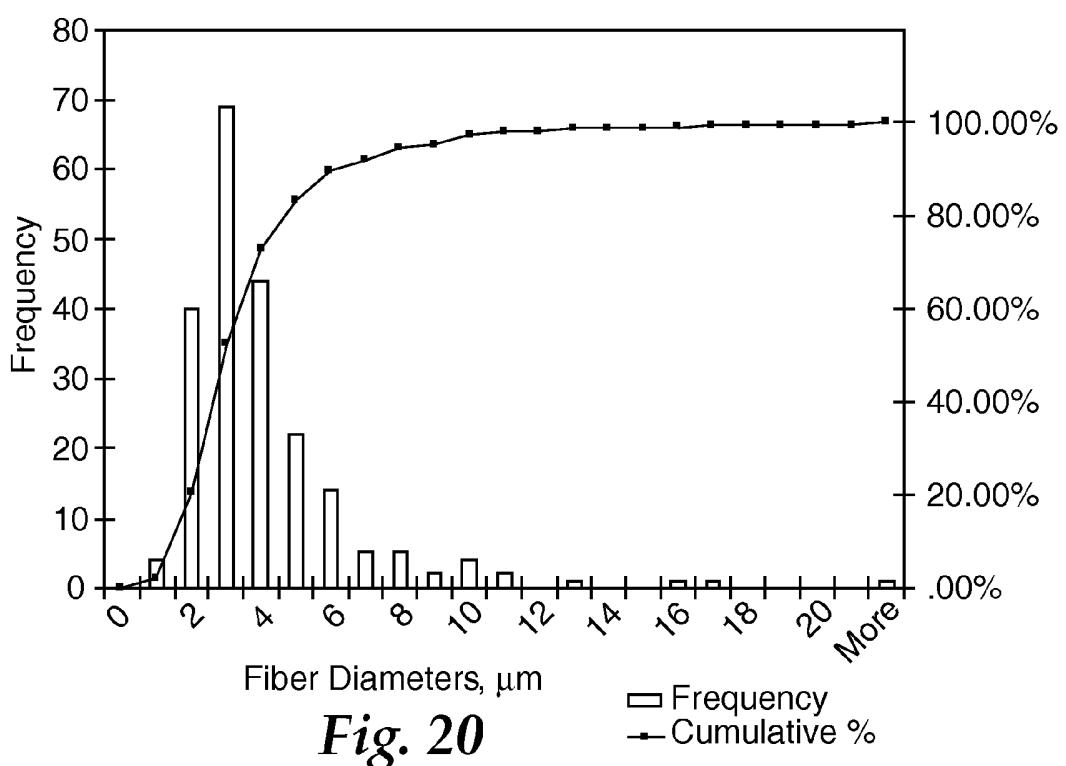
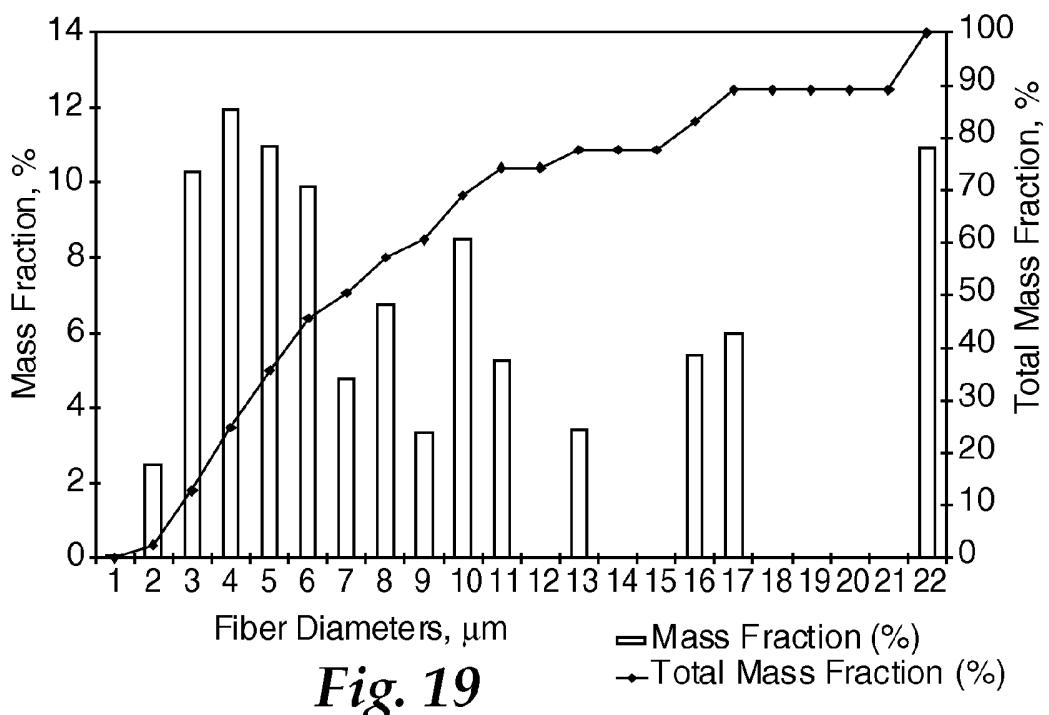
10/17

Fig. 13



100 μm



Fig. 14

100 μm



11/17

*Fig. 15**Fig. 16*

12/17

*Fig. 17**Fig. 18*

13/17

14/17

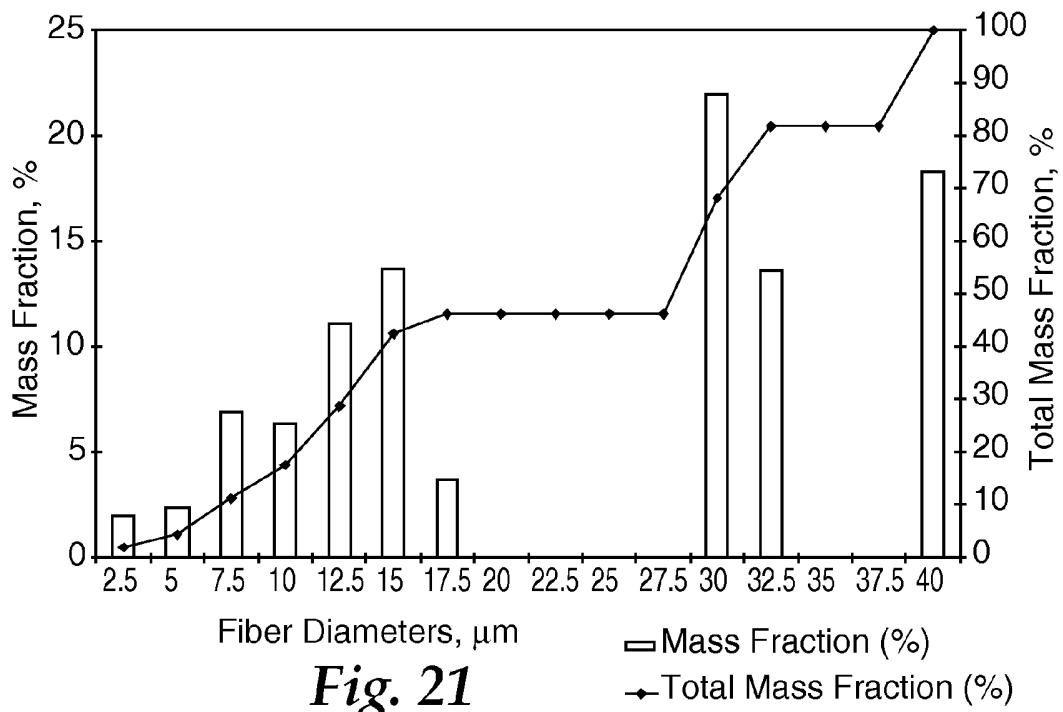


Fig. 21

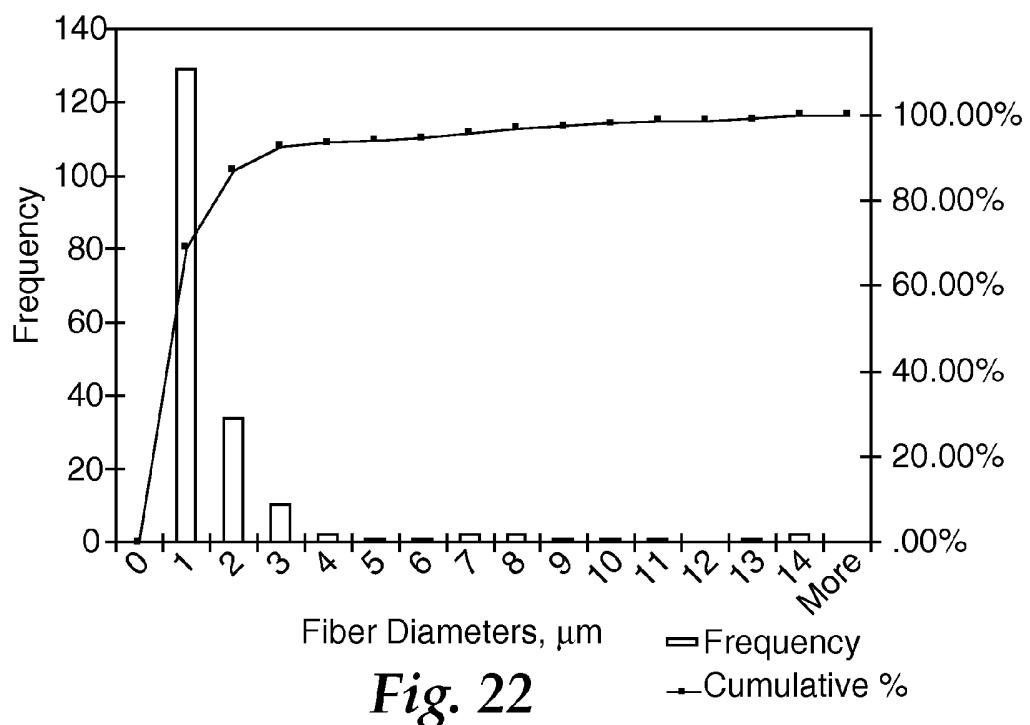
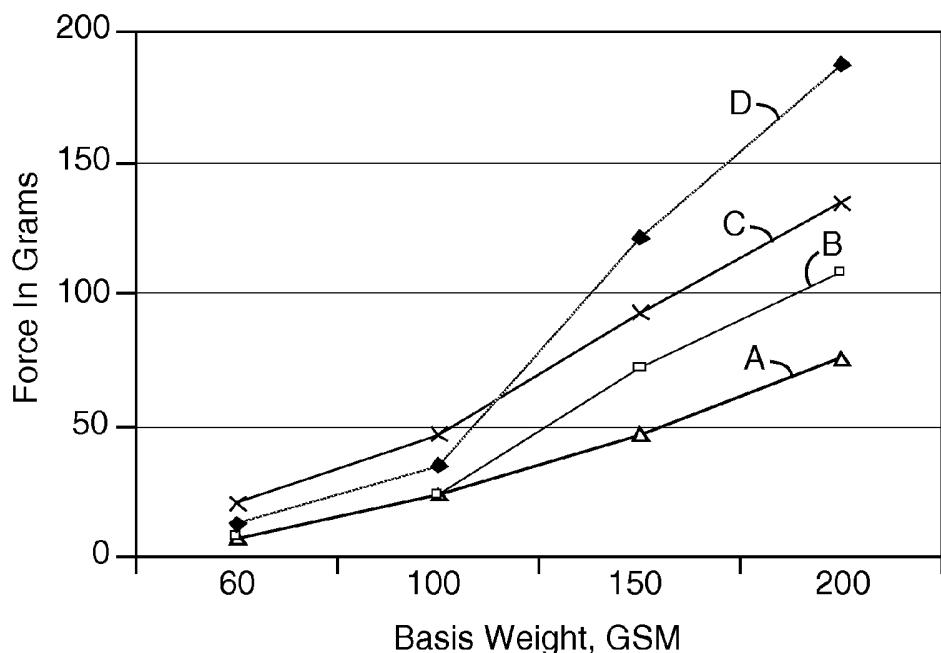
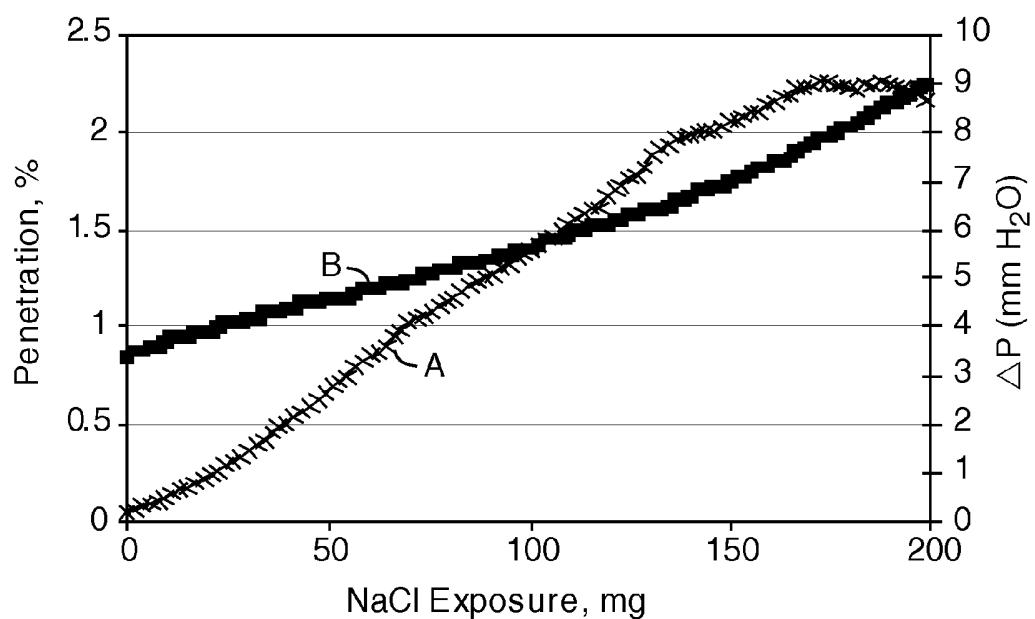




Fig. 22

15/17

*Fig. 23**Fig. 24*

16/17

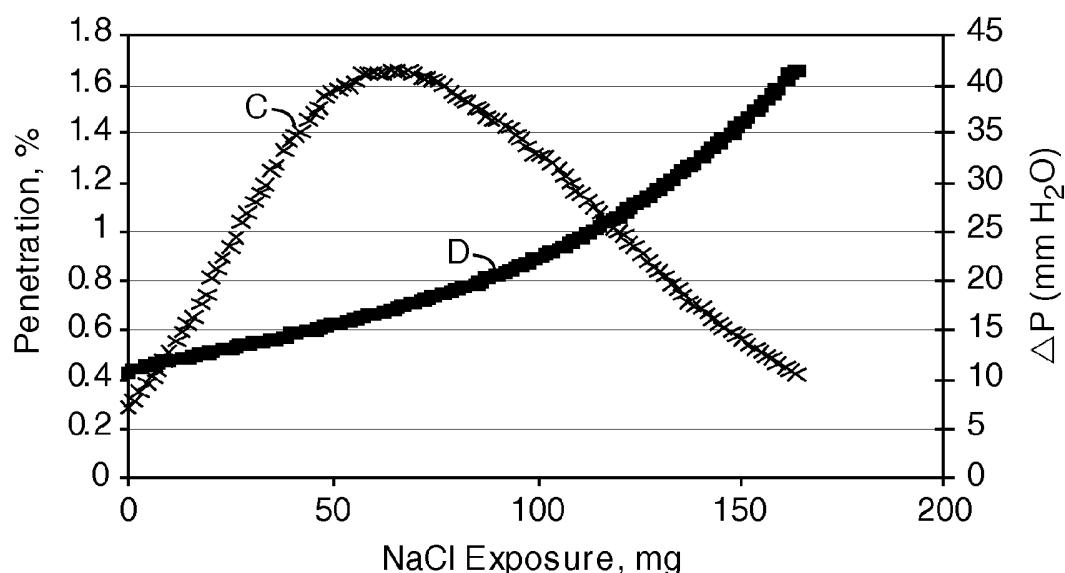


Fig. 25

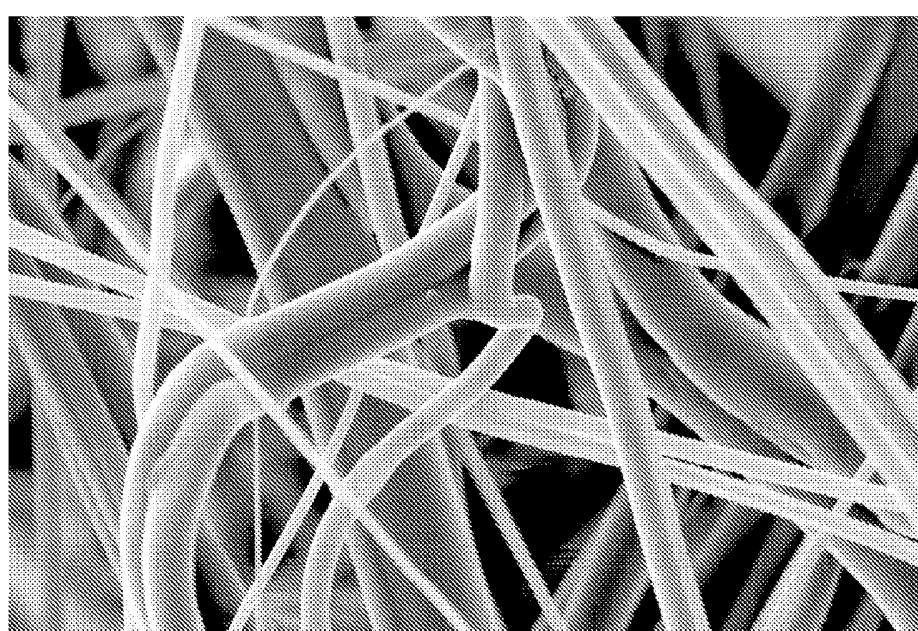
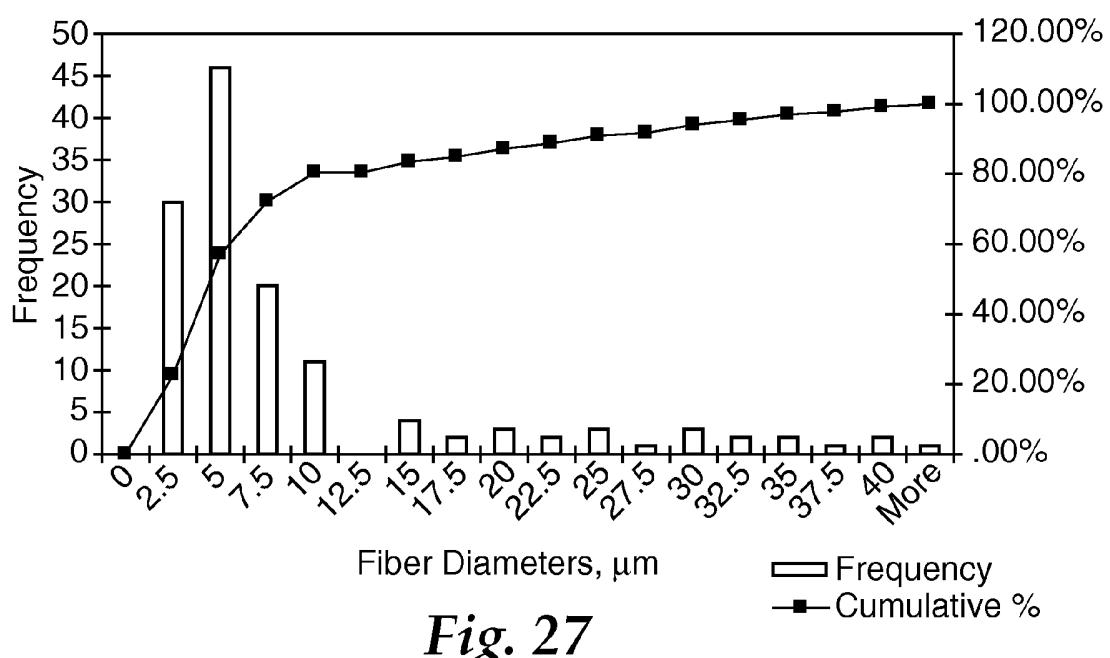



Fig. 26

